1 // SPDX-License-Identifier: GPL-2.0-only << 2 /* 1 /* 3 * fs/direct-io.c 2 * fs/direct-io.c 4 * 3 * 5 * Copyright (C) 2002, Linus Torvalds. 4 * Copyright (C) 2002, Linus Torvalds. 6 * 5 * 7 * O_DIRECT 6 * O_DIRECT 8 * 7 * 9 * 04Jul2002 Andrew Morton 8 * 04Jul2002 Andrew Morton 10 * Initial version 9 * Initial version 11 * 11Sep2002 janetinc@us.ibm.com 10 * 11Sep2002 janetinc@us.ibm.com 12 * added readv/writev support. 11 * added readv/writev support. 13 * 29Oct2002 Andrew Morton 12 * 29Oct2002 Andrew Morton 14 * rewrote bio_add_page() support 13 * rewrote bio_add_page() support. 15 * 30Oct2002 pbadari@us.ibm.com 14 * 30Oct2002 pbadari@us.ibm.com 16 * added support for non-aligned 15 * added support for non-aligned IO. 17 * 06Nov2002 pbadari@us.ibm.com 16 * 06Nov2002 pbadari@us.ibm.com 18 * added asynchronous IO support. 17 * added asynchronous IO support. 19 * 21Jul2003 nathans@sgi.com 18 * 21Jul2003 nathans@sgi.com 20 * added IO completion notifier. 19 * added IO completion notifier. 21 */ 20 */ 22 21 23 #include <linux/kernel.h> 22 #include <linux/kernel.h> 24 #include <linux/module.h> 23 #include <linux/module.h> 25 #include <linux/types.h> 24 #include <linux/types.h> 26 #include <linux/fs.h> 25 #include <linux/fs.h> 27 #include <linux/mm.h> 26 #include <linux/mm.h> 28 #include <linux/slab.h> 27 #include <linux/slab.h> 29 #include <linux/highmem.h> 28 #include <linux/highmem.h> 30 #include <linux/pagemap.h> 29 #include <linux/pagemap.h> 31 #include <linux/task_io_accounting_ops.h> 30 #include <linux/task_io_accounting_ops.h> 32 #include <linux/bio.h> 31 #include <linux/bio.h> 33 #include <linux/wait.h> 32 #include <linux/wait.h> 34 #include <linux/err.h> 33 #include <linux/err.h> 35 #include <linux/blkdev.h> 34 #include <linux/blkdev.h> 36 #include <linux/buffer_head.h> 35 #include <linux/buffer_head.h> 37 #include <linux/rwsem.h> 36 #include <linux/rwsem.h> 38 #include <linux/uio.h> 37 #include <linux/uio.h> 39 #include <linux/atomic.h> 38 #include <linux/atomic.h> 40 !! 39 #include <linux/prefetch.h> 41 #include "internal.h" << 42 40 43 /* 41 /* 44 * How many user pages to map in one call to i !! 42 * How many user pages to map in one call to get_user_pages(). This determines 45 * determines the size of a structure in the s !! 43 * the size of a structure in the slab cache 46 */ 44 */ 47 #define DIO_PAGES 64 45 #define DIO_PAGES 64 48 46 49 /* 47 /* 50 * Flags for dio_complete() 48 * Flags for dio_complete() 51 */ 49 */ 52 #define DIO_COMPLETE_ASYNC 0x01 50 #define DIO_COMPLETE_ASYNC 0x01 /* This is async IO */ 53 #define DIO_COMPLETE_INVALIDATE 0x02 51 #define DIO_COMPLETE_INVALIDATE 0x02 /* Can invalidate pages */ 54 52 55 /* 53 /* 56 * This code generally works in units of "dio_ 54 * This code generally works in units of "dio_blocks". A dio_block is 57 * somewhere between the hard sector size and 55 * somewhere between the hard sector size and the filesystem block size. it 58 * is determined on a per-invocation basis. 56 * is determined on a per-invocation basis. When talking to the filesystem 59 * we need to convert dio_blocks to fs_blocks 57 * we need to convert dio_blocks to fs_blocks by scaling the dio_block quantity 60 * down by dio->blkfactor. Similarly, fs-bloc 58 * down by dio->blkfactor. Similarly, fs-blocksize quantities are converted 61 * to bio_block quantities by shifting left by 59 * to bio_block quantities by shifting left by blkfactor. 62 * 60 * 63 * If blkfactor is zero then the user's reques 61 * If blkfactor is zero then the user's request was aligned to the filesystem's 64 * blocksize. 62 * blocksize. 65 */ 63 */ 66 64 67 /* dio_state only used in the submission path 65 /* dio_state only used in the submission path */ 68 66 69 struct dio_submit { 67 struct dio_submit { 70 struct bio *bio; /* bio 68 struct bio *bio; /* bio under assembly */ 71 unsigned blkbits; /* doe 69 unsigned blkbits; /* doesn't change */ 72 unsigned blkfactor; /* Whe 70 unsigned blkfactor; /* When we're using an alignment which 73 is 71 is finer than the filesystem's soft 74 blo 72 blocksize, this specifies how much 75 fin 73 finer. blkfactor=2 means 1/4-block 76 ali 74 alignment. Does not change */ 77 unsigned start_zero_done; /* fla 75 unsigned start_zero_done; /* flag: sub-blocksize zeroing has 78 bee 76 been performed at the start of a 79 wri 77 write */ 80 int pages_in_io; /* app 78 int pages_in_io; /* approximate total IO pages */ 81 sector_t block_in_file; /* Cur 79 sector_t block_in_file; /* Current offset into the underlying 82 fil 80 file in dio_block units. */ 83 unsigned blocks_available; /* At 81 unsigned blocks_available; /* At block_in_file. changes */ 84 int reap_counter; /* rat 82 int reap_counter; /* rate limit reaping */ 85 sector_t final_block_in_request;/* doe 83 sector_t final_block_in_request;/* doesn't change */ 86 int boundary; /* pre 84 int boundary; /* prev block is at a boundary */ 87 get_block_t *get_block; /* blo 85 get_block_t *get_block; /* block mapping function */ >> 86 dio_submit_t *submit_io; /* IO submition function */ 88 87 89 loff_t logical_offset_in_bio; /* cur 88 loff_t logical_offset_in_bio; /* current first logical block in bio */ 90 sector_t final_block_in_bio; /* cur 89 sector_t final_block_in_bio; /* current final block in bio + 1 */ 91 sector_t next_block_for_io; /* nex 90 sector_t next_block_for_io; /* next block to be put under IO, 92 in 91 in dio_blocks units */ 93 92 94 /* 93 /* 95 * Deferred addition of a page to the 94 * Deferred addition of a page to the dio. These variables are 96 * private to dio_send_cur_page(), sub 95 * private to dio_send_cur_page(), submit_page_section() and 97 * dio_bio_add_page(). 96 * dio_bio_add_page(). 98 */ 97 */ 99 struct page *cur_page; /* The 98 struct page *cur_page; /* The page */ 100 unsigned cur_page_offset; /* Off 99 unsigned cur_page_offset; /* Offset into it, in bytes */ 101 unsigned cur_page_len; /* Nr 100 unsigned cur_page_len; /* Nr of bytes at cur_page_offset */ 102 sector_t cur_page_block; /* Whe 101 sector_t cur_page_block; /* Where it starts */ 103 loff_t cur_page_fs_offset; /* Off 102 loff_t cur_page_fs_offset; /* Offset in file */ 104 103 105 struct iov_iter *iter; 104 struct iov_iter *iter; 106 /* 105 /* 107 * Page queue. These variables belong 106 * Page queue. These variables belong to dio_refill_pages() and 108 * dio_get_page(). 107 * dio_get_page(). 109 */ 108 */ 110 unsigned head; /* nex 109 unsigned head; /* next page to process */ 111 unsigned tail; /* las 110 unsigned tail; /* last valid page + 1 */ 112 size_t from, to; 111 size_t from, to; 113 }; 112 }; 114 113 115 /* dio_state communicated between submission p 114 /* dio_state communicated between submission path and end_io */ 116 struct dio { 115 struct dio { 117 int flags; /* doe 116 int flags; /* doesn't change */ 118 blk_opf_t opf; /* req !! 117 int op; >> 118 int op_flags; >> 119 blk_qc_t bio_cookie; 119 struct gendisk *bio_disk; 120 struct gendisk *bio_disk; 120 struct inode *inode; 121 struct inode *inode; 121 loff_t i_size; /* i_s 122 loff_t i_size; /* i_size when submitted */ 122 dio_iodone_t *end_io; /* IO 123 dio_iodone_t *end_io; /* IO completion function */ 123 bool is_pinned; /* T i << 124 124 125 void *private; /* cop 125 void *private; /* copy from map_bh.b_private */ 126 126 127 /* BIO completion state */ 127 /* BIO completion state */ 128 spinlock_t bio_lock; /* pro 128 spinlock_t bio_lock; /* protects BIO fields below */ 129 int page_errors; /* err !! 129 int page_errors; /* errno from get_user_pages() */ 130 int is_async; /* is 130 int is_async; /* is IO async ? */ 131 bool defer_completion; /* def 131 bool defer_completion; /* defer AIO completion to workqueue? */ 132 bool should_dirty; /* if 132 bool should_dirty; /* if pages should be dirtied */ 133 int io_error; /* IO 133 int io_error; /* IO error in completion path */ 134 unsigned long refcount; /* dir 134 unsigned long refcount; /* direct_io_worker() and bios */ 135 struct bio *bio_list; /* sin 135 struct bio *bio_list; /* singly linked via bi_private */ 136 struct task_struct *waiter; /* wai 136 struct task_struct *waiter; /* waiting task (NULL if none) */ 137 137 138 /* AIO related stuff */ 138 /* AIO related stuff */ 139 struct kiocb *iocb; /* kio 139 struct kiocb *iocb; /* kiocb */ 140 ssize_t result; /* IO 140 ssize_t result; /* IO result */ 141 141 142 /* 142 /* 143 * pages[] (and any fields placed afte 143 * pages[] (and any fields placed after it) are not zeroed out at 144 * allocation time. Don't add new fie 144 * allocation time. Don't add new fields after pages[] unless you 145 * wish that they not be zeroed. 145 * wish that they not be zeroed. 146 */ 146 */ 147 union { 147 union { 148 struct page *pages[DIO_PAGES]; 148 struct page *pages[DIO_PAGES]; /* page buffer */ 149 struct work_struct complete_wo 149 struct work_struct complete_work;/* deferred AIO completion */ 150 }; 150 }; 151 } ____cacheline_aligned_in_smp; 151 } ____cacheline_aligned_in_smp; 152 152 153 static struct kmem_cache *dio_cache __ro_after !! 153 static struct kmem_cache *dio_cache __read_mostly; 154 154 155 /* 155 /* 156 * How many pages are in the queue? 156 * How many pages are in the queue? 157 */ 157 */ 158 static inline unsigned dio_pages_present(struc 158 static inline unsigned dio_pages_present(struct dio_submit *sdio) 159 { 159 { 160 return sdio->tail - sdio->head; 160 return sdio->tail - sdio->head; 161 } 161 } 162 162 163 /* 163 /* 164 * Go grab and pin some userspace pages. Typ 164 * Go grab and pin some userspace pages. Typically we'll get 64 at a time. 165 */ 165 */ 166 static inline int dio_refill_pages(struct dio 166 static inline int dio_refill_pages(struct dio *dio, struct dio_submit *sdio) 167 { 167 { 168 struct page **pages = dio->pages; << 169 const enum req_op dio_op = dio->opf & << 170 ssize_t ret; 168 ssize_t ret; 171 169 172 ret = iov_iter_extract_pages(sdio->ite !! 170 ret = iov_iter_get_pages(sdio->iter, dio->pages, LONG_MAX, DIO_PAGES, 173 DIO_PAGES !! 171 &sdio->from); 174 172 175 if (ret < 0 && sdio->blocks_available !! 173 if (ret < 0 && sdio->blocks_available && (dio->op == REQ_OP_WRITE)) { >> 174 struct page *page = ZERO_PAGE(0); 176 /* 175 /* 177 * A memory fault, but the fil 176 * A memory fault, but the filesystem has some outstanding 178 * mapped blocks. We need to 177 * mapped blocks. We need to use those blocks up to avoid 179 * leaking stale data in the f 178 * leaking stale data in the file. 180 */ 179 */ 181 if (dio->page_errors == 0) 180 if (dio->page_errors == 0) 182 dio->page_errors = ret 181 dio->page_errors = ret; 183 dio->pages[0] = ZERO_PAGE(0); !! 182 get_page(page); >> 183 dio->pages[0] = page; 184 sdio->head = 0; 184 sdio->head = 0; 185 sdio->tail = 1; 185 sdio->tail = 1; 186 sdio->from = 0; 186 sdio->from = 0; 187 sdio->to = PAGE_SIZE; 187 sdio->to = PAGE_SIZE; 188 return 0; 188 return 0; 189 } 189 } 190 190 191 if (ret >= 0) { 191 if (ret >= 0) { >> 192 iov_iter_advance(sdio->iter, ret); 192 ret += sdio->from; 193 ret += sdio->from; 193 sdio->head = 0; 194 sdio->head = 0; 194 sdio->tail = (ret + PAGE_SIZE 195 sdio->tail = (ret + PAGE_SIZE - 1) / PAGE_SIZE; 195 sdio->to = ((ret - 1) & (PAGE_ 196 sdio->to = ((ret - 1) & (PAGE_SIZE - 1)) + 1; 196 return 0; 197 return 0; 197 } 198 } 198 return ret; 199 return ret; 199 } 200 } 200 201 201 /* 202 /* 202 * Get another userspace page. Returns an ERR 203 * Get another userspace page. Returns an ERR_PTR on error. Pages are 203 * buffered inside the dio so that we can call !! 204 * buffered inside the dio so that we can call get_user_pages() against a 204 * against a decent number of pages, less freq !! 205 * decent number of pages, less frequently. To provide nicer use of the 205 * the L1 cache. !! 206 * L1 cache. 206 */ 207 */ 207 static inline struct page *dio_get_page(struct 208 static inline struct page *dio_get_page(struct dio *dio, 208 struct 209 struct dio_submit *sdio) 209 { 210 { 210 if (dio_pages_present(sdio) == 0) { 211 if (dio_pages_present(sdio) == 0) { 211 int ret; 212 int ret; 212 213 213 ret = dio_refill_pages(dio, sd 214 ret = dio_refill_pages(dio, sdio); 214 if (ret) 215 if (ret) 215 return ERR_PTR(ret); 216 return ERR_PTR(ret); 216 BUG_ON(dio_pages_present(sdio) 217 BUG_ON(dio_pages_present(sdio) == 0); 217 } 218 } 218 return dio->pages[sdio->head]; 219 return dio->pages[sdio->head]; 219 } 220 } 220 221 221 static void dio_pin_page(struct dio *dio, stru !! 222 /* >> 223 * Warn about a page cache invalidation failure during a direct io write. >> 224 */ >> 225 void dio_warn_stale_pagecache(struct file *filp) 222 { 226 { 223 if (dio->is_pinned) !! 227 static DEFINE_RATELIMIT_STATE(_rs, 86400 * HZ, DEFAULT_RATELIMIT_BURST); 224 folio_add_pin(page_folio(page) !! 228 char pathname[128]; 225 } !! 229 struct inode *inode = file_inode(filp); >> 230 char *path; 226 231 227 static void dio_unpin_page(struct dio *dio, st !! 232 errseq_set(&inode->i_mapping->wb_err, -EIO); 228 { !! 233 if (__ratelimit(&_rs)) { 229 if (dio->is_pinned) !! 234 path = file_path(filp, pathname, sizeof(pathname)); 230 unpin_user_page(page); !! 235 if (IS_ERR(path)) >> 236 path = "(unknown)"; >> 237 pr_crit("Page cache invalidation failure on direct I/O. Possible data corruption due to collision with buffered I/O!\n"); >> 238 pr_crit("File: %s PID: %d Comm: %.20s\n", path, current->pid, >> 239 current->comm); >> 240 } 231 } 241 } 232 242 233 /* !! 243 /** 234 * dio_complete() - called when all DIO BIO I/ 244 * dio_complete() - called when all DIO BIO I/O has been completed >> 245 * @offset: the byte offset in the file of the completed operation 235 * 246 * 236 * This drops i_dio_count, lets interested par 247 * This drops i_dio_count, lets interested parties know that a DIO operation 237 * has completed, and calculates the resulting 248 * has completed, and calculates the resulting return code for the operation. 238 * 249 * 239 * It lets the filesystem know if it registere 250 * It lets the filesystem know if it registered an interest earlier via 240 * get_block. Pass the private field of the m 251 * get_block. Pass the private field of the map buffer_head so that 241 * filesystems can use it to hold additional s 252 * filesystems can use it to hold additional state between get_block calls and 242 * dio_complete. 253 * dio_complete. 243 */ 254 */ 244 static ssize_t dio_complete(struct dio *dio, s 255 static ssize_t dio_complete(struct dio *dio, ssize_t ret, unsigned int flags) 245 { 256 { 246 const enum req_op dio_op = dio->opf & << 247 loff_t offset = dio->iocb->ki_pos; 257 loff_t offset = dio->iocb->ki_pos; 248 ssize_t transferred = 0; 258 ssize_t transferred = 0; 249 int err; 259 int err; 250 260 251 /* 261 /* 252 * AIO submission can race with bio co 262 * AIO submission can race with bio completion to get here while 253 * expecting to have the last io compl 263 * expecting to have the last io completed by bio completion. 254 * In that case -EIOCBQUEUED is in fac 264 * In that case -EIOCBQUEUED is in fact not an error we want 255 * to preserve through this call. 265 * to preserve through this call. 256 */ 266 */ 257 if (ret == -EIOCBQUEUED) 267 if (ret == -EIOCBQUEUED) 258 ret = 0; 268 ret = 0; 259 269 260 if (dio->result) { 270 if (dio->result) { 261 transferred = dio->result; 271 transferred = dio->result; 262 272 263 /* Check for short read case * 273 /* Check for short read case */ 264 if (dio_op == REQ_OP_READ && !! 274 if ((dio->op == REQ_OP_READ) && 265 ((offset + transferred) > 275 ((offset + transferred) > dio->i_size)) 266 transferred = dio->i_s 276 transferred = dio->i_size - offset; 267 /* ignore EFAULT if some IO ha 277 /* ignore EFAULT if some IO has been done */ 268 if (unlikely(ret == -EFAULT) & 278 if (unlikely(ret == -EFAULT) && transferred) 269 ret = 0; 279 ret = 0; 270 } 280 } 271 281 272 if (ret == 0) 282 if (ret == 0) 273 ret = dio->page_errors; 283 ret = dio->page_errors; 274 if (ret == 0) 284 if (ret == 0) 275 ret = dio->io_error; 285 ret = dio->io_error; 276 if (ret == 0) 286 if (ret == 0) 277 ret = transferred; 287 ret = transferred; 278 288 279 if (dio->end_io) { 289 if (dio->end_io) { 280 // XXX: ki_pos?? 290 // XXX: ki_pos?? 281 err = dio->end_io(dio->iocb, o 291 err = dio->end_io(dio->iocb, offset, ret, dio->private); 282 if (err) 292 if (err) 283 ret = err; 293 ret = err; 284 } 294 } 285 295 286 /* 296 /* 287 * Try again to invalidate clean pages 297 * Try again to invalidate clean pages which might have been cached by 288 * non-direct readahead, or faulted in 298 * non-direct readahead, or faulted in by get_user_pages() if the source 289 * of the write was an mmap'ed region 299 * of the write was an mmap'ed region of the file we're writing. Either 290 * one is a pretty crazy thing to do, 300 * one is a pretty crazy thing to do, so we don't support it 100%. If 291 * this invalidation fails, tough, the 301 * this invalidation fails, tough, the write still worked... 292 * 302 * 293 * And this page cache invalidation ha 303 * And this page cache invalidation has to be after dio->end_io(), as 294 * some filesystems convert unwritten 304 * some filesystems convert unwritten extents to real allocations in 295 * end_io() when necessary, otherwise 305 * end_io() when necessary, otherwise a racing buffer read would cache 296 * zeros from unwritten extents. 306 * zeros from unwritten extents. 297 */ 307 */ 298 if (flags & DIO_COMPLETE_INVALIDATE && 308 if (flags & DIO_COMPLETE_INVALIDATE && 299 ret > 0 && dio_op == REQ_OP_WRITE) !! 309 ret > 0 && dio->op == REQ_OP_WRITE && 300 kiocb_invalidate_post_direct_w !! 310 dio->inode->i_mapping->nrpages) { >> 311 err = invalidate_inode_pages2_range(dio->inode->i_mapping, >> 312 offset >> PAGE_SHIFT, >> 313 (offset + ret - 1) >> PAGE_SHIFT); >> 314 if (err) >> 315 dio_warn_stale_pagecache(dio->iocb->ki_filp); >> 316 } 301 317 302 inode_dio_end(dio->inode); 318 inode_dio_end(dio->inode); 303 319 304 if (flags & DIO_COMPLETE_ASYNC) { 320 if (flags & DIO_COMPLETE_ASYNC) { 305 /* 321 /* 306 * generic_write_sync expects 322 * generic_write_sync expects ki_pos to have been updated 307 * already, but the submission 323 * already, but the submission path only does this for 308 * synchronous I/O. 324 * synchronous I/O. 309 */ 325 */ 310 dio->iocb->ki_pos += transferr 326 dio->iocb->ki_pos += transferred; 311 327 312 if (ret > 0 && dio_op == REQ_O !! 328 if (dio->op == REQ_OP_WRITE) 313 ret = generic_write_sy !! 329 ret = generic_write_sync(dio->iocb, transferred); 314 dio->iocb->ki_complete(dio->io !! 330 dio->iocb->ki_complete(dio->iocb, ret, 0); 315 } 331 } 316 332 317 kmem_cache_free(dio_cache, dio); 333 kmem_cache_free(dio_cache, dio); 318 return ret; 334 return ret; 319 } 335 } 320 336 321 static void dio_aio_complete_work(struct work_ 337 static void dio_aio_complete_work(struct work_struct *work) 322 { 338 { 323 struct dio *dio = container_of(work, s 339 struct dio *dio = container_of(work, struct dio, complete_work); 324 340 325 dio_complete(dio, 0, DIO_COMPLETE_ASYN 341 dio_complete(dio, 0, DIO_COMPLETE_ASYNC | DIO_COMPLETE_INVALIDATE); 326 } 342 } 327 343 328 static blk_status_t dio_bio_complete(struct di 344 static blk_status_t dio_bio_complete(struct dio *dio, struct bio *bio); 329 345 330 /* 346 /* 331 * Asynchronous IO callback. 347 * Asynchronous IO callback. 332 */ 348 */ 333 static void dio_bio_end_aio(struct bio *bio) 349 static void dio_bio_end_aio(struct bio *bio) 334 { 350 { 335 struct dio *dio = bio->bi_private; 351 struct dio *dio = bio->bi_private; 336 const enum req_op dio_op = dio->opf & << 337 unsigned long remaining; 352 unsigned long remaining; 338 unsigned long flags; 353 unsigned long flags; 339 bool defer_completion = false; 354 bool defer_completion = false; 340 355 341 /* cleanup the bio */ 356 /* cleanup the bio */ 342 dio_bio_complete(dio, bio); 357 dio_bio_complete(dio, bio); 343 358 344 spin_lock_irqsave(&dio->bio_lock, flag 359 spin_lock_irqsave(&dio->bio_lock, flags); 345 remaining = --dio->refcount; 360 remaining = --dio->refcount; 346 if (remaining == 1 && dio->waiter) 361 if (remaining == 1 && dio->waiter) 347 wake_up_process(dio->waiter); 362 wake_up_process(dio->waiter); 348 spin_unlock_irqrestore(&dio->bio_lock, 363 spin_unlock_irqrestore(&dio->bio_lock, flags); 349 364 350 if (remaining == 0) { 365 if (remaining == 0) { 351 /* 366 /* 352 * Defer completion when defer 367 * Defer completion when defer_completion is set or 353 * when the inode has pages ma 368 * when the inode has pages mapped and this is AIO write. 354 * We need to invalidate those 369 * We need to invalidate those pages because there is a 355 * chance they contain stale d 370 * chance they contain stale data in the case buffered IO 356 * went in between AIO submiss 371 * went in between AIO submission and completion into the 357 * same region. 372 * same region. 358 */ 373 */ 359 if (dio->result) 374 if (dio->result) 360 defer_completion = dio 375 defer_completion = dio->defer_completion || 361 (di !! 376 (dio->op == REQ_OP_WRITE && 362 di 377 dio->inode->i_mapping->nrpages); 363 if (defer_completion) { 378 if (defer_completion) { 364 INIT_WORK(&dio->comple 379 INIT_WORK(&dio->complete_work, dio_aio_complete_work); 365 queue_work(dio->inode- 380 queue_work(dio->inode->i_sb->s_dio_done_wq, 366 &dio->compl 381 &dio->complete_work); 367 } else { 382 } else { 368 dio_complete(dio, 0, D 383 dio_complete(dio, 0, DIO_COMPLETE_ASYNC); 369 } 384 } 370 } 385 } 371 } 386 } 372 387 373 /* 388 /* 374 * The BIO completion handler simply queues th 389 * The BIO completion handler simply queues the BIO up for the process-context 375 * handler. 390 * handler. 376 * 391 * 377 * During I/O bi_private points at the dio. A 392 * During I/O bi_private points at the dio. After I/O, bi_private is used to 378 * implement a singly-linked list of completed 393 * implement a singly-linked list of completed BIOs, at dio->bio_list. 379 */ 394 */ 380 static void dio_bio_end_io(struct bio *bio) 395 static void dio_bio_end_io(struct bio *bio) 381 { 396 { 382 struct dio *dio = bio->bi_private; 397 struct dio *dio = bio->bi_private; 383 unsigned long flags; 398 unsigned long flags; 384 399 385 spin_lock_irqsave(&dio->bio_lock, flag 400 spin_lock_irqsave(&dio->bio_lock, flags); 386 bio->bi_private = dio->bio_list; 401 bio->bi_private = dio->bio_list; 387 dio->bio_list = bio; 402 dio->bio_list = bio; 388 if (--dio->refcount == 1 && dio->waite 403 if (--dio->refcount == 1 && dio->waiter) 389 wake_up_process(dio->waiter); 404 wake_up_process(dio->waiter); 390 spin_unlock_irqrestore(&dio->bio_lock, 405 spin_unlock_irqrestore(&dio->bio_lock, flags); 391 } 406 } 392 407 >> 408 /** >> 409 * dio_end_io - handle the end io action for the given bio >> 410 * @bio: The direct io bio thats being completed >> 411 * >> 412 * This is meant to be called by any filesystem that uses their own dio_submit_t >> 413 * so that the DIO specific endio actions are dealt with after the filesystem >> 414 * has done it's completion work. >> 415 */ >> 416 void dio_end_io(struct bio *bio) >> 417 { >> 418 struct dio *dio = bio->bi_private; >> 419 >> 420 if (dio->is_async) >> 421 dio_bio_end_aio(bio); >> 422 else >> 423 dio_bio_end_io(bio); >> 424 } >> 425 EXPORT_SYMBOL_GPL(dio_end_io); >> 426 393 static inline void 427 static inline void 394 dio_bio_alloc(struct dio *dio, struct dio_subm 428 dio_bio_alloc(struct dio *dio, struct dio_submit *sdio, 395 struct block_device *bdev, 429 struct block_device *bdev, 396 sector_t first_sector, int nr_ve 430 sector_t first_sector, int nr_vecs) 397 { 431 { 398 struct bio *bio; 432 struct bio *bio; 399 433 400 /* 434 /* 401 * bio_alloc() is guaranteed to return !! 435 * bio_alloc() is guaranteed to return a bio when called with 402 * we request a valid number of vector !! 436 * __GFP_RECLAIM and we request a valid number of vectors. 403 */ 437 */ 404 bio = bio_alloc(bdev, nr_vecs, dio->op !! 438 bio = bio_alloc(GFP_KERNEL, nr_vecs); >> 439 >> 440 bio_set_dev(bio, bdev); 405 bio->bi_iter.bi_sector = first_sector; 441 bio->bi_iter.bi_sector = first_sector; >> 442 bio_set_op_attrs(bio, dio->op, dio->op_flags); 406 if (dio->is_async) 443 if (dio->is_async) 407 bio->bi_end_io = dio_bio_end_a 444 bio->bi_end_io = dio_bio_end_aio; 408 else 445 else 409 bio->bi_end_io = dio_bio_end_i 446 bio->bi_end_io = dio_bio_end_io; 410 if (dio->is_pinned) !! 447 411 bio_set_flag(bio, BIO_PAGE_PIN !! 448 bio->bi_write_hint = dio->iocb->ki_hint; 412 bio->bi_write_hint = file_inode(dio->i << 413 449 414 sdio->bio = bio; 450 sdio->bio = bio; 415 sdio->logical_offset_in_bio = sdio->cu 451 sdio->logical_offset_in_bio = sdio->cur_page_fs_offset; 416 } 452 } 417 453 418 /* 454 /* 419 * In the AIO read case we speculatively dirty 455 * In the AIO read case we speculatively dirty the pages before starting IO. 420 * During IO completion, any of these pages wh 456 * During IO completion, any of these pages which happen to have been written 421 * back will be redirtied by bio_check_pages_d 457 * back will be redirtied by bio_check_pages_dirty(). 422 * 458 * 423 * bios hold a dio reference between submit_bi 459 * bios hold a dio reference between submit_bio and ->end_io. 424 */ 460 */ 425 static inline void dio_bio_submit(struct dio * 461 static inline void dio_bio_submit(struct dio *dio, struct dio_submit *sdio) 426 { 462 { 427 const enum req_op dio_op = dio->opf & << 428 struct bio *bio = sdio->bio; 463 struct bio *bio = sdio->bio; 429 unsigned long flags; 464 unsigned long flags; 430 465 431 bio->bi_private = dio; 466 bio->bi_private = dio; 432 467 433 spin_lock_irqsave(&dio->bio_lock, flag 468 spin_lock_irqsave(&dio->bio_lock, flags); 434 dio->refcount++; 469 dio->refcount++; 435 spin_unlock_irqrestore(&dio->bio_lock, 470 spin_unlock_irqrestore(&dio->bio_lock, flags); 436 471 437 if (dio->is_async && dio_op == REQ_OP_ !! 472 if (dio->is_async && dio->op == REQ_OP_READ && dio->should_dirty) 438 bio_set_pages_dirty(bio); 473 bio_set_pages_dirty(bio); 439 474 440 dio->bio_disk = bio->bi_bdev->bd_disk; !! 475 dio->bio_disk = bio->bi_disk; 441 476 442 submit_bio(bio); !! 477 if (sdio->submit_io) { >> 478 sdio->submit_io(bio, dio->inode, sdio->logical_offset_in_bio); >> 479 dio->bio_cookie = BLK_QC_T_NONE; >> 480 } else >> 481 dio->bio_cookie = submit_bio(bio); 443 482 444 sdio->bio = NULL; 483 sdio->bio = NULL; 445 sdio->boundary = 0; 484 sdio->boundary = 0; 446 sdio->logical_offset_in_bio = 0; 485 sdio->logical_offset_in_bio = 0; 447 } 486 } 448 487 449 /* 488 /* 450 * Release any resources in case of a failure 489 * Release any resources in case of a failure 451 */ 490 */ 452 static inline void dio_cleanup(struct dio *dio 491 static inline void dio_cleanup(struct dio *dio, struct dio_submit *sdio) 453 { 492 { 454 if (dio->is_pinned) !! 493 while (sdio->head < sdio->tail) 455 unpin_user_pages(dio->pages + !! 494 put_page(dio->pages[sdio->head++]); 456 sdio->tail - << 457 sdio->head = sdio->tail; << 458 } 495 } 459 496 460 /* 497 /* 461 * Wait for the next BIO to complete. Remove 498 * Wait for the next BIO to complete. Remove it and return it. NULL is 462 * returned once all BIOs have been completed. 499 * returned once all BIOs have been completed. This must only be called once 463 * all bios have been issued so that dio->refc 500 * all bios have been issued so that dio->refcount can only decrease. This 464 * requires that the caller hold a reference o !! 501 * requires that that the caller hold a reference on the dio. 465 */ 502 */ 466 static struct bio *dio_await_one(struct dio *d 503 static struct bio *dio_await_one(struct dio *dio) 467 { 504 { 468 unsigned long flags; 505 unsigned long flags; 469 struct bio *bio = NULL; 506 struct bio *bio = NULL; 470 507 471 spin_lock_irqsave(&dio->bio_lock, flag 508 spin_lock_irqsave(&dio->bio_lock, flags); 472 509 473 /* 510 /* 474 * Wait as long as the list is empty a 511 * Wait as long as the list is empty and there are bios in flight. bio 475 * completion drops the count, maybe a 512 * completion drops the count, maybe adds to the list, and wakes while 476 * holding the bio_lock so we don't ne 513 * holding the bio_lock so we don't need set_current_state()'s barrier 477 * and can call it after testing our c 514 * and can call it after testing our condition. 478 */ 515 */ 479 while (dio->refcount > 1 && dio->bio_l 516 while (dio->refcount > 1 && dio->bio_list == NULL) { 480 __set_current_state(TASK_UNINT 517 __set_current_state(TASK_UNINTERRUPTIBLE); 481 dio->waiter = current; 518 dio->waiter = current; 482 spin_unlock_irqrestore(&dio->b 519 spin_unlock_irqrestore(&dio->bio_lock, flags); 483 blk_io_schedule(); !! 520 if (!(dio->iocb->ki_flags & IOCB_HIPRI) || >> 521 !blk_poll(dio->bio_disk->queue, dio->bio_cookie)) >> 522 io_schedule(); 484 /* wake up sets us TASK_RUNNIN 523 /* wake up sets us TASK_RUNNING */ 485 spin_lock_irqsave(&dio->bio_lo 524 spin_lock_irqsave(&dio->bio_lock, flags); 486 dio->waiter = NULL; 525 dio->waiter = NULL; 487 } 526 } 488 if (dio->bio_list) { 527 if (dio->bio_list) { 489 bio = dio->bio_list; 528 bio = dio->bio_list; 490 dio->bio_list = bio->bi_privat 529 dio->bio_list = bio->bi_private; 491 } 530 } 492 spin_unlock_irqrestore(&dio->bio_lock, 531 spin_unlock_irqrestore(&dio->bio_lock, flags); 493 return bio; 532 return bio; 494 } 533 } 495 534 496 /* 535 /* 497 * Process one completed BIO. No locks are he 536 * Process one completed BIO. No locks are held. 498 */ 537 */ 499 static blk_status_t dio_bio_complete(struct di 538 static blk_status_t dio_bio_complete(struct dio *dio, struct bio *bio) 500 { 539 { >> 540 struct bio_vec *bvec; >> 541 unsigned i; 501 blk_status_t err = bio->bi_status; 542 blk_status_t err = bio->bi_status; 502 const enum req_op dio_op = dio->opf & << 503 bool should_dirty = dio_op == REQ_OP_R << 504 543 505 if (err) { 544 if (err) { 506 if (err == BLK_STS_AGAIN && (b 545 if (err == BLK_STS_AGAIN && (bio->bi_opf & REQ_NOWAIT)) 507 dio->io_error = -EAGAI 546 dio->io_error = -EAGAIN; 508 else 547 else 509 dio->io_error = -EIO; 548 dio->io_error = -EIO; 510 } 549 } 511 550 512 if (dio->is_async && should_dirty) { !! 551 if (dio->is_async && dio->op == REQ_OP_READ && dio->should_dirty) { 513 bio_check_pages_dirty(bio); 552 bio_check_pages_dirty(bio); /* transfers ownership */ 514 } else { 553 } else { 515 bio_release_pages(bio, should_ !! 554 bio_for_each_segment_all(bvec, bio, i) { >> 555 struct page *page = bvec->bv_page; >> 556 >> 557 if (dio->op == REQ_OP_READ && !PageCompound(page) && >> 558 dio->should_dirty) >> 559 set_page_dirty_lock(page); >> 560 put_page(page); >> 561 } 516 bio_put(bio); 562 bio_put(bio); 517 } 563 } 518 return err; 564 return err; 519 } 565 } 520 566 521 /* 567 /* 522 * Wait on and process all in-flight BIOs. Th 568 * Wait on and process all in-flight BIOs. This must only be called once 523 * all bios have been issued so that the refco 569 * all bios have been issued so that the refcount can only decrease. 524 * This just waits for all bios to make it thr 570 * This just waits for all bios to make it through dio_bio_complete. IO 525 * errors are propagated through dio->io_error 571 * errors are propagated through dio->io_error and should be propagated via 526 * dio_complete(). 572 * dio_complete(). 527 */ 573 */ 528 static void dio_await_completion(struct dio *d 574 static void dio_await_completion(struct dio *dio) 529 { 575 { 530 struct bio *bio; 576 struct bio *bio; 531 do { 577 do { 532 bio = dio_await_one(dio); 578 bio = dio_await_one(dio); 533 if (bio) 579 if (bio) 534 dio_bio_complete(dio, 580 dio_bio_complete(dio, bio); 535 } while (bio); 581 } while (bio); 536 } 582 } 537 583 538 /* 584 /* 539 * A really large O_DIRECT read or write can g 585 * A really large O_DIRECT read or write can generate a lot of BIOs. So 540 * to keep the memory consumption sane we peri 586 * to keep the memory consumption sane we periodically reap any completed BIOs 541 * during the BIO generation phase. 587 * during the BIO generation phase. 542 * 588 * 543 * This also helps to limit the peak amount of 589 * This also helps to limit the peak amount of pinned userspace memory. 544 */ 590 */ 545 static inline int dio_bio_reap(struct dio *dio 591 static inline int dio_bio_reap(struct dio *dio, struct dio_submit *sdio) 546 { 592 { 547 int ret = 0; 593 int ret = 0; 548 594 549 if (sdio->reap_counter++ >= 64) { 595 if (sdio->reap_counter++ >= 64) { 550 while (dio->bio_list) { 596 while (dio->bio_list) { 551 unsigned long flags; 597 unsigned long flags; 552 struct bio *bio; 598 struct bio *bio; 553 int ret2; 599 int ret2; 554 600 555 spin_lock_irqsave(&dio 601 spin_lock_irqsave(&dio->bio_lock, flags); 556 bio = dio->bio_list; 602 bio = dio->bio_list; 557 dio->bio_list = bio->b 603 dio->bio_list = bio->bi_private; 558 spin_unlock_irqrestore 604 spin_unlock_irqrestore(&dio->bio_lock, flags); 559 ret2 = blk_status_to_e 605 ret2 = blk_status_to_errno(dio_bio_complete(dio, bio)); 560 if (ret == 0) 606 if (ret == 0) 561 ret = ret2; 607 ret = ret2; 562 } 608 } 563 sdio->reap_counter = 0; 609 sdio->reap_counter = 0; 564 } 610 } 565 return ret; 611 return ret; 566 } 612 } 567 613 >> 614 /* >> 615 * Create workqueue for deferred direct IO completions. We allocate the >> 616 * workqueue when it's first needed. This avoids creating workqueue for >> 617 * filesystems that don't need it and also allows us to create the workqueue >> 618 * late enough so the we can include s_id in the name of the workqueue. >> 619 */ >> 620 int sb_init_dio_done_wq(struct super_block *sb) >> 621 { >> 622 struct workqueue_struct *old; >> 623 struct workqueue_struct *wq = alloc_workqueue("dio/%s", >> 624 WQ_MEM_RECLAIM, 0, >> 625 sb->s_id); >> 626 if (!wq) >> 627 return -ENOMEM; >> 628 /* >> 629 * This has to be atomic as more DIOs can race to create the workqueue >> 630 */ >> 631 old = cmpxchg(&sb->s_dio_done_wq, NULL, wq); >> 632 /* Someone created workqueue before us? Free ours... */ >> 633 if (old) >> 634 destroy_workqueue(wq); >> 635 return 0; >> 636 } >> 637 568 static int dio_set_defer_completion(struct dio 638 static int dio_set_defer_completion(struct dio *dio) 569 { 639 { 570 struct super_block *sb = dio->inode->i 640 struct super_block *sb = dio->inode->i_sb; 571 641 572 if (dio->defer_completion) 642 if (dio->defer_completion) 573 return 0; 643 return 0; 574 dio->defer_completion = true; 644 dio->defer_completion = true; 575 if (!sb->s_dio_done_wq) 645 if (!sb->s_dio_done_wq) 576 return sb_init_dio_done_wq(sb) 646 return sb_init_dio_done_wq(sb); 577 return 0; 647 return 0; 578 } 648 } 579 649 580 /* 650 /* 581 * Call into the fs to map some more disk bloc 651 * Call into the fs to map some more disk blocks. We record the current number 582 * of available blocks at sdio->blocks_availab 652 * of available blocks at sdio->blocks_available. These are in units of the 583 * fs blocksize, i_blocksize(inode). 653 * fs blocksize, i_blocksize(inode). 584 * 654 * 585 * The fs is allowed to map lots of blocks at 655 * The fs is allowed to map lots of blocks at once. If it wants to do that, 586 * it uses the passed inode-relative block num 656 * it uses the passed inode-relative block number as the file offset, as usual. 587 * 657 * 588 * get_block() is passed the number of i_blkbi 658 * get_block() is passed the number of i_blkbits-sized blocks which direct_io 589 * has remaining to do. The fs should not map 659 * has remaining to do. The fs should not map more than this number of blocks. 590 * 660 * 591 * If the fs has mapped a lot of blocks, it sh 661 * If the fs has mapped a lot of blocks, it should populate bh->b_size to 592 * indicate how much contiguous disk space has 662 * indicate how much contiguous disk space has been made available at 593 * bh->b_blocknr. 663 * bh->b_blocknr. 594 * 664 * 595 * If *any* of the mapped blocks are new, then 665 * If *any* of the mapped blocks are new, then the fs must set buffer_new(). 596 * This isn't very efficient... 666 * This isn't very efficient... 597 * 667 * 598 * In the case of filesystem holes: the fs may 668 * In the case of filesystem holes: the fs may return an arbitrarily-large 599 * hole by returning an appropriate value in b 669 * hole by returning an appropriate value in b_size and by clearing 600 * buffer_mapped(). However the direct-io cod 670 * buffer_mapped(). However the direct-io code will only process holes one 601 * block at a time - it will repeatedly call g 671 * block at a time - it will repeatedly call get_block() as it walks the hole. 602 */ 672 */ 603 static int get_more_blocks(struct dio *dio, st 673 static int get_more_blocks(struct dio *dio, struct dio_submit *sdio, 604 struct buffer_head 674 struct buffer_head *map_bh) 605 { 675 { 606 const enum req_op dio_op = dio->opf & << 607 int ret; 676 int ret; 608 sector_t fs_startblk; /* Into file, 677 sector_t fs_startblk; /* Into file, in filesystem-sized blocks */ 609 sector_t fs_endblk; /* Into file, 678 sector_t fs_endblk; /* Into file, in filesystem-sized blocks */ 610 unsigned long fs_count; /* Number of f 679 unsigned long fs_count; /* Number of filesystem-sized blocks */ 611 int create; 680 int create; 612 unsigned int i_blkbits = sdio->blkbits 681 unsigned int i_blkbits = sdio->blkbits + sdio->blkfactor; 613 loff_t i_size; << 614 682 615 /* 683 /* 616 * If there was a memory error and we' 684 * If there was a memory error and we've overwritten all the 617 * mapped blocks then we can now retur 685 * mapped blocks then we can now return that memory error 618 */ 686 */ 619 ret = dio->page_errors; 687 ret = dio->page_errors; 620 if (ret == 0) { 688 if (ret == 0) { 621 BUG_ON(sdio->block_in_file >= 689 BUG_ON(sdio->block_in_file >= sdio->final_block_in_request); 622 fs_startblk = sdio->block_in_f 690 fs_startblk = sdio->block_in_file >> sdio->blkfactor; 623 fs_endblk = (sdio->final_block 691 fs_endblk = (sdio->final_block_in_request - 1) >> 624 sdio-> 692 sdio->blkfactor; 625 fs_count = fs_endblk - fs_star 693 fs_count = fs_endblk - fs_startblk + 1; 626 694 627 map_bh->b_state = 0; 695 map_bh->b_state = 0; 628 map_bh->b_size = fs_count << i 696 map_bh->b_size = fs_count << i_blkbits; 629 697 630 /* 698 /* 631 * For writes that could fill 699 * For writes that could fill holes inside i_size on a 632 * DIO_SKIP_HOLES filesystem w 700 * DIO_SKIP_HOLES filesystem we forbid block creations: only 633 * overwrites are permitted. W 701 * overwrites are permitted. We will return early to the caller 634 * once we see an unmapped buf 702 * once we see an unmapped buffer head returned, and the caller 635 * will fall back to buffered 703 * will fall back to buffered I/O. 636 * 704 * 637 * Otherwise the decision is l 705 * Otherwise the decision is left to the get_blocks method, 638 * which may decide to handle 706 * which may decide to handle it or also return an unmapped 639 * buffer head. 707 * buffer head. 640 */ 708 */ 641 create = dio_op == REQ_OP_WRIT !! 709 create = dio->op == REQ_OP_WRITE; 642 if (dio->flags & DIO_SKIP_HOLE 710 if (dio->flags & DIO_SKIP_HOLES) { 643 i_size = i_size_read(d !! 711 if (fs_startblk <= ((i_size_read(dio->inode) - 1) >> 644 if (i_size && fs_start !! 712 i_blkbits)) 645 create = 0; 713 create = 0; 646 } 714 } 647 715 648 ret = (*sdio->get_block)(dio-> 716 ret = (*sdio->get_block)(dio->inode, fs_startblk, 649 717 map_bh, create); 650 718 651 /* Store for completion */ 719 /* Store for completion */ 652 dio->private = map_bh->b_priva 720 dio->private = map_bh->b_private; 653 721 654 if (ret == 0 && buffer_defer_c 722 if (ret == 0 && buffer_defer_completion(map_bh)) 655 ret = dio_set_defer_co 723 ret = dio_set_defer_completion(dio); 656 } 724 } 657 return ret; 725 return ret; 658 } 726 } 659 727 660 /* 728 /* 661 * There is no bio. Make one now. 729 * There is no bio. Make one now. 662 */ 730 */ 663 static inline int dio_new_bio(struct dio *dio, 731 static inline int dio_new_bio(struct dio *dio, struct dio_submit *sdio, 664 sector_t start_sector, struct 732 sector_t start_sector, struct buffer_head *map_bh) 665 { 733 { 666 sector_t sector; 734 sector_t sector; 667 int ret, nr_pages; 735 int ret, nr_pages; 668 736 669 ret = dio_bio_reap(dio, sdio); 737 ret = dio_bio_reap(dio, sdio); 670 if (ret) 738 if (ret) 671 goto out; 739 goto out; 672 sector = start_sector << (sdio->blkbit 740 sector = start_sector << (sdio->blkbits - 9); 673 nr_pages = bio_max_segs(sdio->pages_in !! 741 nr_pages = min(sdio->pages_in_io, BIO_MAX_PAGES); 674 BUG_ON(nr_pages <= 0); 742 BUG_ON(nr_pages <= 0); 675 dio_bio_alloc(dio, sdio, map_bh->b_bde 743 dio_bio_alloc(dio, sdio, map_bh->b_bdev, sector, nr_pages); 676 sdio->boundary = 0; 744 sdio->boundary = 0; 677 out: 745 out: 678 return ret; 746 return ret; 679 } 747 } 680 748 681 /* 749 /* 682 * Attempt to put the current chunk of 'cur_pa 750 * Attempt to put the current chunk of 'cur_page' into the current BIO. If 683 * that was successful then update final_block 751 * that was successful then update final_block_in_bio and take a ref against 684 * the just-added page. 752 * the just-added page. 685 * 753 * 686 * Return zero on success. Non-zero means the 754 * Return zero on success. Non-zero means the caller needs to start a new BIO. 687 */ 755 */ 688 static inline int dio_bio_add_page(struct dio !! 756 static inline int dio_bio_add_page(struct dio_submit *sdio) 689 { 757 { 690 int ret; 758 int ret; 691 759 692 ret = bio_add_page(sdio->bio, sdio->cu 760 ret = bio_add_page(sdio->bio, sdio->cur_page, 693 sdio->cur_page_len, sd 761 sdio->cur_page_len, sdio->cur_page_offset); 694 if (ret == sdio->cur_page_len) { 762 if (ret == sdio->cur_page_len) { 695 /* 763 /* 696 * Decrement count only, if we 764 * Decrement count only, if we are done with this page 697 */ 765 */ 698 if ((sdio->cur_page_len + sdio 766 if ((sdio->cur_page_len + sdio->cur_page_offset) == PAGE_SIZE) 699 sdio->pages_in_io--; 767 sdio->pages_in_io--; 700 dio_pin_page(dio, sdio->cur_pa !! 768 get_page(sdio->cur_page); 701 sdio->final_block_in_bio = sdi 769 sdio->final_block_in_bio = sdio->cur_page_block + 702 (sdio->cur_page_len >> 770 (sdio->cur_page_len >> sdio->blkbits); 703 ret = 0; 771 ret = 0; 704 } else { 772 } else { 705 ret = 1; 773 ret = 1; 706 } 774 } 707 return ret; 775 return ret; 708 } 776 } 709 777 710 /* 778 /* 711 * Put cur_page under IO. The section of cur_ 779 * Put cur_page under IO. The section of cur_page which is described by 712 * cur_page_offset,cur_page_len is put into a 780 * cur_page_offset,cur_page_len is put into a BIO. The section of cur_page 713 * starts on-disk at cur_page_block. 781 * starts on-disk at cur_page_block. 714 * 782 * 715 * We take a ref against the page here (on beh 783 * We take a ref against the page here (on behalf of its presence in the bio). 716 * 784 * 717 * The caller of this function is responsible 785 * The caller of this function is responsible for removing cur_page from the 718 * dio, and for dropping the refcount which ca 786 * dio, and for dropping the refcount which came from that presence. 719 */ 787 */ 720 static inline int dio_send_cur_page(struct dio 788 static inline int dio_send_cur_page(struct dio *dio, struct dio_submit *sdio, 721 struct buffer_head *map_bh) 789 struct buffer_head *map_bh) 722 { 790 { 723 int ret = 0; 791 int ret = 0; 724 792 725 if (sdio->bio) { 793 if (sdio->bio) { 726 loff_t cur_offset = sdio->cur_ 794 loff_t cur_offset = sdio->cur_page_fs_offset; 727 loff_t bio_next_offset = sdio- 795 loff_t bio_next_offset = sdio->logical_offset_in_bio + 728 sdio->bio->bi_iter.bi_ 796 sdio->bio->bi_iter.bi_size; 729 797 730 /* 798 /* 731 * See whether this new reques 799 * See whether this new request is contiguous with the old. 732 * 800 * 733 * Btrfs cannot handle having 801 * Btrfs cannot handle having logically non-contiguous requests 734 * submitted. For example if 802 * submitted. For example if you have 735 * 803 * 736 * Logical: [0-4095][HOLE][81 804 * Logical: [0-4095][HOLE][8192-12287] 737 * Physical: [0-4095] [40 805 * Physical: [0-4095] [4096-8191] 738 * 806 * 739 * We cannot submit those page 807 * We cannot submit those pages together as one BIO. So if our 740 * current logical offset in t 808 * current logical offset in the file does not equal what would 741 * be the next logical offset 809 * be the next logical offset in the bio, submit the bio we 742 * have. 810 * have. 743 */ 811 */ 744 if (sdio->final_block_in_bio ! 812 if (sdio->final_block_in_bio != sdio->cur_page_block || 745 cur_offset != bio_next_off 813 cur_offset != bio_next_offset) 746 dio_bio_submit(dio, sd 814 dio_bio_submit(dio, sdio); 747 } 815 } 748 816 749 if (sdio->bio == NULL) { 817 if (sdio->bio == NULL) { 750 ret = dio_new_bio(dio, sdio, s 818 ret = dio_new_bio(dio, sdio, sdio->cur_page_block, map_bh); 751 if (ret) 819 if (ret) 752 goto out; 820 goto out; 753 } 821 } 754 822 755 if (dio_bio_add_page(dio, sdio) != 0) !! 823 if (dio_bio_add_page(sdio) != 0) { 756 dio_bio_submit(dio, sdio); 824 dio_bio_submit(dio, sdio); 757 ret = dio_new_bio(dio, sdio, s 825 ret = dio_new_bio(dio, sdio, sdio->cur_page_block, map_bh); 758 if (ret == 0) { 826 if (ret == 0) { 759 ret = dio_bio_add_page !! 827 ret = dio_bio_add_page(sdio); 760 BUG_ON(ret != 0); 828 BUG_ON(ret != 0); 761 } 829 } 762 } 830 } 763 out: 831 out: 764 return ret; 832 return ret; 765 } 833 } 766 834 767 /* 835 /* 768 * An autonomous function to put a chunk of a 836 * An autonomous function to put a chunk of a page under deferred IO. 769 * 837 * 770 * The caller doesn't actually know (or care) 838 * The caller doesn't actually know (or care) whether this piece of page is in 771 * a BIO, or is under IO or whatever. We just 839 * a BIO, or is under IO or whatever. We just take care of all possible 772 * situations here. The separation between th 840 * situations here. The separation between the logic of do_direct_IO() and 773 * that of submit_page_section() is important 841 * that of submit_page_section() is important for clarity. Please don't break. 774 * 842 * 775 * The chunk of page starts on-disk at blocknr 843 * The chunk of page starts on-disk at blocknr. 776 * 844 * 777 * We perform deferred IO, by recording the la 845 * We perform deferred IO, by recording the last-submitted page inside our 778 * private part of the dio structure. If poss 846 * private part of the dio structure. If possible, we just expand the IO 779 * across that page here. 847 * across that page here. 780 * 848 * 781 * If that doesn't work out then we put the ol 849 * If that doesn't work out then we put the old page into the bio and add this 782 * page to the dio instead. 850 * page to the dio instead. 783 */ 851 */ 784 static inline int 852 static inline int 785 submit_page_section(struct dio *dio, struct di 853 submit_page_section(struct dio *dio, struct dio_submit *sdio, struct page *page, 786 unsigned offset, unsigned 854 unsigned offset, unsigned len, sector_t blocknr, 787 struct buffer_head *map_bh 855 struct buffer_head *map_bh) 788 { 856 { 789 const enum req_op dio_op = dio->opf & << 790 int ret = 0; 857 int ret = 0; 791 int boundary = sdio->boundary; /* dio << 792 858 793 if (dio_op == REQ_OP_WRITE) { !! 859 if (dio->op == REQ_OP_WRITE) { 794 /* 860 /* 795 * Read accounting is performe 861 * Read accounting is performed in submit_bio() 796 */ 862 */ 797 task_io_account_write(len); 863 task_io_account_write(len); 798 } 864 } 799 865 800 /* 866 /* 801 * Can we just grow the current page's 867 * Can we just grow the current page's presence in the dio? 802 */ 868 */ 803 if (sdio->cur_page == page && 869 if (sdio->cur_page == page && 804 sdio->cur_page_offset + sdio->cur_ 870 sdio->cur_page_offset + sdio->cur_page_len == offset && 805 sdio->cur_page_block + 871 sdio->cur_page_block + 806 (sdio->cur_page_len >> sdio->blkbi 872 (sdio->cur_page_len >> sdio->blkbits) == blocknr) { 807 sdio->cur_page_len += len; 873 sdio->cur_page_len += len; 808 goto out; 874 goto out; 809 } 875 } 810 876 811 /* 877 /* 812 * If there's a deferred page already 878 * If there's a deferred page already there then send it. 813 */ 879 */ 814 if (sdio->cur_page) { 880 if (sdio->cur_page) { 815 ret = dio_send_cur_page(dio, s 881 ret = dio_send_cur_page(dio, sdio, map_bh); 816 dio_unpin_page(dio, sdio->cur_ !! 882 put_page(sdio->cur_page); 817 sdio->cur_page = NULL; 883 sdio->cur_page = NULL; 818 if (ret) 884 if (ret) 819 return ret; 885 return ret; 820 } 886 } 821 887 822 dio_pin_page(dio, page); !! 888 get_page(page); /* It is in dio */ 823 sdio->cur_page = page; 889 sdio->cur_page = page; 824 sdio->cur_page_offset = offset; 890 sdio->cur_page_offset = offset; 825 sdio->cur_page_len = len; 891 sdio->cur_page_len = len; 826 sdio->cur_page_block = blocknr; 892 sdio->cur_page_block = blocknr; 827 sdio->cur_page_fs_offset = sdio->block 893 sdio->cur_page_fs_offset = sdio->block_in_file << sdio->blkbits; 828 out: 894 out: 829 /* 895 /* 830 * If boundary then we want to schedul !! 896 * If sdio->boundary then we want to schedule the IO now to 831 * avoid metadata seeks. 897 * avoid metadata seeks. 832 */ 898 */ 833 if (boundary) { !! 899 if (sdio->boundary) { 834 ret = dio_send_cur_page(dio, s 900 ret = dio_send_cur_page(dio, sdio, map_bh); 835 if (sdio->bio) 901 if (sdio->bio) 836 dio_bio_submit(dio, sd 902 dio_bio_submit(dio, sdio); 837 dio_unpin_page(dio, sdio->cur_ !! 903 put_page(sdio->cur_page); 838 sdio->cur_page = NULL; 904 sdio->cur_page = NULL; 839 } 905 } 840 return ret; 906 return ret; 841 } 907 } 842 908 843 /* 909 /* 844 * If we are not writing the entire block and 910 * If we are not writing the entire block and get_block() allocated 845 * the block for us, we need to fill-in the un 911 * the block for us, we need to fill-in the unused portion of the 846 * block with zeros. This happens only if user 912 * block with zeros. This happens only if user-buffer, fileoffset or 847 * io length is not filesystem block-size mult 913 * io length is not filesystem block-size multiple. 848 * 914 * 849 * `end' is zero if we're doing the start of t 915 * `end' is zero if we're doing the start of the IO, 1 at the end of the 850 * IO. 916 * IO. 851 */ 917 */ 852 static inline void dio_zero_block(struct dio * 918 static inline void dio_zero_block(struct dio *dio, struct dio_submit *sdio, 853 int end, struct buffer_head *m 919 int end, struct buffer_head *map_bh) 854 { 920 { 855 unsigned dio_blocks_per_fs_block; 921 unsigned dio_blocks_per_fs_block; 856 unsigned this_chunk_blocks; /* In 922 unsigned this_chunk_blocks; /* In dio_blocks */ 857 unsigned this_chunk_bytes; 923 unsigned this_chunk_bytes; 858 struct page *page; 924 struct page *page; 859 925 860 sdio->start_zero_done = 1; 926 sdio->start_zero_done = 1; 861 if (!sdio->blkfactor || !buffer_new(ma 927 if (!sdio->blkfactor || !buffer_new(map_bh)) 862 return; 928 return; 863 929 864 dio_blocks_per_fs_block = 1 << sdio->b 930 dio_blocks_per_fs_block = 1 << sdio->blkfactor; 865 this_chunk_blocks = sdio->block_in_fil 931 this_chunk_blocks = sdio->block_in_file & (dio_blocks_per_fs_block - 1); 866 932 867 if (!this_chunk_blocks) 933 if (!this_chunk_blocks) 868 return; 934 return; 869 935 870 /* 936 /* 871 * We need to zero out part of an fs b 937 * We need to zero out part of an fs block. It is either at the 872 * beginning or the end of the fs bloc 938 * beginning or the end of the fs block. 873 */ 939 */ 874 if (end) 940 if (end) 875 this_chunk_blocks = dio_blocks 941 this_chunk_blocks = dio_blocks_per_fs_block - this_chunk_blocks; 876 942 877 this_chunk_bytes = this_chunk_blocks < 943 this_chunk_bytes = this_chunk_blocks << sdio->blkbits; 878 944 879 page = ZERO_PAGE(0); 945 page = ZERO_PAGE(0); 880 if (submit_page_section(dio, sdio, pag 946 if (submit_page_section(dio, sdio, page, 0, this_chunk_bytes, 881 sdio->next_blo 947 sdio->next_block_for_io, map_bh)) 882 return; 948 return; 883 949 884 sdio->next_block_for_io += this_chunk_ 950 sdio->next_block_for_io += this_chunk_blocks; 885 } 951 } 886 952 887 /* 953 /* 888 * Walk the user pages, and the file, mapping 954 * Walk the user pages, and the file, mapping blocks to disk and generating 889 * a sequence of (page,offset,len,block) mappi 955 * a sequence of (page,offset,len,block) mappings. These mappings are injected 890 * into submit_page_section(), which takes car 956 * into submit_page_section(), which takes care of the next stage of submission 891 * 957 * 892 * Direct IO against a blockdev is different f 958 * Direct IO against a blockdev is different from a file. Because we can 893 * happily perform page-sized but 512-byte ali 959 * happily perform page-sized but 512-byte aligned IOs. It is important that 894 * blockdev IO be able to have fine alignment 960 * blockdev IO be able to have fine alignment and large sizes. 895 * 961 * 896 * So what we do is to permit the ->get_block 962 * So what we do is to permit the ->get_block function to populate bh.b_size 897 * with the size of IO which is permitted at t 963 * with the size of IO which is permitted at this offset and this i_blkbits. 898 * 964 * 899 * For best results, the blockdev should be se 965 * For best results, the blockdev should be set up with 512-byte i_blkbits and 900 * it should set b_size to PAGE_SIZE or more i 966 * it should set b_size to PAGE_SIZE or more inside get_block(). This gives 901 * fine alignment but still allows this functi 967 * fine alignment but still allows this function to work in PAGE_SIZE units. 902 */ 968 */ 903 static int do_direct_IO(struct dio *dio, struc 969 static int do_direct_IO(struct dio *dio, struct dio_submit *sdio, 904 struct buffer_head *ma 970 struct buffer_head *map_bh) 905 { 971 { 906 const enum req_op dio_op = dio->opf & << 907 const unsigned blkbits = sdio->blkbits 972 const unsigned blkbits = sdio->blkbits; 908 const unsigned i_blkbits = blkbits + s 973 const unsigned i_blkbits = blkbits + sdio->blkfactor; 909 int ret = 0; 974 int ret = 0; 910 975 911 while (sdio->block_in_file < sdio->fin 976 while (sdio->block_in_file < sdio->final_block_in_request) { 912 struct page *page; 977 struct page *page; 913 size_t from, to; 978 size_t from, to; 914 979 915 page = dio_get_page(dio, sdio) 980 page = dio_get_page(dio, sdio); 916 if (IS_ERR(page)) { 981 if (IS_ERR(page)) { 917 ret = PTR_ERR(page); 982 ret = PTR_ERR(page); 918 goto out; 983 goto out; 919 } 984 } 920 from = sdio->head ? 0 : sdio-> 985 from = sdio->head ? 0 : sdio->from; 921 to = (sdio->head == sdio->tail 986 to = (sdio->head == sdio->tail - 1) ? sdio->to : PAGE_SIZE; 922 sdio->head++; 987 sdio->head++; 923 988 924 while (from < to) { 989 while (from < to) { 925 unsigned this_chunk_by 990 unsigned this_chunk_bytes; /* # of bytes mapped */ 926 unsigned this_chunk_bl 991 unsigned this_chunk_blocks; /* # of blocks */ 927 unsigned u; 992 unsigned u; 928 993 929 if (sdio->blocks_avail 994 if (sdio->blocks_available == 0) { 930 /* 995 /* 931 * Need to go 996 * Need to go and map some more disk 932 */ 997 */ 933 unsigned long 998 unsigned long blkmask; 934 unsigned long 999 unsigned long dio_remainder; 935 1000 936 ret = get_more 1001 ret = get_more_blocks(dio, sdio, map_bh); 937 if (ret) { 1002 if (ret) { 938 dio_un !! 1003 put_page(page); 939 goto o 1004 goto out; 940 } 1005 } 941 if (!buffer_ma 1006 if (!buffer_mapped(map_bh)) 942 goto d 1007 goto do_holes; 943 1008 944 sdio->blocks_a 1009 sdio->blocks_available = 945 1010 map_bh->b_size >> blkbits; 946 sdio->next_blo 1011 sdio->next_block_for_io = 947 map_bh 1012 map_bh->b_blocknr << sdio->blkfactor; 948 if (buffer_new 1013 if (buffer_new(map_bh)) { 949 clean_ 1014 clean_bdev_aliases( 950 1015 map_bh->b_bdev, 951 1016 map_bh->b_blocknr, 952 1017 map_bh->b_size >> i_blkbits); 953 } 1018 } 954 1019 955 if (!sdio->blk 1020 if (!sdio->blkfactor) 956 goto d 1021 goto do_holes; 957 1022 958 blkmask = (1 < 1023 blkmask = (1 << sdio->blkfactor) - 1; 959 dio_remainder 1024 dio_remainder = (sdio->block_in_file & blkmask); 960 1025 961 /* 1026 /* 962 * If we are a 1027 * If we are at the start of IO and that IO 963 * starts part 1028 * starts partway into a fs-block, 964 * dio_remaind 1029 * dio_remainder will be non-zero. If the IO 965 * is a read t 1030 * is a read then we can simply advance the IO 966 * cursor to t 1031 * cursor to the first block which is to be 967 * read. But 1032 * read. But if the IO is a write and the 968 * block was n 1033 * block was newly allocated we cannot do that; 969 * the start o 1034 * the start of the fs block must be zeroed out 970 * on-disk 1035 * on-disk 971 */ 1036 */ 972 if (!buffer_ne 1037 if (!buffer_new(map_bh)) 973 sdio-> 1038 sdio->next_block_for_io += dio_remainder; 974 sdio->blocks_a 1039 sdio->blocks_available -= dio_remainder; 975 } 1040 } 976 do_holes: 1041 do_holes: 977 /* Handle holes */ 1042 /* Handle holes */ 978 if (!buffer_mapped(map 1043 if (!buffer_mapped(map_bh)) { 979 loff_t i_size_ 1044 loff_t i_size_aligned; 980 1045 981 /* AKPM: eargh 1046 /* AKPM: eargh, -ENOTBLK is a hack */ 982 if (dio_op == !! 1047 if (dio->op == REQ_OP_WRITE) { 983 dio_un !! 1048 put_page(page); 984 return 1049 return -ENOTBLK; 985 } 1050 } 986 1051 987 /* 1052 /* 988 * Be sure to 1053 * Be sure to account for a partial block as the 989 * last block 1054 * last block in the file 990 */ 1055 */ 991 i_size_aligned 1056 i_size_aligned = ALIGN(i_size_read(dio->inode), 992 1057 1 << blkbits); 993 if (sdio->bloc 1058 if (sdio->block_in_file >= 994 1059 i_size_aligned >> blkbits) { 995 /* We 1060 /* We hit eof */ 996 dio_un !! 1061 put_page(page); 997 goto o 1062 goto out; 998 } 1063 } 999 zero_user(page 1064 zero_user(page, from, 1 << blkbits); 1000 sdio->block_i 1065 sdio->block_in_file++; 1001 from += 1 << 1066 from += 1 << blkbits; 1002 dio->result + 1067 dio->result += 1 << blkbits; 1003 goto next_blo 1068 goto next_block; 1004 } 1069 } 1005 1070 1006 /* 1071 /* 1007 * If we're performin 1072 * If we're performing IO which has an alignment which 1008 * is finer than the 1073 * is finer than the underlying fs, go check to see if 1009 * we must zero out t 1074 * we must zero out the start of this block. 1010 */ 1075 */ 1011 if (unlikely(sdio->bl 1076 if (unlikely(sdio->blkfactor && !sdio->start_zero_done)) 1012 dio_zero_bloc 1077 dio_zero_block(dio, sdio, 0, map_bh); 1013 1078 1014 /* 1079 /* 1015 * Work out, in this_ 1080 * Work out, in this_chunk_blocks, how much disk we 1016 * can add to this pa 1081 * can add to this page 1017 */ 1082 */ 1018 this_chunk_blocks = s 1083 this_chunk_blocks = sdio->blocks_available; 1019 u = (to - from) >> bl 1084 u = (to - from) >> blkbits; 1020 if (this_chunk_blocks 1085 if (this_chunk_blocks > u) 1021 this_chunk_bl 1086 this_chunk_blocks = u; 1022 u = sdio->final_block 1087 u = sdio->final_block_in_request - sdio->block_in_file; 1023 if (this_chunk_blocks 1088 if (this_chunk_blocks > u) 1024 this_chunk_bl 1089 this_chunk_blocks = u; 1025 this_chunk_bytes = th 1090 this_chunk_bytes = this_chunk_blocks << blkbits; 1026 BUG_ON(this_chunk_byt 1091 BUG_ON(this_chunk_bytes == 0); 1027 1092 1028 if (this_chunk_blocks 1093 if (this_chunk_blocks == sdio->blocks_available) 1029 sdio->boundar 1094 sdio->boundary = buffer_boundary(map_bh); 1030 ret = submit_page_sec 1095 ret = submit_page_section(dio, sdio, page, 1031 1096 from, 1032 1097 this_chunk_bytes, 1033 1098 sdio->next_block_for_io, 1034 1099 map_bh); 1035 if (ret) { 1100 if (ret) { 1036 dio_unpin_pag !! 1101 put_page(page); 1037 goto out; 1102 goto out; 1038 } 1103 } 1039 sdio->next_block_for_ 1104 sdio->next_block_for_io += this_chunk_blocks; 1040 1105 1041 sdio->block_in_file + 1106 sdio->block_in_file += this_chunk_blocks; 1042 from += this_chunk_by 1107 from += this_chunk_bytes; 1043 dio->result += this_c 1108 dio->result += this_chunk_bytes; 1044 sdio->blocks_availabl 1109 sdio->blocks_available -= this_chunk_blocks; 1045 next_block: 1110 next_block: 1046 BUG_ON(sdio->block_in 1111 BUG_ON(sdio->block_in_file > sdio->final_block_in_request); 1047 if (sdio->block_in_fi 1112 if (sdio->block_in_file == sdio->final_block_in_request) 1048 break; 1113 break; 1049 } 1114 } 1050 1115 1051 /* Drop the pin which was tak !! 1116 /* Drop the ref which was taken in get_user_pages() */ 1052 dio_unpin_page(dio, page); !! 1117 put_page(page); 1053 } 1118 } 1054 out: 1119 out: 1055 return ret; 1120 return ret; 1056 } 1121 } 1057 1122 1058 static inline int drop_refcount(struct dio *d 1123 static inline int drop_refcount(struct dio *dio) 1059 { 1124 { 1060 int ret2; 1125 int ret2; 1061 unsigned long flags; 1126 unsigned long flags; 1062 1127 1063 /* 1128 /* 1064 * Sync will always be dropping the f 1129 * Sync will always be dropping the final ref and completing the 1065 * operation. AIO can if it was a br 1130 * operation. AIO can if it was a broken operation described above or 1066 * in fact if all the bios race to co 1131 * in fact if all the bios race to complete before we get here. In 1067 * that case dio_complete() translate 1132 * that case dio_complete() translates the EIOCBQUEUED into the proper 1068 * return code that the caller will h 1133 * return code that the caller will hand to ->complete(). 1069 * 1134 * 1070 * This is managed by the bio_lock in 1135 * This is managed by the bio_lock instead of being an atomic_t so that 1071 * completion paths can drop their re 1136 * completion paths can drop their ref and use the remaining count to 1072 * decide to wake the submission path 1137 * decide to wake the submission path atomically. 1073 */ 1138 */ 1074 spin_lock_irqsave(&dio->bio_lock, fla 1139 spin_lock_irqsave(&dio->bio_lock, flags); 1075 ret2 = --dio->refcount; 1140 ret2 = --dio->refcount; 1076 spin_unlock_irqrestore(&dio->bio_lock 1141 spin_unlock_irqrestore(&dio->bio_lock, flags); 1077 return ret2; 1142 return ret2; 1078 } 1143 } 1079 1144 1080 /* 1145 /* 1081 * This is a library function for use by file 1146 * This is a library function for use by filesystem drivers. 1082 * 1147 * 1083 * The locking rules are governed by the flag 1148 * The locking rules are governed by the flags parameter: 1084 * - if the flags value contains DIO_LOCKING 1149 * - if the flags value contains DIO_LOCKING we use a fancy locking 1085 * scheme for dumb filesystems. 1150 * scheme for dumb filesystems. 1086 * For writes this function is called unde 1151 * For writes this function is called under i_mutex and returns with 1087 * i_mutex held, for reads, i_mutex is not 1152 * i_mutex held, for reads, i_mutex is not held on entry, but it is 1088 * taken and dropped again before returnin 1153 * taken and dropped again before returning. 1089 * - if the flags value does NOT contain DIO 1154 * - if the flags value does NOT contain DIO_LOCKING we don't use any 1090 * internal locking but rather rely on the 1155 * internal locking but rather rely on the filesystem to synchronize 1091 * direct I/O reads/writes versus each oth 1156 * direct I/O reads/writes versus each other and truncate. 1092 * 1157 * 1093 * To help with locking against truncate we i 1158 * To help with locking against truncate we incremented the i_dio_count 1094 * counter before starting direct I/O, and de 1159 * counter before starting direct I/O, and decrement it once we are done. 1095 * Truncate can wait for it to reach zero to 1160 * Truncate can wait for it to reach zero to provide exclusion. It is 1096 * expected that filesystem provide exclusion 1161 * expected that filesystem provide exclusion between new direct I/O 1097 * and truncates. For DIO_LOCKING filesystem 1162 * and truncates. For DIO_LOCKING filesystems this is done by i_mutex, 1098 * but other filesystems need to take care of 1163 * but other filesystems need to take care of this on their own. 1099 * 1164 * 1100 * NOTE: if you pass "sdio" to anything by po 1165 * NOTE: if you pass "sdio" to anything by pointer make sure that function 1101 * is always inlined. Otherwise gcc is unable 1166 * is always inlined. Otherwise gcc is unable to split the structure into 1102 * individual fields and will generate much w 1167 * individual fields and will generate much worse code. This is important 1103 * for the whole file. 1168 * for the whole file. 1104 */ 1169 */ 1105 ssize_t __blockdev_direct_IO(struct kiocb *io !! 1170 static inline ssize_t 1106 struct block_device *bdev, st !! 1171 do_blockdev_direct_IO(struct kiocb *iocb, struct inode *inode, 1107 get_block_t get_block, dio_io !! 1172 struct block_device *bdev, struct iov_iter *iter, 1108 int flags) !! 1173 get_block_t get_block, dio_iodone_t end_io, >> 1174 dio_submit_t submit_io, int flags) 1109 { 1175 { 1110 unsigned i_blkbits = READ_ONCE(inode- 1176 unsigned i_blkbits = READ_ONCE(inode->i_blkbits); 1111 unsigned blkbits = i_blkbits; 1177 unsigned blkbits = i_blkbits; 1112 unsigned blocksize_mask = (1 << blkbi 1178 unsigned blocksize_mask = (1 << blkbits) - 1; 1113 ssize_t retval = -EINVAL; 1179 ssize_t retval = -EINVAL; 1114 const size_t count = iov_iter_count(i 1180 const size_t count = iov_iter_count(iter); 1115 loff_t offset = iocb->ki_pos; 1181 loff_t offset = iocb->ki_pos; 1116 const loff_t end = offset + count; 1182 const loff_t end = offset + count; 1117 struct dio *dio; 1183 struct dio *dio; 1118 struct dio_submit sdio = { NULL, }; !! 1184 struct dio_submit sdio = { 0, }; 1119 struct buffer_head map_bh = { 0, }; 1185 struct buffer_head map_bh = { 0, }; 1120 struct blk_plug plug; 1186 struct blk_plug plug; 1121 unsigned long align = offset | iov_it 1187 unsigned long align = offset | iov_iter_alignment(iter); 1122 1188 >> 1189 /* >> 1190 * Avoid references to bdev if not absolutely needed to give >> 1191 * the early prefetch in the caller enough time. >> 1192 */ >> 1193 >> 1194 if (align & blocksize_mask) { >> 1195 if (bdev) >> 1196 blkbits = blksize_bits(bdev_logical_block_size(bdev)); >> 1197 blocksize_mask = (1 << blkbits) - 1; >> 1198 if (align & blocksize_mask) >> 1199 goto out; >> 1200 } >> 1201 1123 /* watch out for a 0 len io from a tr 1202 /* watch out for a 0 len io from a tricksy fs */ 1124 if (iov_iter_rw(iter) == READ && !cou 1203 if (iov_iter_rw(iter) == READ && !count) 1125 return 0; 1204 return 0; 1126 1205 1127 dio = kmem_cache_alloc(dio_cache, GFP 1206 dio = kmem_cache_alloc(dio_cache, GFP_KERNEL); >> 1207 retval = -ENOMEM; 1128 if (!dio) 1208 if (!dio) 1129 return -ENOMEM; !! 1209 goto out; 1130 /* 1210 /* 1131 * Believe it or not, zeroing out the 1211 * Believe it or not, zeroing out the page array caused a .5% 1132 * performance regression in a databa 1212 * performance regression in a database benchmark. So, we take 1133 * care to only zero out what's neede 1213 * care to only zero out what's needed. 1134 */ 1214 */ 1135 memset(dio, 0, offsetof(struct dio, p 1215 memset(dio, 0, offsetof(struct dio, pages)); 1136 1216 1137 dio->flags = flags; 1217 dio->flags = flags; 1138 if (dio->flags & DIO_LOCKING && iov_i !! 1218 if (dio->flags & DIO_LOCKING) { 1139 /* will be released by direct !! 1219 if (iov_iter_rw(iter) == READ) { 1140 inode_lock(inode); !! 1220 struct address_space *mapping = >> 1221 iocb->ki_filp->f_mapping; >> 1222 >> 1223 /* will be released by direct_io_worker */ >> 1224 inode_lock(inode); >> 1225 >> 1226 retval = filemap_write_and_wait_range(mapping, offset, >> 1227 end - 1); >> 1228 if (retval) { >> 1229 inode_unlock(inode); >> 1230 kmem_cache_free(dio_cache, dio); >> 1231 goto out; >> 1232 } >> 1233 } 1141 } 1234 } 1142 dio->is_pinned = iov_iter_extract_wil << 1143 1235 1144 /* Once we sampled i_size check for r 1236 /* Once we sampled i_size check for reads beyond EOF */ 1145 dio->i_size = i_size_read(inode); 1237 dio->i_size = i_size_read(inode); 1146 if (iov_iter_rw(iter) == READ && offs 1238 if (iov_iter_rw(iter) == READ && offset >= dio->i_size) { >> 1239 if (dio->flags & DIO_LOCKING) >> 1240 inode_unlock(inode); >> 1241 kmem_cache_free(dio_cache, dio); 1147 retval = 0; 1242 retval = 0; 1148 goto fail_dio; !! 1243 goto out; 1149 } << 1150 << 1151 if (align & blocksize_mask) { << 1152 if (bdev) << 1153 blkbits = blksize_bit << 1154 blocksize_mask = (1 << blkbit << 1155 if (align & blocksize_mask) << 1156 goto fail_dio; << 1157 } << 1158 << 1159 if (dio->flags & DIO_LOCKING && iov_i << 1160 struct address_space *mapping << 1161 << 1162 retval = filemap_write_and_wa << 1163 if (retval) << 1164 goto fail_dio; << 1165 } 1244 } 1166 1245 1167 /* 1246 /* 1168 * For file extending writes updating 1247 * For file extending writes updating i_size before data writeouts 1169 * complete can expose uninitialized 1248 * complete can expose uninitialized blocks in dumb filesystems. 1170 * In that case we need to wait for I 1249 * In that case we need to wait for I/O completion even if asked 1171 * for an asynchronous write. 1250 * for an asynchronous write. 1172 */ 1251 */ 1173 if (is_sync_kiocb(iocb)) 1252 if (is_sync_kiocb(iocb)) 1174 dio->is_async = false; 1253 dio->is_async = false; 1175 else if (iov_iter_rw(iter) == WRITE & 1254 else if (iov_iter_rw(iter) == WRITE && end > i_size_read(inode)) 1176 dio->is_async = false; 1255 dio->is_async = false; 1177 else 1256 else 1178 dio->is_async = true; 1257 dio->is_async = true; 1179 1258 1180 dio->inode = inode; 1259 dio->inode = inode; 1181 if (iov_iter_rw(iter) == WRITE) { 1260 if (iov_iter_rw(iter) == WRITE) { 1182 dio->opf = REQ_OP_WRITE | REQ !! 1261 dio->op = REQ_OP_WRITE; >> 1262 dio->op_flags = REQ_SYNC | REQ_IDLE; 1183 if (iocb->ki_flags & IOCB_NOW 1263 if (iocb->ki_flags & IOCB_NOWAIT) 1184 dio->opf |= REQ_NOWAI !! 1264 dio->op_flags |= REQ_NOWAIT; 1185 } else { 1265 } else { 1186 dio->opf = REQ_OP_READ; !! 1266 dio->op = REQ_OP_READ; 1187 } 1267 } 1188 1268 1189 /* 1269 /* 1190 * For AIO O_(D)SYNC writes we need t 1270 * For AIO O_(D)SYNC writes we need to defer completions to a workqueue 1191 * so that we can call ->fsync. 1271 * so that we can call ->fsync. 1192 */ 1272 */ 1193 if (dio->is_async && iov_iter_rw(iter 1273 if (dio->is_async && iov_iter_rw(iter) == WRITE) { 1194 retval = 0; 1274 retval = 0; 1195 if (iocb_is_dsync(iocb)) !! 1275 if (iocb->ki_flags & IOCB_DSYNC) 1196 retval = dio_set_defe 1276 retval = dio_set_defer_completion(dio); 1197 else if (!dio->inode->i_sb->s 1277 else if (!dio->inode->i_sb->s_dio_done_wq) { 1198 /* 1278 /* 1199 * In case of AIO wri 1279 * In case of AIO write racing with buffered read we 1200 * need to defer comp 1280 * need to defer completion. We can't decide this now, 1201 * however the workqu 1281 * however the workqueue needs to be initialized here. 1202 */ 1282 */ 1203 retval = sb_init_dio_ 1283 retval = sb_init_dio_done_wq(dio->inode->i_sb); 1204 } 1284 } 1205 if (retval) !! 1285 if (retval) { 1206 goto fail_dio; !! 1286 /* >> 1287 * We grab i_mutex only for reads so we don't have >> 1288 * to release it here >> 1289 */ >> 1290 kmem_cache_free(dio_cache, dio); >> 1291 goto out; >> 1292 } 1207 } 1293 } 1208 1294 1209 /* 1295 /* 1210 * Will be decremented at I/O complet 1296 * Will be decremented at I/O completion time. 1211 */ 1297 */ 1212 inode_dio_begin(inode); 1298 inode_dio_begin(inode); 1213 1299 >> 1300 retval = 0; 1214 sdio.blkbits = blkbits; 1301 sdio.blkbits = blkbits; 1215 sdio.blkfactor = i_blkbits - blkbits; 1302 sdio.blkfactor = i_blkbits - blkbits; 1216 sdio.block_in_file = offset >> blkbit 1303 sdio.block_in_file = offset >> blkbits; 1217 1304 1218 sdio.get_block = get_block; 1305 sdio.get_block = get_block; 1219 dio->end_io = end_io; 1306 dio->end_io = end_io; >> 1307 sdio.submit_io = submit_io; 1220 sdio.final_block_in_bio = -1; 1308 sdio.final_block_in_bio = -1; 1221 sdio.next_block_for_io = -1; 1309 sdio.next_block_for_io = -1; 1222 1310 1223 dio->iocb = iocb; 1311 dio->iocb = iocb; 1224 1312 1225 spin_lock_init(&dio->bio_lock); 1313 spin_lock_init(&dio->bio_lock); 1226 dio->refcount = 1; 1314 dio->refcount = 1; 1227 1315 1228 dio->should_dirty = user_backed_iter( !! 1316 dio->should_dirty = (iter->type == ITER_IOVEC); 1229 sdio.iter = iter; 1317 sdio.iter = iter; 1230 sdio.final_block_in_request = end >> 1318 sdio.final_block_in_request = end >> blkbits; 1231 1319 1232 /* 1320 /* 1233 * In case of non-aligned buffers, we 1321 * In case of non-aligned buffers, we may need 2 more 1234 * pages since we need to zero out fi 1322 * pages since we need to zero out first and last block. 1235 */ 1323 */ 1236 if (unlikely(sdio.blkfactor)) 1324 if (unlikely(sdio.blkfactor)) 1237 sdio.pages_in_io = 2; 1325 sdio.pages_in_io = 2; 1238 1326 1239 sdio.pages_in_io += iov_iter_npages(i 1327 sdio.pages_in_io += iov_iter_npages(iter, INT_MAX); 1240 1328 1241 blk_start_plug(&plug); 1329 blk_start_plug(&plug); 1242 1330 1243 retval = do_direct_IO(dio, &sdio, &ma 1331 retval = do_direct_IO(dio, &sdio, &map_bh); 1244 if (retval) 1332 if (retval) 1245 dio_cleanup(dio, &sdio); 1333 dio_cleanup(dio, &sdio); 1246 1334 1247 if (retval == -ENOTBLK) { 1335 if (retval == -ENOTBLK) { 1248 /* 1336 /* 1249 * The remaining part of the 1337 * The remaining part of the request will be 1250 * handled by buffered I/O wh !! 1338 * be handled by buffered I/O when we return 1251 */ 1339 */ 1252 retval = 0; 1340 retval = 0; 1253 } 1341 } 1254 /* 1342 /* 1255 * There may be some unwritten disk a 1343 * There may be some unwritten disk at the end of a part-written 1256 * fs-block-sized block. Go zero tha 1344 * fs-block-sized block. Go zero that now. 1257 */ 1345 */ 1258 dio_zero_block(dio, &sdio, 1, &map_bh 1346 dio_zero_block(dio, &sdio, 1, &map_bh); 1259 1347 1260 if (sdio.cur_page) { 1348 if (sdio.cur_page) { 1261 ssize_t ret2; 1349 ssize_t ret2; 1262 1350 1263 ret2 = dio_send_cur_page(dio, 1351 ret2 = dio_send_cur_page(dio, &sdio, &map_bh); 1264 if (retval == 0) 1352 if (retval == 0) 1265 retval = ret2; 1353 retval = ret2; 1266 dio_unpin_page(dio, sdio.cur_ !! 1354 put_page(sdio.cur_page); 1267 sdio.cur_page = NULL; 1355 sdio.cur_page = NULL; 1268 } 1356 } 1269 if (sdio.bio) 1357 if (sdio.bio) 1270 dio_bio_submit(dio, &sdio); 1358 dio_bio_submit(dio, &sdio); 1271 1359 1272 blk_finish_plug(&plug); 1360 blk_finish_plug(&plug); 1273 1361 1274 /* 1362 /* 1275 * It is possible that, we return sho 1363 * It is possible that, we return short IO due to end of file. 1276 * In that case, we need to release a 1364 * In that case, we need to release all the pages we got hold on. 1277 */ 1365 */ 1278 dio_cleanup(dio, &sdio); 1366 dio_cleanup(dio, &sdio); 1279 1367 1280 /* 1368 /* 1281 * All block lookups have been perfor 1369 * All block lookups have been performed. For READ requests 1282 * we can let i_mutex go now that its 1370 * we can let i_mutex go now that its achieved its purpose 1283 * of protecting us from looking up u 1371 * of protecting us from looking up uninitialized blocks. 1284 */ 1372 */ 1285 if (iov_iter_rw(iter) == READ && (dio 1373 if (iov_iter_rw(iter) == READ && (dio->flags & DIO_LOCKING)) 1286 inode_unlock(dio->inode); 1374 inode_unlock(dio->inode); 1287 1375 1288 /* 1376 /* 1289 * The only time we want to leave bio 1377 * The only time we want to leave bios in flight is when a successful 1290 * partial aio read or full aio write 1378 * partial aio read or full aio write have been setup. In that case 1291 * bio completion will call aio_compl 1379 * bio completion will call aio_complete. The only time it's safe to 1292 * call aio_complete is when we retur 1380 * call aio_complete is when we return -EIOCBQUEUED, so we key on that. 1293 * This had *better* be the only plac 1381 * This had *better* be the only place that raises -EIOCBQUEUED. 1294 */ 1382 */ 1295 BUG_ON(retval == -EIOCBQUEUED); 1383 BUG_ON(retval == -EIOCBQUEUED); 1296 if (dio->is_async && retval == 0 && d 1384 if (dio->is_async && retval == 0 && dio->result && 1297 (iov_iter_rw(iter) == READ || dio 1385 (iov_iter_rw(iter) == READ || dio->result == count)) 1298 retval = -EIOCBQUEUED; 1386 retval = -EIOCBQUEUED; 1299 else 1387 else 1300 dio_await_completion(dio); 1388 dio_await_completion(dio); 1301 1389 1302 if (drop_refcount(dio) == 0) { 1390 if (drop_refcount(dio) == 0) { 1303 retval = dio_complete(dio, re 1391 retval = dio_complete(dio, retval, DIO_COMPLETE_INVALIDATE); 1304 } else 1392 } else 1305 BUG_ON(retval != -EIOCBQUEUED 1393 BUG_ON(retval != -EIOCBQUEUED); 1306 1394 >> 1395 out: 1307 return retval; 1396 return retval; >> 1397 } 1308 1398 1309 fail_dio: !! 1399 ssize_t __blockdev_direct_IO(struct kiocb *iocb, struct inode *inode, 1310 if (dio->flags & DIO_LOCKING && iov_i !! 1400 struct block_device *bdev, struct iov_iter *iter, 1311 inode_unlock(inode); !! 1401 get_block_t get_block, >> 1402 dio_iodone_t end_io, dio_submit_t submit_io, >> 1403 int flags) >> 1404 { >> 1405 /* >> 1406 * The block device state is needed in the end to finally >> 1407 * submit everything. Since it's likely to be cache cold >> 1408 * prefetch it here as first thing to hide some of the >> 1409 * latency. >> 1410 * >> 1411 * Attempt to prefetch the pieces we likely need later. >> 1412 */ >> 1413 prefetch(&bdev->bd_disk->part_tbl); >> 1414 prefetch(bdev->bd_queue); >> 1415 prefetch((char *)bdev->bd_queue + SMP_CACHE_BYTES); 1312 1416 1313 kmem_cache_free(dio_cache, dio); !! 1417 return do_blockdev_direct_IO(iocb, inode, bdev, iter, get_block, 1314 return retval; !! 1418 end_io, submit_io, flags); 1315 } 1419 } >> 1420 1316 EXPORT_SYMBOL(__blockdev_direct_IO); 1421 EXPORT_SYMBOL(__blockdev_direct_IO); 1317 1422 1318 static __init int dio_init(void) 1423 static __init int dio_init(void) 1319 { 1424 { 1320 dio_cache = KMEM_CACHE(dio, SLAB_PANI 1425 dio_cache = KMEM_CACHE(dio, SLAB_PANIC); 1321 return 0; 1426 return 0; 1322 } 1427 } 1323 module_init(dio_init) 1428 module_init(dio_init) 1324 1429
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.