1 // SPDX-License-Identifier: GPL-2.0-or-later << 2 /* 1 /* 3 * fs/eventpoll.c (Efficient event retrieval 2 * fs/eventpoll.c (Efficient event retrieval implementation) 4 * Copyright (C) 2001,...,2009 Davide Libenz 3 * Copyright (C) 2001,...,2009 Davide Libenzi 5 * 4 * >> 5 * This program is free software; you can redistribute it and/or modify >> 6 * it under the terms of the GNU General Public License as published by >> 7 * the Free Software Foundation; either version 2 of the License, or >> 8 * (at your option) any later version. >> 9 * 6 * Davide Libenzi <davidel@xmailserver.org> 10 * Davide Libenzi <davidel@xmailserver.org> >> 11 * 7 */ 12 */ 8 13 9 #include <linux/init.h> 14 #include <linux/init.h> 10 #include <linux/kernel.h> 15 #include <linux/kernel.h> 11 #include <linux/sched/signal.h> 16 #include <linux/sched/signal.h> 12 #include <linux/fs.h> 17 #include <linux/fs.h> 13 #include <linux/file.h> 18 #include <linux/file.h> 14 #include <linux/signal.h> 19 #include <linux/signal.h> 15 #include <linux/errno.h> 20 #include <linux/errno.h> 16 #include <linux/mm.h> 21 #include <linux/mm.h> 17 #include <linux/slab.h> 22 #include <linux/slab.h> 18 #include <linux/poll.h> 23 #include <linux/poll.h> 19 #include <linux/string.h> 24 #include <linux/string.h> 20 #include <linux/list.h> 25 #include <linux/list.h> 21 #include <linux/hash.h> 26 #include <linux/hash.h> 22 #include <linux/spinlock.h> 27 #include <linux/spinlock.h> 23 #include <linux/syscalls.h> 28 #include <linux/syscalls.h> 24 #include <linux/rbtree.h> 29 #include <linux/rbtree.h> 25 #include <linux/wait.h> 30 #include <linux/wait.h> 26 #include <linux/eventpoll.h> 31 #include <linux/eventpoll.h> 27 #include <linux/mount.h> 32 #include <linux/mount.h> 28 #include <linux/bitops.h> 33 #include <linux/bitops.h> 29 #include <linux/mutex.h> 34 #include <linux/mutex.h> 30 #include <linux/anon_inodes.h> 35 #include <linux/anon_inodes.h> 31 #include <linux/device.h> 36 #include <linux/device.h> 32 #include <linux/uaccess.h> 37 #include <linux/uaccess.h> 33 #include <asm/io.h> 38 #include <asm/io.h> 34 #include <asm/mman.h> 39 #include <asm/mman.h> 35 #include <linux/atomic.h> 40 #include <linux/atomic.h> 36 #include <linux/proc_fs.h> 41 #include <linux/proc_fs.h> 37 #include <linux/seq_file.h> 42 #include <linux/seq_file.h> 38 #include <linux/compat.h> 43 #include <linux/compat.h> 39 #include <linux/rculist.h> 44 #include <linux/rculist.h> 40 #include <linux/capability.h> << 41 #include <net/busy_poll.h> 45 #include <net/busy_poll.h> 42 46 43 /* 47 /* 44 * LOCKING: 48 * LOCKING: 45 * There are three level of locking required b 49 * There are three level of locking required by epoll : 46 * 50 * 47 * 1) epnested_mutex (mutex) !! 51 * 1) epmutex (mutex) 48 * 2) ep->mtx (mutex) 52 * 2) ep->mtx (mutex) 49 * 3) ep->lock (rwlock) !! 53 * 3) ep->lock (spinlock) 50 * 54 * 51 * The acquire order is the one listed above, 55 * The acquire order is the one listed above, from 1 to 3. 52 * We need a rwlock (ep->lock) because we mani !! 56 * We need a spinlock (ep->lock) because we manipulate objects 53 * from inside the poll callback, that might b 57 * from inside the poll callback, that might be triggered from 54 * a wake_up() that in turn might be called fr 58 * a wake_up() that in turn might be called from IRQ context. 55 * So we can't sleep inside the poll callback 59 * So we can't sleep inside the poll callback and hence we need 56 * a spinlock. During the event transfer loop 60 * a spinlock. During the event transfer loop (from kernel to 57 * user space) we could end up sleeping due a 61 * user space) we could end up sleeping due a copy_to_user(), so 58 * we need a lock that will allow us to sleep. 62 * we need a lock that will allow us to sleep. This lock is a 59 * mutex (ep->mtx). It is acquired during the 63 * mutex (ep->mtx). It is acquired during the event transfer loop, 60 * during epoll_ctl(EPOLL_CTL_DEL) and during 64 * during epoll_ctl(EPOLL_CTL_DEL) and during eventpoll_release_file(). 61 * The epnested_mutex is acquired when inserti !! 65 * Then we also need a global mutex to serialize eventpoll_release_file() 62 * epoll fd. We do this so that we walk the ep !! 66 * and ep_free(). >> 67 * This mutex is acquired by ep_free() during the epoll file >> 68 * cleanup path and it is also acquired by eventpoll_release_file() >> 69 * if a file has been pushed inside an epoll set and it is then >> 70 * close()d without a previous call to epoll_ctl(EPOLL_CTL_DEL). >> 71 * It is also acquired when inserting an epoll fd onto another epoll >> 72 * fd. We do this so that we walk the epoll tree and ensure that this 63 * insertion does not create a cycle of epoll 73 * insertion does not create a cycle of epoll file descriptors, which 64 * could lead to deadlock. We need a global mu 74 * could lead to deadlock. We need a global mutex to prevent two 65 * simultaneous inserts (A into B and B into A 75 * simultaneous inserts (A into B and B into A) from racing and 66 * constructing a cycle without either insert 76 * constructing a cycle without either insert observing that it is 67 * going to. 77 * going to. 68 * It is necessary to acquire multiple "ep->mt 78 * It is necessary to acquire multiple "ep->mtx"es at once in the 69 * case when one epoll fd is added to another. 79 * case when one epoll fd is added to another. In this case, we 70 * always acquire the locks in the order of ne 80 * always acquire the locks in the order of nesting (i.e. after 71 * epoll_ctl(e1, EPOLL_CTL_ADD, e2), e1->mtx w 81 * epoll_ctl(e1, EPOLL_CTL_ADD, e2), e1->mtx will always be acquired 72 * before e2->mtx). Since we disallow cycles o 82 * before e2->mtx). Since we disallow cycles of epoll file 73 * descriptors, this ensures that the mutexes 83 * descriptors, this ensures that the mutexes are well-ordered. In 74 * order to communicate this nesting to lockde 84 * order to communicate this nesting to lockdep, when walking a tree 75 * of epoll file descriptors, we use the curre 85 * of epoll file descriptors, we use the current recursion depth as 76 * the lockdep subkey. 86 * the lockdep subkey. 77 * It is possible to drop the "ep->mtx" and to 87 * It is possible to drop the "ep->mtx" and to use the global 78 * mutex "epnested_mutex" (together with "ep-> !! 88 * mutex "epmutex" (together with "ep->lock") to have it working, 79 * but having "ep->mtx" will make the interfac 89 * but having "ep->mtx" will make the interface more scalable. 80 * Events that require holding "epnested_mutex !! 90 * Events that require holding "epmutex" are very rare, while for 81 * normal operations the epoll private "ep->mt 91 * normal operations the epoll private "ep->mtx" will guarantee 82 * a better scalability. 92 * a better scalability. 83 */ 93 */ 84 94 85 /* Epoll private bits inside the event mask */ 95 /* Epoll private bits inside the event mask */ 86 #define EP_PRIVATE_BITS (EPOLLWAKEUP | EPOLLON 96 #define EP_PRIVATE_BITS (EPOLLWAKEUP | EPOLLONESHOT | EPOLLET | EPOLLEXCLUSIVE) 87 97 88 #define EPOLLINOUT_BITS (EPOLLIN | EPOLLOUT) !! 98 #define EPOLLINOUT_BITS (POLLIN | POLLOUT) 89 99 90 #define EPOLLEXCLUSIVE_OK_BITS (EPOLLINOUT_BIT !! 100 #define EPOLLEXCLUSIVE_OK_BITS (EPOLLINOUT_BITS | POLLERR | POLLHUP | \ 91 EPOLLWAKEUP | 101 EPOLLWAKEUP | EPOLLET | EPOLLEXCLUSIVE) 92 102 93 /* Maximum number of nesting allowed inside ep 103 /* Maximum number of nesting allowed inside epoll sets */ 94 #define EP_MAX_NESTS 4 104 #define EP_MAX_NESTS 4 95 105 96 #define EP_MAX_EVENTS (INT_MAX / sizeof(struct 106 #define EP_MAX_EVENTS (INT_MAX / sizeof(struct epoll_event)) 97 107 98 #define EP_UNACTIVE_PTR ((void *) -1L) 108 #define EP_UNACTIVE_PTR ((void *) -1L) 99 109 100 #define EP_ITEM_COST (sizeof(struct epitem) + 110 #define EP_ITEM_COST (sizeof(struct epitem) + sizeof(struct eppoll_entry)) 101 111 102 struct epoll_filefd { 112 struct epoll_filefd { 103 struct file *file; 113 struct file *file; 104 int fd; 114 int fd; 105 } __packed; 115 } __packed; 106 116 107 /* Wait structure used by the poll hooks */ !! 117 /* 108 struct eppoll_entry { !! 118 * Structure used to track possible nested calls, for too deep recursions 109 /* List header used to link this struc !! 119 * and loop cycles. 110 struct eppoll_entry *next; !! 120 */ 111 !! 121 struct nested_call_node { 112 /* The "base" pointer is set to the co !! 122 struct list_head llink; 113 struct epitem *base; !! 123 void *cookie; 114 !! 124 void *ctx; 115 /* !! 125 }; 116 * Wait queue item that will be linked << 117 * queue head. << 118 */ << 119 wait_queue_entry_t wait; << 120 126 121 /* The wait queue head that linked the !! 127 /* 122 wait_queue_head_t *whead; !! 128 * This structure is used as collector for nested calls, to check for >> 129 * maximum recursion dept and loop cycles. >> 130 */ >> 131 struct nested_calls { >> 132 struct list_head tasks_call_list; >> 133 spinlock_t lock; 123 }; 134 }; 124 135 125 /* 136 /* 126 * Each file descriptor added to the eventpoll 137 * Each file descriptor added to the eventpoll interface will 127 * have an entry of this type linked to the "r 138 * have an entry of this type linked to the "rbr" RB tree. 128 * Avoid increasing the size of this struct, t 139 * Avoid increasing the size of this struct, there can be many thousands 129 * of these on a server and we do not want thi 140 * of these on a server and we do not want this to take another cache line. 130 */ 141 */ 131 struct epitem { 142 struct epitem { 132 union { 143 union { 133 /* RB tree node links this str 144 /* RB tree node links this structure to the eventpoll RB tree */ 134 struct rb_node rbn; 145 struct rb_node rbn; 135 /* Used to free the struct epi 146 /* Used to free the struct epitem */ 136 struct rcu_head rcu; 147 struct rcu_head rcu; 137 }; 148 }; 138 149 139 /* List header used to link this struc 150 /* List header used to link this structure to the eventpoll ready list */ 140 struct list_head rdllink; 151 struct list_head rdllink; 141 152 142 /* 153 /* 143 * Works together "struct eventpoll"-> 154 * Works together "struct eventpoll"->ovflist in keeping the 144 * single linked chain of items. 155 * single linked chain of items. 145 */ 156 */ 146 struct epitem *next; 157 struct epitem *next; 147 158 148 /* The file descriptor information thi 159 /* The file descriptor information this item refers to */ 149 struct epoll_filefd ffd; 160 struct epoll_filefd ffd; 150 161 151 /* !! 162 /* Number of active wait queue attached to poll operations */ 152 * Protected by file->f_lock, true for !! 163 int nwait; 153 * removed from the "struct file" item << 154 * eventpoll->refcount orchestrates "s << 155 */ << 156 bool dying; << 157 164 158 /* List containing poll wait queues */ 165 /* List containing poll wait queues */ 159 struct eppoll_entry *pwqlist; !! 166 struct list_head pwqlist; 160 167 161 /* The "container" of this item */ 168 /* The "container" of this item */ 162 struct eventpoll *ep; 169 struct eventpoll *ep; 163 170 164 /* List header used to link this item 171 /* List header used to link this item to the "struct file" items list */ 165 struct hlist_node fllink; !! 172 struct list_head fllink; 166 173 167 /* wakeup_source used when EPOLLWAKEUP 174 /* wakeup_source used when EPOLLWAKEUP is set */ 168 struct wakeup_source __rcu *ws; 175 struct wakeup_source __rcu *ws; 169 176 170 /* The structure that describe the int 177 /* The structure that describe the interested events and the source fd */ 171 struct epoll_event event; 178 struct epoll_event event; 172 }; 179 }; 173 180 174 /* 181 /* 175 * This structure is stored inside the "privat 182 * This structure is stored inside the "private_data" member of the file 176 * structure and represents the main data stru 183 * structure and represents the main data structure for the eventpoll 177 * interface. 184 * interface. 178 */ 185 */ 179 struct eventpoll { 186 struct eventpoll { >> 187 /* Protect the access to this structure */ >> 188 spinlock_t lock; >> 189 180 /* 190 /* 181 * This mutex is used to ensure that f 191 * This mutex is used to ensure that files are not removed 182 * while epoll is using them. This is 192 * while epoll is using them. This is held during the event 183 * collection loop, the file cleanup p 193 * collection loop, the file cleanup path, the epoll file exit 184 * code and the ctl operations. 194 * code and the ctl operations. 185 */ 195 */ 186 struct mutex mtx; 196 struct mutex mtx; 187 197 188 /* Wait queue used by sys_epoll_wait() 198 /* Wait queue used by sys_epoll_wait() */ 189 wait_queue_head_t wq; 199 wait_queue_head_t wq; 190 200 191 /* Wait queue used by file->poll() */ 201 /* Wait queue used by file->poll() */ 192 wait_queue_head_t poll_wait; 202 wait_queue_head_t poll_wait; 193 203 194 /* List of ready file descriptors */ 204 /* List of ready file descriptors */ 195 struct list_head rdllist; 205 struct list_head rdllist; 196 206 197 /* Lock which protects rdllist and ovf << 198 rwlock_t lock; << 199 << 200 /* RB tree root used to store monitore 207 /* RB tree root used to store monitored fd structs */ 201 struct rb_root_cached rbr; 208 struct rb_root_cached rbr; 202 209 203 /* 210 /* 204 * This is a single linked list that c 211 * This is a single linked list that chains all the "struct epitem" that 205 * happened while transferring ready e 212 * happened while transferring ready events to userspace w/out 206 * holding ->lock. 213 * holding ->lock. 207 */ 214 */ 208 struct epitem *ovflist; 215 struct epitem *ovflist; 209 216 210 /* wakeup_source used when ep_send_eve !! 217 /* wakeup_source used when ep_scan_ready_list is running */ 211 struct wakeup_source *ws; 218 struct wakeup_source *ws; 212 219 213 /* The user that created the eventpoll 220 /* The user that created the eventpoll descriptor */ 214 struct user_struct *user; 221 struct user_struct *user; 215 222 216 struct file *file; 223 struct file *file; 217 224 218 /* used to optimize loop detection che 225 /* used to optimize loop detection check */ 219 u64 gen; 226 u64 gen; 220 struct hlist_head refs; << 221 << 222 /* << 223 * usage count, used together with epi << 224 * orchestrate the disposal of this st << 225 */ << 226 refcount_t refcount; << 227 227 228 #ifdef CONFIG_NET_RX_BUSY_POLL 228 #ifdef CONFIG_NET_RX_BUSY_POLL 229 /* used to track busy poll napi_id */ 229 /* used to track busy poll napi_id */ 230 unsigned int napi_id; 230 unsigned int napi_id; 231 /* busy poll timeout */ << 232 u32 busy_poll_usecs; << 233 /* busy poll packet budget */ << 234 u16 busy_poll_budget; << 235 bool prefer_busy_poll; << 236 #endif 231 #endif >> 232 }; 237 233 238 #ifdef CONFIG_DEBUG_LOCK_ALLOC !! 234 /* Wait structure used by the poll hooks */ 239 /* tracks wakeup nests for lockdep val !! 235 struct eppoll_entry { 240 u8 nests; !! 236 /* List header used to link this structure to the "struct epitem" */ 241 #endif !! 237 struct list_head llink; >> 238 >> 239 /* The "base" pointer is set to the container "struct epitem" */ >> 240 struct epitem *base; >> 241 >> 242 /* >> 243 * Wait queue item that will be linked to the target file wait >> 244 * queue head. >> 245 */ >> 246 wait_queue_entry_t wait; >> 247 >> 248 /* The wait queue head that linked the "wait" wait queue item */ >> 249 wait_queue_head_t *whead; 242 }; 250 }; 243 251 244 /* Wrapper struct used by poll queueing */ 252 /* Wrapper struct used by poll queueing */ 245 struct ep_pqueue { 253 struct ep_pqueue { 246 poll_table pt; 254 poll_table pt; 247 struct epitem *epi; 255 struct epitem *epi; 248 }; 256 }; 249 257 >> 258 /* Used by the ep_send_events() function as callback private data */ >> 259 struct ep_send_events_data { >> 260 int maxevents; >> 261 struct epoll_event __user *events; >> 262 }; >> 263 250 /* 264 /* 251 * Configuration options available inside /pro 265 * Configuration options available inside /proc/sys/fs/epoll/ 252 */ 266 */ 253 /* Maximum number of epoll watched descriptors 267 /* Maximum number of epoll watched descriptors, per user */ 254 static long max_user_watches __read_mostly; 268 static long max_user_watches __read_mostly; 255 269 256 /* Used for cycles detection */ !! 270 /* 257 static DEFINE_MUTEX(epnested_mutex); !! 271 * This mutex is used to serialize ep_free() and eventpoll_release_file(). >> 272 */ >> 273 static DEFINE_MUTEX(epmutex); 258 274 259 static u64 loop_check_gen = 0; 275 static u64 loop_check_gen = 0; 260 276 261 /* Used to check for epoll file descriptor inc 277 /* Used to check for epoll file descriptor inclusion loops */ 262 static struct eventpoll *inserting_into; !! 278 static struct nested_calls poll_loop_ncalls; >> 279 >> 280 /* Used for safe wake up implementation */ >> 281 static struct nested_calls poll_safewake_ncalls; >> 282 >> 283 /* Used to call file's f_op->poll() under the nested calls boundaries */ >> 284 static struct nested_calls poll_readywalk_ncalls; 263 285 264 /* Slab cache used to allocate "struct epitem" 286 /* Slab cache used to allocate "struct epitem" */ 265 static struct kmem_cache *epi_cache __ro_after !! 287 static struct kmem_cache *epi_cache __read_mostly; 266 288 267 /* Slab cache used to allocate "struct eppoll_ 289 /* Slab cache used to allocate "struct eppoll_entry" */ 268 static struct kmem_cache *pwq_cache __ro_after !! 290 static struct kmem_cache *pwq_cache __read_mostly; 269 291 270 /* 292 /* 271 * List of files with newly added links, where 293 * List of files with newly added links, where we may need to limit the number 272 * of emanating paths. Protected by the epnest !! 294 * of emanating paths. Protected by the epmutex. 273 */ 295 */ 274 struct epitems_head { !! 296 static LIST_HEAD(tfile_check_list); 275 struct hlist_head epitems; << 276 struct epitems_head *next; << 277 }; << 278 static struct epitems_head *tfile_check_list = << 279 << 280 static struct kmem_cache *ephead_cache __ro_af << 281 << 282 static inline void free_ephead(struct epitems_ << 283 { << 284 if (head) << 285 kmem_cache_free(ephead_cache, << 286 } << 287 << 288 static void list_file(struct file *file) << 289 { << 290 struct epitems_head *head; << 291 << 292 head = container_of(file->f_ep, struct << 293 if (!head->next) { << 294 head->next = tfile_check_list; << 295 tfile_check_list = head; << 296 } << 297 } << 298 << 299 static void unlist_file(struct epitems_head *h << 300 { << 301 struct epitems_head *to_free = head; << 302 struct hlist_node *p = rcu_dereference << 303 if (p) { << 304 struct epitem *epi= container_ << 305 spin_lock(&epi->ffd.file->f_lo << 306 if (!hlist_empty(&head->epitem << 307 to_free = NULL; << 308 head->next = NULL; << 309 spin_unlock(&epi->ffd.file->f_ << 310 } << 311 free_ephead(to_free); << 312 } << 313 297 314 #ifdef CONFIG_SYSCTL 298 #ifdef CONFIG_SYSCTL 315 299 316 #include <linux/sysctl.h> 300 #include <linux/sysctl.h> 317 301 318 static long long_zero; !! 302 static long zero; 319 static long long_max = LONG_MAX; 303 static long long_max = LONG_MAX; 320 304 321 static struct ctl_table epoll_table[] = { !! 305 struct ctl_table epoll_table[] = { 322 { 306 { 323 .procname = "max_user_wa 307 .procname = "max_user_watches", 324 .data = &max_user_wa 308 .data = &max_user_watches, 325 .maxlen = sizeof(max_u 309 .maxlen = sizeof(max_user_watches), 326 .mode = 0644, 310 .mode = 0644, 327 .proc_handler = proc_doulong 311 .proc_handler = proc_doulongvec_minmax, 328 .extra1 = &long_zero, !! 312 .extra1 = &zero, 329 .extra2 = &long_max, 313 .extra2 = &long_max, 330 }, 314 }, >> 315 { } 331 }; 316 }; 332 << 333 static void __init epoll_sysctls_init(void) << 334 { << 335 register_sysctl("fs/epoll", epoll_tabl << 336 } << 337 #else << 338 #define epoll_sysctls_init() do { } while (0) << 339 #endif /* CONFIG_SYSCTL */ 317 #endif /* CONFIG_SYSCTL */ 340 318 341 static const struct file_operations eventpoll_ 319 static const struct file_operations eventpoll_fops; 342 320 343 static inline int is_file_epoll(struct file *f 321 static inline int is_file_epoll(struct file *f) 344 { 322 { 345 return f->f_op == &eventpoll_fops; 323 return f->f_op == &eventpoll_fops; 346 } 324 } 347 325 348 /* Setup the structure that is used as key for 326 /* Setup the structure that is used as key for the RB tree */ 349 static inline void ep_set_ffd(struct epoll_fil 327 static inline void ep_set_ffd(struct epoll_filefd *ffd, 350 struct file *fil 328 struct file *file, int fd) 351 { 329 { 352 ffd->file = file; 330 ffd->file = file; 353 ffd->fd = fd; 331 ffd->fd = fd; 354 } 332 } 355 333 356 /* Compare RB tree keys */ 334 /* Compare RB tree keys */ 357 static inline int ep_cmp_ffd(struct epoll_file 335 static inline int ep_cmp_ffd(struct epoll_filefd *p1, 358 struct epoll_file 336 struct epoll_filefd *p2) 359 { 337 { 360 return (p1->file > p2->file ? +1: 338 return (p1->file > p2->file ? +1: 361 (p1->file < p2->file ? -1 : p1 339 (p1->file < p2->file ? -1 : p1->fd - p2->fd)); 362 } 340 } 363 341 364 /* Tells us if the item is currently linked */ 342 /* Tells us if the item is currently linked */ 365 static inline int ep_is_linked(struct epitem * !! 343 static inline int ep_is_linked(struct list_head *p) 366 { 344 { 367 return !list_empty(&epi->rdllink); !! 345 return !list_empty(p); 368 } 346 } 369 347 370 static inline struct eppoll_entry *ep_pwq_from 348 static inline struct eppoll_entry *ep_pwq_from_wait(wait_queue_entry_t *p) 371 { 349 { 372 return container_of(p, struct eppoll_e 350 return container_of(p, struct eppoll_entry, wait); 373 } 351 } 374 352 375 /* Get the "struct epitem" from a wait queue p 353 /* Get the "struct epitem" from a wait queue pointer */ 376 static inline struct epitem *ep_item_from_wait 354 static inline struct epitem *ep_item_from_wait(wait_queue_entry_t *p) 377 { 355 { 378 return container_of(p, struct eppoll_e 356 return container_of(p, struct eppoll_entry, wait)->base; 379 } 357 } 380 358 381 /** !! 359 /* Get the "struct epitem" from an epoll queue wrapper */ 382 * ep_events_available - Checks if ready event !! 360 static inline struct epitem *ep_item_from_epqueue(poll_table *p) 383 * << 384 * @ep: Pointer to the eventpoll context. << 385 * << 386 * Return: a value different than %zero if rea << 387 * or %zero otherwise. << 388 */ << 389 static inline int ep_events_available(struct e << 390 { 361 { 391 return !list_empty_careful(&ep->rdllis !! 362 return container_of(p, struct ep_pqueue, pt)->epi; 392 READ_ONCE(ep->ovflist) != EP_U !! 363 } >> 364 >> 365 /* Tells if the epoll_ctl(2) operation needs an event copy from userspace */ >> 366 static inline int ep_op_has_event(int op) >> 367 { >> 368 return op != EPOLL_CTL_DEL; >> 369 } >> 370 >> 371 /* Initialize the poll safe wake up structure */ >> 372 static void ep_nested_calls_init(struct nested_calls *ncalls) >> 373 { >> 374 INIT_LIST_HEAD(&ncalls->tasks_call_list); >> 375 spin_lock_init(&ncalls->lock); 393 } 376 } 394 377 395 #ifdef CONFIG_NET_RX_BUSY_POLL << 396 /** 378 /** 397 * busy_loop_ep_timeout - check if busy poll h !! 379 * ep_events_available - Checks if ready events might be available. 398 * from the epoll instance ep is preferred, bu << 399 * the system-wide global via busy_loop_timeou << 400 * 380 * 401 * @start_time: The start time used to compute << 402 * @ep: Pointer to the eventpoll context. 381 * @ep: Pointer to the eventpoll context. 403 * 382 * 404 * Return: true if the timeout has expired, fa !! 383 * Returns: Returns a value different than zero if ready events are available, >> 384 * or zero otherwise. 405 */ 385 */ 406 static bool busy_loop_ep_timeout(unsigned long !! 386 static inline int ep_events_available(struct eventpoll *ep) 407 struct eventp << 408 { << 409 unsigned long bp_usec = READ_ONCE(ep-> << 410 << 411 if (bp_usec) { << 412 unsigned long end_time = start << 413 unsigned long now = busy_loop_ << 414 << 415 return time_after(now, end_tim << 416 } else { << 417 return busy_loop_timeout(start << 418 } << 419 } << 420 << 421 static bool ep_busy_loop_on(struct eventpoll * << 422 { 387 { 423 return !!READ_ONCE(ep->busy_poll_usecs !! 388 return !list_empty(&ep->rdllist) || ep->ovflist != EP_UNACTIVE_PTR; 424 } 389 } 425 390 >> 391 #ifdef CONFIG_NET_RX_BUSY_POLL 426 static bool ep_busy_loop_end(void *p, unsigned 392 static bool ep_busy_loop_end(void *p, unsigned long start_time) 427 { 393 { 428 struct eventpoll *ep = p; 394 struct eventpoll *ep = p; 429 395 430 return ep_events_available(ep) || busy !! 396 return ep_events_available(ep) || busy_loop_timeout(start_time); 431 } 397 } >> 398 #endif /* CONFIG_NET_RX_BUSY_POLL */ 432 399 433 /* 400 /* 434 * Busy poll if globally on and supporting soc 401 * Busy poll if globally on and supporting sockets found && no events, 435 * busy loop will return if need_resched or ep 402 * busy loop will return if need_resched or ep_events_available. 436 * 403 * 437 * we must do our busy polling with irqs enabl 404 * we must do our busy polling with irqs enabled 438 */ 405 */ 439 static bool ep_busy_loop(struct eventpoll *ep, !! 406 static void ep_busy_loop(struct eventpoll *ep, int nonblock) 440 { 407 { >> 408 #ifdef CONFIG_NET_RX_BUSY_POLL 441 unsigned int napi_id = READ_ONCE(ep->n 409 unsigned int napi_id = READ_ONCE(ep->napi_id); 442 u16 budget = READ_ONCE(ep->busy_poll_b << 443 bool prefer_busy_poll = READ_ONCE(ep-> << 444 410 445 if (!budget) !! 411 if ((napi_id >= MIN_NAPI_ID) && net_busy_loop_on()) 446 budget = BUSY_POLL_BUDGET; !! 412 napi_busy_loop(napi_id, nonblock ? NULL : ep_busy_loop_end, ep); >> 413 #endif >> 414 } 447 415 448 if (napi_id >= MIN_NAPI_ID && ep_busy_ !! 416 static inline void ep_reset_busy_poll_napi_id(struct eventpoll *ep) 449 napi_busy_loop(napi_id, nonblo !! 417 { 450 ep, prefer_busy !! 418 #ifdef CONFIG_NET_RX_BUSY_POLL 451 if (ep_events_available(ep)) !! 419 if (ep->napi_id) 452 return true; << 453 /* << 454 * Busy poll timed out. Drop << 455 * it back in when we have mov << 456 * ID onto the ready list. << 457 */ << 458 ep->napi_id = 0; 420 ep->napi_id = 0; 459 return false; !! 421 #endif 460 } << 461 return false; << 462 } 422 } 463 423 464 /* 424 /* 465 * Set epoll busy poll NAPI ID from sk. 425 * Set epoll busy poll NAPI ID from sk. 466 */ 426 */ 467 static inline void ep_set_busy_poll_napi_id(st 427 static inline void ep_set_busy_poll_napi_id(struct epitem *epi) 468 { 428 { 469 struct eventpoll *ep = epi->ep; !! 429 #ifdef CONFIG_NET_RX_BUSY_POLL >> 430 struct eventpoll *ep; 470 unsigned int napi_id; 431 unsigned int napi_id; 471 struct socket *sock; 432 struct socket *sock; 472 struct sock *sk; 433 struct sock *sk; >> 434 int err; 473 435 474 if (!ep_busy_loop_on(ep)) !! 436 if (!net_busy_loop_on()) 475 return; 437 return; 476 438 477 sock = sock_from_file(epi->ffd.file); !! 439 sock = sock_from_file(epi->ffd.file, &err); 478 if (!sock) 440 if (!sock) 479 return; 441 return; 480 442 481 sk = sock->sk; 443 sk = sock->sk; 482 if (!sk) 444 if (!sk) 483 return; 445 return; 484 446 485 napi_id = READ_ONCE(sk->sk_napi_id); 447 napi_id = READ_ONCE(sk->sk_napi_id); >> 448 ep = epi->ep; 486 449 487 /* Non-NAPI IDs can be rejected 450 /* Non-NAPI IDs can be rejected 488 * or 451 * or 489 * Nothing to do if we already have th 452 * Nothing to do if we already have this ID 490 */ 453 */ 491 if (napi_id < MIN_NAPI_ID || napi_id = 454 if (napi_id < MIN_NAPI_ID || napi_id == ep->napi_id) 492 return; 455 return; 493 456 494 /* record NAPI ID for use in next busy 457 /* record NAPI ID for use in next busy poll */ 495 ep->napi_id = napi_id; 458 ep->napi_id = napi_id; >> 459 #endif 496 } 460 } 497 461 498 static long ep_eventpoll_bp_ioctl(struct file !! 462 /** 499 unsigned lon !! 463 * ep_call_nested - Perform a bound (possibly) nested call, by checking >> 464 * that the recursion limit is not exceeded, and that >> 465 * the same nested call (by the meaning of same cookie) is >> 466 * no re-entered. >> 467 * >> 468 * @ncalls: Pointer to the nested_calls structure to be used for this call. >> 469 * @max_nests: Maximum number of allowed nesting calls. >> 470 * @nproc: Nested call core function pointer. >> 471 * @priv: Opaque data to be passed to the @nproc callback. >> 472 * @cookie: Cookie to be used to identify this nested call. >> 473 * @ctx: This instance context. >> 474 * >> 475 * Returns: Returns the code returned by the @nproc callback, or -1 if >> 476 * the maximum recursion limit has been exceeded. >> 477 */ >> 478 static int ep_call_nested(struct nested_calls *ncalls, int max_nests, >> 479 int (*nproc)(void *, void *, int), void *priv, >> 480 void *cookie, void *ctx) 500 { 481 { 501 struct eventpoll *ep = file->private_d !! 482 int error, call_nests = 0; 502 void __user *uarg = (void __user *)arg !! 483 unsigned long flags; 503 struct epoll_params epoll_params; !! 484 struct list_head *lsthead = &ncalls->tasks_call_list; 504 !! 485 struct nested_call_node *tncur; 505 switch (cmd) { !! 486 struct nested_call_node tnode; 506 case EPIOCSPARAMS: << 507 if (copy_from_user(&epoll_para << 508 return -EFAULT; << 509 << 510 /* pad byte must be zero */ << 511 if (epoll_params.__pad) << 512 return -EINVAL; << 513 487 514 if (epoll_params.busy_poll_use !! 488 spin_lock_irqsave(&ncalls->lock, flags); 515 return -EINVAL; << 516 489 517 if (epoll_params.prefer_busy_p !! 490 /* 518 return -EINVAL; !! 491 * Try to see if the current task is already inside this wakeup call. 519 !! 492 * We use a list here, since the population inside this set is always 520 if (epoll_params.busy_poll_bud !! 493 * very much limited. 521 !capable(CAP_NET_ADMIN)) !! 494 */ 522 return -EPERM; !! 495 list_for_each_entry(tncur, lsthead, llink) { 523 !! 496 if (tncur->ctx == ctx && 524 WRITE_ONCE(ep->busy_poll_usecs !! 497 (tncur->cookie == cookie || ++call_nests > max_nests)) { 525 WRITE_ONCE(ep->busy_poll_budge !! 498 /* 526 WRITE_ONCE(ep->prefer_busy_pol !! 499 * Ops ... loop detected or maximum nest level reached. 527 return 0; !! 500 * We abort this wake by breaking the cycle itself. 528 case EPIOCGPARAMS: !! 501 */ 529 memset(&epoll_params, 0, sizeo !! 502 error = -1; 530 epoll_params.busy_poll_usecs = !! 503 goto out_unlock; 531 epoll_params.busy_poll_budget !! 504 } 532 epoll_params.prefer_busy_poll << 533 if (copy_to_user(uarg, &epoll_ << 534 return -EFAULT; << 535 return 0; << 536 default: << 537 return -ENOIOCTLCMD; << 538 } 505 } 539 } << 540 << 541 #else << 542 506 543 static inline bool ep_busy_loop(struct eventpo !! 507 /* Add the current task and cookie to the list */ 544 { !! 508 tnode.ctx = ctx; 545 return false; !! 509 tnode.cookie = cookie; 546 } !! 510 list_add(&tnode.llink, lsthead); 547 !! 511 548 static inline void ep_set_busy_poll_napi_id(st !! 512 spin_unlock_irqrestore(&ncalls->lock, flags); 549 { !! 513 550 } !! 514 /* Call the nested function */ >> 515 error = (*nproc)(priv, cookie, call_nests); >> 516 >> 517 /* Remove the current task from the list */ >> 518 spin_lock_irqsave(&ncalls->lock, flags); >> 519 list_del(&tnode.llink); >> 520 out_unlock: >> 521 spin_unlock_irqrestore(&ncalls->lock, flags); 551 522 552 static long ep_eventpoll_bp_ioctl(struct file !! 523 return error; 553 unsigned lon << 554 { << 555 return -EOPNOTSUPP; << 556 } 524 } 557 525 558 #endif /* CONFIG_NET_RX_BUSY_POLL */ << 559 << 560 /* 526 /* 561 * As described in commit 0ccf831cb lockdep: a 527 * As described in commit 0ccf831cb lockdep: annotate epoll 562 * the use of wait queues used by epoll is don 528 * the use of wait queues used by epoll is done in a very controlled 563 * manner. Wake ups can nest inside each other 529 * manner. Wake ups can nest inside each other, but are never done 564 * with the same locking. For example: 530 * with the same locking. For example: 565 * 531 * 566 * dfd = socket(...); 532 * dfd = socket(...); 567 * efd1 = epoll_create(); 533 * efd1 = epoll_create(); 568 * efd2 = epoll_create(); 534 * efd2 = epoll_create(); 569 * epoll_ctl(efd1, EPOLL_CTL_ADD, dfd, ...); 535 * epoll_ctl(efd1, EPOLL_CTL_ADD, dfd, ...); 570 * epoll_ctl(efd2, EPOLL_CTL_ADD, efd1, ...) 536 * epoll_ctl(efd2, EPOLL_CTL_ADD, efd1, ...); 571 * 537 * 572 * When a packet arrives to the device underne 538 * When a packet arrives to the device underneath "dfd", the net code will 573 * issue a wake_up() on its poll wake list. Ep 539 * issue a wake_up() on its poll wake list. Epoll (efd1) has installed a 574 * callback wakeup entry on that queue, and th 540 * callback wakeup entry on that queue, and the wake_up() performed by the 575 * "dfd" net code will end up in ep_poll_callb 541 * "dfd" net code will end up in ep_poll_callback(). At this point epoll 576 * (efd1) notices that it may have some event 542 * (efd1) notices that it may have some event ready, so it needs to wake up 577 * the waiters on its poll wait list (efd2). S 543 * the waiters on its poll wait list (efd2). So it calls ep_poll_safewake() 578 * that ends up in another wake_up(), after ha 544 * that ends up in another wake_up(), after having checked about the 579 * recursion constraints. That are, no more th !! 545 * recursion constraints. That are, no more than EP_MAX_POLLWAKE_NESTS, to 580 * stack blasting. !! 546 * avoid stack blasting. 581 * 547 * 582 * When CONFIG_DEBUG_LOCK_ALLOC is enabled, ma 548 * When CONFIG_DEBUG_LOCK_ALLOC is enabled, make sure lockdep can handle 583 * this special case of epoll. 549 * this special case of epoll. 584 */ 550 */ 585 #ifdef CONFIG_DEBUG_LOCK_ALLOC 551 #ifdef CONFIG_DEBUG_LOCK_ALLOC 586 !! 552 static inline void ep_wake_up_nested(wait_queue_head_t *wqueue, 587 static void ep_poll_safewake(struct eventpoll !! 553 unsigned long events, int subclass) 588 unsigned pollflag << 589 { 554 { 590 struct eventpoll *ep_src; << 591 unsigned long flags; 555 unsigned long flags; 592 u8 nests = 0; << 593 556 594 /* !! 557 spin_lock_irqsave_nested(&wqueue->lock, flags, subclass); 595 * To set the subclass or nesting leve !! 558 wake_up_locked_poll(wqueue, events); 596 * it might be natural to create a per !! 559 spin_unlock_irqrestore(&wqueue->lock, flags); 597 * we can recurse on ep->poll_wait.loc << 598 * schedule() in the -rt kernel, the p << 599 * protected. Thus, we are introducing << 600 * If we are not being call from ep_po << 601 * we are at the first level of nestin << 602 * called from ep_poll_callback() and << 603 * not an epoll file itself, we are at << 604 * is depth 0. If the wakeup source is << 605 * wakeup chain then we use its nests << 606 * nests + 1. The previous epoll file << 607 * already holding its own poll_wait.l << 608 */ << 609 if (epi) { << 610 if ((is_file_epoll(epi->ffd.fi << 611 ep_src = epi->ffd.file << 612 nests = ep_src->nests; << 613 } else { << 614 nests = 1; << 615 } << 616 } << 617 spin_lock_irqsave_nested(&ep->poll_wai << 618 ep->nests = nests + 1; << 619 wake_up_locked_poll(&ep->poll_wait, EP << 620 ep->nests = 0; << 621 spin_unlock_irqrestore(&ep->poll_wait. << 622 } 560 } 623 << 624 #else 561 #else >> 562 static inline void ep_wake_up_nested(wait_queue_head_t *wqueue, >> 563 unsigned long events, int subclass) >> 564 { >> 565 wake_up_poll(wqueue, events); >> 566 } >> 567 #endif 625 568 626 static void ep_poll_safewake(struct eventpoll !! 569 static int ep_poll_wakeup_proc(void *priv, void *cookie, int call_nests) 627 __poll_t pollflag << 628 { 570 { 629 wake_up_poll(&ep->poll_wait, EPOLLIN | !! 571 ep_wake_up_nested((wait_queue_head_t *) cookie, POLLIN, >> 572 1 + call_nests); >> 573 return 0; 630 } 574 } 631 575 632 #endif !! 576 /* >> 577 * Perform a safe wake up of the poll wait list. The problem is that >> 578 * with the new callback'd wake up system, it is possible that the >> 579 * poll callback is reentered from inside the call to wake_up() done >> 580 * on the poll wait queue head. The rule is that we cannot reenter the >> 581 * wake up code from the same task more than EP_MAX_NESTS times, >> 582 * and we cannot reenter the same wait queue head at all. This will >> 583 * enable to have a hierarchy of epoll file descriptor of no more than >> 584 * EP_MAX_NESTS deep. >> 585 */ >> 586 static void ep_poll_safewake(wait_queue_head_t *wq) >> 587 { >> 588 int this_cpu = get_cpu(); >> 589 >> 590 ep_call_nested(&poll_safewake_ncalls, EP_MAX_NESTS, >> 591 ep_poll_wakeup_proc, NULL, wq, (void *) (long) this_cpu); >> 592 >> 593 put_cpu(); >> 594 } 633 595 634 static void ep_remove_wait_queue(struct eppoll 596 static void ep_remove_wait_queue(struct eppoll_entry *pwq) 635 { 597 { 636 wait_queue_head_t *whead; 598 wait_queue_head_t *whead; 637 599 638 rcu_read_lock(); 600 rcu_read_lock(); 639 /* 601 /* 640 * If it is cleared by POLLFREE, it sh 602 * If it is cleared by POLLFREE, it should be rcu-safe. 641 * If we read NULL we need a barrier p 603 * If we read NULL we need a barrier paired with 642 * smp_store_release() in ep_poll_call 604 * smp_store_release() in ep_poll_callback(), otherwise 643 * we rely on whead->lock. 605 * we rely on whead->lock. 644 */ 606 */ 645 whead = smp_load_acquire(&pwq->whead); 607 whead = smp_load_acquire(&pwq->whead); 646 if (whead) 608 if (whead) 647 remove_wait_queue(whead, &pwq- 609 remove_wait_queue(whead, &pwq->wait); 648 rcu_read_unlock(); 610 rcu_read_unlock(); 649 } 611 } 650 612 651 /* 613 /* 652 * This function unregisters poll callbacks fr 614 * This function unregisters poll callbacks from the associated file 653 * descriptor. Must be called with "mtx" held !! 615 * descriptor. Must be called with "mtx" held (or "epmutex" if called from >> 616 * ep_free). 654 */ 617 */ 655 static void ep_unregister_pollwait(struct even 618 static void ep_unregister_pollwait(struct eventpoll *ep, struct epitem *epi) 656 { 619 { 657 struct eppoll_entry **p = &epi->pwqlis !! 620 struct list_head *lsthead = &epi->pwqlist; 658 struct eppoll_entry *pwq; 621 struct eppoll_entry *pwq; 659 622 660 while ((pwq = *p) != NULL) { !! 623 while (!list_empty(lsthead)) { 661 *p = pwq->next; !! 624 pwq = list_first_entry(lsthead, struct eppoll_entry, llink); >> 625 >> 626 list_del(&pwq->llink); 662 ep_remove_wait_queue(pwq); 627 ep_remove_wait_queue(pwq); 663 kmem_cache_free(pwq_cache, pwq 628 kmem_cache_free(pwq_cache, pwq); 664 } 629 } 665 } 630 } 666 631 667 /* call only when ep->mtx is held */ 632 /* call only when ep->mtx is held */ 668 static inline struct wakeup_source *ep_wakeup_ 633 static inline struct wakeup_source *ep_wakeup_source(struct epitem *epi) 669 { 634 { 670 return rcu_dereference_check(epi->ws, 635 return rcu_dereference_check(epi->ws, lockdep_is_held(&epi->ep->mtx)); 671 } 636 } 672 637 673 /* call only when ep->mtx is held */ 638 /* call only when ep->mtx is held */ 674 static inline void ep_pm_stay_awake(struct epi 639 static inline void ep_pm_stay_awake(struct epitem *epi) 675 { 640 { 676 struct wakeup_source *ws = ep_wakeup_s 641 struct wakeup_source *ws = ep_wakeup_source(epi); 677 642 678 if (ws) 643 if (ws) 679 __pm_stay_awake(ws); 644 __pm_stay_awake(ws); 680 } 645 } 681 646 682 static inline bool ep_has_wakeup_source(struct 647 static inline bool ep_has_wakeup_source(struct epitem *epi) 683 { 648 { 684 return rcu_access_pointer(epi->ws) ? t 649 return rcu_access_pointer(epi->ws) ? true : false; 685 } 650 } 686 651 687 /* call when ep->mtx cannot be held (ep_poll_c 652 /* call when ep->mtx cannot be held (ep_poll_callback) */ 688 static inline void ep_pm_stay_awake_rcu(struct 653 static inline void ep_pm_stay_awake_rcu(struct epitem *epi) 689 { 654 { 690 struct wakeup_source *ws; 655 struct wakeup_source *ws; 691 656 692 rcu_read_lock(); 657 rcu_read_lock(); 693 ws = rcu_dereference(epi->ws); 658 ws = rcu_dereference(epi->ws); 694 if (ws) 659 if (ws) 695 __pm_stay_awake(ws); 660 __pm_stay_awake(ws); 696 rcu_read_unlock(); 661 rcu_read_unlock(); 697 } 662 } 698 663 699 !! 664 /** 700 /* !! 665 * ep_scan_ready_list - Scans the ready list in a way that makes possible for 701 * ep->mutex needs to be held because we could !! 666 * the scan code, to call f_op->poll(). Also allows for 702 * eventpoll_release_file() and epoll_ctl(). !! 667 * O(NumReady) performance. 703 */ !! 668 * 704 static void ep_start_scan(struct eventpoll *ep !! 669 * @ep: Pointer to the epoll private data structure. >> 670 * @sproc: Pointer to the scan callback. >> 671 * @priv: Private opaque data passed to the @sproc callback. >> 672 * @depth: The current depth of recursive f_op->poll calls. >> 673 * @ep_locked: caller already holds ep->mtx >> 674 * >> 675 * Returns: The same integer error code returned by the @sproc callback. >> 676 */ >> 677 static int ep_scan_ready_list(struct eventpoll *ep, >> 678 int (*sproc)(struct eventpoll *, >> 679 struct list_head *, void *), >> 680 void *priv, int depth, bool ep_locked) 705 { 681 { >> 682 int error, pwake = 0; >> 683 unsigned long flags; >> 684 struct epitem *epi, *nepi; >> 685 LIST_HEAD(txlist); >> 686 >> 687 /* >> 688 * We need to lock this because we could be hit by >> 689 * eventpoll_release_file() and epoll_ctl(). >> 690 */ >> 691 >> 692 if (!ep_locked) >> 693 mutex_lock_nested(&ep->mtx, depth); >> 694 706 /* 695 /* 707 * Steal the ready list, and re-init t 696 * Steal the ready list, and re-init the original one to the 708 * empty list. Also, set ep->ovflist t 697 * empty list. Also, set ep->ovflist to NULL so that events 709 * happening while looping w/out locks 698 * happening while looping w/out locks, are not lost. We cannot 710 * have the poll callback to queue dir 699 * have the poll callback to queue directly on ep->rdllist, 711 * because we want the "sproc" callbac 700 * because we want the "sproc" callback to be able to do it 712 * in a lockless way. 701 * in a lockless way. 713 */ 702 */ 714 lockdep_assert_irqs_enabled(); !! 703 spin_lock_irqsave(&ep->lock, flags); 715 write_lock_irq(&ep->lock); !! 704 list_splice_init(&ep->rdllist, &txlist); 716 list_splice_init(&ep->rdllist, txlist) !! 705 ep->ovflist = NULL; 717 WRITE_ONCE(ep->ovflist, NULL); !! 706 spin_unlock_irqrestore(&ep->lock, flags); 718 write_unlock_irq(&ep->lock); << 719 } << 720 707 721 static void ep_done_scan(struct eventpoll *ep, !! 708 /* 722 struct list_head *txl !! 709 * Now call the callback function. 723 { !! 710 */ 724 struct epitem *epi, *nepi; !! 711 error = (*sproc)(ep, &txlist, priv); 725 712 726 write_lock_irq(&ep->lock); !! 713 spin_lock_irqsave(&ep->lock, flags); 727 /* 714 /* 728 * During the time we spent inside the 715 * During the time we spent inside the "sproc" callback, some 729 * other events might have been queued 716 * other events might have been queued by the poll callback. 730 * We re-insert them inside the main r 717 * We re-insert them inside the main ready-list here. 731 */ 718 */ 732 for (nepi = READ_ONCE(ep->ovflist); (e !! 719 for (nepi = ep->ovflist; (epi = nepi) != NULL; 733 nepi = epi->next, epi->next = EP_ 720 nepi = epi->next, epi->next = EP_UNACTIVE_PTR) { 734 /* 721 /* 735 * We need to check if the ite 722 * We need to check if the item is already in the list. 736 * During the "sproc" callback 723 * During the "sproc" callback execution time, items are 737 * queued into ->ovflist but t 724 * queued into ->ovflist but the "txlist" might already 738 * contain them, and the list_ 725 * contain them, and the list_splice() below takes care of them. 739 */ 726 */ 740 if (!ep_is_linked(epi)) { !! 727 if (!ep_is_linked(&epi->rdllink)) { 741 /* !! 728 list_add_tail(&epi->rdllink, &ep->rdllist); 742 * ->ovflist is LIFO, << 743 * to keep in FIFO. << 744 */ << 745 list_add(&epi->rdllink << 746 ep_pm_stay_awake(epi); 729 ep_pm_stay_awake(epi); 747 } 730 } 748 } 731 } 749 /* 732 /* 750 * We need to set back ep->ovflist to 733 * We need to set back ep->ovflist to EP_UNACTIVE_PTR, so that after 751 * releasing the lock, events will be 734 * releasing the lock, events will be queued in the normal way inside 752 * ep->rdllist. 735 * ep->rdllist. 753 */ 736 */ 754 WRITE_ONCE(ep->ovflist, EP_UNACTIVE_PT !! 737 ep->ovflist = EP_UNACTIVE_PTR; 755 738 756 /* 739 /* 757 * Quickly re-inject items left on "tx 740 * Quickly re-inject items left on "txlist". 758 */ 741 */ 759 list_splice(txlist, &ep->rdllist); !! 742 list_splice(&txlist, &ep->rdllist); 760 __pm_relax(ep->ws); 743 __pm_relax(ep->ws); 761 744 762 if (!list_empty(&ep->rdllist)) { 745 if (!list_empty(&ep->rdllist)) { >> 746 /* >> 747 * Wake up (if active) both the eventpoll wait list and >> 748 * the ->poll() wait list (delayed after we release the lock). >> 749 */ 763 if (waitqueue_active(&ep->wq)) 750 if (waitqueue_active(&ep->wq)) 764 wake_up(&ep->wq); !! 751 wake_up_locked(&ep->wq); >> 752 if (waitqueue_active(&ep->poll_wait)) >> 753 pwake++; 765 } 754 } >> 755 spin_unlock_irqrestore(&ep->lock, flags); 766 756 767 write_unlock_irq(&ep->lock); !! 757 if (!ep_locked) 768 } !! 758 mutex_unlock(&ep->mtx); 769 << 770 static void ep_get(struct eventpoll *ep) << 771 { << 772 refcount_inc(&ep->refcount); << 773 } << 774 759 775 /* !! 760 /* We have to call this outside the lock */ 776 * Returns true if the event poll can be dispo !! 761 if (pwake) 777 */ !! 762 ep_poll_safewake(&ep->poll_wait); 778 static bool ep_refcount_dec_and_test(struct ev << 779 { << 780 if (!refcount_dec_and_test(&ep->refcou << 781 return false; << 782 763 783 WARN_ON_ONCE(!RB_EMPTY_ROOT(&ep->rbr.r !! 764 return error; 784 return true; << 785 } 765 } 786 766 787 static void ep_free(struct eventpoll *ep) !! 767 static void epi_rcu_free(struct rcu_head *head) 788 { 768 { 789 mutex_destroy(&ep->mtx); !! 769 struct epitem *epi = container_of(head, struct epitem, rcu); 790 free_uid(ep->user); !! 770 kmem_cache_free(epi_cache, epi); 791 wakeup_source_unregister(ep->ws); << 792 kfree(ep); << 793 } 771 } 794 772 795 /* 773 /* 796 * Removes a "struct epitem" from the eventpol 774 * Removes a "struct epitem" from the eventpoll RB tree and deallocates 797 * all the associated resources. Must be calle 775 * all the associated resources. Must be called with "mtx" held. 798 * If the dying flag is set, do the removal on << 799 * This prevents ep_clear_and_put() from dropp << 800 * while running concurrently with eventpoll_r << 801 * Returns true if the eventpoll can be dispos << 802 */ 776 */ 803 static bool __ep_remove(struct eventpoll *ep, !! 777 static int ep_remove(struct eventpoll *ep, struct epitem *epi) 804 { 778 { >> 779 unsigned long flags; 805 struct file *file = epi->ffd.file; 780 struct file *file = epi->ffd.file; 806 struct epitems_head *to_free; << 807 struct hlist_head *head; << 808 << 809 lockdep_assert_irqs_enabled(); << 810 781 811 /* 782 /* 812 * Removes poll wait queue hooks. !! 783 * Removes poll wait queue hooks. We _have_ to do this without holding >> 784 * the "ep->lock" otherwise a deadlock might occur. This because of the >> 785 * sequence of the lock acquisition. Here we do "ep->lock" then the wait >> 786 * queue head lock when unregistering the wait queue. The wakeup callback >> 787 * will run by holding the wait queue head lock and will call our callback >> 788 * that will try to get "ep->lock". 813 */ 789 */ 814 ep_unregister_pollwait(ep, epi); 790 ep_unregister_pollwait(ep, epi); 815 791 816 /* Remove the current item from the li 792 /* Remove the current item from the list of epoll hooks */ 817 spin_lock(&file->f_lock); 793 spin_lock(&file->f_lock); 818 if (epi->dying && !force) { !! 794 list_del_rcu(&epi->fllink); 819 spin_unlock(&file->f_lock); << 820 return false; << 821 } << 822 << 823 to_free = NULL; << 824 head = file->f_ep; << 825 if (head->first == &epi->fllink && !ep << 826 file->f_ep = NULL; << 827 if (!is_file_epoll(file)) { << 828 struct epitems_head *v << 829 v = container_of(head, << 830 if (!smp_load_acquire( << 831 to_free = v; << 832 } << 833 } << 834 hlist_del_rcu(&epi->fllink); << 835 spin_unlock(&file->f_lock); 795 spin_unlock(&file->f_lock); 836 free_ephead(to_free); << 837 796 838 rb_erase_cached(&epi->rbn, &ep->rbr); 797 rb_erase_cached(&epi->rbn, &ep->rbr); 839 798 840 write_lock_irq(&ep->lock); !! 799 spin_lock_irqsave(&ep->lock, flags); 841 if (ep_is_linked(epi)) !! 800 if (ep_is_linked(&epi->rdllink)) 842 list_del_init(&epi->rdllink); 801 list_del_init(&epi->rdllink); 843 write_unlock_irq(&ep->lock); !! 802 spin_unlock_irqrestore(&ep->lock, flags); 844 803 845 wakeup_source_unregister(ep_wakeup_sou 804 wakeup_source_unregister(ep_wakeup_source(epi)); 846 /* 805 /* 847 * At this point it is safe to free th 806 * At this point it is safe to free the eventpoll item. Use the union 848 * field epi->rcu, since we are trying 807 * field epi->rcu, since we are trying to minimize the size of 849 * 'struct epitem'. The 'rbn' field is 808 * 'struct epitem'. The 'rbn' field is no longer in use. Protected by 850 * ep->mtx. The rcu read side, reverse 809 * ep->mtx. The rcu read side, reverse_path_check_proc(), does not make 851 * use of the rbn field. 810 * use of the rbn field. 852 */ 811 */ 853 kfree_rcu(epi, rcu); !! 812 call_rcu(&epi->rcu, epi_rcu_free); 854 813 855 percpu_counter_dec(&ep->user->epoll_wa !! 814 atomic_long_dec(&ep->user->epoll_watches); 856 return ep_refcount_dec_and_test(ep); << 857 } << 858 815 859 /* !! 816 return 0; 860 * ep_remove variant for callers owing an addi << 861 */ << 862 static void ep_remove_safe(struct eventpoll *e << 863 { << 864 WARN_ON_ONCE(__ep_remove(ep, epi, fals << 865 } 817 } 866 818 867 static void ep_clear_and_put(struct eventpoll !! 819 static void ep_free(struct eventpoll *ep) 868 { 820 { 869 struct rb_node *rbp, *next; !! 821 struct rb_node *rbp; 870 struct epitem *epi; 822 struct epitem *epi; 871 bool dispose; << 872 823 873 /* We need to release all tasks waitin 824 /* We need to release all tasks waiting for these file */ 874 if (waitqueue_active(&ep->poll_wait)) 825 if (waitqueue_active(&ep->poll_wait)) 875 ep_poll_safewake(ep, NULL, 0); !! 826 ep_poll_safewake(&ep->poll_wait); 876 827 877 mutex_lock(&ep->mtx); !! 828 /* >> 829 * We need to lock this because we could be hit by >> 830 * eventpoll_release_file() while we're freeing the "struct eventpoll". >> 831 * We do not need to hold "ep->mtx" here because the epoll file >> 832 * is on the way to be removed and no one has references to it >> 833 * anymore. The only hit might come from eventpoll_release_file() but >> 834 * holding "epmutex" is sufficient here. >> 835 */ >> 836 mutex_lock(&epmutex); 878 837 879 /* 838 /* 880 * Walks through the whole tree by unr 839 * Walks through the whole tree by unregistering poll callbacks. 881 */ 840 */ 882 for (rbp = rb_first_cached(&ep->rbr); 841 for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) { 883 epi = rb_entry(rbp, struct epi 842 epi = rb_entry(rbp, struct epitem, rbn); 884 843 885 ep_unregister_pollwait(ep, epi 844 ep_unregister_pollwait(ep, epi); 886 cond_resched(); 845 cond_resched(); 887 } 846 } 888 847 889 /* 848 /* 890 * Walks through the whole tree and tr !! 849 * Walks through the whole tree by freeing each "struct epitem". At this 891 * Note that ep_remove_safe() will not !! 850 * point we are sure no poll callbacks will be lingering around, and also by 892 * racing eventpoll_release_file(); th !! 851 * holding "epmutex" we can be sure that no file cleanup code will hit 893 * At this point we are sure no poll c !! 852 * us during this operation. So we can avoid the lock on "ep->lock". 894 * Since we still own a reference to t !! 853 * We do not need to lock ep->mtx, either, we only do it to prevent 895 * dispose it. !! 854 * a lockdep warning. 896 */ 855 */ 897 for (rbp = rb_first_cached(&ep->rbr); !! 856 mutex_lock(&ep->mtx); 898 next = rb_next(rbp); !! 857 while ((rbp = rb_first_cached(&ep->rbr)) != NULL) { 899 epi = rb_entry(rbp, struct epi 858 epi = rb_entry(rbp, struct epitem, rbn); 900 ep_remove_safe(ep, epi); !! 859 ep_remove(ep, epi); 901 cond_resched(); 860 cond_resched(); 902 } 861 } 903 << 904 dispose = ep_refcount_dec_and_test(ep) << 905 mutex_unlock(&ep->mtx); 862 mutex_unlock(&ep->mtx); 906 863 907 if (dispose) !! 864 mutex_unlock(&epmutex); 908 ep_free(ep); !! 865 mutex_destroy(&ep->mtx); 909 } !! 866 free_uid(ep->user); 910 !! 867 wakeup_source_unregister(ep->ws); 911 static long ep_eventpoll_ioctl(struct file *fi !! 868 kfree(ep); 912 unsigned long a << 913 { << 914 int ret; << 915 << 916 if (!is_file_epoll(file)) << 917 return -EINVAL; << 918 << 919 switch (cmd) { << 920 case EPIOCSPARAMS: << 921 case EPIOCGPARAMS: << 922 ret = ep_eventpoll_bp_ioctl(fi << 923 break; << 924 default: << 925 ret = -EINVAL; << 926 break; << 927 } << 928 << 929 return ret; << 930 } 869 } 931 870 932 static int ep_eventpoll_release(struct inode * 871 static int ep_eventpoll_release(struct inode *inode, struct file *file) 933 { 872 { 934 struct eventpoll *ep = file->private_d 873 struct eventpoll *ep = file->private_data; 935 874 936 if (ep) 875 if (ep) 937 ep_clear_and_put(ep); !! 876 ep_free(ep); 938 877 939 return 0; 878 return 0; 940 } 879 } 941 880 942 static __poll_t ep_item_poll(const struct epit !! 881 static inline unsigned int ep_item_poll(struct epitem *epi, poll_table *pt) >> 882 { >> 883 pt->_key = epi->event.events; >> 884 >> 885 return epi->ffd.file->f_op->poll(epi->ffd.file, pt) & epi->event.events; >> 886 } 943 887 944 static __poll_t __ep_eventpoll_poll(struct fil !! 888 static int ep_read_events_proc(struct eventpoll *ep, struct list_head *head, >> 889 void *priv) 945 { 890 { 946 struct eventpoll *ep = file->private_d << 947 LIST_HEAD(txlist); << 948 struct epitem *epi, *tmp; 891 struct epitem *epi, *tmp; 949 poll_table pt; 892 poll_table pt; 950 __poll_t res = 0; << 951 893 952 init_poll_funcptr(&pt, NULL); 894 init_poll_funcptr(&pt, NULL); 953 895 954 /* Insert inside our poll wait queue * !! 896 list_for_each_entry_safe(epi, tmp, head, rdllink) { 955 poll_wait(file, &ep->poll_wait, wait); !! 897 if (ep_item_poll(epi, &pt)) 956 !! 898 return POLLIN | POLLRDNORM; 957 /* !! 899 else { 958 * Proceed to find out if wanted event << 959 * the ready list. << 960 */ << 961 mutex_lock_nested(&ep->mtx, depth); << 962 ep_start_scan(ep, &txlist); << 963 list_for_each_entry_safe(epi, tmp, &tx << 964 if (ep_item_poll(epi, &pt, dep << 965 res = EPOLLIN | EPOLLR << 966 break; << 967 } else { << 968 /* 900 /* 969 * Item has been dropp 901 * Item has been dropped into the ready list by the poll 970 * callback, but it's 902 * callback, but it's not actually ready, as far as 971 * caller requested ev 903 * caller requested events goes. We can remove it here. 972 */ 904 */ 973 __pm_relax(ep_wakeup_s 905 __pm_relax(ep_wakeup_source(epi)); 974 list_del_init(&epi->rd 906 list_del_init(&epi->rdllink); 975 } 907 } 976 } 908 } 977 ep_done_scan(ep, &txlist); !! 909 978 mutex_unlock(&ep->mtx); !! 910 return 0; 979 return res; << 980 } 911 } 981 912 982 /* !! 913 static void ep_ptable_queue_proc(struct file *file, wait_queue_head_t *whead, 983 * The ffd.file pointer may be in the process !! 914 poll_table *pt); 984 * being closed, but we may not have finished !! 915 985 * !! 916 struct readyevents_arg { 986 * Normally, even with the atomic_long_inc_not !! 917 struct eventpoll *ep; 987 * been free'd and then gotten re-allocated to !! 918 bool locked; 988 * files are not RCU-delayed, they are SLAB_TY !! 919 }; 989 * !! 920 990 * But for epoll, users hold the ep->mtx mutex !! 921 static int ep_poll_readyevents_proc(void *priv, void *cookie, int call_nests) 991 * the process of being free'd will block in e << 992 * and thus the underlying file allocation wil << 993 * file re-use cannot happen. << 994 * << 995 * For the same reason we can avoid a rcu_read << 996 * operation - 'ffd.file' cannot go away even << 997 * reached zero (but we must still not call ou << 998 * etc). << 999 */ << 1000 static struct file *epi_fget(const struct epi << 1001 { 922 { 1002 struct file *file; !! 923 struct readyevents_arg *arg = priv; 1003 924 1004 file = epi->ffd.file; !! 925 return ep_scan_ready_list(arg->ep, ep_read_events_proc, NULL, 1005 if (!atomic_long_inc_not_zero(&file-> !! 926 call_nests + 1, arg->locked); 1006 file = NULL; << 1007 return file; << 1008 } 927 } 1009 928 1010 /* !! 929 static unsigned int ep_eventpoll_poll(struct file *file, poll_table *wait) 1011 * Differs from ep_eventpoll_poll() in that i << 1012 * the ep->mtx so we need to start from depth << 1013 * is correctly annotated. << 1014 */ << 1015 static __poll_t ep_item_poll(const struct epi << 1016 int depth) << 1017 { 930 { 1018 struct file *file = epi_fget(epi); !! 931 int pollflags; 1019 __poll_t res; !! 932 struct eventpoll *ep = file->private_data; >> 933 struct readyevents_arg arg; 1020 934 1021 /* 935 /* 1022 * We could return EPOLLERR | EPOLLHU !! 936 * During ep_insert() we already hold the ep->mtx for the tfile. 1023 * treat this more as "file doesn't e !! 937 * Prevent re-aquisition. 1024 */ 938 */ 1025 if (!file) !! 939 arg.locked = wait && (wait->_qproc == ep_ptable_queue_proc); 1026 return 0; !! 940 arg.ep = ep; 1027 941 1028 pt->_key = epi->event.events; !! 942 /* Insert inside our poll wait queue */ 1029 if (!is_file_epoll(file)) !! 943 poll_wait(file, &ep->poll_wait, wait); 1030 res = vfs_poll(file, pt); << 1031 else << 1032 res = __ep_eventpoll_poll(fil << 1033 fput(file); << 1034 return res & epi->event.events; << 1035 } << 1036 944 1037 static __poll_t ep_eventpoll_poll(struct file !! 945 /* 1038 { !! 946 * Proceed to find out if wanted events are really available inside 1039 return __ep_eventpoll_poll(file, wait !! 947 * the ready list. This need to be done under ep_call_nested() >> 948 * supervision, since the call to f_op->poll() done on listed files >> 949 * could re-enter here. >> 950 */ >> 951 pollflags = ep_call_nested(&poll_readywalk_ncalls, EP_MAX_NESTS, >> 952 ep_poll_readyevents_proc, &arg, ep, current); >> 953 >> 954 return pollflags != -1 ? pollflags : 0; 1040 } 955 } 1041 956 1042 #ifdef CONFIG_PROC_FS 957 #ifdef CONFIG_PROC_FS 1043 static void ep_show_fdinfo(struct seq_file *m 958 static void ep_show_fdinfo(struct seq_file *m, struct file *f) 1044 { 959 { 1045 struct eventpoll *ep = f->private_dat 960 struct eventpoll *ep = f->private_data; 1046 struct rb_node *rbp; 961 struct rb_node *rbp; 1047 962 1048 mutex_lock(&ep->mtx); 963 mutex_lock(&ep->mtx); 1049 for (rbp = rb_first_cached(&ep->rbr); 964 for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) { 1050 struct epitem *epi = rb_entry 965 struct epitem *epi = rb_entry(rbp, struct epitem, rbn); 1051 struct inode *inode = file_in 966 struct inode *inode = file_inode(epi->ffd.file); 1052 967 1053 seq_printf(m, "tfd: %8d event 968 seq_printf(m, "tfd: %8d events: %8x data: %16llx " 1054 " pos:%lli ino:%lx 969 " pos:%lli ino:%lx sdev:%x\n", 1055 epi->ffd.fd, epi-> 970 epi->ffd.fd, epi->event.events, 1056 (long long)epi->ev 971 (long long)epi->event.data, 1057 (long long)epi->ff 972 (long long)epi->ffd.file->f_pos, 1058 inode->i_ino, inod 973 inode->i_ino, inode->i_sb->s_dev); 1059 if (seq_has_overflowed(m)) 974 if (seq_has_overflowed(m)) 1060 break; 975 break; 1061 } 976 } 1062 mutex_unlock(&ep->mtx); 977 mutex_unlock(&ep->mtx); 1063 } 978 } 1064 #endif 979 #endif 1065 980 1066 /* File callbacks that implement the eventpol 981 /* File callbacks that implement the eventpoll file behaviour */ 1067 static const struct file_operations eventpoll 982 static const struct file_operations eventpoll_fops = { 1068 #ifdef CONFIG_PROC_FS 983 #ifdef CONFIG_PROC_FS 1069 .show_fdinfo = ep_show_fdinfo, 984 .show_fdinfo = ep_show_fdinfo, 1070 #endif 985 #endif 1071 .release = ep_eventpoll_releas 986 .release = ep_eventpoll_release, 1072 .poll = ep_eventpoll_poll, 987 .poll = ep_eventpoll_poll, 1073 .llseek = noop_llseek, 988 .llseek = noop_llseek, 1074 .unlocked_ioctl = ep_eventpoll_ioctl, << 1075 .compat_ioctl = compat_ptr_ioctl, << 1076 }; 989 }; 1077 990 1078 /* 991 /* 1079 * This is called from eventpoll_release() to 992 * This is called from eventpoll_release() to unlink files from the eventpoll 1080 * interface. We need to have this facility t 993 * interface. We need to have this facility to cleanup correctly files that are 1081 * closed without being removed from the even 994 * closed without being removed from the eventpoll interface. 1082 */ 995 */ 1083 void eventpoll_release_file(struct file *file 996 void eventpoll_release_file(struct file *file) 1084 { 997 { 1085 struct eventpoll *ep; 998 struct eventpoll *ep; 1086 struct epitem *epi; !! 999 struct epitem *epi, *next; 1087 bool dispose; << 1088 1000 1089 /* 1001 /* 1090 * Use the 'dying' flag to prevent a !! 1002 * We don't want to get "file->f_lock" because it is not 1091 * touching the epitems list before e !! 1003 * necessary. It is not necessary because we're in the "struct file" 1092 * the ep->mtx. !! 1004 * cleanup path, and this means that no one is using this file anymore. >> 1005 * So, for example, epoll_ctl() cannot hit here since if we reach this >> 1006 * point, the file counter already went to zero and fget() would fail. >> 1007 * The only hit might come from ep_free() but by holding the mutex >> 1008 * will correctly serialize the operation. We do need to acquire >> 1009 * "ep->mtx" after "epmutex" because ep_remove() requires it when called >> 1010 * from anywhere but ep_free(). >> 1011 * >> 1012 * Besides, ep_remove() acquires the lock, so we can't hold it here. 1093 */ 1013 */ 1094 again: !! 1014 mutex_lock(&epmutex); 1095 spin_lock(&file->f_lock); !! 1015 list_for_each_entry_safe(epi, next, &file->f_ep_links, fllink) { 1096 if (file->f_ep && file->f_ep->first) << 1097 epi = hlist_entry(file->f_ep- << 1098 epi->dying = true; << 1099 spin_unlock(&file->f_lock); << 1100 << 1101 /* << 1102 * ep access is safe as we st << 1103 * struct << 1104 */ << 1105 ep = epi->ep; 1016 ep = epi->ep; 1106 mutex_lock(&ep->mtx); !! 1017 mutex_lock_nested(&ep->mtx, 0); 1107 dispose = __ep_remove(ep, epi !! 1018 ep_remove(ep, epi); 1108 mutex_unlock(&ep->mtx); 1019 mutex_unlock(&ep->mtx); 1109 << 1110 if (dispose) << 1111 ep_free(ep); << 1112 goto again; << 1113 } 1020 } 1114 spin_unlock(&file->f_lock); !! 1021 mutex_unlock(&epmutex); 1115 } 1022 } 1116 1023 1117 static int ep_alloc(struct eventpoll **pep) 1024 static int ep_alloc(struct eventpoll **pep) 1118 { 1025 { >> 1026 int error; >> 1027 struct user_struct *user; 1119 struct eventpoll *ep; 1028 struct eventpoll *ep; 1120 1029 >> 1030 user = get_current_user(); >> 1031 error = -ENOMEM; 1121 ep = kzalloc(sizeof(*ep), GFP_KERNEL) 1032 ep = kzalloc(sizeof(*ep), GFP_KERNEL); 1122 if (unlikely(!ep)) 1033 if (unlikely(!ep)) 1123 return -ENOMEM; !! 1034 goto free_uid; 1124 1035 >> 1036 spin_lock_init(&ep->lock); 1125 mutex_init(&ep->mtx); 1037 mutex_init(&ep->mtx); 1126 rwlock_init(&ep->lock); << 1127 init_waitqueue_head(&ep->wq); 1038 init_waitqueue_head(&ep->wq); 1128 init_waitqueue_head(&ep->poll_wait); 1039 init_waitqueue_head(&ep->poll_wait); 1129 INIT_LIST_HEAD(&ep->rdllist); 1040 INIT_LIST_HEAD(&ep->rdllist); 1130 ep->rbr = RB_ROOT_CACHED; 1041 ep->rbr = RB_ROOT_CACHED; 1131 ep->ovflist = EP_UNACTIVE_PTR; 1042 ep->ovflist = EP_UNACTIVE_PTR; 1132 ep->user = get_current_user(); !! 1043 ep->user = user; 1133 refcount_set(&ep->refcount, 1); << 1134 1044 1135 *pep = ep; 1045 *pep = ep; 1136 1046 1137 return 0; 1047 return 0; >> 1048 >> 1049 free_uid: >> 1050 free_uid(user); >> 1051 return error; 1138 } 1052 } 1139 1053 1140 /* 1054 /* 1141 * Search the file inside the eventpoll tree. 1055 * Search the file inside the eventpoll tree. The RB tree operations 1142 * are protected by the "mtx" mutex, and ep_f 1056 * are protected by the "mtx" mutex, and ep_find() must be called with 1143 * "mtx" held. 1057 * "mtx" held. 1144 */ 1058 */ 1145 static struct epitem *ep_find(struct eventpol 1059 static struct epitem *ep_find(struct eventpoll *ep, struct file *file, int fd) 1146 { 1060 { 1147 int kcmp; 1061 int kcmp; 1148 struct rb_node *rbp; 1062 struct rb_node *rbp; 1149 struct epitem *epi, *epir = NULL; 1063 struct epitem *epi, *epir = NULL; 1150 struct epoll_filefd ffd; 1064 struct epoll_filefd ffd; 1151 1065 1152 ep_set_ffd(&ffd, file, fd); 1066 ep_set_ffd(&ffd, file, fd); 1153 for (rbp = ep->rbr.rb_root.rb_node; r 1067 for (rbp = ep->rbr.rb_root.rb_node; rbp; ) { 1154 epi = rb_entry(rbp, struct ep 1068 epi = rb_entry(rbp, struct epitem, rbn); 1155 kcmp = ep_cmp_ffd(&ffd, &epi- 1069 kcmp = ep_cmp_ffd(&ffd, &epi->ffd); 1156 if (kcmp > 0) 1070 if (kcmp > 0) 1157 rbp = rbp->rb_right; 1071 rbp = rbp->rb_right; 1158 else if (kcmp < 0) 1072 else if (kcmp < 0) 1159 rbp = rbp->rb_left; 1073 rbp = rbp->rb_left; 1160 else { 1074 else { 1161 epir = epi; 1075 epir = epi; 1162 break; 1076 break; 1163 } 1077 } 1164 } 1078 } 1165 1079 1166 return epir; 1080 return epir; 1167 } 1081 } 1168 1082 1169 #ifdef CONFIG_KCMP !! 1083 #ifdef CONFIG_CHECKPOINT_RESTORE 1170 static struct epitem *ep_find_tfd(struct even 1084 static struct epitem *ep_find_tfd(struct eventpoll *ep, int tfd, unsigned long toff) 1171 { 1085 { 1172 struct rb_node *rbp; 1086 struct rb_node *rbp; 1173 struct epitem *epi; 1087 struct epitem *epi; 1174 1088 1175 for (rbp = rb_first_cached(&ep->rbr); 1089 for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) { 1176 epi = rb_entry(rbp, struct ep 1090 epi = rb_entry(rbp, struct epitem, rbn); 1177 if (epi->ffd.fd == tfd) { 1091 if (epi->ffd.fd == tfd) { 1178 if (toff == 0) 1092 if (toff == 0) 1179 return epi; 1093 return epi; 1180 else 1094 else 1181 toff--; 1095 toff--; 1182 } 1096 } 1183 cond_resched(); 1097 cond_resched(); 1184 } 1098 } 1185 1099 1186 return NULL; 1100 return NULL; 1187 } 1101 } 1188 1102 1189 struct file *get_epoll_tfile_raw_ptr(struct f 1103 struct file *get_epoll_tfile_raw_ptr(struct file *file, int tfd, 1190 unsigned 1104 unsigned long toff) 1191 { 1105 { 1192 struct file *file_raw; 1106 struct file *file_raw; 1193 struct eventpoll *ep; 1107 struct eventpoll *ep; 1194 struct epitem *epi; 1108 struct epitem *epi; 1195 1109 1196 if (!is_file_epoll(file)) 1110 if (!is_file_epoll(file)) 1197 return ERR_PTR(-EINVAL); 1111 return ERR_PTR(-EINVAL); 1198 1112 1199 ep = file->private_data; 1113 ep = file->private_data; 1200 1114 1201 mutex_lock(&ep->mtx); 1115 mutex_lock(&ep->mtx); 1202 epi = ep_find_tfd(ep, tfd, toff); 1116 epi = ep_find_tfd(ep, tfd, toff); 1203 if (epi) 1117 if (epi) 1204 file_raw = epi->ffd.file; 1118 file_raw = epi->ffd.file; 1205 else 1119 else 1206 file_raw = ERR_PTR(-ENOENT); 1120 file_raw = ERR_PTR(-ENOENT); 1207 mutex_unlock(&ep->mtx); 1121 mutex_unlock(&ep->mtx); 1208 1122 1209 return file_raw; 1123 return file_raw; 1210 } 1124 } 1211 #endif /* CONFIG_KCMP */ !! 1125 #endif /* CONFIG_CHECKPOINT_RESTORE */ 1212 << 1213 /* << 1214 * Adds a new entry to the tail of the list i << 1215 * multiple CPUs are allowed to call this fun << 1216 * << 1217 * Beware: it is necessary to prevent any oth << 1218 * existing list until all changes ar << 1219 * concurrent list_add_tail_lockless( << 1220 * with a read lock, where write lock << 1221 * makes sure all list_add_tail_lockl << 1222 * completed. << 1223 * << 1224 * Also an element can be locklessly a << 1225 * direction i.e. either to the tail o << 1226 * concurrent access will corrupt the << 1227 * << 1228 * Return: %false if element has been already << 1229 * otherwise. << 1230 */ << 1231 static inline bool list_add_tail_lockless(str << 1232 str << 1233 { << 1234 struct list_head *prev; << 1235 << 1236 /* << 1237 * This is simple 'new->next = head' << 1238 * is used in order to detect that sa << 1239 * added to the list from another CPU << 1240 * new->next == new. << 1241 */ << 1242 if (!try_cmpxchg(&new->next, &new, he << 1243 return false; << 1244 << 1245 /* << 1246 * Initially ->next of a new element << 1247 * (we are inserting to the tail) and << 1248 * exchanged. XCHG guarantees memory << 1249 * updated before pointers are actual << 1250 * swapped before prev->next is updat << 1251 */ << 1252 << 1253 prev = xchg(&head->prev, new); << 1254 << 1255 /* << 1256 * It is safe to modify prev->next an << 1257 * is added only to the tail and new- << 1258 */ << 1259 << 1260 prev->next = new; << 1261 new->prev = prev; << 1262 << 1263 return true; << 1264 } << 1265 << 1266 /* << 1267 * Chains a new epi entry to the tail of the << 1268 * i.e. multiple CPUs are allowed to call thi << 1269 * << 1270 * Return: %false if epi element has been alr << 1271 */ << 1272 static inline bool chain_epi_lockless(struct << 1273 { << 1274 struct eventpoll *ep = epi->ep; << 1275 << 1276 /* Fast preliminary check */ << 1277 if (epi->next != EP_UNACTIVE_PTR) << 1278 return false; << 1279 << 1280 /* Check that the same epi has not be << 1281 if (cmpxchg(&epi->next, EP_UNACTIVE_P << 1282 return false; << 1283 << 1284 /* Atomically exchange tail */ << 1285 epi->next = xchg(&ep->ovflist, epi); << 1286 << 1287 return true; << 1288 } << 1289 1126 1290 /* 1127 /* 1291 * This is the callback that is passed to the 1128 * This is the callback that is passed to the wait queue wakeup 1292 * mechanism. It is called by the stored file 1129 * mechanism. It is called by the stored file descriptors when they 1293 * have events to report. 1130 * have events to report. 1294 * << 1295 * This callback takes a read lock in order n << 1296 * events from another file descriptor, thus << 1297 * or ->ovflist are lockless. Read lock is p << 1298 * ep_start/done_scan(), which stops all list << 1299 * that lists state is seen correctly. << 1300 * << 1301 * Another thing worth to mention is that ep_ << 1302 * concurrently for the same @epi from differ << 1303 * with several wait queues entries. Plural << 1304 * single wait queue is serialized by wq.lock << 1305 * queues are used should be detected accordi << 1306 * cmpxchg() operation. << 1307 */ 1131 */ 1308 static int ep_poll_callback(wait_queue_entry_ 1132 static int ep_poll_callback(wait_queue_entry_t *wait, unsigned mode, int sync, void *key) 1309 { 1133 { 1310 int pwake = 0; 1134 int pwake = 0; >> 1135 unsigned long flags; 1311 struct epitem *epi = ep_item_from_wai 1136 struct epitem *epi = ep_item_from_wait(wait); 1312 struct eventpoll *ep = epi->ep; 1137 struct eventpoll *ep = epi->ep; 1313 __poll_t pollflags = key_to_poll(key) << 1314 unsigned long flags; << 1315 int ewake = 0; 1138 int ewake = 0; 1316 1139 1317 read_lock_irqsave(&ep->lock, flags); !! 1140 spin_lock_irqsave(&ep->lock, flags); 1318 1141 1319 ep_set_busy_poll_napi_id(epi); 1142 ep_set_busy_poll_napi_id(epi); 1320 1143 1321 /* 1144 /* 1322 * If the event mask does not contain 1145 * If the event mask does not contain any poll(2) event, we consider the 1323 * descriptor to be disabled. This co 1146 * descriptor to be disabled. This condition is likely the effect of the 1324 * EPOLLONESHOT bit that disables the 1147 * EPOLLONESHOT bit that disables the descriptor when an event is received, 1325 * until the next EPOLL_CTL_MOD will 1148 * until the next EPOLL_CTL_MOD will be issued. 1326 */ 1149 */ 1327 if (!(epi->event.events & ~EP_PRIVATE 1150 if (!(epi->event.events & ~EP_PRIVATE_BITS)) 1328 goto out_unlock; 1151 goto out_unlock; 1329 1152 1330 /* 1153 /* 1331 * Check the events coming with the c 1154 * Check the events coming with the callback. At this stage, not 1332 * every device reports the events in 1155 * every device reports the events in the "key" parameter of the 1333 * callback. We need to be able to ha 1156 * callback. We need to be able to handle both cases here, hence the 1334 * test for "key" != NULL before the 1157 * test for "key" != NULL before the event match test. 1335 */ 1158 */ 1336 if (pollflags && !(pollflags & epi->e !! 1159 if (key && !((unsigned long) key & epi->event.events)) 1337 goto out_unlock; 1160 goto out_unlock; 1338 1161 1339 /* 1162 /* 1340 * If we are transferring events to u 1163 * If we are transferring events to userspace, we can hold no locks 1341 * (because we're accessing user memo 1164 * (because we're accessing user memory, and because of linux f_op->poll() 1342 * semantics). All the events that ha 1165 * semantics). All the events that happen during that period of time are 1343 * chained in ep->ovflist and requeue 1166 * chained in ep->ovflist and requeued later on. 1344 */ 1167 */ 1345 if (READ_ONCE(ep->ovflist) != EP_UNAC !! 1168 if (ep->ovflist != EP_UNACTIVE_PTR) { 1346 if (chain_epi_lockless(epi)) !! 1169 if (epi->next == EP_UNACTIVE_PTR) { 1347 ep_pm_stay_awake_rcu( !! 1170 epi->next = ep->ovflist; 1348 } else if (!ep_is_linked(epi)) { !! 1171 ep->ovflist = epi; 1349 /* In the usual case, add eve !! 1172 if (epi->ws) { 1350 if (list_add_tail_lockless(&e !! 1173 /* 1351 ep_pm_stay_awake_rcu( !! 1174 * Activate ep->ws since epi->ws may get >> 1175 * deactivated at any time. >> 1176 */ >> 1177 __pm_stay_awake(ep->ws); >> 1178 } >> 1179 >> 1180 } >> 1181 goto out_unlock; >> 1182 } >> 1183 >> 1184 /* If this file is already in the ready list we exit soon */ >> 1185 if (!ep_is_linked(&epi->rdllink)) { >> 1186 list_add_tail(&epi->rdllink, &ep->rdllist); >> 1187 ep_pm_stay_awake_rcu(epi); 1352 } 1188 } 1353 1189 1354 /* 1190 /* 1355 * Wake up ( if active ) both the eve 1191 * Wake up ( if active ) both the eventpoll wait list and the ->poll() 1356 * wait list. 1192 * wait list. 1357 */ 1193 */ 1358 if (waitqueue_active(&ep->wq)) { 1194 if (waitqueue_active(&ep->wq)) { 1359 if ((epi->event.events & EPOL 1195 if ((epi->event.events & EPOLLEXCLUSIVE) && 1360 !(pol !! 1196 !((unsigned long)key & POLLFREE)) { 1361 switch (pollflags & E !! 1197 switch ((unsigned long)key & EPOLLINOUT_BITS) { 1362 case EPOLLIN: !! 1198 case POLLIN: 1363 if (epi->even !! 1199 if (epi->event.events & POLLIN) 1364 ewake 1200 ewake = 1; 1365 break; 1201 break; 1366 case EPOLLOUT: !! 1202 case POLLOUT: 1367 if (epi->even !! 1203 if (epi->event.events & POLLOUT) 1368 ewake 1204 ewake = 1; 1369 break; 1205 break; 1370 case 0: 1206 case 0: 1371 ewake = 1; 1207 ewake = 1; 1372 break; 1208 break; 1373 } 1209 } 1374 } 1210 } 1375 wake_up(&ep->wq); !! 1211 wake_up_locked(&ep->wq); 1376 } 1212 } 1377 if (waitqueue_active(&ep->poll_wait)) 1213 if (waitqueue_active(&ep->poll_wait)) 1378 pwake++; 1214 pwake++; 1379 1215 1380 out_unlock: 1216 out_unlock: 1381 read_unlock_irqrestore(&ep->lock, fla !! 1217 spin_unlock_irqrestore(&ep->lock, flags); 1382 1218 1383 /* We have to call this outside the l 1219 /* We have to call this outside the lock */ 1384 if (pwake) 1220 if (pwake) 1385 ep_poll_safewake(ep, epi, pol !! 1221 ep_poll_safewake(&ep->poll_wait); 1386 1222 1387 if (!(epi->event.events & EPOLLEXCLUS 1223 if (!(epi->event.events & EPOLLEXCLUSIVE)) 1388 ewake = 1; 1224 ewake = 1; 1389 1225 1390 if (pollflags & POLLFREE) { !! 1226 if ((unsigned long)key & POLLFREE) { 1391 /* 1227 /* 1392 * If we race with ep_remove_ 1228 * If we race with ep_remove_wait_queue() it can miss 1393 * ->whead = NULL and do anot 1229 * ->whead = NULL and do another remove_wait_queue() after 1394 * us, so we can't use __remo 1230 * us, so we can't use __remove_wait_queue(). 1395 */ 1231 */ 1396 list_del_init(&wait->entry); 1232 list_del_init(&wait->entry); 1397 /* 1233 /* 1398 * ->whead != NULL protects u !! 1234 * ->whead != NULL protects us from the race with ep_free() 1399 * ep_clear_and_put() or ep_r !! 1235 * or ep_remove(), ep_remove_wait_queue() takes whead->lock 1400 * takes whead->lock held by !! 1236 * held by the caller. Once we nullify it, nothing protects 1401 * nothing protects ep/epi or !! 1237 * ep/epi or even wait. 1402 */ 1238 */ 1403 smp_store_release(&ep_pwq_fro 1239 smp_store_release(&ep_pwq_from_wait(wait)->whead, NULL); 1404 } 1240 } 1405 1241 1406 return ewake; 1242 return ewake; 1407 } 1243 } 1408 1244 1409 /* 1245 /* 1410 * This is the callback that is used to add o 1246 * This is the callback that is used to add our wait queue to the 1411 * target file wakeup lists. 1247 * target file wakeup lists. 1412 */ 1248 */ 1413 static void ep_ptable_queue_proc(struct file 1249 static void ep_ptable_queue_proc(struct file *file, wait_queue_head_t *whead, 1414 poll_table * 1250 poll_table *pt) 1415 { 1251 { 1416 struct ep_pqueue *epq = container_of( !! 1252 struct epitem *epi = ep_item_from_epqueue(pt); 1417 struct epitem *epi = epq->epi; << 1418 struct eppoll_entry *pwq; 1253 struct eppoll_entry *pwq; 1419 1254 1420 if (unlikely(!epi)) // an earlier !! 1255 if (epi->nwait >= 0 && (pwq = kmem_cache_alloc(pwq_cache, GFP_KERNEL))) { 1421 return; !! 1256 init_waitqueue_func_entry(&pwq->wait, ep_poll_callback); 1422 !! 1257 pwq->whead = whead; 1423 pwq = kmem_cache_alloc(pwq_cache, GFP !! 1258 pwq->base = epi; 1424 if (unlikely(!pwq)) { !! 1259 if (epi->event.events & EPOLLEXCLUSIVE) 1425 epq->epi = NULL; !! 1260 add_wait_queue_exclusive(whead, &pwq->wait); 1426 return; !! 1261 else >> 1262 add_wait_queue(whead, &pwq->wait); >> 1263 list_add_tail(&pwq->llink, &epi->pwqlist); >> 1264 epi->nwait++; >> 1265 } else { >> 1266 /* We have to signal that an error occurred */ >> 1267 epi->nwait = -1; 1427 } 1268 } 1428 << 1429 init_waitqueue_func_entry(&pwq->wait, << 1430 pwq->whead = whead; << 1431 pwq->base = epi; << 1432 if (epi->event.events & EPOLLEXCLUSIV << 1433 add_wait_queue_exclusive(whea << 1434 else << 1435 add_wait_queue(whead, &pwq->w << 1436 pwq->next = epi->pwqlist; << 1437 epi->pwqlist = pwq; << 1438 } 1269 } 1439 1270 1440 static void ep_rbtree_insert(struct eventpoll 1271 static void ep_rbtree_insert(struct eventpoll *ep, struct epitem *epi) 1441 { 1272 { 1442 int kcmp; 1273 int kcmp; 1443 struct rb_node **p = &ep->rbr.rb_root 1274 struct rb_node **p = &ep->rbr.rb_root.rb_node, *parent = NULL; 1444 struct epitem *epic; 1275 struct epitem *epic; 1445 bool leftmost = true; 1276 bool leftmost = true; 1446 1277 1447 while (*p) { 1278 while (*p) { 1448 parent = *p; 1279 parent = *p; 1449 epic = rb_entry(parent, struc 1280 epic = rb_entry(parent, struct epitem, rbn); 1450 kcmp = ep_cmp_ffd(&epi->ffd, 1281 kcmp = ep_cmp_ffd(&epi->ffd, &epic->ffd); 1451 if (kcmp > 0) { 1282 if (kcmp > 0) { 1452 p = &parent->rb_right 1283 p = &parent->rb_right; 1453 leftmost = false; 1284 leftmost = false; 1454 } else 1285 } else 1455 p = &parent->rb_left; 1286 p = &parent->rb_left; 1456 } 1287 } 1457 rb_link_node(&epi->rbn, parent, p); 1288 rb_link_node(&epi->rbn, parent, p); 1458 rb_insert_color_cached(&epi->rbn, &ep 1289 rb_insert_color_cached(&epi->rbn, &ep->rbr, leftmost); 1459 } 1290 } 1460 1291 1461 1292 1462 1293 1463 #define PATH_ARR_SIZE 5 1294 #define PATH_ARR_SIZE 5 1464 /* 1295 /* 1465 * These are the number paths of length 1 to 1296 * These are the number paths of length 1 to 5, that we are allowing to emanate 1466 * from a single file of interest. For exampl 1297 * from a single file of interest. For example, we allow 1000 paths of length 1467 * 1, to emanate from each file of interest. 1298 * 1, to emanate from each file of interest. This essentially represents the 1468 * potential wakeup paths, which need to be l 1299 * potential wakeup paths, which need to be limited in order to avoid massive 1469 * uncontrolled wakeup storms. The common use 1300 * uncontrolled wakeup storms. The common use case should be a single ep which 1470 * is connected to n file sources. In this ca 1301 * is connected to n file sources. In this case each file source has 1 path 1471 * of length 1. Thus, the numbers below shoul 1302 * of length 1. Thus, the numbers below should be more than sufficient. These 1472 * path limits are enforced during an EPOLL_C 1303 * path limits are enforced during an EPOLL_CTL_ADD operation, since a modify 1473 * and delete can't add additional paths. Pro !! 1304 * and delete can't add additional paths. Protected by the epmutex. 1474 */ 1305 */ 1475 static const int path_limits[PATH_ARR_SIZE] = 1306 static const int path_limits[PATH_ARR_SIZE] = { 1000, 500, 100, 50, 10 }; 1476 static int path_count[PATH_ARR_SIZE]; 1307 static int path_count[PATH_ARR_SIZE]; 1477 1308 1478 static int path_count_inc(int nests) 1309 static int path_count_inc(int nests) 1479 { 1310 { 1480 /* Allow an arbitrary number of depth 1311 /* Allow an arbitrary number of depth 1 paths */ 1481 if (nests == 0) 1312 if (nests == 0) 1482 return 0; 1313 return 0; 1483 1314 1484 if (++path_count[nests] > path_limits 1315 if (++path_count[nests] > path_limits[nests]) 1485 return -1; 1316 return -1; 1486 return 0; 1317 return 0; 1487 } 1318 } 1488 1319 1489 static void path_count_init(void) 1320 static void path_count_init(void) 1490 { 1321 { 1491 int i; 1322 int i; 1492 1323 1493 for (i = 0; i < PATH_ARR_SIZE; i++) 1324 for (i = 0; i < PATH_ARR_SIZE; i++) 1494 path_count[i] = 0; 1325 path_count[i] = 0; 1495 } 1326 } 1496 1327 1497 static int reverse_path_check_proc(struct hli !! 1328 static int reverse_path_check_proc(void *priv, void *cookie, int call_nests) 1498 { 1329 { 1499 int error = 0; 1330 int error = 0; >> 1331 struct file *file = priv; >> 1332 struct file *child_file; 1500 struct epitem *epi; 1333 struct epitem *epi; 1501 1334 1502 if (depth > EP_MAX_NESTS) /* too deep << 1503 return -1; << 1504 << 1505 /* CTL_DEL can remove links here, but 1335 /* CTL_DEL can remove links here, but that can't increase our count */ 1506 hlist_for_each_entry_rcu(epi, refs, f !! 1336 rcu_read_lock(); 1507 struct hlist_head *refs = &ep !! 1337 list_for_each_entry_rcu(epi, &file->f_ep_links, fllink) { 1508 if (hlist_empty(refs)) !! 1338 child_file = epi->ep->file; 1509 error = path_count_in !! 1339 if (is_file_epoll(child_file)) { 1510 else !! 1340 if (list_empty(&child_file->f_ep_links)) { 1511 error = reverse_path_ !! 1341 if (path_count_inc(call_nests)) { 1512 if (error != 0) !! 1342 error = -1; 1513 break; !! 1343 break; >> 1344 } >> 1345 } else { >> 1346 error = ep_call_nested(&poll_loop_ncalls, >> 1347 EP_MAX_NESTS, >> 1348 reverse_path_check_proc, >> 1349 child_file, child_file, >> 1350 current); >> 1351 } >> 1352 if (error != 0) >> 1353 break; >> 1354 } else { >> 1355 printk(KERN_ERR "reverse_path_check_proc: " >> 1356 "file is not an ep!\n"); >> 1357 } 1514 } 1358 } >> 1359 rcu_read_unlock(); 1515 return error; 1360 return error; 1516 } 1361 } 1517 1362 1518 /** 1363 /** 1519 * reverse_path_check - The tfile_check_list !! 1364 * reverse_path_check - The tfile_check_list is list of file *, which have 1520 * links that are propos 1365 * links that are proposed to be newly added. We need to 1521 * make sure that those 1366 * make sure that those added links don't add too many 1522 * paths such that we wi 1367 * paths such that we will spend all our time waking up 1523 * eventpoll objects. 1368 * eventpoll objects. 1524 * 1369 * 1525 * Return: %zero if the proposed links don't !! 1370 * Returns: Returns zero if the proposed links don't create too many paths, 1526 * %-1 otherwise. !! 1371 * -1 otherwise. 1527 */ 1372 */ 1528 static int reverse_path_check(void) 1373 static int reverse_path_check(void) 1529 { 1374 { 1530 struct epitems_head *p; !! 1375 int error = 0; >> 1376 struct file *current_file; 1531 1377 1532 for (p = tfile_check_list; p != EP_UN !! 1378 /* let's call this for all tfiles */ 1533 int error; !! 1379 list_for_each_entry(current_file, &tfile_check_list, f_tfile_llink) { 1534 path_count_init(); 1380 path_count_init(); 1535 rcu_read_lock(); !! 1381 error = ep_call_nested(&poll_loop_ncalls, EP_MAX_NESTS, 1536 error = reverse_path_check_pr !! 1382 reverse_path_check_proc, current_file, 1537 rcu_read_unlock(); !! 1383 current_file, current); 1538 if (error) 1384 if (error) 1539 return error; !! 1385 break; 1540 } 1386 } 1541 return 0; !! 1387 return error; 1542 } 1388 } 1543 1389 1544 static int ep_create_wakeup_source(struct epi 1390 static int ep_create_wakeup_source(struct epitem *epi) 1545 { 1391 { 1546 struct name_snapshot n; 1392 struct name_snapshot n; 1547 struct wakeup_source *ws; 1393 struct wakeup_source *ws; 1548 1394 1549 if (!epi->ep->ws) { 1395 if (!epi->ep->ws) { 1550 epi->ep->ws = wakeup_source_r !! 1396 epi->ep->ws = wakeup_source_register("eventpoll"); 1551 if (!epi->ep->ws) 1397 if (!epi->ep->ws) 1552 return -ENOMEM; 1398 return -ENOMEM; 1553 } 1399 } 1554 1400 1555 take_dentry_name_snapshot(&n, epi->ff 1401 take_dentry_name_snapshot(&n, epi->ffd.file->f_path.dentry); 1556 ws = wakeup_source_register(NULL, n.n !! 1402 ws = wakeup_source_register(n.name); 1557 release_dentry_name_snapshot(&n); 1403 release_dentry_name_snapshot(&n); 1558 1404 1559 if (!ws) 1405 if (!ws) 1560 return -ENOMEM; 1406 return -ENOMEM; 1561 rcu_assign_pointer(epi->ws, ws); 1407 rcu_assign_pointer(epi->ws, ws); 1562 1408 1563 return 0; 1409 return 0; 1564 } 1410 } 1565 1411 1566 /* rare code path, only used when EPOLL_CTL_M 1412 /* rare code path, only used when EPOLL_CTL_MOD removes a wakeup source */ 1567 static noinline void ep_destroy_wakeup_source 1413 static noinline void ep_destroy_wakeup_source(struct epitem *epi) 1568 { 1414 { 1569 struct wakeup_source *ws = ep_wakeup_ 1415 struct wakeup_source *ws = ep_wakeup_source(epi); 1570 1416 1571 RCU_INIT_POINTER(epi->ws, NULL); 1417 RCU_INIT_POINTER(epi->ws, NULL); 1572 1418 1573 /* 1419 /* 1574 * wait for ep_pm_stay_awake_rcu to f 1420 * wait for ep_pm_stay_awake_rcu to finish, synchronize_rcu is 1575 * used internally by wakeup_source_r 1421 * used internally by wakeup_source_remove, too (called by 1576 * wakeup_source_unregister), so we c 1422 * wakeup_source_unregister), so we cannot use call_rcu 1577 */ 1423 */ 1578 synchronize_rcu(); 1424 synchronize_rcu(); 1579 wakeup_source_unregister(ws); 1425 wakeup_source_unregister(ws); 1580 } 1426 } 1581 1427 1582 static int attach_epitem(struct file *file, s << 1583 { << 1584 struct epitems_head *to_free = NULL; << 1585 struct hlist_head *head = NULL; << 1586 struct eventpoll *ep = NULL; << 1587 << 1588 if (is_file_epoll(file)) << 1589 ep = file->private_data; << 1590 << 1591 if (ep) { << 1592 head = &ep->refs; << 1593 } else if (!READ_ONCE(file->f_ep)) { << 1594 allocate: << 1595 to_free = kmem_cache_zalloc(e << 1596 if (!to_free) << 1597 return -ENOMEM; << 1598 head = &to_free->epitems; << 1599 } << 1600 spin_lock(&file->f_lock); << 1601 if (!file->f_ep) { << 1602 if (unlikely(!head)) { << 1603 spin_unlock(&file->f_ << 1604 goto allocate; << 1605 } << 1606 file->f_ep = head; << 1607 to_free = NULL; << 1608 } << 1609 hlist_add_head_rcu(&epi->fllink, file << 1610 spin_unlock(&file->f_lock); << 1611 free_ephead(to_free); << 1612 return 0; << 1613 } << 1614 << 1615 /* 1428 /* 1616 * Must be called with "mtx" held. 1429 * Must be called with "mtx" held. 1617 */ 1430 */ 1618 static int ep_insert(struct eventpoll *ep, co !! 1431 static int ep_insert(struct eventpoll *ep, struct epoll_event *event, 1619 struct file *tfile, int 1432 struct file *tfile, int fd, int full_check) 1620 { 1433 { 1621 int error, pwake = 0; !! 1434 int error, revents, pwake = 0; 1622 __poll_t revents; !! 1435 unsigned long flags; >> 1436 long user_watches; 1623 struct epitem *epi; 1437 struct epitem *epi; 1624 struct ep_pqueue epq; 1438 struct ep_pqueue epq; 1625 struct eventpoll *tep = NULL; << 1626 << 1627 if (is_file_epoll(tfile)) << 1628 tep = tfile->private_data; << 1629 1439 1630 lockdep_assert_irqs_enabled(); !! 1440 user_watches = atomic_long_read(&ep->user->epoll_watches); 1631 !! 1441 if (unlikely(user_watches >= max_user_watches)) 1632 if (unlikely(percpu_counter_compare(& << 1633 m << 1634 return -ENOSPC; 1442 return -ENOSPC; 1635 percpu_counter_inc(&ep->user->epoll_w !! 1443 if (!(epi = kmem_cache_alloc(epi_cache, GFP_KERNEL))) 1636 << 1637 if (!(epi = kmem_cache_zalloc(epi_cac << 1638 percpu_counter_dec(&ep->user- << 1639 return -ENOMEM; 1444 return -ENOMEM; 1640 } << 1641 1445 1642 /* Item initialization follow here .. 1446 /* Item initialization follow here ... */ 1643 INIT_LIST_HEAD(&epi->rdllink); 1447 INIT_LIST_HEAD(&epi->rdllink); >> 1448 INIT_LIST_HEAD(&epi->fllink); >> 1449 INIT_LIST_HEAD(&epi->pwqlist); 1644 epi->ep = ep; 1450 epi->ep = ep; 1645 ep_set_ffd(&epi->ffd, tfile, fd); 1451 ep_set_ffd(&epi->ffd, tfile, fd); 1646 epi->event = *event; 1452 epi->event = *event; >> 1453 epi->nwait = 0; 1647 epi->next = EP_UNACTIVE_PTR; 1454 epi->next = EP_UNACTIVE_PTR; 1648 !! 1455 if (epi->event.events & EPOLLWAKEUP) { 1649 if (tep) !! 1456 error = ep_create_wakeup_source(epi); 1650 mutex_lock_nested(&tep->mtx, !! 1457 if (error) 1651 /* Add the current item to the list o !! 1458 goto error_create_wakeup_source; 1652 if (unlikely(attach_epitem(tfile, epi !! 1459 } else { 1653 if (tep) !! 1460 RCU_INIT_POINTER(epi->ws, NULL); 1654 mutex_unlock(&tep->mt << 1655 kmem_cache_free(epi_cache, ep << 1656 percpu_counter_dec(&ep->user- << 1657 return -ENOMEM; << 1658 } 1461 } 1659 1462 1660 if (full_check && !tep) !! 1463 /* Add the current item to the list of active epoll hook for this file */ 1661 list_file(tfile); !! 1464 spin_lock(&tfile->f_lock); >> 1465 list_add_tail_rcu(&epi->fllink, &tfile->f_ep_links); >> 1466 spin_unlock(&tfile->f_lock); 1662 1467 1663 /* 1468 /* 1664 * Add the current item to the RB tre 1469 * Add the current item to the RB tree. All RB tree operations are 1665 * protected by "mtx", and ep_insert( 1470 * protected by "mtx", and ep_insert() is called with "mtx" held. 1666 */ 1471 */ 1667 ep_rbtree_insert(ep, epi); 1472 ep_rbtree_insert(ep, epi); 1668 if (tep) << 1669 mutex_unlock(&tep->mtx); << 1670 << 1671 /* << 1672 * ep_remove_safe() calls in the late << 1673 * ep_free() as the ep file itself st << 1674 */ << 1675 ep_get(ep); << 1676 1473 1677 /* now check if we've created too man 1474 /* now check if we've created too many backpaths */ 1678 if (unlikely(full_check && reverse_pa !! 1475 error = -EINVAL; 1679 ep_remove_safe(ep, epi); !! 1476 if (full_check && reverse_path_check()) 1680 return -EINVAL; !! 1477 goto error_remove_epi; 1681 } << 1682 << 1683 if (epi->event.events & EPOLLWAKEUP) << 1684 error = ep_create_wakeup_sour << 1685 if (error) { << 1686 ep_remove_safe(ep, ep << 1687 return error; << 1688 } << 1689 } << 1690 1478 1691 /* Initialize the poll table using th 1479 /* Initialize the poll table using the queue callback */ 1692 epq.epi = epi; 1480 epq.epi = epi; 1693 init_poll_funcptr(&epq.pt, ep_ptable_ 1481 init_poll_funcptr(&epq.pt, ep_ptable_queue_proc); 1694 1482 1695 /* 1483 /* 1696 * Attach the item to the poll hooks 1484 * Attach the item to the poll hooks and get current event bits. 1697 * We can safely use the file* here b 1485 * We can safely use the file* here because its usage count has 1698 * been increased by the caller of th 1486 * been increased by the caller of this function. Note that after 1699 * this operation completes, the poll 1487 * this operation completes, the poll callback can start hitting 1700 * the new item. 1488 * the new item. 1701 */ 1489 */ 1702 revents = ep_item_poll(epi, &epq.pt, !! 1490 revents = ep_item_poll(epi, &epq.pt); 1703 1491 1704 /* 1492 /* 1705 * We have to check if something went 1493 * We have to check if something went wrong during the poll wait queue 1706 * install process. Namely an allocat 1494 * install process. Namely an allocation for a wait queue failed due 1707 * high memory pressure. 1495 * high memory pressure. 1708 */ 1496 */ 1709 if (unlikely(!epq.epi)) { !! 1497 error = -ENOMEM; 1710 ep_remove_safe(ep, epi); !! 1498 if (epi->nwait < 0) 1711 return -ENOMEM; !! 1499 goto error_unregister; 1712 } << 1713 1500 1714 /* We have to drop the new item insid 1501 /* We have to drop the new item inside our item list to keep track of it */ 1715 write_lock_irq(&ep->lock); !! 1502 spin_lock_irqsave(&ep->lock, flags); 1716 1503 1717 /* record NAPI ID of new item if pres 1504 /* record NAPI ID of new item if present */ 1718 ep_set_busy_poll_napi_id(epi); 1505 ep_set_busy_poll_napi_id(epi); 1719 1506 1720 /* If the file is already "ready" we 1507 /* If the file is already "ready" we drop it inside the ready list */ 1721 if (revents && !ep_is_linked(epi)) { !! 1508 if ((revents & event->events) && !ep_is_linked(&epi->rdllink)) { 1722 list_add_tail(&epi->rdllink, 1509 list_add_tail(&epi->rdllink, &ep->rdllist); 1723 ep_pm_stay_awake(epi); 1510 ep_pm_stay_awake(epi); 1724 1511 1725 /* Notify waiting tasks that 1512 /* Notify waiting tasks that events are available */ 1726 if (waitqueue_active(&ep->wq) 1513 if (waitqueue_active(&ep->wq)) 1727 wake_up(&ep->wq); !! 1514 wake_up_locked(&ep->wq); 1728 if (waitqueue_active(&ep->pol 1515 if (waitqueue_active(&ep->poll_wait)) 1729 pwake++; 1516 pwake++; 1730 } 1517 } 1731 1518 1732 write_unlock_irq(&ep->lock); !! 1519 spin_unlock_irqrestore(&ep->lock, flags); >> 1520 >> 1521 atomic_long_inc(&ep->user->epoll_watches); 1733 1522 1734 /* We have to call this outside the l 1523 /* We have to call this outside the lock */ 1735 if (pwake) 1524 if (pwake) 1736 ep_poll_safewake(ep, NULL, 0) !! 1525 ep_poll_safewake(&ep->poll_wait); 1737 1526 1738 return 0; 1527 return 0; >> 1528 >> 1529 error_unregister: >> 1530 ep_unregister_pollwait(ep, epi); >> 1531 error_remove_epi: >> 1532 spin_lock(&tfile->f_lock); >> 1533 list_del_rcu(&epi->fllink); >> 1534 spin_unlock(&tfile->f_lock); >> 1535 >> 1536 rb_erase_cached(&epi->rbn, &ep->rbr); >> 1537 >> 1538 /* >> 1539 * We need to do this because an event could have been arrived on some >> 1540 * allocated wait queue. Note that we don't care about the ep->ovflist >> 1541 * list, since that is used/cleaned only inside a section bound by "mtx". >> 1542 * And ep_insert() is called with "mtx" held. >> 1543 */ >> 1544 spin_lock_irqsave(&ep->lock, flags); >> 1545 if (ep_is_linked(&epi->rdllink)) >> 1546 list_del_init(&epi->rdllink); >> 1547 spin_unlock_irqrestore(&ep->lock, flags); >> 1548 >> 1549 wakeup_source_unregister(ep_wakeup_source(epi)); >> 1550 >> 1551 error_create_wakeup_source: >> 1552 kmem_cache_free(epi_cache, epi); >> 1553 >> 1554 return error; 1739 } 1555 } 1740 1556 1741 /* 1557 /* 1742 * Modify the interest event mask by dropping 1558 * Modify the interest event mask by dropping an event if the new mask 1743 * has a match in the current file status. Mu 1559 * has a match in the current file status. Must be called with "mtx" held. 1744 */ 1560 */ 1745 static int ep_modify(struct eventpoll *ep, st !! 1561 static int ep_modify(struct eventpoll *ep, struct epitem *epi, struct epoll_event *event) 1746 const struct epoll_event << 1747 { 1562 { 1748 int pwake = 0; 1563 int pwake = 0; >> 1564 unsigned int revents; 1749 poll_table pt; 1565 poll_table pt; 1750 1566 1751 lockdep_assert_irqs_enabled(); << 1752 << 1753 init_poll_funcptr(&pt, NULL); 1567 init_poll_funcptr(&pt, NULL); 1754 1568 1755 /* 1569 /* 1756 * Set the new event interest mask be 1570 * Set the new event interest mask before calling f_op->poll(); 1757 * otherwise we might miss an event t 1571 * otherwise we might miss an event that happens between the 1758 * f_op->poll() call and the new even 1572 * f_op->poll() call and the new event set registering. 1759 */ 1573 */ 1760 epi->event.events = event->events; /* 1574 epi->event.events = event->events; /* need barrier below */ 1761 epi->event.data = event->data; /* pro 1575 epi->event.data = event->data; /* protected by mtx */ 1762 if (epi->event.events & EPOLLWAKEUP) 1576 if (epi->event.events & EPOLLWAKEUP) { 1763 if (!ep_has_wakeup_source(epi 1577 if (!ep_has_wakeup_source(epi)) 1764 ep_create_wakeup_sour 1578 ep_create_wakeup_source(epi); 1765 } else if (ep_has_wakeup_source(epi)) 1579 } else if (ep_has_wakeup_source(epi)) { 1766 ep_destroy_wakeup_source(epi) 1580 ep_destroy_wakeup_source(epi); 1767 } 1581 } 1768 1582 1769 /* 1583 /* 1770 * The following barrier has two effe 1584 * The following barrier has two effects: 1771 * 1585 * 1772 * 1) Flush epi changes above to othe 1586 * 1) Flush epi changes above to other CPUs. This ensures 1773 * we do not miss events from ep_p 1587 * we do not miss events from ep_poll_callback if an 1774 * event occurs immediately after 1588 * event occurs immediately after we call f_op->poll(). 1775 * We need this because we did not 1589 * We need this because we did not take ep->lock while 1776 * changing epi above (but ep_poll 1590 * changing epi above (but ep_poll_callback does take 1777 * ep->lock). 1591 * ep->lock). 1778 * 1592 * 1779 * 2) We also need to ensure we do no 1593 * 2) We also need to ensure we do not miss _past_ events 1780 * when calling f_op->poll(). Thi 1594 * when calling f_op->poll(). This barrier also 1781 * pairs with the barrier in wq_ha 1595 * pairs with the barrier in wq_has_sleeper (see 1782 * comments for wq_has_sleeper). 1596 * comments for wq_has_sleeper). 1783 * 1597 * 1784 * This barrier will now guarantee ep 1598 * This barrier will now guarantee ep_poll_callback or f_op->poll 1785 * (or both) will notice the readines 1599 * (or both) will notice the readiness of an item. 1786 */ 1600 */ 1787 smp_mb(); 1601 smp_mb(); 1788 1602 1789 /* 1603 /* 1790 * Get current event bits. We can saf 1604 * Get current event bits. We can safely use the file* here because 1791 * its usage count has been increased 1605 * its usage count has been increased by the caller of this function. >> 1606 */ >> 1607 revents = ep_item_poll(epi, &pt); >> 1608 >> 1609 /* 1792 * If the item is "hot" and it is not 1610 * If the item is "hot" and it is not registered inside the ready 1793 * list, push it inside. 1611 * list, push it inside. 1794 */ 1612 */ 1795 if (ep_item_poll(epi, &pt, 1)) { !! 1613 if (revents & event->events) { 1796 write_lock_irq(&ep->lock); !! 1614 spin_lock_irq(&ep->lock); 1797 if (!ep_is_linked(epi)) { !! 1615 if (!ep_is_linked(&epi->rdllink)) { 1798 list_add_tail(&epi->r 1616 list_add_tail(&epi->rdllink, &ep->rdllist); 1799 ep_pm_stay_awake(epi) 1617 ep_pm_stay_awake(epi); 1800 1618 1801 /* Notify waiting tas 1619 /* Notify waiting tasks that events are available */ 1802 if (waitqueue_active( 1620 if (waitqueue_active(&ep->wq)) 1803 wake_up(&ep-> !! 1621 wake_up_locked(&ep->wq); 1804 if (waitqueue_active( 1622 if (waitqueue_active(&ep->poll_wait)) 1805 pwake++; 1623 pwake++; 1806 } 1624 } 1807 write_unlock_irq(&ep->lock); !! 1625 spin_unlock_irq(&ep->lock); 1808 } 1626 } 1809 1627 1810 /* We have to call this outside the l 1628 /* We have to call this outside the lock */ 1811 if (pwake) 1629 if (pwake) 1812 ep_poll_safewake(ep, NULL, 0) !! 1630 ep_poll_safewake(&ep->poll_wait); 1813 1631 1814 return 0; 1632 return 0; 1815 } 1633 } 1816 1634 1817 static int ep_send_events(struct eventpoll *e !! 1635 static int ep_send_events_proc(struct eventpoll *ep, struct list_head *head, 1818 struct epoll_event !! 1636 void *priv) 1819 { 1637 { 1820 struct epitem *epi, *tmp; !! 1638 struct ep_send_events_data *esed = priv; 1821 LIST_HEAD(txlist); !! 1639 int eventcnt; >> 1640 unsigned int revents; >> 1641 struct epitem *epi; >> 1642 struct epoll_event __user *uevent; >> 1643 struct wakeup_source *ws; 1822 poll_table pt; 1644 poll_table pt; 1823 int res = 0; << 1824 << 1825 /* << 1826 * Always short-circuit for fatal sig << 1827 * timely exit without the chance of << 1828 * fetching repeatedly. << 1829 */ << 1830 if (fatal_signal_pending(current)) << 1831 return -EINTR; << 1832 1645 1833 init_poll_funcptr(&pt, NULL); 1646 init_poll_funcptr(&pt, NULL); 1834 1647 1835 mutex_lock(&ep->mtx); << 1836 ep_start_scan(ep, &txlist); << 1837 << 1838 /* 1648 /* 1839 * We can loop without lock because w 1649 * We can loop without lock because we are passed a task private list. 1840 * Items cannot vanish during the loo !! 1650 * Items cannot vanish during the loop because ep_scan_ready_list() is >> 1651 * holding "mtx" during this call. 1841 */ 1652 */ 1842 list_for_each_entry_safe(epi, tmp, &t !! 1653 for (eventcnt = 0, uevent = esed->events; 1843 struct wakeup_source *ws; !! 1654 !list_empty(head) && eventcnt < esed->maxevents;) { 1844 __poll_t revents; !! 1655 epi = list_first_entry(head, struct epitem, rdllink); 1845 << 1846 if (res >= maxevents) << 1847 break; << 1848 1656 1849 /* 1657 /* 1850 * Activate ep->ws before dea 1658 * Activate ep->ws before deactivating epi->ws to prevent 1851 * triggering auto-suspend he 1659 * triggering auto-suspend here (in case we reactive epi->ws 1852 * below). 1660 * below). 1853 * 1661 * 1854 * This could be rearranged t 1662 * This could be rearranged to delay the deactivation of epi->ws 1855 * instead, but then epi->ws 1663 * instead, but then epi->ws would temporarily be out of sync 1856 * with ep_is_linked(). 1664 * with ep_is_linked(). 1857 */ 1665 */ 1858 ws = ep_wakeup_source(epi); 1666 ws = ep_wakeup_source(epi); 1859 if (ws) { 1667 if (ws) { 1860 if (ws->active) 1668 if (ws->active) 1861 __pm_stay_awa 1669 __pm_stay_awake(ep->ws); 1862 __pm_relax(ws); 1670 __pm_relax(ws); 1863 } 1671 } 1864 1672 1865 list_del_init(&epi->rdllink); 1673 list_del_init(&epi->rdllink); 1866 1674 >> 1675 revents = ep_item_poll(epi, &pt); >> 1676 1867 /* 1677 /* 1868 * If the event mask intersec 1678 * If the event mask intersect the caller-requested one, 1869 * deliver the event to users !! 1679 * deliver the event to userspace. Again, ep_scan_ready_list() 1870 * so no operations coming fr !! 1680 * is holding "mtx", so no operations coming from userspace >> 1681 * can change the item. 1871 */ 1682 */ 1872 revents = ep_item_poll(epi, & !! 1683 if (revents) { 1873 if (!revents) !! 1684 if (__put_user(revents, &uevent->events) || 1874 continue; !! 1685 __put_user(epi->event.data, &uevent->data)) { 1875 !! 1686 list_add(&epi->rdllink, head); 1876 events = epoll_put_uevent(rev !! 1687 ep_pm_stay_awake(epi); 1877 if (!events) { !! 1688 return eventcnt ? eventcnt : -EFAULT; 1878 list_add(&epi->rdllin !! 1689 } 1879 ep_pm_stay_awake(epi) !! 1690 eventcnt++; 1880 if (!res) !! 1691 uevent++; 1881 res = -EFAULT !! 1692 if (epi->event.events & EPOLLONESHOT) 1882 break; !! 1693 epi->event.events &= EP_PRIVATE_BITS; 1883 } !! 1694 else if (!(epi->event.events & EPOLLET)) { 1884 res++; !! 1695 /* 1885 if (epi->event.events & EPOLL !! 1696 * If this file has been added with Level 1886 epi->event.events &= !! 1697 * Trigger mode, we need to insert back inside 1887 else if (!(epi->event.events !! 1698 * the ready list, so that the next call to 1888 /* !! 1699 * epoll_wait() will check again the events 1889 * If this file has b !! 1700 * availability. At this point, no one can insert 1890 * Trigger mode, we n !! 1701 * into ep->rdllist besides us. The epoll_ctl() 1891 * the ready list, so !! 1702 * callers are locked out by 1892 * epoll_wait() will !! 1703 * ep_scan_ready_list() holding "mtx" and the 1893 * availability. At t !! 1704 * poll callback will queue them in ep->ovflist. 1894 * into ep->rdllist b !! 1705 */ 1895 * callers are locked !! 1706 list_add_tail(&epi->rdllink, &ep->rdllist); 1896 * ep_send_events() h !! 1707 ep_pm_stay_awake(epi); 1897 * poll callback will !! 1708 } 1898 */ << 1899 list_add_tail(&epi->r << 1900 ep_pm_stay_awake(epi) << 1901 } 1709 } 1902 } 1710 } 1903 ep_done_scan(ep, &txlist); << 1904 mutex_unlock(&ep->mtx); << 1905 1711 1906 return res; !! 1712 return eventcnt; 1907 } 1713 } 1908 1714 1909 static struct timespec64 *ep_timeout_to_times !! 1715 static int ep_send_events(struct eventpoll *ep, >> 1716 struct epoll_event __user *events, int maxevents) 1910 { 1717 { 1911 struct timespec64 now; !! 1718 struct ep_send_events_data esed; 1912 1719 1913 if (ms < 0) !! 1720 esed.maxevents = maxevents; 1914 return NULL; !! 1721 esed.events = events; 1915 1722 1916 if (!ms) { !! 1723 return ep_scan_ready_list(ep, ep_send_events_proc, &esed, 0, false); 1917 to->tv_sec = 0; << 1918 to->tv_nsec = 0; << 1919 return to; << 1920 } << 1921 << 1922 to->tv_sec = ms / MSEC_PER_SEC; << 1923 to->tv_nsec = NSEC_PER_MSEC * (ms % M << 1924 << 1925 ktime_get_ts64(&now); << 1926 *to = timespec64_add_safe(now, *to); << 1927 return to; << 1928 } 1724 } 1929 1725 1930 /* !! 1726 static inline struct timespec64 ep_set_mstimeout(long ms) 1931 * autoremove_wake_function, but remove even << 1932 * know that default_wake_function/ttwu will << 1933 * woken, and in that case the ep_poll loop w << 1934 * try to reuse it. << 1935 */ << 1936 static int ep_autoremove_wake_function(struct << 1937 unsign << 1938 { 1727 { 1939 int ret = default_wake_function(wq_en !! 1728 struct timespec64 now, ts = { >> 1729 .tv_sec = ms / MSEC_PER_SEC, >> 1730 .tv_nsec = NSEC_PER_MSEC * (ms % MSEC_PER_SEC), >> 1731 }; 1940 1732 1941 /* !! 1733 ktime_get_ts64(&now); 1942 * Pairs with list_empty_careful in e !! 1734 return timespec64_add_safe(now, ts); 1943 * iterations see the cause of this w << 1944 */ << 1945 list_del_init_careful(&wq_entry->entr << 1946 return ret; << 1947 } 1735 } 1948 1736 1949 /** 1737 /** 1950 * ep_poll - Retrieves ready events, and deli !! 1738 * ep_poll - Retrieves ready events, and delivers them to the caller supplied 1951 * event buffer. 1739 * event buffer. 1952 * 1740 * 1953 * @ep: Pointer to the eventpoll context. 1741 * @ep: Pointer to the eventpoll context. 1954 * @events: Pointer to the userspace buffer w 1742 * @events: Pointer to the userspace buffer where the ready events should be 1955 * stored. 1743 * stored. 1956 * @maxevents: Size (in terms of number of ev 1744 * @maxevents: Size (in terms of number of events) of the caller event buffer. 1957 * @timeout: Maximum timeout for the ready ev 1745 * @timeout: Maximum timeout for the ready events fetch operation, in 1958 * timespec. If the timeout is zero !! 1746 * milliseconds. If the @timeout is zero, the function will not block, 1959 * while if the @timeout ptr is NUL !! 1747 * while if the @timeout is less than zero, the function will block 1960 * until at least one event has bee 1748 * until at least one event has been retrieved (or an error 1961 * occurred). 1749 * occurred). 1962 * 1750 * 1963 * Return: the number of ready events which h !! 1751 * Returns: Returns the number of ready events which have been fetched, or an 1964 * error code, in case of error. 1752 * error code, in case of error. 1965 */ 1753 */ 1966 static int ep_poll(struct eventpoll *ep, stru 1754 static int ep_poll(struct eventpoll *ep, struct epoll_event __user *events, 1967 int maxevents, struct time !! 1755 int maxevents, long timeout) 1968 { 1756 { 1969 int res, eavail, timed_out = 0; !! 1757 int res = 0, eavail, timed_out = 0; >> 1758 unsigned long flags; 1970 u64 slack = 0; 1759 u64 slack = 0; 1971 wait_queue_entry_t wait; 1760 wait_queue_entry_t wait; 1972 ktime_t expires, *to = NULL; 1761 ktime_t expires, *to = NULL; 1973 1762 1974 lockdep_assert_irqs_enabled(); !! 1763 if (timeout > 0) { >> 1764 struct timespec64 end_time = ep_set_mstimeout(timeout); 1975 1765 1976 if (timeout && (timeout->tv_sec | tim !! 1766 slack = select_estimate_accuracy(&end_time); 1977 slack = select_estimate_accur << 1978 to = &expires; 1767 to = &expires; 1979 *to = timespec64_to_ktime(*ti !! 1768 *to = timespec64_to_ktime(end_time); 1980 } else if (timeout) { !! 1769 } else if (timeout == 0) { 1981 /* 1770 /* 1982 * Avoid the unnecessary trip 1771 * Avoid the unnecessary trip to the wait queue loop, if the 1983 * caller specified a non blo 1772 * caller specified a non blocking operation. 1984 */ 1773 */ 1985 timed_out = 1; 1774 timed_out = 1; >> 1775 spin_lock_irqsave(&ep->lock, flags); >> 1776 goto check_events; 1986 } 1777 } 1987 1778 1988 /* !! 1779 fetch_events: 1989 * This call is racy: We may or may n << 1990 * to the ready list under the lock ( << 1991 * with a non-zero timeout, this thre << 1992 * lock and will add to the wait queu << 1993 * timeout, the user by definition sh << 1994 * recheck again. << 1995 */ << 1996 eavail = ep_events_available(ep); << 1997 1780 1998 while (1) { !! 1781 if (!ep_events_available(ep)) 1999 if (eavail) { !! 1782 ep_busy_loop(ep, timed_out); 2000 /* << 2001 * Try to transfer ev << 2002 * 0 events and there << 2003 * trying again in se << 2004 */ << 2005 res = ep_send_events( << 2006 if (res) << 2007 return res; << 2008 } << 2009 << 2010 if (timed_out) << 2011 return 0; << 2012 1783 2013 eavail = ep_busy_loop(ep, tim !! 1784 spin_lock_irqsave(&ep->lock, flags); 2014 if (eavail) << 2015 continue; << 2016 << 2017 if (signal_pending(current)) << 2018 return -EINTR; << 2019 1785 >> 1786 if (!ep_events_available(ep)) { 2020 /* 1787 /* 2021 * Internally init_wait() use !! 1788 * Busy poll timed out. Drop NAPI ID for now, we can add 2022 * thus wait entry is removed !! 1789 * it back in when we have moved a socket with a valid NAPI 2023 * wakeup. Why it is importan !! 1790 * ID onto the ready list. 2024 * each new wakeup will hit t << 2025 * chance to harvest new even << 2026 * lost. This is also good pe << 2027 * normal wakeup path no need << 2028 * explicitly, thus ep->lock << 2029 * event delivery. << 2030 * << 2031 * In fact, we now use an eve << 2032 * unconditionally removes, b << 2033 * entry between loop iterati << 2034 * performance issue if a pro << 2035 * threads to wake up without << 2036 */ << 2037 init_wait(&wait); << 2038 wait.func = ep_autoremove_wak << 2039 << 2040 write_lock_irq(&ep->lock); << 2041 /* << 2042 * Barrierless variant, waitq << 2043 * the same lock on wakeup ep << 2044 * is safe to avoid an explic << 2045 */ << 2046 __set_current_state(TASK_INTE << 2047 << 2048 /* << 2049 * Do the final check under t << 2050 * plays with two lists (->rd << 2051 * is always a race when both << 2052 * period of time although ev << 2053 * important. << 2054 */ 1791 */ 2055 eavail = ep_events_available( !! 1792 ep_reset_busy_poll_napi_id(ep); 2056 if (!eavail) << 2057 __add_wait_queue_excl << 2058 << 2059 write_unlock_irq(&ep->lock); << 2060 << 2061 if (!eavail) << 2062 timed_out = !schedule << 2063 << 2064 __set_current_state(TASK_RUNN << 2065 1793 2066 /* 1794 /* 2067 * We were woken up, thus go !! 1795 * We don't have any available event to return to the caller. 2068 * If timed out and still on !! 1796 * We need to sleep here, and we will be wake up by 2069 * carefully under lock, belo !! 1797 * ep_poll_callback() when events will become available. 2070 */ 1798 */ 2071 eavail = 1; !! 1799 init_waitqueue_entry(&wait, current); >> 1800 __add_wait_queue_exclusive(&ep->wq, &wait); 2072 1801 2073 if (!list_empty_careful(&wait !! 1802 for (;;) { 2074 write_lock_irq(&ep->l !! 1803 /* >> 1804 * We don't want to sleep if the ep_poll_callback() sends us >> 1805 * a wakeup in between. That's why we set the task state >> 1806 * to TASK_INTERRUPTIBLE before doing the checks. >> 1807 */ >> 1808 set_current_state(TASK_INTERRUPTIBLE); 2075 /* 1809 /* 2076 * If the thread time !! 1810 * Always short-circuit for fatal signals to allow 2077 * it means that the !! 1811 * threads to make a timely exit without the chance of 2078 * timeout expired be !! 1812 * finding more events available and fetching 2079 * Thus, when wait.en !! 1813 * repeatedly. 2080 * events. << 2081 */ 1814 */ 2082 if (timed_out) !! 1815 if (fatal_signal_pending(current)) { 2083 eavail = list !! 1816 res = -EINTR; 2084 __remove_wait_queue(& !! 1817 break; 2085 write_unlock_irq(&ep- !! 1818 } >> 1819 if (ep_events_available(ep) || timed_out) >> 1820 break; >> 1821 if (signal_pending(current)) { >> 1822 res = -EINTR; >> 1823 break; >> 1824 } >> 1825 >> 1826 spin_unlock_irqrestore(&ep->lock, flags); >> 1827 if (!schedule_hrtimeout_range(to, slack, HRTIMER_MODE_ABS)) >> 1828 timed_out = 1; >> 1829 >> 1830 spin_lock_irqsave(&ep->lock, flags); 2086 } 1831 } >> 1832 >> 1833 __remove_wait_queue(&ep->wq, &wait); >> 1834 __set_current_state(TASK_RUNNING); 2087 } 1835 } >> 1836 check_events: >> 1837 /* Is it worth to try to dig for events ? */ >> 1838 eavail = ep_events_available(ep); >> 1839 >> 1840 spin_unlock_irqrestore(&ep->lock, flags); >> 1841 >> 1842 /* >> 1843 * Try to transfer events to user space. In case we get 0 events and >> 1844 * there's still timeout left over, we go trying again in search of >> 1845 * more luck. >> 1846 */ >> 1847 if (!res && eavail && >> 1848 !(res = ep_send_events(ep, events, maxevents)) && !timed_out) >> 1849 goto fetch_events; >> 1850 >> 1851 return res; 2088 } 1852 } 2089 1853 2090 /** 1854 /** 2091 * ep_loop_check_proc - verify that adding an !! 1855 * ep_loop_check_proc - Callback function to be passed to the @ep_call_nested() 2092 * epoll structure does !! 1856 * API, to verify that adding an epoll file inside another >> 1857 * epoll structure, does not violate the constraints, in 2093 * terms of closed loops 1858 * terms of closed loops, or too deep chains (which can 2094 * result in excessive s 1859 * result in excessive stack usage). 2095 * 1860 * 2096 * @ep: the &struct eventpoll to be currently !! 1861 * @priv: Pointer to the epoll file to be currently checked. 2097 * @depth: Current depth of the path being ch !! 1862 * @cookie: Original cookie for this call. This is the top-of-the-chain epoll >> 1863 * data structure pointer. >> 1864 * @call_nests: Current dept of the @ep_call_nested() call stack. 2098 * 1865 * 2099 * Return: %zero if adding the epoll @file in !! 1866 * Returns: Returns zero if adding the epoll @file inside current epoll 2100 * structure @ep does not violate th !! 1867 * structure @ep does not violate the constraints, or -1 otherwise. 2101 */ 1868 */ 2102 static int ep_loop_check_proc(struct eventpol !! 1869 static int ep_loop_check_proc(void *priv, void *cookie, int call_nests) 2103 { 1870 { 2104 int error = 0; 1871 int error = 0; >> 1872 struct file *file = priv; >> 1873 struct eventpoll *ep = file->private_data; >> 1874 struct eventpoll *ep_tovisit; 2105 struct rb_node *rbp; 1875 struct rb_node *rbp; 2106 struct epitem *epi; 1876 struct epitem *epi; 2107 1877 2108 mutex_lock_nested(&ep->mtx, depth + 1 !! 1878 mutex_lock_nested(&ep->mtx, call_nests + 1); 2109 ep->gen = loop_check_gen; 1879 ep->gen = loop_check_gen; 2110 for (rbp = rb_first_cached(&ep->rbr); 1880 for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) { 2111 epi = rb_entry(rbp, struct ep 1881 epi = rb_entry(rbp, struct epitem, rbn); 2112 if (unlikely(is_file_epoll(ep 1882 if (unlikely(is_file_epoll(epi->ffd.file))) { 2113 struct eventpoll *ep_ << 2114 ep_tovisit = epi->ffd 1883 ep_tovisit = epi->ffd.file->private_data; 2115 if (ep_tovisit->gen = 1884 if (ep_tovisit->gen == loop_check_gen) 2116 continue; 1885 continue; 2117 if (ep_tovisit == ins !! 1886 error = ep_call_nested(&poll_loop_ncalls, EP_MAX_NESTS, 2118 error = -1; !! 1887 ep_loop_check_proc, epi->ffd.file, 2119 else !! 1888 ep_tovisit, current); 2120 error = ep_lo << 2121 if (error != 0) 1889 if (error != 0) 2122 break; 1890 break; 2123 } else { 1891 } else { 2124 /* 1892 /* 2125 * If we've reached a 1893 * If we've reached a file that is not associated with 2126 * an ep, then we nee 1894 * an ep, then we need to check if the newly added 2127 * links are going to 1895 * links are going to add too many wakeup paths. We do 2128 * this by adding it 1896 * this by adding it to the tfile_check_list, if it's 2129 * not already there, 1897 * not already there, and calling reverse_path_check() 2130 * during ep_insert() 1898 * during ep_insert(). 2131 */ 1899 */ 2132 list_file(epi->ffd.fi !! 1900 if (list_empty(&epi->ffd.file->f_tfile_llink)) { >> 1901 if (get_file_rcu(epi->ffd.file)) >> 1902 list_add(&epi->ffd.file->f_tfile_llink, >> 1903 &tfile_check_list); >> 1904 } 2133 } 1905 } 2134 } 1906 } 2135 mutex_unlock(&ep->mtx); 1907 mutex_unlock(&ep->mtx); 2136 1908 2137 return error; 1909 return error; 2138 } 1910 } 2139 1911 2140 /** 1912 /** 2141 * ep_loop_check - Performs a check to verify !! 1913 * ep_loop_check - Performs a check to verify that adding an epoll file (@file) 2142 * into another epoll file (r !! 1914 * another epoll file (represented by @ep) does not create 2143 * closed loops or too deep c 1915 * closed loops or too deep chains. 2144 * 1916 * 2145 * @ep: Pointer to the epoll we are inserting !! 1917 * @ep: Pointer to the epoll private data structure. 2146 * @to: Pointer to the epoll to be inserted. !! 1918 * @file: Pointer to the epoll file to be checked. 2147 * 1919 * 2148 * Return: %zero if adding the epoll @to insi !! 1920 * Returns: Returns zero if adding the epoll @file inside current epoll 2149 * does not violate the constraints, or %-1 o !! 1921 * structure @ep does not violate the constraints, or -1 otherwise. 2150 */ 1922 */ 2151 static int ep_loop_check(struct eventpoll *ep !! 1923 static int ep_loop_check(struct eventpoll *ep, struct file *file) 2152 { 1924 { 2153 inserting_into = ep; !! 1925 return ep_call_nested(&poll_loop_ncalls, EP_MAX_NESTS, 2154 return ep_loop_check_proc(to, 0); !! 1926 ep_loop_check_proc, file, ep, current); 2155 } 1927 } 2156 1928 2157 static void clear_tfile_check_list(void) 1929 static void clear_tfile_check_list(void) 2158 { 1930 { 2159 rcu_read_lock(); !! 1931 struct file *file; 2160 while (tfile_check_list != EP_UNACTIV !! 1932 2161 struct epitems_head *head = t !! 1933 /* first clear the tfile_check_list */ 2162 tfile_check_list = head->next !! 1934 while (!list_empty(&tfile_check_list)) { 2163 unlist_file(head); !! 1935 file = list_first_entry(&tfile_check_list, struct file, >> 1936 f_tfile_llink); >> 1937 list_del_init(&file->f_tfile_llink); >> 1938 fput(file); 2164 } 1939 } 2165 rcu_read_unlock(); !! 1940 INIT_LIST_HEAD(&tfile_check_list); 2166 } 1941 } 2167 1942 2168 /* 1943 /* 2169 * Open an eventpoll file descriptor. 1944 * Open an eventpoll file descriptor. 2170 */ 1945 */ 2171 static int do_epoll_create(int flags) !! 1946 SYSCALL_DEFINE1(epoll_create1, int, flags) 2172 { 1947 { 2173 int error, fd; 1948 int error, fd; 2174 struct eventpoll *ep = NULL; 1949 struct eventpoll *ep = NULL; 2175 struct file *file; 1950 struct file *file; 2176 1951 2177 /* Check the EPOLL_* constant for con 1952 /* Check the EPOLL_* constant for consistency. */ 2178 BUILD_BUG_ON(EPOLL_CLOEXEC != O_CLOEX 1953 BUILD_BUG_ON(EPOLL_CLOEXEC != O_CLOEXEC); 2179 1954 2180 if (flags & ~EPOLL_CLOEXEC) 1955 if (flags & ~EPOLL_CLOEXEC) 2181 return -EINVAL; 1956 return -EINVAL; 2182 /* 1957 /* 2183 * Create the internal data structure 1958 * Create the internal data structure ("struct eventpoll"). 2184 */ 1959 */ 2185 error = ep_alloc(&ep); 1960 error = ep_alloc(&ep); 2186 if (error < 0) 1961 if (error < 0) 2187 return error; 1962 return error; 2188 /* 1963 /* 2189 * Creates all the items needed to se 1964 * Creates all the items needed to setup an eventpoll file. That is, 2190 * a file structure and a free file d 1965 * a file structure and a free file descriptor. 2191 */ 1966 */ 2192 fd = get_unused_fd_flags(O_RDWR | (fl 1967 fd = get_unused_fd_flags(O_RDWR | (flags & O_CLOEXEC)); 2193 if (fd < 0) { 1968 if (fd < 0) { 2194 error = fd; 1969 error = fd; 2195 goto out_free_ep; 1970 goto out_free_ep; 2196 } 1971 } 2197 file = anon_inode_getfile("[eventpoll 1972 file = anon_inode_getfile("[eventpoll]", &eventpoll_fops, ep, 2198 O_RDWR | (fl 1973 O_RDWR | (flags & O_CLOEXEC)); 2199 if (IS_ERR(file)) { 1974 if (IS_ERR(file)) { 2200 error = PTR_ERR(file); 1975 error = PTR_ERR(file); 2201 goto out_free_fd; 1976 goto out_free_fd; 2202 } 1977 } 2203 #ifdef CONFIG_NET_RX_BUSY_POLL << 2204 ep->busy_poll_usecs = 0; << 2205 ep->busy_poll_budget = 0; << 2206 ep->prefer_busy_poll = false; << 2207 #endif << 2208 ep->file = file; 1978 ep->file = file; 2209 fd_install(fd, file); 1979 fd_install(fd, file); 2210 return fd; 1980 return fd; 2211 1981 2212 out_free_fd: 1982 out_free_fd: 2213 put_unused_fd(fd); 1983 put_unused_fd(fd); 2214 out_free_ep: 1984 out_free_ep: 2215 ep_clear_and_put(ep); !! 1985 ep_free(ep); 2216 return error; 1986 return error; 2217 } 1987 } 2218 1988 2219 SYSCALL_DEFINE1(epoll_create1, int, flags) << 2220 { << 2221 return do_epoll_create(flags); << 2222 } << 2223 << 2224 SYSCALL_DEFINE1(epoll_create, int, size) 1989 SYSCALL_DEFINE1(epoll_create, int, size) 2225 { 1990 { 2226 if (size <= 0) 1991 if (size <= 0) 2227 return -EINVAL; 1992 return -EINVAL; 2228 1993 2229 return do_epoll_create(0); !! 1994 return sys_epoll_create1(0); 2230 } << 2231 << 2232 #ifdef CONFIG_PM_SLEEP << 2233 static inline void ep_take_care_of_epollwakeu << 2234 { << 2235 if ((epev->events & EPOLLWAKEUP) && ! << 2236 epev->events &= ~EPOLLWAKEUP; << 2237 } << 2238 #else << 2239 static inline void ep_take_care_of_epollwakeu << 2240 { << 2241 epev->events &= ~EPOLLWAKEUP; << 2242 } << 2243 #endif << 2244 << 2245 static inline int epoll_mutex_lock(struct mut << 2246 bool nonbl << 2247 { << 2248 if (!nonblock) { << 2249 mutex_lock_nested(mutex, dept << 2250 return 0; << 2251 } << 2252 if (mutex_trylock(mutex)) << 2253 return 0; << 2254 return -EAGAIN; << 2255 } 1995 } 2256 1996 2257 int do_epoll_ctl(int epfd, int op, int fd, st !! 1997 /* 2258 bool nonblock) !! 1998 * The following function implements the controller interface for >> 1999 * the eventpoll file that enables the insertion/removal/change of >> 2000 * file descriptors inside the interest set. >> 2001 */ >> 2002 SYSCALL_DEFINE4(epoll_ctl, int, epfd, int, op, int, fd, >> 2003 struct epoll_event __user *, event) 2259 { 2004 { 2260 int error; 2005 int error; 2261 int full_check = 0; 2006 int full_check = 0; 2262 struct fd f, tf; 2007 struct fd f, tf; 2263 struct eventpoll *ep; 2008 struct eventpoll *ep; 2264 struct epitem *epi; 2009 struct epitem *epi; >> 2010 struct epoll_event epds; 2265 struct eventpoll *tep = NULL; 2011 struct eventpoll *tep = NULL; 2266 2012 >> 2013 error = -EFAULT; >> 2014 if (ep_op_has_event(op) && >> 2015 copy_from_user(&epds, event, sizeof(struct epoll_event))) >> 2016 goto error_return; >> 2017 2267 error = -EBADF; 2018 error = -EBADF; 2268 f = fdget(epfd); 2019 f = fdget(epfd); 2269 if (!f.file) 2020 if (!f.file) 2270 goto error_return; 2021 goto error_return; 2271 2022 2272 /* Get the "struct file *" for the ta 2023 /* Get the "struct file *" for the target file */ 2273 tf = fdget(fd); 2024 tf = fdget(fd); 2274 if (!tf.file) 2025 if (!tf.file) 2275 goto error_fput; 2026 goto error_fput; 2276 2027 2277 /* The target file descriptor must su 2028 /* The target file descriptor must support poll */ 2278 error = -EPERM; 2029 error = -EPERM; 2279 if (!file_can_poll(tf.file)) !! 2030 if (!tf.file->f_op->poll) 2280 goto error_tgt_fput; 2031 goto error_tgt_fput; 2281 2032 2282 /* Check if EPOLLWAKEUP is allowed */ 2033 /* Check if EPOLLWAKEUP is allowed */ 2283 if (ep_op_has_event(op)) 2034 if (ep_op_has_event(op)) 2284 ep_take_care_of_epollwakeup(e !! 2035 ep_take_care_of_epollwakeup(&epds); 2285 2036 2286 /* 2037 /* 2287 * We have to check that the file str 2038 * We have to check that the file structure underneath the file descriptor 2288 * the user passed to us _is_ an even 2039 * the user passed to us _is_ an eventpoll file. And also we do not permit 2289 * adding an epoll file descriptor in 2040 * adding an epoll file descriptor inside itself. 2290 */ 2041 */ 2291 error = -EINVAL; 2042 error = -EINVAL; 2292 if (f.file == tf.file || !is_file_epo 2043 if (f.file == tf.file || !is_file_epoll(f.file)) 2293 goto error_tgt_fput; 2044 goto error_tgt_fput; 2294 2045 2295 /* 2046 /* 2296 * epoll adds to the wakeup queue at 2047 * epoll adds to the wakeup queue at EPOLL_CTL_ADD time only, 2297 * so EPOLLEXCLUSIVE is not allowed f 2048 * so EPOLLEXCLUSIVE is not allowed for a EPOLL_CTL_MOD operation. 2298 * Also, we do not currently supporte 2049 * Also, we do not currently supported nested exclusive wakeups. 2299 */ 2050 */ 2300 if (ep_op_has_event(op) && (epds->eve !! 2051 if (ep_op_has_event(op) && (epds.events & EPOLLEXCLUSIVE)) { 2301 if (op == EPOLL_CTL_MOD) 2052 if (op == EPOLL_CTL_MOD) 2302 goto error_tgt_fput; 2053 goto error_tgt_fput; 2303 if (op == EPOLL_CTL_ADD && (i 2054 if (op == EPOLL_CTL_ADD && (is_file_epoll(tf.file) || 2304 (epds->events !! 2055 (epds.events & ~EPOLLEXCLUSIVE_OK_BITS))) 2305 goto error_tgt_fput; 2056 goto error_tgt_fput; 2306 } 2057 } 2307 2058 2308 /* 2059 /* 2309 * At this point it is safe to assume 2060 * At this point it is safe to assume that the "private_data" contains 2310 * our own data structure. 2061 * our own data structure. 2311 */ 2062 */ 2312 ep = f.file->private_data; 2063 ep = f.file->private_data; 2313 2064 2314 /* 2065 /* 2315 * When we insert an epoll file descr !! 2066 * When we insert an epoll file descriptor, inside another epoll file 2316 * descriptor, there is the chance of !! 2067 * descriptor, there is the change of creating closed loops, which are 2317 * better be handled here, than in mo 2068 * better be handled here, than in more critical paths. While we are 2318 * checking for loops we also determi 2069 * checking for loops we also determine the list of files reachable 2319 * and hang them on the tfile_check_l 2070 * and hang them on the tfile_check_list, so we can check that we 2320 * haven't created too many possible 2071 * haven't created too many possible wakeup paths. 2321 * 2072 * 2322 * We do not need to take the global 2073 * We do not need to take the global 'epumutex' on EPOLL_CTL_ADD when 2323 * the epoll file descriptor is attac 2074 * the epoll file descriptor is attaching directly to a wakeup source, 2324 * unless the epoll file descriptor i 2075 * unless the epoll file descriptor is nested. The purpose of taking the 2325 * 'epnested_mutex' on add is to prev !! 2076 * 'epmutex' on add is to prevent complex toplogies such as loops and 2326 * deep wakeup paths from forming in 2077 * deep wakeup paths from forming in parallel through multiple 2327 * EPOLL_CTL_ADD operations. 2078 * EPOLL_CTL_ADD operations. 2328 */ 2079 */ 2329 error = epoll_mutex_lock(&ep->mtx, 0, !! 2080 mutex_lock_nested(&ep->mtx, 0); 2330 if (error) << 2331 goto error_tgt_fput; << 2332 if (op == EPOLL_CTL_ADD) { 2081 if (op == EPOLL_CTL_ADD) { 2333 if (READ_ONCE(f.file->f_ep) | !! 2082 if (!list_empty(&f.file->f_ep_links) || 2334 is_file_epoll(tf.file)) { !! 2083 ep->gen == loop_check_gen || 2335 mutex_unlock(&ep->mtx !! 2084 is_file_epoll(tf.file)) { 2336 error = epoll_mutex_l << 2337 if (error) << 2338 goto error_tg << 2339 loop_check_gen++; << 2340 full_check = 1; 2085 full_check = 1; >> 2086 mutex_unlock(&ep->mtx); >> 2087 mutex_lock(&epmutex); 2341 if (is_file_epoll(tf. 2088 if (is_file_epoll(tf.file)) { 2342 tep = tf.file << 2343 error = -ELOO 2089 error = -ELOOP; 2344 if (ep_loop_c !! 2090 if (ep_loop_check(ep, tf.file) != 0) 2345 goto 2091 goto error_tgt_fput; >> 2092 } else { >> 2093 get_file(tf.file); >> 2094 list_add(&tf.file->f_tfile_llink, >> 2095 &tfile_check_list); >> 2096 } >> 2097 mutex_lock_nested(&ep->mtx, 0); >> 2098 if (is_file_epoll(tf.file)) { >> 2099 tep = tf.file->private_data; >> 2100 mutex_lock_nested(&tep->mtx, 1); 2346 } 2101 } 2347 error = epoll_mutex_l << 2348 if (error) << 2349 goto error_tg << 2350 } 2102 } 2351 } 2103 } 2352 2104 2353 /* 2105 /* 2354 * Try to lookup the file inside our !! 2106 * Try to lookup the file inside our RB tree, Since we grabbed "mtx" 2355 * above, we can be sure to be able t 2107 * above, we can be sure to be able to use the item looked up by 2356 * ep_find() till we release the mute 2108 * ep_find() till we release the mutex. 2357 */ 2109 */ 2358 epi = ep_find(ep, tf.file, fd); 2110 epi = ep_find(ep, tf.file, fd); 2359 2111 2360 error = -EINVAL; 2112 error = -EINVAL; 2361 switch (op) { 2113 switch (op) { 2362 case EPOLL_CTL_ADD: 2114 case EPOLL_CTL_ADD: 2363 if (!epi) { 2115 if (!epi) { 2364 epds->events |= EPOLL !! 2116 epds.events |= POLLERR | POLLHUP; 2365 error = ep_insert(ep, !! 2117 error = ep_insert(ep, &epds, tf.file, fd, full_check); 2366 } else 2118 } else 2367 error = -EEXIST; 2119 error = -EEXIST; 2368 break; 2120 break; 2369 case EPOLL_CTL_DEL: 2121 case EPOLL_CTL_DEL: 2370 if (epi) { !! 2122 if (epi) 2371 /* !! 2123 error = ep_remove(ep, epi); 2372 * The eventpoll itse !! 2124 else 2373 * can't go to zero h << 2374 */ << 2375 ep_remove_safe(ep, ep << 2376 error = 0; << 2377 } else { << 2378 error = -ENOENT; 2125 error = -ENOENT; 2379 } << 2380 break; 2126 break; 2381 case EPOLL_CTL_MOD: 2127 case EPOLL_CTL_MOD: 2382 if (epi) { 2128 if (epi) { 2383 if (!(epi->event.even 2129 if (!(epi->event.events & EPOLLEXCLUSIVE)) { 2384 epds->events !! 2130 epds.events |= POLLERR | POLLHUP; 2385 error = ep_mo !! 2131 error = ep_modify(ep, epi, &epds); 2386 } 2132 } 2387 } else 2133 } else 2388 error = -ENOENT; 2134 error = -ENOENT; 2389 break; 2135 break; 2390 } 2136 } >> 2137 if (tep != NULL) >> 2138 mutex_unlock(&tep->mtx); 2391 mutex_unlock(&ep->mtx); 2139 mutex_unlock(&ep->mtx); 2392 2140 2393 error_tgt_fput: 2141 error_tgt_fput: 2394 if (full_check) { 2142 if (full_check) { 2395 clear_tfile_check_list(); 2143 clear_tfile_check_list(); 2396 loop_check_gen++; 2144 loop_check_gen++; 2397 mutex_unlock(&epnested_mutex) !! 2145 mutex_unlock(&epmutex); 2398 } 2146 } 2399 2147 2400 fdput(tf); 2148 fdput(tf); 2401 error_fput: 2149 error_fput: 2402 fdput(f); 2150 fdput(f); 2403 error_return: 2151 error_return: 2404 2152 2405 return error; 2153 return error; 2406 } 2154 } 2407 2155 2408 /* 2156 /* 2409 * The following function implements the cont << 2410 * the eventpoll file that enables the insert << 2411 * file descriptors inside the interest set. << 2412 */ << 2413 SYSCALL_DEFINE4(epoll_ctl, int, epfd, int, op << 2414 struct epoll_event __user *, << 2415 { << 2416 struct epoll_event epds; << 2417 << 2418 if (ep_op_has_event(op) && << 2419 copy_from_user(&epds, event, size << 2420 return -EFAULT; << 2421 << 2422 return do_epoll_ctl(epfd, op, fd, &ep << 2423 } << 2424 << 2425 /* << 2426 * Implement the event wait interface for the 2157 * Implement the event wait interface for the eventpoll file. It is the kernel 2427 * part of the user space epoll_wait(2). 2158 * part of the user space epoll_wait(2). 2428 */ 2159 */ 2429 static int do_epoll_wait(int epfd, struct epo !! 2160 SYSCALL_DEFINE4(epoll_wait, int, epfd, struct epoll_event __user *, events, 2430 int maxevents, struc !! 2161 int, maxevents, int, timeout) 2431 { 2162 { 2432 int error; 2163 int error; 2433 struct fd f; 2164 struct fd f; 2434 struct eventpoll *ep; 2165 struct eventpoll *ep; 2435 2166 2436 /* The maximum number of event must b 2167 /* The maximum number of event must be greater than zero */ 2437 if (maxevents <= 0 || maxevents > EP_ 2168 if (maxevents <= 0 || maxevents > EP_MAX_EVENTS) 2438 return -EINVAL; 2169 return -EINVAL; 2439 2170 2440 /* Verify that the area passed by the 2171 /* Verify that the area passed by the user is writeable */ 2441 if (!access_ok(events, maxevents * si !! 2172 if (!access_ok(VERIFY_WRITE, events, maxevents * sizeof(struct epoll_event))) 2442 return -EFAULT; 2173 return -EFAULT; 2443 2174 2444 /* Get the "struct file *" for the ev 2175 /* Get the "struct file *" for the eventpoll file */ 2445 f = fdget(epfd); 2176 f = fdget(epfd); 2446 if (!f.file) 2177 if (!f.file) 2447 return -EBADF; 2178 return -EBADF; 2448 2179 2449 /* 2180 /* 2450 * We have to check that the file str 2181 * We have to check that the file structure underneath the fd 2451 * the user passed to us _is_ an even 2182 * the user passed to us _is_ an eventpoll file. 2452 */ 2183 */ 2453 error = -EINVAL; 2184 error = -EINVAL; 2454 if (!is_file_epoll(f.file)) 2185 if (!is_file_epoll(f.file)) 2455 goto error_fput; 2186 goto error_fput; 2456 2187 2457 /* 2188 /* 2458 * At this point it is safe to assume 2189 * At this point it is safe to assume that the "private_data" contains 2459 * our own data structure. 2190 * our own data structure. 2460 */ 2191 */ 2461 ep = f.file->private_data; 2192 ep = f.file->private_data; 2462 2193 2463 /* Time to fish for events ... */ 2194 /* Time to fish for events ... */ 2464 error = ep_poll(ep, events, maxevents !! 2195 error = ep_poll(ep, events, maxevents, timeout); 2465 2196 2466 error_fput: 2197 error_fput: 2467 fdput(f); 2198 fdput(f); 2468 return error; 2199 return error; 2469 } 2200 } 2470 2201 2471 SYSCALL_DEFINE4(epoll_wait, int, epfd, struct << 2472 int, maxevents, int, timeout) << 2473 { << 2474 struct timespec64 to; << 2475 << 2476 return do_epoll_wait(epfd, events, ma << 2477 ep_timeout_to_ti << 2478 } << 2479 << 2480 /* 2202 /* 2481 * Implement the event wait interface for the 2203 * Implement the event wait interface for the eventpoll file. It is the kernel 2482 * part of the user space epoll_pwait(2). 2204 * part of the user space epoll_pwait(2). 2483 */ 2205 */ 2484 static int do_epoll_pwait(int epfd, struct ep !! 2206 SYSCALL_DEFINE6(epoll_pwait, int, epfd, struct epoll_event __user *, events, 2485 int maxevents, stru !! 2207 int, maxevents, int, timeout, const sigset_t __user *, sigmask, 2486 const sigset_t __us !! 2208 size_t, sigsetsize) 2487 { 2209 { 2488 int error; 2210 int error; >> 2211 sigset_t ksigmask, sigsaved; 2489 2212 2490 /* 2213 /* 2491 * If the caller wants a certain sign 2214 * If the caller wants a certain signal mask to be set during the wait, 2492 * we apply it here. 2215 * we apply it here. 2493 */ 2216 */ 2494 error = set_user_sigmask(sigmask, sig !! 2217 if (sigmask) { 2495 if (error) !! 2218 if (sigsetsize != sizeof(sigset_t)) 2496 return error; !! 2219 return -EINVAL; 2497 !! 2220 if (copy_from_user(&ksigmask, sigmask, sizeof(ksigmask))) 2498 error = do_epoll_wait(epfd, events, m !! 2221 return -EFAULT; 2499 !! 2222 sigsaved = current->blocked; 2500 restore_saved_sigmask_unless(error == !! 2223 set_current_blocked(&ksigmask); 2501 !! 2224 } 2502 return error; << 2503 } << 2504 << 2505 SYSCALL_DEFINE6(epoll_pwait, int, epfd, struc << 2506 int, maxevents, int, timeout, << 2507 size_t, sigsetsize) << 2508 { << 2509 struct timespec64 to; << 2510 << 2511 return do_epoll_pwait(epfd, events, m << 2512 ep_timeout_to_t << 2513 sigmask, sigset << 2514 } << 2515 2225 2516 SYSCALL_DEFINE6(epoll_pwait2, int, epfd, stru !! 2226 error = sys_epoll_wait(epfd, events, maxevents, timeout); 2517 int, maxevents, const struct << 2518 const sigset_t __user *, sigm << 2519 { << 2520 struct timespec64 ts, *to = NULL; << 2521 2227 2522 if (timeout) { !! 2228 /* 2523 if (get_timespec64(&ts, timeo !! 2229 * If we changed the signal mask, we need to restore the original one. 2524 return -EFAULT; !! 2230 * In case we've got a signal while waiting, we do not restore the 2525 to = &ts; !! 2231 * signal mask yet, and we allow do_signal() to deliver the signal on 2526 if (poll_select_set_timeout(t !! 2232 * the way back to userspace, before the signal mask is restored. 2527 return -EINVAL; !! 2233 */ >> 2234 if (sigmask) { >> 2235 if (error == -EINTR) { >> 2236 memcpy(¤t->saved_sigmask, &sigsaved, >> 2237 sizeof(sigsaved)); >> 2238 set_restore_sigmask(); >> 2239 } else >> 2240 set_current_blocked(&sigsaved); 2528 } 2241 } 2529 2242 2530 return do_epoll_pwait(epfd, events, m !! 2243 return error; 2531 sigmask, sigset << 2532 } 2244 } 2533 2245 2534 #ifdef CONFIG_COMPAT 2246 #ifdef CONFIG_COMPAT 2535 static int do_compat_epoll_pwait(int epfd, st !! 2247 COMPAT_SYSCALL_DEFINE6(epoll_pwait, int, epfd, 2536 int maxevent !! 2248 struct epoll_event __user *, events, 2537 const compat !! 2249 int, maxevents, int, timeout, 2538 compat_size_ !! 2250 const compat_sigset_t __user *, sigmask, >> 2251 compat_size_t, sigsetsize) 2539 { 2252 { 2540 long err; 2253 long err; >> 2254 compat_sigset_t csigmask; >> 2255 sigset_t ksigmask, sigsaved; 2541 2256 2542 /* 2257 /* 2543 * If the caller wants a certain sign 2258 * If the caller wants a certain signal mask to be set during the wait, 2544 * we apply it here. 2259 * we apply it here. 2545 */ 2260 */ 2546 err = set_compat_user_sigmask(sigmask !! 2261 if (sigmask) { 2547 if (err) !! 2262 if (sigsetsize != sizeof(compat_sigset_t)) 2548 return err; !! 2263 return -EINVAL; 2549 !! 2264 if (copy_from_user(&csigmask, sigmask, sizeof(csigmask))) 2550 err = do_epoll_wait(epfd, events, max !! 2265 return -EFAULT; 2551 !! 2266 sigset_from_compat(&ksigmask, &csigmask); 2552 restore_saved_sigmask_unless(err == - !! 2267 sigsaved = current->blocked; 2553 !! 2268 set_current_blocked(&ksigmask); 2554 return err; !! 2269 } 2555 } << 2556 << 2557 COMPAT_SYSCALL_DEFINE6(epoll_pwait, int, epfd << 2558 struct epoll_event __u << 2559 int, maxevents, int, t << 2560 const compat_sigset_t << 2561 compat_size_t, sigsets << 2562 { << 2563 struct timespec64 to; << 2564 << 2565 return do_compat_epoll_pwait(epfd, ev << 2566 ep_timeo << 2567 sigmask, << 2568 } << 2569 2270 2570 COMPAT_SYSCALL_DEFINE6(epoll_pwait2, int, epf !! 2271 err = sys_epoll_wait(epfd, events, maxevents, timeout); 2571 struct epoll_event __u << 2572 int, maxevents, << 2573 const struct __kernel_ << 2574 const compat_sigset_t << 2575 compat_size_t, sigsets << 2576 { << 2577 struct timespec64 ts, *to = NULL; << 2578 2272 2579 if (timeout) { !! 2273 /* 2580 if (get_timespec64(&ts, timeo !! 2274 * If we changed the signal mask, we need to restore the original one. 2581 return -EFAULT; !! 2275 * In case we've got a signal while waiting, we do not restore the 2582 to = &ts; !! 2276 * signal mask yet, and we allow do_signal() to deliver the signal on 2583 if (poll_select_set_timeout(t !! 2277 * the way back to userspace, before the signal mask is restored. 2584 return -EINVAL; !! 2278 */ >> 2279 if (sigmask) { >> 2280 if (err == -EINTR) { >> 2281 memcpy(¤t->saved_sigmask, &sigsaved, >> 2282 sizeof(sigsaved)); >> 2283 set_restore_sigmask(); >> 2284 } else >> 2285 set_current_blocked(&sigsaved); 2585 } 2286 } 2586 2287 2587 return do_compat_epoll_pwait(epfd, ev !! 2288 return err; 2588 sigmask, << 2589 } 2289 } 2590 << 2591 #endif 2290 #endif 2592 2291 2593 static int __init eventpoll_init(void) 2292 static int __init eventpoll_init(void) 2594 { 2293 { 2595 struct sysinfo si; 2294 struct sysinfo si; 2596 2295 2597 si_meminfo(&si); 2296 si_meminfo(&si); 2598 /* 2297 /* 2599 * Allows top 4% of lomem to be alloc 2298 * Allows top 4% of lomem to be allocated for epoll watches (per user). 2600 */ 2299 */ 2601 max_user_watches = (((si.totalram - s 2300 max_user_watches = (((si.totalram - si.totalhigh) / 25) << PAGE_SHIFT) / 2602 EP_ITEM_COST; 2301 EP_ITEM_COST; 2603 BUG_ON(max_user_watches < 0); 2302 BUG_ON(max_user_watches < 0); 2604 2303 2605 /* 2304 /* >> 2305 * Initialize the structure used to perform epoll file descriptor >> 2306 * inclusion loops checks. >> 2307 */ >> 2308 ep_nested_calls_init(&poll_loop_ncalls); >> 2309 >> 2310 /* Initialize the structure used to perform safe poll wait head wake ups */ >> 2311 ep_nested_calls_init(&poll_safewake_ncalls); >> 2312 >> 2313 /* Initialize the structure used to perform file's f_op->poll() calls */ >> 2314 ep_nested_calls_init(&poll_readywalk_ncalls); >> 2315 >> 2316 /* 2606 * We can have many thousands of epit 2317 * We can have many thousands of epitems, so prevent this from 2607 * using an extra cache line on 64-bi 2318 * using an extra cache line on 64-bit (and smaller) CPUs 2608 */ 2319 */ 2609 BUILD_BUG_ON(sizeof(void *) <= 8 && s 2320 BUILD_BUG_ON(sizeof(void *) <= 8 && sizeof(struct epitem) > 128); 2610 2321 2611 /* Allocates slab cache used to alloc 2322 /* Allocates slab cache used to allocate "struct epitem" items */ 2612 epi_cache = kmem_cache_create("eventp 2323 epi_cache = kmem_cache_create("eventpoll_epi", sizeof(struct epitem), 2613 0, SLAB_HWCACHE_ALIGN !! 2324 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL); 2614 2325 2615 /* Allocates slab cache used to alloc 2326 /* Allocates slab cache used to allocate "struct eppoll_entry" */ 2616 pwq_cache = kmem_cache_create("eventp 2327 pwq_cache = kmem_cache_create("eventpoll_pwq", 2617 sizeof(struct eppoll_entry), !! 2328 sizeof(struct eppoll_entry), 0, SLAB_PANIC, NULL); 2618 epoll_sysctls_init(); << 2619 << 2620 ephead_cache = kmem_cache_create("ep_ << 2621 sizeof(struct epitems_head), << 2622 2329 2623 return 0; 2330 return 0; 2624 } 2331 } 2625 fs_initcall(eventpoll_init); 2332 fs_initcall(eventpoll_init); 2626 2333
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.