1 // SPDX-License-Identifier: GPL-2.0-or-later << 2 /* 1 /* 3 * fs/eventpoll.c (Efficient event retrieval 2 * fs/eventpoll.c (Efficient event retrieval implementation) 4 * Copyright (C) 2001,...,2009 Davide Libenz 3 * Copyright (C) 2001,...,2009 Davide Libenzi 5 * 4 * >> 5 * This program is free software; you can redistribute it and/or modify >> 6 * it under the terms of the GNU General Public License as published by >> 7 * the Free Software Foundation; either version 2 of the License, or >> 8 * (at your option) any later version. >> 9 * 6 * Davide Libenzi <davidel@xmailserver.org> 10 * Davide Libenzi <davidel@xmailserver.org> >> 11 * 7 */ 12 */ 8 13 9 #include <linux/init.h> 14 #include <linux/init.h> 10 #include <linux/kernel.h> 15 #include <linux/kernel.h> 11 #include <linux/sched/signal.h> 16 #include <linux/sched/signal.h> 12 #include <linux/fs.h> 17 #include <linux/fs.h> 13 #include <linux/file.h> 18 #include <linux/file.h> 14 #include <linux/signal.h> 19 #include <linux/signal.h> 15 #include <linux/errno.h> 20 #include <linux/errno.h> 16 #include <linux/mm.h> 21 #include <linux/mm.h> 17 #include <linux/slab.h> 22 #include <linux/slab.h> 18 #include <linux/poll.h> 23 #include <linux/poll.h> 19 #include <linux/string.h> 24 #include <linux/string.h> 20 #include <linux/list.h> 25 #include <linux/list.h> 21 #include <linux/hash.h> 26 #include <linux/hash.h> 22 #include <linux/spinlock.h> 27 #include <linux/spinlock.h> 23 #include <linux/syscalls.h> 28 #include <linux/syscalls.h> 24 #include <linux/rbtree.h> 29 #include <linux/rbtree.h> 25 #include <linux/wait.h> 30 #include <linux/wait.h> 26 #include <linux/eventpoll.h> 31 #include <linux/eventpoll.h> 27 #include <linux/mount.h> 32 #include <linux/mount.h> 28 #include <linux/bitops.h> 33 #include <linux/bitops.h> 29 #include <linux/mutex.h> 34 #include <linux/mutex.h> 30 #include <linux/anon_inodes.h> 35 #include <linux/anon_inodes.h> 31 #include <linux/device.h> 36 #include <linux/device.h> 32 #include <linux/uaccess.h> 37 #include <linux/uaccess.h> 33 #include <asm/io.h> 38 #include <asm/io.h> 34 #include <asm/mman.h> 39 #include <asm/mman.h> 35 #include <linux/atomic.h> 40 #include <linux/atomic.h> 36 #include <linux/proc_fs.h> 41 #include <linux/proc_fs.h> 37 #include <linux/seq_file.h> 42 #include <linux/seq_file.h> 38 #include <linux/compat.h> 43 #include <linux/compat.h> 39 #include <linux/rculist.h> 44 #include <linux/rculist.h> 40 #include <linux/capability.h> << 41 #include <net/busy_poll.h> 45 #include <net/busy_poll.h> 42 46 43 /* 47 /* 44 * LOCKING: 48 * LOCKING: 45 * There are three level of locking required b 49 * There are three level of locking required by epoll : 46 * 50 * 47 * 1) epnested_mutex (mutex) !! 51 * 1) epmutex (mutex) 48 * 2) ep->mtx (mutex) 52 * 2) ep->mtx (mutex) 49 * 3) ep->lock (rwlock) !! 53 * 3) ep->lock (spinlock) 50 * 54 * 51 * The acquire order is the one listed above, 55 * The acquire order is the one listed above, from 1 to 3. 52 * We need a rwlock (ep->lock) because we mani !! 56 * We need a spinlock (ep->lock) because we manipulate objects 53 * from inside the poll callback, that might b 57 * from inside the poll callback, that might be triggered from 54 * a wake_up() that in turn might be called fr 58 * a wake_up() that in turn might be called from IRQ context. 55 * So we can't sleep inside the poll callback 59 * So we can't sleep inside the poll callback and hence we need 56 * a spinlock. During the event transfer loop 60 * a spinlock. During the event transfer loop (from kernel to 57 * user space) we could end up sleeping due a 61 * user space) we could end up sleeping due a copy_to_user(), so 58 * we need a lock that will allow us to sleep. 62 * we need a lock that will allow us to sleep. This lock is a 59 * mutex (ep->mtx). It is acquired during the 63 * mutex (ep->mtx). It is acquired during the event transfer loop, 60 * during epoll_ctl(EPOLL_CTL_DEL) and during 64 * during epoll_ctl(EPOLL_CTL_DEL) and during eventpoll_release_file(). 61 * The epnested_mutex is acquired when inserti !! 65 * Then we also need a global mutex to serialize eventpoll_release_file() 62 * epoll fd. We do this so that we walk the ep !! 66 * and ep_free(). >> 67 * This mutex is acquired by ep_free() during the epoll file >> 68 * cleanup path and it is also acquired by eventpoll_release_file() >> 69 * if a file has been pushed inside an epoll set and it is then >> 70 * close()d without a previous call to epoll_ctl(EPOLL_CTL_DEL). >> 71 * It is also acquired when inserting an epoll fd onto another epoll >> 72 * fd. We do this so that we walk the epoll tree and ensure that this 63 * insertion does not create a cycle of epoll 73 * insertion does not create a cycle of epoll file descriptors, which 64 * could lead to deadlock. We need a global mu 74 * could lead to deadlock. We need a global mutex to prevent two 65 * simultaneous inserts (A into B and B into A 75 * simultaneous inserts (A into B and B into A) from racing and 66 * constructing a cycle without either insert 76 * constructing a cycle without either insert observing that it is 67 * going to. 77 * going to. 68 * It is necessary to acquire multiple "ep->mt 78 * It is necessary to acquire multiple "ep->mtx"es at once in the 69 * case when one epoll fd is added to another. 79 * case when one epoll fd is added to another. In this case, we 70 * always acquire the locks in the order of ne 80 * always acquire the locks in the order of nesting (i.e. after 71 * epoll_ctl(e1, EPOLL_CTL_ADD, e2), e1->mtx w 81 * epoll_ctl(e1, EPOLL_CTL_ADD, e2), e1->mtx will always be acquired 72 * before e2->mtx). Since we disallow cycles o 82 * before e2->mtx). Since we disallow cycles of epoll file 73 * descriptors, this ensures that the mutexes 83 * descriptors, this ensures that the mutexes are well-ordered. In 74 * order to communicate this nesting to lockde 84 * order to communicate this nesting to lockdep, when walking a tree 75 * of epoll file descriptors, we use the curre 85 * of epoll file descriptors, we use the current recursion depth as 76 * the lockdep subkey. 86 * the lockdep subkey. 77 * It is possible to drop the "ep->mtx" and to 87 * It is possible to drop the "ep->mtx" and to use the global 78 * mutex "epnested_mutex" (together with "ep-> !! 88 * mutex "epmutex" (together with "ep->lock") to have it working, 79 * but having "ep->mtx" will make the interfac 89 * but having "ep->mtx" will make the interface more scalable. 80 * Events that require holding "epnested_mutex !! 90 * Events that require holding "epmutex" are very rare, while for 81 * normal operations the epoll private "ep->mt 91 * normal operations the epoll private "ep->mtx" will guarantee 82 * a better scalability. 92 * a better scalability. 83 */ 93 */ 84 94 85 /* Epoll private bits inside the event mask */ 95 /* Epoll private bits inside the event mask */ 86 #define EP_PRIVATE_BITS (EPOLLWAKEUP | EPOLLON 96 #define EP_PRIVATE_BITS (EPOLLWAKEUP | EPOLLONESHOT | EPOLLET | EPOLLEXCLUSIVE) 87 97 88 #define EPOLLINOUT_BITS (EPOLLIN | EPOLLOUT) !! 98 #define EPOLLINOUT_BITS (POLLIN | POLLOUT) 89 99 90 #define EPOLLEXCLUSIVE_OK_BITS (EPOLLINOUT_BIT !! 100 #define EPOLLEXCLUSIVE_OK_BITS (EPOLLINOUT_BITS | POLLERR | POLLHUP | \ 91 EPOLLWAKEUP | 101 EPOLLWAKEUP | EPOLLET | EPOLLEXCLUSIVE) 92 102 93 /* Maximum number of nesting allowed inside ep 103 /* Maximum number of nesting allowed inside epoll sets */ 94 #define EP_MAX_NESTS 4 104 #define EP_MAX_NESTS 4 95 105 96 #define EP_MAX_EVENTS (INT_MAX / sizeof(struct 106 #define EP_MAX_EVENTS (INT_MAX / sizeof(struct epoll_event)) 97 107 98 #define EP_UNACTIVE_PTR ((void *) -1L) 108 #define EP_UNACTIVE_PTR ((void *) -1L) 99 109 100 #define EP_ITEM_COST (sizeof(struct epitem) + 110 #define EP_ITEM_COST (sizeof(struct epitem) + sizeof(struct eppoll_entry)) 101 111 102 struct epoll_filefd { 112 struct epoll_filefd { 103 struct file *file; 113 struct file *file; 104 int fd; 114 int fd; 105 } __packed; 115 } __packed; 106 116 107 /* Wait structure used by the poll hooks */ !! 117 /* 108 struct eppoll_entry { !! 118 * Structure used to track possible nested calls, for too deep recursions 109 /* List header used to link this struc !! 119 * and loop cycles. 110 struct eppoll_entry *next; !! 120 */ 111 !! 121 struct nested_call_node { 112 /* The "base" pointer is set to the co !! 122 struct list_head llink; 113 struct epitem *base; !! 123 void *cookie; 114 !! 124 void *ctx; 115 /* !! 125 }; 116 * Wait queue item that will be linked << 117 * queue head. << 118 */ << 119 wait_queue_entry_t wait; << 120 126 121 /* The wait queue head that linked the !! 127 /* 122 wait_queue_head_t *whead; !! 128 * This structure is used as collector for nested calls, to check for >> 129 * maximum recursion dept and loop cycles. >> 130 */ >> 131 struct nested_calls { >> 132 struct list_head tasks_call_list; >> 133 spinlock_t lock; 123 }; 134 }; 124 135 125 /* 136 /* 126 * Each file descriptor added to the eventpoll 137 * Each file descriptor added to the eventpoll interface will 127 * have an entry of this type linked to the "r 138 * have an entry of this type linked to the "rbr" RB tree. 128 * Avoid increasing the size of this struct, t 139 * Avoid increasing the size of this struct, there can be many thousands 129 * of these on a server and we do not want thi 140 * of these on a server and we do not want this to take another cache line. 130 */ 141 */ 131 struct epitem { 142 struct epitem { 132 union { 143 union { 133 /* RB tree node links this str 144 /* RB tree node links this structure to the eventpoll RB tree */ 134 struct rb_node rbn; 145 struct rb_node rbn; 135 /* Used to free the struct epi 146 /* Used to free the struct epitem */ 136 struct rcu_head rcu; 147 struct rcu_head rcu; 137 }; 148 }; 138 149 139 /* List header used to link this struc 150 /* List header used to link this structure to the eventpoll ready list */ 140 struct list_head rdllink; 151 struct list_head rdllink; 141 152 142 /* 153 /* 143 * Works together "struct eventpoll"-> 154 * Works together "struct eventpoll"->ovflist in keeping the 144 * single linked chain of items. 155 * single linked chain of items. 145 */ 156 */ 146 struct epitem *next; 157 struct epitem *next; 147 158 148 /* The file descriptor information thi 159 /* The file descriptor information this item refers to */ 149 struct epoll_filefd ffd; 160 struct epoll_filefd ffd; 150 161 151 /* !! 162 /* Number of active wait queue attached to poll operations */ 152 * Protected by file->f_lock, true for !! 163 int nwait; 153 * removed from the "struct file" item << 154 * eventpoll->refcount orchestrates "s << 155 */ << 156 bool dying; << 157 164 158 /* List containing poll wait queues */ 165 /* List containing poll wait queues */ 159 struct eppoll_entry *pwqlist; !! 166 struct list_head pwqlist; 160 167 161 /* The "container" of this item */ 168 /* The "container" of this item */ 162 struct eventpoll *ep; 169 struct eventpoll *ep; 163 170 164 /* List header used to link this item 171 /* List header used to link this item to the "struct file" items list */ 165 struct hlist_node fllink; !! 172 struct list_head fllink; 166 173 167 /* wakeup_source used when EPOLLWAKEUP 174 /* wakeup_source used when EPOLLWAKEUP is set */ 168 struct wakeup_source __rcu *ws; 175 struct wakeup_source __rcu *ws; 169 176 170 /* The structure that describe the int 177 /* The structure that describe the interested events and the source fd */ 171 struct epoll_event event; 178 struct epoll_event event; 172 }; 179 }; 173 180 174 /* 181 /* 175 * This structure is stored inside the "privat 182 * This structure is stored inside the "private_data" member of the file 176 * structure and represents the main data stru 183 * structure and represents the main data structure for the eventpoll 177 * interface. 184 * interface. 178 */ 185 */ 179 struct eventpoll { 186 struct eventpoll { >> 187 /* Protect the access to this structure */ >> 188 spinlock_t lock; >> 189 180 /* 190 /* 181 * This mutex is used to ensure that f 191 * This mutex is used to ensure that files are not removed 182 * while epoll is using them. This is 192 * while epoll is using them. This is held during the event 183 * collection loop, the file cleanup p 193 * collection loop, the file cleanup path, the epoll file exit 184 * code and the ctl operations. 194 * code and the ctl operations. 185 */ 195 */ 186 struct mutex mtx; 196 struct mutex mtx; 187 197 188 /* Wait queue used by sys_epoll_wait() 198 /* Wait queue used by sys_epoll_wait() */ 189 wait_queue_head_t wq; 199 wait_queue_head_t wq; 190 200 191 /* Wait queue used by file->poll() */ 201 /* Wait queue used by file->poll() */ 192 wait_queue_head_t poll_wait; 202 wait_queue_head_t poll_wait; 193 203 194 /* List of ready file descriptors */ 204 /* List of ready file descriptors */ 195 struct list_head rdllist; 205 struct list_head rdllist; 196 206 197 /* Lock which protects rdllist and ovf << 198 rwlock_t lock; << 199 << 200 /* RB tree root used to store monitore 207 /* RB tree root used to store monitored fd structs */ 201 struct rb_root_cached rbr; 208 struct rb_root_cached rbr; 202 209 203 /* 210 /* 204 * This is a single linked list that c 211 * This is a single linked list that chains all the "struct epitem" that 205 * happened while transferring ready e 212 * happened while transferring ready events to userspace w/out 206 * holding ->lock. 213 * holding ->lock. 207 */ 214 */ 208 struct epitem *ovflist; 215 struct epitem *ovflist; 209 216 210 /* wakeup_source used when ep_send_eve !! 217 /* wakeup_source used when ep_scan_ready_list is running */ 211 struct wakeup_source *ws; 218 struct wakeup_source *ws; 212 219 213 /* The user that created the eventpoll 220 /* The user that created the eventpoll descriptor */ 214 struct user_struct *user; 221 struct user_struct *user; 215 222 216 struct file *file; 223 struct file *file; 217 224 218 /* used to optimize loop detection che 225 /* used to optimize loop detection check */ 219 u64 gen; !! 226 int visited; 220 struct hlist_head refs; !! 227 struct list_head visited_list_link; 221 << 222 /* << 223 * usage count, used together with epi << 224 * orchestrate the disposal of this st << 225 */ << 226 refcount_t refcount; << 227 228 228 #ifdef CONFIG_NET_RX_BUSY_POLL 229 #ifdef CONFIG_NET_RX_BUSY_POLL 229 /* used to track busy poll napi_id */ 230 /* used to track busy poll napi_id */ 230 unsigned int napi_id; 231 unsigned int napi_id; 231 /* busy poll timeout */ << 232 u32 busy_poll_usecs; << 233 /* busy poll packet budget */ << 234 u16 busy_poll_budget; << 235 bool prefer_busy_poll; << 236 #endif 232 #endif >> 233 }; 237 234 238 #ifdef CONFIG_DEBUG_LOCK_ALLOC !! 235 /* Wait structure used by the poll hooks */ 239 /* tracks wakeup nests for lockdep val !! 236 struct eppoll_entry { 240 u8 nests; !! 237 /* List header used to link this structure to the "struct epitem" */ 241 #endif !! 238 struct list_head llink; >> 239 >> 240 /* The "base" pointer is set to the container "struct epitem" */ >> 241 struct epitem *base; >> 242 >> 243 /* >> 244 * Wait queue item that will be linked to the target file wait >> 245 * queue head. >> 246 */ >> 247 wait_queue_entry_t wait; >> 248 >> 249 /* The wait queue head that linked the "wait" wait queue item */ >> 250 wait_queue_head_t *whead; 242 }; 251 }; 243 252 244 /* Wrapper struct used by poll queueing */ 253 /* Wrapper struct used by poll queueing */ 245 struct ep_pqueue { 254 struct ep_pqueue { 246 poll_table pt; 255 poll_table pt; 247 struct epitem *epi; 256 struct epitem *epi; 248 }; 257 }; 249 258 >> 259 /* Used by the ep_send_events() function as callback private data */ >> 260 struct ep_send_events_data { >> 261 int maxevents; >> 262 struct epoll_event __user *events; >> 263 }; >> 264 250 /* 265 /* 251 * Configuration options available inside /pro 266 * Configuration options available inside /proc/sys/fs/epoll/ 252 */ 267 */ 253 /* Maximum number of epoll watched descriptors 268 /* Maximum number of epoll watched descriptors, per user */ 254 static long max_user_watches __read_mostly; 269 static long max_user_watches __read_mostly; 255 270 256 /* Used for cycles detection */ !! 271 /* 257 static DEFINE_MUTEX(epnested_mutex); !! 272 * This mutex is used to serialize ep_free() and eventpoll_release_file(). 258 !! 273 */ 259 static u64 loop_check_gen = 0; !! 274 static DEFINE_MUTEX(epmutex); 260 275 261 /* Used to check for epoll file descriptor inc 276 /* Used to check for epoll file descriptor inclusion loops */ 262 static struct eventpoll *inserting_into; !! 277 static struct nested_calls poll_loop_ncalls; 263 278 264 /* Slab cache used to allocate "struct epitem" 279 /* Slab cache used to allocate "struct epitem" */ 265 static struct kmem_cache *epi_cache __ro_after !! 280 static struct kmem_cache *epi_cache __read_mostly; 266 281 267 /* Slab cache used to allocate "struct eppoll_ 282 /* Slab cache used to allocate "struct eppoll_entry" */ 268 static struct kmem_cache *pwq_cache __ro_after !! 283 static struct kmem_cache *pwq_cache __read_mostly; >> 284 >> 285 /* Visited nodes during ep_loop_check(), so we can unset them when we finish */ >> 286 static LIST_HEAD(visited_list); 269 287 270 /* 288 /* 271 * List of files with newly added links, where 289 * List of files with newly added links, where we may need to limit the number 272 * of emanating paths. Protected by the epnest !! 290 * of emanating paths. Protected by the epmutex. 273 */ 291 */ 274 struct epitems_head { !! 292 static LIST_HEAD(tfile_check_list); 275 struct hlist_head epitems; << 276 struct epitems_head *next; << 277 }; << 278 static struct epitems_head *tfile_check_list = << 279 << 280 static struct kmem_cache *ephead_cache __ro_af << 281 << 282 static inline void free_ephead(struct epitems_ << 283 { << 284 if (head) << 285 kmem_cache_free(ephead_cache, << 286 } << 287 << 288 static void list_file(struct file *file) << 289 { << 290 struct epitems_head *head; << 291 << 292 head = container_of(file->f_ep, struct << 293 if (!head->next) { << 294 head->next = tfile_check_list; << 295 tfile_check_list = head; << 296 } << 297 } << 298 << 299 static void unlist_file(struct epitems_head *h << 300 { << 301 struct epitems_head *to_free = head; << 302 struct hlist_node *p = rcu_dereference << 303 if (p) { << 304 struct epitem *epi= container_ << 305 spin_lock(&epi->ffd.file->f_lo << 306 if (!hlist_empty(&head->epitem << 307 to_free = NULL; << 308 head->next = NULL; << 309 spin_unlock(&epi->ffd.file->f_ << 310 } << 311 free_ephead(to_free); << 312 } << 313 293 314 #ifdef CONFIG_SYSCTL 294 #ifdef CONFIG_SYSCTL 315 295 316 #include <linux/sysctl.h> 296 #include <linux/sysctl.h> 317 297 318 static long long_zero; !! 298 static long zero; 319 static long long_max = LONG_MAX; 299 static long long_max = LONG_MAX; 320 300 321 static struct ctl_table epoll_table[] = { !! 301 struct ctl_table epoll_table[] = { 322 { 302 { 323 .procname = "max_user_wa 303 .procname = "max_user_watches", 324 .data = &max_user_wa 304 .data = &max_user_watches, 325 .maxlen = sizeof(max_u 305 .maxlen = sizeof(max_user_watches), 326 .mode = 0644, 306 .mode = 0644, 327 .proc_handler = proc_doulong 307 .proc_handler = proc_doulongvec_minmax, 328 .extra1 = &long_zero, !! 308 .extra1 = &zero, 329 .extra2 = &long_max, 309 .extra2 = &long_max, 330 }, 310 }, >> 311 { } 331 }; 312 }; 332 << 333 static void __init epoll_sysctls_init(void) << 334 { << 335 register_sysctl("fs/epoll", epoll_tabl << 336 } << 337 #else << 338 #define epoll_sysctls_init() do { } while (0) << 339 #endif /* CONFIG_SYSCTL */ 313 #endif /* CONFIG_SYSCTL */ 340 314 341 static const struct file_operations eventpoll_ 315 static const struct file_operations eventpoll_fops; 342 316 343 static inline int is_file_epoll(struct file *f 317 static inline int is_file_epoll(struct file *f) 344 { 318 { 345 return f->f_op == &eventpoll_fops; 319 return f->f_op == &eventpoll_fops; 346 } 320 } 347 321 348 /* Setup the structure that is used as key for 322 /* Setup the structure that is used as key for the RB tree */ 349 static inline void ep_set_ffd(struct epoll_fil 323 static inline void ep_set_ffd(struct epoll_filefd *ffd, 350 struct file *fil 324 struct file *file, int fd) 351 { 325 { 352 ffd->file = file; 326 ffd->file = file; 353 ffd->fd = fd; 327 ffd->fd = fd; 354 } 328 } 355 329 356 /* Compare RB tree keys */ 330 /* Compare RB tree keys */ 357 static inline int ep_cmp_ffd(struct epoll_file 331 static inline int ep_cmp_ffd(struct epoll_filefd *p1, 358 struct epoll_file 332 struct epoll_filefd *p2) 359 { 333 { 360 return (p1->file > p2->file ? +1: 334 return (p1->file > p2->file ? +1: 361 (p1->file < p2->file ? -1 : p1 335 (p1->file < p2->file ? -1 : p1->fd - p2->fd)); 362 } 336 } 363 337 364 /* Tells us if the item is currently linked */ 338 /* Tells us if the item is currently linked */ 365 static inline int ep_is_linked(struct epitem * !! 339 static inline int ep_is_linked(struct list_head *p) 366 { 340 { 367 return !list_empty(&epi->rdllink); !! 341 return !list_empty(p); 368 } 342 } 369 343 370 static inline struct eppoll_entry *ep_pwq_from 344 static inline struct eppoll_entry *ep_pwq_from_wait(wait_queue_entry_t *p) 371 { 345 { 372 return container_of(p, struct eppoll_e 346 return container_of(p, struct eppoll_entry, wait); 373 } 347 } 374 348 375 /* Get the "struct epitem" from a wait queue p 349 /* Get the "struct epitem" from a wait queue pointer */ 376 static inline struct epitem *ep_item_from_wait 350 static inline struct epitem *ep_item_from_wait(wait_queue_entry_t *p) 377 { 351 { 378 return container_of(p, struct eppoll_e 352 return container_of(p, struct eppoll_entry, wait)->base; 379 } 353 } 380 354 381 /** !! 355 /* Get the "struct epitem" from an epoll queue wrapper */ 382 * ep_events_available - Checks if ready event !! 356 static inline struct epitem *ep_item_from_epqueue(poll_table *p) 383 * << 384 * @ep: Pointer to the eventpoll context. << 385 * << 386 * Return: a value different than %zero if rea << 387 * or %zero otherwise. << 388 */ << 389 static inline int ep_events_available(struct e << 390 { 357 { 391 return !list_empty_careful(&ep->rdllis !! 358 return container_of(p, struct ep_pqueue, pt)->epi; 392 READ_ONCE(ep->ovflist) != EP_U !! 359 } >> 360 >> 361 /* Tells if the epoll_ctl(2) operation needs an event copy from userspace */ >> 362 static inline int ep_op_has_event(int op) >> 363 { >> 364 return op != EPOLL_CTL_DEL; >> 365 } >> 366 >> 367 /* Initialize the poll safe wake up structure */ >> 368 static void ep_nested_calls_init(struct nested_calls *ncalls) >> 369 { >> 370 INIT_LIST_HEAD(&ncalls->tasks_call_list); >> 371 spin_lock_init(&ncalls->lock); 393 } 372 } 394 373 395 #ifdef CONFIG_NET_RX_BUSY_POLL << 396 /** 374 /** 397 * busy_loop_ep_timeout - check if busy poll h !! 375 * ep_events_available - Checks if ready events might be available. 398 * from the epoll instance ep is preferred, bu << 399 * the system-wide global via busy_loop_timeou << 400 * 376 * 401 * @start_time: The start time used to compute << 402 * @ep: Pointer to the eventpoll context. 377 * @ep: Pointer to the eventpoll context. 403 * 378 * 404 * Return: true if the timeout has expired, fa !! 379 * Returns: Returns a value different than zero if ready events are available, >> 380 * or zero otherwise. 405 */ 381 */ 406 static bool busy_loop_ep_timeout(unsigned long !! 382 static inline int ep_events_available(struct eventpoll *ep) 407 struct eventp << 408 { << 409 unsigned long bp_usec = READ_ONCE(ep-> << 410 << 411 if (bp_usec) { << 412 unsigned long end_time = start << 413 unsigned long now = busy_loop_ << 414 << 415 return time_after(now, end_tim << 416 } else { << 417 return busy_loop_timeout(start << 418 } << 419 } << 420 << 421 static bool ep_busy_loop_on(struct eventpoll * << 422 { 383 { 423 return !!READ_ONCE(ep->busy_poll_usecs !! 384 return !list_empty(&ep->rdllist) || ep->ovflist != EP_UNACTIVE_PTR; 424 } 385 } 425 386 >> 387 #ifdef CONFIG_NET_RX_BUSY_POLL 426 static bool ep_busy_loop_end(void *p, unsigned 388 static bool ep_busy_loop_end(void *p, unsigned long start_time) 427 { 389 { 428 struct eventpoll *ep = p; 390 struct eventpoll *ep = p; 429 391 430 return ep_events_available(ep) || busy !! 392 return ep_events_available(ep) || busy_loop_timeout(start_time); 431 } 393 } >> 394 #endif /* CONFIG_NET_RX_BUSY_POLL */ 432 395 433 /* 396 /* 434 * Busy poll if globally on and supporting soc 397 * Busy poll if globally on and supporting sockets found && no events, 435 * busy loop will return if need_resched or ep 398 * busy loop will return if need_resched or ep_events_available. 436 * 399 * 437 * we must do our busy polling with irqs enabl 400 * we must do our busy polling with irqs enabled 438 */ 401 */ 439 static bool ep_busy_loop(struct eventpoll *ep, !! 402 static void ep_busy_loop(struct eventpoll *ep, int nonblock) 440 { 403 { >> 404 #ifdef CONFIG_NET_RX_BUSY_POLL 441 unsigned int napi_id = READ_ONCE(ep->n 405 unsigned int napi_id = READ_ONCE(ep->napi_id); 442 u16 budget = READ_ONCE(ep->busy_poll_b << 443 bool prefer_busy_poll = READ_ONCE(ep-> << 444 406 445 if (!budget) !! 407 if ((napi_id >= MIN_NAPI_ID) && net_busy_loop_on()) 446 budget = BUSY_POLL_BUDGET; !! 408 napi_busy_loop(napi_id, nonblock ? NULL : ep_busy_loop_end, ep); >> 409 #endif >> 410 } 447 411 448 if (napi_id >= MIN_NAPI_ID && ep_busy_ !! 412 static inline void ep_reset_busy_poll_napi_id(struct eventpoll *ep) 449 napi_busy_loop(napi_id, nonblo !! 413 { 450 ep, prefer_busy !! 414 #ifdef CONFIG_NET_RX_BUSY_POLL 451 if (ep_events_available(ep)) !! 415 if (ep->napi_id) 452 return true; << 453 /* << 454 * Busy poll timed out. Drop << 455 * it back in when we have mov << 456 * ID onto the ready list. << 457 */ << 458 ep->napi_id = 0; 416 ep->napi_id = 0; 459 return false; !! 417 #endif 460 } << 461 return false; << 462 } 418 } 463 419 464 /* 420 /* 465 * Set epoll busy poll NAPI ID from sk. 421 * Set epoll busy poll NAPI ID from sk. 466 */ 422 */ 467 static inline void ep_set_busy_poll_napi_id(st 423 static inline void ep_set_busy_poll_napi_id(struct epitem *epi) 468 { 424 { 469 struct eventpoll *ep = epi->ep; !! 425 #ifdef CONFIG_NET_RX_BUSY_POLL >> 426 struct eventpoll *ep; 470 unsigned int napi_id; 427 unsigned int napi_id; 471 struct socket *sock; 428 struct socket *sock; 472 struct sock *sk; 429 struct sock *sk; >> 430 int err; 473 431 474 if (!ep_busy_loop_on(ep)) !! 432 if (!net_busy_loop_on()) 475 return; 433 return; 476 434 477 sock = sock_from_file(epi->ffd.file); !! 435 sock = sock_from_file(epi->ffd.file, &err); 478 if (!sock) 436 if (!sock) 479 return; 437 return; 480 438 481 sk = sock->sk; 439 sk = sock->sk; 482 if (!sk) 440 if (!sk) 483 return; 441 return; 484 442 485 napi_id = READ_ONCE(sk->sk_napi_id); 443 napi_id = READ_ONCE(sk->sk_napi_id); >> 444 ep = epi->ep; 486 445 487 /* Non-NAPI IDs can be rejected 446 /* Non-NAPI IDs can be rejected 488 * or 447 * or 489 * Nothing to do if we already have th 448 * Nothing to do if we already have this ID 490 */ 449 */ 491 if (napi_id < MIN_NAPI_ID || napi_id = 450 if (napi_id < MIN_NAPI_ID || napi_id == ep->napi_id) 492 return; 451 return; 493 452 494 /* record NAPI ID for use in next busy 453 /* record NAPI ID for use in next busy poll */ 495 ep->napi_id = napi_id; 454 ep->napi_id = napi_id; >> 455 #endif 496 } 456 } 497 457 498 static long ep_eventpoll_bp_ioctl(struct file !! 458 /** 499 unsigned lon !! 459 * ep_call_nested - Perform a bound (possibly) nested call, by checking >> 460 * that the recursion limit is not exceeded, and that >> 461 * the same nested call (by the meaning of same cookie) is >> 462 * no re-entered. >> 463 * >> 464 * @ncalls: Pointer to the nested_calls structure to be used for this call. >> 465 * @max_nests: Maximum number of allowed nesting calls. >> 466 * @nproc: Nested call core function pointer. >> 467 * @priv: Opaque data to be passed to the @nproc callback. >> 468 * @cookie: Cookie to be used to identify this nested call. >> 469 * @ctx: This instance context. >> 470 * >> 471 * Returns: Returns the code returned by the @nproc callback, or -1 if >> 472 * the maximum recursion limit has been exceeded. >> 473 */ >> 474 static int ep_call_nested(struct nested_calls *ncalls, int max_nests, >> 475 int (*nproc)(void *, void *, int), void *priv, >> 476 void *cookie, void *ctx) 500 { 477 { 501 struct eventpoll *ep = file->private_d !! 478 int error, call_nests = 0; 502 void __user *uarg = (void __user *)arg !! 479 unsigned long flags; 503 struct epoll_params epoll_params; !! 480 struct list_head *lsthead = &ncalls->tasks_call_list; 504 !! 481 struct nested_call_node *tncur; 505 switch (cmd) { !! 482 struct nested_call_node tnode; 506 case EPIOCSPARAMS: << 507 if (copy_from_user(&epoll_para << 508 return -EFAULT; << 509 << 510 /* pad byte must be zero */ << 511 if (epoll_params.__pad) << 512 return -EINVAL; << 513 << 514 if (epoll_params.busy_poll_use << 515 return -EINVAL; << 516 483 517 if (epoll_params.prefer_busy_p !! 484 spin_lock_irqsave(&ncalls->lock, flags); 518 return -EINVAL; << 519 485 520 if (epoll_params.busy_poll_bud !! 486 /* 521 !capable(CAP_NET_ADMIN)) !! 487 * Try to see if the current task is already inside this wakeup call. 522 return -EPERM; !! 488 * We use a list here, since the population inside this set is always 523 !! 489 * very much limited. 524 WRITE_ONCE(ep->busy_poll_usecs !! 490 */ 525 WRITE_ONCE(ep->busy_poll_budge !! 491 list_for_each_entry(tncur, lsthead, llink) { 526 WRITE_ONCE(ep->prefer_busy_pol !! 492 if (tncur->ctx == ctx && 527 return 0; !! 493 (tncur->cookie == cookie || ++call_nests > max_nests)) { 528 case EPIOCGPARAMS: !! 494 /* 529 memset(&epoll_params, 0, sizeo !! 495 * Ops ... loop detected or maximum nest level reached. 530 epoll_params.busy_poll_usecs = !! 496 * We abort this wake by breaking the cycle itself. 531 epoll_params.busy_poll_budget !! 497 */ 532 epoll_params.prefer_busy_poll !! 498 error = -1; 533 if (copy_to_user(uarg, &epoll_ !! 499 goto out_unlock; 534 return -EFAULT; !! 500 } 535 return 0; << 536 default: << 537 return -ENOIOCTLCMD; << 538 } 501 } 539 } << 540 << 541 #else << 542 502 543 static inline bool ep_busy_loop(struct eventpo !! 503 /* Add the current task and cookie to the list */ 544 { !! 504 tnode.ctx = ctx; 545 return false; !! 505 tnode.cookie = cookie; 546 } !! 506 list_add(&tnode.llink, lsthead); 547 !! 507 548 static inline void ep_set_busy_poll_napi_id(st !! 508 spin_unlock_irqrestore(&ncalls->lock, flags); 549 { !! 509 550 } !! 510 /* Call the nested function */ >> 511 error = (*nproc)(priv, cookie, call_nests); >> 512 >> 513 /* Remove the current task from the list */ >> 514 spin_lock_irqsave(&ncalls->lock, flags); >> 515 list_del(&tnode.llink); >> 516 out_unlock: >> 517 spin_unlock_irqrestore(&ncalls->lock, flags); 551 518 552 static long ep_eventpoll_bp_ioctl(struct file !! 519 return error; 553 unsigned lon << 554 { << 555 return -EOPNOTSUPP; << 556 } 520 } 557 521 558 #endif /* CONFIG_NET_RX_BUSY_POLL */ << 559 << 560 /* 522 /* 561 * As described in commit 0ccf831cb lockdep: a 523 * As described in commit 0ccf831cb lockdep: annotate epoll 562 * the use of wait queues used by epoll is don 524 * the use of wait queues used by epoll is done in a very controlled 563 * manner. Wake ups can nest inside each other 525 * manner. Wake ups can nest inside each other, but are never done 564 * with the same locking. For example: 526 * with the same locking. For example: 565 * 527 * 566 * dfd = socket(...); 528 * dfd = socket(...); 567 * efd1 = epoll_create(); 529 * efd1 = epoll_create(); 568 * efd2 = epoll_create(); 530 * efd2 = epoll_create(); 569 * epoll_ctl(efd1, EPOLL_CTL_ADD, dfd, ...); 531 * epoll_ctl(efd1, EPOLL_CTL_ADD, dfd, ...); 570 * epoll_ctl(efd2, EPOLL_CTL_ADD, efd1, ...) 532 * epoll_ctl(efd2, EPOLL_CTL_ADD, efd1, ...); 571 * 533 * 572 * When a packet arrives to the device underne 534 * When a packet arrives to the device underneath "dfd", the net code will 573 * issue a wake_up() on its poll wake list. Ep 535 * issue a wake_up() on its poll wake list. Epoll (efd1) has installed a 574 * callback wakeup entry on that queue, and th 536 * callback wakeup entry on that queue, and the wake_up() performed by the 575 * "dfd" net code will end up in ep_poll_callb 537 * "dfd" net code will end up in ep_poll_callback(). At this point epoll 576 * (efd1) notices that it may have some event 538 * (efd1) notices that it may have some event ready, so it needs to wake up 577 * the waiters on its poll wait list (efd2). S 539 * the waiters on its poll wait list (efd2). So it calls ep_poll_safewake() 578 * that ends up in another wake_up(), after ha 540 * that ends up in another wake_up(), after having checked about the 579 * recursion constraints. That are, no more th !! 541 * recursion constraints. That are, no more than EP_MAX_POLLWAKE_NESTS, to 580 * stack blasting. !! 542 * avoid stack blasting. 581 * 543 * 582 * When CONFIG_DEBUG_LOCK_ALLOC is enabled, ma 544 * When CONFIG_DEBUG_LOCK_ALLOC is enabled, make sure lockdep can handle 583 * this special case of epoll. 545 * this special case of epoll. 584 */ 546 */ 585 #ifdef CONFIG_DEBUG_LOCK_ALLOC 547 #ifdef CONFIG_DEBUG_LOCK_ALLOC 586 548 587 static void ep_poll_safewake(struct eventpoll !! 549 static struct nested_calls poll_safewake_ncalls; 588 unsigned pollflag !! 550 >> 551 static int ep_poll_wakeup_proc(void *priv, void *cookie, int call_nests) 589 { 552 { 590 struct eventpoll *ep_src; << 591 unsigned long flags; 553 unsigned long flags; 592 u8 nests = 0; !! 554 wait_queue_head_t *wqueue = (wait_queue_head_t *)cookie; 593 555 594 /* !! 556 spin_lock_irqsave_nested(&wqueue->lock, flags, call_nests + 1); 595 * To set the subclass or nesting leve !! 557 wake_up_locked_poll(wqueue, POLLIN); 596 * it might be natural to create a per !! 558 spin_unlock_irqrestore(&wqueue->lock, flags); 597 * we can recurse on ep->poll_wait.loc !! 559 598 * schedule() in the -rt kernel, the p !! 560 return 0; 599 * protected. Thus, we are introducing !! 561 } 600 * If we are not being call from ep_po !! 562 601 * we are at the first level of nestin !! 563 static void ep_poll_safewake(wait_queue_head_t *wq) 602 * called from ep_poll_callback() and !! 564 { 603 * not an epoll file itself, we are at !! 565 int this_cpu = get_cpu(); 604 * is depth 0. If the wakeup source is !! 566 605 * wakeup chain then we use its nests !! 567 ep_call_nested(&poll_safewake_ncalls, EP_MAX_NESTS, 606 * nests + 1. The previous epoll file !! 568 ep_poll_wakeup_proc, NULL, wq, (void *) (long) this_cpu); 607 * already holding its own poll_wait.l !! 569 608 */ !! 570 put_cpu(); 609 if (epi) { << 610 if ((is_file_epoll(epi->ffd.fi << 611 ep_src = epi->ffd.file << 612 nests = ep_src->nests; << 613 } else { << 614 nests = 1; << 615 } << 616 } << 617 spin_lock_irqsave_nested(&ep->poll_wai << 618 ep->nests = nests + 1; << 619 wake_up_locked_poll(&ep->poll_wait, EP << 620 ep->nests = 0; << 621 spin_unlock_irqrestore(&ep->poll_wait. << 622 } 571 } 623 572 624 #else 573 #else 625 574 626 static void ep_poll_safewake(struct eventpoll !! 575 static void ep_poll_safewake(wait_queue_head_t *wq) 627 __poll_t pollflag << 628 { 576 { 629 wake_up_poll(&ep->poll_wait, EPOLLIN | !! 577 wake_up_poll(wq, POLLIN); 630 } 578 } 631 579 632 #endif 580 #endif 633 581 634 static void ep_remove_wait_queue(struct eppoll 582 static void ep_remove_wait_queue(struct eppoll_entry *pwq) 635 { 583 { 636 wait_queue_head_t *whead; 584 wait_queue_head_t *whead; 637 585 638 rcu_read_lock(); 586 rcu_read_lock(); 639 /* 587 /* 640 * If it is cleared by POLLFREE, it sh 588 * If it is cleared by POLLFREE, it should be rcu-safe. 641 * If we read NULL we need a barrier p 589 * If we read NULL we need a barrier paired with 642 * smp_store_release() in ep_poll_call 590 * smp_store_release() in ep_poll_callback(), otherwise 643 * we rely on whead->lock. 591 * we rely on whead->lock. 644 */ 592 */ 645 whead = smp_load_acquire(&pwq->whead); 593 whead = smp_load_acquire(&pwq->whead); 646 if (whead) 594 if (whead) 647 remove_wait_queue(whead, &pwq- 595 remove_wait_queue(whead, &pwq->wait); 648 rcu_read_unlock(); 596 rcu_read_unlock(); 649 } 597 } 650 598 651 /* 599 /* 652 * This function unregisters poll callbacks fr 600 * This function unregisters poll callbacks from the associated file 653 * descriptor. Must be called with "mtx" held !! 601 * descriptor. Must be called with "mtx" held (or "epmutex" if called from >> 602 * ep_free). 654 */ 603 */ 655 static void ep_unregister_pollwait(struct even 604 static void ep_unregister_pollwait(struct eventpoll *ep, struct epitem *epi) 656 { 605 { 657 struct eppoll_entry **p = &epi->pwqlis !! 606 struct list_head *lsthead = &epi->pwqlist; 658 struct eppoll_entry *pwq; 607 struct eppoll_entry *pwq; 659 608 660 while ((pwq = *p) != NULL) { !! 609 while (!list_empty(lsthead)) { 661 *p = pwq->next; !! 610 pwq = list_first_entry(lsthead, struct eppoll_entry, llink); >> 611 >> 612 list_del(&pwq->llink); 662 ep_remove_wait_queue(pwq); 613 ep_remove_wait_queue(pwq); 663 kmem_cache_free(pwq_cache, pwq 614 kmem_cache_free(pwq_cache, pwq); 664 } 615 } 665 } 616 } 666 617 667 /* call only when ep->mtx is held */ 618 /* call only when ep->mtx is held */ 668 static inline struct wakeup_source *ep_wakeup_ 619 static inline struct wakeup_source *ep_wakeup_source(struct epitem *epi) 669 { 620 { 670 return rcu_dereference_check(epi->ws, 621 return rcu_dereference_check(epi->ws, lockdep_is_held(&epi->ep->mtx)); 671 } 622 } 672 623 673 /* call only when ep->mtx is held */ 624 /* call only when ep->mtx is held */ 674 static inline void ep_pm_stay_awake(struct epi 625 static inline void ep_pm_stay_awake(struct epitem *epi) 675 { 626 { 676 struct wakeup_source *ws = ep_wakeup_s 627 struct wakeup_source *ws = ep_wakeup_source(epi); 677 628 678 if (ws) 629 if (ws) 679 __pm_stay_awake(ws); 630 __pm_stay_awake(ws); 680 } 631 } 681 632 682 static inline bool ep_has_wakeup_source(struct 633 static inline bool ep_has_wakeup_source(struct epitem *epi) 683 { 634 { 684 return rcu_access_pointer(epi->ws) ? t 635 return rcu_access_pointer(epi->ws) ? true : false; 685 } 636 } 686 637 687 /* call when ep->mtx cannot be held (ep_poll_c 638 /* call when ep->mtx cannot be held (ep_poll_callback) */ 688 static inline void ep_pm_stay_awake_rcu(struct 639 static inline void ep_pm_stay_awake_rcu(struct epitem *epi) 689 { 640 { 690 struct wakeup_source *ws; 641 struct wakeup_source *ws; 691 642 692 rcu_read_lock(); 643 rcu_read_lock(); 693 ws = rcu_dereference(epi->ws); 644 ws = rcu_dereference(epi->ws); 694 if (ws) 645 if (ws) 695 __pm_stay_awake(ws); 646 __pm_stay_awake(ws); 696 rcu_read_unlock(); 647 rcu_read_unlock(); 697 } 648 } 698 649 699 !! 650 /** 700 /* !! 651 * ep_scan_ready_list - Scans the ready list in a way that makes possible for 701 * ep->mutex needs to be held because we could !! 652 * the scan code, to call f_op->poll(). Also allows for 702 * eventpoll_release_file() and epoll_ctl(). !! 653 * O(NumReady) performance. 703 */ !! 654 * 704 static void ep_start_scan(struct eventpoll *ep !! 655 * @ep: Pointer to the epoll private data structure. >> 656 * @sproc: Pointer to the scan callback. >> 657 * @priv: Private opaque data passed to the @sproc callback. >> 658 * @depth: The current depth of recursive f_op->poll calls. >> 659 * @ep_locked: caller already holds ep->mtx >> 660 * >> 661 * Returns: The same integer error code returned by the @sproc callback. >> 662 */ >> 663 static int ep_scan_ready_list(struct eventpoll *ep, >> 664 int (*sproc)(struct eventpoll *, >> 665 struct list_head *, void *), >> 666 void *priv, int depth, bool ep_locked) 705 { 667 { >> 668 int error, pwake = 0; >> 669 unsigned long flags; >> 670 struct epitem *epi, *nepi; >> 671 LIST_HEAD(txlist); >> 672 >> 673 /* >> 674 * We need to lock this because we could be hit by >> 675 * eventpoll_release_file() and epoll_ctl(). >> 676 */ >> 677 >> 678 if (!ep_locked) >> 679 mutex_lock_nested(&ep->mtx, depth); >> 680 706 /* 681 /* 707 * Steal the ready list, and re-init t 682 * Steal the ready list, and re-init the original one to the 708 * empty list. Also, set ep->ovflist t 683 * empty list. Also, set ep->ovflist to NULL so that events 709 * happening while looping w/out locks 684 * happening while looping w/out locks, are not lost. We cannot 710 * have the poll callback to queue dir 685 * have the poll callback to queue directly on ep->rdllist, 711 * because we want the "sproc" callbac 686 * because we want the "sproc" callback to be able to do it 712 * in a lockless way. 687 * in a lockless way. 713 */ 688 */ 714 lockdep_assert_irqs_enabled(); !! 689 spin_lock_irqsave(&ep->lock, flags); 715 write_lock_irq(&ep->lock); !! 690 list_splice_init(&ep->rdllist, &txlist); 716 list_splice_init(&ep->rdllist, txlist) !! 691 ep->ovflist = NULL; 717 WRITE_ONCE(ep->ovflist, NULL); !! 692 spin_unlock_irqrestore(&ep->lock, flags); 718 write_unlock_irq(&ep->lock); << 719 } << 720 693 721 static void ep_done_scan(struct eventpoll *ep, !! 694 /* 722 struct list_head *txl !! 695 * Now call the callback function. 723 { !! 696 */ 724 struct epitem *epi, *nepi; !! 697 error = (*sproc)(ep, &txlist, priv); 725 698 726 write_lock_irq(&ep->lock); !! 699 spin_lock_irqsave(&ep->lock, flags); 727 /* 700 /* 728 * During the time we spent inside the 701 * During the time we spent inside the "sproc" callback, some 729 * other events might have been queued 702 * other events might have been queued by the poll callback. 730 * We re-insert them inside the main r 703 * We re-insert them inside the main ready-list here. 731 */ 704 */ 732 for (nepi = READ_ONCE(ep->ovflist); (e !! 705 for (nepi = ep->ovflist; (epi = nepi) != NULL; 733 nepi = epi->next, epi->next = EP_ 706 nepi = epi->next, epi->next = EP_UNACTIVE_PTR) { 734 /* 707 /* 735 * We need to check if the ite 708 * We need to check if the item is already in the list. 736 * During the "sproc" callback 709 * During the "sproc" callback execution time, items are 737 * queued into ->ovflist but t 710 * queued into ->ovflist but the "txlist" might already 738 * contain them, and the list_ 711 * contain them, and the list_splice() below takes care of them. 739 */ 712 */ 740 if (!ep_is_linked(epi)) { !! 713 if (!ep_is_linked(&epi->rdllink)) { 741 /* !! 714 list_add_tail(&epi->rdllink, &ep->rdllist); 742 * ->ovflist is LIFO, << 743 * to keep in FIFO. << 744 */ << 745 list_add(&epi->rdllink << 746 ep_pm_stay_awake(epi); 715 ep_pm_stay_awake(epi); 747 } 716 } 748 } 717 } 749 /* 718 /* 750 * We need to set back ep->ovflist to 719 * We need to set back ep->ovflist to EP_UNACTIVE_PTR, so that after 751 * releasing the lock, events will be 720 * releasing the lock, events will be queued in the normal way inside 752 * ep->rdllist. 721 * ep->rdllist. 753 */ 722 */ 754 WRITE_ONCE(ep->ovflist, EP_UNACTIVE_PT !! 723 ep->ovflist = EP_UNACTIVE_PTR; 755 724 756 /* 725 /* 757 * Quickly re-inject items left on "tx 726 * Quickly re-inject items left on "txlist". 758 */ 727 */ 759 list_splice(txlist, &ep->rdllist); !! 728 list_splice(&txlist, &ep->rdllist); 760 __pm_relax(ep->ws); 729 __pm_relax(ep->ws); 761 730 762 if (!list_empty(&ep->rdllist)) { 731 if (!list_empty(&ep->rdllist)) { >> 732 /* >> 733 * Wake up (if active) both the eventpoll wait list and >> 734 * the ->poll() wait list (delayed after we release the lock). >> 735 */ 763 if (waitqueue_active(&ep->wq)) 736 if (waitqueue_active(&ep->wq)) 764 wake_up(&ep->wq); !! 737 wake_up_locked(&ep->wq); >> 738 if (waitqueue_active(&ep->poll_wait)) >> 739 pwake++; 765 } 740 } >> 741 spin_unlock_irqrestore(&ep->lock, flags); 766 742 767 write_unlock_irq(&ep->lock); !! 743 if (!ep_locked) 768 } !! 744 mutex_unlock(&ep->mtx); 769 << 770 static void ep_get(struct eventpoll *ep) << 771 { << 772 refcount_inc(&ep->refcount); << 773 } << 774 745 775 /* !! 746 /* We have to call this outside the lock */ 776 * Returns true if the event poll can be dispo !! 747 if (pwake) 777 */ !! 748 ep_poll_safewake(&ep->poll_wait); 778 static bool ep_refcount_dec_and_test(struct ev << 779 { << 780 if (!refcount_dec_and_test(&ep->refcou << 781 return false; << 782 749 783 WARN_ON_ONCE(!RB_EMPTY_ROOT(&ep->rbr.r !! 750 return error; 784 return true; << 785 } 751 } 786 752 787 static void ep_free(struct eventpoll *ep) !! 753 static void epi_rcu_free(struct rcu_head *head) 788 { 754 { 789 mutex_destroy(&ep->mtx); !! 755 struct epitem *epi = container_of(head, struct epitem, rcu); 790 free_uid(ep->user); !! 756 kmem_cache_free(epi_cache, epi); 791 wakeup_source_unregister(ep->ws); << 792 kfree(ep); << 793 } 757 } 794 758 795 /* 759 /* 796 * Removes a "struct epitem" from the eventpol 760 * Removes a "struct epitem" from the eventpoll RB tree and deallocates 797 * all the associated resources. Must be calle 761 * all the associated resources. Must be called with "mtx" held. 798 * If the dying flag is set, do the removal on << 799 * This prevents ep_clear_and_put() from dropp << 800 * while running concurrently with eventpoll_r << 801 * Returns true if the eventpoll can be dispos << 802 */ 762 */ 803 static bool __ep_remove(struct eventpoll *ep, !! 763 static int ep_remove(struct eventpoll *ep, struct epitem *epi) 804 { 764 { >> 765 unsigned long flags; 805 struct file *file = epi->ffd.file; 766 struct file *file = epi->ffd.file; 806 struct epitems_head *to_free; << 807 struct hlist_head *head; << 808 << 809 lockdep_assert_irqs_enabled(); << 810 767 811 /* 768 /* 812 * Removes poll wait queue hooks. !! 769 * Removes poll wait queue hooks. We _have_ to do this without holding >> 770 * the "ep->lock" otherwise a deadlock might occur. This because of the >> 771 * sequence of the lock acquisition. Here we do "ep->lock" then the wait >> 772 * queue head lock when unregistering the wait queue. The wakeup callback >> 773 * will run by holding the wait queue head lock and will call our callback >> 774 * that will try to get "ep->lock". 813 */ 775 */ 814 ep_unregister_pollwait(ep, epi); 776 ep_unregister_pollwait(ep, epi); 815 777 816 /* Remove the current item from the li 778 /* Remove the current item from the list of epoll hooks */ 817 spin_lock(&file->f_lock); 779 spin_lock(&file->f_lock); 818 if (epi->dying && !force) { !! 780 list_del_rcu(&epi->fllink); 819 spin_unlock(&file->f_lock); << 820 return false; << 821 } << 822 << 823 to_free = NULL; << 824 head = file->f_ep; << 825 if (head->first == &epi->fllink && !ep << 826 file->f_ep = NULL; << 827 if (!is_file_epoll(file)) { << 828 struct epitems_head *v << 829 v = container_of(head, << 830 if (!smp_load_acquire( << 831 to_free = v; << 832 } << 833 } << 834 hlist_del_rcu(&epi->fllink); << 835 spin_unlock(&file->f_lock); 781 spin_unlock(&file->f_lock); 836 free_ephead(to_free); << 837 782 838 rb_erase_cached(&epi->rbn, &ep->rbr); 783 rb_erase_cached(&epi->rbn, &ep->rbr); 839 784 840 write_lock_irq(&ep->lock); !! 785 spin_lock_irqsave(&ep->lock, flags); 841 if (ep_is_linked(epi)) !! 786 if (ep_is_linked(&epi->rdllink)) 842 list_del_init(&epi->rdllink); 787 list_del_init(&epi->rdllink); 843 write_unlock_irq(&ep->lock); !! 788 spin_unlock_irqrestore(&ep->lock, flags); 844 789 845 wakeup_source_unregister(ep_wakeup_sou 790 wakeup_source_unregister(ep_wakeup_source(epi)); 846 /* 791 /* 847 * At this point it is safe to free th 792 * At this point it is safe to free the eventpoll item. Use the union 848 * field epi->rcu, since we are trying 793 * field epi->rcu, since we are trying to minimize the size of 849 * 'struct epitem'. The 'rbn' field is 794 * 'struct epitem'. The 'rbn' field is no longer in use. Protected by 850 * ep->mtx. The rcu read side, reverse 795 * ep->mtx. The rcu read side, reverse_path_check_proc(), does not make 851 * use of the rbn field. 796 * use of the rbn field. 852 */ 797 */ 853 kfree_rcu(epi, rcu); !! 798 call_rcu(&epi->rcu, epi_rcu_free); 854 799 855 percpu_counter_dec(&ep->user->epoll_wa !! 800 atomic_long_dec(&ep->user->epoll_watches); 856 return ep_refcount_dec_and_test(ep); << 857 } << 858 801 859 /* !! 802 return 0; 860 * ep_remove variant for callers owing an addi << 861 */ << 862 static void ep_remove_safe(struct eventpoll *e << 863 { << 864 WARN_ON_ONCE(__ep_remove(ep, epi, fals << 865 } 803 } 866 804 867 static void ep_clear_and_put(struct eventpoll !! 805 static void ep_free(struct eventpoll *ep) 868 { 806 { 869 struct rb_node *rbp, *next; !! 807 struct rb_node *rbp; 870 struct epitem *epi; 808 struct epitem *epi; 871 bool dispose; << 872 809 873 /* We need to release all tasks waitin 810 /* We need to release all tasks waiting for these file */ 874 if (waitqueue_active(&ep->poll_wait)) 811 if (waitqueue_active(&ep->poll_wait)) 875 ep_poll_safewake(ep, NULL, 0); !! 812 ep_poll_safewake(&ep->poll_wait); 876 813 877 mutex_lock(&ep->mtx); !! 814 /* >> 815 * We need to lock this because we could be hit by >> 816 * eventpoll_release_file() while we're freeing the "struct eventpoll". >> 817 * We do not need to hold "ep->mtx" here because the epoll file >> 818 * is on the way to be removed and no one has references to it >> 819 * anymore. The only hit might come from eventpoll_release_file() but >> 820 * holding "epmutex" is sufficient here. >> 821 */ >> 822 mutex_lock(&epmutex); 878 823 879 /* 824 /* 880 * Walks through the whole tree by unr 825 * Walks through the whole tree by unregistering poll callbacks. 881 */ 826 */ 882 for (rbp = rb_first_cached(&ep->rbr); 827 for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) { 883 epi = rb_entry(rbp, struct epi 828 epi = rb_entry(rbp, struct epitem, rbn); 884 829 885 ep_unregister_pollwait(ep, epi 830 ep_unregister_pollwait(ep, epi); 886 cond_resched(); 831 cond_resched(); 887 } 832 } 888 833 889 /* 834 /* 890 * Walks through the whole tree and tr !! 835 * Walks through the whole tree by freeing each "struct epitem". At this 891 * Note that ep_remove_safe() will not !! 836 * point we are sure no poll callbacks will be lingering around, and also by 892 * racing eventpoll_release_file(); th !! 837 * holding "epmutex" we can be sure that no file cleanup code will hit 893 * At this point we are sure no poll c !! 838 * us during this operation. So we can avoid the lock on "ep->lock". 894 * Since we still own a reference to t !! 839 * We do not need to lock ep->mtx, either, we only do it to prevent 895 * dispose it. !! 840 * a lockdep warning. 896 */ 841 */ 897 for (rbp = rb_first_cached(&ep->rbr); !! 842 mutex_lock(&ep->mtx); 898 next = rb_next(rbp); !! 843 while ((rbp = rb_first_cached(&ep->rbr)) != NULL) { 899 epi = rb_entry(rbp, struct epi 844 epi = rb_entry(rbp, struct epitem, rbn); 900 ep_remove_safe(ep, epi); !! 845 ep_remove(ep, epi); 901 cond_resched(); 846 cond_resched(); 902 } 847 } 903 << 904 dispose = ep_refcount_dec_and_test(ep) << 905 mutex_unlock(&ep->mtx); 848 mutex_unlock(&ep->mtx); 906 849 907 if (dispose) !! 850 mutex_unlock(&epmutex); 908 ep_free(ep); !! 851 mutex_destroy(&ep->mtx); 909 } !! 852 free_uid(ep->user); 910 !! 853 wakeup_source_unregister(ep->ws); 911 static long ep_eventpoll_ioctl(struct file *fi !! 854 kfree(ep); 912 unsigned long a << 913 { << 914 int ret; << 915 << 916 if (!is_file_epoll(file)) << 917 return -EINVAL; << 918 << 919 switch (cmd) { << 920 case EPIOCSPARAMS: << 921 case EPIOCGPARAMS: << 922 ret = ep_eventpoll_bp_ioctl(fi << 923 break; << 924 default: << 925 ret = -EINVAL; << 926 break; << 927 } << 928 << 929 return ret; << 930 } 855 } 931 856 932 static int ep_eventpoll_release(struct inode * 857 static int ep_eventpoll_release(struct inode *inode, struct file *file) 933 { 858 { 934 struct eventpoll *ep = file->private_d 859 struct eventpoll *ep = file->private_data; 935 860 936 if (ep) 861 if (ep) 937 ep_clear_and_put(ep); !! 862 ep_free(ep); 938 863 939 return 0; 864 return 0; 940 } 865 } 941 866 942 static __poll_t ep_item_poll(const struct epit !! 867 static int ep_read_events_proc(struct eventpoll *ep, struct list_head *head, >> 868 void *priv); >> 869 static void ep_ptable_queue_proc(struct file *file, wait_queue_head_t *whead, >> 870 poll_table *pt); 943 871 944 static __poll_t __ep_eventpoll_poll(struct fil !! 872 /* >> 873 * Differs from ep_eventpoll_poll() in that internal callers already have >> 874 * the ep->mtx so we need to start from depth=1, such that mutex_lock_nested() >> 875 * is correctly annotated. >> 876 */ >> 877 static unsigned int ep_item_poll(struct epitem *epi, poll_table *pt, int depth) >> 878 { >> 879 struct eventpoll *ep; >> 880 bool locked; >> 881 >> 882 pt->_key = epi->event.events; >> 883 if (!is_file_epoll(epi->ffd.file)) >> 884 return epi->ffd.file->f_op->poll(epi->ffd.file, pt) & >> 885 epi->event.events; >> 886 >> 887 ep = epi->ffd.file->private_data; >> 888 poll_wait(epi->ffd.file, &ep->poll_wait, pt); >> 889 locked = pt && (pt->_qproc == ep_ptable_queue_proc); >> 890 >> 891 return ep_scan_ready_list(epi->ffd.file->private_data, >> 892 ep_read_events_proc, &depth, depth, >> 893 locked) & epi->event.events; >> 894 } >> 895 >> 896 static int ep_read_events_proc(struct eventpoll *ep, struct list_head *head, >> 897 void *priv) 945 { 898 { 946 struct eventpoll *ep = file->private_d << 947 LIST_HEAD(txlist); << 948 struct epitem *epi, *tmp; 899 struct epitem *epi, *tmp; 949 poll_table pt; 900 poll_table pt; 950 __poll_t res = 0; !! 901 int depth = *(int *)priv; 951 902 952 init_poll_funcptr(&pt, NULL); 903 init_poll_funcptr(&pt, NULL); >> 904 depth++; 953 905 954 /* Insert inside our poll wait queue * !! 906 list_for_each_entry_safe(epi, tmp, head, rdllink) { 955 poll_wait(file, &ep->poll_wait, wait); !! 907 if (ep_item_poll(epi, &pt, depth)) { 956 !! 908 return POLLIN | POLLRDNORM; 957 /* << 958 * Proceed to find out if wanted event << 959 * the ready list. << 960 */ << 961 mutex_lock_nested(&ep->mtx, depth); << 962 ep_start_scan(ep, &txlist); << 963 list_for_each_entry_safe(epi, tmp, &tx << 964 if (ep_item_poll(epi, &pt, dep << 965 res = EPOLLIN | EPOLLR << 966 break; << 967 } else { 909 } else { 968 /* 910 /* 969 * Item has been dropp 911 * Item has been dropped into the ready list by the poll 970 * callback, but it's 912 * callback, but it's not actually ready, as far as 971 * caller requested ev 913 * caller requested events goes. We can remove it here. 972 */ 914 */ 973 __pm_relax(ep_wakeup_s 915 __pm_relax(ep_wakeup_source(epi)); 974 list_del_init(&epi->rd 916 list_del_init(&epi->rdllink); 975 } 917 } 976 } 918 } 977 ep_done_scan(ep, &txlist); << 978 mutex_unlock(&ep->mtx); << 979 return res; << 980 } << 981 919 982 /* !! 920 return 0; 983 * The ffd.file pointer may be in the process << 984 * being closed, but we may not have finished << 985 * << 986 * Normally, even with the atomic_long_inc_not << 987 * been free'd and then gotten re-allocated to << 988 * files are not RCU-delayed, they are SLAB_TY << 989 * << 990 * But for epoll, users hold the ep->mtx mutex << 991 * the process of being free'd will block in e << 992 * and thus the underlying file allocation wil << 993 * file re-use cannot happen. << 994 * << 995 * For the same reason we can avoid a rcu_read << 996 * operation - 'ffd.file' cannot go away even << 997 * reached zero (but we must still not call ou << 998 * etc). << 999 */ << 1000 static struct file *epi_fget(const struct epi << 1001 { << 1002 struct file *file; << 1003 << 1004 file = epi->ffd.file; << 1005 if (!atomic_long_inc_not_zero(&file-> << 1006 file = NULL; << 1007 return file; << 1008 } 921 } 1009 922 1010 /* !! 923 static unsigned int ep_eventpoll_poll(struct file *file, poll_table *wait) 1011 * Differs from ep_eventpoll_poll() in that i << 1012 * the ep->mtx so we need to start from depth << 1013 * is correctly annotated. << 1014 */ << 1015 static __poll_t ep_item_poll(const struct epi << 1016 int depth) << 1017 { 924 { 1018 struct file *file = epi_fget(epi); !! 925 struct eventpoll *ep = file->private_data; 1019 __poll_t res; !! 926 int depth = 0; >> 927 >> 928 /* Insert inside our poll wait queue */ >> 929 poll_wait(file, &ep->poll_wait, wait); 1020 930 1021 /* 931 /* 1022 * We could return EPOLLERR | EPOLLHU !! 932 * Proceed to find out if wanted events are really available inside 1023 * treat this more as "file doesn't e !! 933 * the ready list. 1024 */ 934 */ 1025 if (!file) !! 935 return ep_scan_ready_list(ep, ep_read_events_proc, 1026 return 0; !! 936 &depth, depth, false); 1027 << 1028 pt->_key = epi->event.events; << 1029 if (!is_file_epoll(file)) << 1030 res = vfs_poll(file, pt); << 1031 else << 1032 res = __ep_eventpoll_poll(fil << 1033 fput(file); << 1034 return res & epi->event.events; << 1035 } << 1036 << 1037 static __poll_t ep_eventpoll_poll(struct file << 1038 { << 1039 return __ep_eventpoll_poll(file, wait << 1040 } 937 } 1041 938 1042 #ifdef CONFIG_PROC_FS 939 #ifdef CONFIG_PROC_FS 1043 static void ep_show_fdinfo(struct seq_file *m 940 static void ep_show_fdinfo(struct seq_file *m, struct file *f) 1044 { 941 { 1045 struct eventpoll *ep = f->private_dat 942 struct eventpoll *ep = f->private_data; 1046 struct rb_node *rbp; 943 struct rb_node *rbp; 1047 944 1048 mutex_lock(&ep->mtx); 945 mutex_lock(&ep->mtx); 1049 for (rbp = rb_first_cached(&ep->rbr); 946 for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) { 1050 struct epitem *epi = rb_entry 947 struct epitem *epi = rb_entry(rbp, struct epitem, rbn); 1051 struct inode *inode = file_in 948 struct inode *inode = file_inode(epi->ffd.file); 1052 949 1053 seq_printf(m, "tfd: %8d event 950 seq_printf(m, "tfd: %8d events: %8x data: %16llx " 1054 " pos:%lli ino:%lx 951 " pos:%lli ino:%lx sdev:%x\n", 1055 epi->ffd.fd, epi-> 952 epi->ffd.fd, epi->event.events, 1056 (long long)epi->ev 953 (long long)epi->event.data, 1057 (long long)epi->ff 954 (long long)epi->ffd.file->f_pos, 1058 inode->i_ino, inod 955 inode->i_ino, inode->i_sb->s_dev); 1059 if (seq_has_overflowed(m)) 956 if (seq_has_overflowed(m)) 1060 break; 957 break; 1061 } 958 } 1062 mutex_unlock(&ep->mtx); 959 mutex_unlock(&ep->mtx); 1063 } 960 } 1064 #endif 961 #endif 1065 962 1066 /* File callbacks that implement the eventpol 963 /* File callbacks that implement the eventpoll file behaviour */ 1067 static const struct file_operations eventpoll 964 static const struct file_operations eventpoll_fops = { 1068 #ifdef CONFIG_PROC_FS 965 #ifdef CONFIG_PROC_FS 1069 .show_fdinfo = ep_show_fdinfo, 966 .show_fdinfo = ep_show_fdinfo, 1070 #endif 967 #endif 1071 .release = ep_eventpoll_releas 968 .release = ep_eventpoll_release, 1072 .poll = ep_eventpoll_poll, 969 .poll = ep_eventpoll_poll, 1073 .llseek = noop_llseek, 970 .llseek = noop_llseek, 1074 .unlocked_ioctl = ep_eventpoll_ioctl, << 1075 .compat_ioctl = compat_ptr_ioctl, << 1076 }; 971 }; 1077 972 1078 /* 973 /* 1079 * This is called from eventpoll_release() to 974 * This is called from eventpoll_release() to unlink files from the eventpoll 1080 * interface. We need to have this facility t 975 * interface. We need to have this facility to cleanup correctly files that are 1081 * closed without being removed from the even 976 * closed without being removed from the eventpoll interface. 1082 */ 977 */ 1083 void eventpoll_release_file(struct file *file 978 void eventpoll_release_file(struct file *file) 1084 { 979 { 1085 struct eventpoll *ep; 980 struct eventpoll *ep; 1086 struct epitem *epi; !! 981 struct epitem *epi, *next; 1087 bool dispose; << 1088 982 1089 /* 983 /* 1090 * Use the 'dying' flag to prevent a !! 984 * We don't want to get "file->f_lock" because it is not 1091 * touching the epitems list before e !! 985 * necessary. It is not necessary because we're in the "struct file" 1092 * the ep->mtx. !! 986 * cleanup path, and this means that no one is using this file anymore. >> 987 * So, for example, epoll_ctl() cannot hit here since if we reach this >> 988 * point, the file counter already went to zero and fget() would fail. >> 989 * The only hit might come from ep_free() but by holding the mutex >> 990 * will correctly serialize the operation. We do need to acquire >> 991 * "ep->mtx" after "epmutex" because ep_remove() requires it when called >> 992 * from anywhere but ep_free(). >> 993 * >> 994 * Besides, ep_remove() acquires the lock, so we can't hold it here. 1093 */ 995 */ 1094 again: !! 996 mutex_lock(&epmutex); 1095 spin_lock(&file->f_lock); !! 997 list_for_each_entry_safe(epi, next, &file->f_ep_links, fllink) { 1096 if (file->f_ep && file->f_ep->first) << 1097 epi = hlist_entry(file->f_ep- << 1098 epi->dying = true; << 1099 spin_unlock(&file->f_lock); << 1100 << 1101 /* << 1102 * ep access is safe as we st << 1103 * struct << 1104 */ << 1105 ep = epi->ep; 998 ep = epi->ep; 1106 mutex_lock(&ep->mtx); !! 999 mutex_lock_nested(&ep->mtx, 0); 1107 dispose = __ep_remove(ep, epi !! 1000 ep_remove(ep, epi); 1108 mutex_unlock(&ep->mtx); 1001 mutex_unlock(&ep->mtx); 1109 << 1110 if (dispose) << 1111 ep_free(ep); << 1112 goto again; << 1113 } 1002 } 1114 spin_unlock(&file->f_lock); !! 1003 mutex_unlock(&epmutex); 1115 } 1004 } 1116 1005 1117 static int ep_alloc(struct eventpoll **pep) 1006 static int ep_alloc(struct eventpoll **pep) 1118 { 1007 { >> 1008 int error; >> 1009 struct user_struct *user; 1119 struct eventpoll *ep; 1010 struct eventpoll *ep; 1120 1011 >> 1012 user = get_current_user(); >> 1013 error = -ENOMEM; 1121 ep = kzalloc(sizeof(*ep), GFP_KERNEL) 1014 ep = kzalloc(sizeof(*ep), GFP_KERNEL); 1122 if (unlikely(!ep)) 1015 if (unlikely(!ep)) 1123 return -ENOMEM; !! 1016 goto free_uid; 1124 1017 >> 1018 spin_lock_init(&ep->lock); 1125 mutex_init(&ep->mtx); 1019 mutex_init(&ep->mtx); 1126 rwlock_init(&ep->lock); << 1127 init_waitqueue_head(&ep->wq); 1020 init_waitqueue_head(&ep->wq); 1128 init_waitqueue_head(&ep->poll_wait); 1021 init_waitqueue_head(&ep->poll_wait); 1129 INIT_LIST_HEAD(&ep->rdllist); 1022 INIT_LIST_HEAD(&ep->rdllist); 1130 ep->rbr = RB_ROOT_CACHED; 1023 ep->rbr = RB_ROOT_CACHED; 1131 ep->ovflist = EP_UNACTIVE_PTR; 1024 ep->ovflist = EP_UNACTIVE_PTR; 1132 ep->user = get_current_user(); !! 1025 ep->user = user; 1133 refcount_set(&ep->refcount, 1); << 1134 1026 1135 *pep = ep; 1027 *pep = ep; 1136 1028 1137 return 0; 1029 return 0; >> 1030 >> 1031 free_uid: >> 1032 free_uid(user); >> 1033 return error; 1138 } 1034 } 1139 1035 1140 /* 1036 /* 1141 * Search the file inside the eventpoll tree. 1037 * Search the file inside the eventpoll tree. The RB tree operations 1142 * are protected by the "mtx" mutex, and ep_f 1038 * are protected by the "mtx" mutex, and ep_find() must be called with 1143 * "mtx" held. 1039 * "mtx" held. 1144 */ 1040 */ 1145 static struct epitem *ep_find(struct eventpol 1041 static struct epitem *ep_find(struct eventpoll *ep, struct file *file, int fd) 1146 { 1042 { 1147 int kcmp; 1043 int kcmp; 1148 struct rb_node *rbp; 1044 struct rb_node *rbp; 1149 struct epitem *epi, *epir = NULL; 1045 struct epitem *epi, *epir = NULL; 1150 struct epoll_filefd ffd; 1046 struct epoll_filefd ffd; 1151 1047 1152 ep_set_ffd(&ffd, file, fd); 1048 ep_set_ffd(&ffd, file, fd); 1153 for (rbp = ep->rbr.rb_root.rb_node; r 1049 for (rbp = ep->rbr.rb_root.rb_node; rbp; ) { 1154 epi = rb_entry(rbp, struct ep 1050 epi = rb_entry(rbp, struct epitem, rbn); 1155 kcmp = ep_cmp_ffd(&ffd, &epi- 1051 kcmp = ep_cmp_ffd(&ffd, &epi->ffd); 1156 if (kcmp > 0) 1052 if (kcmp > 0) 1157 rbp = rbp->rb_right; 1053 rbp = rbp->rb_right; 1158 else if (kcmp < 0) 1054 else if (kcmp < 0) 1159 rbp = rbp->rb_left; 1055 rbp = rbp->rb_left; 1160 else { 1056 else { 1161 epir = epi; 1057 epir = epi; 1162 break; 1058 break; 1163 } 1059 } 1164 } 1060 } 1165 1061 1166 return epir; 1062 return epir; 1167 } 1063 } 1168 1064 1169 #ifdef CONFIG_KCMP !! 1065 #ifdef CONFIG_CHECKPOINT_RESTORE 1170 static struct epitem *ep_find_tfd(struct even 1066 static struct epitem *ep_find_tfd(struct eventpoll *ep, int tfd, unsigned long toff) 1171 { 1067 { 1172 struct rb_node *rbp; 1068 struct rb_node *rbp; 1173 struct epitem *epi; 1069 struct epitem *epi; 1174 1070 1175 for (rbp = rb_first_cached(&ep->rbr); 1071 for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) { 1176 epi = rb_entry(rbp, struct ep 1072 epi = rb_entry(rbp, struct epitem, rbn); 1177 if (epi->ffd.fd == tfd) { 1073 if (epi->ffd.fd == tfd) { 1178 if (toff == 0) 1074 if (toff == 0) 1179 return epi; 1075 return epi; 1180 else 1076 else 1181 toff--; 1077 toff--; 1182 } 1078 } 1183 cond_resched(); 1079 cond_resched(); 1184 } 1080 } 1185 1081 1186 return NULL; 1082 return NULL; 1187 } 1083 } 1188 1084 1189 struct file *get_epoll_tfile_raw_ptr(struct f 1085 struct file *get_epoll_tfile_raw_ptr(struct file *file, int tfd, 1190 unsigned 1086 unsigned long toff) 1191 { 1087 { 1192 struct file *file_raw; 1088 struct file *file_raw; 1193 struct eventpoll *ep; 1089 struct eventpoll *ep; 1194 struct epitem *epi; 1090 struct epitem *epi; 1195 1091 1196 if (!is_file_epoll(file)) 1092 if (!is_file_epoll(file)) 1197 return ERR_PTR(-EINVAL); 1093 return ERR_PTR(-EINVAL); 1198 1094 1199 ep = file->private_data; 1095 ep = file->private_data; 1200 1096 1201 mutex_lock(&ep->mtx); 1097 mutex_lock(&ep->mtx); 1202 epi = ep_find_tfd(ep, tfd, toff); 1098 epi = ep_find_tfd(ep, tfd, toff); 1203 if (epi) 1099 if (epi) 1204 file_raw = epi->ffd.file; 1100 file_raw = epi->ffd.file; 1205 else 1101 else 1206 file_raw = ERR_PTR(-ENOENT); 1102 file_raw = ERR_PTR(-ENOENT); 1207 mutex_unlock(&ep->mtx); 1103 mutex_unlock(&ep->mtx); 1208 1104 1209 return file_raw; 1105 return file_raw; 1210 } 1106 } 1211 #endif /* CONFIG_KCMP */ !! 1107 #endif /* CONFIG_CHECKPOINT_RESTORE */ 1212 << 1213 /* << 1214 * Adds a new entry to the tail of the list i << 1215 * multiple CPUs are allowed to call this fun << 1216 * << 1217 * Beware: it is necessary to prevent any oth << 1218 * existing list until all changes ar << 1219 * concurrent list_add_tail_lockless( << 1220 * with a read lock, where write lock << 1221 * makes sure all list_add_tail_lockl << 1222 * completed. << 1223 * << 1224 * Also an element can be locklessly a << 1225 * direction i.e. either to the tail o << 1226 * concurrent access will corrupt the << 1227 * << 1228 * Return: %false if element has been already << 1229 * otherwise. << 1230 */ << 1231 static inline bool list_add_tail_lockless(str << 1232 str << 1233 { << 1234 struct list_head *prev; << 1235 << 1236 /* << 1237 * This is simple 'new->next = head' << 1238 * is used in order to detect that sa << 1239 * added to the list from another CPU << 1240 * new->next == new. << 1241 */ << 1242 if (!try_cmpxchg(&new->next, &new, he << 1243 return false; << 1244 << 1245 /* << 1246 * Initially ->next of a new element << 1247 * (we are inserting to the tail) and << 1248 * exchanged. XCHG guarantees memory << 1249 * updated before pointers are actual << 1250 * swapped before prev->next is updat << 1251 */ << 1252 << 1253 prev = xchg(&head->prev, new); << 1254 << 1255 /* << 1256 * It is safe to modify prev->next an << 1257 * is added only to the tail and new- << 1258 */ << 1259 << 1260 prev->next = new; << 1261 new->prev = prev; << 1262 << 1263 return true; << 1264 } << 1265 << 1266 /* << 1267 * Chains a new epi entry to the tail of the << 1268 * i.e. multiple CPUs are allowed to call thi << 1269 * << 1270 * Return: %false if epi element has been alr << 1271 */ << 1272 static inline bool chain_epi_lockless(struct << 1273 { << 1274 struct eventpoll *ep = epi->ep; << 1275 << 1276 /* Fast preliminary check */ << 1277 if (epi->next != EP_UNACTIVE_PTR) << 1278 return false; << 1279 << 1280 /* Check that the same epi has not be << 1281 if (cmpxchg(&epi->next, EP_UNACTIVE_P << 1282 return false; << 1283 << 1284 /* Atomically exchange tail */ << 1285 epi->next = xchg(&ep->ovflist, epi); << 1286 << 1287 return true; << 1288 } << 1289 1108 1290 /* 1109 /* 1291 * This is the callback that is passed to the 1110 * This is the callback that is passed to the wait queue wakeup 1292 * mechanism. It is called by the stored file 1111 * mechanism. It is called by the stored file descriptors when they 1293 * have events to report. 1112 * have events to report. 1294 * << 1295 * This callback takes a read lock in order n << 1296 * events from another file descriptor, thus << 1297 * or ->ovflist are lockless. Read lock is p << 1298 * ep_start/done_scan(), which stops all list << 1299 * that lists state is seen correctly. << 1300 * << 1301 * Another thing worth to mention is that ep_ << 1302 * concurrently for the same @epi from differ << 1303 * with several wait queues entries. Plural << 1304 * single wait queue is serialized by wq.lock << 1305 * queues are used should be detected accordi << 1306 * cmpxchg() operation. << 1307 */ 1113 */ 1308 static int ep_poll_callback(wait_queue_entry_ 1114 static int ep_poll_callback(wait_queue_entry_t *wait, unsigned mode, int sync, void *key) 1309 { 1115 { 1310 int pwake = 0; 1116 int pwake = 0; >> 1117 unsigned long flags; 1311 struct epitem *epi = ep_item_from_wai 1118 struct epitem *epi = ep_item_from_wait(wait); 1312 struct eventpoll *ep = epi->ep; 1119 struct eventpoll *ep = epi->ep; 1313 __poll_t pollflags = key_to_poll(key) << 1314 unsigned long flags; << 1315 int ewake = 0; 1120 int ewake = 0; 1316 1121 1317 read_lock_irqsave(&ep->lock, flags); !! 1122 spin_lock_irqsave(&ep->lock, flags); 1318 1123 1319 ep_set_busy_poll_napi_id(epi); 1124 ep_set_busy_poll_napi_id(epi); 1320 1125 1321 /* 1126 /* 1322 * If the event mask does not contain 1127 * If the event mask does not contain any poll(2) event, we consider the 1323 * descriptor to be disabled. This co 1128 * descriptor to be disabled. This condition is likely the effect of the 1324 * EPOLLONESHOT bit that disables the 1129 * EPOLLONESHOT bit that disables the descriptor when an event is received, 1325 * until the next EPOLL_CTL_MOD will 1130 * until the next EPOLL_CTL_MOD will be issued. 1326 */ 1131 */ 1327 if (!(epi->event.events & ~EP_PRIVATE 1132 if (!(epi->event.events & ~EP_PRIVATE_BITS)) 1328 goto out_unlock; 1133 goto out_unlock; 1329 1134 1330 /* 1135 /* 1331 * Check the events coming with the c 1136 * Check the events coming with the callback. At this stage, not 1332 * every device reports the events in 1137 * every device reports the events in the "key" parameter of the 1333 * callback. We need to be able to ha 1138 * callback. We need to be able to handle both cases here, hence the 1334 * test for "key" != NULL before the 1139 * test for "key" != NULL before the event match test. 1335 */ 1140 */ 1336 if (pollflags && !(pollflags & epi->e !! 1141 if (key && !((unsigned long) key & epi->event.events)) 1337 goto out_unlock; 1142 goto out_unlock; 1338 1143 1339 /* 1144 /* 1340 * If we are transferring events to u 1145 * If we are transferring events to userspace, we can hold no locks 1341 * (because we're accessing user memo 1146 * (because we're accessing user memory, and because of linux f_op->poll() 1342 * semantics). All the events that ha 1147 * semantics). All the events that happen during that period of time are 1343 * chained in ep->ovflist and requeue 1148 * chained in ep->ovflist and requeued later on. 1344 */ 1149 */ 1345 if (READ_ONCE(ep->ovflist) != EP_UNAC !! 1150 if (unlikely(ep->ovflist != EP_UNACTIVE_PTR)) { 1346 if (chain_epi_lockless(epi)) !! 1151 if (epi->next == EP_UNACTIVE_PTR) { 1347 ep_pm_stay_awake_rcu( !! 1152 epi->next = ep->ovflist; 1348 } else if (!ep_is_linked(epi)) { !! 1153 ep->ovflist = epi; 1349 /* In the usual case, add eve !! 1154 if (epi->ws) { 1350 if (list_add_tail_lockless(&e !! 1155 /* 1351 ep_pm_stay_awake_rcu( !! 1156 * Activate ep->ws since epi->ws may get >> 1157 * deactivated at any time. >> 1158 */ >> 1159 __pm_stay_awake(ep->ws); >> 1160 } >> 1161 >> 1162 } >> 1163 goto out_unlock; >> 1164 } >> 1165 >> 1166 /* If this file is already in the ready list we exit soon */ >> 1167 if (!ep_is_linked(&epi->rdllink)) { >> 1168 list_add_tail(&epi->rdllink, &ep->rdllist); >> 1169 ep_pm_stay_awake_rcu(epi); 1352 } 1170 } 1353 1171 1354 /* 1172 /* 1355 * Wake up ( if active ) both the eve 1173 * Wake up ( if active ) both the eventpoll wait list and the ->poll() 1356 * wait list. 1174 * wait list. 1357 */ 1175 */ 1358 if (waitqueue_active(&ep->wq)) { 1176 if (waitqueue_active(&ep->wq)) { 1359 if ((epi->event.events & EPOL 1177 if ((epi->event.events & EPOLLEXCLUSIVE) && 1360 !(pol !! 1178 !((unsigned long)key & POLLFREE)) { 1361 switch (pollflags & E !! 1179 switch ((unsigned long)key & EPOLLINOUT_BITS) { 1362 case EPOLLIN: !! 1180 case POLLIN: 1363 if (epi->even !! 1181 if (epi->event.events & POLLIN) 1364 ewake 1182 ewake = 1; 1365 break; 1183 break; 1366 case EPOLLOUT: !! 1184 case POLLOUT: 1367 if (epi->even !! 1185 if (epi->event.events & POLLOUT) 1368 ewake 1186 ewake = 1; 1369 break; 1187 break; 1370 case 0: 1188 case 0: 1371 ewake = 1; 1189 ewake = 1; 1372 break; 1190 break; 1373 } 1191 } 1374 } 1192 } 1375 wake_up(&ep->wq); !! 1193 wake_up_locked(&ep->wq); 1376 } 1194 } 1377 if (waitqueue_active(&ep->poll_wait)) 1195 if (waitqueue_active(&ep->poll_wait)) 1378 pwake++; 1196 pwake++; 1379 1197 1380 out_unlock: 1198 out_unlock: 1381 read_unlock_irqrestore(&ep->lock, fla !! 1199 spin_unlock_irqrestore(&ep->lock, flags); 1382 1200 1383 /* We have to call this outside the l 1201 /* We have to call this outside the lock */ 1384 if (pwake) 1202 if (pwake) 1385 ep_poll_safewake(ep, epi, pol !! 1203 ep_poll_safewake(&ep->poll_wait); 1386 1204 1387 if (!(epi->event.events & EPOLLEXCLUS 1205 if (!(epi->event.events & EPOLLEXCLUSIVE)) 1388 ewake = 1; 1206 ewake = 1; 1389 1207 1390 if (pollflags & POLLFREE) { !! 1208 if ((unsigned long)key & POLLFREE) { 1391 /* 1209 /* 1392 * If we race with ep_remove_ 1210 * If we race with ep_remove_wait_queue() it can miss 1393 * ->whead = NULL and do anot 1211 * ->whead = NULL and do another remove_wait_queue() after 1394 * us, so we can't use __remo 1212 * us, so we can't use __remove_wait_queue(). 1395 */ 1213 */ 1396 list_del_init(&wait->entry); 1214 list_del_init(&wait->entry); 1397 /* 1215 /* 1398 * ->whead != NULL protects u !! 1216 * ->whead != NULL protects us from the race with ep_free() 1399 * ep_clear_and_put() or ep_r !! 1217 * or ep_remove(), ep_remove_wait_queue() takes whead->lock 1400 * takes whead->lock held by !! 1218 * held by the caller. Once we nullify it, nothing protects 1401 * nothing protects ep/epi or !! 1219 * ep/epi or even wait. 1402 */ 1220 */ 1403 smp_store_release(&ep_pwq_fro 1221 smp_store_release(&ep_pwq_from_wait(wait)->whead, NULL); 1404 } 1222 } 1405 1223 1406 return ewake; 1224 return ewake; 1407 } 1225 } 1408 1226 1409 /* 1227 /* 1410 * This is the callback that is used to add o 1228 * This is the callback that is used to add our wait queue to the 1411 * target file wakeup lists. 1229 * target file wakeup lists. 1412 */ 1230 */ 1413 static void ep_ptable_queue_proc(struct file 1231 static void ep_ptable_queue_proc(struct file *file, wait_queue_head_t *whead, 1414 poll_table * 1232 poll_table *pt) 1415 { 1233 { 1416 struct ep_pqueue *epq = container_of( !! 1234 struct epitem *epi = ep_item_from_epqueue(pt); 1417 struct epitem *epi = epq->epi; << 1418 struct eppoll_entry *pwq; 1235 struct eppoll_entry *pwq; 1419 1236 1420 if (unlikely(!epi)) // an earlier !! 1237 if (epi->nwait >= 0 && (pwq = kmem_cache_alloc(pwq_cache, GFP_KERNEL))) { 1421 return; !! 1238 init_waitqueue_func_entry(&pwq->wait, ep_poll_callback); 1422 !! 1239 pwq->whead = whead; 1423 pwq = kmem_cache_alloc(pwq_cache, GFP !! 1240 pwq->base = epi; 1424 if (unlikely(!pwq)) { !! 1241 if (epi->event.events & EPOLLEXCLUSIVE) 1425 epq->epi = NULL; !! 1242 add_wait_queue_exclusive(whead, &pwq->wait); 1426 return; !! 1243 else >> 1244 add_wait_queue(whead, &pwq->wait); >> 1245 list_add_tail(&pwq->llink, &epi->pwqlist); >> 1246 epi->nwait++; >> 1247 } else { >> 1248 /* We have to signal that an error occurred */ >> 1249 epi->nwait = -1; 1427 } 1250 } 1428 << 1429 init_waitqueue_func_entry(&pwq->wait, << 1430 pwq->whead = whead; << 1431 pwq->base = epi; << 1432 if (epi->event.events & EPOLLEXCLUSIV << 1433 add_wait_queue_exclusive(whea << 1434 else << 1435 add_wait_queue(whead, &pwq->w << 1436 pwq->next = epi->pwqlist; << 1437 epi->pwqlist = pwq; << 1438 } 1251 } 1439 1252 1440 static void ep_rbtree_insert(struct eventpoll 1253 static void ep_rbtree_insert(struct eventpoll *ep, struct epitem *epi) 1441 { 1254 { 1442 int kcmp; 1255 int kcmp; 1443 struct rb_node **p = &ep->rbr.rb_root 1256 struct rb_node **p = &ep->rbr.rb_root.rb_node, *parent = NULL; 1444 struct epitem *epic; 1257 struct epitem *epic; 1445 bool leftmost = true; 1258 bool leftmost = true; 1446 1259 1447 while (*p) { 1260 while (*p) { 1448 parent = *p; 1261 parent = *p; 1449 epic = rb_entry(parent, struc 1262 epic = rb_entry(parent, struct epitem, rbn); 1450 kcmp = ep_cmp_ffd(&epi->ffd, 1263 kcmp = ep_cmp_ffd(&epi->ffd, &epic->ffd); 1451 if (kcmp > 0) { 1264 if (kcmp > 0) { 1452 p = &parent->rb_right 1265 p = &parent->rb_right; 1453 leftmost = false; 1266 leftmost = false; 1454 } else 1267 } else 1455 p = &parent->rb_left; 1268 p = &parent->rb_left; 1456 } 1269 } 1457 rb_link_node(&epi->rbn, parent, p); 1270 rb_link_node(&epi->rbn, parent, p); 1458 rb_insert_color_cached(&epi->rbn, &ep 1271 rb_insert_color_cached(&epi->rbn, &ep->rbr, leftmost); 1459 } 1272 } 1460 1273 1461 1274 1462 1275 1463 #define PATH_ARR_SIZE 5 1276 #define PATH_ARR_SIZE 5 1464 /* 1277 /* 1465 * These are the number paths of length 1 to 1278 * These are the number paths of length 1 to 5, that we are allowing to emanate 1466 * from a single file of interest. For exampl 1279 * from a single file of interest. For example, we allow 1000 paths of length 1467 * 1, to emanate from each file of interest. 1280 * 1, to emanate from each file of interest. This essentially represents the 1468 * potential wakeup paths, which need to be l 1281 * potential wakeup paths, which need to be limited in order to avoid massive 1469 * uncontrolled wakeup storms. The common use 1282 * uncontrolled wakeup storms. The common use case should be a single ep which 1470 * is connected to n file sources. In this ca 1283 * is connected to n file sources. In this case each file source has 1 path 1471 * of length 1. Thus, the numbers below shoul 1284 * of length 1. Thus, the numbers below should be more than sufficient. These 1472 * path limits are enforced during an EPOLL_C 1285 * path limits are enforced during an EPOLL_CTL_ADD operation, since a modify 1473 * and delete can't add additional paths. Pro !! 1286 * and delete can't add additional paths. Protected by the epmutex. 1474 */ 1287 */ 1475 static const int path_limits[PATH_ARR_SIZE] = 1288 static const int path_limits[PATH_ARR_SIZE] = { 1000, 500, 100, 50, 10 }; 1476 static int path_count[PATH_ARR_SIZE]; 1289 static int path_count[PATH_ARR_SIZE]; 1477 1290 1478 static int path_count_inc(int nests) 1291 static int path_count_inc(int nests) 1479 { 1292 { 1480 /* Allow an arbitrary number of depth 1293 /* Allow an arbitrary number of depth 1 paths */ 1481 if (nests == 0) 1294 if (nests == 0) 1482 return 0; 1295 return 0; 1483 1296 1484 if (++path_count[nests] > path_limits 1297 if (++path_count[nests] > path_limits[nests]) 1485 return -1; 1298 return -1; 1486 return 0; 1299 return 0; 1487 } 1300 } 1488 1301 1489 static void path_count_init(void) 1302 static void path_count_init(void) 1490 { 1303 { 1491 int i; 1304 int i; 1492 1305 1493 for (i = 0; i < PATH_ARR_SIZE; i++) 1306 for (i = 0; i < PATH_ARR_SIZE; i++) 1494 path_count[i] = 0; 1307 path_count[i] = 0; 1495 } 1308 } 1496 1309 1497 static int reverse_path_check_proc(struct hli !! 1310 static int reverse_path_check_proc(void *priv, void *cookie, int call_nests) 1498 { 1311 { 1499 int error = 0; 1312 int error = 0; >> 1313 struct file *file = priv; >> 1314 struct file *child_file; 1500 struct epitem *epi; 1315 struct epitem *epi; 1501 1316 1502 if (depth > EP_MAX_NESTS) /* too deep << 1503 return -1; << 1504 << 1505 /* CTL_DEL can remove links here, but 1317 /* CTL_DEL can remove links here, but that can't increase our count */ 1506 hlist_for_each_entry_rcu(epi, refs, f !! 1318 rcu_read_lock(); 1507 struct hlist_head *refs = &ep !! 1319 list_for_each_entry_rcu(epi, &file->f_ep_links, fllink) { 1508 if (hlist_empty(refs)) !! 1320 child_file = epi->ep->file; 1509 error = path_count_in !! 1321 if (is_file_epoll(child_file)) { 1510 else !! 1322 if (list_empty(&child_file->f_ep_links)) { 1511 error = reverse_path_ !! 1323 if (path_count_inc(call_nests)) { 1512 if (error != 0) !! 1324 error = -1; 1513 break; !! 1325 break; >> 1326 } >> 1327 } else { >> 1328 error = ep_call_nested(&poll_loop_ncalls, >> 1329 EP_MAX_NESTS, >> 1330 reverse_path_check_proc, >> 1331 child_file, child_file, >> 1332 current); >> 1333 } >> 1334 if (error != 0) >> 1335 break; >> 1336 } else { >> 1337 printk(KERN_ERR "reverse_path_check_proc: " >> 1338 "file is not an ep!\n"); >> 1339 } 1514 } 1340 } >> 1341 rcu_read_unlock(); 1515 return error; 1342 return error; 1516 } 1343 } 1517 1344 1518 /** 1345 /** 1519 * reverse_path_check - The tfile_check_list !! 1346 * reverse_path_check - The tfile_check_list is list of file *, which have 1520 * links that are propos 1347 * links that are proposed to be newly added. We need to 1521 * make sure that those 1348 * make sure that those added links don't add too many 1522 * paths such that we wi 1349 * paths such that we will spend all our time waking up 1523 * eventpoll objects. 1350 * eventpoll objects. 1524 * 1351 * 1525 * Return: %zero if the proposed links don't !! 1352 * Returns: Returns zero if the proposed links don't create too many paths, 1526 * %-1 otherwise. !! 1353 * -1 otherwise. 1527 */ 1354 */ 1528 static int reverse_path_check(void) 1355 static int reverse_path_check(void) 1529 { 1356 { 1530 struct epitems_head *p; !! 1357 int error = 0; >> 1358 struct file *current_file; 1531 1359 1532 for (p = tfile_check_list; p != EP_UN !! 1360 /* let's call this for all tfiles */ 1533 int error; !! 1361 list_for_each_entry(current_file, &tfile_check_list, f_tfile_llink) { 1534 path_count_init(); 1362 path_count_init(); 1535 rcu_read_lock(); !! 1363 error = ep_call_nested(&poll_loop_ncalls, EP_MAX_NESTS, 1536 error = reverse_path_check_pr !! 1364 reverse_path_check_proc, current_file, 1537 rcu_read_unlock(); !! 1365 current_file, current); 1538 if (error) 1366 if (error) 1539 return error; !! 1367 break; 1540 } 1368 } 1541 return 0; !! 1369 return error; 1542 } 1370 } 1543 1371 1544 static int ep_create_wakeup_source(struct epi 1372 static int ep_create_wakeup_source(struct epitem *epi) 1545 { 1373 { 1546 struct name_snapshot n; !! 1374 const char *name; 1547 struct wakeup_source *ws; 1375 struct wakeup_source *ws; 1548 1376 1549 if (!epi->ep->ws) { 1377 if (!epi->ep->ws) { 1550 epi->ep->ws = wakeup_source_r !! 1378 epi->ep->ws = wakeup_source_register("eventpoll"); 1551 if (!epi->ep->ws) 1379 if (!epi->ep->ws) 1552 return -ENOMEM; 1380 return -ENOMEM; 1553 } 1381 } 1554 1382 1555 take_dentry_name_snapshot(&n, epi->ff !! 1383 name = epi->ffd.file->f_path.dentry->d_name.name; 1556 ws = wakeup_source_register(NULL, n.n !! 1384 ws = wakeup_source_register(name); 1557 release_dentry_name_snapshot(&n); << 1558 1385 1559 if (!ws) 1386 if (!ws) 1560 return -ENOMEM; 1387 return -ENOMEM; 1561 rcu_assign_pointer(epi->ws, ws); 1388 rcu_assign_pointer(epi->ws, ws); 1562 1389 1563 return 0; 1390 return 0; 1564 } 1391 } 1565 1392 1566 /* rare code path, only used when EPOLL_CTL_M 1393 /* rare code path, only used when EPOLL_CTL_MOD removes a wakeup source */ 1567 static noinline void ep_destroy_wakeup_source 1394 static noinline void ep_destroy_wakeup_source(struct epitem *epi) 1568 { 1395 { 1569 struct wakeup_source *ws = ep_wakeup_ 1396 struct wakeup_source *ws = ep_wakeup_source(epi); 1570 1397 1571 RCU_INIT_POINTER(epi->ws, NULL); 1398 RCU_INIT_POINTER(epi->ws, NULL); 1572 1399 1573 /* 1400 /* 1574 * wait for ep_pm_stay_awake_rcu to f 1401 * wait for ep_pm_stay_awake_rcu to finish, synchronize_rcu is 1575 * used internally by wakeup_source_r 1402 * used internally by wakeup_source_remove, too (called by 1576 * wakeup_source_unregister), so we c 1403 * wakeup_source_unregister), so we cannot use call_rcu 1577 */ 1404 */ 1578 synchronize_rcu(); 1405 synchronize_rcu(); 1579 wakeup_source_unregister(ws); 1406 wakeup_source_unregister(ws); 1580 } 1407 } 1581 1408 1582 static int attach_epitem(struct file *file, s << 1583 { << 1584 struct epitems_head *to_free = NULL; << 1585 struct hlist_head *head = NULL; << 1586 struct eventpoll *ep = NULL; << 1587 << 1588 if (is_file_epoll(file)) << 1589 ep = file->private_data; << 1590 << 1591 if (ep) { << 1592 head = &ep->refs; << 1593 } else if (!READ_ONCE(file->f_ep)) { << 1594 allocate: << 1595 to_free = kmem_cache_zalloc(e << 1596 if (!to_free) << 1597 return -ENOMEM; << 1598 head = &to_free->epitems; << 1599 } << 1600 spin_lock(&file->f_lock); << 1601 if (!file->f_ep) { << 1602 if (unlikely(!head)) { << 1603 spin_unlock(&file->f_ << 1604 goto allocate; << 1605 } << 1606 file->f_ep = head; << 1607 to_free = NULL; << 1608 } << 1609 hlist_add_head_rcu(&epi->fllink, file << 1610 spin_unlock(&file->f_lock); << 1611 free_ephead(to_free); << 1612 return 0; << 1613 } << 1614 << 1615 /* 1409 /* 1616 * Must be called with "mtx" held. 1410 * Must be called with "mtx" held. 1617 */ 1411 */ 1618 static int ep_insert(struct eventpoll *ep, co !! 1412 static int ep_insert(struct eventpoll *ep, struct epoll_event *event, 1619 struct file *tfile, int 1413 struct file *tfile, int fd, int full_check) 1620 { 1414 { 1621 int error, pwake = 0; !! 1415 int error, revents, pwake = 0; 1622 __poll_t revents; !! 1416 unsigned long flags; >> 1417 long user_watches; 1623 struct epitem *epi; 1418 struct epitem *epi; 1624 struct ep_pqueue epq; 1419 struct ep_pqueue epq; 1625 struct eventpoll *tep = NULL; << 1626 << 1627 if (is_file_epoll(tfile)) << 1628 tep = tfile->private_data; << 1629 << 1630 lockdep_assert_irqs_enabled(); << 1631 1420 1632 if (unlikely(percpu_counter_compare(& !! 1421 user_watches = atomic_long_read(&ep->user->epoll_watches); 1633 m !! 1422 if (unlikely(user_watches >= max_user_watches)) 1634 return -ENOSPC; 1423 return -ENOSPC; 1635 percpu_counter_inc(&ep->user->epoll_w !! 1424 if (!(epi = kmem_cache_alloc(epi_cache, GFP_KERNEL))) 1636 << 1637 if (!(epi = kmem_cache_zalloc(epi_cac << 1638 percpu_counter_dec(&ep->user- << 1639 return -ENOMEM; 1425 return -ENOMEM; 1640 } << 1641 1426 1642 /* Item initialization follow here .. 1427 /* Item initialization follow here ... */ 1643 INIT_LIST_HEAD(&epi->rdllink); 1428 INIT_LIST_HEAD(&epi->rdllink); >> 1429 INIT_LIST_HEAD(&epi->fllink); >> 1430 INIT_LIST_HEAD(&epi->pwqlist); 1644 epi->ep = ep; 1431 epi->ep = ep; 1645 ep_set_ffd(&epi->ffd, tfile, fd); 1432 ep_set_ffd(&epi->ffd, tfile, fd); 1646 epi->event = *event; 1433 epi->event = *event; >> 1434 epi->nwait = 0; 1647 epi->next = EP_UNACTIVE_PTR; 1435 epi->next = EP_UNACTIVE_PTR; 1648 << 1649 if (tep) << 1650 mutex_lock_nested(&tep->mtx, << 1651 /* Add the current item to the list o << 1652 if (unlikely(attach_epitem(tfile, epi << 1653 if (tep) << 1654 mutex_unlock(&tep->mt << 1655 kmem_cache_free(epi_cache, ep << 1656 percpu_counter_dec(&ep->user- << 1657 return -ENOMEM; << 1658 } << 1659 << 1660 if (full_check && !tep) << 1661 list_file(tfile); << 1662 << 1663 /* << 1664 * Add the current item to the RB tre << 1665 * protected by "mtx", and ep_insert( << 1666 */ << 1667 ep_rbtree_insert(ep, epi); << 1668 if (tep) << 1669 mutex_unlock(&tep->mtx); << 1670 << 1671 /* << 1672 * ep_remove_safe() calls in the late << 1673 * ep_free() as the ep file itself st << 1674 */ << 1675 ep_get(ep); << 1676 << 1677 /* now check if we've created too man << 1678 if (unlikely(full_check && reverse_pa << 1679 ep_remove_safe(ep, epi); << 1680 return -EINVAL; << 1681 } << 1682 << 1683 if (epi->event.events & EPOLLWAKEUP) 1436 if (epi->event.events & EPOLLWAKEUP) { 1684 error = ep_create_wakeup_sour 1437 error = ep_create_wakeup_source(epi); 1685 if (error) { !! 1438 if (error) 1686 ep_remove_safe(ep, ep !! 1439 goto error_create_wakeup_source; 1687 return error; !! 1440 } else { 1688 } !! 1441 RCU_INIT_POINTER(epi->ws, NULL); 1689 } 1442 } 1690 1443 1691 /* Initialize the poll table using th 1444 /* Initialize the poll table using the queue callback */ 1692 epq.epi = epi; 1445 epq.epi = epi; 1693 init_poll_funcptr(&epq.pt, ep_ptable_ 1446 init_poll_funcptr(&epq.pt, ep_ptable_queue_proc); 1694 1447 1695 /* 1448 /* 1696 * Attach the item to the poll hooks 1449 * Attach the item to the poll hooks and get current event bits. 1697 * We can safely use the file* here b 1450 * We can safely use the file* here because its usage count has 1698 * been increased by the caller of th 1451 * been increased by the caller of this function. Note that after 1699 * this operation completes, the poll 1452 * this operation completes, the poll callback can start hitting 1700 * the new item. 1453 * the new item. 1701 */ 1454 */ 1702 revents = ep_item_poll(epi, &epq.pt, 1455 revents = ep_item_poll(epi, &epq.pt, 1); 1703 1456 1704 /* 1457 /* 1705 * We have to check if something went 1458 * We have to check if something went wrong during the poll wait queue 1706 * install process. Namely an allocat 1459 * install process. Namely an allocation for a wait queue failed due 1707 * high memory pressure. 1460 * high memory pressure. 1708 */ 1461 */ 1709 if (unlikely(!epq.epi)) { !! 1462 error = -ENOMEM; 1710 ep_remove_safe(ep, epi); !! 1463 if (epi->nwait < 0) 1711 return -ENOMEM; !! 1464 goto error_unregister; 1712 } !! 1465 >> 1466 /* Add the current item to the list of active epoll hook for this file */ >> 1467 spin_lock(&tfile->f_lock); >> 1468 list_add_tail_rcu(&epi->fllink, &tfile->f_ep_links); >> 1469 spin_unlock(&tfile->f_lock); >> 1470 >> 1471 /* >> 1472 * Add the current item to the RB tree. All RB tree operations are >> 1473 * protected by "mtx", and ep_insert() is called with "mtx" held. >> 1474 */ >> 1475 ep_rbtree_insert(ep, epi); >> 1476 >> 1477 /* now check if we've created too many backpaths */ >> 1478 error = -EINVAL; >> 1479 if (full_check && reverse_path_check()) >> 1480 goto error_remove_epi; 1713 1481 1714 /* We have to drop the new item insid 1482 /* We have to drop the new item inside our item list to keep track of it */ 1715 write_lock_irq(&ep->lock); !! 1483 spin_lock_irqsave(&ep->lock, flags); 1716 1484 1717 /* record NAPI ID of new item if pres 1485 /* record NAPI ID of new item if present */ 1718 ep_set_busy_poll_napi_id(epi); 1486 ep_set_busy_poll_napi_id(epi); 1719 1487 1720 /* If the file is already "ready" we 1488 /* If the file is already "ready" we drop it inside the ready list */ 1721 if (revents && !ep_is_linked(epi)) { !! 1489 if ((revents & event->events) && !ep_is_linked(&epi->rdllink)) { 1722 list_add_tail(&epi->rdllink, 1490 list_add_tail(&epi->rdllink, &ep->rdllist); 1723 ep_pm_stay_awake(epi); 1491 ep_pm_stay_awake(epi); 1724 1492 1725 /* Notify waiting tasks that 1493 /* Notify waiting tasks that events are available */ 1726 if (waitqueue_active(&ep->wq) 1494 if (waitqueue_active(&ep->wq)) 1727 wake_up(&ep->wq); !! 1495 wake_up_locked(&ep->wq); 1728 if (waitqueue_active(&ep->pol 1496 if (waitqueue_active(&ep->poll_wait)) 1729 pwake++; 1497 pwake++; 1730 } 1498 } 1731 1499 1732 write_unlock_irq(&ep->lock); !! 1500 spin_unlock_irqrestore(&ep->lock, flags); >> 1501 >> 1502 atomic_long_inc(&ep->user->epoll_watches); 1733 1503 1734 /* We have to call this outside the l 1504 /* We have to call this outside the lock */ 1735 if (pwake) 1505 if (pwake) 1736 ep_poll_safewake(ep, NULL, 0) !! 1506 ep_poll_safewake(&ep->poll_wait); 1737 1507 1738 return 0; 1508 return 0; >> 1509 >> 1510 error_remove_epi: >> 1511 spin_lock(&tfile->f_lock); >> 1512 list_del_rcu(&epi->fllink); >> 1513 spin_unlock(&tfile->f_lock); >> 1514 >> 1515 rb_erase_cached(&epi->rbn, &ep->rbr); >> 1516 >> 1517 error_unregister: >> 1518 ep_unregister_pollwait(ep, epi); >> 1519 >> 1520 /* >> 1521 * We need to do this because an event could have been arrived on some >> 1522 * allocated wait queue. Note that we don't care about the ep->ovflist >> 1523 * list, since that is used/cleaned only inside a section bound by "mtx". >> 1524 * And ep_insert() is called with "mtx" held. >> 1525 */ >> 1526 spin_lock_irqsave(&ep->lock, flags); >> 1527 if (ep_is_linked(&epi->rdllink)) >> 1528 list_del_init(&epi->rdllink); >> 1529 spin_unlock_irqrestore(&ep->lock, flags); >> 1530 >> 1531 wakeup_source_unregister(ep_wakeup_source(epi)); >> 1532 >> 1533 error_create_wakeup_source: >> 1534 kmem_cache_free(epi_cache, epi); >> 1535 >> 1536 return error; 1739 } 1537 } 1740 1538 1741 /* 1539 /* 1742 * Modify the interest event mask by dropping 1540 * Modify the interest event mask by dropping an event if the new mask 1743 * has a match in the current file status. Mu 1541 * has a match in the current file status. Must be called with "mtx" held. 1744 */ 1542 */ 1745 static int ep_modify(struct eventpoll *ep, st !! 1543 static int ep_modify(struct eventpoll *ep, struct epitem *epi, struct epoll_event *event) 1746 const struct epoll_event << 1747 { 1544 { 1748 int pwake = 0; 1545 int pwake = 0; >> 1546 unsigned int revents; 1749 poll_table pt; 1547 poll_table pt; 1750 1548 1751 lockdep_assert_irqs_enabled(); << 1752 << 1753 init_poll_funcptr(&pt, NULL); 1549 init_poll_funcptr(&pt, NULL); 1754 1550 1755 /* 1551 /* 1756 * Set the new event interest mask be 1552 * Set the new event interest mask before calling f_op->poll(); 1757 * otherwise we might miss an event t 1553 * otherwise we might miss an event that happens between the 1758 * f_op->poll() call and the new even 1554 * f_op->poll() call and the new event set registering. 1759 */ 1555 */ 1760 epi->event.events = event->events; /* 1556 epi->event.events = event->events; /* need barrier below */ 1761 epi->event.data = event->data; /* pro 1557 epi->event.data = event->data; /* protected by mtx */ 1762 if (epi->event.events & EPOLLWAKEUP) 1558 if (epi->event.events & EPOLLWAKEUP) { 1763 if (!ep_has_wakeup_source(epi 1559 if (!ep_has_wakeup_source(epi)) 1764 ep_create_wakeup_sour 1560 ep_create_wakeup_source(epi); 1765 } else if (ep_has_wakeup_source(epi)) 1561 } else if (ep_has_wakeup_source(epi)) { 1766 ep_destroy_wakeup_source(epi) 1562 ep_destroy_wakeup_source(epi); 1767 } 1563 } 1768 1564 1769 /* 1565 /* 1770 * The following barrier has two effe 1566 * The following barrier has two effects: 1771 * 1567 * 1772 * 1) Flush epi changes above to othe 1568 * 1) Flush epi changes above to other CPUs. This ensures 1773 * we do not miss events from ep_p 1569 * we do not miss events from ep_poll_callback if an 1774 * event occurs immediately after 1570 * event occurs immediately after we call f_op->poll(). 1775 * We need this because we did not 1571 * We need this because we did not take ep->lock while 1776 * changing epi above (but ep_poll 1572 * changing epi above (but ep_poll_callback does take 1777 * ep->lock). 1573 * ep->lock). 1778 * 1574 * 1779 * 2) We also need to ensure we do no 1575 * 2) We also need to ensure we do not miss _past_ events 1780 * when calling f_op->poll(). Thi 1576 * when calling f_op->poll(). This barrier also 1781 * pairs with the barrier in wq_ha 1577 * pairs with the barrier in wq_has_sleeper (see 1782 * comments for wq_has_sleeper). 1578 * comments for wq_has_sleeper). 1783 * 1579 * 1784 * This barrier will now guarantee ep 1580 * This barrier will now guarantee ep_poll_callback or f_op->poll 1785 * (or both) will notice the readines 1581 * (or both) will notice the readiness of an item. 1786 */ 1582 */ 1787 smp_mb(); 1583 smp_mb(); 1788 1584 1789 /* 1585 /* 1790 * Get current event bits. We can saf 1586 * Get current event bits. We can safely use the file* here because 1791 * its usage count has been increased 1587 * its usage count has been increased by the caller of this function. >> 1588 */ >> 1589 revents = ep_item_poll(epi, &pt, 1); >> 1590 >> 1591 /* 1792 * If the item is "hot" and it is not 1592 * If the item is "hot" and it is not registered inside the ready 1793 * list, push it inside. 1593 * list, push it inside. 1794 */ 1594 */ 1795 if (ep_item_poll(epi, &pt, 1)) { !! 1595 if (revents & event->events) { 1796 write_lock_irq(&ep->lock); !! 1596 spin_lock_irq(&ep->lock); 1797 if (!ep_is_linked(epi)) { !! 1597 if (!ep_is_linked(&epi->rdllink)) { 1798 list_add_tail(&epi->r 1598 list_add_tail(&epi->rdllink, &ep->rdllist); 1799 ep_pm_stay_awake(epi) 1599 ep_pm_stay_awake(epi); 1800 1600 1801 /* Notify waiting tas 1601 /* Notify waiting tasks that events are available */ 1802 if (waitqueue_active( 1602 if (waitqueue_active(&ep->wq)) 1803 wake_up(&ep-> !! 1603 wake_up_locked(&ep->wq); 1804 if (waitqueue_active( 1604 if (waitqueue_active(&ep->poll_wait)) 1805 pwake++; 1605 pwake++; 1806 } 1606 } 1807 write_unlock_irq(&ep->lock); !! 1607 spin_unlock_irq(&ep->lock); 1808 } 1608 } 1809 1609 1810 /* We have to call this outside the l 1610 /* We have to call this outside the lock */ 1811 if (pwake) 1611 if (pwake) 1812 ep_poll_safewake(ep, NULL, 0) !! 1612 ep_poll_safewake(&ep->poll_wait); 1813 1613 1814 return 0; 1614 return 0; 1815 } 1615 } 1816 1616 1817 static int ep_send_events(struct eventpoll *e !! 1617 static int ep_send_events_proc(struct eventpoll *ep, struct list_head *head, 1818 struct epoll_event !! 1618 void *priv) 1819 { 1619 { 1820 struct epitem *epi, *tmp; !! 1620 struct ep_send_events_data *esed = priv; 1821 LIST_HEAD(txlist); !! 1621 int eventcnt; >> 1622 unsigned int revents; >> 1623 struct epitem *epi; >> 1624 struct epoll_event __user *uevent; >> 1625 struct wakeup_source *ws; 1822 poll_table pt; 1626 poll_table pt; 1823 int res = 0; << 1824 << 1825 /* << 1826 * Always short-circuit for fatal sig << 1827 * timely exit without the chance of << 1828 * fetching repeatedly. << 1829 */ << 1830 if (fatal_signal_pending(current)) << 1831 return -EINTR; << 1832 1627 1833 init_poll_funcptr(&pt, NULL); 1628 init_poll_funcptr(&pt, NULL); 1834 1629 1835 mutex_lock(&ep->mtx); << 1836 ep_start_scan(ep, &txlist); << 1837 << 1838 /* 1630 /* 1839 * We can loop without lock because w 1631 * We can loop without lock because we are passed a task private list. 1840 * Items cannot vanish during the loo !! 1632 * Items cannot vanish during the loop because ep_scan_ready_list() is >> 1633 * holding "mtx" during this call. 1841 */ 1634 */ 1842 list_for_each_entry_safe(epi, tmp, &t !! 1635 for (eventcnt = 0, uevent = esed->events; 1843 struct wakeup_source *ws; !! 1636 !list_empty(head) && eventcnt < esed->maxevents;) { 1844 __poll_t revents; !! 1637 epi = list_first_entry(head, struct epitem, rdllink); 1845 << 1846 if (res >= maxevents) << 1847 break; << 1848 1638 1849 /* 1639 /* 1850 * Activate ep->ws before dea 1640 * Activate ep->ws before deactivating epi->ws to prevent 1851 * triggering auto-suspend he 1641 * triggering auto-suspend here (in case we reactive epi->ws 1852 * below). 1642 * below). 1853 * 1643 * 1854 * This could be rearranged t 1644 * This could be rearranged to delay the deactivation of epi->ws 1855 * instead, but then epi->ws 1645 * instead, but then epi->ws would temporarily be out of sync 1856 * with ep_is_linked(). 1646 * with ep_is_linked(). 1857 */ 1647 */ 1858 ws = ep_wakeup_source(epi); 1648 ws = ep_wakeup_source(epi); 1859 if (ws) { 1649 if (ws) { 1860 if (ws->active) 1650 if (ws->active) 1861 __pm_stay_awa 1651 __pm_stay_awake(ep->ws); 1862 __pm_relax(ws); 1652 __pm_relax(ws); 1863 } 1653 } 1864 1654 1865 list_del_init(&epi->rdllink); 1655 list_del_init(&epi->rdllink); 1866 1656 >> 1657 revents = ep_item_poll(epi, &pt, 1); >> 1658 1867 /* 1659 /* 1868 * If the event mask intersec 1660 * If the event mask intersect the caller-requested one, 1869 * deliver the event to users !! 1661 * deliver the event to userspace. Again, ep_scan_ready_list() 1870 * so no operations coming fr !! 1662 * is holding "mtx", so no operations coming from userspace >> 1663 * can change the item. 1871 */ 1664 */ 1872 revents = ep_item_poll(epi, & !! 1665 if (revents) { 1873 if (!revents) !! 1666 if (__put_user(revents, &uevent->events) || 1874 continue; !! 1667 __put_user(epi->event.data, &uevent->data)) { 1875 !! 1668 list_add(&epi->rdllink, head); 1876 events = epoll_put_uevent(rev !! 1669 ep_pm_stay_awake(epi); 1877 if (!events) { !! 1670 return eventcnt ? eventcnt : -EFAULT; 1878 list_add(&epi->rdllin !! 1671 } 1879 ep_pm_stay_awake(epi) !! 1672 eventcnt++; 1880 if (!res) !! 1673 uevent++; 1881 res = -EFAULT !! 1674 if (epi->event.events & EPOLLONESHOT) 1882 break; !! 1675 epi->event.events &= EP_PRIVATE_BITS; 1883 } !! 1676 else if (!(epi->event.events & EPOLLET)) { 1884 res++; !! 1677 /* 1885 if (epi->event.events & EPOLL !! 1678 * If this file has been added with Level 1886 epi->event.events &= !! 1679 * Trigger mode, we need to insert back inside 1887 else if (!(epi->event.events !! 1680 * the ready list, so that the next call to 1888 /* !! 1681 * epoll_wait() will check again the events 1889 * If this file has b !! 1682 * availability. At this point, no one can insert 1890 * Trigger mode, we n !! 1683 * into ep->rdllist besides us. The epoll_ctl() 1891 * the ready list, so !! 1684 * callers are locked out by 1892 * epoll_wait() will !! 1685 * ep_scan_ready_list() holding "mtx" and the 1893 * availability. At t !! 1686 * poll callback will queue them in ep->ovflist. 1894 * into ep->rdllist b !! 1687 */ 1895 * callers are locked !! 1688 list_add_tail(&epi->rdllink, &ep->rdllist); 1896 * ep_send_events() h !! 1689 ep_pm_stay_awake(epi); 1897 * poll callback will !! 1690 } 1898 */ << 1899 list_add_tail(&epi->r << 1900 ep_pm_stay_awake(epi) << 1901 } 1691 } 1902 } 1692 } 1903 ep_done_scan(ep, &txlist); << 1904 mutex_unlock(&ep->mtx); << 1905 1693 1906 return res; !! 1694 return eventcnt; 1907 } 1695 } 1908 1696 1909 static struct timespec64 *ep_timeout_to_times !! 1697 static int ep_send_events(struct eventpoll *ep, >> 1698 struct epoll_event __user *events, int maxevents) 1910 { 1699 { 1911 struct timespec64 now; !! 1700 struct ep_send_events_data esed; 1912 << 1913 if (ms < 0) << 1914 return NULL; << 1915 1701 1916 if (!ms) { !! 1702 esed.maxevents = maxevents; 1917 to->tv_sec = 0; !! 1703 esed.events = events; 1918 to->tv_nsec = 0; << 1919 return to; << 1920 } << 1921 << 1922 to->tv_sec = ms / MSEC_PER_SEC; << 1923 to->tv_nsec = NSEC_PER_MSEC * (ms % M << 1924 1704 1925 ktime_get_ts64(&now); !! 1705 return ep_scan_ready_list(ep, ep_send_events_proc, &esed, 0, false); 1926 *to = timespec64_add_safe(now, *to); << 1927 return to; << 1928 } 1706 } 1929 1707 1930 /* !! 1708 static inline struct timespec64 ep_set_mstimeout(long ms) 1931 * autoremove_wake_function, but remove even << 1932 * know that default_wake_function/ttwu will << 1933 * woken, and in that case the ep_poll loop w << 1934 * try to reuse it. << 1935 */ << 1936 static int ep_autoremove_wake_function(struct << 1937 unsign << 1938 { 1709 { 1939 int ret = default_wake_function(wq_en !! 1710 struct timespec64 now, ts = { >> 1711 .tv_sec = ms / MSEC_PER_SEC, >> 1712 .tv_nsec = NSEC_PER_MSEC * (ms % MSEC_PER_SEC), >> 1713 }; 1940 1714 1941 /* !! 1715 ktime_get_ts64(&now); 1942 * Pairs with list_empty_careful in e !! 1716 return timespec64_add_safe(now, ts); 1943 * iterations see the cause of this w << 1944 */ << 1945 list_del_init_careful(&wq_entry->entr << 1946 return ret; << 1947 } 1717 } 1948 1718 1949 /** 1719 /** 1950 * ep_poll - Retrieves ready events, and deli !! 1720 * ep_poll - Retrieves ready events, and delivers them to the caller supplied 1951 * event buffer. 1721 * event buffer. 1952 * 1722 * 1953 * @ep: Pointer to the eventpoll context. 1723 * @ep: Pointer to the eventpoll context. 1954 * @events: Pointer to the userspace buffer w 1724 * @events: Pointer to the userspace buffer where the ready events should be 1955 * stored. 1725 * stored. 1956 * @maxevents: Size (in terms of number of ev 1726 * @maxevents: Size (in terms of number of events) of the caller event buffer. 1957 * @timeout: Maximum timeout for the ready ev 1727 * @timeout: Maximum timeout for the ready events fetch operation, in 1958 * timespec. If the timeout is zero !! 1728 * milliseconds. If the @timeout is zero, the function will not block, 1959 * while if the @timeout ptr is NUL !! 1729 * while if the @timeout is less than zero, the function will block 1960 * until at least one event has bee 1730 * until at least one event has been retrieved (or an error 1961 * occurred). 1731 * occurred). 1962 * 1732 * 1963 * Return: the number of ready events which h !! 1733 * Returns: Returns the number of ready events which have been fetched, or an 1964 * error code, in case of error. 1734 * error code, in case of error. 1965 */ 1735 */ 1966 static int ep_poll(struct eventpoll *ep, stru 1736 static int ep_poll(struct eventpoll *ep, struct epoll_event __user *events, 1967 int maxevents, struct time !! 1737 int maxevents, long timeout) 1968 { 1738 { 1969 int res, eavail, timed_out = 0; !! 1739 int res = 0, eavail, timed_out = 0; >> 1740 unsigned long flags; 1970 u64 slack = 0; 1741 u64 slack = 0; 1971 wait_queue_entry_t wait; 1742 wait_queue_entry_t wait; 1972 ktime_t expires, *to = NULL; 1743 ktime_t expires, *to = NULL; 1973 1744 1974 lockdep_assert_irqs_enabled(); !! 1745 if (timeout > 0) { >> 1746 struct timespec64 end_time = ep_set_mstimeout(timeout); 1975 1747 1976 if (timeout && (timeout->tv_sec | tim !! 1748 slack = select_estimate_accuracy(&end_time); 1977 slack = select_estimate_accur << 1978 to = &expires; 1749 to = &expires; 1979 *to = timespec64_to_ktime(*ti !! 1750 *to = timespec64_to_ktime(end_time); 1980 } else if (timeout) { !! 1751 } else if (timeout == 0) { 1981 /* 1752 /* 1982 * Avoid the unnecessary trip 1753 * Avoid the unnecessary trip to the wait queue loop, if the 1983 * caller specified a non blo 1754 * caller specified a non blocking operation. 1984 */ 1755 */ 1985 timed_out = 1; 1756 timed_out = 1; >> 1757 spin_lock_irqsave(&ep->lock, flags); >> 1758 goto check_events; 1986 } 1759 } 1987 1760 1988 /* !! 1761 fetch_events: 1989 * This call is racy: We may or may n << 1990 * to the ready list under the lock ( << 1991 * with a non-zero timeout, this thre << 1992 * lock and will add to the wait queu << 1993 * timeout, the user by definition sh << 1994 * recheck again. << 1995 */ << 1996 eavail = ep_events_available(ep); << 1997 << 1998 while (1) { << 1999 if (eavail) { << 2000 /* << 2001 * Try to transfer ev << 2002 * 0 events and there << 2003 * trying again in se << 2004 */ << 2005 res = ep_send_events( << 2006 if (res) << 2007 return res; << 2008 } << 2009 << 2010 if (timed_out) << 2011 return 0; << 2012 << 2013 eavail = ep_busy_loop(ep, tim << 2014 if (eavail) << 2015 continue; << 2016 1762 2017 if (signal_pending(current)) !! 1763 if (!ep_events_available(ep)) 2018 return -EINTR; !! 1764 ep_busy_loop(ep, timed_out); 2019 1765 2020 /* !! 1766 spin_lock_irqsave(&ep->lock, flags); 2021 * Internally init_wait() use << 2022 * thus wait entry is removed << 2023 * wakeup. Why it is importan << 2024 * each new wakeup will hit t << 2025 * chance to harvest new even << 2026 * lost. This is also good pe << 2027 * normal wakeup path no need << 2028 * explicitly, thus ep->lock << 2029 * event delivery. << 2030 * << 2031 * In fact, we now use an eve << 2032 * unconditionally removes, b << 2033 * entry between loop iterati << 2034 * performance issue if a pro << 2035 * threads to wake up without << 2036 */ << 2037 init_wait(&wait); << 2038 wait.func = ep_autoremove_wak << 2039 << 2040 write_lock_irq(&ep->lock); << 2041 /* << 2042 * Barrierless variant, waitq << 2043 * the same lock on wakeup ep << 2044 * is safe to avoid an explic << 2045 */ << 2046 __set_current_state(TASK_INTE << 2047 1767 >> 1768 if (!ep_events_available(ep)) { 2048 /* 1769 /* 2049 * Do the final check under t !! 1770 * Busy poll timed out. Drop NAPI ID for now, we can add 2050 * plays with two lists (->rd !! 1771 * it back in when we have moved a socket with a valid NAPI 2051 * is always a race when both !! 1772 * ID onto the ready list. 2052 * period of time although ev << 2053 * important. << 2054 */ 1773 */ 2055 eavail = ep_events_available( !! 1774 ep_reset_busy_poll_napi_id(ep); 2056 if (!eavail) << 2057 __add_wait_queue_excl << 2058 << 2059 write_unlock_irq(&ep->lock); << 2060 << 2061 if (!eavail) << 2062 timed_out = !schedule << 2063 << 2064 __set_current_state(TASK_RUNN << 2065 1775 2066 /* 1776 /* 2067 * We were woken up, thus go !! 1777 * We don't have any available event to return to the caller. 2068 * If timed out and still on !! 1778 * We need to sleep here, and we will be wake up by 2069 * carefully under lock, belo !! 1779 * ep_poll_callback() when events will become available. 2070 */ 1780 */ 2071 eavail = 1; !! 1781 init_waitqueue_entry(&wait, current); >> 1782 __add_wait_queue_exclusive(&ep->wq, &wait); 2072 1783 2073 if (!list_empty_careful(&wait !! 1784 for (;;) { 2074 write_lock_irq(&ep->l << 2075 /* 1785 /* 2076 * If the thread time !! 1786 * We don't want to sleep if the ep_poll_callback() sends us 2077 * it means that the !! 1787 * a wakeup in between. That's why we set the task state 2078 * timeout expired be !! 1788 * to TASK_INTERRUPTIBLE before doing the checks. 2079 * Thus, when wait.en << 2080 * events. << 2081 */ 1789 */ 2082 if (timed_out) !! 1790 set_current_state(TASK_INTERRUPTIBLE); 2083 eavail = list !! 1791 /* 2084 __remove_wait_queue(& !! 1792 * Always short-circuit for fatal signals to allow 2085 write_unlock_irq(&ep- !! 1793 * threads to make a timely exit without the chance of >> 1794 * finding more events available and fetching >> 1795 * repeatedly. >> 1796 */ >> 1797 if (fatal_signal_pending(current)) { >> 1798 res = -EINTR; >> 1799 break; >> 1800 } >> 1801 if (ep_events_available(ep) || timed_out) >> 1802 break; >> 1803 if (signal_pending(current)) { >> 1804 res = -EINTR; >> 1805 break; >> 1806 } >> 1807 >> 1808 spin_unlock_irqrestore(&ep->lock, flags); >> 1809 if (!schedule_hrtimeout_range(to, slack, HRTIMER_MODE_ABS)) >> 1810 timed_out = 1; >> 1811 >> 1812 spin_lock_irqsave(&ep->lock, flags); 2086 } 1813 } >> 1814 >> 1815 __remove_wait_queue(&ep->wq, &wait); >> 1816 __set_current_state(TASK_RUNNING); 2087 } 1817 } >> 1818 check_events: >> 1819 /* Is it worth to try to dig for events ? */ >> 1820 eavail = ep_events_available(ep); >> 1821 >> 1822 spin_unlock_irqrestore(&ep->lock, flags); >> 1823 >> 1824 /* >> 1825 * Try to transfer events to user space. In case we get 0 events and >> 1826 * there's still timeout left over, we go trying again in search of >> 1827 * more luck. >> 1828 */ >> 1829 if (!res && eavail && >> 1830 !(res = ep_send_events(ep, events, maxevents)) && !timed_out) >> 1831 goto fetch_events; >> 1832 >> 1833 return res; 2088 } 1834 } 2089 1835 2090 /** 1836 /** 2091 * ep_loop_check_proc - verify that adding an !! 1837 * ep_loop_check_proc - Callback function to be passed to the @ep_call_nested() 2092 * epoll structure does !! 1838 * API, to verify that adding an epoll file inside another >> 1839 * epoll structure, does not violate the constraints, in 2093 * terms of closed loops 1840 * terms of closed loops, or too deep chains (which can 2094 * result in excessive s 1841 * result in excessive stack usage). 2095 * 1842 * 2096 * @ep: the &struct eventpoll to be currently !! 1843 * @priv: Pointer to the epoll file to be currently checked. 2097 * @depth: Current depth of the path being ch !! 1844 * @cookie: Original cookie for this call. This is the top-of-the-chain epoll >> 1845 * data structure pointer. >> 1846 * @call_nests: Current dept of the @ep_call_nested() call stack. 2098 * 1847 * 2099 * Return: %zero if adding the epoll @file in !! 1848 * Returns: Returns zero if adding the epoll @file inside current epoll 2100 * structure @ep does not violate th !! 1849 * structure @ep does not violate the constraints, or -1 otherwise. 2101 */ 1850 */ 2102 static int ep_loop_check_proc(struct eventpol !! 1851 static int ep_loop_check_proc(void *priv, void *cookie, int call_nests) 2103 { 1852 { 2104 int error = 0; 1853 int error = 0; >> 1854 struct file *file = priv; >> 1855 struct eventpoll *ep = file->private_data; >> 1856 struct eventpoll *ep_tovisit; 2105 struct rb_node *rbp; 1857 struct rb_node *rbp; 2106 struct epitem *epi; 1858 struct epitem *epi; 2107 1859 2108 mutex_lock_nested(&ep->mtx, depth + 1 !! 1860 mutex_lock_nested(&ep->mtx, call_nests + 1); 2109 ep->gen = loop_check_gen; !! 1861 ep->visited = 1; >> 1862 list_add(&ep->visited_list_link, &visited_list); 2110 for (rbp = rb_first_cached(&ep->rbr); 1863 for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) { 2111 epi = rb_entry(rbp, struct ep 1864 epi = rb_entry(rbp, struct epitem, rbn); 2112 if (unlikely(is_file_epoll(ep 1865 if (unlikely(is_file_epoll(epi->ffd.file))) { 2113 struct eventpoll *ep_ << 2114 ep_tovisit = epi->ffd 1866 ep_tovisit = epi->ffd.file->private_data; 2115 if (ep_tovisit->gen = !! 1867 if (ep_tovisit->visited) 2116 continue; 1868 continue; 2117 if (ep_tovisit == ins !! 1869 error = ep_call_nested(&poll_loop_ncalls, EP_MAX_NESTS, 2118 error = -1; !! 1870 ep_loop_check_proc, epi->ffd.file, 2119 else !! 1871 ep_tovisit, current); 2120 error = ep_lo << 2121 if (error != 0) 1872 if (error != 0) 2122 break; 1873 break; 2123 } else { 1874 } else { 2124 /* 1875 /* 2125 * If we've reached a 1876 * If we've reached a file that is not associated with 2126 * an ep, then we nee 1877 * an ep, then we need to check if the newly added 2127 * links are going to 1878 * links are going to add too many wakeup paths. We do 2128 * this by adding it 1879 * this by adding it to the tfile_check_list, if it's 2129 * not already there, 1880 * not already there, and calling reverse_path_check() 2130 * during ep_insert() 1881 * during ep_insert(). 2131 */ 1882 */ 2132 list_file(epi->ffd.fi !! 1883 if (list_empty(&epi->ffd.file->f_tfile_llink)) >> 1884 list_add(&epi->ffd.file->f_tfile_llink, >> 1885 &tfile_check_list); 2133 } 1886 } 2134 } 1887 } 2135 mutex_unlock(&ep->mtx); 1888 mutex_unlock(&ep->mtx); 2136 1889 2137 return error; 1890 return error; 2138 } 1891 } 2139 1892 2140 /** 1893 /** 2141 * ep_loop_check - Performs a check to verify !! 1894 * ep_loop_check - Performs a check to verify that adding an epoll file (@file) 2142 * into another epoll file (r !! 1895 * another epoll file (represented by @ep) does not create 2143 * closed loops or too deep c 1896 * closed loops or too deep chains. 2144 * 1897 * 2145 * @ep: Pointer to the epoll we are inserting !! 1898 * @ep: Pointer to the epoll private data structure. 2146 * @to: Pointer to the epoll to be inserted. !! 1899 * @file: Pointer to the epoll file to be checked. 2147 * 1900 * 2148 * Return: %zero if adding the epoll @to insi !! 1901 * Returns: Returns zero if adding the epoll @file inside current epoll 2149 * does not violate the constraints, or %-1 o !! 1902 * structure @ep does not violate the constraints, or -1 otherwise. 2150 */ 1903 */ 2151 static int ep_loop_check(struct eventpoll *ep !! 1904 static int ep_loop_check(struct eventpoll *ep, struct file *file) 2152 { 1905 { 2153 inserting_into = ep; !! 1906 int ret; 2154 return ep_loop_check_proc(to, 0); !! 1907 struct eventpoll *ep_cur, *ep_next; >> 1908 >> 1909 ret = ep_call_nested(&poll_loop_ncalls, EP_MAX_NESTS, >> 1910 ep_loop_check_proc, file, ep, current); >> 1911 /* clear visited list */ >> 1912 list_for_each_entry_safe(ep_cur, ep_next, &visited_list, >> 1913 visited_list_link) { >> 1914 ep_cur->visited = 0; >> 1915 list_del(&ep_cur->visited_list_link); >> 1916 } >> 1917 return ret; 2155 } 1918 } 2156 1919 2157 static void clear_tfile_check_list(void) 1920 static void clear_tfile_check_list(void) 2158 { 1921 { 2159 rcu_read_lock(); !! 1922 struct file *file; 2160 while (tfile_check_list != EP_UNACTIV !! 1923 2161 struct epitems_head *head = t !! 1924 /* first clear the tfile_check_list */ 2162 tfile_check_list = head->next !! 1925 while (!list_empty(&tfile_check_list)) { 2163 unlist_file(head); !! 1926 file = list_first_entry(&tfile_check_list, struct file, >> 1927 f_tfile_llink); >> 1928 list_del_init(&file->f_tfile_llink); 2164 } 1929 } 2165 rcu_read_unlock(); !! 1930 INIT_LIST_HEAD(&tfile_check_list); 2166 } 1931 } 2167 1932 2168 /* 1933 /* 2169 * Open an eventpoll file descriptor. 1934 * Open an eventpoll file descriptor. 2170 */ 1935 */ 2171 static int do_epoll_create(int flags) !! 1936 SYSCALL_DEFINE1(epoll_create1, int, flags) 2172 { 1937 { 2173 int error, fd; 1938 int error, fd; 2174 struct eventpoll *ep = NULL; 1939 struct eventpoll *ep = NULL; 2175 struct file *file; 1940 struct file *file; 2176 1941 2177 /* Check the EPOLL_* constant for con 1942 /* Check the EPOLL_* constant for consistency. */ 2178 BUILD_BUG_ON(EPOLL_CLOEXEC != O_CLOEX 1943 BUILD_BUG_ON(EPOLL_CLOEXEC != O_CLOEXEC); 2179 1944 2180 if (flags & ~EPOLL_CLOEXEC) 1945 if (flags & ~EPOLL_CLOEXEC) 2181 return -EINVAL; 1946 return -EINVAL; 2182 /* 1947 /* 2183 * Create the internal data structure 1948 * Create the internal data structure ("struct eventpoll"). 2184 */ 1949 */ 2185 error = ep_alloc(&ep); 1950 error = ep_alloc(&ep); 2186 if (error < 0) 1951 if (error < 0) 2187 return error; 1952 return error; 2188 /* 1953 /* 2189 * Creates all the items needed to se 1954 * Creates all the items needed to setup an eventpoll file. That is, 2190 * a file structure and a free file d 1955 * a file structure and a free file descriptor. 2191 */ 1956 */ 2192 fd = get_unused_fd_flags(O_RDWR | (fl 1957 fd = get_unused_fd_flags(O_RDWR | (flags & O_CLOEXEC)); 2193 if (fd < 0) { 1958 if (fd < 0) { 2194 error = fd; 1959 error = fd; 2195 goto out_free_ep; 1960 goto out_free_ep; 2196 } 1961 } 2197 file = anon_inode_getfile("[eventpoll 1962 file = anon_inode_getfile("[eventpoll]", &eventpoll_fops, ep, 2198 O_RDWR | (fl 1963 O_RDWR | (flags & O_CLOEXEC)); 2199 if (IS_ERR(file)) { 1964 if (IS_ERR(file)) { 2200 error = PTR_ERR(file); 1965 error = PTR_ERR(file); 2201 goto out_free_fd; 1966 goto out_free_fd; 2202 } 1967 } 2203 #ifdef CONFIG_NET_RX_BUSY_POLL << 2204 ep->busy_poll_usecs = 0; << 2205 ep->busy_poll_budget = 0; << 2206 ep->prefer_busy_poll = false; << 2207 #endif << 2208 ep->file = file; 1968 ep->file = file; 2209 fd_install(fd, file); 1969 fd_install(fd, file); 2210 return fd; 1970 return fd; 2211 1971 2212 out_free_fd: 1972 out_free_fd: 2213 put_unused_fd(fd); 1973 put_unused_fd(fd); 2214 out_free_ep: 1974 out_free_ep: 2215 ep_clear_and_put(ep); !! 1975 ep_free(ep); 2216 return error; 1976 return error; 2217 } 1977 } 2218 1978 2219 SYSCALL_DEFINE1(epoll_create1, int, flags) << 2220 { << 2221 return do_epoll_create(flags); << 2222 } << 2223 << 2224 SYSCALL_DEFINE1(epoll_create, int, size) 1979 SYSCALL_DEFINE1(epoll_create, int, size) 2225 { 1980 { 2226 if (size <= 0) 1981 if (size <= 0) 2227 return -EINVAL; 1982 return -EINVAL; 2228 1983 2229 return do_epoll_create(0); !! 1984 return sys_epoll_create1(0); 2230 } 1985 } 2231 1986 2232 #ifdef CONFIG_PM_SLEEP !! 1987 /* 2233 static inline void ep_take_care_of_epollwakeu !! 1988 * The following function implements the controller interface for 2234 { !! 1989 * the eventpoll file that enables the insertion/removal/change of 2235 if ((epev->events & EPOLLWAKEUP) && ! !! 1990 * file descriptors inside the interest set. 2236 epev->events &= ~EPOLLWAKEUP; !! 1991 */ 2237 } !! 1992 SYSCALL_DEFINE4(epoll_ctl, int, epfd, int, op, int, fd, 2238 #else !! 1993 struct epoll_event __user *, event) 2239 static inline void ep_take_care_of_epollwakeu << 2240 { << 2241 epev->events &= ~EPOLLWAKEUP; << 2242 } << 2243 #endif << 2244 << 2245 static inline int epoll_mutex_lock(struct mut << 2246 bool nonbl << 2247 { << 2248 if (!nonblock) { << 2249 mutex_lock_nested(mutex, dept << 2250 return 0; << 2251 } << 2252 if (mutex_trylock(mutex)) << 2253 return 0; << 2254 return -EAGAIN; << 2255 } << 2256 << 2257 int do_epoll_ctl(int epfd, int op, int fd, st << 2258 bool nonblock) << 2259 { 1994 { 2260 int error; 1995 int error; 2261 int full_check = 0; 1996 int full_check = 0; 2262 struct fd f, tf; 1997 struct fd f, tf; 2263 struct eventpoll *ep; 1998 struct eventpoll *ep; 2264 struct epitem *epi; 1999 struct epitem *epi; >> 2000 struct epoll_event epds; 2265 struct eventpoll *tep = NULL; 2001 struct eventpoll *tep = NULL; 2266 2002 >> 2003 error = -EFAULT; >> 2004 if (ep_op_has_event(op) && >> 2005 copy_from_user(&epds, event, sizeof(struct epoll_event))) >> 2006 goto error_return; >> 2007 2267 error = -EBADF; 2008 error = -EBADF; 2268 f = fdget(epfd); 2009 f = fdget(epfd); 2269 if (!f.file) 2010 if (!f.file) 2270 goto error_return; 2011 goto error_return; 2271 2012 2272 /* Get the "struct file *" for the ta 2013 /* Get the "struct file *" for the target file */ 2273 tf = fdget(fd); 2014 tf = fdget(fd); 2274 if (!tf.file) 2015 if (!tf.file) 2275 goto error_fput; 2016 goto error_fput; 2276 2017 2277 /* The target file descriptor must su 2018 /* The target file descriptor must support poll */ 2278 error = -EPERM; 2019 error = -EPERM; 2279 if (!file_can_poll(tf.file)) !! 2020 if (!tf.file->f_op->poll) 2280 goto error_tgt_fput; 2021 goto error_tgt_fput; 2281 2022 2282 /* Check if EPOLLWAKEUP is allowed */ 2023 /* Check if EPOLLWAKEUP is allowed */ 2283 if (ep_op_has_event(op)) 2024 if (ep_op_has_event(op)) 2284 ep_take_care_of_epollwakeup(e !! 2025 ep_take_care_of_epollwakeup(&epds); 2285 2026 2286 /* 2027 /* 2287 * We have to check that the file str 2028 * We have to check that the file structure underneath the file descriptor 2288 * the user passed to us _is_ an even 2029 * the user passed to us _is_ an eventpoll file. And also we do not permit 2289 * adding an epoll file descriptor in 2030 * adding an epoll file descriptor inside itself. 2290 */ 2031 */ 2291 error = -EINVAL; 2032 error = -EINVAL; 2292 if (f.file == tf.file || !is_file_epo 2033 if (f.file == tf.file || !is_file_epoll(f.file)) 2293 goto error_tgt_fput; 2034 goto error_tgt_fput; 2294 2035 2295 /* 2036 /* 2296 * epoll adds to the wakeup queue at 2037 * epoll adds to the wakeup queue at EPOLL_CTL_ADD time only, 2297 * so EPOLLEXCLUSIVE is not allowed f 2038 * so EPOLLEXCLUSIVE is not allowed for a EPOLL_CTL_MOD operation. 2298 * Also, we do not currently supporte 2039 * Also, we do not currently supported nested exclusive wakeups. 2299 */ 2040 */ 2300 if (ep_op_has_event(op) && (epds->eve !! 2041 if (ep_op_has_event(op) && (epds.events & EPOLLEXCLUSIVE)) { 2301 if (op == EPOLL_CTL_MOD) 2042 if (op == EPOLL_CTL_MOD) 2302 goto error_tgt_fput; 2043 goto error_tgt_fput; 2303 if (op == EPOLL_CTL_ADD && (i 2044 if (op == EPOLL_CTL_ADD && (is_file_epoll(tf.file) || 2304 (epds->events !! 2045 (epds.events & ~EPOLLEXCLUSIVE_OK_BITS))) 2305 goto error_tgt_fput; 2046 goto error_tgt_fput; 2306 } 2047 } 2307 2048 2308 /* 2049 /* 2309 * At this point it is safe to assume 2050 * At this point it is safe to assume that the "private_data" contains 2310 * our own data structure. 2051 * our own data structure. 2311 */ 2052 */ 2312 ep = f.file->private_data; 2053 ep = f.file->private_data; 2313 2054 2314 /* 2055 /* 2315 * When we insert an epoll file descr !! 2056 * When we insert an epoll file descriptor, inside another epoll file 2316 * descriptor, there is the chance of !! 2057 * descriptor, there is the change of creating closed loops, which are 2317 * better be handled here, than in mo 2058 * better be handled here, than in more critical paths. While we are 2318 * checking for loops we also determi 2059 * checking for loops we also determine the list of files reachable 2319 * and hang them on the tfile_check_l 2060 * and hang them on the tfile_check_list, so we can check that we 2320 * haven't created too many possible 2061 * haven't created too many possible wakeup paths. 2321 * 2062 * 2322 * We do not need to take the global 2063 * We do not need to take the global 'epumutex' on EPOLL_CTL_ADD when 2323 * the epoll file descriptor is attac 2064 * the epoll file descriptor is attaching directly to a wakeup source, 2324 * unless the epoll file descriptor i 2065 * unless the epoll file descriptor is nested. The purpose of taking the 2325 * 'epnested_mutex' on add is to prev !! 2066 * 'epmutex' on add is to prevent complex toplogies such as loops and 2326 * deep wakeup paths from forming in 2067 * deep wakeup paths from forming in parallel through multiple 2327 * EPOLL_CTL_ADD operations. 2068 * EPOLL_CTL_ADD operations. 2328 */ 2069 */ 2329 error = epoll_mutex_lock(&ep->mtx, 0, !! 2070 mutex_lock_nested(&ep->mtx, 0); 2330 if (error) << 2331 goto error_tgt_fput; << 2332 if (op == EPOLL_CTL_ADD) { 2071 if (op == EPOLL_CTL_ADD) { 2333 if (READ_ONCE(f.file->f_ep) | !! 2072 if (!list_empty(&f.file->f_ep_links) || 2334 is_file_epoll(tf.file)) { !! 2073 is_file_epoll(tf.file)) { 2335 mutex_unlock(&ep->mtx << 2336 error = epoll_mutex_l << 2337 if (error) << 2338 goto error_tg << 2339 loop_check_gen++; << 2340 full_check = 1; 2074 full_check = 1; >> 2075 mutex_unlock(&ep->mtx); >> 2076 mutex_lock(&epmutex); 2341 if (is_file_epoll(tf. 2077 if (is_file_epoll(tf.file)) { 2342 tep = tf.file << 2343 error = -ELOO 2078 error = -ELOOP; 2344 if (ep_loop_c !! 2079 if (ep_loop_check(ep, tf.file) != 0) { >> 2080 clear_tfile_check_list(); 2345 goto 2081 goto error_tgt_fput; >> 2082 } >> 2083 } else >> 2084 list_add(&tf.file->f_tfile_llink, >> 2085 &tfile_check_list); >> 2086 mutex_lock_nested(&ep->mtx, 0); >> 2087 if (is_file_epoll(tf.file)) { >> 2088 tep = tf.file->private_data; >> 2089 mutex_lock_nested(&tep->mtx, 1); 2346 } 2090 } 2347 error = epoll_mutex_l << 2348 if (error) << 2349 goto error_tg << 2350 } 2091 } 2351 } 2092 } 2352 2093 2353 /* 2094 /* 2354 * Try to lookup the file inside our !! 2095 * Try to lookup the file inside our RB tree, Since we grabbed "mtx" 2355 * above, we can be sure to be able t 2096 * above, we can be sure to be able to use the item looked up by 2356 * ep_find() till we release the mute 2097 * ep_find() till we release the mutex. 2357 */ 2098 */ 2358 epi = ep_find(ep, tf.file, fd); 2099 epi = ep_find(ep, tf.file, fd); 2359 2100 2360 error = -EINVAL; 2101 error = -EINVAL; 2361 switch (op) { 2102 switch (op) { 2362 case EPOLL_CTL_ADD: 2103 case EPOLL_CTL_ADD: 2363 if (!epi) { 2104 if (!epi) { 2364 epds->events |= EPOLL !! 2105 epds.events |= POLLERR | POLLHUP; 2365 error = ep_insert(ep, !! 2106 error = ep_insert(ep, &epds, tf.file, fd, full_check); 2366 } else 2107 } else 2367 error = -EEXIST; 2108 error = -EEXIST; >> 2109 if (full_check) >> 2110 clear_tfile_check_list(); 2368 break; 2111 break; 2369 case EPOLL_CTL_DEL: 2112 case EPOLL_CTL_DEL: 2370 if (epi) { !! 2113 if (epi) 2371 /* !! 2114 error = ep_remove(ep, epi); 2372 * The eventpoll itse !! 2115 else 2373 * can't go to zero h << 2374 */ << 2375 ep_remove_safe(ep, ep << 2376 error = 0; << 2377 } else { << 2378 error = -ENOENT; 2116 error = -ENOENT; 2379 } << 2380 break; 2117 break; 2381 case EPOLL_CTL_MOD: 2118 case EPOLL_CTL_MOD: 2382 if (epi) { 2119 if (epi) { 2383 if (!(epi->event.even 2120 if (!(epi->event.events & EPOLLEXCLUSIVE)) { 2384 epds->events !! 2121 epds.events |= POLLERR | POLLHUP; 2385 error = ep_mo !! 2122 error = ep_modify(ep, epi, &epds); 2386 } 2123 } 2387 } else 2124 } else 2388 error = -ENOENT; 2125 error = -ENOENT; 2389 break; 2126 break; 2390 } 2127 } >> 2128 if (tep != NULL) >> 2129 mutex_unlock(&tep->mtx); 2391 mutex_unlock(&ep->mtx); 2130 mutex_unlock(&ep->mtx); 2392 2131 2393 error_tgt_fput: 2132 error_tgt_fput: 2394 if (full_check) { !! 2133 if (full_check) 2395 clear_tfile_check_list(); !! 2134 mutex_unlock(&epmutex); 2396 loop_check_gen++; << 2397 mutex_unlock(&epnested_mutex) << 2398 } << 2399 2135 2400 fdput(tf); 2136 fdput(tf); 2401 error_fput: 2137 error_fput: 2402 fdput(f); 2138 fdput(f); 2403 error_return: 2139 error_return: 2404 2140 2405 return error; 2141 return error; 2406 } 2142 } 2407 2143 2408 /* 2144 /* 2409 * The following function implements the cont << 2410 * the eventpoll file that enables the insert << 2411 * file descriptors inside the interest set. << 2412 */ << 2413 SYSCALL_DEFINE4(epoll_ctl, int, epfd, int, op << 2414 struct epoll_event __user *, << 2415 { << 2416 struct epoll_event epds; << 2417 << 2418 if (ep_op_has_event(op) && << 2419 copy_from_user(&epds, event, size << 2420 return -EFAULT; << 2421 << 2422 return do_epoll_ctl(epfd, op, fd, &ep << 2423 } << 2424 << 2425 /* << 2426 * Implement the event wait interface for the 2145 * Implement the event wait interface for the eventpoll file. It is the kernel 2427 * part of the user space epoll_wait(2). 2146 * part of the user space epoll_wait(2). 2428 */ 2147 */ 2429 static int do_epoll_wait(int epfd, struct epo !! 2148 SYSCALL_DEFINE4(epoll_wait, int, epfd, struct epoll_event __user *, events, 2430 int maxevents, struc !! 2149 int, maxevents, int, timeout) 2431 { 2150 { 2432 int error; 2151 int error; 2433 struct fd f; 2152 struct fd f; 2434 struct eventpoll *ep; 2153 struct eventpoll *ep; 2435 2154 2436 /* The maximum number of event must b 2155 /* The maximum number of event must be greater than zero */ 2437 if (maxevents <= 0 || maxevents > EP_ 2156 if (maxevents <= 0 || maxevents > EP_MAX_EVENTS) 2438 return -EINVAL; 2157 return -EINVAL; 2439 2158 2440 /* Verify that the area passed by the 2159 /* Verify that the area passed by the user is writeable */ 2441 if (!access_ok(events, maxevents * si !! 2160 if (!access_ok(VERIFY_WRITE, events, maxevents * sizeof(struct epoll_event))) 2442 return -EFAULT; 2161 return -EFAULT; 2443 2162 2444 /* Get the "struct file *" for the ev 2163 /* Get the "struct file *" for the eventpoll file */ 2445 f = fdget(epfd); 2164 f = fdget(epfd); 2446 if (!f.file) 2165 if (!f.file) 2447 return -EBADF; 2166 return -EBADF; 2448 2167 2449 /* 2168 /* 2450 * We have to check that the file str 2169 * We have to check that the file structure underneath the fd 2451 * the user passed to us _is_ an even 2170 * the user passed to us _is_ an eventpoll file. 2452 */ 2171 */ 2453 error = -EINVAL; 2172 error = -EINVAL; 2454 if (!is_file_epoll(f.file)) 2173 if (!is_file_epoll(f.file)) 2455 goto error_fput; 2174 goto error_fput; 2456 2175 2457 /* 2176 /* 2458 * At this point it is safe to assume 2177 * At this point it is safe to assume that the "private_data" contains 2459 * our own data structure. 2178 * our own data structure. 2460 */ 2179 */ 2461 ep = f.file->private_data; 2180 ep = f.file->private_data; 2462 2181 2463 /* Time to fish for events ... */ 2182 /* Time to fish for events ... */ 2464 error = ep_poll(ep, events, maxevents !! 2183 error = ep_poll(ep, events, maxevents, timeout); 2465 2184 2466 error_fput: 2185 error_fput: 2467 fdput(f); 2186 fdput(f); 2468 return error; 2187 return error; 2469 } 2188 } 2470 2189 2471 SYSCALL_DEFINE4(epoll_wait, int, epfd, struct << 2472 int, maxevents, int, timeout) << 2473 { << 2474 struct timespec64 to; << 2475 << 2476 return do_epoll_wait(epfd, events, ma << 2477 ep_timeout_to_ti << 2478 } << 2479 << 2480 /* 2190 /* 2481 * Implement the event wait interface for the 2191 * Implement the event wait interface for the eventpoll file. It is the kernel 2482 * part of the user space epoll_pwait(2). 2192 * part of the user space epoll_pwait(2). 2483 */ 2193 */ 2484 static int do_epoll_pwait(int epfd, struct ep !! 2194 SYSCALL_DEFINE6(epoll_pwait, int, epfd, struct epoll_event __user *, events, 2485 int maxevents, stru !! 2195 int, maxevents, int, timeout, const sigset_t __user *, sigmask, 2486 const sigset_t __us !! 2196 size_t, sigsetsize) 2487 { 2197 { 2488 int error; 2198 int error; >> 2199 sigset_t ksigmask, sigsaved; 2489 2200 2490 /* 2201 /* 2491 * If the caller wants a certain sign 2202 * If the caller wants a certain signal mask to be set during the wait, 2492 * we apply it here. 2203 * we apply it here. 2493 */ 2204 */ 2494 error = set_user_sigmask(sigmask, sig !! 2205 if (sigmask) { 2495 if (error) !! 2206 if (sigsetsize != sizeof(sigset_t)) 2496 return error; !! 2207 return -EINVAL; 2497 !! 2208 if (copy_from_user(&ksigmask, sigmask, sizeof(ksigmask))) 2498 error = do_epoll_wait(epfd, events, m !! 2209 return -EFAULT; 2499 !! 2210 sigsaved = current->blocked; 2500 restore_saved_sigmask_unless(error == !! 2211 set_current_blocked(&ksigmask); 2501 !! 2212 } 2502 return error; << 2503 } << 2504 << 2505 SYSCALL_DEFINE6(epoll_pwait, int, epfd, struc << 2506 int, maxevents, int, timeout, << 2507 size_t, sigsetsize) << 2508 { << 2509 struct timespec64 to; << 2510 << 2511 return do_epoll_pwait(epfd, events, m << 2512 ep_timeout_to_t << 2513 sigmask, sigset << 2514 } << 2515 2213 2516 SYSCALL_DEFINE6(epoll_pwait2, int, epfd, stru !! 2214 error = sys_epoll_wait(epfd, events, maxevents, timeout); 2517 int, maxevents, const struct << 2518 const sigset_t __user *, sigm << 2519 { << 2520 struct timespec64 ts, *to = NULL; << 2521 2215 2522 if (timeout) { !! 2216 /* 2523 if (get_timespec64(&ts, timeo !! 2217 * If we changed the signal mask, we need to restore the original one. 2524 return -EFAULT; !! 2218 * In case we've got a signal while waiting, we do not restore the 2525 to = &ts; !! 2219 * signal mask yet, and we allow do_signal() to deliver the signal on 2526 if (poll_select_set_timeout(t !! 2220 * the way back to userspace, before the signal mask is restored. 2527 return -EINVAL; !! 2221 */ >> 2222 if (sigmask) { >> 2223 if (error == -EINTR) { >> 2224 memcpy(¤t->saved_sigmask, &sigsaved, >> 2225 sizeof(sigsaved)); >> 2226 set_restore_sigmask(); >> 2227 } else >> 2228 set_current_blocked(&sigsaved); 2528 } 2229 } 2529 2230 2530 return do_epoll_pwait(epfd, events, m !! 2231 return error; 2531 sigmask, sigset << 2532 } 2232 } 2533 2233 2534 #ifdef CONFIG_COMPAT 2234 #ifdef CONFIG_COMPAT 2535 static int do_compat_epoll_pwait(int epfd, st !! 2235 COMPAT_SYSCALL_DEFINE6(epoll_pwait, int, epfd, 2536 int maxevent !! 2236 struct epoll_event __user *, events, 2537 const compat !! 2237 int, maxevents, int, timeout, 2538 compat_size_ !! 2238 const compat_sigset_t __user *, sigmask, >> 2239 compat_size_t, sigsetsize) 2539 { 2240 { 2540 long err; 2241 long err; >> 2242 sigset_t ksigmask, sigsaved; 2541 2243 2542 /* 2244 /* 2543 * If the caller wants a certain sign 2245 * If the caller wants a certain signal mask to be set during the wait, 2544 * we apply it here. 2246 * we apply it here. 2545 */ 2247 */ 2546 err = set_compat_user_sigmask(sigmask !! 2248 if (sigmask) { 2547 if (err) !! 2249 if (sigsetsize != sizeof(compat_sigset_t)) 2548 return err; !! 2250 return -EINVAL; 2549 !! 2251 if (get_compat_sigset(&ksigmask, sigmask)) 2550 err = do_epoll_wait(epfd, events, max !! 2252 return -EFAULT; 2551 !! 2253 sigsaved = current->blocked; 2552 restore_saved_sigmask_unless(err == - !! 2254 set_current_blocked(&ksigmask); 2553 !! 2255 } 2554 return err; << 2555 } << 2556 << 2557 COMPAT_SYSCALL_DEFINE6(epoll_pwait, int, epfd << 2558 struct epoll_event __u << 2559 int, maxevents, int, t << 2560 const compat_sigset_t << 2561 compat_size_t, sigsets << 2562 { << 2563 struct timespec64 to; << 2564 << 2565 return do_compat_epoll_pwait(epfd, ev << 2566 ep_timeo << 2567 sigmask, << 2568 } << 2569 2256 2570 COMPAT_SYSCALL_DEFINE6(epoll_pwait2, int, epf !! 2257 err = sys_epoll_wait(epfd, events, maxevents, timeout); 2571 struct epoll_event __u << 2572 int, maxevents, << 2573 const struct __kernel_ << 2574 const compat_sigset_t << 2575 compat_size_t, sigsets << 2576 { << 2577 struct timespec64 ts, *to = NULL; << 2578 2258 2579 if (timeout) { !! 2259 /* 2580 if (get_timespec64(&ts, timeo !! 2260 * If we changed the signal mask, we need to restore the original one. 2581 return -EFAULT; !! 2261 * In case we've got a signal while waiting, we do not restore the 2582 to = &ts; !! 2262 * signal mask yet, and we allow do_signal() to deliver the signal on 2583 if (poll_select_set_timeout(t !! 2263 * the way back to userspace, before the signal mask is restored. 2584 return -EINVAL; !! 2264 */ >> 2265 if (sigmask) { >> 2266 if (err == -EINTR) { >> 2267 memcpy(¤t->saved_sigmask, &sigsaved, >> 2268 sizeof(sigsaved)); >> 2269 set_restore_sigmask(); >> 2270 } else >> 2271 set_current_blocked(&sigsaved); 2585 } 2272 } 2586 2273 2587 return do_compat_epoll_pwait(epfd, ev !! 2274 return err; 2588 sigmask, << 2589 } 2275 } 2590 << 2591 #endif 2276 #endif 2592 2277 2593 static int __init eventpoll_init(void) 2278 static int __init eventpoll_init(void) 2594 { 2279 { 2595 struct sysinfo si; 2280 struct sysinfo si; 2596 2281 2597 si_meminfo(&si); 2282 si_meminfo(&si); 2598 /* 2283 /* 2599 * Allows top 4% of lomem to be alloc 2284 * Allows top 4% of lomem to be allocated for epoll watches (per user). 2600 */ 2285 */ 2601 max_user_watches = (((si.totalram - s 2286 max_user_watches = (((si.totalram - si.totalhigh) / 25) << PAGE_SHIFT) / 2602 EP_ITEM_COST; 2287 EP_ITEM_COST; 2603 BUG_ON(max_user_watches < 0); 2288 BUG_ON(max_user_watches < 0); 2604 2289 2605 /* 2290 /* >> 2291 * Initialize the structure used to perform epoll file descriptor >> 2292 * inclusion loops checks. >> 2293 */ >> 2294 ep_nested_calls_init(&poll_loop_ncalls); >> 2295 >> 2296 #ifdef CONFIG_DEBUG_LOCK_ALLOC >> 2297 /* Initialize the structure used to perform safe poll wait head wake ups */ >> 2298 ep_nested_calls_init(&poll_safewake_ncalls); >> 2299 #endif >> 2300 >> 2301 /* 2606 * We can have many thousands of epit 2302 * We can have many thousands of epitems, so prevent this from 2607 * using an extra cache line on 64-bi 2303 * using an extra cache line on 64-bit (and smaller) CPUs 2608 */ 2304 */ 2609 BUILD_BUG_ON(sizeof(void *) <= 8 && s 2305 BUILD_BUG_ON(sizeof(void *) <= 8 && sizeof(struct epitem) > 128); 2610 2306 2611 /* Allocates slab cache used to alloc 2307 /* Allocates slab cache used to allocate "struct epitem" items */ 2612 epi_cache = kmem_cache_create("eventp 2308 epi_cache = kmem_cache_create("eventpoll_epi", sizeof(struct epitem), 2613 0, SLAB_HWCACHE_ALIGN 2309 0, SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, NULL); 2614 2310 2615 /* Allocates slab cache used to alloc 2311 /* Allocates slab cache used to allocate "struct eppoll_entry" */ 2616 pwq_cache = kmem_cache_create("eventp 2312 pwq_cache = kmem_cache_create("eventpoll_pwq", 2617 sizeof(struct eppoll_entry), 2313 sizeof(struct eppoll_entry), 0, SLAB_PANIC|SLAB_ACCOUNT, NULL); 2618 epoll_sysctls_init(); << 2619 << 2620 ephead_cache = kmem_cache_create("ep_ << 2621 sizeof(struct epitems_head), << 2622 2314 2623 return 0; 2315 return 0; 2624 } 2316 } 2625 fs_initcall(eventpoll_init); 2317 fs_initcall(eventpoll_init); 2626 2318
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.