1 // SPDX-License-Identifier: GPL-2.0-or-later 1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 2 /* 3 * fs/eventpoll.c (Efficient event retrieval 3 * fs/eventpoll.c (Efficient event retrieval implementation) 4 * Copyright (C) 2001,...,2009 Davide Libenz 4 * Copyright (C) 2001,...,2009 Davide Libenzi 5 * 5 * 6 * Davide Libenzi <davidel@xmailserver.org> 6 * Davide Libenzi <davidel@xmailserver.org> 7 */ 7 */ 8 8 9 #include <linux/init.h> 9 #include <linux/init.h> 10 #include <linux/kernel.h> 10 #include <linux/kernel.h> 11 #include <linux/sched/signal.h> 11 #include <linux/sched/signal.h> 12 #include <linux/fs.h> 12 #include <linux/fs.h> 13 #include <linux/file.h> 13 #include <linux/file.h> 14 #include <linux/signal.h> 14 #include <linux/signal.h> 15 #include <linux/errno.h> 15 #include <linux/errno.h> 16 #include <linux/mm.h> 16 #include <linux/mm.h> 17 #include <linux/slab.h> 17 #include <linux/slab.h> 18 #include <linux/poll.h> 18 #include <linux/poll.h> 19 #include <linux/string.h> 19 #include <linux/string.h> 20 #include <linux/list.h> 20 #include <linux/list.h> 21 #include <linux/hash.h> 21 #include <linux/hash.h> 22 #include <linux/spinlock.h> 22 #include <linux/spinlock.h> 23 #include <linux/syscalls.h> 23 #include <linux/syscalls.h> 24 #include <linux/rbtree.h> 24 #include <linux/rbtree.h> 25 #include <linux/wait.h> 25 #include <linux/wait.h> 26 #include <linux/eventpoll.h> 26 #include <linux/eventpoll.h> 27 #include <linux/mount.h> 27 #include <linux/mount.h> 28 #include <linux/bitops.h> 28 #include <linux/bitops.h> 29 #include <linux/mutex.h> 29 #include <linux/mutex.h> 30 #include <linux/anon_inodes.h> 30 #include <linux/anon_inodes.h> 31 #include <linux/device.h> 31 #include <linux/device.h> 32 #include <linux/uaccess.h> 32 #include <linux/uaccess.h> 33 #include <asm/io.h> 33 #include <asm/io.h> 34 #include <asm/mman.h> 34 #include <asm/mman.h> 35 #include <linux/atomic.h> 35 #include <linux/atomic.h> 36 #include <linux/proc_fs.h> 36 #include <linux/proc_fs.h> 37 #include <linux/seq_file.h> 37 #include <linux/seq_file.h> 38 #include <linux/compat.h> 38 #include <linux/compat.h> 39 #include <linux/rculist.h> 39 #include <linux/rculist.h> 40 #include <linux/capability.h> << 41 #include <net/busy_poll.h> 40 #include <net/busy_poll.h> 42 41 43 /* 42 /* 44 * LOCKING: 43 * LOCKING: 45 * There are three level of locking required b 44 * There are three level of locking required by epoll : 46 * 45 * 47 * 1) epnested_mutex (mutex) !! 46 * 1) epmutex (mutex) 48 * 2) ep->mtx (mutex) 47 * 2) ep->mtx (mutex) 49 * 3) ep->lock (rwlock) 48 * 3) ep->lock (rwlock) 50 * 49 * 51 * The acquire order is the one listed above, 50 * The acquire order is the one listed above, from 1 to 3. 52 * We need a rwlock (ep->lock) because we mani 51 * We need a rwlock (ep->lock) because we manipulate objects 53 * from inside the poll callback, that might b 52 * from inside the poll callback, that might be triggered from 54 * a wake_up() that in turn might be called fr 53 * a wake_up() that in turn might be called from IRQ context. 55 * So we can't sleep inside the poll callback 54 * So we can't sleep inside the poll callback and hence we need 56 * a spinlock. During the event transfer loop 55 * a spinlock. During the event transfer loop (from kernel to 57 * user space) we could end up sleeping due a 56 * user space) we could end up sleeping due a copy_to_user(), so 58 * we need a lock that will allow us to sleep. 57 * we need a lock that will allow us to sleep. This lock is a 59 * mutex (ep->mtx). It is acquired during the 58 * mutex (ep->mtx). It is acquired during the event transfer loop, 60 * during epoll_ctl(EPOLL_CTL_DEL) and during 59 * during epoll_ctl(EPOLL_CTL_DEL) and during eventpoll_release_file(). 61 * The epnested_mutex is acquired when inserti !! 60 * Then we also need a global mutex to serialize eventpoll_release_file() 62 * epoll fd. We do this so that we walk the ep !! 61 * and ep_free(). >> 62 * This mutex is acquired by ep_free() during the epoll file >> 63 * cleanup path and it is also acquired by eventpoll_release_file() >> 64 * if a file has been pushed inside an epoll set and it is then >> 65 * close()d without a previous call to epoll_ctl(EPOLL_CTL_DEL). >> 66 * It is also acquired when inserting an epoll fd onto another epoll >> 67 * fd. We do this so that we walk the epoll tree and ensure that this 63 * insertion does not create a cycle of epoll 68 * insertion does not create a cycle of epoll file descriptors, which 64 * could lead to deadlock. We need a global mu 69 * could lead to deadlock. We need a global mutex to prevent two 65 * simultaneous inserts (A into B and B into A 70 * simultaneous inserts (A into B and B into A) from racing and 66 * constructing a cycle without either insert 71 * constructing a cycle without either insert observing that it is 67 * going to. 72 * going to. 68 * It is necessary to acquire multiple "ep->mt 73 * It is necessary to acquire multiple "ep->mtx"es at once in the 69 * case when one epoll fd is added to another. 74 * case when one epoll fd is added to another. In this case, we 70 * always acquire the locks in the order of ne 75 * always acquire the locks in the order of nesting (i.e. after 71 * epoll_ctl(e1, EPOLL_CTL_ADD, e2), e1->mtx w 76 * epoll_ctl(e1, EPOLL_CTL_ADD, e2), e1->mtx will always be acquired 72 * before e2->mtx). Since we disallow cycles o 77 * before e2->mtx). Since we disallow cycles of epoll file 73 * descriptors, this ensures that the mutexes 78 * descriptors, this ensures that the mutexes are well-ordered. In 74 * order to communicate this nesting to lockde 79 * order to communicate this nesting to lockdep, when walking a tree 75 * of epoll file descriptors, we use the curre 80 * of epoll file descriptors, we use the current recursion depth as 76 * the lockdep subkey. 81 * the lockdep subkey. 77 * It is possible to drop the "ep->mtx" and to 82 * It is possible to drop the "ep->mtx" and to use the global 78 * mutex "epnested_mutex" (together with "ep-> !! 83 * mutex "epmutex" (together with "ep->lock") to have it working, 79 * but having "ep->mtx" will make the interfac 84 * but having "ep->mtx" will make the interface more scalable. 80 * Events that require holding "epnested_mutex !! 85 * Events that require holding "epmutex" are very rare, while for 81 * normal operations the epoll private "ep->mt 86 * normal operations the epoll private "ep->mtx" will guarantee 82 * a better scalability. 87 * a better scalability. 83 */ 88 */ 84 89 85 /* Epoll private bits inside the event mask */ 90 /* Epoll private bits inside the event mask */ 86 #define EP_PRIVATE_BITS (EPOLLWAKEUP | EPOLLON 91 #define EP_PRIVATE_BITS (EPOLLWAKEUP | EPOLLONESHOT | EPOLLET | EPOLLEXCLUSIVE) 87 92 88 #define EPOLLINOUT_BITS (EPOLLIN | EPOLLOUT) 93 #define EPOLLINOUT_BITS (EPOLLIN | EPOLLOUT) 89 94 90 #define EPOLLEXCLUSIVE_OK_BITS (EPOLLINOUT_BIT 95 #define EPOLLEXCLUSIVE_OK_BITS (EPOLLINOUT_BITS | EPOLLERR | EPOLLHUP | \ 91 EPOLLWAKEUP | 96 EPOLLWAKEUP | EPOLLET | EPOLLEXCLUSIVE) 92 97 93 /* Maximum number of nesting allowed inside ep 98 /* Maximum number of nesting allowed inside epoll sets */ 94 #define EP_MAX_NESTS 4 99 #define EP_MAX_NESTS 4 95 100 96 #define EP_MAX_EVENTS (INT_MAX / sizeof(struct 101 #define EP_MAX_EVENTS (INT_MAX / sizeof(struct epoll_event)) 97 102 98 #define EP_UNACTIVE_PTR ((void *) -1L) 103 #define EP_UNACTIVE_PTR ((void *) -1L) 99 104 100 #define EP_ITEM_COST (sizeof(struct epitem) + 105 #define EP_ITEM_COST (sizeof(struct epitem) + sizeof(struct eppoll_entry)) 101 106 102 struct epoll_filefd { 107 struct epoll_filefd { 103 struct file *file; 108 struct file *file; 104 int fd; 109 int fd; 105 } __packed; 110 } __packed; 106 111 107 /* Wait structure used by the poll hooks */ !! 112 /* 108 struct eppoll_entry { !! 113 * Structure used to track possible nested calls, for too deep recursions 109 /* List header used to link this struc !! 114 * and loop cycles. 110 struct eppoll_entry *next; !! 115 */ 111 !! 116 struct nested_call_node { 112 /* The "base" pointer is set to the co !! 117 struct list_head llink; 113 struct epitem *base; !! 118 void *cookie; 114 !! 119 void *ctx; 115 /* !! 120 }; 116 * Wait queue item that will be linked << 117 * queue head. << 118 */ << 119 wait_queue_entry_t wait; << 120 121 121 /* The wait queue head that linked the !! 122 /* 122 wait_queue_head_t *whead; !! 123 * This structure is used as collector for nested calls, to check for >> 124 * maximum recursion dept and loop cycles. >> 125 */ >> 126 struct nested_calls { >> 127 struct list_head tasks_call_list; >> 128 spinlock_t lock; 123 }; 129 }; 124 130 125 /* 131 /* 126 * Each file descriptor added to the eventpoll 132 * Each file descriptor added to the eventpoll interface will 127 * have an entry of this type linked to the "r 133 * have an entry of this type linked to the "rbr" RB tree. 128 * Avoid increasing the size of this struct, t 134 * Avoid increasing the size of this struct, there can be many thousands 129 * of these on a server and we do not want thi 135 * of these on a server and we do not want this to take another cache line. 130 */ 136 */ 131 struct epitem { 137 struct epitem { 132 union { 138 union { 133 /* RB tree node links this str 139 /* RB tree node links this structure to the eventpoll RB tree */ 134 struct rb_node rbn; 140 struct rb_node rbn; 135 /* Used to free the struct epi 141 /* Used to free the struct epitem */ 136 struct rcu_head rcu; 142 struct rcu_head rcu; 137 }; 143 }; 138 144 139 /* List header used to link this struc 145 /* List header used to link this structure to the eventpoll ready list */ 140 struct list_head rdllink; 146 struct list_head rdllink; 141 147 142 /* 148 /* 143 * Works together "struct eventpoll"-> 149 * Works together "struct eventpoll"->ovflist in keeping the 144 * single linked chain of items. 150 * single linked chain of items. 145 */ 151 */ 146 struct epitem *next; 152 struct epitem *next; 147 153 148 /* The file descriptor information thi 154 /* The file descriptor information this item refers to */ 149 struct epoll_filefd ffd; 155 struct epoll_filefd ffd; 150 156 151 /* !! 157 /* Number of active wait queue attached to poll operations */ 152 * Protected by file->f_lock, true for !! 158 int nwait; 153 * removed from the "struct file" item << 154 * eventpoll->refcount orchestrates "s << 155 */ << 156 bool dying; << 157 159 158 /* List containing poll wait queues */ 160 /* List containing poll wait queues */ 159 struct eppoll_entry *pwqlist; !! 161 struct list_head pwqlist; 160 162 161 /* The "container" of this item */ 163 /* The "container" of this item */ 162 struct eventpoll *ep; 164 struct eventpoll *ep; 163 165 164 /* List header used to link this item 166 /* List header used to link this item to the "struct file" items list */ 165 struct hlist_node fllink; !! 167 struct list_head fllink; 166 168 167 /* wakeup_source used when EPOLLWAKEUP 169 /* wakeup_source used when EPOLLWAKEUP is set */ 168 struct wakeup_source __rcu *ws; 170 struct wakeup_source __rcu *ws; 169 171 170 /* The structure that describe the int 172 /* The structure that describe the interested events and the source fd */ 171 struct epoll_event event; 173 struct epoll_event event; 172 }; 174 }; 173 175 174 /* 176 /* 175 * This structure is stored inside the "privat 177 * This structure is stored inside the "private_data" member of the file 176 * structure and represents the main data stru 178 * structure and represents the main data structure for the eventpoll 177 * interface. 179 * interface. 178 */ 180 */ 179 struct eventpoll { 181 struct eventpoll { 180 /* 182 /* 181 * This mutex is used to ensure that f 183 * This mutex is used to ensure that files are not removed 182 * while epoll is using them. This is 184 * while epoll is using them. This is held during the event 183 * collection loop, the file cleanup p 185 * collection loop, the file cleanup path, the epoll file exit 184 * code and the ctl operations. 186 * code and the ctl operations. 185 */ 187 */ 186 struct mutex mtx; 188 struct mutex mtx; 187 189 188 /* Wait queue used by sys_epoll_wait() 190 /* Wait queue used by sys_epoll_wait() */ 189 wait_queue_head_t wq; 191 wait_queue_head_t wq; 190 192 191 /* Wait queue used by file->poll() */ 193 /* Wait queue used by file->poll() */ 192 wait_queue_head_t poll_wait; 194 wait_queue_head_t poll_wait; 193 195 194 /* List of ready file descriptors */ 196 /* List of ready file descriptors */ 195 struct list_head rdllist; 197 struct list_head rdllist; 196 198 197 /* Lock which protects rdllist and ovf 199 /* Lock which protects rdllist and ovflist */ 198 rwlock_t lock; 200 rwlock_t lock; 199 201 200 /* RB tree root used to store monitore 202 /* RB tree root used to store monitored fd structs */ 201 struct rb_root_cached rbr; 203 struct rb_root_cached rbr; 202 204 203 /* 205 /* 204 * This is a single linked list that c 206 * This is a single linked list that chains all the "struct epitem" that 205 * happened while transferring ready e 207 * happened while transferring ready events to userspace w/out 206 * holding ->lock. 208 * holding ->lock. 207 */ 209 */ 208 struct epitem *ovflist; 210 struct epitem *ovflist; 209 211 210 /* wakeup_source used when ep_send_eve !! 212 /* wakeup_source used when ep_scan_ready_list is running */ 211 struct wakeup_source *ws; 213 struct wakeup_source *ws; 212 214 213 /* The user that created the eventpoll 215 /* The user that created the eventpoll descriptor */ 214 struct user_struct *user; 216 struct user_struct *user; 215 217 216 struct file *file; 218 struct file *file; 217 219 218 /* used to optimize loop detection che 220 /* used to optimize loop detection check */ 219 u64 gen; 221 u64 gen; 220 struct hlist_head refs; << 221 << 222 /* << 223 * usage count, used together with epi << 224 * orchestrate the disposal of this st << 225 */ << 226 refcount_t refcount; << 227 222 228 #ifdef CONFIG_NET_RX_BUSY_POLL 223 #ifdef CONFIG_NET_RX_BUSY_POLL 229 /* used to track busy poll napi_id */ 224 /* used to track busy poll napi_id */ 230 unsigned int napi_id; 225 unsigned int napi_id; 231 /* busy poll timeout */ << 232 u32 busy_poll_usecs; << 233 /* busy poll packet budget */ << 234 u16 busy_poll_budget; << 235 bool prefer_busy_poll; << 236 #endif 226 #endif 237 227 238 #ifdef CONFIG_DEBUG_LOCK_ALLOC 228 #ifdef CONFIG_DEBUG_LOCK_ALLOC 239 /* tracks wakeup nests for lockdep val 229 /* tracks wakeup nests for lockdep validation */ 240 u8 nests; 230 u8 nests; 241 #endif 231 #endif 242 }; 232 }; 243 233 >> 234 /* Wait structure used by the poll hooks */ >> 235 struct eppoll_entry { >> 236 /* List header used to link this structure to the "struct epitem" */ >> 237 struct list_head llink; >> 238 >> 239 /* The "base" pointer is set to the container "struct epitem" */ >> 240 struct epitem *base; >> 241 >> 242 /* >> 243 * Wait queue item that will be linked to the target file wait >> 244 * queue head. >> 245 */ >> 246 wait_queue_entry_t wait; >> 247 >> 248 /* The wait queue head that linked the "wait" wait queue item */ >> 249 wait_queue_head_t *whead; >> 250 }; >> 251 244 /* Wrapper struct used by poll queueing */ 252 /* Wrapper struct used by poll queueing */ 245 struct ep_pqueue { 253 struct ep_pqueue { 246 poll_table pt; 254 poll_table pt; 247 struct epitem *epi; 255 struct epitem *epi; 248 }; 256 }; 249 257 >> 258 /* Used by the ep_send_events() function as callback private data */ >> 259 struct ep_send_events_data { >> 260 int maxevents; >> 261 struct epoll_event __user *events; >> 262 int res; >> 263 }; >> 264 250 /* 265 /* 251 * Configuration options available inside /pro 266 * Configuration options available inside /proc/sys/fs/epoll/ 252 */ 267 */ 253 /* Maximum number of epoll watched descriptors 268 /* Maximum number of epoll watched descriptors, per user */ 254 static long max_user_watches __read_mostly; 269 static long max_user_watches __read_mostly; 255 270 256 /* Used for cycles detection */ !! 271 /* 257 static DEFINE_MUTEX(epnested_mutex); !! 272 * This mutex is used to serialize ep_free() and eventpoll_release_file(). >> 273 */ >> 274 static DEFINE_MUTEX(epmutex); 258 275 259 static u64 loop_check_gen = 0; 276 static u64 loop_check_gen = 0; 260 277 261 /* Used to check for epoll file descriptor inc 278 /* Used to check for epoll file descriptor inclusion loops */ 262 static struct eventpoll *inserting_into; !! 279 static struct nested_calls poll_loop_ncalls; 263 280 264 /* Slab cache used to allocate "struct epitem" 281 /* Slab cache used to allocate "struct epitem" */ 265 static struct kmem_cache *epi_cache __ro_after !! 282 static struct kmem_cache *epi_cache __read_mostly; 266 283 267 /* Slab cache used to allocate "struct eppoll_ 284 /* Slab cache used to allocate "struct eppoll_entry" */ 268 static struct kmem_cache *pwq_cache __ro_after !! 285 static struct kmem_cache *pwq_cache __read_mostly; 269 286 270 /* 287 /* 271 * List of files with newly added links, where 288 * List of files with newly added links, where we may need to limit the number 272 * of emanating paths. Protected by the epnest !! 289 * of emanating paths. Protected by the epmutex. 273 */ 290 */ 274 struct epitems_head { !! 291 static LIST_HEAD(tfile_check_list); 275 struct hlist_head epitems; << 276 struct epitems_head *next; << 277 }; << 278 static struct epitems_head *tfile_check_list = << 279 << 280 static struct kmem_cache *ephead_cache __ro_af << 281 << 282 static inline void free_ephead(struct epitems_ << 283 { << 284 if (head) << 285 kmem_cache_free(ephead_cache, << 286 } << 287 << 288 static void list_file(struct file *file) << 289 { << 290 struct epitems_head *head; << 291 << 292 head = container_of(file->f_ep, struct << 293 if (!head->next) { << 294 head->next = tfile_check_list; << 295 tfile_check_list = head; << 296 } << 297 } << 298 << 299 static void unlist_file(struct epitems_head *h << 300 { << 301 struct epitems_head *to_free = head; << 302 struct hlist_node *p = rcu_dereference << 303 if (p) { << 304 struct epitem *epi= container_ << 305 spin_lock(&epi->ffd.file->f_lo << 306 if (!hlist_empty(&head->epitem << 307 to_free = NULL; << 308 head->next = NULL; << 309 spin_unlock(&epi->ffd.file->f_ << 310 } << 311 free_ephead(to_free); << 312 } << 313 292 314 #ifdef CONFIG_SYSCTL 293 #ifdef CONFIG_SYSCTL 315 294 316 #include <linux/sysctl.h> 295 #include <linux/sysctl.h> 317 296 318 static long long_zero; 297 static long long_zero; 319 static long long_max = LONG_MAX; 298 static long long_max = LONG_MAX; 320 299 321 static struct ctl_table epoll_table[] = { !! 300 struct ctl_table epoll_table[] = { 322 { 301 { 323 .procname = "max_user_wa 302 .procname = "max_user_watches", 324 .data = &max_user_wa 303 .data = &max_user_watches, 325 .maxlen = sizeof(max_u 304 .maxlen = sizeof(max_user_watches), 326 .mode = 0644, 305 .mode = 0644, 327 .proc_handler = proc_doulong 306 .proc_handler = proc_doulongvec_minmax, 328 .extra1 = &long_zero, 307 .extra1 = &long_zero, 329 .extra2 = &long_max, 308 .extra2 = &long_max, 330 }, 309 }, >> 310 { } 331 }; 311 }; 332 << 333 static void __init epoll_sysctls_init(void) << 334 { << 335 register_sysctl("fs/epoll", epoll_tabl << 336 } << 337 #else << 338 #define epoll_sysctls_init() do { } while (0) << 339 #endif /* CONFIG_SYSCTL */ 312 #endif /* CONFIG_SYSCTL */ 340 313 341 static const struct file_operations eventpoll_ 314 static const struct file_operations eventpoll_fops; 342 315 343 static inline int is_file_epoll(struct file *f 316 static inline int is_file_epoll(struct file *f) 344 { 317 { 345 return f->f_op == &eventpoll_fops; 318 return f->f_op == &eventpoll_fops; 346 } 319 } 347 320 348 /* Setup the structure that is used as key for 321 /* Setup the structure that is used as key for the RB tree */ 349 static inline void ep_set_ffd(struct epoll_fil 322 static inline void ep_set_ffd(struct epoll_filefd *ffd, 350 struct file *fil 323 struct file *file, int fd) 351 { 324 { 352 ffd->file = file; 325 ffd->file = file; 353 ffd->fd = fd; 326 ffd->fd = fd; 354 } 327 } 355 328 356 /* Compare RB tree keys */ 329 /* Compare RB tree keys */ 357 static inline int ep_cmp_ffd(struct epoll_file 330 static inline int ep_cmp_ffd(struct epoll_filefd *p1, 358 struct epoll_file 331 struct epoll_filefd *p2) 359 { 332 { 360 return (p1->file > p2->file ? +1: 333 return (p1->file > p2->file ? +1: 361 (p1->file < p2->file ? -1 : p1 334 (p1->file < p2->file ? -1 : p1->fd - p2->fd)); 362 } 335 } 363 336 364 /* Tells us if the item is currently linked */ 337 /* Tells us if the item is currently linked */ 365 static inline int ep_is_linked(struct epitem * 338 static inline int ep_is_linked(struct epitem *epi) 366 { 339 { 367 return !list_empty(&epi->rdllink); 340 return !list_empty(&epi->rdllink); 368 } 341 } 369 342 370 static inline struct eppoll_entry *ep_pwq_from 343 static inline struct eppoll_entry *ep_pwq_from_wait(wait_queue_entry_t *p) 371 { 344 { 372 return container_of(p, struct eppoll_e 345 return container_of(p, struct eppoll_entry, wait); 373 } 346 } 374 347 375 /* Get the "struct epitem" from a wait queue p 348 /* Get the "struct epitem" from a wait queue pointer */ 376 static inline struct epitem *ep_item_from_wait 349 static inline struct epitem *ep_item_from_wait(wait_queue_entry_t *p) 377 { 350 { 378 return container_of(p, struct eppoll_e 351 return container_of(p, struct eppoll_entry, wait)->base; 379 } 352 } 380 353 >> 354 /* Get the "struct epitem" from an epoll queue wrapper */ >> 355 static inline struct epitem *ep_item_from_epqueue(poll_table *p) >> 356 { >> 357 return container_of(p, struct ep_pqueue, pt)->epi; >> 358 } >> 359 >> 360 /* Initialize the poll safe wake up structure */ >> 361 static void ep_nested_calls_init(struct nested_calls *ncalls) >> 362 { >> 363 INIT_LIST_HEAD(&ncalls->tasks_call_list); >> 364 spin_lock_init(&ncalls->lock); >> 365 } >> 366 381 /** 367 /** 382 * ep_events_available - Checks if ready event 368 * ep_events_available - Checks if ready events might be available. 383 * 369 * 384 * @ep: Pointer to the eventpoll context. 370 * @ep: Pointer to the eventpoll context. 385 * 371 * 386 * Return: a value different than %zero if rea !! 372 * Returns: Returns a value different than zero if ready events are available, 387 * or %zero otherwise. !! 373 * or zero otherwise. 388 */ 374 */ 389 static inline int ep_events_available(struct e 375 static inline int ep_events_available(struct eventpoll *ep) 390 { 376 { 391 return !list_empty_careful(&ep->rdllis 377 return !list_empty_careful(&ep->rdllist) || 392 READ_ONCE(ep->ovflist) != EP_U 378 READ_ONCE(ep->ovflist) != EP_UNACTIVE_PTR; 393 } 379 } 394 380 395 #ifdef CONFIG_NET_RX_BUSY_POLL 381 #ifdef CONFIG_NET_RX_BUSY_POLL 396 /** << 397 * busy_loop_ep_timeout - check if busy poll h << 398 * from the epoll instance ep is preferred, bu << 399 * the system-wide global via busy_loop_timeou << 400 * << 401 * @start_time: The start time used to compute << 402 * @ep: Pointer to the eventpoll context. << 403 * << 404 * Return: true if the timeout has expired, fa << 405 */ << 406 static bool busy_loop_ep_timeout(unsigned long << 407 struct eventp << 408 { << 409 unsigned long bp_usec = READ_ONCE(ep-> << 410 << 411 if (bp_usec) { << 412 unsigned long end_time = start << 413 unsigned long now = busy_loop_ << 414 << 415 return time_after(now, end_tim << 416 } else { << 417 return busy_loop_timeout(start << 418 } << 419 } << 420 << 421 static bool ep_busy_loop_on(struct eventpoll * << 422 { << 423 return !!READ_ONCE(ep->busy_poll_usecs << 424 } << 425 << 426 static bool ep_busy_loop_end(void *p, unsigned 382 static bool ep_busy_loop_end(void *p, unsigned long start_time) 427 { 383 { 428 struct eventpoll *ep = p; 384 struct eventpoll *ep = p; 429 385 430 return ep_events_available(ep) || busy !! 386 return ep_events_available(ep) || busy_loop_timeout(start_time); 431 } 387 } 432 388 433 /* 389 /* 434 * Busy poll if globally on and supporting soc 390 * Busy poll if globally on and supporting sockets found && no events, 435 * busy loop will return if need_resched or ep 391 * busy loop will return if need_resched or ep_events_available. 436 * 392 * 437 * we must do our busy polling with irqs enabl 393 * we must do our busy polling with irqs enabled 438 */ 394 */ 439 static bool ep_busy_loop(struct eventpoll *ep, !! 395 static void ep_busy_loop(struct eventpoll *ep, int nonblock) 440 { 396 { 441 unsigned int napi_id = READ_ONCE(ep->n 397 unsigned int napi_id = READ_ONCE(ep->napi_id); 442 u16 budget = READ_ONCE(ep->busy_poll_b << 443 bool prefer_busy_poll = READ_ONCE(ep-> << 444 398 445 if (!budget) !! 399 if ((napi_id >= MIN_NAPI_ID) && net_busy_loop_on()) 446 budget = BUSY_POLL_BUDGET; !! 400 napi_busy_loop(napi_id, nonblock ? NULL : ep_busy_loop_end, ep); >> 401 } 447 402 448 if (napi_id >= MIN_NAPI_ID && ep_busy_ !! 403 static inline void ep_reset_busy_poll_napi_id(struct eventpoll *ep) 449 napi_busy_loop(napi_id, nonblo !! 404 { 450 ep, prefer_busy !! 405 if (ep->napi_id) 451 if (ep_events_available(ep)) << 452 return true; << 453 /* << 454 * Busy poll timed out. Drop << 455 * it back in when we have mov << 456 * ID onto the ready list. << 457 */ << 458 ep->napi_id = 0; 406 ep->napi_id = 0; 459 return false; << 460 } << 461 return false; << 462 } 407 } 463 408 464 /* 409 /* 465 * Set epoll busy poll NAPI ID from sk. 410 * Set epoll busy poll NAPI ID from sk. 466 */ 411 */ 467 static inline void ep_set_busy_poll_napi_id(st 412 static inline void ep_set_busy_poll_napi_id(struct epitem *epi) 468 { 413 { 469 struct eventpoll *ep = epi->ep; !! 414 struct eventpoll *ep; 470 unsigned int napi_id; 415 unsigned int napi_id; 471 struct socket *sock; 416 struct socket *sock; 472 struct sock *sk; 417 struct sock *sk; >> 418 int err; 473 419 474 if (!ep_busy_loop_on(ep)) !! 420 if (!net_busy_loop_on()) 475 return; 421 return; 476 422 477 sock = sock_from_file(epi->ffd.file); !! 423 sock = sock_from_file(epi->ffd.file, &err); 478 if (!sock) 424 if (!sock) 479 return; 425 return; 480 426 481 sk = sock->sk; 427 sk = sock->sk; 482 if (!sk) 428 if (!sk) 483 return; 429 return; 484 430 485 napi_id = READ_ONCE(sk->sk_napi_id); 431 napi_id = READ_ONCE(sk->sk_napi_id); >> 432 ep = epi->ep; 486 433 487 /* Non-NAPI IDs can be rejected 434 /* Non-NAPI IDs can be rejected 488 * or 435 * or 489 * Nothing to do if we already have th 436 * Nothing to do if we already have this ID 490 */ 437 */ 491 if (napi_id < MIN_NAPI_ID || napi_id = 438 if (napi_id < MIN_NAPI_ID || napi_id == ep->napi_id) 492 return; 439 return; 493 440 494 /* record NAPI ID for use in next busy 441 /* record NAPI ID for use in next busy poll */ 495 ep->napi_id = napi_id; 442 ep->napi_id = napi_id; 496 } 443 } 497 444 498 static long ep_eventpoll_bp_ioctl(struct file << 499 unsigned lon << 500 { << 501 struct eventpoll *ep = file->private_d << 502 void __user *uarg = (void __user *)arg << 503 struct epoll_params epoll_params; << 504 << 505 switch (cmd) { << 506 case EPIOCSPARAMS: << 507 if (copy_from_user(&epoll_para << 508 return -EFAULT; << 509 << 510 /* pad byte must be zero */ << 511 if (epoll_params.__pad) << 512 return -EINVAL; << 513 << 514 if (epoll_params.busy_poll_use << 515 return -EINVAL; << 516 << 517 if (epoll_params.prefer_busy_p << 518 return -EINVAL; << 519 << 520 if (epoll_params.busy_poll_bud << 521 !capable(CAP_NET_ADMIN)) << 522 return -EPERM; << 523 << 524 WRITE_ONCE(ep->busy_poll_usecs << 525 WRITE_ONCE(ep->busy_poll_budge << 526 WRITE_ONCE(ep->prefer_busy_pol << 527 return 0; << 528 case EPIOCGPARAMS: << 529 memset(&epoll_params, 0, sizeo << 530 epoll_params.busy_poll_usecs = << 531 epoll_params.busy_poll_budget << 532 epoll_params.prefer_busy_poll << 533 if (copy_to_user(uarg, &epoll_ << 534 return -EFAULT; << 535 return 0; << 536 default: << 537 return -ENOIOCTLCMD; << 538 } << 539 } << 540 << 541 #else 445 #else 542 446 543 static inline bool ep_busy_loop(struct eventpo !! 447 static inline void ep_busy_loop(struct eventpoll *ep, int nonblock) 544 { 448 { 545 return false; << 546 } 449 } 547 450 548 static inline void ep_set_busy_poll_napi_id(st !! 451 static inline void ep_reset_busy_poll_napi_id(struct eventpoll *ep) 549 { 452 { 550 } 453 } 551 454 552 static long ep_eventpoll_bp_ioctl(struct file !! 455 static inline void ep_set_busy_poll_napi_id(struct epitem *epi) 553 unsigned lon << 554 { 456 { 555 return -EOPNOTSUPP; << 556 } 457 } 557 458 558 #endif /* CONFIG_NET_RX_BUSY_POLL */ 459 #endif /* CONFIG_NET_RX_BUSY_POLL */ 559 460 >> 461 /** >> 462 * ep_call_nested - Perform a bound (possibly) nested call, by checking >> 463 * that the recursion limit is not exceeded, and that >> 464 * the same nested call (by the meaning of same cookie) is >> 465 * no re-entered. >> 466 * >> 467 * @ncalls: Pointer to the nested_calls structure to be used for this call. >> 468 * @nproc: Nested call core function pointer. >> 469 * @priv: Opaque data to be passed to the @nproc callback. >> 470 * @cookie: Cookie to be used to identify this nested call. >> 471 * @ctx: This instance context. >> 472 * >> 473 * Returns: Returns the code returned by the @nproc callback, or -1 if >> 474 * the maximum recursion limit has been exceeded. >> 475 */ >> 476 static int ep_call_nested(struct nested_calls *ncalls, >> 477 int (*nproc)(void *, void *, int), void *priv, >> 478 void *cookie, void *ctx) >> 479 { >> 480 int error, call_nests = 0; >> 481 unsigned long flags; >> 482 struct list_head *lsthead = &ncalls->tasks_call_list; >> 483 struct nested_call_node *tncur; >> 484 struct nested_call_node tnode; >> 485 >> 486 spin_lock_irqsave(&ncalls->lock, flags); >> 487 >> 488 /* >> 489 * Try to see if the current task is already inside this wakeup call. >> 490 * We use a list here, since the population inside this set is always >> 491 * very much limited. >> 492 */ >> 493 list_for_each_entry(tncur, lsthead, llink) { >> 494 if (tncur->ctx == ctx && >> 495 (tncur->cookie == cookie || ++call_nests > EP_MAX_NESTS)) { >> 496 /* >> 497 * Ops ... loop detected or maximum nest level reached. >> 498 * We abort this wake by breaking the cycle itself. >> 499 */ >> 500 error = -1; >> 501 goto out_unlock; >> 502 } >> 503 } >> 504 >> 505 /* Add the current task and cookie to the list */ >> 506 tnode.ctx = ctx; >> 507 tnode.cookie = cookie; >> 508 list_add(&tnode.llink, lsthead); >> 509 >> 510 spin_unlock_irqrestore(&ncalls->lock, flags); >> 511 >> 512 /* Call the nested function */ >> 513 error = (*nproc)(priv, cookie, call_nests); >> 514 >> 515 /* Remove the current task from the list */ >> 516 spin_lock_irqsave(&ncalls->lock, flags); >> 517 list_del(&tnode.llink); >> 518 out_unlock: >> 519 spin_unlock_irqrestore(&ncalls->lock, flags); >> 520 >> 521 return error; >> 522 } >> 523 560 /* 524 /* 561 * As described in commit 0ccf831cb lockdep: a 525 * As described in commit 0ccf831cb lockdep: annotate epoll 562 * the use of wait queues used by epoll is don 526 * the use of wait queues used by epoll is done in a very controlled 563 * manner. Wake ups can nest inside each other 527 * manner. Wake ups can nest inside each other, but are never done 564 * with the same locking. For example: 528 * with the same locking. For example: 565 * 529 * 566 * dfd = socket(...); 530 * dfd = socket(...); 567 * efd1 = epoll_create(); 531 * efd1 = epoll_create(); 568 * efd2 = epoll_create(); 532 * efd2 = epoll_create(); 569 * epoll_ctl(efd1, EPOLL_CTL_ADD, dfd, ...); 533 * epoll_ctl(efd1, EPOLL_CTL_ADD, dfd, ...); 570 * epoll_ctl(efd2, EPOLL_CTL_ADD, efd1, ...) 534 * epoll_ctl(efd2, EPOLL_CTL_ADD, efd1, ...); 571 * 535 * 572 * When a packet arrives to the device underne 536 * When a packet arrives to the device underneath "dfd", the net code will 573 * issue a wake_up() on its poll wake list. Ep 537 * issue a wake_up() on its poll wake list. Epoll (efd1) has installed a 574 * callback wakeup entry on that queue, and th 538 * callback wakeup entry on that queue, and the wake_up() performed by the 575 * "dfd" net code will end up in ep_poll_callb 539 * "dfd" net code will end up in ep_poll_callback(). At this point epoll 576 * (efd1) notices that it may have some event 540 * (efd1) notices that it may have some event ready, so it needs to wake up 577 * the waiters on its poll wait list (efd2). S 541 * the waiters on its poll wait list (efd2). So it calls ep_poll_safewake() 578 * that ends up in another wake_up(), after ha 542 * that ends up in another wake_up(), after having checked about the 579 * recursion constraints. That are, no more th !! 543 * recursion constraints. That are, no more than EP_MAX_POLLWAKE_NESTS, to 580 * stack blasting. !! 544 * avoid stack blasting. 581 * 545 * 582 * When CONFIG_DEBUG_LOCK_ALLOC is enabled, ma 546 * When CONFIG_DEBUG_LOCK_ALLOC is enabled, make sure lockdep can handle 583 * this special case of epoll. 547 * this special case of epoll. 584 */ 548 */ 585 #ifdef CONFIG_DEBUG_LOCK_ALLOC 549 #ifdef CONFIG_DEBUG_LOCK_ALLOC 586 550 587 static void ep_poll_safewake(struct eventpoll 551 static void ep_poll_safewake(struct eventpoll *ep, struct epitem *epi, 588 unsigned pollflag 552 unsigned pollflags) 589 { 553 { 590 struct eventpoll *ep_src; 554 struct eventpoll *ep_src; 591 unsigned long flags; 555 unsigned long flags; 592 u8 nests = 0; 556 u8 nests = 0; 593 557 594 /* 558 /* 595 * To set the subclass or nesting leve 559 * To set the subclass or nesting level for spin_lock_irqsave_nested() 596 * it might be natural to create a per 560 * it might be natural to create a per-cpu nest count. However, since 597 * we can recurse on ep->poll_wait.loc 561 * we can recurse on ep->poll_wait.lock, and a non-raw spinlock can 598 * schedule() in the -rt kernel, the p 562 * schedule() in the -rt kernel, the per-cpu variable are no longer 599 * protected. Thus, we are introducing 563 * protected. Thus, we are introducing a per eventpoll nest field. 600 * If we are not being call from ep_po 564 * If we are not being call from ep_poll_callback(), epi is NULL and 601 * we are at the first level of nestin 565 * we are at the first level of nesting, 0. Otherwise, we are being 602 * called from ep_poll_callback() and 566 * called from ep_poll_callback() and if a previous wakeup source is 603 * not an epoll file itself, we are at 567 * not an epoll file itself, we are at depth 1 since the wakeup source 604 * is depth 0. If the wakeup source is 568 * is depth 0. If the wakeup source is a previous epoll file in the 605 * wakeup chain then we use its nests 569 * wakeup chain then we use its nests value and record ours as 606 * nests + 1. The previous epoll file 570 * nests + 1. The previous epoll file nests value is stable since its 607 * already holding its own poll_wait.l 571 * already holding its own poll_wait.lock. 608 */ 572 */ 609 if (epi) { 573 if (epi) { 610 if ((is_file_epoll(epi->ffd.fi 574 if ((is_file_epoll(epi->ffd.file))) { 611 ep_src = epi->ffd.file 575 ep_src = epi->ffd.file->private_data; 612 nests = ep_src->nests; 576 nests = ep_src->nests; 613 } else { 577 } else { 614 nests = 1; 578 nests = 1; 615 } 579 } 616 } 580 } 617 spin_lock_irqsave_nested(&ep->poll_wai 581 spin_lock_irqsave_nested(&ep->poll_wait.lock, flags, nests); 618 ep->nests = nests + 1; 582 ep->nests = nests + 1; 619 wake_up_locked_poll(&ep->poll_wait, EP 583 wake_up_locked_poll(&ep->poll_wait, EPOLLIN | pollflags); 620 ep->nests = 0; 584 ep->nests = 0; 621 spin_unlock_irqrestore(&ep->poll_wait. 585 spin_unlock_irqrestore(&ep->poll_wait.lock, flags); 622 } 586 } 623 587 624 #else 588 #else 625 589 626 static void ep_poll_safewake(struct eventpoll 590 static void ep_poll_safewake(struct eventpoll *ep, struct epitem *epi, 627 __poll_t pollflag !! 591 unsigned pollflags) 628 { 592 { 629 wake_up_poll(&ep->poll_wait, EPOLLIN | 593 wake_up_poll(&ep->poll_wait, EPOLLIN | pollflags); 630 } 594 } 631 595 632 #endif 596 #endif 633 597 634 static void ep_remove_wait_queue(struct eppoll 598 static void ep_remove_wait_queue(struct eppoll_entry *pwq) 635 { 599 { 636 wait_queue_head_t *whead; 600 wait_queue_head_t *whead; 637 601 638 rcu_read_lock(); 602 rcu_read_lock(); 639 /* 603 /* 640 * If it is cleared by POLLFREE, it sh 604 * If it is cleared by POLLFREE, it should be rcu-safe. 641 * If we read NULL we need a barrier p 605 * If we read NULL we need a barrier paired with 642 * smp_store_release() in ep_poll_call 606 * smp_store_release() in ep_poll_callback(), otherwise 643 * we rely on whead->lock. 607 * we rely on whead->lock. 644 */ 608 */ 645 whead = smp_load_acquire(&pwq->whead); 609 whead = smp_load_acquire(&pwq->whead); 646 if (whead) 610 if (whead) 647 remove_wait_queue(whead, &pwq- 611 remove_wait_queue(whead, &pwq->wait); 648 rcu_read_unlock(); 612 rcu_read_unlock(); 649 } 613 } 650 614 651 /* 615 /* 652 * This function unregisters poll callbacks fr 616 * This function unregisters poll callbacks from the associated file 653 * descriptor. Must be called with "mtx" held !! 617 * descriptor. Must be called with "mtx" held (or "epmutex" if called from >> 618 * ep_free). 654 */ 619 */ 655 static void ep_unregister_pollwait(struct even 620 static void ep_unregister_pollwait(struct eventpoll *ep, struct epitem *epi) 656 { 621 { 657 struct eppoll_entry **p = &epi->pwqlis !! 622 struct list_head *lsthead = &epi->pwqlist; 658 struct eppoll_entry *pwq; 623 struct eppoll_entry *pwq; 659 624 660 while ((pwq = *p) != NULL) { !! 625 while (!list_empty(lsthead)) { 661 *p = pwq->next; !! 626 pwq = list_first_entry(lsthead, struct eppoll_entry, llink); >> 627 >> 628 list_del(&pwq->llink); 662 ep_remove_wait_queue(pwq); 629 ep_remove_wait_queue(pwq); 663 kmem_cache_free(pwq_cache, pwq 630 kmem_cache_free(pwq_cache, pwq); 664 } 631 } 665 } 632 } 666 633 667 /* call only when ep->mtx is held */ 634 /* call only when ep->mtx is held */ 668 static inline struct wakeup_source *ep_wakeup_ 635 static inline struct wakeup_source *ep_wakeup_source(struct epitem *epi) 669 { 636 { 670 return rcu_dereference_check(epi->ws, 637 return rcu_dereference_check(epi->ws, lockdep_is_held(&epi->ep->mtx)); 671 } 638 } 672 639 673 /* call only when ep->mtx is held */ 640 /* call only when ep->mtx is held */ 674 static inline void ep_pm_stay_awake(struct epi 641 static inline void ep_pm_stay_awake(struct epitem *epi) 675 { 642 { 676 struct wakeup_source *ws = ep_wakeup_s 643 struct wakeup_source *ws = ep_wakeup_source(epi); 677 644 678 if (ws) 645 if (ws) 679 __pm_stay_awake(ws); 646 __pm_stay_awake(ws); 680 } 647 } 681 648 682 static inline bool ep_has_wakeup_source(struct 649 static inline bool ep_has_wakeup_source(struct epitem *epi) 683 { 650 { 684 return rcu_access_pointer(epi->ws) ? t 651 return rcu_access_pointer(epi->ws) ? true : false; 685 } 652 } 686 653 687 /* call when ep->mtx cannot be held (ep_poll_c 654 /* call when ep->mtx cannot be held (ep_poll_callback) */ 688 static inline void ep_pm_stay_awake_rcu(struct 655 static inline void ep_pm_stay_awake_rcu(struct epitem *epi) 689 { 656 { 690 struct wakeup_source *ws; 657 struct wakeup_source *ws; 691 658 692 rcu_read_lock(); 659 rcu_read_lock(); 693 ws = rcu_dereference(epi->ws); 660 ws = rcu_dereference(epi->ws); 694 if (ws) 661 if (ws) 695 __pm_stay_awake(ws); 662 __pm_stay_awake(ws); 696 rcu_read_unlock(); 663 rcu_read_unlock(); 697 } 664 } 698 665 699 !! 666 /** 700 /* !! 667 * ep_scan_ready_list - Scans the ready list in a way that makes possible for 701 * ep->mutex needs to be held because we could !! 668 * the scan code, to call f_op->poll(). Also allows for 702 * eventpoll_release_file() and epoll_ctl(). !! 669 * O(NumReady) performance. 703 */ !! 670 * 704 static void ep_start_scan(struct eventpoll *ep !! 671 * @ep: Pointer to the epoll private data structure. >> 672 * @sproc: Pointer to the scan callback. >> 673 * @priv: Private opaque data passed to the @sproc callback. >> 674 * @depth: The current depth of recursive f_op->poll calls. >> 675 * @ep_locked: caller already holds ep->mtx >> 676 * >> 677 * Returns: The same integer error code returned by the @sproc callback. >> 678 */ >> 679 static __poll_t ep_scan_ready_list(struct eventpoll *ep, >> 680 __poll_t (*sproc)(struct eventpoll *, >> 681 struct list_head *, void *), >> 682 void *priv, int depth, bool ep_locked) 705 { 683 { >> 684 __poll_t res; >> 685 struct epitem *epi, *nepi; >> 686 LIST_HEAD(txlist); >> 687 >> 688 lockdep_assert_irqs_enabled(); >> 689 >> 690 /* >> 691 * We need to lock this because we could be hit by >> 692 * eventpoll_release_file() and epoll_ctl(). >> 693 */ >> 694 >> 695 if (!ep_locked) >> 696 mutex_lock_nested(&ep->mtx, depth); >> 697 706 /* 698 /* 707 * Steal the ready list, and re-init t 699 * Steal the ready list, and re-init the original one to the 708 * empty list. Also, set ep->ovflist t 700 * empty list. Also, set ep->ovflist to NULL so that events 709 * happening while looping w/out locks 701 * happening while looping w/out locks, are not lost. We cannot 710 * have the poll callback to queue dir 702 * have the poll callback to queue directly on ep->rdllist, 711 * because we want the "sproc" callbac 703 * because we want the "sproc" callback to be able to do it 712 * in a lockless way. 704 * in a lockless way. 713 */ 705 */ 714 lockdep_assert_irqs_enabled(); << 715 write_lock_irq(&ep->lock); 706 write_lock_irq(&ep->lock); 716 list_splice_init(&ep->rdllist, txlist) !! 707 list_splice_init(&ep->rdllist, &txlist); 717 WRITE_ONCE(ep->ovflist, NULL); 708 WRITE_ONCE(ep->ovflist, NULL); 718 write_unlock_irq(&ep->lock); 709 write_unlock_irq(&ep->lock); 719 } << 720 710 721 static void ep_done_scan(struct eventpoll *ep, !! 711 /* 722 struct list_head *txl !! 712 * Now call the callback function. 723 { !! 713 */ 724 struct epitem *epi, *nepi; !! 714 res = (*sproc)(ep, &txlist, priv); 725 715 726 write_lock_irq(&ep->lock); 716 write_lock_irq(&ep->lock); 727 /* 717 /* 728 * During the time we spent inside the 718 * During the time we spent inside the "sproc" callback, some 729 * other events might have been queued 719 * other events might have been queued by the poll callback. 730 * We re-insert them inside the main r 720 * We re-insert them inside the main ready-list here. 731 */ 721 */ 732 for (nepi = READ_ONCE(ep->ovflist); (e 722 for (nepi = READ_ONCE(ep->ovflist); (epi = nepi) != NULL; 733 nepi = epi->next, epi->next = EP_ 723 nepi = epi->next, epi->next = EP_UNACTIVE_PTR) { 734 /* 724 /* 735 * We need to check if the ite 725 * We need to check if the item is already in the list. 736 * During the "sproc" callback 726 * During the "sproc" callback execution time, items are 737 * queued into ->ovflist but t 727 * queued into ->ovflist but the "txlist" might already 738 * contain them, and the list_ 728 * contain them, and the list_splice() below takes care of them. 739 */ 729 */ 740 if (!ep_is_linked(epi)) { 730 if (!ep_is_linked(epi)) { 741 /* 731 /* 742 * ->ovflist is LIFO, 732 * ->ovflist is LIFO, so we have to reverse it in order 743 * to keep in FIFO. 733 * to keep in FIFO. 744 */ 734 */ 745 list_add(&epi->rdllink 735 list_add(&epi->rdllink, &ep->rdllist); 746 ep_pm_stay_awake(epi); 736 ep_pm_stay_awake(epi); 747 } 737 } 748 } 738 } 749 /* 739 /* 750 * We need to set back ep->ovflist to 740 * We need to set back ep->ovflist to EP_UNACTIVE_PTR, so that after 751 * releasing the lock, events will be 741 * releasing the lock, events will be queued in the normal way inside 752 * ep->rdllist. 742 * ep->rdllist. 753 */ 743 */ 754 WRITE_ONCE(ep->ovflist, EP_UNACTIVE_PT 744 WRITE_ONCE(ep->ovflist, EP_UNACTIVE_PTR); 755 745 756 /* 746 /* 757 * Quickly re-inject items left on "tx 747 * Quickly re-inject items left on "txlist". 758 */ 748 */ 759 list_splice(txlist, &ep->rdllist); !! 749 list_splice(&txlist, &ep->rdllist); 760 __pm_relax(ep->ws); 750 __pm_relax(ep->ws); 761 751 762 if (!list_empty(&ep->rdllist)) { 752 if (!list_empty(&ep->rdllist)) { 763 if (waitqueue_active(&ep->wq)) 753 if (waitqueue_active(&ep->wq)) 764 wake_up(&ep->wq); 754 wake_up(&ep->wq); 765 } 755 } 766 756 767 write_unlock_irq(&ep->lock); 757 write_unlock_irq(&ep->lock); 768 } << 769 << 770 static void ep_get(struct eventpoll *ep) << 771 { << 772 refcount_inc(&ep->refcount); << 773 } << 774 758 775 /* !! 759 if (!ep_locked) 776 * Returns true if the event poll can be dispo !! 760 mutex_unlock(&ep->mtx); 777 */ << 778 static bool ep_refcount_dec_and_test(struct ev << 779 { << 780 if (!refcount_dec_and_test(&ep->refcou << 781 return false; << 782 761 783 WARN_ON_ONCE(!RB_EMPTY_ROOT(&ep->rbr.r !! 762 return res; 784 return true; << 785 } 763 } 786 764 787 static void ep_free(struct eventpoll *ep) !! 765 static void epi_rcu_free(struct rcu_head *head) 788 { 766 { 789 mutex_destroy(&ep->mtx); !! 767 struct epitem *epi = container_of(head, struct epitem, rcu); 790 free_uid(ep->user); !! 768 kmem_cache_free(epi_cache, epi); 791 wakeup_source_unregister(ep->ws); << 792 kfree(ep); << 793 } 769 } 794 770 795 /* 771 /* 796 * Removes a "struct epitem" from the eventpol 772 * Removes a "struct epitem" from the eventpoll RB tree and deallocates 797 * all the associated resources. Must be calle 773 * all the associated resources. Must be called with "mtx" held. 798 * If the dying flag is set, do the removal on << 799 * This prevents ep_clear_and_put() from dropp << 800 * while running concurrently with eventpoll_r << 801 * Returns true if the eventpoll can be dispos << 802 */ 774 */ 803 static bool __ep_remove(struct eventpoll *ep, !! 775 static int ep_remove(struct eventpoll *ep, struct epitem *epi) 804 { 776 { 805 struct file *file = epi->ffd.file; 777 struct file *file = epi->ffd.file; 806 struct epitems_head *to_free; << 807 struct hlist_head *head; << 808 778 809 lockdep_assert_irqs_enabled(); 779 lockdep_assert_irqs_enabled(); 810 780 811 /* 781 /* 812 * Removes poll wait queue hooks. 782 * Removes poll wait queue hooks. 813 */ 783 */ 814 ep_unregister_pollwait(ep, epi); 784 ep_unregister_pollwait(ep, epi); 815 785 816 /* Remove the current item from the li 786 /* Remove the current item from the list of epoll hooks */ 817 spin_lock(&file->f_lock); 787 spin_lock(&file->f_lock); 818 if (epi->dying && !force) { !! 788 list_del_rcu(&epi->fllink); 819 spin_unlock(&file->f_lock); << 820 return false; << 821 } << 822 << 823 to_free = NULL; << 824 head = file->f_ep; << 825 if (head->first == &epi->fllink && !ep << 826 file->f_ep = NULL; << 827 if (!is_file_epoll(file)) { << 828 struct epitems_head *v << 829 v = container_of(head, << 830 if (!smp_load_acquire( << 831 to_free = v; << 832 } << 833 } << 834 hlist_del_rcu(&epi->fllink); << 835 spin_unlock(&file->f_lock); 789 spin_unlock(&file->f_lock); 836 free_ephead(to_free); << 837 790 838 rb_erase_cached(&epi->rbn, &ep->rbr); 791 rb_erase_cached(&epi->rbn, &ep->rbr); 839 792 840 write_lock_irq(&ep->lock); 793 write_lock_irq(&ep->lock); 841 if (ep_is_linked(epi)) 794 if (ep_is_linked(epi)) 842 list_del_init(&epi->rdllink); 795 list_del_init(&epi->rdllink); 843 write_unlock_irq(&ep->lock); 796 write_unlock_irq(&ep->lock); 844 797 845 wakeup_source_unregister(ep_wakeup_sou 798 wakeup_source_unregister(ep_wakeup_source(epi)); 846 /* 799 /* 847 * At this point it is safe to free th 800 * At this point it is safe to free the eventpoll item. Use the union 848 * field epi->rcu, since we are trying 801 * field epi->rcu, since we are trying to minimize the size of 849 * 'struct epitem'. The 'rbn' field is 802 * 'struct epitem'. The 'rbn' field is no longer in use. Protected by 850 * ep->mtx. The rcu read side, reverse 803 * ep->mtx. The rcu read side, reverse_path_check_proc(), does not make 851 * use of the rbn field. 804 * use of the rbn field. 852 */ 805 */ 853 kfree_rcu(epi, rcu); !! 806 call_rcu(&epi->rcu, epi_rcu_free); 854 807 855 percpu_counter_dec(&ep->user->epoll_wa !! 808 atomic_long_dec(&ep->user->epoll_watches); 856 return ep_refcount_dec_and_test(ep); << 857 } << 858 809 859 /* !! 810 return 0; 860 * ep_remove variant for callers owing an addi << 861 */ << 862 static void ep_remove_safe(struct eventpoll *e << 863 { << 864 WARN_ON_ONCE(__ep_remove(ep, epi, fals << 865 } 811 } 866 812 867 static void ep_clear_and_put(struct eventpoll !! 813 static void ep_free(struct eventpoll *ep) 868 { 814 { 869 struct rb_node *rbp, *next; !! 815 struct rb_node *rbp; 870 struct epitem *epi; 816 struct epitem *epi; 871 bool dispose; << 872 817 873 /* We need to release all tasks waitin 818 /* We need to release all tasks waiting for these file */ 874 if (waitqueue_active(&ep->poll_wait)) 819 if (waitqueue_active(&ep->poll_wait)) 875 ep_poll_safewake(ep, NULL, 0); 820 ep_poll_safewake(ep, NULL, 0); 876 821 877 mutex_lock(&ep->mtx); !! 822 /* >> 823 * We need to lock this because we could be hit by >> 824 * eventpoll_release_file() while we're freeing the "struct eventpoll". >> 825 * We do not need to hold "ep->mtx" here because the epoll file >> 826 * is on the way to be removed and no one has references to it >> 827 * anymore. The only hit might come from eventpoll_release_file() but >> 828 * holding "epmutex" is sufficient here. >> 829 */ >> 830 mutex_lock(&epmutex); 878 831 879 /* 832 /* 880 * Walks through the whole tree by unr 833 * Walks through the whole tree by unregistering poll callbacks. 881 */ 834 */ 882 for (rbp = rb_first_cached(&ep->rbr); 835 for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) { 883 epi = rb_entry(rbp, struct epi 836 epi = rb_entry(rbp, struct epitem, rbn); 884 837 885 ep_unregister_pollwait(ep, epi 838 ep_unregister_pollwait(ep, epi); 886 cond_resched(); 839 cond_resched(); 887 } 840 } 888 841 889 /* 842 /* 890 * Walks through the whole tree and tr !! 843 * Walks through the whole tree by freeing each "struct epitem". At this 891 * Note that ep_remove_safe() will not !! 844 * point we are sure no poll callbacks will be lingering around, and also by 892 * racing eventpoll_release_file(); th !! 845 * holding "epmutex" we can be sure that no file cleanup code will hit 893 * At this point we are sure no poll c !! 846 * us during this operation. So we can avoid the lock on "ep->lock". 894 * Since we still own a reference to t !! 847 * We do not need to lock ep->mtx, either, we only do it to prevent 895 * dispose it. !! 848 * a lockdep warning. 896 */ 849 */ 897 for (rbp = rb_first_cached(&ep->rbr); !! 850 mutex_lock(&ep->mtx); 898 next = rb_next(rbp); !! 851 while ((rbp = rb_first_cached(&ep->rbr)) != NULL) { 899 epi = rb_entry(rbp, struct epi 852 epi = rb_entry(rbp, struct epitem, rbn); 900 ep_remove_safe(ep, epi); !! 853 ep_remove(ep, epi); 901 cond_resched(); 854 cond_resched(); 902 } 855 } 903 << 904 dispose = ep_refcount_dec_and_test(ep) << 905 mutex_unlock(&ep->mtx); 856 mutex_unlock(&ep->mtx); 906 857 907 if (dispose) !! 858 mutex_unlock(&epmutex); 908 ep_free(ep); !! 859 mutex_destroy(&ep->mtx); 909 } !! 860 free_uid(ep->user); 910 !! 861 wakeup_source_unregister(ep->ws); 911 static long ep_eventpoll_ioctl(struct file *fi !! 862 kfree(ep); 912 unsigned long a << 913 { << 914 int ret; << 915 << 916 if (!is_file_epoll(file)) << 917 return -EINVAL; << 918 << 919 switch (cmd) { << 920 case EPIOCSPARAMS: << 921 case EPIOCGPARAMS: << 922 ret = ep_eventpoll_bp_ioctl(fi << 923 break; << 924 default: << 925 ret = -EINVAL; << 926 break; << 927 } << 928 << 929 return ret; << 930 } 863 } 931 864 932 static int ep_eventpoll_release(struct inode * 865 static int ep_eventpoll_release(struct inode *inode, struct file *file) 933 { 866 { 934 struct eventpoll *ep = file->private_d 867 struct eventpoll *ep = file->private_data; 935 868 936 if (ep) 869 if (ep) 937 ep_clear_and_put(ep); !! 870 ep_free(ep); 938 871 939 return 0; 872 return 0; 940 } 873 } 941 874 942 static __poll_t ep_item_poll(const struct epit !! 875 static __poll_t ep_read_events_proc(struct eventpoll *ep, struct list_head *head, >> 876 void *priv); >> 877 static void ep_ptable_queue_proc(struct file *file, wait_queue_head_t *whead, >> 878 poll_table *pt); 943 879 944 static __poll_t __ep_eventpoll_poll(struct fil !! 880 /* >> 881 * Differs from ep_eventpoll_poll() in that internal callers already have >> 882 * the ep->mtx so we need to start from depth=1, such that mutex_lock_nested() >> 883 * is correctly annotated. >> 884 */ >> 885 static __poll_t ep_item_poll(const struct epitem *epi, poll_table *pt, >> 886 int depth) >> 887 { >> 888 struct eventpoll *ep; >> 889 bool locked; >> 890 >> 891 pt->_key = epi->event.events; >> 892 if (!is_file_epoll(epi->ffd.file)) >> 893 return vfs_poll(epi->ffd.file, pt) & epi->event.events; >> 894 >> 895 ep = epi->ffd.file->private_data; >> 896 poll_wait(epi->ffd.file, &ep->poll_wait, pt); >> 897 locked = pt && (pt->_qproc == ep_ptable_queue_proc); >> 898 >> 899 return ep_scan_ready_list(epi->ffd.file->private_data, >> 900 ep_read_events_proc, &depth, depth, >> 901 locked) & epi->event.events; >> 902 } >> 903 >> 904 static __poll_t ep_read_events_proc(struct eventpoll *ep, struct list_head *head, >> 905 void *priv) 945 { 906 { 946 struct eventpoll *ep = file->private_d << 947 LIST_HEAD(txlist); << 948 struct epitem *epi, *tmp; 907 struct epitem *epi, *tmp; 949 poll_table pt; 908 poll_table pt; 950 __poll_t res = 0; !! 909 int depth = *(int *)priv; 951 910 952 init_poll_funcptr(&pt, NULL); 911 init_poll_funcptr(&pt, NULL); >> 912 depth++; 953 913 954 /* Insert inside our poll wait queue * !! 914 list_for_each_entry_safe(epi, tmp, head, rdllink) { 955 poll_wait(file, &ep->poll_wait, wait); !! 915 if (ep_item_poll(epi, &pt, depth)) { 956 !! 916 return EPOLLIN | EPOLLRDNORM; 957 /* << 958 * Proceed to find out if wanted event << 959 * the ready list. << 960 */ << 961 mutex_lock_nested(&ep->mtx, depth); << 962 ep_start_scan(ep, &txlist); << 963 list_for_each_entry_safe(epi, tmp, &tx << 964 if (ep_item_poll(epi, &pt, dep << 965 res = EPOLLIN | EPOLLR << 966 break; << 967 } else { 917 } else { 968 /* 918 /* 969 * Item has been dropp 919 * Item has been dropped into the ready list by the poll 970 * callback, but it's 920 * callback, but it's not actually ready, as far as 971 * caller requested ev 921 * caller requested events goes. We can remove it here. 972 */ 922 */ 973 __pm_relax(ep_wakeup_s 923 __pm_relax(ep_wakeup_source(epi)); 974 list_del_init(&epi->rd 924 list_del_init(&epi->rdllink); 975 } 925 } 976 } 926 } 977 ep_done_scan(ep, &txlist); << 978 mutex_unlock(&ep->mtx); << 979 return res; << 980 } << 981 927 982 /* !! 928 return 0; 983 * The ffd.file pointer may be in the process << 984 * being closed, but we may not have finished << 985 * << 986 * Normally, even with the atomic_long_inc_not << 987 * been free'd and then gotten re-allocated to << 988 * files are not RCU-delayed, they are SLAB_TY << 989 * << 990 * But for epoll, users hold the ep->mtx mutex << 991 * the process of being free'd will block in e << 992 * and thus the underlying file allocation wil << 993 * file re-use cannot happen. << 994 * << 995 * For the same reason we can avoid a rcu_read << 996 * operation - 'ffd.file' cannot go away even << 997 * reached zero (but we must still not call ou << 998 * etc). << 999 */ << 1000 static struct file *epi_fget(const struct epi << 1001 { << 1002 struct file *file; << 1003 << 1004 file = epi->ffd.file; << 1005 if (!atomic_long_inc_not_zero(&file-> << 1006 file = NULL; << 1007 return file; << 1008 } 929 } 1009 930 1010 /* !! 931 static __poll_t ep_eventpoll_poll(struct file *file, poll_table *wait) 1011 * Differs from ep_eventpoll_poll() in that i << 1012 * the ep->mtx so we need to start from depth << 1013 * is correctly annotated. << 1014 */ << 1015 static __poll_t ep_item_poll(const struct epi << 1016 int depth) << 1017 { 932 { 1018 struct file *file = epi_fget(epi); !! 933 struct eventpoll *ep = file->private_data; 1019 __poll_t res; !! 934 int depth = 0; >> 935 >> 936 /* Insert inside our poll wait queue */ >> 937 poll_wait(file, &ep->poll_wait, wait); 1020 938 1021 /* 939 /* 1022 * We could return EPOLLERR | EPOLLHU !! 940 * Proceed to find out if wanted events are really available inside 1023 * treat this more as "file doesn't e !! 941 * the ready list. 1024 */ 942 */ 1025 if (!file) !! 943 return ep_scan_ready_list(ep, ep_read_events_proc, 1026 return 0; !! 944 &depth, depth, false); 1027 << 1028 pt->_key = epi->event.events; << 1029 if (!is_file_epoll(file)) << 1030 res = vfs_poll(file, pt); << 1031 else << 1032 res = __ep_eventpoll_poll(fil << 1033 fput(file); << 1034 return res & epi->event.events; << 1035 } << 1036 << 1037 static __poll_t ep_eventpoll_poll(struct file << 1038 { << 1039 return __ep_eventpoll_poll(file, wait << 1040 } 945 } 1041 946 1042 #ifdef CONFIG_PROC_FS 947 #ifdef CONFIG_PROC_FS 1043 static void ep_show_fdinfo(struct seq_file *m 948 static void ep_show_fdinfo(struct seq_file *m, struct file *f) 1044 { 949 { 1045 struct eventpoll *ep = f->private_dat 950 struct eventpoll *ep = f->private_data; 1046 struct rb_node *rbp; 951 struct rb_node *rbp; 1047 952 1048 mutex_lock(&ep->mtx); 953 mutex_lock(&ep->mtx); 1049 for (rbp = rb_first_cached(&ep->rbr); 954 for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) { 1050 struct epitem *epi = rb_entry 955 struct epitem *epi = rb_entry(rbp, struct epitem, rbn); 1051 struct inode *inode = file_in 956 struct inode *inode = file_inode(epi->ffd.file); 1052 957 1053 seq_printf(m, "tfd: %8d event 958 seq_printf(m, "tfd: %8d events: %8x data: %16llx " 1054 " pos:%lli ino:%lx 959 " pos:%lli ino:%lx sdev:%x\n", 1055 epi->ffd.fd, epi-> 960 epi->ffd.fd, epi->event.events, 1056 (long long)epi->ev 961 (long long)epi->event.data, 1057 (long long)epi->ff 962 (long long)epi->ffd.file->f_pos, 1058 inode->i_ino, inod 963 inode->i_ino, inode->i_sb->s_dev); 1059 if (seq_has_overflowed(m)) 964 if (seq_has_overflowed(m)) 1060 break; 965 break; 1061 } 966 } 1062 mutex_unlock(&ep->mtx); 967 mutex_unlock(&ep->mtx); 1063 } 968 } 1064 #endif 969 #endif 1065 970 1066 /* File callbacks that implement the eventpol 971 /* File callbacks that implement the eventpoll file behaviour */ 1067 static const struct file_operations eventpoll 972 static const struct file_operations eventpoll_fops = { 1068 #ifdef CONFIG_PROC_FS 973 #ifdef CONFIG_PROC_FS 1069 .show_fdinfo = ep_show_fdinfo, 974 .show_fdinfo = ep_show_fdinfo, 1070 #endif 975 #endif 1071 .release = ep_eventpoll_releas 976 .release = ep_eventpoll_release, 1072 .poll = ep_eventpoll_poll, 977 .poll = ep_eventpoll_poll, 1073 .llseek = noop_llseek, 978 .llseek = noop_llseek, 1074 .unlocked_ioctl = ep_eventpoll_ioctl, << 1075 .compat_ioctl = compat_ptr_ioctl, << 1076 }; 979 }; 1077 980 1078 /* 981 /* 1079 * This is called from eventpoll_release() to 982 * This is called from eventpoll_release() to unlink files from the eventpoll 1080 * interface. We need to have this facility t 983 * interface. We need to have this facility to cleanup correctly files that are 1081 * closed without being removed from the even 984 * closed without being removed from the eventpoll interface. 1082 */ 985 */ 1083 void eventpoll_release_file(struct file *file 986 void eventpoll_release_file(struct file *file) 1084 { 987 { 1085 struct eventpoll *ep; 988 struct eventpoll *ep; 1086 struct epitem *epi; !! 989 struct epitem *epi, *next; 1087 bool dispose; << 1088 990 1089 /* 991 /* 1090 * Use the 'dying' flag to prevent a !! 992 * We don't want to get "file->f_lock" because it is not 1091 * touching the epitems list before e !! 993 * necessary. It is not necessary because we're in the "struct file" 1092 * the ep->mtx. !! 994 * cleanup path, and this means that no one is using this file anymore. >> 995 * So, for example, epoll_ctl() cannot hit here since if we reach this >> 996 * point, the file counter already went to zero and fget() would fail. >> 997 * The only hit might come from ep_free() but by holding the mutex >> 998 * will correctly serialize the operation. We do need to acquire >> 999 * "ep->mtx" after "epmutex" because ep_remove() requires it when called >> 1000 * from anywhere but ep_free(). >> 1001 * >> 1002 * Besides, ep_remove() acquires the lock, so we can't hold it here. 1093 */ 1003 */ 1094 again: !! 1004 mutex_lock(&epmutex); 1095 spin_lock(&file->f_lock); !! 1005 list_for_each_entry_safe(epi, next, &file->f_ep_links, fllink) { 1096 if (file->f_ep && file->f_ep->first) << 1097 epi = hlist_entry(file->f_ep- << 1098 epi->dying = true; << 1099 spin_unlock(&file->f_lock); << 1100 << 1101 /* << 1102 * ep access is safe as we st << 1103 * struct << 1104 */ << 1105 ep = epi->ep; 1006 ep = epi->ep; 1106 mutex_lock(&ep->mtx); !! 1007 mutex_lock_nested(&ep->mtx, 0); 1107 dispose = __ep_remove(ep, epi !! 1008 ep_remove(ep, epi); 1108 mutex_unlock(&ep->mtx); 1009 mutex_unlock(&ep->mtx); 1109 << 1110 if (dispose) << 1111 ep_free(ep); << 1112 goto again; << 1113 } 1010 } 1114 spin_unlock(&file->f_lock); !! 1011 mutex_unlock(&epmutex); 1115 } 1012 } 1116 1013 1117 static int ep_alloc(struct eventpoll **pep) 1014 static int ep_alloc(struct eventpoll **pep) 1118 { 1015 { >> 1016 int error; >> 1017 struct user_struct *user; 1119 struct eventpoll *ep; 1018 struct eventpoll *ep; 1120 1019 >> 1020 user = get_current_user(); >> 1021 error = -ENOMEM; 1121 ep = kzalloc(sizeof(*ep), GFP_KERNEL) 1022 ep = kzalloc(sizeof(*ep), GFP_KERNEL); 1122 if (unlikely(!ep)) 1023 if (unlikely(!ep)) 1123 return -ENOMEM; !! 1024 goto free_uid; 1124 1025 1125 mutex_init(&ep->mtx); 1026 mutex_init(&ep->mtx); 1126 rwlock_init(&ep->lock); 1027 rwlock_init(&ep->lock); 1127 init_waitqueue_head(&ep->wq); 1028 init_waitqueue_head(&ep->wq); 1128 init_waitqueue_head(&ep->poll_wait); 1029 init_waitqueue_head(&ep->poll_wait); 1129 INIT_LIST_HEAD(&ep->rdllist); 1030 INIT_LIST_HEAD(&ep->rdllist); 1130 ep->rbr = RB_ROOT_CACHED; 1031 ep->rbr = RB_ROOT_CACHED; 1131 ep->ovflist = EP_UNACTIVE_PTR; 1032 ep->ovflist = EP_UNACTIVE_PTR; 1132 ep->user = get_current_user(); !! 1033 ep->user = user; 1133 refcount_set(&ep->refcount, 1); << 1134 1034 1135 *pep = ep; 1035 *pep = ep; 1136 1036 1137 return 0; 1037 return 0; >> 1038 >> 1039 free_uid: >> 1040 free_uid(user); >> 1041 return error; 1138 } 1042 } 1139 1043 1140 /* 1044 /* 1141 * Search the file inside the eventpoll tree. 1045 * Search the file inside the eventpoll tree. The RB tree operations 1142 * are protected by the "mtx" mutex, and ep_f 1046 * are protected by the "mtx" mutex, and ep_find() must be called with 1143 * "mtx" held. 1047 * "mtx" held. 1144 */ 1048 */ 1145 static struct epitem *ep_find(struct eventpol 1049 static struct epitem *ep_find(struct eventpoll *ep, struct file *file, int fd) 1146 { 1050 { 1147 int kcmp; 1051 int kcmp; 1148 struct rb_node *rbp; 1052 struct rb_node *rbp; 1149 struct epitem *epi, *epir = NULL; 1053 struct epitem *epi, *epir = NULL; 1150 struct epoll_filefd ffd; 1054 struct epoll_filefd ffd; 1151 1055 1152 ep_set_ffd(&ffd, file, fd); 1056 ep_set_ffd(&ffd, file, fd); 1153 for (rbp = ep->rbr.rb_root.rb_node; r 1057 for (rbp = ep->rbr.rb_root.rb_node; rbp; ) { 1154 epi = rb_entry(rbp, struct ep 1058 epi = rb_entry(rbp, struct epitem, rbn); 1155 kcmp = ep_cmp_ffd(&ffd, &epi- 1059 kcmp = ep_cmp_ffd(&ffd, &epi->ffd); 1156 if (kcmp > 0) 1060 if (kcmp > 0) 1157 rbp = rbp->rb_right; 1061 rbp = rbp->rb_right; 1158 else if (kcmp < 0) 1062 else if (kcmp < 0) 1159 rbp = rbp->rb_left; 1063 rbp = rbp->rb_left; 1160 else { 1064 else { 1161 epir = epi; 1065 epir = epi; 1162 break; 1066 break; 1163 } 1067 } 1164 } 1068 } 1165 1069 1166 return epir; 1070 return epir; 1167 } 1071 } 1168 1072 1169 #ifdef CONFIG_KCMP 1073 #ifdef CONFIG_KCMP 1170 static struct epitem *ep_find_tfd(struct even 1074 static struct epitem *ep_find_tfd(struct eventpoll *ep, int tfd, unsigned long toff) 1171 { 1075 { 1172 struct rb_node *rbp; 1076 struct rb_node *rbp; 1173 struct epitem *epi; 1077 struct epitem *epi; 1174 1078 1175 for (rbp = rb_first_cached(&ep->rbr); 1079 for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) { 1176 epi = rb_entry(rbp, struct ep 1080 epi = rb_entry(rbp, struct epitem, rbn); 1177 if (epi->ffd.fd == tfd) { 1081 if (epi->ffd.fd == tfd) { 1178 if (toff == 0) 1082 if (toff == 0) 1179 return epi; 1083 return epi; 1180 else 1084 else 1181 toff--; 1085 toff--; 1182 } 1086 } 1183 cond_resched(); 1087 cond_resched(); 1184 } 1088 } 1185 1089 1186 return NULL; 1090 return NULL; 1187 } 1091 } 1188 1092 1189 struct file *get_epoll_tfile_raw_ptr(struct f 1093 struct file *get_epoll_tfile_raw_ptr(struct file *file, int tfd, 1190 unsigned 1094 unsigned long toff) 1191 { 1095 { 1192 struct file *file_raw; 1096 struct file *file_raw; 1193 struct eventpoll *ep; 1097 struct eventpoll *ep; 1194 struct epitem *epi; 1098 struct epitem *epi; 1195 1099 1196 if (!is_file_epoll(file)) 1100 if (!is_file_epoll(file)) 1197 return ERR_PTR(-EINVAL); 1101 return ERR_PTR(-EINVAL); 1198 1102 1199 ep = file->private_data; 1103 ep = file->private_data; 1200 1104 1201 mutex_lock(&ep->mtx); 1105 mutex_lock(&ep->mtx); 1202 epi = ep_find_tfd(ep, tfd, toff); 1106 epi = ep_find_tfd(ep, tfd, toff); 1203 if (epi) 1107 if (epi) 1204 file_raw = epi->ffd.file; 1108 file_raw = epi->ffd.file; 1205 else 1109 else 1206 file_raw = ERR_PTR(-ENOENT); 1110 file_raw = ERR_PTR(-ENOENT); 1207 mutex_unlock(&ep->mtx); 1111 mutex_unlock(&ep->mtx); 1208 1112 1209 return file_raw; 1113 return file_raw; 1210 } 1114 } 1211 #endif /* CONFIG_KCMP */ 1115 #endif /* CONFIG_KCMP */ 1212 1116 1213 /* !! 1117 /** 1214 * Adds a new entry to the tail of the list i 1118 * Adds a new entry to the tail of the list in a lockless way, i.e. 1215 * multiple CPUs are allowed to call this fun 1119 * multiple CPUs are allowed to call this function concurrently. 1216 * 1120 * 1217 * Beware: it is necessary to prevent any oth 1121 * Beware: it is necessary to prevent any other modifications of the 1218 * existing list until all changes ar 1122 * existing list until all changes are completed, in other words 1219 * concurrent list_add_tail_lockless( 1123 * concurrent list_add_tail_lockless() calls should be protected 1220 * with a read lock, where write lock 1124 * with a read lock, where write lock acts as a barrier which 1221 * makes sure all list_add_tail_lockl 1125 * makes sure all list_add_tail_lockless() calls are fully 1222 * completed. 1126 * completed. 1223 * 1127 * 1224 * Also an element can be locklessly a 1128 * Also an element can be locklessly added to the list only in one 1225 * direction i.e. either to the tail o !! 1129 * direction i.e. either to the tail either to the head, otherwise 1226 * concurrent access will corrupt the 1130 * concurrent access will corrupt the list. 1227 * 1131 * 1228 * Return: %false if element has been already !! 1132 * Returns %false if element has been already added to the list, %true 1229 * otherwise. 1133 * otherwise. 1230 */ 1134 */ 1231 static inline bool list_add_tail_lockless(str 1135 static inline bool list_add_tail_lockless(struct list_head *new, 1232 str 1136 struct list_head *head) 1233 { 1137 { 1234 struct list_head *prev; 1138 struct list_head *prev; 1235 1139 1236 /* 1140 /* 1237 * This is simple 'new->next = head' 1141 * This is simple 'new->next = head' operation, but cmpxchg() 1238 * is used in order to detect that sa 1142 * is used in order to detect that same element has been just 1239 * added to the list from another CPU 1143 * added to the list from another CPU: the winner observes 1240 * new->next == new. 1144 * new->next == new. 1241 */ 1145 */ 1242 if (!try_cmpxchg(&new->next, &new, he !! 1146 if (cmpxchg(&new->next, new, head) != new) 1243 return false; 1147 return false; 1244 1148 1245 /* 1149 /* 1246 * Initially ->next of a new element 1150 * Initially ->next of a new element must be updated with the head 1247 * (we are inserting to the tail) and 1151 * (we are inserting to the tail) and only then pointers are atomically 1248 * exchanged. XCHG guarantees memory 1152 * exchanged. XCHG guarantees memory ordering, thus ->next should be 1249 * updated before pointers are actual 1153 * updated before pointers are actually swapped and pointers are 1250 * swapped before prev->next is updat 1154 * swapped before prev->next is updated. 1251 */ 1155 */ 1252 1156 1253 prev = xchg(&head->prev, new); 1157 prev = xchg(&head->prev, new); 1254 1158 1255 /* 1159 /* 1256 * It is safe to modify prev->next an 1160 * It is safe to modify prev->next and new->prev, because a new element 1257 * is added only to the tail and new- 1161 * is added only to the tail and new->next is updated before XCHG. 1258 */ 1162 */ 1259 1163 1260 prev->next = new; 1164 prev->next = new; 1261 new->prev = prev; 1165 new->prev = prev; 1262 1166 1263 return true; 1167 return true; 1264 } 1168 } 1265 1169 1266 /* !! 1170 /** 1267 * Chains a new epi entry to the tail of the 1171 * Chains a new epi entry to the tail of the ep->ovflist in a lockless way, 1268 * i.e. multiple CPUs are allowed to call thi 1172 * i.e. multiple CPUs are allowed to call this function concurrently. 1269 * 1173 * 1270 * Return: %false if epi element has been alr !! 1174 * Returns %false if epi element has been already chained, %true otherwise. 1271 */ 1175 */ 1272 static inline bool chain_epi_lockless(struct 1176 static inline bool chain_epi_lockless(struct epitem *epi) 1273 { 1177 { 1274 struct eventpoll *ep = epi->ep; 1178 struct eventpoll *ep = epi->ep; 1275 1179 1276 /* Fast preliminary check */ 1180 /* Fast preliminary check */ 1277 if (epi->next != EP_UNACTIVE_PTR) 1181 if (epi->next != EP_UNACTIVE_PTR) 1278 return false; 1182 return false; 1279 1183 1280 /* Check that the same epi has not be 1184 /* Check that the same epi has not been just chained from another CPU */ 1281 if (cmpxchg(&epi->next, EP_UNACTIVE_P 1185 if (cmpxchg(&epi->next, EP_UNACTIVE_PTR, NULL) != EP_UNACTIVE_PTR) 1282 return false; 1186 return false; 1283 1187 1284 /* Atomically exchange tail */ 1188 /* Atomically exchange tail */ 1285 epi->next = xchg(&ep->ovflist, epi); 1189 epi->next = xchg(&ep->ovflist, epi); 1286 1190 1287 return true; 1191 return true; 1288 } 1192 } 1289 1193 1290 /* 1194 /* 1291 * This is the callback that is passed to the 1195 * This is the callback that is passed to the wait queue wakeup 1292 * mechanism. It is called by the stored file 1196 * mechanism. It is called by the stored file descriptors when they 1293 * have events to report. 1197 * have events to report. 1294 * 1198 * 1295 * This callback takes a read lock in order n !! 1199 * This callback takes a read lock in order not to content with concurrent 1296 * events from another file descriptor, thus !! 1200 * events from another file descriptors, thus all modifications to ->rdllist 1297 * or ->ovflist are lockless. Read lock is p 1201 * or ->ovflist are lockless. Read lock is paired with the write lock from 1298 * ep_start/done_scan(), which stops all list !! 1202 * ep_scan_ready_list(), which stops all list modifications and guarantees 1299 * that lists state is seen correctly. 1203 * that lists state is seen correctly. 1300 * 1204 * 1301 * Another thing worth to mention is that ep_ 1205 * Another thing worth to mention is that ep_poll_callback() can be called 1302 * concurrently for the same @epi from differ 1206 * concurrently for the same @epi from different CPUs if poll table was inited 1303 * with several wait queues entries. Plural 1207 * with several wait queues entries. Plural wakeup from different CPUs of a 1304 * single wait queue is serialized by wq.lock 1208 * single wait queue is serialized by wq.lock, but the case when multiple wait 1305 * queues are used should be detected accordi 1209 * queues are used should be detected accordingly. This is detected using 1306 * cmpxchg() operation. 1210 * cmpxchg() operation. 1307 */ 1211 */ 1308 static int ep_poll_callback(wait_queue_entry_ 1212 static int ep_poll_callback(wait_queue_entry_t *wait, unsigned mode, int sync, void *key) 1309 { 1213 { 1310 int pwake = 0; 1214 int pwake = 0; 1311 struct epitem *epi = ep_item_from_wai 1215 struct epitem *epi = ep_item_from_wait(wait); 1312 struct eventpoll *ep = epi->ep; 1216 struct eventpoll *ep = epi->ep; 1313 __poll_t pollflags = key_to_poll(key) 1217 __poll_t pollflags = key_to_poll(key); 1314 unsigned long flags; 1218 unsigned long flags; 1315 int ewake = 0; 1219 int ewake = 0; 1316 1220 1317 read_lock_irqsave(&ep->lock, flags); 1221 read_lock_irqsave(&ep->lock, flags); 1318 1222 1319 ep_set_busy_poll_napi_id(epi); 1223 ep_set_busy_poll_napi_id(epi); 1320 1224 1321 /* 1225 /* 1322 * If the event mask does not contain 1226 * If the event mask does not contain any poll(2) event, we consider the 1323 * descriptor to be disabled. This co 1227 * descriptor to be disabled. This condition is likely the effect of the 1324 * EPOLLONESHOT bit that disables the 1228 * EPOLLONESHOT bit that disables the descriptor when an event is received, 1325 * until the next EPOLL_CTL_MOD will 1229 * until the next EPOLL_CTL_MOD will be issued. 1326 */ 1230 */ 1327 if (!(epi->event.events & ~EP_PRIVATE 1231 if (!(epi->event.events & ~EP_PRIVATE_BITS)) 1328 goto out_unlock; 1232 goto out_unlock; 1329 1233 1330 /* 1234 /* 1331 * Check the events coming with the c 1235 * Check the events coming with the callback. At this stage, not 1332 * every device reports the events in 1236 * every device reports the events in the "key" parameter of the 1333 * callback. We need to be able to ha 1237 * callback. We need to be able to handle both cases here, hence the 1334 * test for "key" != NULL before the 1238 * test for "key" != NULL before the event match test. 1335 */ 1239 */ 1336 if (pollflags && !(pollflags & epi->e 1240 if (pollflags && !(pollflags & epi->event.events)) 1337 goto out_unlock; 1241 goto out_unlock; 1338 1242 1339 /* 1243 /* 1340 * If we are transferring events to u 1244 * If we are transferring events to userspace, we can hold no locks 1341 * (because we're accessing user memo 1245 * (because we're accessing user memory, and because of linux f_op->poll() 1342 * semantics). All the events that ha 1246 * semantics). All the events that happen during that period of time are 1343 * chained in ep->ovflist and requeue 1247 * chained in ep->ovflist and requeued later on. 1344 */ 1248 */ 1345 if (READ_ONCE(ep->ovflist) != EP_UNAC 1249 if (READ_ONCE(ep->ovflist) != EP_UNACTIVE_PTR) { 1346 if (chain_epi_lockless(epi)) 1250 if (chain_epi_lockless(epi)) 1347 ep_pm_stay_awake_rcu( 1251 ep_pm_stay_awake_rcu(epi); 1348 } else if (!ep_is_linked(epi)) { 1252 } else if (!ep_is_linked(epi)) { 1349 /* In the usual case, add eve 1253 /* In the usual case, add event to ready list. */ 1350 if (list_add_tail_lockless(&e 1254 if (list_add_tail_lockless(&epi->rdllink, &ep->rdllist)) 1351 ep_pm_stay_awake_rcu( 1255 ep_pm_stay_awake_rcu(epi); 1352 } 1256 } 1353 1257 1354 /* 1258 /* 1355 * Wake up ( if active ) both the eve 1259 * Wake up ( if active ) both the eventpoll wait list and the ->poll() 1356 * wait list. 1260 * wait list. 1357 */ 1261 */ 1358 if (waitqueue_active(&ep->wq)) { 1262 if (waitqueue_active(&ep->wq)) { 1359 if ((epi->event.events & EPOL 1263 if ((epi->event.events & EPOLLEXCLUSIVE) && 1360 !(pol 1264 !(pollflags & POLLFREE)) { 1361 switch (pollflags & E 1265 switch (pollflags & EPOLLINOUT_BITS) { 1362 case EPOLLIN: 1266 case EPOLLIN: 1363 if (epi->even 1267 if (epi->event.events & EPOLLIN) 1364 ewake 1268 ewake = 1; 1365 break; 1269 break; 1366 case EPOLLOUT: 1270 case EPOLLOUT: 1367 if (epi->even 1271 if (epi->event.events & EPOLLOUT) 1368 ewake 1272 ewake = 1; 1369 break; 1273 break; 1370 case 0: 1274 case 0: 1371 ewake = 1; 1275 ewake = 1; 1372 break; 1276 break; 1373 } 1277 } 1374 } 1278 } 1375 wake_up(&ep->wq); 1279 wake_up(&ep->wq); 1376 } 1280 } 1377 if (waitqueue_active(&ep->poll_wait)) 1281 if (waitqueue_active(&ep->poll_wait)) 1378 pwake++; 1282 pwake++; 1379 1283 1380 out_unlock: 1284 out_unlock: 1381 read_unlock_irqrestore(&ep->lock, fla 1285 read_unlock_irqrestore(&ep->lock, flags); 1382 1286 1383 /* We have to call this outside the l 1287 /* We have to call this outside the lock */ 1384 if (pwake) 1288 if (pwake) 1385 ep_poll_safewake(ep, epi, pol 1289 ep_poll_safewake(ep, epi, pollflags & EPOLL_URING_WAKE); 1386 1290 1387 if (!(epi->event.events & EPOLLEXCLUS 1291 if (!(epi->event.events & EPOLLEXCLUSIVE)) 1388 ewake = 1; 1292 ewake = 1; 1389 1293 1390 if (pollflags & POLLFREE) { 1294 if (pollflags & POLLFREE) { 1391 /* 1295 /* 1392 * If we race with ep_remove_ 1296 * If we race with ep_remove_wait_queue() it can miss 1393 * ->whead = NULL and do anot 1297 * ->whead = NULL and do another remove_wait_queue() after 1394 * us, so we can't use __remo 1298 * us, so we can't use __remove_wait_queue(). 1395 */ 1299 */ 1396 list_del_init(&wait->entry); 1300 list_del_init(&wait->entry); 1397 /* 1301 /* 1398 * ->whead != NULL protects u !! 1302 * ->whead != NULL protects us from the race with ep_free() 1399 * ep_clear_and_put() or ep_r !! 1303 * or ep_remove(), ep_remove_wait_queue() takes whead->lock 1400 * takes whead->lock held by !! 1304 * held by the caller. Once we nullify it, nothing protects 1401 * nothing protects ep/epi or !! 1305 * ep/epi or even wait. 1402 */ 1306 */ 1403 smp_store_release(&ep_pwq_fro 1307 smp_store_release(&ep_pwq_from_wait(wait)->whead, NULL); 1404 } 1308 } 1405 1309 1406 return ewake; 1310 return ewake; 1407 } 1311 } 1408 1312 1409 /* 1313 /* 1410 * This is the callback that is used to add o 1314 * This is the callback that is used to add our wait queue to the 1411 * target file wakeup lists. 1315 * target file wakeup lists. 1412 */ 1316 */ 1413 static void ep_ptable_queue_proc(struct file 1317 static void ep_ptable_queue_proc(struct file *file, wait_queue_head_t *whead, 1414 poll_table * 1318 poll_table *pt) 1415 { 1319 { 1416 struct ep_pqueue *epq = container_of( !! 1320 struct epitem *epi = ep_item_from_epqueue(pt); 1417 struct epitem *epi = epq->epi; << 1418 struct eppoll_entry *pwq; 1321 struct eppoll_entry *pwq; 1419 1322 1420 if (unlikely(!epi)) // an earlier !! 1323 if (epi->nwait >= 0 && (pwq = kmem_cache_alloc(pwq_cache, GFP_KERNEL))) { 1421 return; !! 1324 init_waitqueue_func_entry(&pwq->wait, ep_poll_callback); 1422 !! 1325 pwq->whead = whead; 1423 pwq = kmem_cache_alloc(pwq_cache, GFP !! 1326 pwq->base = epi; 1424 if (unlikely(!pwq)) { !! 1327 if (epi->event.events & EPOLLEXCLUSIVE) 1425 epq->epi = NULL; !! 1328 add_wait_queue_exclusive(whead, &pwq->wait); 1426 return; !! 1329 else >> 1330 add_wait_queue(whead, &pwq->wait); >> 1331 list_add_tail(&pwq->llink, &epi->pwqlist); >> 1332 epi->nwait++; >> 1333 } else { >> 1334 /* We have to signal that an error occurred */ >> 1335 epi->nwait = -1; 1427 } 1336 } 1428 << 1429 init_waitqueue_func_entry(&pwq->wait, << 1430 pwq->whead = whead; << 1431 pwq->base = epi; << 1432 if (epi->event.events & EPOLLEXCLUSIV << 1433 add_wait_queue_exclusive(whea << 1434 else << 1435 add_wait_queue(whead, &pwq->w << 1436 pwq->next = epi->pwqlist; << 1437 epi->pwqlist = pwq; << 1438 } 1337 } 1439 1338 1440 static void ep_rbtree_insert(struct eventpoll 1339 static void ep_rbtree_insert(struct eventpoll *ep, struct epitem *epi) 1441 { 1340 { 1442 int kcmp; 1341 int kcmp; 1443 struct rb_node **p = &ep->rbr.rb_root 1342 struct rb_node **p = &ep->rbr.rb_root.rb_node, *parent = NULL; 1444 struct epitem *epic; 1343 struct epitem *epic; 1445 bool leftmost = true; 1344 bool leftmost = true; 1446 1345 1447 while (*p) { 1346 while (*p) { 1448 parent = *p; 1347 parent = *p; 1449 epic = rb_entry(parent, struc 1348 epic = rb_entry(parent, struct epitem, rbn); 1450 kcmp = ep_cmp_ffd(&epi->ffd, 1349 kcmp = ep_cmp_ffd(&epi->ffd, &epic->ffd); 1451 if (kcmp > 0) { 1350 if (kcmp > 0) { 1452 p = &parent->rb_right 1351 p = &parent->rb_right; 1453 leftmost = false; 1352 leftmost = false; 1454 } else 1353 } else 1455 p = &parent->rb_left; 1354 p = &parent->rb_left; 1456 } 1355 } 1457 rb_link_node(&epi->rbn, parent, p); 1356 rb_link_node(&epi->rbn, parent, p); 1458 rb_insert_color_cached(&epi->rbn, &ep 1357 rb_insert_color_cached(&epi->rbn, &ep->rbr, leftmost); 1459 } 1358 } 1460 1359 1461 1360 1462 1361 1463 #define PATH_ARR_SIZE 5 1362 #define PATH_ARR_SIZE 5 1464 /* 1363 /* 1465 * These are the number paths of length 1 to 1364 * These are the number paths of length 1 to 5, that we are allowing to emanate 1466 * from a single file of interest. For exampl 1365 * from a single file of interest. For example, we allow 1000 paths of length 1467 * 1, to emanate from each file of interest. 1366 * 1, to emanate from each file of interest. This essentially represents the 1468 * potential wakeup paths, which need to be l 1367 * potential wakeup paths, which need to be limited in order to avoid massive 1469 * uncontrolled wakeup storms. The common use 1368 * uncontrolled wakeup storms. The common use case should be a single ep which 1470 * is connected to n file sources. In this ca 1369 * is connected to n file sources. In this case each file source has 1 path 1471 * of length 1. Thus, the numbers below shoul 1370 * of length 1. Thus, the numbers below should be more than sufficient. These 1472 * path limits are enforced during an EPOLL_C 1371 * path limits are enforced during an EPOLL_CTL_ADD operation, since a modify 1473 * and delete can't add additional paths. Pro !! 1372 * and delete can't add additional paths. Protected by the epmutex. 1474 */ 1373 */ 1475 static const int path_limits[PATH_ARR_SIZE] = 1374 static const int path_limits[PATH_ARR_SIZE] = { 1000, 500, 100, 50, 10 }; 1476 static int path_count[PATH_ARR_SIZE]; 1375 static int path_count[PATH_ARR_SIZE]; 1477 1376 1478 static int path_count_inc(int nests) 1377 static int path_count_inc(int nests) 1479 { 1378 { 1480 /* Allow an arbitrary number of depth 1379 /* Allow an arbitrary number of depth 1 paths */ 1481 if (nests == 0) 1380 if (nests == 0) 1482 return 0; 1381 return 0; 1483 1382 1484 if (++path_count[nests] > path_limits 1383 if (++path_count[nests] > path_limits[nests]) 1485 return -1; 1384 return -1; 1486 return 0; 1385 return 0; 1487 } 1386 } 1488 1387 1489 static void path_count_init(void) 1388 static void path_count_init(void) 1490 { 1389 { 1491 int i; 1390 int i; 1492 1391 1493 for (i = 0; i < PATH_ARR_SIZE; i++) 1392 for (i = 0; i < PATH_ARR_SIZE; i++) 1494 path_count[i] = 0; 1393 path_count[i] = 0; 1495 } 1394 } 1496 1395 1497 static int reverse_path_check_proc(struct hli !! 1396 static int reverse_path_check_proc(void *priv, void *cookie, int call_nests) 1498 { 1397 { 1499 int error = 0; 1398 int error = 0; >> 1399 struct file *file = priv; >> 1400 struct file *child_file; 1500 struct epitem *epi; 1401 struct epitem *epi; 1501 1402 1502 if (depth > EP_MAX_NESTS) /* too deep << 1503 return -1; << 1504 << 1505 /* CTL_DEL can remove links here, but 1403 /* CTL_DEL can remove links here, but that can't increase our count */ 1506 hlist_for_each_entry_rcu(epi, refs, f !! 1404 rcu_read_lock(); 1507 struct hlist_head *refs = &ep !! 1405 list_for_each_entry_rcu(epi, &file->f_ep_links, fllink) { 1508 if (hlist_empty(refs)) !! 1406 child_file = epi->ep->file; 1509 error = path_count_in !! 1407 if (is_file_epoll(child_file)) { 1510 else !! 1408 if (list_empty(&child_file->f_ep_links)) { 1511 error = reverse_path_ !! 1409 if (path_count_inc(call_nests)) { 1512 if (error != 0) !! 1410 error = -1; 1513 break; !! 1411 break; >> 1412 } >> 1413 } else { >> 1414 error = ep_call_nested(&poll_loop_ncalls, >> 1415 reverse_path_check_proc, >> 1416 child_file, child_file, >> 1417 current); >> 1418 } >> 1419 if (error != 0) >> 1420 break; >> 1421 } else { >> 1422 printk(KERN_ERR "reverse_path_check_proc: " >> 1423 "file is not an ep!\n"); >> 1424 } 1514 } 1425 } >> 1426 rcu_read_unlock(); 1515 return error; 1427 return error; 1516 } 1428 } 1517 1429 1518 /** 1430 /** 1519 * reverse_path_check - The tfile_check_list !! 1431 * reverse_path_check - The tfile_check_list is list of file *, which have 1520 * links that are propos 1432 * links that are proposed to be newly added. We need to 1521 * make sure that those 1433 * make sure that those added links don't add too many 1522 * paths such that we wi 1434 * paths such that we will spend all our time waking up 1523 * eventpoll objects. 1435 * eventpoll objects. 1524 * 1436 * 1525 * Return: %zero if the proposed links don't !! 1437 * Returns: Returns zero if the proposed links don't create too many paths, 1526 * %-1 otherwise. !! 1438 * -1 otherwise. 1527 */ 1439 */ 1528 static int reverse_path_check(void) 1440 static int reverse_path_check(void) 1529 { 1441 { 1530 struct epitems_head *p; !! 1442 int error = 0; >> 1443 struct file *current_file; 1531 1444 1532 for (p = tfile_check_list; p != EP_UN !! 1445 /* let's call this for all tfiles */ 1533 int error; !! 1446 list_for_each_entry(current_file, &tfile_check_list, f_tfile_llink) { 1534 path_count_init(); 1447 path_count_init(); 1535 rcu_read_lock(); !! 1448 error = ep_call_nested(&poll_loop_ncalls, 1536 error = reverse_path_check_pr !! 1449 reverse_path_check_proc, current_file, 1537 rcu_read_unlock(); !! 1450 current_file, current); 1538 if (error) 1451 if (error) 1539 return error; !! 1452 break; 1540 } 1453 } 1541 return 0; !! 1454 return error; 1542 } 1455 } 1543 1456 1544 static int ep_create_wakeup_source(struct epi 1457 static int ep_create_wakeup_source(struct epitem *epi) 1545 { 1458 { 1546 struct name_snapshot n; 1459 struct name_snapshot n; 1547 struct wakeup_source *ws; 1460 struct wakeup_source *ws; 1548 1461 1549 if (!epi->ep->ws) { 1462 if (!epi->ep->ws) { 1550 epi->ep->ws = wakeup_source_r 1463 epi->ep->ws = wakeup_source_register(NULL, "eventpoll"); 1551 if (!epi->ep->ws) 1464 if (!epi->ep->ws) 1552 return -ENOMEM; 1465 return -ENOMEM; 1553 } 1466 } 1554 1467 1555 take_dentry_name_snapshot(&n, epi->ff 1468 take_dentry_name_snapshot(&n, epi->ffd.file->f_path.dentry); 1556 ws = wakeup_source_register(NULL, n.n 1469 ws = wakeup_source_register(NULL, n.name.name); 1557 release_dentry_name_snapshot(&n); 1470 release_dentry_name_snapshot(&n); 1558 1471 1559 if (!ws) 1472 if (!ws) 1560 return -ENOMEM; 1473 return -ENOMEM; 1561 rcu_assign_pointer(epi->ws, ws); 1474 rcu_assign_pointer(epi->ws, ws); 1562 1475 1563 return 0; 1476 return 0; 1564 } 1477 } 1565 1478 1566 /* rare code path, only used when EPOLL_CTL_M 1479 /* rare code path, only used when EPOLL_CTL_MOD removes a wakeup source */ 1567 static noinline void ep_destroy_wakeup_source 1480 static noinline void ep_destroy_wakeup_source(struct epitem *epi) 1568 { 1481 { 1569 struct wakeup_source *ws = ep_wakeup_ 1482 struct wakeup_source *ws = ep_wakeup_source(epi); 1570 1483 1571 RCU_INIT_POINTER(epi->ws, NULL); 1484 RCU_INIT_POINTER(epi->ws, NULL); 1572 1485 1573 /* 1486 /* 1574 * wait for ep_pm_stay_awake_rcu to f 1487 * wait for ep_pm_stay_awake_rcu to finish, synchronize_rcu is 1575 * used internally by wakeup_source_r 1488 * used internally by wakeup_source_remove, too (called by 1576 * wakeup_source_unregister), so we c 1489 * wakeup_source_unregister), so we cannot use call_rcu 1577 */ 1490 */ 1578 synchronize_rcu(); 1491 synchronize_rcu(); 1579 wakeup_source_unregister(ws); 1492 wakeup_source_unregister(ws); 1580 } 1493 } 1581 1494 1582 static int attach_epitem(struct file *file, s << 1583 { << 1584 struct epitems_head *to_free = NULL; << 1585 struct hlist_head *head = NULL; << 1586 struct eventpoll *ep = NULL; << 1587 << 1588 if (is_file_epoll(file)) << 1589 ep = file->private_data; << 1590 << 1591 if (ep) { << 1592 head = &ep->refs; << 1593 } else if (!READ_ONCE(file->f_ep)) { << 1594 allocate: << 1595 to_free = kmem_cache_zalloc(e << 1596 if (!to_free) << 1597 return -ENOMEM; << 1598 head = &to_free->epitems; << 1599 } << 1600 spin_lock(&file->f_lock); << 1601 if (!file->f_ep) { << 1602 if (unlikely(!head)) { << 1603 spin_unlock(&file->f_ << 1604 goto allocate; << 1605 } << 1606 file->f_ep = head; << 1607 to_free = NULL; << 1608 } << 1609 hlist_add_head_rcu(&epi->fllink, file << 1610 spin_unlock(&file->f_lock); << 1611 free_ephead(to_free); << 1612 return 0; << 1613 } << 1614 << 1615 /* 1495 /* 1616 * Must be called with "mtx" held. 1496 * Must be called with "mtx" held. 1617 */ 1497 */ 1618 static int ep_insert(struct eventpoll *ep, co 1498 static int ep_insert(struct eventpoll *ep, const struct epoll_event *event, 1619 struct file *tfile, int 1499 struct file *tfile, int fd, int full_check) 1620 { 1500 { 1621 int error, pwake = 0; 1501 int error, pwake = 0; 1622 __poll_t revents; 1502 __poll_t revents; >> 1503 long user_watches; 1623 struct epitem *epi; 1504 struct epitem *epi; 1624 struct ep_pqueue epq; 1505 struct ep_pqueue epq; 1625 struct eventpoll *tep = NULL; << 1626 << 1627 if (is_file_epoll(tfile)) << 1628 tep = tfile->private_data; << 1629 1506 1630 lockdep_assert_irqs_enabled(); 1507 lockdep_assert_irqs_enabled(); 1631 1508 1632 if (unlikely(percpu_counter_compare(& !! 1509 user_watches = atomic_long_read(&ep->user->epoll_watches); 1633 m !! 1510 if (unlikely(user_watches >= max_user_watches)) 1634 return -ENOSPC; 1511 return -ENOSPC; 1635 percpu_counter_inc(&ep->user->epoll_w !! 1512 if (!(epi = kmem_cache_alloc(epi_cache, GFP_KERNEL))) 1636 << 1637 if (!(epi = kmem_cache_zalloc(epi_cac << 1638 percpu_counter_dec(&ep->user- << 1639 return -ENOMEM; 1513 return -ENOMEM; 1640 } << 1641 1514 1642 /* Item initialization follow here .. 1515 /* Item initialization follow here ... */ 1643 INIT_LIST_HEAD(&epi->rdllink); 1516 INIT_LIST_HEAD(&epi->rdllink); >> 1517 INIT_LIST_HEAD(&epi->fllink); >> 1518 INIT_LIST_HEAD(&epi->pwqlist); 1644 epi->ep = ep; 1519 epi->ep = ep; 1645 ep_set_ffd(&epi->ffd, tfile, fd); 1520 ep_set_ffd(&epi->ffd, tfile, fd); 1646 epi->event = *event; 1521 epi->event = *event; >> 1522 epi->nwait = 0; 1647 epi->next = EP_UNACTIVE_PTR; 1523 epi->next = EP_UNACTIVE_PTR; 1648 !! 1524 if (epi->event.events & EPOLLWAKEUP) { 1649 if (tep) !! 1525 error = ep_create_wakeup_source(epi); 1650 mutex_lock_nested(&tep->mtx, !! 1526 if (error) 1651 /* Add the current item to the list o !! 1527 goto error_create_wakeup_source; 1652 if (unlikely(attach_epitem(tfile, epi !! 1528 } else { 1653 if (tep) !! 1529 RCU_INIT_POINTER(epi->ws, NULL); 1654 mutex_unlock(&tep->mt << 1655 kmem_cache_free(epi_cache, ep << 1656 percpu_counter_dec(&ep->user- << 1657 return -ENOMEM; << 1658 } 1530 } 1659 1531 1660 if (full_check && !tep) !! 1532 /* Add the current item to the list of active epoll hook for this file */ 1661 list_file(tfile); !! 1533 spin_lock(&tfile->f_lock); >> 1534 list_add_tail_rcu(&epi->fllink, &tfile->f_ep_links); >> 1535 spin_unlock(&tfile->f_lock); 1662 1536 1663 /* 1537 /* 1664 * Add the current item to the RB tre 1538 * Add the current item to the RB tree. All RB tree operations are 1665 * protected by "mtx", and ep_insert( 1539 * protected by "mtx", and ep_insert() is called with "mtx" held. 1666 */ 1540 */ 1667 ep_rbtree_insert(ep, epi); 1541 ep_rbtree_insert(ep, epi); 1668 if (tep) << 1669 mutex_unlock(&tep->mtx); << 1670 << 1671 /* << 1672 * ep_remove_safe() calls in the late << 1673 * ep_free() as the ep file itself st << 1674 */ << 1675 ep_get(ep); << 1676 1542 1677 /* now check if we've created too man 1543 /* now check if we've created too many backpaths */ 1678 if (unlikely(full_check && reverse_pa !! 1544 error = -EINVAL; 1679 ep_remove_safe(ep, epi); !! 1545 if (full_check && reverse_path_check()) 1680 return -EINVAL; !! 1546 goto error_remove_epi; 1681 } << 1682 << 1683 if (epi->event.events & EPOLLWAKEUP) << 1684 error = ep_create_wakeup_sour << 1685 if (error) { << 1686 ep_remove_safe(ep, ep << 1687 return error; << 1688 } << 1689 } << 1690 1547 1691 /* Initialize the poll table using th 1548 /* Initialize the poll table using the queue callback */ 1692 epq.epi = epi; 1549 epq.epi = epi; 1693 init_poll_funcptr(&epq.pt, ep_ptable_ 1550 init_poll_funcptr(&epq.pt, ep_ptable_queue_proc); 1694 1551 1695 /* 1552 /* 1696 * Attach the item to the poll hooks 1553 * Attach the item to the poll hooks and get current event bits. 1697 * We can safely use the file* here b 1554 * We can safely use the file* here because its usage count has 1698 * been increased by the caller of th 1555 * been increased by the caller of this function. Note that after 1699 * this operation completes, the poll 1556 * this operation completes, the poll callback can start hitting 1700 * the new item. 1557 * the new item. 1701 */ 1558 */ 1702 revents = ep_item_poll(epi, &epq.pt, 1559 revents = ep_item_poll(epi, &epq.pt, 1); 1703 1560 1704 /* 1561 /* 1705 * We have to check if something went 1562 * We have to check if something went wrong during the poll wait queue 1706 * install process. Namely an allocat 1563 * install process. Namely an allocation for a wait queue failed due 1707 * high memory pressure. 1564 * high memory pressure. 1708 */ 1565 */ 1709 if (unlikely(!epq.epi)) { !! 1566 error = -ENOMEM; 1710 ep_remove_safe(ep, epi); !! 1567 if (epi->nwait < 0) 1711 return -ENOMEM; !! 1568 goto error_unregister; 1712 } << 1713 1569 1714 /* We have to drop the new item insid 1570 /* We have to drop the new item inside our item list to keep track of it */ 1715 write_lock_irq(&ep->lock); 1571 write_lock_irq(&ep->lock); 1716 1572 1717 /* record NAPI ID of new item if pres 1573 /* record NAPI ID of new item if present */ 1718 ep_set_busy_poll_napi_id(epi); 1574 ep_set_busy_poll_napi_id(epi); 1719 1575 1720 /* If the file is already "ready" we 1576 /* If the file is already "ready" we drop it inside the ready list */ 1721 if (revents && !ep_is_linked(epi)) { 1577 if (revents && !ep_is_linked(epi)) { 1722 list_add_tail(&epi->rdllink, 1578 list_add_tail(&epi->rdllink, &ep->rdllist); 1723 ep_pm_stay_awake(epi); 1579 ep_pm_stay_awake(epi); 1724 1580 1725 /* Notify waiting tasks that 1581 /* Notify waiting tasks that events are available */ 1726 if (waitqueue_active(&ep->wq) 1582 if (waitqueue_active(&ep->wq)) 1727 wake_up(&ep->wq); 1583 wake_up(&ep->wq); 1728 if (waitqueue_active(&ep->pol 1584 if (waitqueue_active(&ep->poll_wait)) 1729 pwake++; 1585 pwake++; 1730 } 1586 } 1731 1587 1732 write_unlock_irq(&ep->lock); 1588 write_unlock_irq(&ep->lock); 1733 1589 >> 1590 atomic_long_inc(&ep->user->epoll_watches); >> 1591 1734 /* We have to call this outside the l 1592 /* We have to call this outside the lock */ 1735 if (pwake) 1593 if (pwake) 1736 ep_poll_safewake(ep, NULL, 0) 1594 ep_poll_safewake(ep, NULL, 0); 1737 1595 1738 return 0; 1596 return 0; >> 1597 >> 1598 error_unregister: >> 1599 ep_unregister_pollwait(ep, epi); >> 1600 error_remove_epi: >> 1601 spin_lock(&tfile->f_lock); >> 1602 list_del_rcu(&epi->fllink); >> 1603 spin_unlock(&tfile->f_lock); >> 1604 >> 1605 rb_erase_cached(&epi->rbn, &ep->rbr); >> 1606 >> 1607 /* >> 1608 * We need to do this because an event could have been arrived on some >> 1609 * allocated wait queue. Note that we don't care about the ep->ovflist >> 1610 * list, since that is used/cleaned only inside a section bound by "mtx". >> 1611 * And ep_insert() is called with "mtx" held. >> 1612 */ >> 1613 write_lock_irq(&ep->lock); >> 1614 if (ep_is_linked(epi)) >> 1615 list_del_init(&epi->rdllink); >> 1616 write_unlock_irq(&ep->lock); >> 1617 >> 1618 wakeup_source_unregister(ep_wakeup_source(epi)); >> 1619 >> 1620 error_create_wakeup_source: >> 1621 kmem_cache_free(epi_cache, epi); >> 1622 >> 1623 return error; 1739 } 1624 } 1740 1625 1741 /* 1626 /* 1742 * Modify the interest event mask by dropping 1627 * Modify the interest event mask by dropping an event if the new mask 1743 * has a match in the current file status. Mu 1628 * has a match in the current file status. Must be called with "mtx" held. 1744 */ 1629 */ 1745 static int ep_modify(struct eventpoll *ep, st 1630 static int ep_modify(struct eventpoll *ep, struct epitem *epi, 1746 const struct epoll_event 1631 const struct epoll_event *event) 1747 { 1632 { 1748 int pwake = 0; 1633 int pwake = 0; 1749 poll_table pt; 1634 poll_table pt; 1750 1635 1751 lockdep_assert_irqs_enabled(); 1636 lockdep_assert_irqs_enabled(); 1752 1637 1753 init_poll_funcptr(&pt, NULL); 1638 init_poll_funcptr(&pt, NULL); 1754 1639 1755 /* 1640 /* 1756 * Set the new event interest mask be 1641 * Set the new event interest mask before calling f_op->poll(); 1757 * otherwise we might miss an event t 1642 * otherwise we might miss an event that happens between the 1758 * f_op->poll() call and the new even 1643 * f_op->poll() call and the new event set registering. 1759 */ 1644 */ 1760 epi->event.events = event->events; /* 1645 epi->event.events = event->events; /* need barrier below */ 1761 epi->event.data = event->data; /* pro 1646 epi->event.data = event->data; /* protected by mtx */ 1762 if (epi->event.events & EPOLLWAKEUP) 1647 if (epi->event.events & EPOLLWAKEUP) { 1763 if (!ep_has_wakeup_source(epi 1648 if (!ep_has_wakeup_source(epi)) 1764 ep_create_wakeup_sour 1649 ep_create_wakeup_source(epi); 1765 } else if (ep_has_wakeup_source(epi)) 1650 } else if (ep_has_wakeup_source(epi)) { 1766 ep_destroy_wakeup_source(epi) 1651 ep_destroy_wakeup_source(epi); 1767 } 1652 } 1768 1653 1769 /* 1654 /* 1770 * The following barrier has two effe 1655 * The following barrier has two effects: 1771 * 1656 * 1772 * 1) Flush epi changes above to othe 1657 * 1) Flush epi changes above to other CPUs. This ensures 1773 * we do not miss events from ep_p 1658 * we do not miss events from ep_poll_callback if an 1774 * event occurs immediately after 1659 * event occurs immediately after we call f_op->poll(). 1775 * We need this because we did not 1660 * We need this because we did not take ep->lock while 1776 * changing epi above (but ep_poll 1661 * changing epi above (but ep_poll_callback does take 1777 * ep->lock). 1662 * ep->lock). 1778 * 1663 * 1779 * 2) We also need to ensure we do no 1664 * 2) We also need to ensure we do not miss _past_ events 1780 * when calling f_op->poll(). Thi 1665 * when calling f_op->poll(). This barrier also 1781 * pairs with the barrier in wq_ha 1666 * pairs with the barrier in wq_has_sleeper (see 1782 * comments for wq_has_sleeper). 1667 * comments for wq_has_sleeper). 1783 * 1668 * 1784 * This barrier will now guarantee ep 1669 * This barrier will now guarantee ep_poll_callback or f_op->poll 1785 * (or both) will notice the readines 1670 * (or both) will notice the readiness of an item. 1786 */ 1671 */ 1787 smp_mb(); 1672 smp_mb(); 1788 1673 1789 /* 1674 /* 1790 * Get current event bits. We can saf 1675 * Get current event bits. We can safely use the file* here because 1791 * its usage count has been increased 1676 * its usage count has been increased by the caller of this function. 1792 * If the item is "hot" and it is not 1677 * If the item is "hot" and it is not registered inside the ready 1793 * list, push it inside. 1678 * list, push it inside. 1794 */ 1679 */ 1795 if (ep_item_poll(epi, &pt, 1)) { 1680 if (ep_item_poll(epi, &pt, 1)) { 1796 write_lock_irq(&ep->lock); 1681 write_lock_irq(&ep->lock); 1797 if (!ep_is_linked(epi)) { 1682 if (!ep_is_linked(epi)) { 1798 list_add_tail(&epi->r 1683 list_add_tail(&epi->rdllink, &ep->rdllist); 1799 ep_pm_stay_awake(epi) 1684 ep_pm_stay_awake(epi); 1800 1685 1801 /* Notify waiting tas 1686 /* Notify waiting tasks that events are available */ 1802 if (waitqueue_active( 1687 if (waitqueue_active(&ep->wq)) 1803 wake_up(&ep-> 1688 wake_up(&ep->wq); 1804 if (waitqueue_active( 1689 if (waitqueue_active(&ep->poll_wait)) 1805 pwake++; 1690 pwake++; 1806 } 1691 } 1807 write_unlock_irq(&ep->lock); 1692 write_unlock_irq(&ep->lock); 1808 } 1693 } 1809 1694 1810 /* We have to call this outside the l 1695 /* We have to call this outside the lock */ 1811 if (pwake) 1696 if (pwake) 1812 ep_poll_safewake(ep, NULL, 0) 1697 ep_poll_safewake(ep, NULL, 0); 1813 1698 1814 return 0; 1699 return 0; 1815 } 1700 } 1816 1701 1817 static int ep_send_events(struct eventpoll *e !! 1702 static __poll_t ep_send_events_proc(struct eventpoll *ep, struct list_head *head, 1818 struct epoll_event !! 1703 void *priv) 1819 { 1704 { >> 1705 struct ep_send_events_data *esed = priv; >> 1706 __poll_t revents; 1820 struct epitem *epi, *tmp; 1707 struct epitem *epi, *tmp; 1821 LIST_HEAD(txlist); !! 1708 struct epoll_event __user *uevent = esed->events; >> 1709 struct wakeup_source *ws; 1822 poll_table pt; 1710 poll_table pt; 1823 int res = 0; << 1824 << 1825 /* << 1826 * Always short-circuit for fatal sig << 1827 * timely exit without the chance of << 1828 * fetching repeatedly. << 1829 */ << 1830 if (fatal_signal_pending(current)) << 1831 return -EINTR; << 1832 1711 1833 init_poll_funcptr(&pt, NULL); 1712 init_poll_funcptr(&pt, NULL); 1834 !! 1713 esed->res = 0; 1835 mutex_lock(&ep->mtx); << 1836 ep_start_scan(ep, &txlist); << 1837 1714 1838 /* 1715 /* 1839 * We can loop without lock because w 1716 * We can loop without lock because we are passed a task private list. 1840 * Items cannot vanish during the loo !! 1717 * Items cannot vanish during the loop because ep_scan_ready_list() is >> 1718 * holding "mtx" during this call. 1841 */ 1719 */ 1842 list_for_each_entry_safe(epi, tmp, &t !! 1720 lockdep_assert_held(&ep->mtx); 1843 struct wakeup_source *ws; << 1844 __poll_t revents; << 1845 1721 1846 if (res >= maxevents) !! 1722 list_for_each_entry_safe(epi, tmp, head, rdllink) { >> 1723 if (esed->res >= esed->maxevents) 1847 break; 1724 break; 1848 1725 1849 /* 1726 /* 1850 * Activate ep->ws before dea 1727 * Activate ep->ws before deactivating epi->ws to prevent 1851 * triggering auto-suspend he 1728 * triggering auto-suspend here (in case we reactive epi->ws 1852 * below). 1729 * below). 1853 * 1730 * 1854 * This could be rearranged t 1731 * This could be rearranged to delay the deactivation of epi->ws 1855 * instead, but then epi->ws 1732 * instead, but then epi->ws would temporarily be out of sync 1856 * with ep_is_linked(). 1733 * with ep_is_linked(). 1857 */ 1734 */ 1858 ws = ep_wakeup_source(epi); 1735 ws = ep_wakeup_source(epi); 1859 if (ws) { 1736 if (ws) { 1860 if (ws->active) 1737 if (ws->active) 1861 __pm_stay_awa 1738 __pm_stay_awake(ep->ws); 1862 __pm_relax(ws); 1739 __pm_relax(ws); 1863 } 1740 } 1864 1741 1865 list_del_init(&epi->rdllink); 1742 list_del_init(&epi->rdllink); 1866 1743 1867 /* 1744 /* 1868 * If the event mask intersec 1745 * If the event mask intersect the caller-requested one, 1869 * deliver the event to users !! 1746 * deliver the event to userspace. Again, ep_scan_ready_list() 1870 * so no operations coming fr !! 1747 * is holding ep->mtx, so no operations coming from userspace >> 1748 * can change the item. 1871 */ 1749 */ 1872 revents = ep_item_poll(epi, & 1750 revents = ep_item_poll(epi, &pt, 1); 1873 if (!revents) 1751 if (!revents) 1874 continue; 1752 continue; 1875 1753 1876 events = epoll_put_uevent(rev !! 1754 if (__put_user(revents, &uevent->events) || 1877 if (!events) { !! 1755 __put_user(epi->event.data, &uevent->data)) { 1878 list_add(&epi->rdllin !! 1756 list_add(&epi->rdllink, head); 1879 ep_pm_stay_awake(epi) 1757 ep_pm_stay_awake(epi); 1880 if (!res) !! 1758 if (!esed->res) 1881 res = -EFAULT !! 1759 esed->res = -EFAULT; 1882 break; !! 1760 return 0; 1883 } 1761 } 1884 res++; !! 1762 esed->res++; >> 1763 uevent++; 1885 if (epi->event.events & EPOLL 1764 if (epi->event.events & EPOLLONESHOT) 1886 epi->event.events &= 1765 epi->event.events &= EP_PRIVATE_BITS; 1887 else if (!(epi->event.events 1766 else if (!(epi->event.events & EPOLLET)) { 1888 /* 1767 /* 1889 * If this file has b 1768 * If this file has been added with Level 1890 * Trigger mode, we n 1769 * Trigger mode, we need to insert back inside 1891 * the ready list, so 1770 * the ready list, so that the next call to 1892 * epoll_wait() will 1771 * epoll_wait() will check again the events 1893 * availability. At t 1772 * availability. At this point, no one can insert 1894 * into ep->rdllist b 1773 * into ep->rdllist besides us. The epoll_ctl() 1895 * callers are locked 1774 * callers are locked out by 1896 * ep_send_events() h !! 1775 * ep_scan_ready_list() holding "mtx" and the 1897 * poll callback will 1776 * poll callback will queue them in ep->ovflist. 1898 */ 1777 */ 1899 list_add_tail(&epi->r 1778 list_add_tail(&epi->rdllink, &ep->rdllist); 1900 ep_pm_stay_awake(epi) 1779 ep_pm_stay_awake(epi); 1901 } 1780 } 1902 } 1781 } 1903 ep_done_scan(ep, &txlist); << 1904 mutex_unlock(&ep->mtx); << 1905 1782 1906 return res; !! 1783 return 0; 1907 } 1784 } 1908 1785 1909 static struct timespec64 *ep_timeout_to_times !! 1786 static int ep_send_events(struct eventpoll *ep, >> 1787 struct epoll_event __user *events, int maxevents) 1910 { 1788 { 1911 struct timespec64 now; !! 1789 struct ep_send_events_data esed; 1912 1790 1913 if (ms < 0) !! 1791 esed.maxevents = maxevents; 1914 return NULL; !! 1792 esed.events = events; 1915 1793 1916 if (!ms) { !! 1794 ep_scan_ready_list(ep, ep_send_events_proc, &esed, 0, false); 1917 to->tv_sec = 0; !! 1795 return esed.res; 1918 to->tv_nsec = 0; !! 1796 } 1919 return to; << 1920 } << 1921 1797 1922 to->tv_sec = ms / MSEC_PER_SEC; !! 1798 static inline struct timespec64 ep_set_mstimeout(long ms) 1923 to->tv_nsec = NSEC_PER_MSEC * (ms % M !! 1799 { >> 1800 struct timespec64 now, ts = { >> 1801 .tv_sec = ms / MSEC_PER_SEC, >> 1802 .tv_nsec = NSEC_PER_MSEC * (ms % MSEC_PER_SEC), >> 1803 }; 1924 1804 1925 ktime_get_ts64(&now); 1805 ktime_get_ts64(&now); 1926 *to = timespec64_add_safe(now, *to); !! 1806 return timespec64_add_safe(now, ts); 1927 return to; << 1928 } 1807 } 1929 1808 1930 /* 1809 /* 1931 * autoremove_wake_function, but remove even 1810 * autoremove_wake_function, but remove even on failure to wake up, because we 1932 * know that default_wake_function/ttwu will 1811 * know that default_wake_function/ttwu will only fail if the thread is already 1933 * woken, and in that case the ep_poll loop w 1812 * woken, and in that case the ep_poll loop will remove the entry anyways, not 1934 * try to reuse it. 1813 * try to reuse it. 1935 */ 1814 */ 1936 static int ep_autoremove_wake_function(struct 1815 static int ep_autoremove_wake_function(struct wait_queue_entry *wq_entry, 1937 unsign 1816 unsigned int mode, int sync, void *key) 1938 { 1817 { 1939 int ret = default_wake_function(wq_en 1818 int ret = default_wake_function(wq_entry, mode, sync, key); 1940 1819 1941 /* 1820 /* 1942 * Pairs with list_empty_careful in e 1821 * Pairs with list_empty_careful in ep_poll, and ensures future loop 1943 * iterations see the cause of this w 1822 * iterations see the cause of this wakeup. 1944 */ 1823 */ 1945 list_del_init_careful(&wq_entry->entr 1824 list_del_init_careful(&wq_entry->entry); 1946 return ret; 1825 return ret; 1947 } 1826 } 1948 1827 1949 /** 1828 /** 1950 * ep_poll - Retrieves ready events, and deli !! 1829 * ep_poll - Retrieves ready events, and delivers them to the caller supplied 1951 * event buffer. 1830 * event buffer. 1952 * 1831 * 1953 * @ep: Pointer to the eventpoll context. 1832 * @ep: Pointer to the eventpoll context. 1954 * @events: Pointer to the userspace buffer w 1833 * @events: Pointer to the userspace buffer where the ready events should be 1955 * stored. 1834 * stored. 1956 * @maxevents: Size (in terms of number of ev 1835 * @maxevents: Size (in terms of number of events) of the caller event buffer. 1957 * @timeout: Maximum timeout for the ready ev 1836 * @timeout: Maximum timeout for the ready events fetch operation, in 1958 * timespec. If the timeout is zero !! 1837 * milliseconds. If the @timeout is zero, the function will not block, 1959 * while if the @timeout ptr is NUL !! 1838 * while if the @timeout is less than zero, the function will block 1960 * until at least one event has bee 1839 * until at least one event has been retrieved (or an error 1961 * occurred). 1840 * occurred). 1962 * 1841 * 1963 * Return: the number of ready events which h !! 1842 * Returns: Returns the number of ready events which have been fetched, or an 1964 * error code, in case of error. 1843 * error code, in case of error. 1965 */ 1844 */ 1966 static int ep_poll(struct eventpoll *ep, stru 1845 static int ep_poll(struct eventpoll *ep, struct epoll_event __user *events, 1967 int maxevents, struct time !! 1846 int maxevents, long timeout) 1968 { 1847 { 1969 int res, eavail, timed_out = 0; !! 1848 int res = 0, eavail, timed_out = 0; 1970 u64 slack = 0; 1849 u64 slack = 0; 1971 wait_queue_entry_t wait; 1850 wait_queue_entry_t wait; 1972 ktime_t expires, *to = NULL; 1851 ktime_t expires, *to = NULL; 1973 1852 1974 lockdep_assert_irqs_enabled(); 1853 lockdep_assert_irqs_enabled(); 1975 1854 1976 if (timeout && (timeout->tv_sec | tim !! 1855 if (timeout > 0) { 1977 slack = select_estimate_accur !! 1856 struct timespec64 end_time = ep_set_mstimeout(timeout); >> 1857 >> 1858 slack = select_estimate_accuracy(&end_time); 1978 to = &expires; 1859 to = &expires; 1979 *to = timespec64_to_ktime(*ti !! 1860 *to = timespec64_to_ktime(end_time); 1980 } else if (timeout) { !! 1861 } else if (timeout == 0) { 1981 /* 1862 /* 1982 * Avoid the unnecessary trip 1863 * Avoid the unnecessary trip to the wait queue loop, if the 1983 * caller specified a non blo !! 1864 * caller specified a non blocking operation. We still need >> 1865 * lock because we could race and not see an epi being added >> 1866 * to the ready list while in irq callback. Thus incorrectly >> 1867 * returning 0 back to userspace. 1984 */ 1868 */ 1985 timed_out = 1; 1869 timed_out = 1; 1986 } << 1987 1870 1988 /* !! 1871 write_lock_irq(&ep->lock); 1989 * This call is racy: We may or may n !! 1872 eavail = ep_events_available(ep); 1990 * to the ready list under the lock ( !! 1873 write_unlock_irq(&ep->lock); 1991 * with a non-zero timeout, this thre << 1992 * lock and will add to the wait queu << 1993 * timeout, the user by definition sh << 1994 * recheck again. << 1995 */ << 1996 eavail = ep_events_available(ep); << 1997 1874 1998 while (1) { !! 1875 goto send_events; 1999 if (eavail) { !! 1876 } 2000 /* << 2001 * Try to transfer ev << 2002 * 0 events and there << 2003 * trying again in se << 2004 */ << 2005 res = ep_send_events( << 2006 if (res) << 2007 return res; << 2008 } << 2009 1877 2010 if (timed_out) !! 1878 fetch_events: 2011 return 0; << 2012 1879 2013 eavail = ep_busy_loop(ep, tim !! 1880 if (!ep_events_available(ep)) 2014 if (eavail) !! 1881 ep_busy_loop(ep, timed_out); 2015 continue; << 2016 1882 2017 if (signal_pending(current)) !! 1883 eavail = ep_events_available(ep); 2018 return -EINTR; !! 1884 if (eavail) >> 1885 goto send_events; 2019 1886 >> 1887 /* >> 1888 * Busy poll timed out. Drop NAPI ID for now, we can add >> 1889 * it back in when we have moved a socket with a valid NAPI >> 1890 * ID onto the ready list. >> 1891 */ >> 1892 ep_reset_busy_poll_napi_id(ep); >> 1893 >> 1894 do { 2020 /* 1895 /* 2021 * Internally init_wait() use 1896 * Internally init_wait() uses autoremove_wake_function(), 2022 * thus wait entry is removed 1897 * thus wait entry is removed from the wait queue on each 2023 * wakeup. Why it is importan 1898 * wakeup. Why it is important? In case of several waiters 2024 * each new wakeup will hit t 1899 * each new wakeup will hit the next waiter, giving it the 2025 * chance to harvest new even 1900 * chance to harvest new event. Otherwise wakeup can be 2026 * lost. This is also good pe 1901 * lost. This is also good performance-wise, because on 2027 * normal wakeup path no need 1902 * normal wakeup path no need to call __remove_wait_queue() 2028 * explicitly, thus ep->lock 1903 * explicitly, thus ep->lock is not taken, which halts the 2029 * event delivery. 1904 * event delivery. 2030 * 1905 * 2031 * In fact, we now use an eve 1906 * In fact, we now use an even more aggressive function that 2032 * unconditionally removes, b 1907 * unconditionally removes, because we don't reuse the wait 2033 * entry between loop iterati 1908 * entry between loop iterations. This lets us also avoid the 2034 * performance issue if a pro 1909 * performance issue if a process is killed, causing all of its 2035 * threads to wake up without 1910 * threads to wake up without being removed normally. 2036 */ 1911 */ 2037 init_wait(&wait); 1912 init_wait(&wait); 2038 wait.func = ep_autoremove_wak 1913 wait.func = ep_autoremove_wake_function; 2039 1914 2040 write_lock_irq(&ep->lock); 1915 write_lock_irq(&ep->lock); 2041 /* 1916 /* 2042 * Barrierless variant, waitq 1917 * Barrierless variant, waitqueue_active() is called under 2043 * the same lock on wakeup ep 1918 * the same lock on wakeup ep_poll_callback() side, so it 2044 * is safe to avoid an explic 1919 * is safe to avoid an explicit barrier. 2045 */ 1920 */ 2046 __set_current_state(TASK_INTE 1921 __set_current_state(TASK_INTERRUPTIBLE); 2047 1922 2048 /* 1923 /* 2049 * Do the final check under t !! 1924 * Do the final check under the lock. ep_scan_ready_list() 2050 * plays with two lists (->rd 1925 * plays with two lists (->rdllist and ->ovflist) and there 2051 * is always a race when both 1926 * is always a race when both lists are empty for short 2052 * period of time although ev 1927 * period of time although events are pending, so lock is 2053 * important. 1928 * important. 2054 */ 1929 */ 2055 eavail = ep_events_available( 1930 eavail = ep_events_available(ep); 2056 if (!eavail) !! 1931 if (!eavail) { 2057 __add_wait_queue_excl !! 1932 if (signal_pending(current)) 2058 !! 1933 res = -EINTR; >> 1934 else >> 1935 __add_wait_queue_exclusive(&ep->wq, &wait); >> 1936 } 2059 write_unlock_irq(&ep->lock); 1937 write_unlock_irq(&ep->lock); 2060 1938 2061 if (!eavail) !! 1939 if (!eavail && !res) 2062 timed_out = !schedule 1940 timed_out = !schedule_hrtimeout_range(to, slack, 2063 1941 HRTIMER_MODE_ABS); 2064 __set_current_state(TASK_RUNN << 2065 1942 2066 /* 1943 /* 2067 * We were woken up, thus go 1944 * We were woken up, thus go and try to harvest some events. 2068 * If timed out and still on 1945 * If timed out and still on the wait queue, recheck eavail 2069 * carefully under lock, belo 1946 * carefully under lock, below. 2070 */ 1947 */ 2071 eavail = 1; 1948 eavail = 1; >> 1949 } while (0); 2072 1950 2073 if (!list_empty_careful(&wait !! 1951 __set_current_state(TASK_RUNNING); 2074 write_lock_irq(&ep->l !! 1952 2075 /* !! 1953 if (!list_empty_careful(&wait.entry)) { 2076 * If the thread time !! 1954 write_lock_irq(&ep->lock); 2077 * it means that the !! 1955 /* 2078 * timeout expired be !! 1956 * If the thread timed out and is not on the wait queue, it 2079 * Thus, when wait.en !! 1957 * means that the thread was woken up after its timeout expired 2080 * events. !! 1958 * before it could reacquire the lock. Thus, when wait.entry is 2081 */ !! 1959 * empty, it needs to harvest events. 2082 if (timed_out) !! 1960 */ 2083 eavail = list !! 1961 if (timed_out) 2084 __remove_wait_queue(& !! 1962 eavail = list_empty(&wait.entry); 2085 write_unlock_irq(&ep- !! 1963 __remove_wait_queue(&ep->wq, &wait); 2086 } !! 1964 write_unlock_irq(&ep->lock); 2087 } 1965 } >> 1966 >> 1967 send_events: >> 1968 if (fatal_signal_pending(current)) { >> 1969 /* >> 1970 * Always short-circuit for fatal signals to allow >> 1971 * threads to make a timely exit without the chance of >> 1972 * finding more events available and fetching >> 1973 * repeatedly. >> 1974 */ >> 1975 res = -EINTR; >> 1976 } >> 1977 /* >> 1978 * Try to transfer events to user space. In case we get 0 events and >> 1979 * there's still timeout left over, we go trying again in search of >> 1980 * more luck. >> 1981 */ >> 1982 if (!res && eavail && >> 1983 !(res = ep_send_events(ep, events, maxevents)) && !timed_out) >> 1984 goto fetch_events; >> 1985 >> 1986 return res; 2088 } 1987 } 2089 1988 2090 /** 1989 /** 2091 * ep_loop_check_proc - verify that adding an !! 1990 * ep_loop_check_proc - Callback function to be passed to the @ep_call_nested() 2092 * epoll structure does !! 1991 * API, to verify that adding an epoll file inside another >> 1992 * epoll structure, does not violate the constraints, in 2093 * terms of closed loops 1993 * terms of closed loops, or too deep chains (which can 2094 * result in excessive s 1994 * result in excessive stack usage). 2095 * 1995 * 2096 * @ep: the &struct eventpoll to be currently !! 1996 * @priv: Pointer to the epoll file to be currently checked. 2097 * @depth: Current depth of the path being ch !! 1997 * @cookie: Original cookie for this call. This is the top-of-the-chain epoll >> 1998 * data structure pointer. >> 1999 * @call_nests: Current dept of the @ep_call_nested() call stack. 2098 * 2000 * 2099 * Return: %zero if adding the epoll @file in !! 2001 * Returns: Returns zero if adding the epoll @file inside current epoll 2100 * structure @ep does not violate th !! 2002 * structure @ep does not violate the constraints, or -1 otherwise. 2101 */ 2003 */ 2102 static int ep_loop_check_proc(struct eventpol !! 2004 static int ep_loop_check_proc(void *priv, void *cookie, int call_nests) 2103 { 2005 { 2104 int error = 0; 2006 int error = 0; >> 2007 struct file *file = priv; >> 2008 struct eventpoll *ep = file->private_data; >> 2009 struct eventpoll *ep_tovisit; 2105 struct rb_node *rbp; 2010 struct rb_node *rbp; 2106 struct epitem *epi; 2011 struct epitem *epi; 2107 2012 2108 mutex_lock_nested(&ep->mtx, depth + 1 !! 2013 mutex_lock_nested(&ep->mtx, call_nests + 1); 2109 ep->gen = loop_check_gen; 2014 ep->gen = loop_check_gen; 2110 for (rbp = rb_first_cached(&ep->rbr); 2015 for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) { 2111 epi = rb_entry(rbp, struct ep 2016 epi = rb_entry(rbp, struct epitem, rbn); 2112 if (unlikely(is_file_epoll(ep 2017 if (unlikely(is_file_epoll(epi->ffd.file))) { 2113 struct eventpoll *ep_ << 2114 ep_tovisit = epi->ffd 2018 ep_tovisit = epi->ffd.file->private_data; 2115 if (ep_tovisit->gen = 2019 if (ep_tovisit->gen == loop_check_gen) 2116 continue; 2020 continue; 2117 if (ep_tovisit == ins !! 2021 error = ep_call_nested(&poll_loop_ncalls, 2118 error = -1; !! 2022 ep_loop_check_proc, epi->ffd.file, 2119 else !! 2023 ep_tovisit, current); 2120 error = ep_lo << 2121 if (error != 0) 2024 if (error != 0) 2122 break; 2025 break; 2123 } else { 2026 } else { 2124 /* 2027 /* 2125 * If we've reached a 2028 * If we've reached a file that is not associated with 2126 * an ep, then we nee 2029 * an ep, then we need to check if the newly added 2127 * links are going to 2030 * links are going to add too many wakeup paths. We do 2128 * this by adding it 2031 * this by adding it to the tfile_check_list, if it's 2129 * not already there, 2032 * not already there, and calling reverse_path_check() 2130 * during ep_insert() 2033 * during ep_insert(). 2131 */ 2034 */ 2132 list_file(epi->ffd.fi !! 2035 if (list_empty(&epi->ffd.file->f_tfile_llink)) { >> 2036 if (get_file_rcu(epi->ffd.file)) >> 2037 list_add(&epi->ffd.file->f_tfile_llink, >> 2038 &tfile_check_list); >> 2039 } 2133 } 2040 } 2134 } 2041 } 2135 mutex_unlock(&ep->mtx); 2042 mutex_unlock(&ep->mtx); 2136 2043 2137 return error; 2044 return error; 2138 } 2045 } 2139 2046 2140 /** 2047 /** 2141 * ep_loop_check - Performs a check to verify !! 2048 * ep_loop_check - Performs a check to verify that adding an epoll file (@file) 2142 * into another epoll file (r !! 2049 * another epoll file (represented by @ep) does not create 2143 * closed loops or too deep c 2050 * closed loops or too deep chains. 2144 * 2051 * 2145 * @ep: Pointer to the epoll we are inserting !! 2052 * @ep: Pointer to the epoll private data structure. 2146 * @to: Pointer to the epoll to be inserted. !! 2053 * @file: Pointer to the epoll file to be checked. 2147 * 2054 * 2148 * Return: %zero if adding the epoll @to insi !! 2055 * Returns: Returns zero if adding the epoll @file inside current epoll 2149 * does not violate the constraints, or %-1 o !! 2056 * structure @ep does not violate the constraints, or -1 otherwise. 2150 */ 2057 */ 2151 static int ep_loop_check(struct eventpoll *ep !! 2058 static int ep_loop_check(struct eventpoll *ep, struct file *file) 2152 { 2059 { 2153 inserting_into = ep; !! 2060 return ep_call_nested(&poll_loop_ncalls, 2154 return ep_loop_check_proc(to, 0); !! 2061 ep_loop_check_proc, file, ep, current); 2155 } 2062 } 2156 2063 2157 static void clear_tfile_check_list(void) 2064 static void clear_tfile_check_list(void) 2158 { 2065 { 2159 rcu_read_lock(); !! 2066 struct file *file; 2160 while (tfile_check_list != EP_UNACTIV !! 2067 2161 struct epitems_head *head = t !! 2068 /* first clear the tfile_check_list */ 2162 tfile_check_list = head->next !! 2069 while (!list_empty(&tfile_check_list)) { 2163 unlist_file(head); !! 2070 file = list_first_entry(&tfile_check_list, struct file, >> 2071 f_tfile_llink); >> 2072 list_del_init(&file->f_tfile_llink); >> 2073 fput(file); 2164 } 2074 } 2165 rcu_read_unlock(); !! 2075 INIT_LIST_HEAD(&tfile_check_list); 2166 } 2076 } 2167 2077 2168 /* 2078 /* 2169 * Open an eventpoll file descriptor. 2079 * Open an eventpoll file descriptor. 2170 */ 2080 */ 2171 static int do_epoll_create(int flags) 2081 static int do_epoll_create(int flags) 2172 { 2082 { 2173 int error, fd; 2083 int error, fd; 2174 struct eventpoll *ep = NULL; 2084 struct eventpoll *ep = NULL; 2175 struct file *file; 2085 struct file *file; 2176 2086 2177 /* Check the EPOLL_* constant for con 2087 /* Check the EPOLL_* constant for consistency. */ 2178 BUILD_BUG_ON(EPOLL_CLOEXEC != O_CLOEX 2088 BUILD_BUG_ON(EPOLL_CLOEXEC != O_CLOEXEC); 2179 2089 2180 if (flags & ~EPOLL_CLOEXEC) 2090 if (flags & ~EPOLL_CLOEXEC) 2181 return -EINVAL; 2091 return -EINVAL; 2182 /* 2092 /* 2183 * Create the internal data structure 2093 * Create the internal data structure ("struct eventpoll"). 2184 */ 2094 */ 2185 error = ep_alloc(&ep); 2095 error = ep_alloc(&ep); 2186 if (error < 0) 2096 if (error < 0) 2187 return error; 2097 return error; 2188 /* 2098 /* 2189 * Creates all the items needed to se 2099 * Creates all the items needed to setup an eventpoll file. That is, 2190 * a file structure and a free file d 2100 * a file structure and a free file descriptor. 2191 */ 2101 */ 2192 fd = get_unused_fd_flags(O_RDWR | (fl 2102 fd = get_unused_fd_flags(O_RDWR | (flags & O_CLOEXEC)); 2193 if (fd < 0) { 2103 if (fd < 0) { 2194 error = fd; 2104 error = fd; 2195 goto out_free_ep; 2105 goto out_free_ep; 2196 } 2106 } 2197 file = anon_inode_getfile("[eventpoll 2107 file = anon_inode_getfile("[eventpoll]", &eventpoll_fops, ep, 2198 O_RDWR | (fl 2108 O_RDWR | (flags & O_CLOEXEC)); 2199 if (IS_ERR(file)) { 2109 if (IS_ERR(file)) { 2200 error = PTR_ERR(file); 2110 error = PTR_ERR(file); 2201 goto out_free_fd; 2111 goto out_free_fd; 2202 } 2112 } 2203 #ifdef CONFIG_NET_RX_BUSY_POLL << 2204 ep->busy_poll_usecs = 0; << 2205 ep->busy_poll_budget = 0; << 2206 ep->prefer_busy_poll = false; << 2207 #endif << 2208 ep->file = file; 2113 ep->file = file; 2209 fd_install(fd, file); 2114 fd_install(fd, file); 2210 return fd; 2115 return fd; 2211 2116 2212 out_free_fd: 2117 out_free_fd: 2213 put_unused_fd(fd); 2118 put_unused_fd(fd); 2214 out_free_ep: 2119 out_free_ep: 2215 ep_clear_and_put(ep); !! 2120 ep_free(ep); 2216 return error; 2121 return error; 2217 } 2122 } 2218 2123 2219 SYSCALL_DEFINE1(epoll_create1, int, flags) 2124 SYSCALL_DEFINE1(epoll_create1, int, flags) 2220 { 2125 { 2221 return do_epoll_create(flags); 2126 return do_epoll_create(flags); 2222 } 2127 } 2223 2128 2224 SYSCALL_DEFINE1(epoll_create, int, size) 2129 SYSCALL_DEFINE1(epoll_create, int, size) 2225 { 2130 { 2226 if (size <= 0) 2131 if (size <= 0) 2227 return -EINVAL; 2132 return -EINVAL; 2228 2133 2229 return do_epoll_create(0); 2134 return do_epoll_create(0); 2230 } 2135 } 2231 2136 2232 #ifdef CONFIG_PM_SLEEP << 2233 static inline void ep_take_care_of_epollwakeu << 2234 { << 2235 if ((epev->events & EPOLLWAKEUP) && ! << 2236 epev->events &= ~EPOLLWAKEUP; << 2237 } << 2238 #else << 2239 static inline void ep_take_care_of_epollwakeu << 2240 { << 2241 epev->events &= ~EPOLLWAKEUP; << 2242 } << 2243 #endif << 2244 << 2245 static inline int epoll_mutex_lock(struct mut 2137 static inline int epoll_mutex_lock(struct mutex *mutex, int depth, 2246 bool nonbl 2138 bool nonblock) 2247 { 2139 { 2248 if (!nonblock) { 2140 if (!nonblock) { 2249 mutex_lock_nested(mutex, dept 2141 mutex_lock_nested(mutex, depth); 2250 return 0; 2142 return 0; 2251 } 2143 } 2252 if (mutex_trylock(mutex)) 2144 if (mutex_trylock(mutex)) 2253 return 0; 2145 return 0; 2254 return -EAGAIN; 2146 return -EAGAIN; 2255 } 2147 } 2256 2148 2257 int do_epoll_ctl(int epfd, int op, int fd, st 2149 int do_epoll_ctl(int epfd, int op, int fd, struct epoll_event *epds, 2258 bool nonblock) 2150 bool nonblock) 2259 { 2151 { 2260 int error; 2152 int error; 2261 int full_check = 0; 2153 int full_check = 0; 2262 struct fd f, tf; 2154 struct fd f, tf; 2263 struct eventpoll *ep; 2155 struct eventpoll *ep; 2264 struct epitem *epi; 2156 struct epitem *epi; 2265 struct eventpoll *tep = NULL; 2157 struct eventpoll *tep = NULL; 2266 2158 2267 error = -EBADF; 2159 error = -EBADF; 2268 f = fdget(epfd); 2160 f = fdget(epfd); 2269 if (!f.file) 2161 if (!f.file) 2270 goto error_return; 2162 goto error_return; 2271 2163 2272 /* Get the "struct file *" for the ta 2164 /* Get the "struct file *" for the target file */ 2273 tf = fdget(fd); 2165 tf = fdget(fd); 2274 if (!tf.file) 2166 if (!tf.file) 2275 goto error_fput; 2167 goto error_fput; 2276 2168 2277 /* The target file descriptor must su 2169 /* The target file descriptor must support poll */ 2278 error = -EPERM; 2170 error = -EPERM; 2279 if (!file_can_poll(tf.file)) 2171 if (!file_can_poll(tf.file)) 2280 goto error_tgt_fput; 2172 goto error_tgt_fput; 2281 2173 2282 /* Check if EPOLLWAKEUP is allowed */ 2174 /* Check if EPOLLWAKEUP is allowed */ 2283 if (ep_op_has_event(op)) 2175 if (ep_op_has_event(op)) 2284 ep_take_care_of_epollwakeup(e 2176 ep_take_care_of_epollwakeup(epds); 2285 2177 2286 /* 2178 /* 2287 * We have to check that the file str 2179 * We have to check that the file structure underneath the file descriptor 2288 * the user passed to us _is_ an even 2180 * the user passed to us _is_ an eventpoll file. And also we do not permit 2289 * adding an epoll file descriptor in 2181 * adding an epoll file descriptor inside itself. 2290 */ 2182 */ 2291 error = -EINVAL; 2183 error = -EINVAL; 2292 if (f.file == tf.file || !is_file_epo 2184 if (f.file == tf.file || !is_file_epoll(f.file)) 2293 goto error_tgt_fput; 2185 goto error_tgt_fput; 2294 2186 2295 /* 2187 /* 2296 * epoll adds to the wakeup queue at 2188 * epoll adds to the wakeup queue at EPOLL_CTL_ADD time only, 2297 * so EPOLLEXCLUSIVE is not allowed f 2189 * so EPOLLEXCLUSIVE is not allowed for a EPOLL_CTL_MOD operation. 2298 * Also, we do not currently supporte 2190 * Also, we do not currently supported nested exclusive wakeups. 2299 */ 2191 */ 2300 if (ep_op_has_event(op) && (epds->eve 2192 if (ep_op_has_event(op) && (epds->events & EPOLLEXCLUSIVE)) { 2301 if (op == EPOLL_CTL_MOD) 2193 if (op == EPOLL_CTL_MOD) 2302 goto error_tgt_fput; 2194 goto error_tgt_fput; 2303 if (op == EPOLL_CTL_ADD && (i 2195 if (op == EPOLL_CTL_ADD && (is_file_epoll(tf.file) || 2304 (epds->events 2196 (epds->events & ~EPOLLEXCLUSIVE_OK_BITS))) 2305 goto error_tgt_fput; 2197 goto error_tgt_fput; 2306 } 2198 } 2307 2199 2308 /* 2200 /* 2309 * At this point it is safe to assume 2201 * At this point it is safe to assume that the "private_data" contains 2310 * our own data structure. 2202 * our own data structure. 2311 */ 2203 */ 2312 ep = f.file->private_data; 2204 ep = f.file->private_data; 2313 2205 2314 /* 2206 /* 2315 * When we insert an epoll file descr !! 2207 * When we insert an epoll file descriptor, inside another epoll file 2316 * descriptor, there is the chance of !! 2208 * descriptor, there is the change of creating closed loops, which are 2317 * better be handled here, than in mo 2209 * better be handled here, than in more critical paths. While we are 2318 * checking for loops we also determi 2210 * checking for loops we also determine the list of files reachable 2319 * and hang them on the tfile_check_l 2211 * and hang them on the tfile_check_list, so we can check that we 2320 * haven't created too many possible 2212 * haven't created too many possible wakeup paths. 2321 * 2213 * 2322 * We do not need to take the global 2214 * We do not need to take the global 'epumutex' on EPOLL_CTL_ADD when 2323 * the epoll file descriptor is attac 2215 * the epoll file descriptor is attaching directly to a wakeup source, 2324 * unless the epoll file descriptor i 2216 * unless the epoll file descriptor is nested. The purpose of taking the 2325 * 'epnested_mutex' on add is to prev !! 2217 * 'epmutex' on add is to prevent complex toplogies such as loops and 2326 * deep wakeup paths from forming in 2218 * deep wakeup paths from forming in parallel through multiple 2327 * EPOLL_CTL_ADD operations. 2219 * EPOLL_CTL_ADD operations. 2328 */ 2220 */ 2329 error = epoll_mutex_lock(&ep->mtx, 0, 2221 error = epoll_mutex_lock(&ep->mtx, 0, nonblock); 2330 if (error) 2222 if (error) 2331 goto error_tgt_fput; 2223 goto error_tgt_fput; 2332 if (op == EPOLL_CTL_ADD) { 2224 if (op == EPOLL_CTL_ADD) { 2333 if (READ_ONCE(f.file->f_ep) | !! 2225 if (!list_empty(&f.file->f_ep_links) || 2334 is_file_epoll(tf.file)) { !! 2226 ep->gen == loop_check_gen || >> 2227 is_file_epoll(tf.file)) { 2335 mutex_unlock(&ep->mtx 2228 mutex_unlock(&ep->mtx); 2336 error = epoll_mutex_l !! 2229 error = epoll_mutex_lock(&epmutex, 0, nonblock); 2337 if (error) 2230 if (error) 2338 goto error_tg 2231 goto error_tgt_fput; 2339 loop_check_gen++; 2232 loop_check_gen++; 2340 full_check = 1; 2233 full_check = 1; 2341 if (is_file_epoll(tf. 2234 if (is_file_epoll(tf.file)) { 2342 tep = tf.file << 2343 error = -ELOO 2235 error = -ELOOP; 2344 if (ep_loop_c !! 2236 if (ep_loop_check(ep, tf.file) != 0) 2345 goto 2237 goto error_tgt_fput; >> 2238 } else { >> 2239 get_file(tf.file); >> 2240 list_add(&tf.file->f_tfile_llink, >> 2241 &tfile_check_list); 2346 } 2242 } 2347 error = epoll_mutex_l 2243 error = epoll_mutex_lock(&ep->mtx, 0, nonblock); 2348 if (error) 2244 if (error) 2349 goto error_tg 2245 goto error_tgt_fput; >> 2246 if (is_file_epoll(tf.file)) { >> 2247 tep = tf.file->private_data; >> 2248 error = epoll_mutex_lock(&tep->mtx, 1, nonblock); >> 2249 if (error) { >> 2250 mutex_unlock(&ep->mtx); >> 2251 goto error_tgt_fput; >> 2252 } >> 2253 } 2350 } 2254 } 2351 } 2255 } 2352 2256 2353 /* 2257 /* 2354 * Try to lookup the file inside our !! 2258 * Try to lookup the file inside our RB tree, Since we grabbed "mtx" 2355 * above, we can be sure to be able t 2259 * above, we can be sure to be able to use the item looked up by 2356 * ep_find() till we release the mute 2260 * ep_find() till we release the mutex. 2357 */ 2261 */ 2358 epi = ep_find(ep, tf.file, fd); 2262 epi = ep_find(ep, tf.file, fd); 2359 2263 2360 error = -EINVAL; 2264 error = -EINVAL; 2361 switch (op) { 2265 switch (op) { 2362 case EPOLL_CTL_ADD: 2266 case EPOLL_CTL_ADD: 2363 if (!epi) { 2267 if (!epi) { 2364 epds->events |= EPOLL 2268 epds->events |= EPOLLERR | EPOLLHUP; 2365 error = ep_insert(ep, 2269 error = ep_insert(ep, epds, tf.file, fd, full_check); 2366 } else 2270 } else 2367 error = -EEXIST; 2271 error = -EEXIST; 2368 break; 2272 break; 2369 case EPOLL_CTL_DEL: 2273 case EPOLL_CTL_DEL: 2370 if (epi) { !! 2274 if (epi) 2371 /* !! 2275 error = ep_remove(ep, epi); 2372 * The eventpoll itse !! 2276 else 2373 * can't go to zero h << 2374 */ << 2375 ep_remove_safe(ep, ep << 2376 error = 0; << 2377 } else { << 2378 error = -ENOENT; 2277 error = -ENOENT; 2379 } << 2380 break; 2278 break; 2381 case EPOLL_CTL_MOD: 2279 case EPOLL_CTL_MOD: 2382 if (epi) { 2280 if (epi) { 2383 if (!(epi->event.even 2281 if (!(epi->event.events & EPOLLEXCLUSIVE)) { 2384 epds->events 2282 epds->events |= EPOLLERR | EPOLLHUP; 2385 error = ep_mo 2283 error = ep_modify(ep, epi, epds); 2386 } 2284 } 2387 } else 2285 } else 2388 error = -ENOENT; 2286 error = -ENOENT; 2389 break; 2287 break; 2390 } 2288 } >> 2289 if (tep != NULL) >> 2290 mutex_unlock(&tep->mtx); 2391 mutex_unlock(&ep->mtx); 2291 mutex_unlock(&ep->mtx); 2392 2292 2393 error_tgt_fput: 2293 error_tgt_fput: 2394 if (full_check) { 2294 if (full_check) { 2395 clear_tfile_check_list(); 2295 clear_tfile_check_list(); 2396 loop_check_gen++; 2296 loop_check_gen++; 2397 mutex_unlock(&epnested_mutex) !! 2297 mutex_unlock(&epmutex); 2398 } 2298 } 2399 2299 2400 fdput(tf); 2300 fdput(tf); 2401 error_fput: 2301 error_fput: 2402 fdput(f); 2302 fdput(f); 2403 error_return: 2303 error_return: 2404 2304 2405 return error; 2305 return error; 2406 } 2306 } 2407 2307 2408 /* 2308 /* 2409 * The following function implements the cont 2309 * The following function implements the controller interface for 2410 * the eventpoll file that enables the insert 2310 * the eventpoll file that enables the insertion/removal/change of 2411 * file descriptors inside the interest set. 2311 * file descriptors inside the interest set. 2412 */ 2312 */ 2413 SYSCALL_DEFINE4(epoll_ctl, int, epfd, int, op 2313 SYSCALL_DEFINE4(epoll_ctl, int, epfd, int, op, int, fd, 2414 struct epoll_event __user *, 2314 struct epoll_event __user *, event) 2415 { 2315 { 2416 struct epoll_event epds; 2316 struct epoll_event epds; 2417 2317 2418 if (ep_op_has_event(op) && 2318 if (ep_op_has_event(op) && 2419 copy_from_user(&epds, event, size 2319 copy_from_user(&epds, event, sizeof(struct epoll_event))) 2420 return -EFAULT; 2320 return -EFAULT; 2421 2321 2422 return do_epoll_ctl(epfd, op, fd, &ep 2322 return do_epoll_ctl(epfd, op, fd, &epds, false); 2423 } 2323 } 2424 2324 2425 /* 2325 /* 2426 * Implement the event wait interface for the 2326 * Implement the event wait interface for the eventpoll file. It is the kernel 2427 * part of the user space epoll_wait(2). 2327 * part of the user space epoll_wait(2). 2428 */ 2328 */ 2429 static int do_epoll_wait(int epfd, struct epo 2329 static int do_epoll_wait(int epfd, struct epoll_event __user *events, 2430 int maxevents, struc !! 2330 int maxevents, int timeout) 2431 { 2331 { 2432 int error; 2332 int error; 2433 struct fd f; 2333 struct fd f; 2434 struct eventpoll *ep; 2334 struct eventpoll *ep; 2435 2335 2436 /* The maximum number of event must b 2336 /* The maximum number of event must be greater than zero */ 2437 if (maxevents <= 0 || maxevents > EP_ 2337 if (maxevents <= 0 || maxevents > EP_MAX_EVENTS) 2438 return -EINVAL; 2338 return -EINVAL; 2439 2339 2440 /* Verify that the area passed by the 2340 /* Verify that the area passed by the user is writeable */ 2441 if (!access_ok(events, maxevents * si 2341 if (!access_ok(events, maxevents * sizeof(struct epoll_event))) 2442 return -EFAULT; 2342 return -EFAULT; 2443 2343 2444 /* Get the "struct file *" for the ev 2344 /* Get the "struct file *" for the eventpoll file */ 2445 f = fdget(epfd); 2345 f = fdget(epfd); 2446 if (!f.file) 2346 if (!f.file) 2447 return -EBADF; 2347 return -EBADF; 2448 2348 2449 /* 2349 /* 2450 * We have to check that the file str 2350 * We have to check that the file structure underneath the fd 2451 * the user passed to us _is_ an even 2351 * the user passed to us _is_ an eventpoll file. 2452 */ 2352 */ 2453 error = -EINVAL; 2353 error = -EINVAL; 2454 if (!is_file_epoll(f.file)) 2354 if (!is_file_epoll(f.file)) 2455 goto error_fput; 2355 goto error_fput; 2456 2356 2457 /* 2357 /* 2458 * At this point it is safe to assume 2358 * At this point it is safe to assume that the "private_data" contains 2459 * our own data structure. 2359 * our own data structure. 2460 */ 2360 */ 2461 ep = f.file->private_data; 2361 ep = f.file->private_data; 2462 2362 2463 /* Time to fish for events ... */ 2363 /* Time to fish for events ... */ 2464 error = ep_poll(ep, events, maxevents !! 2364 error = ep_poll(ep, events, maxevents, timeout); 2465 2365 2466 error_fput: 2366 error_fput: 2467 fdput(f); 2367 fdput(f); 2468 return error; 2368 return error; 2469 } 2369 } 2470 2370 2471 SYSCALL_DEFINE4(epoll_wait, int, epfd, struct 2371 SYSCALL_DEFINE4(epoll_wait, int, epfd, struct epoll_event __user *, events, 2472 int, maxevents, int, timeout) 2372 int, maxevents, int, timeout) 2473 { 2373 { 2474 struct timespec64 to; !! 2374 return do_epoll_wait(epfd, events, maxevents, timeout); 2475 << 2476 return do_epoll_wait(epfd, events, ma << 2477 ep_timeout_to_ti << 2478 } 2375 } 2479 2376 2480 /* 2377 /* 2481 * Implement the event wait interface for the 2378 * Implement the event wait interface for the eventpoll file. It is the kernel 2482 * part of the user space epoll_pwait(2). 2379 * part of the user space epoll_pwait(2). 2483 */ 2380 */ 2484 static int do_epoll_pwait(int epfd, struct ep !! 2381 SYSCALL_DEFINE6(epoll_pwait, int, epfd, struct epoll_event __user *, events, 2485 int maxevents, stru !! 2382 int, maxevents, int, timeout, const sigset_t __user *, sigmask, 2486 const sigset_t __us !! 2383 size_t, sigsetsize) 2487 { 2384 { 2488 int error; 2385 int error; 2489 2386 2490 /* 2387 /* 2491 * If the caller wants a certain sign 2388 * If the caller wants a certain signal mask to be set during the wait, 2492 * we apply it here. 2389 * we apply it here. 2493 */ 2390 */ 2494 error = set_user_sigmask(sigmask, sig 2391 error = set_user_sigmask(sigmask, sigsetsize); 2495 if (error) 2392 if (error) 2496 return error; 2393 return error; 2497 2394 2498 error = do_epoll_wait(epfd, events, m !! 2395 error = do_epoll_wait(epfd, events, maxevents, timeout); 2499 << 2500 restore_saved_sigmask_unless(error == 2396 restore_saved_sigmask_unless(error == -EINTR); 2501 2397 2502 return error; 2398 return error; 2503 } 2399 } 2504 2400 2505 SYSCALL_DEFINE6(epoll_pwait, int, epfd, struc << 2506 int, maxevents, int, timeout, << 2507 size_t, sigsetsize) << 2508 { << 2509 struct timespec64 to; << 2510 << 2511 return do_epoll_pwait(epfd, events, m << 2512 ep_timeout_to_t << 2513 sigmask, sigset << 2514 } << 2515 << 2516 SYSCALL_DEFINE6(epoll_pwait2, int, epfd, stru << 2517 int, maxevents, const struct << 2518 const sigset_t __user *, sigm << 2519 { << 2520 struct timespec64 ts, *to = NULL; << 2521 << 2522 if (timeout) { << 2523 if (get_timespec64(&ts, timeo << 2524 return -EFAULT; << 2525 to = &ts; << 2526 if (poll_select_set_timeout(t << 2527 return -EINVAL; << 2528 } << 2529 << 2530 return do_epoll_pwait(epfd, events, m << 2531 sigmask, sigset << 2532 } << 2533 << 2534 #ifdef CONFIG_COMPAT 2401 #ifdef CONFIG_COMPAT 2535 static int do_compat_epoll_pwait(int epfd, st !! 2402 COMPAT_SYSCALL_DEFINE6(epoll_pwait, int, epfd, 2536 int maxevent !! 2403 struct epoll_event __user *, events, 2537 const compat !! 2404 int, maxevents, int, timeout, 2538 compat_size_ !! 2405 const compat_sigset_t __user *, sigmask, >> 2406 compat_size_t, sigsetsize) 2539 { 2407 { 2540 long err; 2408 long err; 2541 2409 2542 /* 2410 /* 2543 * If the caller wants a certain sign 2411 * If the caller wants a certain signal mask to be set during the wait, 2544 * we apply it here. 2412 * we apply it here. 2545 */ 2413 */ 2546 err = set_compat_user_sigmask(sigmask 2414 err = set_compat_user_sigmask(sigmask, sigsetsize); 2547 if (err) 2415 if (err) 2548 return err; 2416 return err; 2549 2417 2550 err = do_epoll_wait(epfd, events, max 2418 err = do_epoll_wait(epfd, events, maxevents, timeout); 2551 << 2552 restore_saved_sigmask_unless(err == - 2419 restore_saved_sigmask_unless(err == -EINTR); 2553 2420 2554 return err; 2421 return err; 2555 } 2422 } 2556 << 2557 COMPAT_SYSCALL_DEFINE6(epoll_pwait, int, epfd << 2558 struct epoll_event __u << 2559 int, maxevents, int, t << 2560 const compat_sigset_t << 2561 compat_size_t, sigsets << 2562 { << 2563 struct timespec64 to; << 2564 << 2565 return do_compat_epoll_pwait(epfd, ev << 2566 ep_timeo << 2567 sigmask, << 2568 } << 2569 << 2570 COMPAT_SYSCALL_DEFINE6(epoll_pwait2, int, epf << 2571 struct epoll_event __u << 2572 int, maxevents, << 2573 const struct __kernel_ << 2574 const compat_sigset_t << 2575 compat_size_t, sigsets << 2576 { << 2577 struct timespec64 ts, *to = NULL; << 2578 << 2579 if (timeout) { << 2580 if (get_timespec64(&ts, timeo << 2581 return -EFAULT; << 2582 to = &ts; << 2583 if (poll_select_set_timeout(t << 2584 return -EINVAL; << 2585 } << 2586 << 2587 return do_compat_epoll_pwait(epfd, ev << 2588 sigmask, << 2589 } << 2590 << 2591 #endif 2423 #endif 2592 2424 2593 static int __init eventpoll_init(void) 2425 static int __init eventpoll_init(void) 2594 { 2426 { 2595 struct sysinfo si; 2427 struct sysinfo si; 2596 2428 2597 si_meminfo(&si); 2429 si_meminfo(&si); 2598 /* 2430 /* 2599 * Allows top 4% of lomem to be alloc 2431 * Allows top 4% of lomem to be allocated for epoll watches (per user). 2600 */ 2432 */ 2601 max_user_watches = (((si.totalram - s 2433 max_user_watches = (((si.totalram - si.totalhigh) / 25) << PAGE_SHIFT) / 2602 EP_ITEM_COST; 2434 EP_ITEM_COST; 2603 BUG_ON(max_user_watches < 0); 2435 BUG_ON(max_user_watches < 0); 2604 2436 2605 /* 2437 /* >> 2438 * Initialize the structure used to perform epoll file descriptor >> 2439 * inclusion loops checks. >> 2440 */ >> 2441 ep_nested_calls_init(&poll_loop_ncalls); >> 2442 >> 2443 /* 2606 * We can have many thousands of epit 2444 * We can have many thousands of epitems, so prevent this from 2607 * using an extra cache line on 64-bi 2445 * using an extra cache line on 64-bit (and smaller) CPUs 2608 */ 2446 */ 2609 BUILD_BUG_ON(sizeof(void *) <= 8 && s 2447 BUILD_BUG_ON(sizeof(void *) <= 8 && sizeof(struct epitem) > 128); 2610 2448 2611 /* Allocates slab cache used to alloc 2449 /* Allocates slab cache used to allocate "struct epitem" items */ 2612 epi_cache = kmem_cache_create("eventp 2450 epi_cache = kmem_cache_create("eventpoll_epi", sizeof(struct epitem), 2613 0, SLAB_HWCACHE_ALIGN 2451 0, SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, NULL); 2614 2452 2615 /* Allocates slab cache used to alloc 2453 /* Allocates slab cache used to allocate "struct eppoll_entry" */ 2616 pwq_cache = kmem_cache_create("eventp 2454 pwq_cache = kmem_cache_create("eventpoll_pwq", 2617 sizeof(struct eppoll_entry), 2455 sizeof(struct eppoll_entry), 0, SLAB_PANIC|SLAB_ACCOUNT, NULL); 2618 epoll_sysctls_init(); << 2619 << 2620 ephead_cache = kmem_cache_create("ep_ << 2621 sizeof(struct epitems_head), << 2622 2456 2623 return 0; 2457 return 0; 2624 } 2458 } 2625 fs_initcall(eventpoll_init); 2459 fs_initcall(eventpoll_init); 2626 2460
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.