1 // SPDX-License-Identifier: GPL-2.0-or-later 1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 2 /* 3 * fs/eventpoll.c (Efficient event retrieval 3 * fs/eventpoll.c (Efficient event retrieval implementation) 4 * Copyright (C) 2001,...,2009 Davide Libenz 4 * Copyright (C) 2001,...,2009 Davide Libenzi 5 * 5 * 6 * Davide Libenzi <davidel@xmailserver.org> 6 * Davide Libenzi <davidel@xmailserver.org> 7 */ 7 */ 8 8 9 #include <linux/init.h> 9 #include <linux/init.h> 10 #include <linux/kernel.h> 10 #include <linux/kernel.h> 11 #include <linux/sched/signal.h> 11 #include <linux/sched/signal.h> 12 #include <linux/fs.h> 12 #include <linux/fs.h> 13 #include <linux/file.h> 13 #include <linux/file.h> 14 #include <linux/signal.h> 14 #include <linux/signal.h> 15 #include <linux/errno.h> 15 #include <linux/errno.h> 16 #include <linux/mm.h> 16 #include <linux/mm.h> 17 #include <linux/slab.h> 17 #include <linux/slab.h> 18 #include <linux/poll.h> 18 #include <linux/poll.h> 19 #include <linux/string.h> 19 #include <linux/string.h> 20 #include <linux/list.h> 20 #include <linux/list.h> 21 #include <linux/hash.h> 21 #include <linux/hash.h> 22 #include <linux/spinlock.h> 22 #include <linux/spinlock.h> 23 #include <linux/syscalls.h> 23 #include <linux/syscalls.h> 24 #include <linux/rbtree.h> 24 #include <linux/rbtree.h> 25 #include <linux/wait.h> 25 #include <linux/wait.h> 26 #include <linux/eventpoll.h> 26 #include <linux/eventpoll.h> 27 #include <linux/mount.h> 27 #include <linux/mount.h> 28 #include <linux/bitops.h> 28 #include <linux/bitops.h> 29 #include <linux/mutex.h> 29 #include <linux/mutex.h> 30 #include <linux/anon_inodes.h> 30 #include <linux/anon_inodes.h> 31 #include <linux/device.h> 31 #include <linux/device.h> 32 #include <linux/uaccess.h> 32 #include <linux/uaccess.h> 33 #include <asm/io.h> 33 #include <asm/io.h> 34 #include <asm/mman.h> 34 #include <asm/mman.h> 35 #include <linux/atomic.h> 35 #include <linux/atomic.h> 36 #include <linux/proc_fs.h> 36 #include <linux/proc_fs.h> 37 #include <linux/seq_file.h> 37 #include <linux/seq_file.h> 38 #include <linux/compat.h> 38 #include <linux/compat.h> 39 #include <linux/rculist.h> 39 #include <linux/rculist.h> 40 #include <linux/capability.h> << 41 #include <net/busy_poll.h> 40 #include <net/busy_poll.h> 42 41 43 /* 42 /* 44 * LOCKING: 43 * LOCKING: 45 * There are three level of locking required b 44 * There are three level of locking required by epoll : 46 * 45 * 47 * 1) epnested_mutex (mutex) !! 46 * 1) epmutex (mutex) 48 * 2) ep->mtx (mutex) 47 * 2) ep->mtx (mutex) 49 * 3) ep->lock (rwlock) 48 * 3) ep->lock (rwlock) 50 * 49 * 51 * The acquire order is the one listed above, 50 * The acquire order is the one listed above, from 1 to 3. 52 * We need a rwlock (ep->lock) because we mani 51 * We need a rwlock (ep->lock) because we manipulate objects 53 * from inside the poll callback, that might b 52 * from inside the poll callback, that might be triggered from 54 * a wake_up() that in turn might be called fr 53 * a wake_up() that in turn might be called from IRQ context. 55 * So we can't sleep inside the poll callback 54 * So we can't sleep inside the poll callback and hence we need 56 * a spinlock. During the event transfer loop 55 * a spinlock. During the event transfer loop (from kernel to 57 * user space) we could end up sleeping due a 56 * user space) we could end up sleeping due a copy_to_user(), so 58 * we need a lock that will allow us to sleep. 57 * we need a lock that will allow us to sleep. This lock is a 59 * mutex (ep->mtx). It is acquired during the 58 * mutex (ep->mtx). It is acquired during the event transfer loop, 60 * during epoll_ctl(EPOLL_CTL_DEL) and during 59 * during epoll_ctl(EPOLL_CTL_DEL) and during eventpoll_release_file(). 61 * The epnested_mutex is acquired when inserti !! 60 * Then we also need a global mutex to serialize eventpoll_release_file() 62 * epoll fd. We do this so that we walk the ep !! 61 * and ep_free(). >> 62 * This mutex is acquired by ep_free() during the epoll file >> 63 * cleanup path and it is also acquired by eventpoll_release_file() >> 64 * if a file has been pushed inside an epoll set and it is then >> 65 * close()d without a previous call to epoll_ctl(EPOLL_CTL_DEL). >> 66 * It is also acquired when inserting an epoll fd onto another epoll >> 67 * fd. We do this so that we walk the epoll tree and ensure that this 63 * insertion does not create a cycle of epoll 68 * insertion does not create a cycle of epoll file descriptors, which 64 * could lead to deadlock. We need a global mu 69 * could lead to deadlock. We need a global mutex to prevent two 65 * simultaneous inserts (A into B and B into A 70 * simultaneous inserts (A into B and B into A) from racing and 66 * constructing a cycle without either insert 71 * constructing a cycle without either insert observing that it is 67 * going to. 72 * going to. 68 * It is necessary to acquire multiple "ep->mt 73 * It is necessary to acquire multiple "ep->mtx"es at once in the 69 * case when one epoll fd is added to another. 74 * case when one epoll fd is added to another. In this case, we 70 * always acquire the locks in the order of ne 75 * always acquire the locks in the order of nesting (i.e. after 71 * epoll_ctl(e1, EPOLL_CTL_ADD, e2), e1->mtx w 76 * epoll_ctl(e1, EPOLL_CTL_ADD, e2), e1->mtx will always be acquired 72 * before e2->mtx). Since we disallow cycles o 77 * before e2->mtx). Since we disallow cycles of epoll file 73 * descriptors, this ensures that the mutexes 78 * descriptors, this ensures that the mutexes are well-ordered. In 74 * order to communicate this nesting to lockde 79 * order to communicate this nesting to lockdep, when walking a tree 75 * of epoll file descriptors, we use the curre 80 * of epoll file descriptors, we use the current recursion depth as 76 * the lockdep subkey. 81 * the lockdep subkey. 77 * It is possible to drop the "ep->mtx" and to 82 * It is possible to drop the "ep->mtx" and to use the global 78 * mutex "epnested_mutex" (together with "ep-> !! 83 * mutex "epmutex" (together with "ep->lock") to have it working, 79 * but having "ep->mtx" will make the interfac 84 * but having "ep->mtx" will make the interface more scalable. 80 * Events that require holding "epnested_mutex !! 85 * Events that require holding "epmutex" are very rare, while for 81 * normal operations the epoll private "ep->mt 86 * normal operations the epoll private "ep->mtx" will guarantee 82 * a better scalability. 87 * a better scalability. 83 */ 88 */ 84 89 85 /* Epoll private bits inside the event mask */ 90 /* Epoll private bits inside the event mask */ 86 #define EP_PRIVATE_BITS (EPOLLWAKEUP | EPOLLON 91 #define EP_PRIVATE_BITS (EPOLLWAKEUP | EPOLLONESHOT | EPOLLET | EPOLLEXCLUSIVE) 87 92 88 #define EPOLLINOUT_BITS (EPOLLIN | EPOLLOUT) 93 #define EPOLLINOUT_BITS (EPOLLIN | EPOLLOUT) 89 94 90 #define EPOLLEXCLUSIVE_OK_BITS (EPOLLINOUT_BIT 95 #define EPOLLEXCLUSIVE_OK_BITS (EPOLLINOUT_BITS | EPOLLERR | EPOLLHUP | \ 91 EPOLLWAKEUP | 96 EPOLLWAKEUP | EPOLLET | EPOLLEXCLUSIVE) 92 97 93 /* Maximum number of nesting allowed inside ep 98 /* Maximum number of nesting allowed inside epoll sets */ 94 #define EP_MAX_NESTS 4 99 #define EP_MAX_NESTS 4 95 100 96 #define EP_MAX_EVENTS (INT_MAX / sizeof(struct 101 #define EP_MAX_EVENTS (INT_MAX / sizeof(struct epoll_event)) 97 102 98 #define EP_UNACTIVE_PTR ((void *) -1L) 103 #define EP_UNACTIVE_PTR ((void *) -1L) 99 104 100 #define EP_ITEM_COST (sizeof(struct epitem) + 105 #define EP_ITEM_COST (sizeof(struct epitem) + sizeof(struct eppoll_entry)) 101 106 102 struct epoll_filefd { 107 struct epoll_filefd { 103 struct file *file; 108 struct file *file; 104 int fd; 109 int fd; 105 } __packed; 110 } __packed; 106 111 107 /* Wait structure used by the poll hooks */ !! 112 /* 108 struct eppoll_entry { !! 113 * Structure used to track possible nested calls, for too deep recursions 109 /* List header used to link this struc !! 114 * and loop cycles. 110 struct eppoll_entry *next; !! 115 */ 111 !! 116 struct nested_call_node { 112 /* The "base" pointer is set to the co !! 117 struct list_head llink; 113 struct epitem *base; !! 118 void *cookie; 114 !! 119 void *ctx; 115 /* !! 120 }; 116 * Wait queue item that will be linked << 117 * queue head. << 118 */ << 119 wait_queue_entry_t wait; << 120 121 121 /* The wait queue head that linked the !! 122 /* 122 wait_queue_head_t *whead; !! 123 * This structure is used as collector for nested calls, to check for >> 124 * maximum recursion dept and loop cycles. >> 125 */ >> 126 struct nested_calls { >> 127 struct list_head tasks_call_list; >> 128 spinlock_t lock; 123 }; 129 }; 124 130 125 /* 131 /* 126 * Each file descriptor added to the eventpoll 132 * Each file descriptor added to the eventpoll interface will 127 * have an entry of this type linked to the "r 133 * have an entry of this type linked to the "rbr" RB tree. 128 * Avoid increasing the size of this struct, t 134 * Avoid increasing the size of this struct, there can be many thousands 129 * of these on a server and we do not want thi 135 * of these on a server and we do not want this to take another cache line. 130 */ 136 */ 131 struct epitem { 137 struct epitem { 132 union { 138 union { 133 /* RB tree node links this str 139 /* RB tree node links this structure to the eventpoll RB tree */ 134 struct rb_node rbn; 140 struct rb_node rbn; 135 /* Used to free the struct epi 141 /* Used to free the struct epitem */ 136 struct rcu_head rcu; 142 struct rcu_head rcu; 137 }; 143 }; 138 144 139 /* List header used to link this struc 145 /* List header used to link this structure to the eventpoll ready list */ 140 struct list_head rdllink; 146 struct list_head rdllink; 141 147 142 /* 148 /* 143 * Works together "struct eventpoll"-> 149 * Works together "struct eventpoll"->ovflist in keeping the 144 * single linked chain of items. 150 * single linked chain of items. 145 */ 151 */ 146 struct epitem *next; 152 struct epitem *next; 147 153 148 /* The file descriptor information thi 154 /* The file descriptor information this item refers to */ 149 struct epoll_filefd ffd; 155 struct epoll_filefd ffd; 150 156 151 /* !! 157 /* Number of active wait queue attached to poll operations */ 152 * Protected by file->f_lock, true for !! 158 int nwait; 153 * removed from the "struct file" item << 154 * eventpoll->refcount orchestrates "s << 155 */ << 156 bool dying; << 157 159 158 /* List containing poll wait queues */ 160 /* List containing poll wait queues */ 159 struct eppoll_entry *pwqlist; !! 161 struct list_head pwqlist; 160 162 161 /* The "container" of this item */ 163 /* The "container" of this item */ 162 struct eventpoll *ep; 164 struct eventpoll *ep; 163 165 164 /* List header used to link this item 166 /* List header used to link this item to the "struct file" items list */ 165 struct hlist_node fllink; !! 167 struct list_head fllink; 166 168 167 /* wakeup_source used when EPOLLWAKEUP 169 /* wakeup_source used when EPOLLWAKEUP is set */ 168 struct wakeup_source __rcu *ws; 170 struct wakeup_source __rcu *ws; 169 171 170 /* The structure that describe the int 172 /* The structure that describe the interested events and the source fd */ 171 struct epoll_event event; 173 struct epoll_event event; 172 }; 174 }; 173 175 174 /* 176 /* 175 * This structure is stored inside the "privat 177 * This structure is stored inside the "private_data" member of the file 176 * structure and represents the main data stru 178 * structure and represents the main data structure for the eventpoll 177 * interface. 179 * interface. 178 */ 180 */ 179 struct eventpoll { 181 struct eventpoll { 180 /* 182 /* 181 * This mutex is used to ensure that f 183 * This mutex is used to ensure that files are not removed 182 * while epoll is using them. This is 184 * while epoll is using them. This is held during the event 183 * collection loop, the file cleanup p 185 * collection loop, the file cleanup path, the epoll file exit 184 * code and the ctl operations. 186 * code and the ctl operations. 185 */ 187 */ 186 struct mutex mtx; 188 struct mutex mtx; 187 189 188 /* Wait queue used by sys_epoll_wait() 190 /* Wait queue used by sys_epoll_wait() */ 189 wait_queue_head_t wq; 191 wait_queue_head_t wq; 190 192 191 /* Wait queue used by file->poll() */ 193 /* Wait queue used by file->poll() */ 192 wait_queue_head_t poll_wait; 194 wait_queue_head_t poll_wait; 193 195 194 /* List of ready file descriptors */ 196 /* List of ready file descriptors */ 195 struct list_head rdllist; 197 struct list_head rdllist; 196 198 197 /* Lock which protects rdllist and ovf 199 /* Lock which protects rdllist and ovflist */ 198 rwlock_t lock; 200 rwlock_t lock; 199 201 200 /* RB tree root used to store monitore 202 /* RB tree root used to store monitored fd structs */ 201 struct rb_root_cached rbr; 203 struct rb_root_cached rbr; 202 204 203 /* 205 /* 204 * This is a single linked list that c 206 * This is a single linked list that chains all the "struct epitem" that 205 * happened while transferring ready e 207 * happened while transferring ready events to userspace w/out 206 * holding ->lock. 208 * holding ->lock. 207 */ 209 */ 208 struct epitem *ovflist; 210 struct epitem *ovflist; 209 211 210 /* wakeup_source used when ep_send_eve !! 212 /* wakeup_source used when ep_scan_ready_list is running */ 211 struct wakeup_source *ws; 213 struct wakeup_source *ws; 212 214 213 /* The user that created the eventpoll 215 /* The user that created the eventpoll descriptor */ 214 struct user_struct *user; 216 struct user_struct *user; 215 217 216 struct file *file; 218 struct file *file; 217 219 218 /* used to optimize loop detection che 220 /* used to optimize loop detection check */ 219 u64 gen; !! 221 int visited; 220 struct hlist_head refs; !! 222 struct list_head visited_list_link; 221 << 222 /* << 223 * usage count, used together with epi << 224 * orchestrate the disposal of this st << 225 */ << 226 refcount_t refcount; << 227 223 228 #ifdef CONFIG_NET_RX_BUSY_POLL 224 #ifdef CONFIG_NET_RX_BUSY_POLL 229 /* used to track busy poll napi_id */ 225 /* used to track busy poll napi_id */ 230 unsigned int napi_id; 226 unsigned int napi_id; 231 /* busy poll timeout */ << 232 u32 busy_poll_usecs; << 233 /* busy poll packet budget */ << 234 u16 busy_poll_budget; << 235 bool prefer_busy_poll; << 236 #endif 227 #endif >> 228 }; 237 229 238 #ifdef CONFIG_DEBUG_LOCK_ALLOC !! 230 /* Wait structure used by the poll hooks */ 239 /* tracks wakeup nests for lockdep val !! 231 struct eppoll_entry { 240 u8 nests; !! 232 /* List header used to link this structure to the "struct epitem" */ 241 #endif !! 233 struct list_head llink; >> 234 >> 235 /* The "base" pointer is set to the container "struct epitem" */ >> 236 struct epitem *base; >> 237 >> 238 /* >> 239 * Wait queue item that will be linked to the target file wait >> 240 * queue head. >> 241 */ >> 242 wait_queue_entry_t wait; >> 243 >> 244 /* The wait queue head that linked the "wait" wait queue item */ >> 245 wait_queue_head_t *whead; 242 }; 246 }; 243 247 244 /* Wrapper struct used by poll queueing */ 248 /* Wrapper struct used by poll queueing */ 245 struct ep_pqueue { 249 struct ep_pqueue { 246 poll_table pt; 250 poll_table pt; 247 struct epitem *epi; 251 struct epitem *epi; 248 }; 252 }; 249 253 >> 254 /* Used by the ep_send_events() function as callback private data */ >> 255 struct ep_send_events_data { >> 256 int maxevents; >> 257 struct epoll_event __user *events; >> 258 int res; >> 259 }; >> 260 250 /* 261 /* 251 * Configuration options available inside /pro 262 * Configuration options available inside /proc/sys/fs/epoll/ 252 */ 263 */ 253 /* Maximum number of epoll watched descriptors 264 /* Maximum number of epoll watched descriptors, per user */ 254 static long max_user_watches __read_mostly; 265 static long max_user_watches __read_mostly; 255 266 256 /* Used for cycles detection */ !! 267 /* 257 static DEFINE_MUTEX(epnested_mutex); !! 268 * This mutex is used to serialize ep_free() and eventpoll_release_file(). 258 !! 269 */ 259 static u64 loop_check_gen = 0; !! 270 static DEFINE_MUTEX(epmutex); 260 271 261 /* Used to check for epoll file descriptor inc 272 /* Used to check for epoll file descriptor inclusion loops */ 262 static struct eventpoll *inserting_into; !! 273 static struct nested_calls poll_loop_ncalls; 263 274 264 /* Slab cache used to allocate "struct epitem" 275 /* Slab cache used to allocate "struct epitem" */ 265 static struct kmem_cache *epi_cache __ro_after !! 276 static struct kmem_cache *epi_cache __read_mostly; 266 277 267 /* Slab cache used to allocate "struct eppoll_ 278 /* Slab cache used to allocate "struct eppoll_entry" */ 268 static struct kmem_cache *pwq_cache __ro_after !! 279 static struct kmem_cache *pwq_cache __read_mostly; >> 280 >> 281 /* Visited nodes during ep_loop_check(), so we can unset them when we finish */ >> 282 static LIST_HEAD(visited_list); 269 283 270 /* 284 /* 271 * List of files with newly added links, where 285 * List of files with newly added links, where we may need to limit the number 272 * of emanating paths. Protected by the epnest !! 286 * of emanating paths. Protected by the epmutex. 273 */ 287 */ 274 struct epitems_head { !! 288 static LIST_HEAD(tfile_check_list); 275 struct hlist_head epitems; << 276 struct epitems_head *next; << 277 }; << 278 static struct epitems_head *tfile_check_list = << 279 << 280 static struct kmem_cache *ephead_cache __ro_af << 281 << 282 static inline void free_ephead(struct epitems_ << 283 { << 284 if (head) << 285 kmem_cache_free(ephead_cache, << 286 } << 287 << 288 static void list_file(struct file *file) << 289 { << 290 struct epitems_head *head; << 291 << 292 head = container_of(file->f_ep, struct << 293 if (!head->next) { << 294 head->next = tfile_check_list; << 295 tfile_check_list = head; << 296 } << 297 } << 298 << 299 static void unlist_file(struct epitems_head *h << 300 { << 301 struct epitems_head *to_free = head; << 302 struct hlist_node *p = rcu_dereference << 303 if (p) { << 304 struct epitem *epi= container_ << 305 spin_lock(&epi->ffd.file->f_lo << 306 if (!hlist_empty(&head->epitem << 307 to_free = NULL; << 308 head->next = NULL; << 309 spin_unlock(&epi->ffd.file->f_ << 310 } << 311 free_ephead(to_free); << 312 } << 313 289 314 #ifdef CONFIG_SYSCTL 290 #ifdef CONFIG_SYSCTL 315 291 316 #include <linux/sysctl.h> 292 #include <linux/sysctl.h> 317 293 318 static long long_zero; 294 static long long_zero; 319 static long long_max = LONG_MAX; 295 static long long_max = LONG_MAX; 320 296 321 static struct ctl_table epoll_table[] = { !! 297 struct ctl_table epoll_table[] = { 322 { 298 { 323 .procname = "max_user_wa 299 .procname = "max_user_watches", 324 .data = &max_user_wa 300 .data = &max_user_watches, 325 .maxlen = sizeof(max_u 301 .maxlen = sizeof(max_user_watches), 326 .mode = 0644, 302 .mode = 0644, 327 .proc_handler = proc_doulong 303 .proc_handler = proc_doulongvec_minmax, 328 .extra1 = &long_zero, 304 .extra1 = &long_zero, 329 .extra2 = &long_max, 305 .extra2 = &long_max, 330 }, 306 }, >> 307 { } 331 }; 308 }; 332 << 333 static void __init epoll_sysctls_init(void) << 334 { << 335 register_sysctl("fs/epoll", epoll_tabl << 336 } << 337 #else << 338 #define epoll_sysctls_init() do { } while (0) << 339 #endif /* CONFIG_SYSCTL */ 309 #endif /* CONFIG_SYSCTL */ 340 310 341 static const struct file_operations eventpoll_ 311 static const struct file_operations eventpoll_fops; 342 312 343 static inline int is_file_epoll(struct file *f 313 static inline int is_file_epoll(struct file *f) 344 { 314 { 345 return f->f_op == &eventpoll_fops; 315 return f->f_op == &eventpoll_fops; 346 } 316 } 347 317 348 /* Setup the structure that is used as key for 318 /* Setup the structure that is used as key for the RB tree */ 349 static inline void ep_set_ffd(struct epoll_fil 319 static inline void ep_set_ffd(struct epoll_filefd *ffd, 350 struct file *fil 320 struct file *file, int fd) 351 { 321 { 352 ffd->file = file; 322 ffd->file = file; 353 ffd->fd = fd; 323 ffd->fd = fd; 354 } 324 } 355 325 356 /* Compare RB tree keys */ 326 /* Compare RB tree keys */ 357 static inline int ep_cmp_ffd(struct epoll_file 327 static inline int ep_cmp_ffd(struct epoll_filefd *p1, 358 struct epoll_file 328 struct epoll_filefd *p2) 359 { 329 { 360 return (p1->file > p2->file ? +1: 330 return (p1->file > p2->file ? +1: 361 (p1->file < p2->file ? -1 : p1 331 (p1->file < p2->file ? -1 : p1->fd - p2->fd)); 362 } 332 } 363 333 364 /* Tells us if the item is currently linked */ 334 /* Tells us if the item is currently linked */ 365 static inline int ep_is_linked(struct epitem * 335 static inline int ep_is_linked(struct epitem *epi) 366 { 336 { 367 return !list_empty(&epi->rdllink); 337 return !list_empty(&epi->rdllink); 368 } 338 } 369 339 370 static inline struct eppoll_entry *ep_pwq_from 340 static inline struct eppoll_entry *ep_pwq_from_wait(wait_queue_entry_t *p) 371 { 341 { 372 return container_of(p, struct eppoll_e 342 return container_of(p, struct eppoll_entry, wait); 373 } 343 } 374 344 375 /* Get the "struct epitem" from a wait queue p 345 /* Get the "struct epitem" from a wait queue pointer */ 376 static inline struct epitem *ep_item_from_wait 346 static inline struct epitem *ep_item_from_wait(wait_queue_entry_t *p) 377 { 347 { 378 return container_of(p, struct eppoll_e 348 return container_of(p, struct eppoll_entry, wait)->base; 379 } 349 } 380 350 >> 351 /* Get the "struct epitem" from an epoll queue wrapper */ >> 352 static inline struct epitem *ep_item_from_epqueue(poll_table *p) >> 353 { >> 354 return container_of(p, struct ep_pqueue, pt)->epi; >> 355 } >> 356 >> 357 /* Initialize the poll safe wake up structure */ >> 358 static void ep_nested_calls_init(struct nested_calls *ncalls) >> 359 { >> 360 INIT_LIST_HEAD(&ncalls->tasks_call_list); >> 361 spin_lock_init(&ncalls->lock); >> 362 } >> 363 381 /** 364 /** 382 * ep_events_available - Checks if ready event 365 * ep_events_available - Checks if ready events might be available. 383 * 366 * 384 * @ep: Pointer to the eventpoll context. 367 * @ep: Pointer to the eventpoll context. 385 * 368 * 386 * Return: a value different than %zero if rea !! 369 * Returns: Returns a value different than zero if ready events are available, 387 * or %zero otherwise. !! 370 * or zero otherwise. 388 */ 371 */ 389 static inline int ep_events_available(struct e 372 static inline int ep_events_available(struct eventpoll *ep) 390 { 373 { 391 return !list_empty_careful(&ep->rdllis 374 return !list_empty_careful(&ep->rdllist) || 392 READ_ONCE(ep->ovflist) != EP_U 375 READ_ONCE(ep->ovflist) != EP_UNACTIVE_PTR; 393 } 376 } 394 377 395 #ifdef CONFIG_NET_RX_BUSY_POLL 378 #ifdef CONFIG_NET_RX_BUSY_POLL 396 /** << 397 * busy_loop_ep_timeout - check if busy poll h << 398 * from the epoll instance ep is preferred, bu << 399 * the system-wide global via busy_loop_timeou << 400 * << 401 * @start_time: The start time used to compute << 402 * @ep: Pointer to the eventpoll context. << 403 * << 404 * Return: true if the timeout has expired, fa << 405 */ << 406 static bool busy_loop_ep_timeout(unsigned long << 407 struct eventp << 408 { << 409 unsigned long bp_usec = READ_ONCE(ep-> << 410 << 411 if (bp_usec) { << 412 unsigned long end_time = start << 413 unsigned long now = busy_loop_ << 414 << 415 return time_after(now, end_tim << 416 } else { << 417 return busy_loop_timeout(start << 418 } << 419 } << 420 << 421 static bool ep_busy_loop_on(struct eventpoll * << 422 { << 423 return !!READ_ONCE(ep->busy_poll_usecs << 424 } << 425 << 426 static bool ep_busy_loop_end(void *p, unsigned 379 static bool ep_busy_loop_end(void *p, unsigned long start_time) 427 { 380 { 428 struct eventpoll *ep = p; 381 struct eventpoll *ep = p; 429 382 430 return ep_events_available(ep) || busy !! 383 return ep_events_available(ep) || busy_loop_timeout(start_time); 431 } 384 } 432 385 433 /* 386 /* 434 * Busy poll if globally on and supporting soc 387 * Busy poll if globally on and supporting sockets found && no events, 435 * busy loop will return if need_resched or ep 388 * busy loop will return if need_resched or ep_events_available. 436 * 389 * 437 * we must do our busy polling with irqs enabl 390 * we must do our busy polling with irqs enabled 438 */ 391 */ 439 static bool ep_busy_loop(struct eventpoll *ep, !! 392 static void ep_busy_loop(struct eventpoll *ep, int nonblock) 440 { 393 { 441 unsigned int napi_id = READ_ONCE(ep->n 394 unsigned int napi_id = READ_ONCE(ep->napi_id); 442 u16 budget = READ_ONCE(ep->busy_poll_b << 443 bool prefer_busy_poll = READ_ONCE(ep-> << 444 395 445 if (!budget) !! 396 if ((napi_id >= MIN_NAPI_ID) && net_busy_loop_on()) 446 budget = BUSY_POLL_BUDGET; !! 397 napi_busy_loop(napi_id, nonblock ? NULL : ep_busy_loop_end, ep); >> 398 } 447 399 448 if (napi_id >= MIN_NAPI_ID && ep_busy_ !! 400 static inline void ep_reset_busy_poll_napi_id(struct eventpoll *ep) 449 napi_busy_loop(napi_id, nonblo !! 401 { 450 ep, prefer_busy !! 402 if (ep->napi_id) 451 if (ep_events_available(ep)) << 452 return true; << 453 /* << 454 * Busy poll timed out. Drop << 455 * it back in when we have mov << 456 * ID onto the ready list. << 457 */ << 458 ep->napi_id = 0; 403 ep->napi_id = 0; 459 return false; << 460 } << 461 return false; << 462 } 404 } 463 405 464 /* 406 /* 465 * Set epoll busy poll NAPI ID from sk. 407 * Set epoll busy poll NAPI ID from sk. 466 */ 408 */ 467 static inline void ep_set_busy_poll_napi_id(st 409 static inline void ep_set_busy_poll_napi_id(struct epitem *epi) 468 { 410 { 469 struct eventpoll *ep = epi->ep; !! 411 struct eventpoll *ep; 470 unsigned int napi_id; 412 unsigned int napi_id; 471 struct socket *sock; 413 struct socket *sock; 472 struct sock *sk; 414 struct sock *sk; >> 415 int err; 473 416 474 if (!ep_busy_loop_on(ep)) !! 417 if (!net_busy_loop_on()) 475 return; 418 return; 476 419 477 sock = sock_from_file(epi->ffd.file); !! 420 sock = sock_from_file(epi->ffd.file, &err); 478 if (!sock) 421 if (!sock) 479 return; 422 return; 480 423 481 sk = sock->sk; 424 sk = sock->sk; 482 if (!sk) 425 if (!sk) 483 return; 426 return; 484 427 485 napi_id = READ_ONCE(sk->sk_napi_id); 428 napi_id = READ_ONCE(sk->sk_napi_id); >> 429 ep = epi->ep; 486 430 487 /* Non-NAPI IDs can be rejected 431 /* Non-NAPI IDs can be rejected 488 * or 432 * or 489 * Nothing to do if we already have th 433 * Nothing to do if we already have this ID 490 */ 434 */ 491 if (napi_id < MIN_NAPI_ID || napi_id = 435 if (napi_id < MIN_NAPI_ID || napi_id == ep->napi_id) 492 return; 436 return; 493 437 494 /* record NAPI ID for use in next busy 438 /* record NAPI ID for use in next busy poll */ 495 ep->napi_id = napi_id; 439 ep->napi_id = napi_id; 496 } 440 } 497 441 498 static long ep_eventpoll_bp_ioctl(struct file << 499 unsigned lon << 500 { << 501 struct eventpoll *ep = file->private_d << 502 void __user *uarg = (void __user *)arg << 503 struct epoll_params epoll_params; << 504 << 505 switch (cmd) { << 506 case EPIOCSPARAMS: << 507 if (copy_from_user(&epoll_para << 508 return -EFAULT; << 509 << 510 /* pad byte must be zero */ << 511 if (epoll_params.__pad) << 512 return -EINVAL; << 513 << 514 if (epoll_params.busy_poll_use << 515 return -EINVAL; << 516 << 517 if (epoll_params.prefer_busy_p << 518 return -EINVAL; << 519 << 520 if (epoll_params.busy_poll_bud << 521 !capable(CAP_NET_ADMIN)) << 522 return -EPERM; << 523 << 524 WRITE_ONCE(ep->busy_poll_usecs << 525 WRITE_ONCE(ep->busy_poll_budge << 526 WRITE_ONCE(ep->prefer_busy_pol << 527 return 0; << 528 case EPIOCGPARAMS: << 529 memset(&epoll_params, 0, sizeo << 530 epoll_params.busy_poll_usecs = << 531 epoll_params.busy_poll_budget << 532 epoll_params.prefer_busy_poll << 533 if (copy_to_user(uarg, &epoll_ << 534 return -EFAULT; << 535 return 0; << 536 default: << 537 return -ENOIOCTLCMD; << 538 } << 539 } << 540 << 541 #else 442 #else 542 443 543 static inline bool ep_busy_loop(struct eventpo !! 444 static inline void ep_busy_loop(struct eventpoll *ep, int nonblock) 544 { 445 { 545 return false; << 546 } 446 } 547 447 548 static inline void ep_set_busy_poll_napi_id(st !! 448 static inline void ep_reset_busy_poll_napi_id(struct eventpoll *ep) 549 { 449 { 550 } 450 } 551 451 552 static long ep_eventpoll_bp_ioctl(struct file !! 452 static inline void ep_set_busy_poll_napi_id(struct epitem *epi) 553 unsigned lon << 554 { 453 { 555 return -EOPNOTSUPP; << 556 } 454 } 557 455 558 #endif /* CONFIG_NET_RX_BUSY_POLL */ 456 #endif /* CONFIG_NET_RX_BUSY_POLL */ 559 457 >> 458 /** >> 459 * ep_call_nested - Perform a bound (possibly) nested call, by checking >> 460 * that the recursion limit is not exceeded, and that >> 461 * the same nested call (by the meaning of same cookie) is >> 462 * no re-entered. >> 463 * >> 464 * @ncalls: Pointer to the nested_calls structure to be used for this call. >> 465 * @nproc: Nested call core function pointer. >> 466 * @priv: Opaque data to be passed to the @nproc callback. >> 467 * @cookie: Cookie to be used to identify this nested call. >> 468 * @ctx: This instance context. >> 469 * >> 470 * Returns: Returns the code returned by the @nproc callback, or -1 if >> 471 * the maximum recursion limit has been exceeded. >> 472 */ >> 473 static int ep_call_nested(struct nested_calls *ncalls, >> 474 int (*nproc)(void *, void *, int), void *priv, >> 475 void *cookie, void *ctx) >> 476 { >> 477 int error, call_nests = 0; >> 478 unsigned long flags; >> 479 struct list_head *lsthead = &ncalls->tasks_call_list; >> 480 struct nested_call_node *tncur; >> 481 struct nested_call_node tnode; >> 482 >> 483 spin_lock_irqsave(&ncalls->lock, flags); >> 484 >> 485 /* >> 486 * Try to see if the current task is already inside this wakeup call. >> 487 * We use a list here, since the population inside this set is always >> 488 * very much limited. >> 489 */ >> 490 list_for_each_entry(tncur, lsthead, llink) { >> 491 if (tncur->ctx == ctx && >> 492 (tncur->cookie == cookie || ++call_nests > EP_MAX_NESTS)) { >> 493 /* >> 494 * Ops ... loop detected or maximum nest level reached. >> 495 * We abort this wake by breaking the cycle itself. >> 496 */ >> 497 error = -1; >> 498 goto out_unlock; >> 499 } >> 500 } >> 501 >> 502 /* Add the current task and cookie to the list */ >> 503 tnode.ctx = ctx; >> 504 tnode.cookie = cookie; >> 505 list_add(&tnode.llink, lsthead); >> 506 >> 507 spin_unlock_irqrestore(&ncalls->lock, flags); >> 508 >> 509 /* Call the nested function */ >> 510 error = (*nproc)(priv, cookie, call_nests); >> 511 >> 512 /* Remove the current task from the list */ >> 513 spin_lock_irqsave(&ncalls->lock, flags); >> 514 list_del(&tnode.llink); >> 515 out_unlock: >> 516 spin_unlock_irqrestore(&ncalls->lock, flags); >> 517 >> 518 return error; >> 519 } >> 520 560 /* 521 /* 561 * As described in commit 0ccf831cb lockdep: a 522 * As described in commit 0ccf831cb lockdep: annotate epoll 562 * the use of wait queues used by epoll is don 523 * the use of wait queues used by epoll is done in a very controlled 563 * manner. Wake ups can nest inside each other 524 * manner. Wake ups can nest inside each other, but are never done 564 * with the same locking. For example: 525 * with the same locking. For example: 565 * 526 * 566 * dfd = socket(...); 527 * dfd = socket(...); 567 * efd1 = epoll_create(); 528 * efd1 = epoll_create(); 568 * efd2 = epoll_create(); 529 * efd2 = epoll_create(); 569 * epoll_ctl(efd1, EPOLL_CTL_ADD, dfd, ...); 530 * epoll_ctl(efd1, EPOLL_CTL_ADD, dfd, ...); 570 * epoll_ctl(efd2, EPOLL_CTL_ADD, efd1, ...) 531 * epoll_ctl(efd2, EPOLL_CTL_ADD, efd1, ...); 571 * 532 * 572 * When a packet arrives to the device underne 533 * When a packet arrives to the device underneath "dfd", the net code will 573 * issue a wake_up() on its poll wake list. Ep 534 * issue a wake_up() on its poll wake list. Epoll (efd1) has installed a 574 * callback wakeup entry on that queue, and th 535 * callback wakeup entry on that queue, and the wake_up() performed by the 575 * "dfd" net code will end up in ep_poll_callb 536 * "dfd" net code will end up in ep_poll_callback(). At this point epoll 576 * (efd1) notices that it may have some event 537 * (efd1) notices that it may have some event ready, so it needs to wake up 577 * the waiters on its poll wait list (efd2). S 538 * the waiters on its poll wait list (efd2). So it calls ep_poll_safewake() 578 * that ends up in another wake_up(), after ha 539 * that ends up in another wake_up(), after having checked about the 579 * recursion constraints. That are, no more th !! 540 * recursion constraints. That are, no more than EP_MAX_POLLWAKE_NESTS, to 580 * stack blasting. !! 541 * avoid stack blasting. 581 * 542 * 582 * When CONFIG_DEBUG_LOCK_ALLOC is enabled, ma 543 * When CONFIG_DEBUG_LOCK_ALLOC is enabled, make sure lockdep can handle 583 * this special case of epoll. 544 * this special case of epoll. 584 */ 545 */ 585 #ifdef CONFIG_DEBUG_LOCK_ALLOC 546 #ifdef CONFIG_DEBUG_LOCK_ALLOC 586 547 587 static void ep_poll_safewake(struct eventpoll !! 548 static DEFINE_PER_CPU(int, wakeup_nest); 588 unsigned pollflag !! 549 >> 550 static void ep_poll_safewake(wait_queue_head_t *wq) 589 { 551 { 590 struct eventpoll *ep_src; << 591 unsigned long flags; 552 unsigned long flags; 592 u8 nests = 0; !! 553 int subclass; 593 554 594 /* !! 555 local_irq_save(flags); 595 * To set the subclass or nesting leve !! 556 preempt_disable(); 596 * it might be natural to create a per !! 557 subclass = __this_cpu_read(wakeup_nest); 597 * we can recurse on ep->poll_wait.loc !! 558 spin_lock_nested(&wq->lock, subclass + 1); 598 * schedule() in the -rt kernel, the p !! 559 __this_cpu_inc(wakeup_nest); 599 * protected. Thus, we are introducing !! 560 wake_up_locked_poll(wq, POLLIN); 600 * If we are not being call from ep_po !! 561 __this_cpu_dec(wakeup_nest); 601 * we are at the first level of nestin !! 562 spin_unlock(&wq->lock); 602 * called from ep_poll_callback() and !! 563 local_irq_restore(flags); 603 * not an epoll file itself, we are at !! 564 preempt_enable(); 604 * is depth 0. If the wakeup source is << 605 * wakeup chain then we use its nests << 606 * nests + 1. The previous epoll file << 607 * already holding its own poll_wait.l << 608 */ << 609 if (epi) { << 610 if ((is_file_epoll(epi->ffd.fi << 611 ep_src = epi->ffd.file << 612 nests = ep_src->nests; << 613 } else { << 614 nests = 1; << 615 } << 616 } << 617 spin_lock_irqsave_nested(&ep->poll_wai << 618 ep->nests = nests + 1; << 619 wake_up_locked_poll(&ep->poll_wait, EP << 620 ep->nests = 0; << 621 spin_unlock_irqrestore(&ep->poll_wait. << 622 } 565 } 623 566 624 #else 567 #else 625 568 626 static void ep_poll_safewake(struct eventpoll !! 569 static void ep_poll_safewake(wait_queue_head_t *wq) 627 __poll_t pollflag << 628 { 570 { 629 wake_up_poll(&ep->poll_wait, EPOLLIN | !! 571 wake_up_poll(wq, EPOLLIN); 630 } 572 } 631 573 632 #endif 574 #endif 633 575 634 static void ep_remove_wait_queue(struct eppoll 576 static void ep_remove_wait_queue(struct eppoll_entry *pwq) 635 { 577 { 636 wait_queue_head_t *whead; 578 wait_queue_head_t *whead; 637 579 638 rcu_read_lock(); 580 rcu_read_lock(); 639 /* 581 /* 640 * If it is cleared by POLLFREE, it sh 582 * If it is cleared by POLLFREE, it should be rcu-safe. 641 * If we read NULL we need a barrier p 583 * If we read NULL we need a barrier paired with 642 * smp_store_release() in ep_poll_call 584 * smp_store_release() in ep_poll_callback(), otherwise 643 * we rely on whead->lock. 585 * we rely on whead->lock. 644 */ 586 */ 645 whead = smp_load_acquire(&pwq->whead); 587 whead = smp_load_acquire(&pwq->whead); 646 if (whead) 588 if (whead) 647 remove_wait_queue(whead, &pwq- 589 remove_wait_queue(whead, &pwq->wait); 648 rcu_read_unlock(); 590 rcu_read_unlock(); 649 } 591 } 650 592 651 /* 593 /* 652 * This function unregisters poll callbacks fr 594 * This function unregisters poll callbacks from the associated file 653 * descriptor. Must be called with "mtx" held !! 595 * descriptor. Must be called with "mtx" held (or "epmutex" if called from >> 596 * ep_free). 654 */ 597 */ 655 static void ep_unregister_pollwait(struct even 598 static void ep_unregister_pollwait(struct eventpoll *ep, struct epitem *epi) 656 { 599 { 657 struct eppoll_entry **p = &epi->pwqlis !! 600 struct list_head *lsthead = &epi->pwqlist; 658 struct eppoll_entry *pwq; 601 struct eppoll_entry *pwq; 659 602 660 while ((pwq = *p) != NULL) { !! 603 while (!list_empty(lsthead)) { 661 *p = pwq->next; !! 604 pwq = list_first_entry(lsthead, struct eppoll_entry, llink); >> 605 >> 606 list_del(&pwq->llink); 662 ep_remove_wait_queue(pwq); 607 ep_remove_wait_queue(pwq); 663 kmem_cache_free(pwq_cache, pwq 608 kmem_cache_free(pwq_cache, pwq); 664 } 609 } 665 } 610 } 666 611 667 /* call only when ep->mtx is held */ 612 /* call only when ep->mtx is held */ 668 static inline struct wakeup_source *ep_wakeup_ 613 static inline struct wakeup_source *ep_wakeup_source(struct epitem *epi) 669 { 614 { 670 return rcu_dereference_check(epi->ws, 615 return rcu_dereference_check(epi->ws, lockdep_is_held(&epi->ep->mtx)); 671 } 616 } 672 617 673 /* call only when ep->mtx is held */ 618 /* call only when ep->mtx is held */ 674 static inline void ep_pm_stay_awake(struct epi 619 static inline void ep_pm_stay_awake(struct epitem *epi) 675 { 620 { 676 struct wakeup_source *ws = ep_wakeup_s 621 struct wakeup_source *ws = ep_wakeup_source(epi); 677 622 678 if (ws) 623 if (ws) 679 __pm_stay_awake(ws); 624 __pm_stay_awake(ws); 680 } 625 } 681 626 682 static inline bool ep_has_wakeup_source(struct 627 static inline bool ep_has_wakeup_source(struct epitem *epi) 683 { 628 { 684 return rcu_access_pointer(epi->ws) ? t 629 return rcu_access_pointer(epi->ws) ? true : false; 685 } 630 } 686 631 687 /* call when ep->mtx cannot be held (ep_poll_c 632 /* call when ep->mtx cannot be held (ep_poll_callback) */ 688 static inline void ep_pm_stay_awake_rcu(struct 633 static inline void ep_pm_stay_awake_rcu(struct epitem *epi) 689 { 634 { 690 struct wakeup_source *ws; 635 struct wakeup_source *ws; 691 636 692 rcu_read_lock(); 637 rcu_read_lock(); 693 ws = rcu_dereference(epi->ws); 638 ws = rcu_dereference(epi->ws); 694 if (ws) 639 if (ws) 695 __pm_stay_awake(ws); 640 __pm_stay_awake(ws); 696 rcu_read_unlock(); 641 rcu_read_unlock(); 697 } 642 } 698 643 699 !! 644 /** 700 /* !! 645 * ep_scan_ready_list - Scans the ready list in a way that makes possible for 701 * ep->mutex needs to be held because we could !! 646 * the scan code, to call f_op->poll(). Also allows for 702 * eventpoll_release_file() and epoll_ctl(). !! 647 * O(NumReady) performance. 703 */ !! 648 * 704 static void ep_start_scan(struct eventpoll *ep !! 649 * @ep: Pointer to the epoll private data structure. >> 650 * @sproc: Pointer to the scan callback. >> 651 * @priv: Private opaque data passed to the @sproc callback. >> 652 * @depth: The current depth of recursive f_op->poll calls. >> 653 * @ep_locked: caller already holds ep->mtx >> 654 * >> 655 * Returns: The same integer error code returned by the @sproc callback. >> 656 */ >> 657 static __poll_t ep_scan_ready_list(struct eventpoll *ep, >> 658 __poll_t (*sproc)(struct eventpoll *, >> 659 struct list_head *, void *), >> 660 void *priv, int depth, bool ep_locked) 705 { 661 { >> 662 __poll_t res; >> 663 struct epitem *epi, *nepi; >> 664 LIST_HEAD(txlist); >> 665 >> 666 lockdep_assert_irqs_enabled(); >> 667 >> 668 /* >> 669 * We need to lock this because we could be hit by >> 670 * eventpoll_release_file() and epoll_ctl(). >> 671 */ >> 672 >> 673 if (!ep_locked) >> 674 mutex_lock_nested(&ep->mtx, depth); >> 675 706 /* 676 /* 707 * Steal the ready list, and re-init t 677 * Steal the ready list, and re-init the original one to the 708 * empty list. Also, set ep->ovflist t 678 * empty list. Also, set ep->ovflist to NULL so that events 709 * happening while looping w/out locks 679 * happening while looping w/out locks, are not lost. We cannot 710 * have the poll callback to queue dir 680 * have the poll callback to queue directly on ep->rdllist, 711 * because we want the "sproc" callbac 681 * because we want the "sproc" callback to be able to do it 712 * in a lockless way. 682 * in a lockless way. 713 */ 683 */ 714 lockdep_assert_irqs_enabled(); << 715 write_lock_irq(&ep->lock); 684 write_lock_irq(&ep->lock); 716 list_splice_init(&ep->rdllist, txlist) !! 685 list_splice_init(&ep->rdllist, &txlist); 717 WRITE_ONCE(ep->ovflist, NULL); 686 WRITE_ONCE(ep->ovflist, NULL); 718 write_unlock_irq(&ep->lock); 687 write_unlock_irq(&ep->lock); 719 } << 720 688 721 static void ep_done_scan(struct eventpoll *ep, !! 689 /* 722 struct list_head *txl !! 690 * Now call the callback function. 723 { !! 691 */ 724 struct epitem *epi, *nepi; !! 692 res = (*sproc)(ep, &txlist, priv); 725 693 726 write_lock_irq(&ep->lock); 694 write_lock_irq(&ep->lock); 727 /* 695 /* 728 * During the time we spent inside the 696 * During the time we spent inside the "sproc" callback, some 729 * other events might have been queued 697 * other events might have been queued by the poll callback. 730 * We re-insert them inside the main r 698 * We re-insert them inside the main ready-list here. 731 */ 699 */ 732 for (nepi = READ_ONCE(ep->ovflist); (e 700 for (nepi = READ_ONCE(ep->ovflist); (epi = nepi) != NULL; 733 nepi = epi->next, epi->next = EP_ 701 nepi = epi->next, epi->next = EP_UNACTIVE_PTR) { 734 /* 702 /* 735 * We need to check if the ite 703 * We need to check if the item is already in the list. 736 * During the "sproc" callback 704 * During the "sproc" callback execution time, items are 737 * queued into ->ovflist but t 705 * queued into ->ovflist but the "txlist" might already 738 * contain them, and the list_ 706 * contain them, and the list_splice() below takes care of them. 739 */ 707 */ 740 if (!ep_is_linked(epi)) { 708 if (!ep_is_linked(epi)) { 741 /* 709 /* 742 * ->ovflist is LIFO, 710 * ->ovflist is LIFO, so we have to reverse it in order 743 * to keep in FIFO. 711 * to keep in FIFO. 744 */ 712 */ 745 list_add(&epi->rdllink 713 list_add(&epi->rdllink, &ep->rdllist); 746 ep_pm_stay_awake(epi); 714 ep_pm_stay_awake(epi); 747 } 715 } 748 } 716 } 749 /* 717 /* 750 * We need to set back ep->ovflist to 718 * We need to set back ep->ovflist to EP_UNACTIVE_PTR, so that after 751 * releasing the lock, events will be 719 * releasing the lock, events will be queued in the normal way inside 752 * ep->rdllist. 720 * ep->rdllist. 753 */ 721 */ 754 WRITE_ONCE(ep->ovflist, EP_UNACTIVE_PT 722 WRITE_ONCE(ep->ovflist, EP_UNACTIVE_PTR); 755 723 756 /* 724 /* 757 * Quickly re-inject items left on "tx 725 * Quickly re-inject items left on "txlist". 758 */ 726 */ 759 list_splice(txlist, &ep->rdllist); !! 727 list_splice(&txlist, &ep->rdllist); 760 __pm_relax(ep->ws); 728 __pm_relax(ep->ws); 761 << 762 if (!list_empty(&ep->rdllist)) { << 763 if (waitqueue_active(&ep->wq)) << 764 wake_up(&ep->wq); << 765 } << 766 << 767 write_unlock_irq(&ep->lock); 729 write_unlock_irq(&ep->lock); 768 } << 769 730 770 static void ep_get(struct eventpoll *ep) !! 731 if (!ep_locked) 771 { !! 732 mutex_unlock(&ep->mtx); 772 refcount_inc(&ep->refcount); << 773 } << 774 << 775 /* << 776 * Returns true if the event poll can be dispo << 777 */ << 778 static bool ep_refcount_dec_and_test(struct ev << 779 { << 780 if (!refcount_dec_and_test(&ep->refcou << 781 return false; << 782 733 783 WARN_ON_ONCE(!RB_EMPTY_ROOT(&ep->rbr.r !! 734 return res; 784 return true; << 785 } 735 } 786 736 787 static void ep_free(struct eventpoll *ep) !! 737 static void epi_rcu_free(struct rcu_head *head) 788 { 738 { 789 mutex_destroy(&ep->mtx); !! 739 struct epitem *epi = container_of(head, struct epitem, rcu); 790 free_uid(ep->user); !! 740 kmem_cache_free(epi_cache, epi); 791 wakeup_source_unregister(ep->ws); << 792 kfree(ep); << 793 } 741 } 794 742 795 /* 743 /* 796 * Removes a "struct epitem" from the eventpol 744 * Removes a "struct epitem" from the eventpoll RB tree and deallocates 797 * all the associated resources. Must be calle 745 * all the associated resources. Must be called with "mtx" held. 798 * If the dying flag is set, do the removal on << 799 * This prevents ep_clear_and_put() from dropp << 800 * while running concurrently with eventpoll_r << 801 * Returns true if the eventpoll can be dispos << 802 */ 746 */ 803 static bool __ep_remove(struct eventpoll *ep, !! 747 static int ep_remove(struct eventpoll *ep, struct epitem *epi) 804 { 748 { 805 struct file *file = epi->ffd.file; 749 struct file *file = epi->ffd.file; 806 struct epitems_head *to_free; << 807 struct hlist_head *head; << 808 750 809 lockdep_assert_irqs_enabled(); 751 lockdep_assert_irqs_enabled(); 810 752 811 /* 753 /* 812 * Removes poll wait queue hooks. 754 * Removes poll wait queue hooks. 813 */ 755 */ 814 ep_unregister_pollwait(ep, epi); 756 ep_unregister_pollwait(ep, epi); 815 757 816 /* Remove the current item from the li 758 /* Remove the current item from the list of epoll hooks */ 817 spin_lock(&file->f_lock); 759 spin_lock(&file->f_lock); 818 if (epi->dying && !force) { !! 760 list_del_rcu(&epi->fllink); 819 spin_unlock(&file->f_lock); << 820 return false; << 821 } << 822 << 823 to_free = NULL; << 824 head = file->f_ep; << 825 if (head->first == &epi->fllink && !ep << 826 file->f_ep = NULL; << 827 if (!is_file_epoll(file)) { << 828 struct epitems_head *v << 829 v = container_of(head, << 830 if (!smp_load_acquire( << 831 to_free = v; << 832 } << 833 } << 834 hlist_del_rcu(&epi->fllink); << 835 spin_unlock(&file->f_lock); 761 spin_unlock(&file->f_lock); 836 free_ephead(to_free); << 837 762 838 rb_erase_cached(&epi->rbn, &ep->rbr); 763 rb_erase_cached(&epi->rbn, &ep->rbr); 839 764 840 write_lock_irq(&ep->lock); 765 write_lock_irq(&ep->lock); 841 if (ep_is_linked(epi)) 766 if (ep_is_linked(epi)) 842 list_del_init(&epi->rdllink); 767 list_del_init(&epi->rdllink); 843 write_unlock_irq(&ep->lock); 768 write_unlock_irq(&ep->lock); 844 769 845 wakeup_source_unregister(ep_wakeup_sou 770 wakeup_source_unregister(ep_wakeup_source(epi)); 846 /* 771 /* 847 * At this point it is safe to free th 772 * At this point it is safe to free the eventpoll item. Use the union 848 * field epi->rcu, since we are trying 773 * field epi->rcu, since we are trying to minimize the size of 849 * 'struct epitem'. The 'rbn' field is 774 * 'struct epitem'. The 'rbn' field is no longer in use. Protected by 850 * ep->mtx. The rcu read side, reverse 775 * ep->mtx. The rcu read side, reverse_path_check_proc(), does not make 851 * use of the rbn field. 776 * use of the rbn field. 852 */ 777 */ 853 kfree_rcu(epi, rcu); !! 778 call_rcu(&epi->rcu, epi_rcu_free); 854 779 855 percpu_counter_dec(&ep->user->epoll_wa !! 780 atomic_long_dec(&ep->user->epoll_watches); 856 return ep_refcount_dec_and_test(ep); << 857 } << 858 781 859 /* !! 782 return 0; 860 * ep_remove variant for callers owing an addi << 861 */ << 862 static void ep_remove_safe(struct eventpoll *e << 863 { << 864 WARN_ON_ONCE(__ep_remove(ep, epi, fals << 865 } 783 } 866 784 867 static void ep_clear_and_put(struct eventpoll !! 785 static void ep_free(struct eventpoll *ep) 868 { 786 { 869 struct rb_node *rbp, *next; !! 787 struct rb_node *rbp; 870 struct epitem *epi; 788 struct epitem *epi; 871 bool dispose; << 872 789 873 /* We need to release all tasks waitin 790 /* We need to release all tasks waiting for these file */ 874 if (waitqueue_active(&ep->poll_wait)) 791 if (waitqueue_active(&ep->poll_wait)) 875 ep_poll_safewake(ep, NULL, 0); !! 792 ep_poll_safewake(&ep->poll_wait); 876 793 877 mutex_lock(&ep->mtx); !! 794 /* >> 795 * We need to lock this because we could be hit by >> 796 * eventpoll_release_file() while we're freeing the "struct eventpoll". >> 797 * We do not need to hold "ep->mtx" here because the epoll file >> 798 * is on the way to be removed and no one has references to it >> 799 * anymore. The only hit might come from eventpoll_release_file() but >> 800 * holding "epmutex" is sufficient here. >> 801 */ >> 802 mutex_lock(&epmutex); 878 803 879 /* 804 /* 880 * Walks through the whole tree by unr 805 * Walks through the whole tree by unregistering poll callbacks. 881 */ 806 */ 882 for (rbp = rb_first_cached(&ep->rbr); 807 for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) { 883 epi = rb_entry(rbp, struct epi 808 epi = rb_entry(rbp, struct epitem, rbn); 884 809 885 ep_unregister_pollwait(ep, epi 810 ep_unregister_pollwait(ep, epi); 886 cond_resched(); 811 cond_resched(); 887 } 812 } 888 813 889 /* 814 /* 890 * Walks through the whole tree and tr !! 815 * Walks through the whole tree by freeing each "struct epitem". At this 891 * Note that ep_remove_safe() will not !! 816 * point we are sure no poll callbacks will be lingering around, and also by 892 * racing eventpoll_release_file(); th !! 817 * holding "epmutex" we can be sure that no file cleanup code will hit 893 * At this point we are sure no poll c !! 818 * us during this operation. So we can avoid the lock on "ep->lock". 894 * Since we still own a reference to t !! 819 * We do not need to lock ep->mtx, either, we only do it to prevent 895 * dispose it. !! 820 * a lockdep warning. 896 */ 821 */ 897 for (rbp = rb_first_cached(&ep->rbr); !! 822 mutex_lock(&ep->mtx); 898 next = rb_next(rbp); !! 823 while ((rbp = rb_first_cached(&ep->rbr)) != NULL) { 899 epi = rb_entry(rbp, struct epi 824 epi = rb_entry(rbp, struct epitem, rbn); 900 ep_remove_safe(ep, epi); !! 825 ep_remove(ep, epi); 901 cond_resched(); 826 cond_resched(); 902 } 827 } 903 << 904 dispose = ep_refcount_dec_and_test(ep) << 905 mutex_unlock(&ep->mtx); 828 mutex_unlock(&ep->mtx); 906 829 907 if (dispose) !! 830 mutex_unlock(&epmutex); 908 ep_free(ep); !! 831 mutex_destroy(&ep->mtx); 909 } !! 832 free_uid(ep->user); 910 !! 833 wakeup_source_unregister(ep->ws); 911 static long ep_eventpoll_ioctl(struct file *fi !! 834 kfree(ep); 912 unsigned long a << 913 { << 914 int ret; << 915 << 916 if (!is_file_epoll(file)) << 917 return -EINVAL; << 918 << 919 switch (cmd) { << 920 case EPIOCSPARAMS: << 921 case EPIOCGPARAMS: << 922 ret = ep_eventpoll_bp_ioctl(fi << 923 break; << 924 default: << 925 ret = -EINVAL; << 926 break; << 927 } << 928 << 929 return ret; << 930 } 835 } 931 836 932 static int ep_eventpoll_release(struct inode * 837 static int ep_eventpoll_release(struct inode *inode, struct file *file) 933 { 838 { 934 struct eventpoll *ep = file->private_d 839 struct eventpoll *ep = file->private_data; 935 840 936 if (ep) 841 if (ep) 937 ep_clear_and_put(ep); !! 842 ep_free(ep); 938 843 939 return 0; 844 return 0; 940 } 845 } 941 846 942 static __poll_t ep_item_poll(const struct epit !! 847 static __poll_t ep_read_events_proc(struct eventpoll *ep, struct list_head *head, >> 848 void *priv); >> 849 static void ep_ptable_queue_proc(struct file *file, wait_queue_head_t *whead, >> 850 poll_table *pt); >> 851 >> 852 /* >> 853 * Differs from ep_eventpoll_poll() in that internal callers already have >> 854 * the ep->mtx so we need to start from depth=1, such that mutex_lock_nested() >> 855 * is correctly annotated. >> 856 */ >> 857 static __poll_t ep_item_poll(const struct epitem *epi, poll_table *pt, >> 858 int depth) >> 859 { >> 860 struct eventpoll *ep; >> 861 bool locked; >> 862 >> 863 pt->_key = epi->event.events; >> 864 if (!is_file_epoll(epi->ffd.file)) >> 865 return vfs_poll(epi->ffd.file, pt) & epi->event.events; >> 866 >> 867 ep = epi->ffd.file->private_data; >> 868 poll_wait(epi->ffd.file, &ep->poll_wait, pt); >> 869 locked = pt && (pt->_qproc == ep_ptable_queue_proc); >> 870 >> 871 return ep_scan_ready_list(epi->ffd.file->private_data, >> 872 ep_read_events_proc, &depth, depth, >> 873 locked) & epi->event.events; >> 874 } 943 875 944 static __poll_t __ep_eventpoll_poll(struct fil !! 876 static __poll_t ep_read_events_proc(struct eventpoll *ep, struct list_head *head, >> 877 void *priv) 945 { 878 { 946 struct eventpoll *ep = file->private_d << 947 LIST_HEAD(txlist); << 948 struct epitem *epi, *tmp; 879 struct epitem *epi, *tmp; 949 poll_table pt; 880 poll_table pt; 950 __poll_t res = 0; !! 881 int depth = *(int *)priv; 951 882 952 init_poll_funcptr(&pt, NULL); 883 init_poll_funcptr(&pt, NULL); >> 884 depth++; 953 885 954 /* Insert inside our poll wait queue * !! 886 list_for_each_entry_safe(epi, tmp, head, rdllink) { 955 poll_wait(file, &ep->poll_wait, wait); !! 887 if (ep_item_poll(epi, &pt, depth)) { 956 !! 888 return EPOLLIN | EPOLLRDNORM; 957 /* << 958 * Proceed to find out if wanted event << 959 * the ready list. << 960 */ << 961 mutex_lock_nested(&ep->mtx, depth); << 962 ep_start_scan(ep, &txlist); << 963 list_for_each_entry_safe(epi, tmp, &tx << 964 if (ep_item_poll(epi, &pt, dep << 965 res = EPOLLIN | EPOLLR << 966 break; << 967 } else { 889 } else { 968 /* 890 /* 969 * Item has been dropp 891 * Item has been dropped into the ready list by the poll 970 * callback, but it's 892 * callback, but it's not actually ready, as far as 971 * caller requested ev 893 * caller requested events goes. We can remove it here. 972 */ 894 */ 973 __pm_relax(ep_wakeup_s 895 __pm_relax(ep_wakeup_source(epi)); 974 list_del_init(&epi->rd 896 list_del_init(&epi->rdllink); 975 } 897 } 976 } 898 } 977 ep_done_scan(ep, &txlist); << 978 mutex_unlock(&ep->mtx); << 979 return res; << 980 } << 981 899 982 /* !! 900 return 0; 983 * The ffd.file pointer may be in the process << 984 * being closed, but we may not have finished << 985 * << 986 * Normally, even with the atomic_long_inc_not << 987 * been free'd and then gotten re-allocated to << 988 * files are not RCU-delayed, they are SLAB_TY << 989 * << 990 * But for epoll, users hold the ep->mtx mutex << 991 * the process of being free'd will block in e << 992 * and thus the underlying file allocation wil << 993 * file re-use cannot happen. << 994 * << 995 * For the same reason we can avoid a rcu_read << 996 * operation - 'ffd.file' cannot go away even << 997 * reached zero (but we must still not call ou << 998 * etc). << 999 */ << 1000 static struct file *epi_fget(const struct epi << 1001 { << 1002 struct file *file; << 1003 << 1004 file = epi->ffd.file; << 1005 if (!atomic_long_inc_not_zero(&file-> << 1006 file = NULL; << 1007 return file; << 1008 } 901 } 1009 902 1010 /* !! 903 static __poll_t ep_eventpoll_poll(struct file *file, poll_table *wait) 1011 * Differs from ep_eventpoll_poll() in that i << 1012 * the ep->mtx so we need to start from depth << 1013 * is correctly annotated. << 1014 */ << 1015 static __poll_t ep_item_poll(const struct epi << 1016 int depth) << 1017 { 904 { 1018 struct file *file = epi_fget(epi); !! 905 struct eventpoll *ep = file->private_data; 1019 __poll_t res; !! 906 int depth = 0; >> 907 >> 908 /* Insert inside our poll wait queue */ >> 909 poll_wait(file, &ep->poll_wait, wait); 1020 910 1021 /* 911 /* 1022 * We could return EPOLLERR | EPOLLHU !! 912 * Proceed to find out if wanted events are really available inside 1023 * treat this more as "file doesn't e !! 913 * the ready list. 1024 */ 914 */ 1025 if (!file) !! 915 return ep_scan_ready_list(ep, ep_read_events_proc, 1026 return 0; !! 916 &depth, depth, false); 1027 << 1028 pt->_key = epi->event.events; << 1029 if (!is_file_epoll(file)) << 1030 res = vfs_poll(file, pt); << 1031 else << 1032 res = __ep_eventpoll_poll(fil << 1033 fput(file); << 1034 return res & epi->event.events; << 1035 } << 1036 << 1037 static __poll_t ep_eventpoll_poll(struct file << 1038 { << 1039 return __ep_eventpoll_poll(file, wait << 1040 } 917 } 1041 918 1042 #ifdef CONFIG_PROC_FS 919 #ifdef CONFIG_PROC_FS 1043 static void ep_show_fdinfo(struct seq_file *m 920 static void ep_show_fdinfo(struct seq_file *m, struct file *f) 1044 { 921 { 1045 struct eventpoll *ep = f->private_dat 922 struct eventpoll *ep = f->private_data; 1046 struct rb_node *rbp; 923 struct rb_node *rbp; 1047 924 1048 mutex_lock(&ep->mtx); 925 mutex_lock(&ep->mtx); 1049 for (rbp = rb_first_cached(&ep->rbr); 926 for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) { 1050 struct epitem *epi = rb_entry 927 struct epitem *epi = rb_entry(rbp, struct epitem, rbn); 1051 struct inode *inode = file_in 928 struct inode *inode = file_inode(epi->ffd.file); 1052 929 1053 seq_printf(m, "tfd: %8d event 930 seq_printf(m, "tfd: %8d events: %8x data: %16llx " 1054 " pos:%lli ino:%lx 931 " pos:%lli ino:%lx sdev:%x\n", 1055 epi->ffd.fd, epi-> 932 epi->ffd.fd, epi->event.events, 1056 (long long)epi->ev 933 (long long)epi->event.data, 1057 (long long)epi->ff 934 (long long)epi->ffd.file->f_pos, 1058 inode->i_ino, inod 935 inode->i_ino, inode->i_sb->s_dev); 1059 if (seq_has_overflowed(m)) 936 if (seq_has_overflowed(m)) 1060 break; 937 break; 1061 } 938 } 1062 mutex_unlock(&ep->mtx); 939 mutex_unlock(&ep->mtx); 1063 } 940 } 1064 #endif 941 #endif 1065 942 1066 /* File callbacks that implement the eventpol 943 /* File callbacks that implement the eventpoll file behaviour */ 1067 static const struct file_operations eventpoll 944 static const struct file_operations eventpoll_fops = { 1068 #ifdef CONFIG_PROC_FS 945 #ifdef CONFIG_PROC_FS 1069 .show_fdinfo = ep_show_fdinfo, 946 .show_fdinfo = ep_show_fdinfo, 1070 #endif 947 #endif 1071 .release = ep_eventpoll_releas 948 .release = ep_eventpoll_release, 1072 .poll = ep_eventpoll_poll, 949 .poll = ep_eventpoll_poll, 1073 .llseek = noop_llseek, 950 .llseek = noop_llseek, 1074 .unlocked_ioctl = ep_eventpoll_ioctl, << 1075 .compat_ioctl = compat_ptr_ioctl, << 1076 }; 951 }; 1077 952 1078 /* 953 /* 1079 * This is called from eventpoll_release() to 954 * This is called from eventpoll_release() to unlink files from the eventpoll 1080 * interface. We need to have this facility t 955 * interface. We need to have this facility to cleanup correctly files that are 1081 * closed without being removed from the even 956 * closed without being removed from the eventpoll interface. 1082 */ 957 */ 1083 void eventpoll_release_file(struct file *file 958 void eventpoll_release_file(struct file *file) 1084 { 959 { 1085 struct eventpoll *ep; 960 struct eventpoll *ep; 1086 struct epitem *epi; !! 961 struct epitem *epi, *next; 1087 bool dispose; << 1088 962 1089 /* 963 /* 1090 * Use the 'dying' flag to prevent a !! 964 * We don't want to get "file->f_lock" because it is not 1091 * touching the epitems list before e !! 965 * necessary. It is not necessary because we're in the "struct file" 1092 * the ep->mtx. !! 966 * cleanup path, and this means that no one is using this file anymore. >> 967 * So, for example, epoll_ctl() cannot hit here since if we reach this >> 968 * point, the file counter already went to zero and fget() would fail. >> 969 * The only hit might come from ep_free() but by holding the mutex >> 970 * will correctly serialize the operation. We do need to acquire >> 971 * "ep->mtx" after "epmutex" because ep_remove() requires it when called >> 972 * from anywhere but ep_free(). >> 973 * >> 974 * Besides, ep_remove() acquires the lock, so we can't hold it here. 1093 */ 975 */ 1094 again: !! 976 mutex_lock(&epmutex); 1095 spin_lock(&file->f_lock); !! 977 list_for_each_entry_safe(epi, next, &file->f_ep_links, fllink) { 1096 if (file->f_ep && file->f_ep->first) << 1097 epi = hlist_entry(file->f_ep- << 1098 epi->dying = true; << 1099 spin_unlock(&file->f_lock); << 1100 << 1101 /* << 1102 * ep access is safe as we st << 1103 * struct << 1104 */ << 1105 ep = epi->ep; 978 ep = epi->ep; 1106 mutex_lock(&ep->mtx); !! 979 mutex_lock_nested(&ep->mtx, 0); 1107 dispose = __ep_remove(ep, epi !! 980 ep_remove(ep, epi); 1108 mutex_unlock(&ep->mtx); 981 mutex_unlock(&ep->mtx); 1109 << 1110 if (dispose) << 1111 ep_free(ep); << 1112 goto again; << 1113 } 982 } 1114 spin_unlock(&file->f_lock); !! 983 mutex_unlock(&epmutex); 1115 } 984 } 1116 985 1117 static int ep_alloc(struct eventpoll **pep) 986 static int ep_alloc(struct eventpoll **pep) 1118 { 987 { >> 988 int error; >> 989 struct user_struct *user; 1119 struct eventpoll *ep; 990 struct eventpoll *ep; 1120 991 >> 992 user = get_current_user(); >> 993 error = -ENOMEM; 1121 ep = kzalloc(sizeof(*ep), GFP_KERNEL) 994 ep = kzalloc(sizeof(*ep), GFP_KERNEL); 1122 if (unlikely(!ep)) 995 if (unlikely(!ep)) 1123 return -ENOMEM; !! 996 goto free_uid; 1124 997 1125 mutex_init(&ep->mtx); 998 mutex_init(&ep->mtx); 1126 rwlock_init(&ep->lock); 999 rwlock_init(&ep->lock); 1127 init_waitqueue_head(&ep->wq); 1000 init_waitqueue_head(&ep->wq); 1128 init_waitqueue_head(&ep->poll_wait); 1001 init_waitqueue_head(&ep->poll_wait); 1129 INIT_LIST_HEAD(&ep->rdllist); 1002 INIT_LIST_HEAD(&ep->rdllist); 1130 ep->rbr = RB_ROOT_CACHED; 1003 ep->rbr = RB_ROOT_CACHED; 1131 ep->ovflist = EP_UNACTIVE_PTR; 1004 ep->ovflist = EP_UNACTIVE_PTR; 1132 ep->user = get_current_user(); !! 1005 ep->user = user; 1133 refcount_set(&ep->refcount, 1); << 1134 1006 1135 *pep = ep; 1007 *pep = ep; 1136 1008 1137 return 0; 1009 return 0; >> 1010 >> 1011 free_uid: >> 1012 free_uid(user); >> 1013 return error; 1138 } 1014 } 1139 1015 1140 /* 1016 /* 1141 * Search the file inside the eventpoll tree. 1017 * Search the file inside the eventpoll tree. The RB tree operations 1142 * are protected by the "mtx" mutex, and ep_f 1018 * are protected by the "mtx" mutex, and ep_find() must be called with 1143 * "mtx" held. 1019 * "mtx" held. 1144 */ 1020 */ 1145 static struct epitem *ep_find(struct eventpol 1021 static struct epitem *ep_find(struct eventpoll *ep, struct file *file, int fd) 1146 { 1022 { 1147 int kcmp; 1023 int kcmp; 1148 struct rb_node *rbp; 1024 struct rb_node *rbp; 1149 struct epitem *epi, *epir = NULL; 1025 struct epitem *epi, *epir = NULL; 1150 struct epoll_filefd ffd; 1026 struct epoll_filefd ffd; 1151 1027 1152 ep_set_ffd(&ffd, file, fd); 1028 ep_set_ffd(&ffd, file, fd); 1153 for (rbp = ep->rbr.rb_root.rb_node; r 1029 for (rbp = ep->rbr.rb_root.rb_node; rbp; ) { 1154 epi = rb_entry(rbp, struct ep 1030 epi = rb_entry(rbp, struct epitem, rbn); 1155 kcmp = ep_cmp_ffd(&ffd, &epi- 1031 kcmp = ep_cmp_ffd(&ffd, &epi->ffd); 1156 if (kcmp > 0) 1032 if (kcmp > 0) 1157 rbp = rbp->rb_right; 1033 rbp = rbp->rb_right; 1158 else if (kcmp < 0) 1034 else if (kcmp < 0) 1159 rbp = rbp->rb_left; 1035 rbp = rbp->rb_left; 1160 else { 1036 else { 1161 epir = epi; 1037 epir = epi; 1162 break; 1038 break; 1163 } 1039 } 1164 } 1040 } 1165 1041 1166 return epir; 1042 return epir; 1167 } 1043 } 1168 1044 1169 #ifdef CONFIG_KCMP !! 1045 #ifdef CONFIG_CHECKPOINT_RESTORE 1170 static struct epitem *ep_find_tfd(struct even 1046 static struct epitem *ep_find_tfd(struct eventpoll *ep, int tfd, unsigned long toff) 1171 { 1047 { 1172 struct rb_node *rbp; 1048 struct rb_node *rbp; 1173 struct epitem *epi; 1049 struct epitem *epi; 1174 1050 1175 for (rbp = rb_first_cached(&ep->rbr); 1051 for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) { 1176 epi = rb_entry(rbp, struct ep 1052 epi = rb_entry(rbp, struct epitem, rbn); 1177 if (epi->ffd.fd == tfd) { 1053 if (epi->ffd.fd == tfd) { 1178 if (toff == 0) 1054 if (toff == 0) 1179 return epi; 1055 return epi; 1180 else 1056 else 1181 toff--; 1057 toff--; 1182 } 1058 } 1183 cond_resched(); 1059 cond_resched(); 1184 } 1060 } 1185 1061 1186 return NULL; 1062 return NULL; 1187 } 1063 } 1188 1064 1189 struct file *get_epoll_tfile_raw_ptr(struct f 1065 struct file *get_epoll_tfile_raw_ptr(struct file *file, int tfd, 1190 unsigned 1066 unsigned long toff) 1191 { 1067 { 1192 struct file *file_raw; 1068 struct file *file_raw; 1193 struct eventpoll *ep; 1069 struct eventpoll *ep; 1194 struct epitem *epi; 1070 struct epitem *epi; 1195 1071 1196 if (!is_file_epoll(file)) 1072 if (!is_file_epoll(file)) 1197 return ERR_PTR(-EINVAL); 1073 return ERR_PTR(-EINVAL); 1198 1074 1199 ep = file->private_data; 1075 ep = file->private_data; 1200 1076 1201 mutex_lock(&ep->mtx); 1077 mutex_lock(&ep->mtx); 1202 epi = ep_find_tfd(ep, tfd, toff); 1078 epi = ep_find_tfd(ep, tfd, toff); 1203 if (epi) 1079 if (epi) 1204 file_raw = epi->ffd.file; 1080 file_raw = epi->ffd.file; 1205 else 1081 else 1206 file_raw = ERR_PTR(-ENOENT); 1082 file_raw = ERR_PTR(-ENOENT); 1207 mutex_unlock(&ep->mtx); 1083 mutex_unlock(&ep->mtx); 1208 1084 1209 return file_raw; 1085 return file_raw; 1210 } 1086 } 1211 #endif /* CONFIG_KCMP */ !! 1087 #endif /* CONFIG_CHECKPOINT_RESTORE */ 1212 1088 1213 /* !! 1089 /** 1214 * Adds a new entry to the tail of the list i 1090 * Adds a new entry to the tail of the list in a lockless way, i.e. 1215 * multiple CPUs are allowed to call this fun 1091 * multiple CPUs are allowed to call this function concurrently. 1216 * 1092 * 1217 * Beware: it is necessary to prevent any oth 1093 * Beware: it is necessary to prevent any other modifications of the 1218 * existing list until all changes ar 1094 * existing list until all changes are completed, in other words 1219 * concurrent list_add_tail_lockless( 1095 * concurrent list_add_tail_lockless() calls should be protected 1220 * with a read lock, where write lock 1096 * with a read lock, where write lock acts as a barrier which 1221 * makes sure all list_add_tail_lockl 1097 * makes sure all list_add_tail_lockless() calls are fully 1222 * completed. 1098 * completed. 1223 * 1099 * 1224 * Also an element can be locklessly a 1100 * Also an element can be locklessly added to the list only in one 1225 * direction i.e. either to the tail o !! 1101 * direction i.e. either to the tail either to the head, otherwise 1226 * concurrent access will corrupt the 1102 * concurrent access will corrupt the list. 1227 * 1103 * 1228 * Return: %false if element has been already !! 1104 * Returns %false if element has been already added to the list, %true 1229 * otherwise. 1105 * otherwise. 1230 */ 1106 */ 1231 static inline bool list_add_tail_lockless(str 1107 static inline bool list_add_tail_lockless(struct list_head *new, 1232 str 1108 struct list_head *head) 1233 { 1109 { 1234 struct list_head *prev; 1110 struct list_head *prev; 1235 1111 1236 /* 1112 /* 1237 * This is simple 'new->next = head' 1113 * This is simple 'new->next = head' operation, but cmpxchg() 1238 * is used in order to detect that sa 1114 * is used in order to detect that same element has been just 1239 * added to the list from another CPU 1115 * added to the list from another CPU: the winner observes 1240 * new->next == new. 1116 * new->next == new. 1241 */ 1117 */ 1242 if (!try_cmpxchg(&new->next, &new, he !! 1118 if (cmpxchg(&new->next, new, head) != new) 1243 return false; 1119 return false; 1244 1120 1245 /* 1121 /* 1246 * Initially ->next of a new element 1122 * Initially ->next of a new element must be updated with the head 1247 * (we are inserting to the tail) and 1123 * (we are inserting to the tail) and only then pointers are atomically 1248 * exchanged. XCHG guarantees memory 1124 * exchanged. XCHG guarantees memory ordering, thus ->next should be 1249 * updated before pointers are actual 1125 * updated before pointers are actually swapped and pointers are 1250 * swapped before prev->next is updat 1126 * swapped before prev->next is updated. 1251 */ 1127 */ 1252 1128 1253 prev = xchg(&head->prev, new); 1129 prev = xchg(&head->prev, new); 1254 1130 1255 /* 1131 /* 1256 * It is safe to modify prev->next an 1132 * It is safe to modify prev->next and new->prev, because a new element 1257 * is added only to the tail and new- 1133 * is added only to the tail and new->next is updated before XCHG. 1258 */ 1134 */ 1259 1135 1260 prev->next = new; 1136 prev->next = new; 1261 new->prev = prev; 1137 new->prev = prev; 1262 1138 1263 return true; 1139 return true; 1264 } 1140 } 1265 1141 1266 /* !! 1142 /** 1267 * Chains a new epi entry to the tail of the 1143 * Chains a new epi entry to the tail of the ep->ovflist in a lockless way, 1268 * i.e. multiple CPUs are allowed to call thi 1144 * i.e. multiple CPUs are allowed to call this function concurrently. 1269 * 1145 * 1270 * Return: %false if epi element has been alr !! 1146 * Returns %false if epi element has been already chained, %true otherwise. 1271 */ 1147 */ 1272 static inline bool chain_epi_lockless(struct 1148 static inline bool chain_epi_lockless(struct epitem *epi) 1273 { 1149 { 1274 struct eventpoll *ep = epi->ep; 1150 struct eventpoll *ep = epi->ep; 1275 1151 1276 /* Fast preliminary check */ 1152 /* Fast preliminary check */ 1277 if (epi->next != EP_UNACTIVE_PTR) 1153 if (epi->next != EP_UNACTIVE_PTR) 1278 return false; 1154 return false; 1279 1155 1280 /* Check that the same epi has not be 1156 /* Check that the same epi has not been just chained from another CPU */ 1281 if (cmpxchg(&epi->next, EP_UNACTIVE_P 1157 if (cmpxchg(&epi->next, EP_UNACTIVE_PTR, NULL) != EP_UNACTIVE_PTR) 1282 return false; 1158 return false; 1283 1159 1284 /* Atomically exchange tail */ 1160 /* Atomically exchange tail */ 1285 epi->next = xchg(&ep->ovflist, epi); 1161 epi->next = xchg(&ep->ovflist, epi); 1286 1162 1287 return true; 1163 return true; 1288 } 1164 } 1289 1165 1290 /* 1166 /* 1291 * This is the callback that is passed to the 1167 * This is the callback that is passed to the wait queue wakeup 1292 * mechanism. It is called by the stored file 1168 * mechanism. It is called by the stored file descriptors when they 1293 * have events to report. 1169 * have events to report. 1294 * 1170 * 1295 * This callback takes a read lock in order n !! 1171 * This callback takes a read lock in order not to content with concurrent 1296 * events from another file descriptor, thus !! 1172 * events from another file descriptors, thus all modifications to ->rdllist 1297 * or ->ovflist are lockless. Read lock is p 1173 * or ->ovflist are lockless. Read lock is paired with the write lock from 1298 * ep_start/done_scan(), which stops all list !! 1174 * ep_scan_ready_list(), which stops all list modifications and guarantees 1299 * that lists state is seen correctly. 1175 * that lists state is seen correctly. 1300 * 1176 * 1301 * Another thing worth to mention is that ep_ 1177 * Another thing worth to mention is that ep_poll_callback() can be called 1302 * concurrently for the same @epi from differ 1178 * concurrently for the same @epi from different CPUs if poll table was inited 1303 * with several wait queues entries. Plural 1179 * with several wait queues entries. Plural wakeup from different CPUs of a 1304 * single wait queue is serialized by wq.lock 1180 * single wait queue is serialized by wq.lock, but the case when multiple wait 1305 * queues are used should be detected accordi 1181 * queues are used should be detected accordingly. This is detected using 1306 * cmpxchg() operation. 1182 * cmpxchg() operation. 1307 */ 1183 */ 1308 static int ep_poll_callback(wait_queue_entry_ 1184 static int ep_poll_callback(wait_queue_entry_t *wait, unsigned mode, int sync, void *key) 1309 { 1185 { 1310 int pwake = 0; 1186 int pwake = 0; 1311 struct epitem *epi = ep_item_from_wai 1187 struct epitem *epi = ep_item_from_wait(wait); 1312 struct eventpoll *ep = epi->ep; 1188 struct eventpoll *ep = epi->ep; 1313 __poll_t pollflags = key_to_poll(key) 1189 __poll_t pollflags = key_to_poll(key); 1314 unsigned long flags; 1190 unsigned long flags; 1315 int ewake = 0; 1191 int ewake = 0; 1316 1192 1317 read_lock_irqsave(&ep->lock, flags); 1193 read_lock_irqsave(&ep->lock, flags); 1318 1194 1319 ep_set_busy_poll_napi_id(epi); 1195 ep_set_busy_poll_napi_id(epi); 1320 1196 1321 /* 1197 /* 1322 * If the event mask does not contain 1198 * If the event mask does not contain any poll(2) event, we consider the 1323 * descriptor to be disabled. This co 1199 * descriptor to be disabled. This condition is likely the effect of the 1324 * EPOLLONESHOT bit that disables the 1200 * EPOLLONESHOT bit that disables the descriptor when an event is received, 1325 * until the next EPOLL_CTL_MOD will 1201 * until the next EPOLL_CTL_MOD will be issued. 1326 */ 1202 */ 1327 if (!(epi->event.events & ~EP_PRIVATE 1203 if (!(epi->event.events & ~EP_PRIVATE_BITS)) 1328 goto out_unlock; 1204 goto out_unlock; 1329 1205 1330 /* 1206 /* 1331 * Check the events coming with the c 1207 * Check the events coming with the callback. At this stage, not 1332 * every device reports the events in 1208 * every device reports the events in the "key" parameter of the 1333 * callback. We need to be able to ha 1209 * callback. We need to be able to handle both cases here, hence the 1334 * test for "key" != NULL before the 1210 * test for "key" != NULL before the event match test. 1335 */ 1211 */ 1336 if (pollflags && !(pollflags & epi->e 1212 if (pollflags && !(pollflags & epi->event.events)) 1337 goto out_unlock; 1213 goto out_unlock; 1338 1214 1339 /* 1215 /* 1340 * If we are transferring events to u 1216 * If we are transferring events to userspace, we can hold no locks 1341 * (because we're accessing user memo 1217 * (because we're accessing user memory, and because of linux f_op->poll() 1342 * semantics). All the events that ha 1218 * semantics). All the events that happen during that period of time are 1343 * chained in ep->ovflist and requeue 1219 * chained in ep->ovflist and requeued later on. 1344 */ 1220 */ 1345 if (READ_ONCE(ep->ovflist) != EP_UNAC 1221 if (READ_ONCE(ep->ovflist) != EP_UNACTIVE_PTR) { 1346 if (chain_epi_lockless(epi)) 1222 if (chain_epi_lockless(epi)) 1347 ep_pm_stay_awake_rcu( 1223 ep_pm_stay_awake_rcu(epi); 1348 } else if (!ep_is_linked(epi)) { 1224 } else if (!ep_is_linked(epi)) { 1349 /* In the usual case, add eve 1225 /* In the usual case, add event to ready list. */ 1350 if (list_add_tail_lockless(&e 1226 if (list_add_tail_lockless(&epi->rdllink, &ep->rdllist)) 1351 ep_pm_stay_awake_rcu( 1227 ep_pm_stay_awake_rcu(epi); 1352 } 1228 } 1353 1229 1354 /* 1230 /* 1355 * Wake up ( if active ) both the eve 1231 * Wake up ( if active ) both the eventpoll wait list and the ->poll() 1356 * wait list. 1232 * wait list. 1357 */ 1233 */ 1358 if (waitqueue_active(&ep->wq)) { 1234 if (waitqueue_active(&ep->wq)) { 1359 if ((epi->event.events & EPOL 1235 if ((epi->event.events & EPOLLEXCLUSIVE) && 1360 !(pol 1236 !(pollflags & POLLFREE)) { 1361 switch (pollflags & E 1237 switch (pollflags & EPOLLINOUT_BITS) { 1362 case EPOLLIN: 1238 case EPOLLIN: 1363 if (epi->even 1239 if (epi->event.events & EPOLLIN) 1364 ewake 1240 ewake = 1; 1365 break; 1241 break; 1366 case EPOLLOUT: 1242 case EPOLLOUT: 1367 if (epi->even 1243 if (epi->event.events & EPOLLOUT) 1368 ewake 1244 ewake = 1; 1369 break; 1245 break; 1370 case 0: 1246 case 0: 1371 ewake = 1; 1247 ewake = 1; 1372 break; 1248 break; 1373 } 1249 } 1374 } 1250 } 1375 wake_up(&ep->wq); 1251 wake_up(&ep->wq); 1376 } 1252 } 1377 if (waitqueue_active(&ep->poll_wait)) 1253 if (waitqueue_active(&ep->poll_wait)) 1378 pwake++; 1254 pwake++; 1379 1255 1380 out_unlock: 1256 out_unlock: 1381 read_unlock_irqrestore(&ep->lock, fla 1257 read_unlock_irqrestore(&ep->lock, flags); 1382 1258 1383 /* We have to call this outside the l 1259 /* We have to call this outside the lock */ 1384 if (pwake) 1260 if (pwake) 1385 ep_poll_safewake(ep, epi, pol !! 1261 ep_poll_safewake(&ep->poll_wait); 1386 1262 1387 if (!(epi->event.events & EPOLLEXCLUS 1263 if (!(epi->event.events & EPOLLEXCLUSIVE)) 1388 ewake = 1; 1264 ewake = 1; 1389 1265 1390 if (pollflags & POLLFREE) { 1266 if (pollflags & POLLFREE) { 1391 /* 1267 /* 1392 * If we race with ep_remove_ 1268 * If we race with ep_remove_wait_queue() it can miss 1393 * ->whead = NULL and do anot 1269 * ->whead = NULL and do another remove_wait_queue() after 1394 * us, so we can't use __remo 1270 * us, so we can't use __remove_wait_queue(). 1395 */ 1271 */ 1396 list_del_init(&wait->entry); 1272 list_del_init(&wait->entry); 1397 /* 1273 /* 1398 * ->whead != NULL protects u !! 1274 * ->whead != NULL protects us from the race with ep_free() 1399 * ep_clear_and_put() or ep_r !! 1275 * or ep_remove(), ep_remove_wait_queue() takes whead->lock 1400 * takes whead->lock held by !! 1276 * held by the caller. Once we nullify it, nothing protects 1401 * nothing protects ep/epi or !! 1277 * ep/epi or even wait. 1402 */ 1278 */ 1403 smp_store_release(&ep_pwq_fro 1279 smp_store_release(&ep_pwq_from_wait(wait)->whead, NULL); 1404 } 1280 } 1405 1281 1406 return ewake; 1282 return ewake; 1407 } 1283 } 1408 1284 1409 /* 1285 /* 1410 * This is the callback that is used to add o 1286 * This is the callback that is used to add our wait queue to the 1411 * target file wakeup lists. 1287 * target file wakeup lists. 1412 */ 1288 */ 1413 static void ep_ptable_queue_proc(struct file 1289 static void ep_ptable_queue_proc(struct file *file, wait_queue_head_t *whead, 1414 poll_table * 1290 poll_table *pt) 1415 { 1291 { 1416 struct ep_pqueue *epq = container_of( !! 1292 struct epitem *epi = ep_item_from_epqueue(pt); 1417 struct epitem *epi = epq->epi; << 1418 struct eppoll_entry *pwq; 1293 struct eppoll_entry *pwq; 1419 1294 1420 if (unlikely(!epi)) // an earlier !! 1295 if (epi->nwait >= 0 && (pwq = kmem_cache_alloc(pwq_cache, GFP_KERNEL))) { 1421 return; !! 1296 init_waitqueue_func_entry(&pwq->wait, ep_poll_callback); 1422 !! 1297 pwq->whead = whead; 1423 pwq = kmem_cache_alloc(pwq_cache, GFP !! 1298 pwq->base = epi; 1424 if (unlikely(!pwq)) { !! 1299 if (epi->event.events & EPOLLEXCLUSIVE) 1425 epq->epi = NULL; !! 1300 add_wait_queue_exclusive(whead, &pwq->wait); 1426 return; !! 1301 else >> 1302 add_wait_queue(whead, &pwq->wait); >> 1303 list_add_tail(&pwq->llink, &epi->pwqlist); >> 1304 epi->nwait++; >> 1305 } else { >> 1306 /* We have to signal that an error occurred */ >> 1307 epi->nwait = -1; 1427 } 1308 } 1428 << 1429 init_waitqueue_func_entry(&pwq->wait, << 1430 pwq->whead = whead; << 1431 pwq->base = epi; << 1432 if (epi->event.events & EPOLLEXCLUSIV << 1433 add_wait_queue_exclusive(whea << 1434 else << 1435 add_wait_queue(whead, &pwq->w << 1436 pwq->next = epi->pwqlist; << 1437 epi->pwqlist = pwq; << 1438 } 1309 } 1439 1310 1440 static void ep_rbtree_insert(struct eventpoll 1311 static void ep_rbtree_insert(struct eventpoll *ep, struct epitem *epi) 1441 { 1312 { 1442 int kcmp; 1313 int kcmp; 1443 struct rb_node **p = &ep->rbr.rb_root 1314 struct rb_node **p = &ep->rbr.rb_root.rb_node, *parent = NULL; 1444 struct epitem *epic; 1315 struct epitem *epic; 1445 bool leftmost = true; 1316 bool leftmost = true; 1446 1317 1447 while (*p) { 1318 while (*p) { 1448 parent = *p; 1319 parent = *p; 1449 epic = rb_entry(parent, struc 1320 epic = rb_entry(parent, struct epitem, rbn); 1450 kcmp = ep_cmp_ffd(&epi->ffd, 1321 kcmp = ep_cmp_ffd(&epi->ffd, &epic->ffd); 1451 if (kcmp > 0) { 1322 if (kcmp > 0) { 1452 p = &parent->rb_right 1323 p = &parent->rb_right; 1453 leftmost = false; 1324 leftmost = false; 1454 } else 1325 } else 1455 p = &parent->rb_left; 1326 p = &parent->rb_left; 1456 } 1327 } 1457 rb_link_node(&epi->rbn, parent, p); 1328 rb_link_node(&epi->rbn, parent, p); 1458 rb_insert_color_cached(&epi->rbn, &ep 1329 rb_insert_color_cached(&epi->rbn, &ep->rbr, leftmost); 1459 } 1330 } 1460 1331 1461 1332 1462 1333 1463 #define PATH_ARR_SIZE 5 1334 #define PATH_ARR_SIZE 5 1464 /* 1335 /* 1465 * These are the number paths of length 1 to 1336 * These are the number paths of length 1 to 5, that we are allowing to emanate 1466 * from a single file of interest. For exampl 1337 * from a single file of interest. For example, we allow 1000 paths of length 1467 * 1, to emanate from each file of interest. 1338 * 1, to emanate from each file of interest. This essentially represents the 1468 * potential wakeup paths, which need to be l 1339 * potential wakeup paths, which need to be limited in order to avoid massive 1469 * uncontrolled wakeup storms. The common use 1340 * uncontrolled wakeup storms. The common use case should be a single ep which 1470 * is connected to n file sources. In this ca 1341 * is connected to n file sources. In this case each file source has 1 path 1471 * of length 1. Thus, the numbers below shoul 1342 * of length 1. Thus, the numbers below should be more than sufficient. These 1472 * path limits are enforced during an EPOLL_C 1343 * path limits are enforced during an EPOLL_CTL_ADD operation, since a modify 1473 * and delete can't add additional paths. Pro !! 1344 * and delete can't add additional paths. Protected by the epmutex. 1474 */ 1345 */ 1475 static const int path_limits[PATH_ARR_SIZE] = 1346 static const int path_limits[PATH_ARR_SIZE] = { 1000, 500, 100, 50, 10 }; 1476 static int path_count[PATH_ARR_SIZE]; 1347 static int path_count[PATH_ARR_SIZE]; 1477 1348 1478 static int path_count_inc(int nests) 1349 static int path_count_inc(int nests) 1479 { 1350 { 1480 /* Allow an arbitrary number of depth 1351 /* Allow an arbitrary number of depth 1 paths */ 1481 if (nests == 0) 1352 if (nests == 0) 1482 return 0; 1353 return 0; 1483 1354 1484 if (++path_count[nests] > path_limits 1355 if (++path_count[nests] > path_limits[nests]) 1485 return -1; 1356 return -1; 1486 return 0; 1357 return 0; 1487 } 1358 } 1488 1359 1489 static void path_count_init(void) 1360 static void path_count_init(void) 1490 { 1361 { 1491 int i; 1362 int i; 1492 1363 1493 for (i = 0; i < PATH_ARR_SIZE; i++) 1364 for (i = 0; i < PATH_ARR_SIZE; i++) 1494 path_count[i] = 0; 1365 path_count[i] = 0; 1495 } 1366 } 1496 1367 1497 static int reverse_path_check_proc(struct hli !! 1368 static int reverse_path_check_proc(void *priv, void *cookie, int call_nests) 1498 { 1369 { 1499 int error = 0; 1370 int error = 0; >> 1371 struct file *file = priv; >> 1372 struct file *child_file; 1500 struct epitem *epi; 1373 struct epitem *epi; 1501 1374 1502 if (depth > EP_MAX_NESTS) /* too deep << 1503 return -1; << 1504 << 1505 /* CTL_DEL can remove links here, but 1375 /* CTL_DEL can remove links here, but that can't increase our count */ 1506 hlist_for_each_entry_rcu(epi, refs, f !! 1376 rcu_read_lock(); 1507 struct hlist_head *refs = &ep !! 1377 list_for_each_entry_rcu(epi, &file->f_ep_links, fllink) { 1508 if (hlist_empty(refs)) !! 1378 child_file = epi->ep->file; 1509 error = path_count_in !! 1379 if (is_file_epoll(child_file)) { 1510 else !! 1380 if (list_empty(&child_file->f_ep_links)) { 1511 error = reverse_path_ !! 1381 if (path_count_inc(call_nests)) { 1512 if (error != 0) !! 1382 error = -1; 1513 break; !! 1383 break; >> 1384 } >> 1385 } else { >> 1386 error = ep_call_nested(&poll_loop_ncalls, >> 1387 reverse_path_check_proc, >> 1388 child_file, child_file, >> 1389 current); >> 1390 } >> 1391 if (error != 0) >> 1392 break; >> 1393 } else { >> 1394 printk(KERN_ERR "reverse_path_check_proc: " >> 1395 "file is not an ep!\n"); >> 1396 } 1514 } 1397 } >> 1398 rcu_read_unlock(); 1515 return error; 1399 return error; 1516 } 1400 } 1517 1401 1518 /** 1402 /** 1519 * reverse_path_check - The tfile_check_list !! 1403 * reverse_path_check - The tfile_check_list is list of file *, which have 1520 * links that are propos 1404 * links that are proposed to be newly added. We need to 1521 * make sure that those 1405 * make sure that those added links don't add too many 1522 * paths such that we wi 1406 * paths such that we will spend all our time waking up 1523 * eventpoll objects. 1407 * eventpoll objects. 1524 * 1408 * 1525 * Return: %zero if the proposed links don't !! 1409 * Returns: Returns zero if the proposed links don't create too many paths, 1526 * %-1 otherwise. !! 1410 * -1 otherwise. 1527 */ 1411 */ 1528 static int reverse_path_check(void) 1412 static int reverse_path_check(void) 1529 { 1413 { 1530 struct epitems_head *p; !! 1414 int error = 0; >> 1415 struct file *current_file; 1531 1416 1532 for (p = tfile_check_list; p != EP_UN !! 1417 /* let's call this for all tfiles */ 1533 int error; !! 1418 list_for_each_entry(current_file, &tfile_check_list, f_tfile_llink) { 1534 path_count_init(); 1419 path_count_init(); 1535 rcu_read_lock(); !! 1420 error = ep_call_nested(&poll_loop_ncalls, 1536 error = reverse_path_check_pr !! 1421 reverse_path_check_proc, current_file, 1537 rcu_read_unlock(); !! 1422 current_file, current); 1538 if (error) 1423 if (error) 1539 return error; !! 1424 break; 1540 } 1425 } 1541 return 0; !! 1426 return error; 1542 } 1427 } 1543 1428 1544 static int ep_create_wakeup_source(struct epi 1429 static int ep_create_wakeup_source(struct epitem *epi) 1545 { 1430 { 1546 struct name_snapshot n; !! 1431 const char *name; 1547 struct wakeup_source *ws; 1432 struct wakeup_source *ws; 1548 1433 1549 if (!epi->ep->ws) { 1434 if (!epi->ep->ws) { 1550 epi->ep->ws = wakeup_source_r 1435 epi->ep->ws = wakeup_source_register(NULL, "eventpoll"); 1551 if (!epi->ep->ws) 1436 if (!epi->ep->ws) 1552 return -ENOMEM; 1437 return -ENOMEM; 1553 } 1438 } 1554 1439 1555 take_dentry_name_snapshot(&n, epi->ff !! 1440 name = epi->ffd.file->f_path.dentry->d_name.name; 1556 ws = wakeup_source_register(NULL, n.n !! 1441 ws = wakeup_source_register(NULL, name); 1557 release_dentry_name_snapshot(&n); << 1558 1442 1559 if (!ws) 1443 if (!ws) 1560 return -ENOMEM; 1444 return -ENOMEM; 1561 rcu_assign_pointer(epi->ws, ws); 1445 rcu_assign_pointer(epi->ws, ws); 1562 1446 1563 return 0; 1447 return 0; 1564 } 1448 } 1565 1449 1566 /* rare code path, only used when EPOLL_CTL_M 1450 /* rare code path, only used when EPOLL_CTL_MOD removes a wakeup source */ 1567 static noinline void ep_destroy_wakeup_source 1451 static noinline void ep_destroy_wakeup_source(struct epitem *epi) 1568 { 1452 { 1569 struct wakeup_source *ws = ep_wakeup_ 1453 struct wakeup_source *ws = ep_wakeup_source(epi); 1570 1454 1571 RCU_INIT_POINTER(epi->ws, NULL); 1455 RCU_INIT_POINTER(epi->ws, NULL); 1572 1456 1573 /* 1457 /* 1574 * wait for ep_pm_stay_awake_rcu to f 1458 * wait for ep_pm_stay_awake_rcu to finish, synchronize_rcu is 1575 * used internally by wakeup_source_r 1459 * used internally by wakeup_source_remove, too (called by 1576 * wakeup_source_unregister), so we c 1460 * wakeup_source_unregister), so we cannot use call_rcu 1577 */ 1461 */ 1578 synchronize_rcu(); 1462 synchronize_rcu(); 1579 wakeup_source_unregister(ws); 1463 wakeup_source_unregister(ws); 1580 } 1464 } 1581 1465 1582 static int attach_epitem(struct file *file, s << 1583 { << 1584 struct epitems_head *to_free = NULL; << 1585 struct hlist_head *head = NULL; << 1586 struct eventpoll *ep = NULL; << 1587 << 1588 if (is_file_epoll(file)) << 1589 ep = file->private_data; << 1590 << 1591 if (ep) { << 1592 head = &ep->refs; << 1593 } else if (!READ_ONCE(file->f_ep)) { << 1594 allocate: << 1595 to_free = kmem_cache_zalloc(e << 1596 if (!to_free) << 1597 return -ENOMEM; << 1598 head = &to_free->epitems; << 1599 } << 1600 spin_lock(&file->f_lock); << 1601 if (!file->f_ep) { << 1602 if (unlikely(!head)) { << 1603 spin_unlock(&file->f_ << 1604 goto allocate; << 1605 } << 1606 file->f_ep = head; << 1607 to_free = NULL; << 1608 } << 1609 hlist_add_head_rcu(&epi->fllink, file << 1610 spin_unlock(&file->f_lock); << 1611 free_ephead(to_free); << 1612 return 0; << 1613 } << 1614 << 1615 /* 1466 /* 1616 * Must be called with "mtx" held. 1467 * Must be called with "mtx" held. 1617 */ 1468 */ 1618 static int ep_insert(struct eventpoll *ep, co 1469 static int ep_insert(struct eventpoll *ep, const struct epoll_event *event, 1619 struct file *tfile, int 1470 struct file *tfile, int fd, int full_check) 1620 { 1471 { 1621 int error, pwake = 0; 1472 int error, pwake = 0; 1622 __poll_t revents; 1473 __poll_t revents; >> 1474 long user_watches; 1623 struct epitem *epi; 1475 struct epitem *epi; 1624 struct ep_pqueue epq; 1476 struct ep_pqueue epq; 1625 struct eventpoll *tep = NULL; << 1626 << 1627 if (is_file_epoll(tfile)) << 1628 tep = tfile->private_data; << 1629 1477 1630 lockdep_assert_irqs_enabled(); 1478 lockdep_assert_irqs_enabled(); 1631 1479 1632 if (unlikely(percpu_counter_compare(& !! 1480 user_watches = atomic_long_read(&ep->user->epoll_watches); 1633 m !! 1481 if (unlikely(user_watches >= max_user_watches)) 1634 return -ENOSPC; 1482 return -ENOSPC; 1635 percpu_counter_inc(&ep->user->epoll_w !! 1483 if (!(epi = kmem_cache_alloc(epi_cache, GFP_KERNEL))) 1636 << 1637 if (!(epi = kmem_cache_zalloc(epi_cac << 1638 percpu_counter_dec(&ep->user- << 1639 return -ENOMEM; 1484 return -ENOMEM; 1640 } << 1641 1485 1642 /* Item initialization follow here .. 1486 /* Item initialization follow here ... */ 1643 INIT_LIST_HEAD(&epi->rdllink); 1487 INIT_LIST_HEAD(&epi->rdllink); >> 1488 INIT_LIST_HEAD(&epi->fllink); >> 1489 INIT_LIST_HEAD(&epi->pwqlist); 1644 epi->ep = ep; 1490 epi->ep = ep; 1645 ep_set_ffd(&epi->ffd, tfile, fd); 1491 ep_set_ffd(&epi->ffd, tfile, fd); 1646 epi->event = *event; 1492 epi->event = *event; >> 1493 epi->nwait = 0; 1647 epi->next = EP_UNACTIVE_PTR; 1494 epi->next = EP_UNACTIVE_PTR; 1648 << 1649 if (tep) << 1650 mutex_lock_nested(&tep->mtx, << 1651 /* Add the current item to the list o << 1652 if (unlikely(attach_epitem(tfile, epi << 1653 if (tep) << 1654 mutex_unlock(&tep->mt << 1655 kmem_cache_free(epi_cache, ep << 1656 percpu_counter_dec(&ep->user- << 1657 return -ENOMEM; << 1658 } << 1659 << 1660 if (full_check && !tep) << 1661 list_file(tfile); << 1662 << 1663 /* << 1664 * Add the current item to the RB tre << 1665 * protected by "mtx", and ep_insert( << 1666 */ << 1667 ep_rbtree_insert(ep, epi); << 1668 if (tep) << 1669 mutex_unlock(&tep->mtx); << 1670 << 1671 /* << 1672 * ep_remove_safe() calls in the late << 1673 * ep_free() as the ep file itself st << 1674 */ << 1675 ep_get(ep); << 1676 << 1677 /* now check if we've created too man << 1678 if (unlikely(full_check && reverse_pa << 1679 ep_remove_safe(ep, epi); << 1680 return -EINVAL; << 1681 } << 1682 << 1683 if (epi->event.events & EPOLLWAKEUP) 1495 if (epi->event.events & EPOLLWAKEUP) { 1684 error = ep_create_wakeup_sour 1496 error = ep_create_wakeup_source(epi); 1685 if (error) { !! 1497 if (error) 1686 ep_remove_safe(ep, ep !! 1498 goto error_create_wakeup_source; 1687 return error; !! 1499 } else { 1688 } !! 1500 RCU_INIT_POINTER(epi->ws, NULL); 1689 } 1501 } 1690 1502 1691 /* Initialize the poll table using th 1503 /* Initialize the poll table using the queue callback */ 1692 epq.epi = epi; 1504 epq.epi = epi; 1693 init_poll_funcptr(&epq.pt, ep_ptable_ 1505 init_poll_funcptr(&epq.pt, ep_ptable_queue_proc); 1694 1506 1695 /* 1507 /* 1696 * Attach the item to the poll hooks 1508 * Attach the item to the poll hooks and get current event bits. 1697 * We can safely use the file* here b 1509 * We can safely use the file* here because its usage count has 1698 * been increased by the caller of th 1510 * been increased by the caller of this function. Note that after 1699 * this operation completes, the poll 1511 * this operation completes, the poll callback can start hitting 1700 * the new item. 1512 * the new item. 1701 */ 1513 */ 1702 revents = ep_item_poll(epi, &epq.pt, 1514 revents = ep_item_poll(epi, &epq.pt, 1); 1703 1515 1704 /* 1516 /* 1705 * We have to check if something went 1517 * We have to check if something went wrong during the poll wait queue 1706 * install process. Namely an allocat 1518 * install process. Namely an allocation for a wait queue failed due 1707 * high memory pressure. 1519 * high memory pressure. 1708 */ 1520 */ 1709 if (unlikely(!epq.epi)) { !! 1521 error = -ENOMEM; 1710 ep_remove_safe(ep, epi); !! 1522 if (epi->nwait < 0) 1711 return -ENOMEM; !! 1523 goto error_unregister; 1712 } !! 1524 >> 1525 /* Add the current item to the list of active epoll hook for this file */ >> 1526 spin_lock(&tfile->f_lock); >> 1527 list_add_tail_rcu(&epi->fllink, &tfile->f_ep_links); >> 1528 spin_unlock(&tfile->f_lock); >> 1529 >> 1530 /* >> 1531 * Add the current item to the RB tree. All RB tree operations are >> 1532 * protected by "mtx", and ep_insert() is called with "mtx" held. >> 1533 */ >> 1534 ep_rbtree_insert(ep, epi); >> 1535 >> 1536 /* now check if we've created too many backpaths */ >> 1537 error = -EINVAL; >> 1538 if (full_check && reverse_path_check()) >> 1539 goto error_remove_epi; 1713 1540 1714 /* We have to drop the new item insid 1541 /* We have to drop the new item inside our item list to keep track of it */ 1715 write_lock_irq(&ep->lock); 1542 write_lock_irq(&ep->lock); 1716 1543 1717 /* record NAPI ID of new item if pres 1544 /* record NAPI ID of new item if present */ 1718 ep_set_busy_poll_napi_id(epi); 1545 ep_set_busy_poll_napi_id(epi); 1719 1546 1720 /* If the file is already "ready" we 1547 /* If the file is already "ready" we drop it inside the ready list */ 1721 if (revents && !ep_is_linked(epi)) { 1548 if (revents && !ep_is_linked(epi)) { 1722 list_add_tail(&epi->rdllink, 1549 list_add_tail(&epi->rdllink, &ep->rdllist); 1723 ep_pm_stay_awake(epi); 1550 ep_pm_stay_awake(epi); 1724 1551 1725 /* Notify waiting tasks that 1552 /* Notify waiting tasks that events are available */ 1726 if (waitqueue_active(&ep->wq) 1553 if (waitqueue_active(&ep->wq)) 1727 wake_up(&ep->wq); 1554 wake_up(&ep->wq); 1728 if (waitqueue_active(&ep->pol 1555 if (waitqueue_active(&ep->poll_wait)) 1729 pwake++; 1556 pwake++; 1730 } 1557 } 1731 1558 1732 write_unlock_irq(&ep->lock); 1559 write_unlock_irq(&ep->lock); 1733 1560 >> 1561 atomic_long_inc(&ep->user->epoll_watches); >> 1562 1734 /* We have to call this outside the l 1563 /* We have to call this outside the lock */ 1735 if (pwake) 1564 if (pwake) 1736 ep_poll_safewake(ep, NULL, 0) !! 1565 ep_poll_safewake(&ep->poll_wait); 1737 1566 1738 return 0; 1567 return 0; >> 1568 >> 1569 error_remove_epi: >> 1570 spin_lock(&tfile->f_lock); >> 1571 list_del_rcu(&epi->fllink); >> 1572 spin_unlock(&tfile->f_lock); >> 1573 >> 1574 rb_erase_cached(&epi->rbn, &ep->rbr); >> 1575 >> 1576 error_unregister: >> 1577 ep_unregister_pollwait(ep, epi); >> 1578 >> 1579 /* >> 1580 * We need to do this because an event could have been arrived on some >> 1581 * allocated wait queue. Note that we don't care about the ep->ovflist >> 1582 * list, since that is used/cleaned only inside a section bound by "mtx". >> 1583 * And ep_insert() is called with "mtx" held. >> 1584 */ >> 1585 write_lock_irq(&ep->lock); >> 1586 if (ep_is_linked(epi)) >> 1587 list_del_init(&epi->rdllink); >> 1588 write_unlock_irq(&ep->lock); >> 1589 >> 1590 wakeup_source_unregister(ep_wakeup_source(epi)); >> 1591 >> 1592 error_create_wakeup_source: >> 1593 kmem_cache_free(epi_cache, epi); >> 1594 >> 1595 return error; 1739 } 1596 } 1740 1597 1741 /* 1598 /* 1742 * Modify the interest event mask by dropping 1599 * Modify the interest event mask by dropping an event if the new mask 1743 * has a match in the current file status. Mu 1600 * has a match in the current file status. Must be called with "mtx" held. 1744 */ 1601 */ 1745 static int ep_modify(struct eventpoll *ep, st 1602 static int ep_modify(struct eventpoll *ep, struct epitem *epi, 1746 const struct epoll_event 1603 const struct epoll_event *event) 1747 { 1604 { 1748 int pwake = 0; 1605 int pwake = 0; 1749 poll_table pt; 1606 poll_table pt; 1750 1607 1751 lockdep_assert_irqs_enabled(); 1608 lockdep_assert_irqs_enabled(); 1752 1609 1753 init_poll_funcptr(&pt, NULL); 1610 init_poll_funcptr(&pt, NULL); 1754 1611 1755 /* 1612 /* 1756 * Set the new event interest mask be 1613 * Set the new event interest mask before calling f_op->poll(); 1757 * otherwise we might miss an event t 1614 * otherwise we might miss an event that happens between the 1758 * f_op->poll() call and the new even 1615 * f_op->poll() call and the new event set registering. 1759 */ 1616 */ 1760 epi->event.events = event->events; /* 1617 epi->event.events = event->events; /* need barrier below */ 1761 epi->event.data = event->data; /* pro 1618 epi->event.data = event->data; /* protected by mtx */ 1762 if (epi->event.events & EPOLLWAKEUP) 1619 if (epi->event.events & EPOLLWAKEUP) { 1763 if (!ep_has_wakeup_source(epi 1620 if (!ep_has_wakeup_source(epi)) 1764 ep_create_wakeup_sour 1621 ep_create_wakeup_source(epi); 1765 } else if (ep_has_wakeup_source(epi)) 1622 } else if (ep_has_wakeup_source(epi)) { 1766 ep_destroy_wakeup_source(epi) 1623 ep_destroy_wakeup_source(epi); 1767 } 1624 } 1768 1625 1769 /* 1626 /* 1770 * The following barrier has two effe 1627 * The following barrier has two effects: 1771 * 1628 * 1772 * 1) Flush epi changes above to othe 1629 * 1) Flush epi changes above to other CPUs. This ensures 1773 * we do not miss events from ep_p 1630 * we do not miss events from ep_poll_callback if an 1774 * event occurs immediately after 1631 * event occurs immediately after we call f_op->poll(). 1775 * We need this because we did not 1632 * We need this because we did not take ep->lock while 1776 * changing epi above (but ep_poll 1633 * changing epi above (but ep_poll_callback does take 1777 * ep->lock). 1634 * ep->lock). 1778 * 1635 * 1779 * 2) We also need to ensure we do no 1636 * 2) We also need to ensure we do not miss _past_ events 1780 * when calling f_op->poll(). Thi 1637 * when calling f_op->poll(). This barrier also 1781 * pairs with the barrier in wq_ha 1638 * pairs with the barrier in wq_has_sleeper (see 1782 * comments for wq_has_sleeper). 1639 * comments for wq_has_sleeper). 1783 * 1640 * 1784 * This barrier will now guarantee ep 1641 * This barrier will now guarantee ep_poll_callback or f_op->poll 1785 * (or both) will notice the readines 1642 * (or both) will notice the readiness of an item. 1786 */ 1643 */ 1787 smp_mb(); 1644 smp_mb(); 1788 1645 1789 /* 1646 /* 1790 * Get current event bits. We can saf 1647 * Get current event bits. We can safely use the file* here because 1791 * its usage count has been increased 1648 * its usage count has been increased by the caller of this function. 1792 * If the item is "hot" and it is not 1649 * If the item is "hot" and it is not registered inside the ready 1793 * list, push it inside. 1650 * list, push it inside. 1794 */ 1651 */ 1795 if (ep_item_poll(epi, &pt, 1)) { 1652 if (ep_item_poll(epi, &pt, 1)) { 1796 write_lock_irq(&ep->lock); 1653 write_lock_irq(&ep->lock); 1797 if (!ep_is_linked(epi)) { 1654 if (!ep_is_linked(epi)) { 1798 list_add_tail(&epi->r 1655 list_add_tail(&epi->rdllink, &ep->rdllist); 1799 ep_pm_stay_awake(epi) 1656 ep_pm_stay_awake(epi); 1800 1657 1801 /* Notify waiting tas 1658 /* Notify waiting tasks that events are available */ 1802 if (waitqueue_active( 1659 if (waitqueue_active(&ep->wq)) 1803 wake_up(&ep-> 1660 wake_up(&ep->wq); 1804 if (waitqueue_active( 1661 if (waitqueue_active(&ep->poll_wait)) 1805 pwake++; 1662 pwake++; 1806 } 1663 } 1807 write_unlock_irq(&ep->lock); 1664 write_unlock_irq(&ep->lock); 1808 } 1665 } 1809 1666 1810 /* We have to call this outside the l 1667 /* We have to call this outside the lock */ 1811 if (pwake) 1668 if (pwake) 1812 ep_poll_safewake(ep, NULL, 0) !! 1669 ep_poll_safewake(&ep->poll_wait); 1813 1670 1814 return 0; 1671 return 0; 1815 } 1672 } 1816 1673 1817 static int ep_send_events(struct eventpoll *e !! 1674 static __poll_t ep_send_events_proc(struct eventpoll *ep, struct list_head *head, 1818 struct epoll_event !! 1675 void *priv) 1819 { 1676 { >> 1677 struct ep_send_events_data *esed = priv; >> 1678 __poll_t revents; 1820 struct epitem *epi, *tmp; 1679 struct epitem *epi, *tmp; 1821 LIST_HEAD(txlist); !! 1680 struct epoll_event __user *uevent = esed->events; >> 1681 struct wakeup_source *ws; 1822 poll_table pt; 1682 poll_table pt; 1823 int res = 0; << 1824 << 1825 /* << 1826 * Always short-circuit for fatal sig << 1827 * timely exit without the chance of << 1828 * fetching repeatedly. << 1829 */ << 1830 if (fatal_signal_pending(current)) << 1831 return -EINTR; << 1832 1683 1833 init_poll_funcptr(&pt, NULL); 1684 init_poll_funcptr(&pt, NULL); 1834 !! 1685 esed->res = 0; 1835 mutex_lock(&ep->mtx); << 1836 ep_start_scan(ep, &txlist); << 1837 1686 1838 /* 1687 /* 1839 * We can loop without lock because w 1688 * We can loop without lock because we are passed a task private list. 1840 * Items cannot vanish during the loo !! 1689 * Items cannot vanish during the loop because ep_scan_ready_list() is >> 1690 * holding "mtx" during this call. 1841 */ 1691 */ 1842 list_for_each_entry_safe(epi, tmp, &t !! 1692 lockdep_assert_held(&ep->mtx); 1843 struct wakeup_source *ws; << 1844 __poll_t revents; << 1845 1693 1846 if (res >= maxevents) !! 1694 list_for_each_entry_safe(epi, tmp, head, rdllink) { >> 1695 if (esed->res >= esed->maxevents) 1847 break; 1696 break; 1848 1697 1849 /* 1698 /* 1850 * Activate ep->ws before dea 1699 * Activate ep->ws before deactivating epi->ws to prevent 1851 * triggering auto-suspend he 1700 * triggering auto-suspend here (in case we reactive epi->ws 1852 * below). 1701 * below). 1853 * 1702 * 1854 * This could be rearranged t 1703 * This could be rearranged to delay the deactivation of epi->ws 1855 * instead, but then epi->ws 1704 * instead, but then epi->ws would temporarily be out of sync 1856 * with ep_is_linked(). 1705 * with ep_is_linked(). 1857 */ 1706 */ 1858 ws = ep_wakeup_source(epi); 1707 ws = ep_wakeup_source(epi); 1859 if (ws) { 1708 if (ws) { 1860 if (ws->active) 1709 if (ws->active) 1861 __pm_stay_awa 1710 __pm_stay_awake(ep->ws); 1862 __pm_relax(ws); 1711 __pm_relax(ws); 1863 } 1712 } 1864 1713 1865 list_del_init(&epi->rdllink); 1714 list_del_init(&epi->rdllink); 1866 1715 1867 /* 1716 /* 1868 * If the event mask intersec 1717 * If the event mask intersect the caller-requested one, 1869 * deliver the event to users !! 1718 * deliver the event to userspace. Again, ep_scan_ready_list() 1870 * so no operations coming fr !! 1719 * is holding ep->mtx, so no operations coming from userspace >> 1720 * can change the item. 1871 */ 1721 */ 1872 revents = ep_item_poll(epi, & 1722 revents = ep_item_poll(epi, &pt, 1); 1873 if (!revents) 1723 if (!revents) 1874 continue; 1724 continue; 1875 1725 1876 events = epoll_put_uevent(rev !! 1726 if (__put_user(revents, &uevent->events) || 1877 if (!events) { !! 1727 __put_user(epi->event.data, &uevent->data)) { 1878 list_add(&epi->rdllin !! 1728 list_add(&epi->rdllink, head); 1879 ep_pm_stay_awake(epi) 1729 ep_pm_stay_awake(epi); 1880 if (!res) !! 1730 if (!esed->res) 1881 res = -EFAULT !! 1731 esed->res = -EFAULT; 1882 break; !! 1732 return 0; 1883 } 1733 } 1884 res++; !! 1734 esed->res++; >> 1735 uevent++; 1885 if (epi->event.events & EPOLL 1736 if (epi->event.events & EPOLLONESHOT) 1886 epi->event.events &= 1737 epi->event.events &= EP_PRIVATE_BITS; 1887 else if (!(epi->event.events 1738 else if (!(epi->event.events & EPOLLET)) { 1888 /* 1739 /* 1889 * If this file has b 1740 * If this file has been added with Level 1890 * Trigger mode, we n 1741 * Trigger mode, we need to insert back inside 1891 * the ready list, so 1742 * the ready list, so that the next call to 1892 * epoll_wait() will 1743 * epoll_wait() will check again the events 1893 * availability. At t 1744 * availability. At this point, no one can insert 1894 * into ep->rdllist b 1745 * into ep->rdllist besides us. The epoll_ctl() 1895 * callers are locked 1746 * callers are locked out by 1896 * ep_send_events() h !! 1747 * ep_scan_ready_list() holding "mtx" and the 1897 * poll callback will 1748 * poll callback will queue them in ep->ovflist. 1898 */ 1749 */ 1899 list_add_tail(&epi->r 1750 list_add_tail(&epi->rdllink, &ep->rdllist); 1900 ep_pm_stay_awake(epi) 1751 ep_pm_stay_awake(epi); 1901 } 1752 } 1902 } 1753 } 1903 ep_done_scan(ep, &txlist); << 1904 mutex_unlock(&ep->mtx); << 1905 1754 1906 return res; !! 1755 return 0; 1907 } 1756 } 1908 1757 1909 static struct timespec64 *ep_timeout_to_times !! 1758 static int ep_send_events(struct eventpoll *ep, >> 1759 struct epoll_event __user *events, int maxevents) 1910 { 1760 { 1911 struct timespec64 now; !! 1761 struct ep_send_events_data esed; 1912 1762 1913 if (ms < 0) !! 1763 esed.maxevents = maxevents; 1914 return NULL; !! 1764 esed.events = events; 1915 1765 1916 if (!ms) { !! 1766 ep_scan_ready_list(ep, ep_send_events_proc, &esed, 0, false); 1917 to->tv_sec = 0; !! 1767 return esed.res; 1918 to->tv_nsec = 0; << 1919 return to; << 1920 } << 1921 << 1922 to->tv_sec = ms / MSEC_PER_SEC; << 1923 to->tv_nsec = NSEC_PER_MSEC * (ms % M << 1924 << 1925 ktime_get_ts64(&now); << 1926 *to = timespec64_add_safe(now, *to); << 1927 return to; << 1928 } 1768 } 1929 1769 1930 /* !! 1770 static inline struct timespec64 ep_set_mstimeout(long ms) 1931 * autoremove_wake_function, but remove even << 1932 * know that default_wake_function/ttwu will << 1933 * woken, and in that case the ep_poll loop w << 1934 * try to reuse it. << 1935 */ << 1936 static int ep_autoremove_wake_function(struct << 1937 unsign << 1938 { 1771 { 1939 int ret = default_wake_function(wq_en !! 1772 struct timespec64 now, ts = { >> 1773 .tv_sec = ms / MSEC_PER_SEC, >> 1774 .tv_nsec = NSEC_PER_MSEC * (ms % MSEC_PER_SEC), >> 1775 }; 1940 1776 1941 /* !! 1777 ktime_get_ts64(&now); 1942 * Pairs with list_empty_careful in e !! 1778 return timespec64_add_safe(now, ts); 1943 * iterations see the cause of this w << 1944 */ << 1945 list_del_init_careful(&wq_entry->entr << 1946 return ret; << 1947 } 1779 } 1948 1780 1949 /** 1781 /** 1950 * ep_poll - Retrieves ready events, and deli !! 1782 * ep_poll - Retrieves ready events, and delivers them to the caller supplied 1951 * event buffer. 1783 * event buffer. 1952 * 1784 * 1953 * @ep: Pointer to the eventpoll context. 1785 * @ep: Pointer to the eventpoll context. 1954 * @events: Pointer to the userspace buffer w 1786 * @events: Pointer to the userspace buffer where the ready events should be 1955 * stored. 1787 * stored. 1956 * @maxevents: Size (in terms of number of ev 1788 * @maxevents: Size (in terms of number of events) of the caller event buffer. 1957 * @timeout: Maximum timeout for the ready ev 1789 * @timeout: Maximum timeout for the ready events fetch operation, in 1958 * timespec. If the timeout is zero !! 1790 * milliseconds. If the @timeout is zero, the function will not block, 1959 * while if the @timeout ptr is NUL !! 1791 * while if the @timeout is less than zero, the function will block 1960 * until at least one event has bee 1792 * until at least one event has been retrieved (or an error 1961 * occurred). 1793 * occurred). 1962 * 1794 * 1963 * Return: the number of ready events which h !! 1795 * Returns: Returns the number of ready events which have been fetched, or an 1964 * error code, in case of error. 1796 * error code, in case of error. 1965 */ 1797 */ 1966 static int ep_poll(struct eventpoll *ep, stru 1798 static int ep_poll(struct eventpoll *ep, struct epoll_event __user *events, 1967 int maxevents, struct time !! 1799 int maxevents, long timeout) 1968 { 1800 { 1969 int res, eavail, timed_out = 0; !! 1801 int res = 0, eavail, timed_out = 0; 1970 u64 slack = 0; 1802 u64 slack = 0; 1971 wait_queue_entry_t wait; 1803 wait_queue_entry_t wait; 1972 ktime_t expires, *to = NULL; 1804 ktime_t expires, *to = NULL; 1973 1805 1974 lockdep_assert_irqs_enabled(); 1806 lockdep_assert_irqs_enabled(); 1975 1807 1976 if (timeout && (timeout->tv_sec | tim !! 1808 if (timeout > 0) { 1977 slack = select_estimate_accur !! 1809 struct timespec64 end_time = ep_set_mstimeout(timeout); >> 1810 >> 1811 slack = select_estimate_accuracy(&end_time); 1978 to = &expires; 1812 to = &expires; 1979 *to = timespec64_to_ktime(*ti !! 1813 *to = timespec64_to_ktime(end_time); 1980 } else if (timeout) { !! 1814 } else if (timeout == 0) { 1981 /* 1815 /* 1982 * Avoid the unnecessary trip 1816 * Avoid the unnecessary trip to the wait queue loop, if the 1983 * caller specified a non blo !! 1817 * caller specified a non blocking operation. We still need >> 1818 * lock because we could race and not see an epi being added >> 1819 * to the ready list while in irq callback. Thus incorrectly >> 1820 * returning 0 back to userspace. 1984 */ 1821 */ 1985 timed_out = 1; 1822 timed_out = 1; 1986 } << 1987 1823 1988 /* !! 1824 write_lock_irq(&ep->lock); 1989 * This call is racy: We may or may n !! 1825 eavail = ep_events_available(ep); 1990 * to the ready list under the lock ( !! 1826 write_unlock_irq(&ep->lock); 1991 * with a non-zero timeout, this thre << 1992 * lock and will add to the wait queu << 1993 * timeout, the user by definition sh << 1994 * recheck again. << 1995 */ << 1996 eavail = ep_events_available(ep); << 1997 1827 1998 while (1) { !! 1828 goto send_events; 1999 if (eavail) { !! 1829 } 2000 /* << 2001 * Try to transfer ev << 2002 * 0 events and there << 2003 * trying again in se << 2004 */ << 2005 res = ep_send_events( << 2006 if (res) << 2007 return res; << 2008 } << 2009 1830 2010 if (timed_out) !! 1831 fetch_events: 2011 return 0; << 2012 1832 2013 eavail = ep_busy_loop(ep, tim !! 1833 if (!ep_events_available(ep)) 2014 if (eavail) !! 1834 ep_busy_loop(ep, timed_out); 2015 continue; << 2016 1835 2017 if (signal_pending(current)) !! 1836 eavail = ep_events_available(ep); 2018 return -EINTR; !! 1837 if (eavail) >> 1838 goto send_events; 2019 1839 >> 1840 /* >> 1841 * Busy poll timed out. Drop NAPI ID for now, we can add >> 1842 * it back in when we have moved a socket with a valid NAPI >> 1843 * ID onto the ready list. >> 1844 */ >> 1845 ep_reset_busy_poll_napi_id(ep); >> 1846 >> 1847 do { 2020 /* 1848 /* 2021 * Internally init_wait() use 1849 * Internally init_wait() uses autoremove_wake_function(), 2022 * thus wait entry is removed 1850 * thus wait entry is removed from the wait queue on each 2023 * wakeup. Why it is importan 1851 * wakeup. Why it is important? In case of several waiters 2024 * each new wakeup will hit t 1852 * each new wakeup will hit the next waiter, giving it the 2025 * chance to harvest new even 1853 * chance to harvest new event. Otherwise wakeup can be 2026 * lost. This is also good pe 1854 * lost. This is also good performance-wise, because on 2027 * normal wakeup path no need 1855 * normal wakeup path no need to call __remove_wait_queue() 2028 * explicitly, thus ep->lock 1856 * explicitly, thus ep->lock is not taken, which halts the 2029 * event delivery. 1857 * event delivery. 2030 * << 2031 * In fact, we now use an eve << 2032 * unconditionally removes, b << 2033 * entry between loop iterati << 2034 * performance issue if a pro << 2035 * threads to wake up without << 2036 */ 1858 */ 2037 init_wait(&wait); 1859 init_wait(&wait); 2038 wait.func = ep_autoremove_wak << 2039 1860 2040 write_lock_irq(&ep->lock); 1861 write_lock_irq(&ep->lock); 2041 /* 1862 /* 2042 * Barrierless variant, waitq 1863 * Barrierless variant, waitqueue_active() is called under 2043 * the same lock on wakeup ep 1864 * the same lock on wakeup ep_poll_callback() side, so it 2044 * is safe to avoid an explic 1865 * is safe to avoid an explicit barrier. 2045 */ 1866 */ 2046 __set_current_state(TASK_INTE 1867 __set_current_state(TASK_INTERRUPTIBLE); 2047 1868 2048 /* 1869 /* 2049 * Do the final check under t !! 1870 * Do the final check under the lock. ep_scan_ready_list() 2050 * plays with two lists (->rd 1871 * plays with two lists (->rdllist and ->ovflist) and there 2051 * is always a race when both 1872 * is always a race when both lists are empty for short 2052 * period of time although ev 1873 * period of time although events are pending, so lock is 2053 * important. 1874 * important. 2054 */ 1875 */ 2055 eavail = ep_events_available( 1876 eavail = ep_events_available(ep); 2056 if (!eavail) !! 1877 if (!eavail) { 2057 __add_wait_queue_excl !! 1878 if (signal_pending(current)) 2058 !! 1879 res = -EINTR; >> 1880 else >> 1881 __add_wait_queue_exclusive(&ep->wq, &wait); >> 1882 } 2059 write_unlock_irq(&ep->lock); 1883 write_unlock_irq(&ep->lock); 2060 1884 2061 if (!eavail) !! 1885 if (eavail || res) 2062 timed_out = !schedule !! 1886 break; 2063 << 2064 __set_current_state(TASK_RUNN << 2065 1887 2066 /* !! 1888 if (!schedule_hrtimeout_range(to, slack, HRTIMER_MODE_ABS)) { 2067 * We were woken up, thus go !! 1889 timed_out = 1; 2068 * If timed out and still on !! 1890 break; 2069 * carefully under lock, belo !! 1891 } 2070 */ !! 1892 >> 1893 /* We were woken up, thus go and try to harvest some events */ 2071 eavail = 1; 1894 eavail = 1; 2072 1895 2073 if (!list_empty_careful(&wait !! 1896 } while (0); 2074 write_lock_irq(&ep->l !! 1897 2075 /* !! 1898 __set_current_state(TASK_RUNNING); 2076 * If the thread time !! 1899 2077 * it means that the !! 1900 if (!list_empty_careful(&wait.entry)) { 2078 * timeout expired be !! 1901 write_lock_irq(&ep->lock); 2079 * Thus, when wait.en !! 1902 __remove_wait_queue(&ep->wq, &wait); 2080 * events. !! 1903 write_unlock_irq(&ep->lock); 2081 */ !! 1904 } 2082 if (timed_out) !! 1905 2083 eavail = list !! 1906 send_events: 2084 __remove_wait_queue(& !! 1907 if (fatal_signal_pending(current)) { 2085 write_unlock_irq(&ep- !! 1908 /* 2086 } !! 1909 * Always short-circuit for fatal signals to allow >> 1910 * threads to make a timely exit without the chance of >> 1911 * finding more events available and fetching >> 1912 * repeatedly. >> 1913 */ >> 1914 res = -EINTR; 2087 } 1915 } >> 1916 /* >> 1917 * Try to transfer events to user space. In case we get 0 events and >> 1918 * there's still timeout left over, we go trying again in search of >> 1919 * more luck. >> 1920 */ >> 1921 if (!res && eavail && >> 1922 !(res = ep_send_events(ep, events, maxevents)) && !timed_out) >> 1923 goto fetch_events; >> 1924 >> 1925 return res; 2088 } 1926 } 2089 1927 2090 /** 1928 /** 2091 * ep_loop_check_proc - verify that adding an !! 1929 * ep_loop_check_proc - Callback function to be passed to the @ep_call_nested() 2092 * epoll structure does !! 1930 * API, to verify that adding an epoll file inside another >> 1931 * epoll structure, does not violate the constraints, in 2093 * terms of closed loops 1932 * terms of closed loops, or too deep chains (which can 2094 * result in excessive s 1933 * result in excessive stack usage). 2095 * 1934 * 2096 * @ep: the &struct eventpoll to be currently !! 1935 * @priv: Pointer to the epoll file to be currently checked. 2097 * @depth: Current depth of the path being ch !! 1936 * @cookie: Original cookie for this call. This is the top-of-the-chain epoll >> 1937 * data structure pointer. >> 1938 * @call_nests: Current dept of the @ep_call_nested() call stack. 2098 * 1939 * 2099 * Return: %zero if adding the epoll @file in !! 1940 * Returns: Returns zero if adding the epoll @file inside current epoll 2100 * structure @ep does not violate th !! 1941 * structure @ep does not violate the constraints, or -1 otherwise. 2101 */ 1942 */ 2102 static int ep_loop_check_proc(struct eventpol !! 1943 static int ep_loop_check_proc(void *priv, void *cookie, int call_nests) 2103 { 1944 { 2104 int error = 0; 1945 int error = 0; >> 1946 struct file *file = priv; >> 1947 struct eventpoll *ep = file->private_data; >> 1948 struct eventpoll *ep_tovisit; 2105 struct rb_node *rbp; 1949 struct rb_node *rbp; 2106 struct epitem *epi; 1950 struct epitem *epi; 2107 1951 2108 mutex_lock_nested(&ep->mtx, depth + 1 !! 1952 mutex_lock_nested(&ep->mtx, call_nests + 1); 2109 ep->gen = loop_check_gen; !! 1953 ep->visited = 1; >> 1954 list_add(&ep->visited_list_link, &visited_list); 2110 for (rbp = rb_first_cached(&ep->rbr); 1955 for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) { 2111 epi = rb_entry(rbp, struct ep 1956 epi = rb_entry(rbp, struct epitem, rbn); 2112 if (unlikely(is_file_epoll(ep 1957 if (unlikely(is_file_epoll(epi->ffd.file))) { 2113 struct eventpoll *ep_ << 2114 ep_tovisit = epi->ffd 1958 ep_tovisit = epi->ffd.file->private_data; 2115 if (ep_tovisit->gen = !! 1959 if (ep_tovisit->visited) 2116 continue; 1960 continue; 2117 if (ep_tovisit == ins !! 1961 error = ep_call_nested(&poll_loop_ncalls, 2118 error = -1; !! 1962 ep_loop_check_proc, epi->ffd.file, 2119 else !! 1963 ep_tovisit, current); 2120 error = ep_lo << 2121 if (error != 0) 1964 if (error != 0) 2122 break; 1965 break; 2123 } else { 1966 } else { 2124 /* 1967 /* 2125 * If we've reached a 1968 * If we've reached a file that is not associated with 2126 * an ep, then we nee 1969 * an ep, then we need to check if the newly added 2127 * links are going to 1970 * links are going to add too many wakeup paths. We do 2128 * this by adding it 1971 * this by adding it to the tfile_check_list, if it's 2129 * not already there, 1972 * not already there, and calling reverse_path_check() 2130 * during ep_insert() 1973 * during ep_insert(). 2131 */ 1974 */ 2132 list_file(epi->ffd.fi !! 1975 if (list_empty(&epi->ffd.file->f_tfile_llink)) >> 1976 list_add(&epi->ffd.file->f_tfile_llink, >> 1977 &tfile_check_list); 2133 } 1978 } 2134 } 1979 } 2135 mutex_unlock(&ep->mtx); 1980 mutex_unlock(&ep->mtx); 2136 1981 2137 return error; 1982 return error; 2138 } 1983 } 2139 1984 2140 /** 1985 /** 2141 * ep_loop_check - Performs a check to verify !! 1986 * ep_loop_check - Performs a check to verify that adding an epoll file (@file) 2142 * into another epoll file (r !! 1987 * another epoll file (represented by @ep) does not create 2143 * closed loops or too deep c 1988 * closed loops or too deep chains. 2144 * 1989 * 2145 * @ep: Pointer to the epoll we are inserting !! 1990 * @ep: Pointer to the epoll private data structure. 2146 * @to: Pointer to the epoll to be inserted. !! 1991 * @file: Pointer to the epoll file to be checked. 2147 * 1992 * 2148 * Return: %zero if adding the epoll @to insi !! 1993 * Returns: Returns zero if adding the epoll @file inside current epoll 2149 * does not violate the constraints, or %-1 o !! 1994 * structure @ep does not violate the constraints, or -1 otherwise. 2150 */ 1995 */ 2151 static int ep_loop_check(struct eventpoll *ep !! 1996 static int ep_loop_check(struct eventpoll *ep, struct file *file) 2152 { 1997 { 2153 inserting_into = ep; !! 1998 int ret; 2154 return ep_loop_check_proc(to, 0); !! 1999 struct eventpoll *ep_cur, *ep_next; >> 2000 >> 2001 ret = ep_call_nested(&poll_loop_ncalls, >> 2002 ep_loop_check_proc, file, ep, current); >> 2003 /* clear visited list */ >> 2004 list_for_each_entry_safe(ep_cur, ep_next, &visited_list, >> 2005 visited_list_link) { >> 2006 ep_cur->visited = 0; >> 2007 list_del(&ep_cur->visited_list_link); >> 2008 } >> 2009 return ret; 2155 } 2010 } 2156 2011 2157 static void clear_tfile_check_list(void) 2012 static void clear_tfile_check_list(void) 2158 { 2013 { 2159 rcu_read_lock(); !! 2014 struct file *file; 2160 while (tfile_check_list != EP_UNACTIV !! 2015 2161 struct epitems_head *head = t !! 2016 /* first clear the tfile_check_list */ 2162 tfile_check_list = head->next !! 2017 while (!list_empty(&tfile_check_list)) { 2163 unlist_file(head); !! 2018 file = list_first_entry(&tfile_check_list, struct file, >> 2019 f_tfile_llink); >> 2020 list_del_init(&file->f_tfile_llink); 2164 } 2021 } 2165 rcu_read_unlock(); !! 2022 INIT_LIST_HEAD(&tfile_check_list); 2166 } 2023 } 2167 2024 2168 /* 2025 /* 2169 * Open an eventpoll file descriptor. 2026 * Open an eventpoll file descriptor. 2170 */ 2027 */ 2171 static int do_epoll_create(int flags) 2028 static int do_epoll_create(int flags) 2172 { 2029 { 2173 int error, fd; 2030 int error, fd; 2174 struct eventpoll *ep = NULL; 2031 struct eventpoll *ep = NULL; 2175 struct file *file; 2032 struct file *file; 2176 2033 2177 /* Check the EPOLL_* constant for con 2034 /* Check the EPOLL_* constant for consistency. */ 2178 BUILD_BUG_ON(EPOLL_CLOEXEC != O_CLOEX 2035 BUILD_BUG_ON(EPOLL_CLOEXEC != O_CLOEXEC); 2179 2036 2180 if (flags & ~EPOLL_CLOEXEC) 2037 if (flags & ~EPOLL_CLOEXEC) 2181 return -EINVAL; 2038 return -EINVAL; 2182 /* 2039 /* 2183 * Create the internal data structure 2040 * Create the internal data structure ("struct eventpoll"). 2184 */ 2041 */ 2185 error = ep_alloc(&ep); 2042 error = ep_alloc(&ep); 2186 if (error < 0) 2043 if (error < 0) 2187 return error; 2044 return error; 2188 /* 2045 /* 2189 * Creates all the items needed to se 2046 * Creates all the items needed to setup an eventpoll file. That is, 2190 * a file structure and a free file d 2047 * a file structure and a free file descriptor. 2191 */ 2048 */ 2192 fd = get_unused_fd_flags(O_RDWR | (fl 2049 fd = get_unused_fd_flags(O_RDWR | (flags & O_CLOEXEC)); 2193 if (fd < 0) { 2050 if (fd < 0) { 2194 error = fd; 2051 error = fd; 2195 goto out_free_ep; 2052 goto out_free_ep; 2196 } 2053 } 2197 file = anon_inode_getfile("[eventpoll 2054 file = anon_inode_getfile("[eventpoll]", &eventpoll_fops, ep, 2198 O_RDWR | (fl 2055 O_RDWR | (flags & O_CLOEXEC)); 2199 if (IS_ERR(file)) { 2056 if (IS_ERR(file)) { 2200 error = PTR_ERR(file); 2057 error = PTR_ERR(file); 2201 goto out_free_fd; 2058 goto out_free_fd; 2202 } 2059 } 2203 #ifdef CONFIG_NET_RX_BUSY_POLL << 2204 ep->busy_poll_usecs = 0; << 2205 ep->busy_poll_budget = 0; << 2206 ep->prefer_busy_poll = false; << 2207 #endif << 2208 ep->file = file; 2060 ep->file = file; 2209 fd_install(fd, file); 2061 fd_install(fd, file); 2210 return fd; 2062 return fd; 2211 2063 2212 out_free_fd: 2064 out_free_fd: 2213 put_unused_fd(fd); 2065 put_unused_fd(fd); 2214 out_free_ep: 2066 out_free_ep: 2215 ep_clear_and_put(ep); !! 2067 ep_free(ep); 2216 return error; 2068 return error; 2217 } 2069 } 2218 2070 2219 SYSCALL_DEFINE1(epoll_create1, int, flags) 2071 SYSCALL_DEFINE1(epoll_create1, int, flags) 2220 { 2072 { 2221 return do_epoll_create(flags); 2073 return do_epoll_create(flags); 2222 } 2074 } 2223 2075 2224 SYSCALL_DEFINE1(epoll_create, int, size) 2076 SYSCALL_DEFINE1(epoll_create, int, size) 2225 { 2077 { 2226 if (size <= 0) 2078 if (size <= 0) 2227 return -EINVAL; 2079 return -EINVAL; 2228 2080 2229 return do_epoll_create(0); 2081 return do_epoll_create(0); 2230 } 2082 } 2231 2083 2232 #ifdef CONFIG_PM_SLEEP << 2233 static inline void ep_take_care_of_epollwakeu << 2234 { << 2235 if ((epev->events & EPOLLWAKEUP) && ! << 2236 epev->events &= ~EPOLLWAKEUP; << 2237 } << 2238 #else << 2239 static inline void ep_take_care_of_epollwakeu << 2240 { << 2241 epev->events &= ~EPOLLWAKEUP; << 2242 } << 2243 #endif << 2244 << 2245 static inline int epoll_mutex_lock(struct mut 2084 static inline int epoll_mutex_lock(struct mutex *mutex, int depth, 2246 bool nonbl 2085 bool nonblock) 2247 { 2086 { 2248 if (!nonblock) { 2087 if (!nonblock) { 2249 mutex_lock_nested(mutex, dept 2088 mutex_lock_nested(mutex, depth); 2250 return 0; 2089 return 0; 2251 } 2090 } 2252 if (mutex_trylock(mutex)) 2091 if (mutex_trylock(mutex)) 2253 return 0; 2092 return 0; 2254 return -EAGAIN; 2093 return -EAGAIN; 2255 } 2094 } 2256 2095 2257 int do_epoll_ctl(int epfd, int op, int fd, st 2096 int do_epoll_ctl(int epfd, int op, int fd, struct epoll_event *epds, 2258 bool nonblock) 2097 bool nonblock) 2259 { 2098 { 2260 int error; 2099 int error; 2261 int full_check = 0; 2100 int full_check = 0; 2262 struct fd f, tf; 2101 struct fd f, tf; 2263 struct eventpoll *ep; 2102 struct eventpoll *ep; 2264 struct epitem *epi; 2103 struct epitem *epi; 2265 struct eventpoll *tep = NULL; 2104 struct eventpoll *tep = NULL; 2266 2105 2267 error = -EBADF; 2106 error = -EBADF; 2268 f = fdget(epfd); 2107 f = fdget(epfd); 2269 if (!f.file) 2108 if (!f.file) 2270 goto error_return; 2109 goto error_return; 2271 2110 2272 /* Get the "struct file *" for the ta 2111 /* Get the "struct file *" for the target file */ 2273 tf = fdget(fd); 2112 tf = fdget(fd); 2274 if (!tf.file) 2113 if (!tf.file) 2275 goto error_fput; 2114 goto error_fput; 2276 2115 2277 /* The target file descriptor must su 2116 /* The target file descriptor must support poll */ 2278 error = -EPERM; 2117 error = -EPERM; 2279 if (!file_can_poll(tf.file)) 2118 if (!file_can_poll(tf.file)) 2280 goto error_tgt_fput; 2119 goto error_tgt_fput; 2281 2120 2282 /* Check if EPOLLWAKEUP is allowed */ 2121 /* Check if EPOLLWAKEUP is allowed */ 2283 if (ep_op_has_event(op)) 2122 if (ep_op_has_event(op)) 2284 ep_take_care_of_epollwakeup(e 2123 ep_take_care_of_epollwakeup(epds); 2285 2124 2286 /* 2125 /* 2287 * We have to check that the file str 2126 * We have to check that the file structure underneath the file descriptor 2288 * the user passed to us _is_ an even 2127 * the user passed to us _is_ an eventpoll file. And also we do not permit 2289 * adding an epoll file descriptor in 2128 * adding an epoll file descriptor inside itself. 2290 */ 2129 */ 2291 error = -EINVAL; 2130 error = -EINVAL; 2292 if (f.file == tf.file || !is_file_epo 2131 if (f.file == tf.file || !is_file_epoll(f.file)) 2293 goto error_tgt_fput; 2132 goto error_tgt_fput; 2294 2133 2295 /* 2134 /* 2296 * epoll adds to the wakeup queue at 2135 * epoll adds to the wakeup queue at EPOLL_CTL_ADD time only, 2297 * so EPOLLEXCLUSIVE is not allowed f 2136 * so EPOLLEXCLUSIVE is not allowed for a EPOLL_CTL_MOD operation. 2298 * Also, we do not currently supporte 2137 * Also, we do not currently supported nested exclusive wakeups. 2299 */ 2138 */ 2300 if (ep_op_has_event(op) && (epds->eve 2139 if (ep_op_has_event(op) && (epds->events & EPOLLEXCLUSIVE)) { 2301 if (op == EPOLL_CTL_MOD) 2140 if (op == EPOLL_CTL_MOD) 2302 goto error_tgt_fput; 2141 goto error_tgt_fput; 2303 if (op == EPOLL_CTL_ADD && (i 2142 if (op == EPOLL_CTL_ADD && (is_file_epoll(tf.file) || 2304 (epds->events 2143 (epds->events & ~EPOLLEXCLUSIVE_OK_BITS))) 2305 goto error_tgt_fput; 2144 goto error_tgt_fput; 2306 } 2145 } 2307 2146 2308 /* 2147 /* 2309 * At this point it is safe to assume 2148 * At this point it is safe to assume that the "private_data" contains 2310 * our own data structure. 2149 * our own data structure. 2311 */ 2150 */ 2312 ep = f.file->private_data; 2151 ep = f.file->private_data; 2313 2152 2314 /* 2153 /* 2315 * When we insert an epoll file descr !! 2154 * When we insert an epoll file descriptor, inside another epoll file 2316 * descriptor, there is the chance of !! 2155 * descriptor, there is the change of creating closed loops, which are 2317 * better be handled here, than in mo 2156 * better be handled here, than in more critical paths. While we are 2318 * checking for loops we also determi 2157 * checking for loops we also determine the list of files reachable 2319 * and hang them on the tfile_check_l 2158 * and hang them on the tfile_check_list, so we can check that we 2320 * haven't created too many possible 2159 * haven't created too many possible wakeup paths. 2321 * 2160 * 2322 * We do not need to take the global 2161 * We do not need to take the global 'epumutex' on EPOLL_CTL_ADD when 2323 * the epoll file descriptor is attac 2162 * the epoll file descriptor is attaching directly to a wakeup source, 2324 * unless the epoll file descriptor i 2163 * unless the epoll file descriptor is nested. The purpose of taking the 2325 * 'epnested_mutex' on add is to prev !! 2164 * 'epmutex' on add is to prevent complex toplogies such as loops and 2326 * deep wakeup paths from forming in 2165 * deep wakeup paths from forming in parallel through multiple 2327 * EPOLL_CTL_ADD operations. 2166 * EPOLL_CTL_ADD operations. 2328 */ 2167 */ 2329 error = epoll_mutex_lock(&ep->mtx, 0, 2168 error = epoll_mutex_lock(&ep->mtx, 0, nonblock); 2330 if (error) 2169 if (error) 2331 goto error_tgt_fput; 2170 goto error_tgt_fput; 2332 if (op == EPOLL_CTL_ADD) { 2171 if (op == EPOLL_CTL_ADD) { 2333 if (READ_ONCE(f.file->f_ep) | !! 2172 if (!list_empty(&f.file->f_ep_links) || 2334 is_file_epoll(tf.file)) { !! 2173 is_file_epoll(tf.file)) { 2335 mutex_unlock(&ep->mtx 2174 mutex_unlock(&ep->mtx); 2336 error = epoll_mutex_l !! 2175 error = epoll_mutex_lock(&epmutex, 0, nonblock); 2337 if (error) 2176 if (error) 2338 goto error_tg 2177 goto error_tgt_fput; 2339 loop_check_gen++; << 2340 full_check = 1; 2178 full_check = 1; 2341 if (is_file_epoll(tf. 2179 if (is_file_epoll(tf.file)) { 2342 tep = tf.file << 2343 error = -ELOO 2180 error = -ELOOP; 2344 if (ep_loop_c !! 2181 if (ep_loop_check(ep, tf.file) != 0) { >> 2182 clear_tfile_check_list(); 2345 goto 2183 goto error_tgt_fput; 2346 } !! 2184 } >> 2185 } else >> 2186 list_add(&tf.file->f_tfile_llink, >> 2187 &tfile_check_list); 2347 error = epoll_mutex_l 2188 error = epoll_mutex_lock(&ep->mtx, 0, nonblock); 2348 if (error) !! 2189 if (error) { >> 2190 out_del: >> 2191 list_del(&tf.file->f_tfile_llink); 2349 goto error_tg 2192 goto error_tgt_fput; >> 2193 } >> 2194 if (is_file_epoll(tf.file)) { >> 2195 tep = tf.file->private_data; >> 2196 error = epoll_mutex_lock(&tep->mtx, 1, nonblock); >> 2197 if (error) { >> 2198 mutex_unlock(&ep->mtx); >> 2199 goto out_del; >> 2200 } >> 2201 } 2350 } 2202 } 2351 } 2203 } 2352 2204 2353 /* 2205 /* 2354 * Try to lookup the file inside our !! 2206 * Try to lookup the file inside our RB tree, Since we grabbed "mtx" 2355 * above, we can be sure to be able t 2207 * above, we can be sure to be able to use the item looked up by 2356 * ep_find() till we release the mute 2208 * ep_find() till we release the mutex. 2357 */ 2209 */ 2358 epi = ep_find(ep, tf.file, fd); 2210 epi = ep_find(ep, tf.file, fd); 2359 2211 2360 error = -EINVAL; 2212 error = -EINVAL; 2361 switch (op) { 2213 switch (op) { 2362 case EPOLL_CTL_ADD: 2214 case EPOLL_CTL_ADD: 2363 if (!epi) { 2215 if (!epi) { 2364 epds->events |= EPOLL 2216 epds->events |= EPOLLERR | EPOLLHUP; 2365 error = ep_insert(ep, 2217 error = ep_insert(ep, epds, tf.file, fd, full_check); 2366 } else 2218 } else 2367 error = -EEXIST; 2219 error = -EEXIST; >> 2220 if (full_check) >> 2221 clear_tfile_check_list(); 2368 break; 2222 break; 2369 case EPOLL_CTL_DEL: 2223 case EPOLL_CTL_DEL: 2370 if (epi) { !! 2224 if (epi) 2371 /* !! 2225 error = ep_remove(ep, epi); 2372 * The eventpoll itse !! 2226 else 2373 * can't go to zero h << 2374 */ << 2375 ep_remove_safe(ep, ep << 2376 error = 0; << 2377 } else { << 2378 error = -ENOENT; 2227 error = -ENOENT; 2379 } << 2380 break; 2228 break; 2381 case EPOLL_CTL_MOD: 2229 case EPOLL_CTL_MOD: 2382 if (epi) { 2230 if (epi) { 2383 if (!(epi->event.even 2231 if (!(epi->event.events & EPOLLEXCLUSIVE)) { 2384 epds->events 2232 epds->events |= EPOLLERR | EPOLLHUP; 2385 error = ep_mo 2233 error = ep_modify(ep, epi, epds); 2386 } 2234 } 2387 } else 2235 } else 2388 error = -ENOENT; 2236 error = -ENOENT; 2389 break; 2237 break; 2390 } 2238 } >> 2239 if (tep != NULL) >> 2240 mutex_unlock(&tep->mtx); 2391 mutex_unlock(&ep->mtx); 2241 mutex_unlock(&ep->mtx); 2392 2242 2393 error_tgt_fput: 2243 error_tgt_fput: 2394 if (full_check) { !! 2244 if (full_check) 2395 clear_tfile_check_list(); !! 2245 mutex_unlock(&epmutex); 2396 loop_check_gen++; << 2397 mutex_unlock(&epnested_mutex) << 2398 } << 2399 2246 2400 fdput(tf); 2247 fdput(tf); 2401 error_fput: 2248 error_fput: 2402 fdput(f); 2249 fdput(f); 2403 error_return: 2250 error_return: 2404 2251 2405 return error; 2252 return error; 2406 } 2253 } 2407 2254 2408 /* 2255 /* 2409 * The following function implements the cont 2256 * The following function implements the controller interface for 2410 * the eventpoll file that enables the insert 2257 * the eventpoll file that enables the insertion/removal/change of 2411 * file descriptors inside the interest set. 2258 * file descriptors inside the interest set. 2412 */ 2259 */ 2413 SYSCALL_DEFINE4(epoll_ctl, int, epfd, int, op 2260 SYSCALL_DEFINE4(epoll_ctl, int, epfd, int, op, int, fd, 2414 struct epoll_event __user *, 2261 struct epoll_event __user *, event) 2415 { 2262 { 2416 struct epoll_event epds; 2263 struct epoll_event epds; 2417 2264 2418 if (ep_op_has_event(op) && 2265 if (ep_op_has_event(op) && 2419 copy_from_user(&epds, event, size 2266 copy_from_user(&epds, event, sizeof(struct epoll_event))) 2420 return -EFAULT; 2267 return -EFAULT; 2421 2268 2422 return do_epoll_ctl(epfd, op, fd, &ep 2269 return do_epoll_ctl(epfd, op, fd, &epds, false); 2423 } 2270 } 2424 2271 2425 /* 2272 /* 2426 * Implement the event wait interface for the 2273 * Implement the event wait interface for the eventpoll file. It is the kernel 2427 * part of the user space epoll_wait(2). 2274 * part of the user space epoll_wait(2). 2428 */ 2275 */ 2429 static int do_epoll_wait(int epfd, struct epo 2276 static int do_epoll_wait(int epfd, struct epoll_event __user *events, 2430 int maxevents, struc !! 2277 int maxevents, int timeout) 2431 { 2278 { 2432 int error; 2279 int error; 2433 struct fd f; 2280 struct fd f; 2434 struct eventpoll *ep; 2281 struct eventpoll *ep; 2435 2282 2436 /* The maximum number of event must b 2283 /* The maximum number of event must be greater than zero */ 2437 if (maxevents <= 0 || maxevents > EP_ 2284 if (maxevents <= 0 || maxevents > EP_MAX_EVENTS) 2438 return -EINVAL; 2285 return -EINVAL; 2439 2286 2440 /* Verify that the area passed by the 2287 /* Verify that the area passed by the user is writeable */ 2441 if (!access_ok(events, maxevents * si 2288 if (!access_ok(events, maxevents * sizeof(struct epoll_event))) 2442 return -EFAULT; 2289 return -EFAULT; 2443 2290 2444 /* Get the "struct file *" for the ev 2291 /* Get the "struct file *" for the eventpoll file */ 2445 f = fdget(epfd); 2292 f = fdget(epfd); 2446 if (!f.file) 2293 if (!f.file) 2447 return -EBADF; 2294 return -EBADF; 2448 2295 2449 /* 2296 /* 2450 * We have to check that the file str 2297 * We have to check that the file structure underneath the fd 2451 * the user passed to us _is_ an even 2298 * the user passed to us _is_ an eventpoll file. 2452 */ 2299 */ 2453 error = -EINVAL; 2300 error = -EINVAL; 2454 if (!is_file_epoll(f.file)) 2301 if (!is_file_epoll(f.file)) 2455 goto error_fput; 2302 goto error_fput; 2456 2303 2457 /* 2304 /* 2458 * At this point it is safe to assume 2305 * At this point it is safe to assume that the "private_data" contains 2459 * our own data structure. 2306 * our own data structure. 2460 */ 2307 */ 2461 ep = f.file->private_data; 2308 ep = f.file->private_data; 2462 2309 2463 /* Time to fish for events ... */ 2310 /* Time to fish for events ... */ 2464 error = ep_poll(ep, events, maxevents !! 2311 error = ep_poll(ep, events, maxevents, timeout); 2465 2312 2466 error_fput: 2313 error_fput: 2467 fdput(f); 2314 fdput(f); 2468 return error; 2315 return error; 2469 } 2316 } 2470 2317 2471 SYSCALL_DEFINE4(epoll_wait, int, epfd, struct 2318 SYSCALL_DEFINE4(epoll_wait, int, epfd, struct epoll_event __user *, events, 2472 int, maxevents, int, timeout) 2319 int, maxevents, int, timeout) 2473 { 2320 { 2474 struct timespec64 to; !! 2321 return do_epoll_wait(epfd, events, maxevents, timeout); 2475 << 2476 return do_epoll_wait(epfd, events, ma << 2477 ep_timeout_to_ti << 2478 } 2322 } 2479 2323 2480 /* 2324 /* 2481 * Implement the event wait interface for the 2325 * Implement the event wait interface for the eventpoll file. It is the kernel 2482 * part of the user space epoll_pwait(2). 2326 * part of the user space epoll_pwait(2). 2483 */ 2327 */ 2484 static int do_epoll_pwait(int epfd, struct ep !! 2328 SYSCALL_DEFINE6(epoll_pwait, int, epfd, struct epoll_event __user *, events, 2485 int maxevents, stru !! 2329 int, maxevents, int, timeout, const sigset_t __user *, sigmask, 2486 const sigset_t __us !! 2330 size_t, sigsetsize) 2487 { 2331 { 2488 int error; 2332 int error; 2489 2333 2490 /* 2334 /* 2491 * If the caller wants a certain sign 2335 * If the caller wants a certain signal mask to be set during the wait, 2492 * we apply it here. 2336 * we apply it here. 2493 */ 2337 */ 2494 error = set_user_sigmask(sigmask, sig 2338 error = set_user_sigmask(sigmask, sigsetsize); 2495 if (error) 2339 if (error) 2496 return error; 2340 return error; 2497 2341 2498 error = do_epoll_wait(epfd, events, m !! 2342 error = do_epoll_wait(epfd, events, maxevents, timeout); 2499 << 2500 restore_saved_sigmask_unless(error == 2343 restore_saved_sigmask_unless(error == -EINTR); 2501 2344 2502 return error; 2345 return error; 2503 } 2346 } 2504 2347 2505 SYSCALL_DEFINE6(epoll_pwait, int, epfd, struc << 2506 int, maxevents, int, timeout, << 2507 size_t, sigsetsize) << 2508 { << 2509 struct timespec64 to; << 2510 << 2511 return do_epoll_pwait(epfd, events, m << 2512 ep_timeout_to_t << 2513 sigmask, sigset << 2514 } << 2515 << 2516 SYSCALL_DEFINE6(epoll_pwait2, int, epfd, stru << 2517 int, maxevents, const struct << 2518 const sigset_t __user *, sigm << 2519 { << 2520 struct timespec64 ts, *to = NULL; << 2521 << 2522 if (timeout) { << 2523 if (get_timespec64(&ts, timeo << 2524 return -EFAULT; << 2525 to = &ts; << 2526 if (poll_select_set_timeout(t << 2527 return -EINVAL; << 2528 } << 2529 << 2530 return do_epoll_pwait(epfd, events, m << 2531 sigmask, sigset << 2532 } << 2533 << 2534 #ifdef CONFIG_COMPAT 2348 #ifdef CONFIG_COMPAT 2535 static int do_compat_epoll_pwait(int epfd, st !! 2349 COMPAT_SYSCALL_DEFINE6(epoll_pwait, int, epfd, 2536 int maxevent !! 2350 struct epoll_event __user *, events, 2537 const compat !! 2351 int, maxevents, int, timeout, 2538 compat_size_ !! 2352 const compat_sigset_t __user *, sigmask, >> 2353 compat_size_t, sigsetsize) 2539 { 2354 { 2540 long err; 2355 long err; 2541 2356 2542 /* 2357 /* 2543 * If the caller wants a certain sign 2358 * If the caller wants a certain signal mask to be set during the wait, 2544 * we apply it here. 2359 * we apply it here. 2545 */ 2360 */ 2546 err = set_compat_user_sigmask(sigmask 2361 err = set_compat_user_sigmask(sigmask, sigsetsize); 2547 if (err) 2362 if (err) 2548 return err; 2363 return err; 2549 2364 2550 err = do_epoll_wait(epfd, events, max 2365 err = do_epoll_wait(epfd, events, maxevents, timeout); 2551 << 2552 restore_saved_sigmask_unless(err == - 2366 restore_saved_sigmask_unless(err == -EINTR); 2553 2367 2554 return err; 2368 return err; 2555 } 2369 } 2556 << 2557 COMPAT_SYSCALL_DEFINE6(epoll_pwait, int, epfd << 2558 struct epoll_event __u << 2559 int, maxevents, int, t << 2560 const compat_sigset_t << 2561 compat_size_t, sigsets << 2562 { << 2563 struct timespec64 to; << 2564 << 2565 return do_compat_epoll_pwait(epfd, ev << 2566 ep_timeo << 2567 sigmask, << 2568 } << 2569 << 2570 COMPAT_SYSCALL_DEFINE6(epoll_pwait2, int, epf << 2571 struct epoll_event __u << 2572 int, maxevents, << 2573 const struct __kernel_ << 2574 const compat_sigset_t << 2575 compat_size_t, sigsets << 2576 { << 2577 struct timespec64 ts, *to = NULL; << 2578 << 2579 if (timeout) { << 2580 if (get_timespec64(&ts, timeo << 2581 return -EFAULT; << 2582 to = &ts; << 2583 if (poll_select_set_timeout(t << 2584 return -EINVAL; << 2585 } << 2586 << 2587 return do_compat_epoll_pwait(epfd, ev << 2588 sigmask, << 2589 } << 2590 << 2591 #endif 2370 #endif 2592 2371 2593 static int __init eventpoll_init(void) 2372 static int __init eventpoll_init(void) 2594 { 2373 { 2595 struct sysinfo si; 2374 struct sysinfo si; 2596 2375 2597 si_meminfo(&si); 2376 si_meminfo(&si); 2598 /* 2377 /* 2599 * Allows top 4% of lomem to be alloc 2378 * Allows top 4% of lomem to be allocated for epoll watches (per user). 2600 */ 2379 */ 2601 max_user_watches = (((si.totalram - s 2380 max_user_watches = (((si.totalram - si.totalhigh) / 25) << PAGE_SHIFT) / 2602 EP_ITEM_COST; 2381 EP_ITEM_COST; 2603 BUG_ON(max_user_watches < 0); 2382 BUG_ON(max_user_watches < 0); 2604 2383 2605 /* 2384 /* >> 2385 * Initialize the structure used to perform epoll file descriptor >> 2386 * inclusion loops checks. >> 2387 */ >> 2388 ep_nested_calls_init(&poll_loop_ncalls); >> 2389 >> 2390 /* 2606 * We can have many thousands of epit 2391 * We can have many thousands of epitems, so prevent this from 2607 * using an extra cache line on 64-bi 2392 * using an extra cache line on 64-bit (and smaller) CPUs 2608 */ 2393 */ 2609 BUILD_BUG_ON(sizeof(void *) <= 8 && s 2394 BUILD_BUG_ON(sizeof(void *) <= 8 && sizeof(struct epitem) > 128); 2610 2395 2611 /* Allocates slab cache used to alloc 2396 /* Allocates slab cache used to allocate "struct epitem" items */ 2612 epi_cache = kmem_cache_create("eventp 2397 epi_cache = kmem_cache_create("eventpoll_epi", sizeof(struct epitem), 2613 0, SLAB_HWCACHE_ALIGN 2398 0, SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, NULL); 2614 2399 2615 /* Allocates slab cache used to alloc 2400 /* Allocates slab cache used to allocate "struct eppoll_entry" */ 2616 pwq_cache = kmem_cache_create("eventp 2401 pwq_cache = kmem_cache_create("eventpoll_pwq", 2617 sizeof(struct eppoll_entry), 2402 sizeof(struct eppoll_entry), 0, SLAB_PANIC|SLAB_ACCOUNT, NULL); 2618 epoll_sysctls_init(); << 2619 << 2620 ephead_cache = kmem_cache_create("ep_ << 2621 sizeof(struct epitems_head), << 2622 2403 2623 return 0; 2404 return 0; 2624 } 2405 } 2625 fs_initcall(eventpoll_init); 2406 fs_initcall(eventpoll_init); 2626 2407
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.