1 // SPDX-License-Identifier: GPL-2.0-or-later 1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 2 /* 3 * fs/eventpoll.c (Efficient event retrieval 3 * fs/eventpoll.c (Efficient event retrieval implementation) 4 * Copyright (C) 2001,...,2009 Davide Libenz 4 * Copyright (C) 2001,...,2009 Davide Libenzi 5 * 5 * 6 * Davide Libenzi <davidel@xmailserver.org> 6 * Davide Libenzi <davidel@xmailserver.org> 7 */ 7 */ 8 8 9 #include <linux/init.h> 9 #include <linux/init.h> 10 #include <linux/kernel.h> 10 #include <linux/kernel.h> 11 #include <linux/sched/signal.h> 11 #include <linux/sched/signal.h> 12 #include <linux/fs.h> 12 #include <linux/fs.h> 13 #include <linux/file.h> 13 #include <linux/file.h> 14 #include <linux/signal.h> 14 #include <linux/signal.h> 15 #include <linux/errno.h> 15 #include <linux/errno.h> 16 #include <linux/mm.h> 16 #include <linux/mm.h> 17 #include <linux/slab.h> 17 #include <linux/slab.h> 18 #include <linux/poll.h> 18 #include <linux/poll.h> 19 #include <linux/string.h> 19 #include <linux/string.h> 20 #include <linux/list.h> 20 #include <linux/list.h> 21 #include <linux/hash.h> 21 #include <linux/hash.h> 22 #include <linux/spinlock.h> 22 #include <linux/spinlock.h> 23 #include <linux/syscalls.h> 23 #include <linux/syscalls.h> 24 #include <linux/rbtree.h> 24 #include <linux/rbtree.h> 25 #include <linux/wait.h> 25 #include <linux/wait.h> 26 #include <linux/eventpoll.h> 26 #include <linux/eventpoll.h> 27 #include <linux/mount.h> 27 #include <linux/mount.h> 28 #include <linux/bitops.h> 28 #include <linux/bitops.h> 29 #include <linux/mutex.h> 29 #include <linux/mutex.h> 30 #include <linux/anon_inodes.h> 30 #include <linux/anon_inodes.h> 31 #include <linux/device.h> 31 #include <linux/device.h> 32 #include <linux/uaccess.h> 32 #include <linux/uaccess.h> 33 #include <asm/io.h> 33 #include <asm/io.h> 34 #include <asm/mman.h> 34 #include <asm/mman.h> 35 #include <linux/atomic.h> 35 #include <linux/atomic.h> 36 #include <linux/proc_fs.h> 36 #include <linux/proc_fs.h> 37 #include <linux/seq_file.h> 37 #include <linux/seq_file.h> 38 #include <linux/compat.h> 38 #include <linux/compat.h> 39 #include <linux/rculist.h> 39 #include <linux/rculist.h> 40 #include <linux/capability.h> << 41 #include <net/busy_poll.h> 40 #include <net/busy_poll.h> 42 41 43 /* 42 /* 44 * LOCKING: 43 * LOCKING: 45 * There are three level of locking required b 44 * There are three level of locking required by epoll : 46 * 45 * 47 * 1) epnested_mutex (mutex) 46 * 1) epnested_mutex (mutex) 48 * 2) ep->mtx (mutex) 47 * 2) ep->mtx (mutex) 49 * 3) ep->lock (rwlock) 48 * 3) ep->lock (rwlock) 50 * 49 * 51 * The acquire order is the one listed above, 50 * The acquire order is the one listed above, from 1 to 3. 52 * We need a rwlock (ep->lock) because we mani 51 * We need a rwlock (ep->lock) because we manipulate objects 53 * from inside the poll callback, that might b 52 * from inside the poll callback, that might be triggered from 54 * a wake_up() that in turn might be called fr 53 * a wake_up() that in turn might be called from IRQ context. 55 * So we can't sleep inside the poll callback 54 * So we can't sleep inside the poll callback and hence we need 56 * a spinlock. During the event transfer loop 55 * a spinlock. During the event transfer loop (from kernel to 57 * user space) we could end up sleeping due a 56 * user space) we could end up sleeping due a copy_to_user(), so 58 * we need a lock that will allow us to sleep. 57 * we need a lock that will allow us to sleep. This lock is a 59 * mutex (ep->mtx). It is acquired during the 58 * mutex (ep->mtx). It is acquired during the event transfer loop, 60 * during epoll_ctl(EPOLL_CTL_DEL) and during 59 * during epoll_ctl(EPOLL_CTL_DEL) and during eventpoll_release_file(). 61 * The epnested_mutex is acquired when inserti 60 * The epnested_mutex is acquired when inserting an epoll fd onto another 62 * epoll fd. We do this so that we walk the ep 61 * epoll fd. We do this so that we walk the epoll tree and ensure that this 63 * insertion does not create a cycle of epoll 62 * insertion does not create a cycle of epoll file descriptors, which 64 * could lead to deadlock. We need a global mu 63 * could lead to deadlock. We need a global mutex to prevent two 65 * simultaneous inserts (A into B and B into A 64 * simultaneous inserts (A into B and B into A) from racing and 66 * constructing a cycle without either insert 65 * constructing a cycle without either insert observing that it is 67 * going to. 66 * going to. 68 * It is necessary to acquire multiple "ep->mt 67 * It is necessary to acquire multiple "ep->mtx"es at once in the 69 * case when one epoll fd is added to another. 68 * case when one epoll fd is added to another. In this case, we 70 * always acquire the locks in the order of ne 69 * always acquire the locks in the order of nesting (i.e. after 71 * epoll_ctl(e1, EPOLL_CTL_ADD, e2), e1->mtx w 70 * epoll_ctl(e1, EPOLL_CTL_ADD, e2), e1->mtx will always be acquired 72 * before e2->mtx). Since we disallow cycles o 71 * before e2->mtx). Since we disallow cycles of epoll file 73 * descriptors, this ensures that the mutexes 72 * descriptors, this ensures that the mutexes are well-ordered. In 74 * order to communicate this nesting to lockde 73 * order to communicate this nesting to lockdep, when walking a tree 75 * of epoll file descriptors, we use the curre 74 * of epoll file descriptors, we use the current recursion depth as 76 * the lockdep subkey. 75 * the lockdep subkey. 77 * It is possible to drop the "ep->mtx" and to 76 * It is possible to drop the "ep->mtx" and to use the global 78 * mutex "epnested_mutex" (together with "ep-> 77 * mutex "epnested_mutex" (together with "ep->lock") to have it working, 79 * but having "ep->mtx" will make the interfac 78 * but having "ep->mtx" will make the interface more scalable. 80 * Events that require holding "epnested_mutex 79 * Events that require holding "epnested_mutex" are very rare, while for 81 * normal operations the epoll private "ep->mt 80 * normal operations the epoll private "ep->mtx" will guarantee 82 * a better scalability. 81 * a better scalability. 83 */ 82 */ 84 83 85 /* Epoll private bits inside the event mask */ 84 /* Epoll private bits inside the event mask */ 86 #define EP_PRIVATE_BITS (EPOLLWAKEUP | EPOLLON 85 #define EP_PRIVATE_BITS (EPOLLWAKEUP | EPOLLONESHOT | EPOLLET | EPOLLEXCLUSIVE) 87 86 88 #define EPOLLINOUT_BITS (EPOLLIN | EPOLLOUT) 87 #define EPOLLINOUT_BITS (EPOLLIN | EPOLLOUT) 89 88 90 #define EPOLLEXCLUSIVE_OK_BITS (EPOLLINOUT_BIT 89 #define EPOLLEXCLUSIVE_OK_BITS (EPOLLINOUT_BITS | EPOLLERR | EPOLLHUP | \ 91 EPOLLWAKEUP | 90 EPOLLWAKEUP | EPOLLET | EPOLLEXCLUSIVE) 92 91 93 /* Maximum number of nesting allowed inside ep 92 /* Maximum number of nesting allowed inside epoll sets */ 94 #define EP_MAX_NESTS 4 93 #define EP_MAX_NESTS 4 95 94 96 #define EP_MAX_EVENTS (INT_MAX / sizeof(struct 95 #define EP_MAX_EVENTS (INT_MAX / sizeof(struct epoll_event)) 97 96 98 #define EP_UNACTIVE_PTR ((void *) -1L) 97 #define EP_UNACTIVE_PTR ((void *) -1L) 99 98 100 #define EP_ITEM_COST (sizeof(struct epitem) + 99 #define EP_ITEM_COST (sizeof(struct epitem) + sizeof(struct eppoll_entry)) 101 100 102 struct epoll_filefd { 101 struct epoll_filefd { 103 struct file *file; 102 struct file *file; 104 int fd; 103 int fd; 105 } __packed; 104 } __packed; 106 105 107 /* Wait structure used by the poll hooks */ 106 /* Wait structure used by the poll hooks */ 108 struct eppoll_entry { 107 struct eppoll_entry { 109 /* List header used to link this struc 108 /* List header used to link this structure to the "struct epitem" */ 110 struct eppoll_entry *next; 109 struct eppoll_entry *next; 111 110 112 /* The "base" pointer is set to the co 111 /* The "base" pointer is set to the container "struct epitem" */ 113 struct epitem *base; 112 struct epitem *base; 114 113 115 /* 114 /* 116 * Wait queue item that will be linked 115 * Wait queue item that will be linked to the target file wait 117 * queue head. 116 * queue head. 118 */ 117 */ 119 wait_queue_entry_t wait; 118 wait_queue_entry_t wait; 120 119 121 /* The wait queue head that linked the 120 /* The wait queue head that linked the "wait" wait queue item */ 122 wait_queue_head_t *whead; 121 wait_queue_head_t *whead; 123 }; 122 }; 124 123 125 /* 124 /* 126 * Each file descriptor added to the eventpoll 125 * Each file descriptor added to the eventpoll interface will 127 * have an entry of this type linked to the "r 126 * have an entry of this type linked to the "rbr" RB tree. 128 * Avoid increasing the size of this struct, t 127 * Avoid increasing the size of this struct, there can be many thousands 129 * of these on a server and we do not want thi 128 * of these on a server and we do not want this to take another cache line. 130 */ 129 */ 131 struct epitem { 130 struct epitem { 132 union { 131 union { 133 /* RB tree node links this str 132 /* RB tree node links this structure to the eventpoll RB tree */ 134 struct rb_node rbn; 133 struct rb_node rbn; 135 /* Used to free the struct epi 134 /* Used to free the struct epitem */ 136 struct rcu_head rcu; 135 struct rcu_head rcu; 137 }; 136 }; 138 137 139 /* List header used to link this struc 138 /* List header used to link this structure to the eventpoll ready list */ 140 struct list_head rdllink; 139 struct list_head rdllink; 141 140 142 /* 141 /* 143 * Works together "struct eventpoll"-> 142 * Works together "struct eventpoll"->ovflist in keeping the 144 * single linked chain of items. 143 * single linked chain of items. 145 */ 144 */ 146 struct epitem *next; 145 struct epitem *next; 147 146 148 /* The file descriptor information thi 147 /* The file descriptor information this item refers to */ 149 struct epoll_filefd ffd; 148 struct epoll_filefd ffd; 150 149 151 /* 150 /* 152 * Protected by file->f_lock, true for 151 * Protected by file->f_lock, true for to-be-released epitem already 153 * removed from the "struct file" item 152 * removed from the "struct file" items list; together with 154 * eventpoll->refcount orchestrates "s 153 * eventpoll->refcount orchestrates "struct eventpoll" disposal 155 */ 154 */ 156 bool dying; 155 bool dying; 157 156 158 /* List containing poll wait queues */ 157 /* List containing poll wait queues */ 159 struct eppoll_entry *pwqlist; 158 struct eppoll_entry *pwqlist; 160 159 161 /* The "container" of this item */ 160 /* The "container" of this item */ 162 struct eventpoll *ep; 161 struct eventpoll *ep; 163 162 164 /* List header used to link this item 163 /* List header used to link this item to the "struct file" items list */ 165 struct hlist_node fllink; 164 struct hlist_node fllink; 166 165 167 /* wakeup_source used when EPOLLWAKEUP 166 /* wakeup_source used when EPOLLWAKEUP is set */ 168 struct wakeup_source __rcu *ws; 167 struct wakeup_source __rcu *ws; 169 168 170 /* The structure that describe the int 169 /* The structure that describe the interested events and the source fd */ 171 struct epoll_event event; 170 struct epoll_event event; 172 }; 171 }; 173 172 174 /* 173 /* 175 * This structure is stored inside the "privat 174 * This structure is stored inside the "private_data" member of the file 176 * structure and represents the main data stru 175 * structure and represents the main data structure for the eventpoll 177 * interface. 176 * interface. 178 */ 177 */ 179 struct eventpoll { 178 struct eventpoll { 180 /* 179 /* 181 * This mutex is used to ensure that f 180 * This mutex is used to ensure that files are not removed 182 * while epoll is using them. This is 181 * while epoll is using them. This is held during the event 183 * collection loop, the file cleanup p 182 * collection loop, the file cleanup path, the epoll file exit 184 * code and the ctl operations. 183 * code and the ctl operations. 185 */ 184 */ 186 struct mutex mtx; 185 struct mutex mtx; 187 186 188 /* Wait queue used by sys_epoll_wait() 187 /* Wait queue used by sys_epoll_wait() */ 189 wait_queue_head_t wq; 188 wait_queue_head_t wq; 190 189 191 /* Wait queue used by file->poll() */ 190 /* Wait queue used by file->poll() */ 192 wait_queue_head_t poll_wait; 191 wait_queue_head_t poll_wait; 193 192 194 /* List of ready file descriptors */ 193 /* List of ready file descriptors */ 195 struct list_head rdllist; 194 struct list_head rdllist; 196 195 197 /* Lock which protects rdllist and ovf 196 /* Lock which protects rdllist and ovflist */ 198 rwlock_t lock; 197 rwlock_t lock; 199 198 200 /* RB tree root used to store monitore 199 /* RB tree root used to store monitored fd structs */ 201 struct rb_root_cached rbr; 200 struct rb_root_cached rbr; 202 201 203 /* 202 /* 204 * This is a single linked list that c 203 * This is a single linked list that chains all the "struct epitem" that 205 * happened while transferring ready e 204 * happened while transferring ready events to userspace w/out 206 * holding ->lock. 205 * holding ->lock. 207 */ 206 */ 208 struct epitem *ovflist; 207 struct epitem *ovflist; 209 208 210 /* wakeup_source used when ep_send_eve !! 209 /* wakeup_source used when ep_scan_ready_list is running */ 211 struct wakeup_source *ws; 210 struct wakeup_source *ws; 212 211 213 /* The user that created the eventpoll 212 /* The user that created the eventpoll descriptor */ 214 struct user_struct *user; 213 struct user_struct *user; 215 214 216 struct file *file; 215 struct file *file; 217 216 218 /* used to optimize loop detection che 217 /* used to optimize loop detection check */ 219 u64 gen; 218 u64 gen; 220 struct hlist_head refs; 219 struct hlist_head refs; 221 220 222 /* 221 /* 223 * usage count, used together with epi 222 * usage count, used together with epitem->dying to 224 * orchestrate the disposal of this st 223 * orchestrate the disposal of this struct 225 */ 224 */ 226 refcount_t refcount; 225 refcount_t refcount; 227 226 228 #ifdef CONFIG_NET_RX_BUSY_POLL 227 #ifdef CONFIG_NET_RX_BUSY_POLL 229 /* used to track busy poll napi_id */ 228 /* used to track busy poll napi_id */ 230 unsigned int napi_id; 229 unsigned int napi_id; 231 /* busy poll timeout */ << 232 u32 busy_poll_usecs; << 233 /* busy poll packet budget */ << 234 u16 busy_poll_budget; << 235 bool prefer_busy_poll; << 236 #endif 230 #endif 237 231 238 #ifdef CONFIG_DEBUG_LOCK_ALLOC 232 #ifdef CONFIG_DEBUG_LOCK_ALLOC 239 /* tracks wakeup nests for lockdep val 233 /* tracks wakeup nests for lockdep validation */ 240 u8 nests; 234 u8 nests; 241 #endif 235 #endif 242 }; 236 }; 243 237 244 /* Wrapper struct used by poll queueing */ 238 /* Wrapper struct used by poll queueing */ 245 struct ep_pqueue { 239 struct ep_pqueue { 246 poll_table pt; 240 poll_table pt; 247 struct epitem *epi; 241 struct epitem *epi; 248 }; 242 }; 249 243 250 /* 244 /* 251 * Configuration options available inside /pro 245 * Configuration options available inside /proc/sys/fs/epoll/ 252 */ 246 */ 253 /* Maximum number of epoll watched descriptors 247 /* Maximum number of epoll watched descriptors, per user */ 254 static long max_user_watches __read_mostly; 248 static long max_user_watches __read_mostly; 255 249 256 /* Used for cycles detection */ 250 /* Used for cycles detection */ 257 static DEFINE_MUTEX(epnested_mutex); 251 static DEFINE_MUTEX(epnested_mutex); 258 252 259 static u64 loop_check_gen = 0; 253 static u64 loop_check_gen = 0; 260 254 261 /* Used to check for epoll file descriptor inc 255 /* Used to check for epoll file descriptor inclusion loops */ 262 static struct eventpoll *inserting_into; 256 static struct eventpoll *inserting_into; 263 257 264 /* Slab cache used to allocate "struct epitem" 258 /* Slab cache used to allocate "struct epitem" */ 265 static struct kmem_cache *epi_cache __ro_after 259 static struct kmem_cache *epi_cache __ro_after_init; 266 260 267 /* Slab cache used to allocate "struct eppoll_ 261 /* Slab cache used to allocate "struct eppoll_entry" */ 268 static struct kmem_cache *pwq_cache __ro_after 262 static struct kmem_cache *pwq_cache __ro_after_init; 269 263 270 /* 264 /* 271 * List of files with newly added links, where 265 * List of files with newly added links, where we may need to limit the number 272 * of emanating paths. Protected by the epnest 266 * of emanating paths. Protected by the epnested_mutex. 273 */ 267 */ 274 struct epitems_head { 268 struct epitems_head { 275 struct hlist_head epitems; 269 struct hlist_head epitems; 276 struct epitems_head *next; 270 struct epitems_head *next; 277 }; 271 }; 278 static struct epitems_head *tfile_check_list = 272 static struct epitems_head *tfile_check_list = EP_UNACTIVE_PTR; 279 273 280 static struct kmem_cache *ephead_cache __ro_af 274 static struct kmem_cache *ephead_cache __ro_after_init; 281 275 282 static inline void free_ephead(struct epitems_ 276 static inline void free_ephead(struct epitems_head *head) 283 { 277 { 284 if (head) 278 if (head) 285 kmem_cache_free(ephead_cache, 279 kmem_cache_free(ephead_cache, head); 286 } 280 } 287 281 288 static void list_file(struct file *file) 282 static void list_file(struct file *file) 289 { 283 { 290 struct epitems_head *head; 284 struct epitems_head *head; 291 285 292 head = container_of(file->f_ep, struct 286 head = container_of(file->f_ep, struct epitems_head, epitems); 293 if (!head->next) { 287 if (!head->next) { 294 head->next = tfile_check_list; 288 head->next = tfile_check_list; 295 tfile_check_list = head; 289 tfile_check_list = head; 296 } 290 } 297 } 291 } 298 292 299 static void unlist_file(struct epitems_head *h 293 static void unlist_file(struct epitems_head *head) 300 { 294 { 301 struct epitems_head *to_free = head; 295 struct epitems_head *to_free = head; 302 struct hlist_node *p = rcu_dereference 296 struct hlist_node *p = rcu_dereference(hlist_first_rcu(&head->epitems)); 303 if (p) { 297 if (p) { 304 struct epitem *epi= container_ 298 struct epitem *epi= container_of(p, struct epitem, fllink); 305 spin_lock(&epi->ffd.file->f_lo 299 spin_lock(&epi->ffd.file->f_lock); 306 if (!hlist_empty(&head->epitem 300 if (!hlist_empty(&head->epitems)) 307 to_free = NULL; 301 to_free = NULL; 308 head->next = NULL; 302 head->next = NULL; 309 spin_unlock(&epi->ffd.file->f_ 303 spin_unlock(&epi->ffd.file->f_lock); 310 } 304 } 311 free_ephead(to_free); 305 free_ephead(to_free); 312 } 306 } 313 307 314 #ifdef CONFIG_SYSCTL 308 #ifdef CONFIG_SYSCTL 315 309 316 #include <linux/sysctl.h> 310 #include <linux/sysctl.h> 317 311 318 static long long_zero; 312 static long long_zero; 319 static long long_max = LONG_MAX; 313 static long long_max = LONG_MAX; 320 314 321 static struct ctl_table epoll_table[] = { 315 static struct ctl_table epoll_table[] = { 322 { 316 { 323 .procname = "max_user_wa 317 .procname = "max_user_watches", 324 .data = &max_user_wa 318 .data = &max_user_watches, 325 .maxlen = sizeof(max_u 319 .maxlen = sizeof(max_user_watches), 326 .mode = 0644, 320 .mode = 0644, 327 .proc_handler = proc_doulong 321 .proc_handler = proc_doulongvec_minmax, 328 .extra1 = &long_zero, 322 .extra1 = &long_zero, 329 .extra2 = &long_max, 323 .extra2 = &long_max, 330 }, 324 }, >> 325 { } 331 }; 326 }; 332 327 333 static void __init epoll_sysctls_init(void) 328 static void __init epoll_sysctls_init(void) 334 { 329 { 335 register_sysctl("fs/epoll", epoll_tabl 330 register_sysctl("fs/epoll", epoll_table); 336 } 331 } 337 #else 332 #else 338 #define epoll_sysctls_init() do { } while (0) 333 #define epoll_sysctls_init() do { } while (0) 339 #endif /* CONFIG_SYSCTL */ 334 #endif /* CONFIG_SYSCTL */ 340 335 341 static const struct file_operations eventpoll_ 336 static const struct file_operations eventpoll_fops; 342 337 343 static inline int is_file_epoll(struct file *f 338 static inline int is_file_epoll(struct file *f) 344 { 339 { 345 return f->f_op == &eventpoll_fops; 340 return f->f_op == &eventpoll_fops; 346 } 341 } 347 342 348 /* Setup the structure that is used as key for 343 /* Setup the structure that is used as key for the RB tree */ 349 static inline void ep_set_ffd(struct epoll_fil 344 static inline void ep_set_ffd(struct epoll_filefd *ffd, 350 struct file *fil 345 struct file *file, int fd) 351 { 346 { 352 ffd->file = file; 347 ffd->file = file; 353 ffd->fd = fd; 348 ffd->fd = fd; 354 } 349 } 355 350 356 /* Compare RB tree keys */ 351 /* Compare RB tree keys */ 357 static inline int ep_cmp_ffd(struct epoll_file 352 static inline int ep_cmp_ffd(struct epoll_filefd *p1, 358 struct epoll_file 353 struct epoll_filefd *p2) 359 { 354 { 360 return (p1->file > p2->file ? +1: 355 return (p1->file > p2->file ? +1: 361 (p1->file < p2->file ? -1 : p1 356 (p1->file < p2->file ? -1 : p1->fd - p2->fd)); 362 } 357 } 363 358 364 /* Tells us if the item is currently linked */ 359 /* Tells us if the item is currently linked */ 365 static inline int ep_is_linked(struct epitem * 360 static inline int ep_is_linked(struct epitem *epi) 366 { 361 { 367 return !list_empty(&epi->rdllink); 362 return !list_empty(&epi->rdllink); 368 } 363 } 369 364 370 static inline struct eppoll_entry *ep_pwq_from 365 static inline struct eppoll_entry *ep_pwq_from_wait(wait_queue_entry_t *p) 371 { 366 { 372 return container_of(p, struct eppoll_e 367 return container_of(p, struct eppoll_entry, wait); 373 } 368 } 374 369 375 /* Get the "struct epitem" from a wait queue p 370 /* Get the "struct epitem" from a wait queue pointer */ 376 static inline struct epitem *ep_item_from_wait 371 static inline struct epitem *ep_item_from_wait(wait_queue_entry_t *p) 377 { 372 { 378 return container_of(p, struct eppoll_e 373 return container_of(p, struct eppoll_entry, wait)->base; 379 } 374 } 380 375 381 /** 376 /** 382 * ep_events_available - Checks if ready event 377 * ep_events_available - Checks if ready events might be available. 383 * 378 * 384 * @ep: Pointer to the eventpoll context. 379 * @ep: Pointer to the eventpoll context. 385 * 380 * 386 * Return: a value different than %zero if rea 381 * Return: a value different than %zero if ready events are available, 387 * or %zero otherwise. 382 * or %zero otherwise. 388 */ 383 */ 389 static inline int ep_events_available(struct e 384 static inline int ep_events_available(struct eventpoll *ep) 390 { 385 { 391 return !list_empty_careful(&ep->rdllis 386 return !list_empty_careful(&ep->rdllist) || 392 READ_ONCE(ep->ovflist) != EP_U 387 READ_ONCE(ep->ovflist) != EP_UNACTIVE_PTR; 393 } 388 } 394 389 395 #ifdef CONFIG_NET_RX_BUSY_POLL 390 #ifdef CONFIG_NET_RX_BUSY_POLL 396 /** << 397 * busy_loop_ep_timeout - check if busy poll h << 398 * from the epoll instance ep is preferred, bu << 399 * the system-wide global via busy_loop_timeou << 400 * << 401 * @start_time: The start time used to compute << 402 * @ep: Pointer to the eventpoll context. << 403 * << 404 * Return: true if the timeout has expired, fa << 405 */ << 406 static bool busy_loop_ep_timeout(unsigned long << 407 struct eventp << 408 { << 409 unsigned long bp_usec = READ_ONCE(ep-> << 410 << 411 if (bp_usec) { << 412 unsigned long end_time = start << 413 unsigned long now = busy_loop_ << 414 << 415 return time_after(now, end_tim << 416 } else { << 417 return busy_loop_timeout(start << 418 } << 419 } << 420 << 421 static bool ep_busy_loop_on(struct eventpoll * << 422 { << 423 return !!READ_ONCE(ep->busy_poll_usecs << 424 } << 425 << 426 static bool ep_busy_loop_end(void *p, unsigned 391 static bool ep_busy_loop_end(void *p, unsigned long start_time) 427 { 392 { 428 struct eventpoll *ep = p; 393 struct eventpoll *ep = p; 429 394 430 return ep_events_available(ep) || busy !! 395 return ep_events_available(ep) || busy_loop_timeout(start_time); 431 } 396 } 432 397 433 /* 398 /* 434 * Busy poll if globally on and supporting soc 399 * Busy poll if globally on and supporting sockets found && no events, 435 * busy loop will return if need_resched or ep 400 * busy loop will return if need_resched or ep_events_available. 436 * 401 * 437 * we must do our busy polling with irqs enabl 402 * we must do our busy polling with irqs enabled 438 */ 403 */ 439 static bool ep_busy_loop(struct eventpoll *ep, 404 static bool ep_busy_loop(struct eventpoll *ep, int nonblock) 440 { 405 { 441 unsigned int napi_id = READ_ONCE(ep->n 406 unsigned int napi_id = READ_ONCE(ep->napi_id); 442 u16 budget = READ_ONCE(ep->busy_poll_b << 443 bool prefer_busy_poll = READ_ONCE(ep-> << 444 407 445 if (!budget) !! 408 if ((napi_id >= MIN_NAPI_ID) && net_busy_loop_on()) { 446 budget = BUSY_POLL_BUDGET; !! 409 napi_busy_loop(napi_id, nonblock ? NULL : ep_busy_loop_end, ep, false, 447 !! 410 BUSY_POLL_BUDGET); 448 if (napi_id >= MIN_NAPI_ID && ep_busy_ << 449 napi_busy_loop(napi_id, nonblo << 450 ep, prefer_busy << 451 if (ep_events_available(ep)) 411 if (ep_events_available(ep)) 452 return true; 412 return true; 453 /* 413 /* 454 * Busy poll timed out. Drop 414 * Busy poll timed out. Drop NAPI ID for now, we can add 455 * it back in when we have mov 415 * it back in when we have moved a socket with a valid NAPI 456 * ID onto the ready list. 416 * ID onto the ready list. 457 */ 417 */ 458 ep->napi_id = 0; 418 ep->napi_id = 0; 459 return false; 419 return false; 460 } 420 } 461 return false; 421 return false; 462 } 422 } 463 423 464 /* 424 /* 465 * Set epoll busy poll NAPI ID from sk. 425 * Set epoll busy poll NAPI ID from sk. 466 */ 426 */ 467 static inline void ep_set_busy_poll_napi_id(st 427 static inline void ep_set_busy_poll_napi_id(struct epitem *epi) 468 { 428 { 469 struct eventpoll *ep = epi->ep; !! 429 struct eventpoll *ep; 470 unsigned int napi_id; 430 unsigned int napi_id; 471 struct socket *sock; 431 struct socket *sock; 472 struct sock *sk; 432 struct sock *sk; 473 433 474 if (!ep_busy_loop_on(ep)) !! 434 if (!net_busy_loop_on()) 475 return; 435 return; 476 436 477 sock = sock_from_file(epi->ffd.file); 437 sock = sock_from_file(epi->ffd.file); 478 if (!sock) 438 if (!sock) 479 return; 439 return; 480 440 481 sk = sock->sk; 441 sk = sock->sk; 482 if (!sk) 442 if (!sk) 483 return; 443 return; 484 444 485 napi_id = READ_ONCE(sk->sk_napi_id); 445 napi_id = READ_ONCE(sk->sk_napi_id); >> 446 ep = epi->ep; 486 447 487 /* Non-NAPI IDs can be rejected 448 /* Non-NAPI IDs can be rejected 488 * or 449 * or 489 * Nothing to do if we already have th 450 * Nothing to do if we already have this ID 490 */ 451 */ 491 if (napi_id < MIN_NAPI_ID || napi_id = 452 if (napi_id < MIN_NAPI_ID || napi_id == ep->napi_id) 492 return; 453 return; 493 454 494 /* record NAPI ID for use in next busy 455 /* record NAPI ID for use in next busy poll */ 495 ep->napi_id = napi_id; 456 ep->napi_id = napi_id; 496 } 457 } 497 458 498 static long ep_eventpoll_bp_ioctl(struct file << 499 unsigned lon << 500 { << 501 struct eventpoll *ep = file->private_d << 502 void __user *uarg = (void __user *)arg << 503 struct epoll_params epoll_params; << 504 << 505 switch (cmd) { << 506 case EPIOCSPARAMS: << 507 if (copy_from_user(&epoll_para << 508 return -EFAULT; << 509 << 510 /* pad byte must be zero */ << 511 if (epoll_params.__pad) << 512 return -EINVAL; << 513 << 514 if (epoll_params.busy_poll_use << 515 return -EINVAL; << 516 << 517 if (epoll_params.prefer_busy_p << 518 return -EINVAL; << 519 << 520 if (epoll_params.busy_poll_bud << 521 !capable(CAP_NET_ADMIN)) << 522 return -EPERM; << 523 << 524 WRITE_ONCE(ep->busy_poll_usecs << 525 WRITE_ONCE(ep->busy_poll_budge << 526 WRITE_ONCE(ep->prefer_busy_pol << 527 return 0; << 528 case EPIOCGPARAMS: << 529 memset(&epoll_params, 0, sizeo << 530 epoll_params.busy_poll_usecs = << 531 epoll_params.busy_poll_budget << 532 epoll_params.prefer_busy_poll << 533 if (copy_to_user(uarg, &epoll_ << 534 return -EFAULT; << 535 return 0; << 536 default: << 537 return -ENOIOCTLCMD; << 538 } << 539 } << 540 << 541 #else 459 #else 542 460 543 static inline bool ep_busy_loop(struct eventpo 461 static inline bool ep_busy_loop(struct eventpoll *ep, int nonblock) 544 { 462 { 545 return false; 463 return false; 546 } 464 } 547 465 548 static inline void ep_set_busy_poll_napi_id(st 466 static inline void ep_set_busy_poll_napi_id(struct epitem *epi) 549 { 467 { 550 } 468 } 551 469 552 static long ep_eventpoll_bp_ioctl(struct file << 553 unsigned lon << 554 { << 555 return -EOPNOTSUPP; << 556 } << 557 << 558 #endif /* CONFIG_NET_RX_BUSY_POLL */ 470 #endif /* CONFIG_NET_RX_BUSY_POLL */ 559 471 560 /* 472 /* 561 * As described in commit 0ccf831cb lockdep: a 473 * As described in commit 0ccf831cb lockdep: annotate epoll 562 * the use of wait queues used by epoll is don 474 * the use of wait queues used by epoll is done in a very controlled 563 * manner. Wake ups can nest inside each other 475 * manner. Wake ups can nest inside each other, but are never done 564 * with the same locking. For example: 476 * with the same locking. For example: 565 * 477 * 566 * dfd = socket(...); 478 * dfd = socket(...); 567 * efd1 = epoll_create(); 479 * efd1 = epoll_create(); 568 * efd2 = epoll_create(); 480 * efd2 = epoll_create(); 569 * epoll_ctl(efd1, EPOLL_CTL_ADD, dfd, ...); 481 * epoll_ctl(efd1, EPOLL_CTL_ADD, dfd, ...); 570 * epoll_ctl(efd2, EPOLL_CTL_ADD, efd1, ...) 482 * epoll_ctl(efd2, EPOLL_CTL_ADD, efd1, ...); 571 * 483 * 572 * When a packet arrives to the device underne 484 * When a packet arrives to the device underneath "dfd", the net code will 573 * issue a wake_up() on its poll wake list. Ep 485 * issue a wake_up() on its poll wake list. Epoll (efd1) has installed a 574 * callback wakeup entry on that queue, and th 486 * callback wakeup entry on that queue, and the wake_up() performed by the 575 * "dfd" net code will end up in ep_poll_callb 487 * "dfd" net code will end up in ep_poll_callback(). At this point epoll 576 * (efd1) notices that it may have some event 488 * (efd1) notices that it may have some event ready, so it needs to wake up 577 * the waiters on its poll wait list (efd2). S 489 * the waiters on its poll wait list (efd2). So it calls ep_poll_safewake() 578 * that ends up in another wake_up(), after ha 490 * that ends up in another wake_up(), after having checked about the 579 * recursion constraints. That are, no more th 491 * recursion constraints. That are, no more than EP_MAX_NESTS, to avoid 580 * stack blasting. 492 * stack blasting. 581 * 493 * 582 * When CONFIG_DEBUG_LOCK_ALLOC is enabled, ma 494 * When CONFIG_DEBUG_LOCK_ALLOC is enabled, make sure lockdep can handle 583 * this special case of epoll. 495 * this special case of epoll. 584 */ 496 */ 585 #ifdef CONFIG_DEBUG_LOCK_ALLOC 497 #ifdef CONFIG_DEBUG_LOCK_ALLOC 586 498 587 static void ep_poll_safewake(struct eventpoll 499 static void ep_poll_safewake(struct eventpoll *ep, struct epitem *epi, 588 unsigned pollflag 500 unsigned pollflags) 589 { 501 { 590 struct eventpoll *ep_src; 502 struct eventpoll *ep_src; 591 unsigned long flags; 503 unsigned long flags; 592 u8 nests = 0; 504 u8 nests = 0; 593 505 594 /* 506 /* 595 * To set the subclass or nesting leve 507 * To set the subclass or nesting level for spin_lock_irqsave_nested() 596 * it might be natural to create a per 508 * it might be natural to create a per-cpu nest count. However, since 597 * we can recurse on ep->poll_wait.loc 509 * we can recurse on ep->poll_wait.lock, and a non-raw spinlock can 598 * schedule() in the -rt kernel, the p 510 * schedule() in the -rt kernel, the per-cpu variable are no longer 599 * protected. Thus, we are introducing 511 * protected. Thus, we are introducing a per eventpoll nest field. 600 * If we are not being call from ep_po 512 * If we are not being call from ep_poll_callback(), epi is NULL and 601 * we are at the first level of nestin 513 * we are at the first level of nesting, 0. Otherwise, we are being 602 * called from ep_poll_callback() and 514 * called from ep_poll_callback() and if a previous wakeup source is 603 * not an epoll file itself, we are at 515 * not an epoll file itself, we are at depth 1 since the wakeup source 604 * is depth 0. If the wakeup source is 516 * is depth 0. If the wakeup source is a previous epoll file in the 605 * wakeup chain then we use its nests 517 * wakeup chain then we use its nests value and record ours as 606 * nests + 1. The previous epoll file 518 * nests + 1. The previous epoll file nests value is stable since its 607 * already holding its own poll_wait.l 519 * already holding its own poll_wait.lock. 608 */ 520 */ 609 if (epi) { 521 if (epi) { 610 if ((is_file_epoll(epi->ffd.fi 522 if ((is_file_epoll(epi->ffd.file))) { 611 ep_src = epi->ffd.file 523 ep_src = epi->ffd.file->private_data; 612 nests = ep_src->nests; 524 nests = ep_src->nests; 613 } else { 525 } else { 614 nests = 1; 526 nests = 1; 615 } 527 } 616 } 528 } 617 spin_lock_irqsave_nested(&ep->poll_wai 529 spin_lock_irqsave_nested(&ep->poll_wait.lock, flags, nests); 618 ep->nests = nests + 1; 530 ep->nests = nests + 1; 619 wake_up_locked_poll(&ep->poll_wait, EP 531 wake_up_locked_poll(&ep->poll_wait, EPOLLIN | pollflags); 620 ep->nests = 0; 532 ep->nests = 0; 621 spin_unlock_irqrestore(&ep->poll_wait. 533 spin_unlock_irqrestore(&ep->poll_wait.lock, flags); 622 } 534 } 623 535 624 #else 536 #else 625 537 626 static void ep_poll_safewake(struct eventpoll 538 static void ep_poll_safewake(struct eventpoll *ep, struct epitem *epi, 627 __poll_t pollflag 539 __poll_t pollflags) 628 { 540 { 629 wake_up_poll(&ep->poll_wait, EPOLLIN | 541 wake_up_poll(&ep->poll_wait, EPOLLIN | pollflags); 630 } 542 } 631 543 632 #endif 544 #endif 633 545 634 static void ep_remove_wait_queue(struct eppoll 546 static void ep_remove_wait_queue(struct eppoll_entry *pwq) 635 { 547 { 636 wait_queue_head_t *whead; 548 wait_queue_head_t *whead; 637 549 638 rcu_read_lock(); 550 rcu_read_lock(); 639 /* 551 /* 640 * If it is cleared by POLLFREE, it sh 552 * If it is cleared by POLLFREE, it should be rcu-safe. 641 * If we read NULL we need a barrier p 553 * If we read NULL we need a barrier paired with 642 * smp_store_release() in ep_poll_call 554 * smp_store_release() in ep_poll_callback(), otherwise 643 * we rely on whead->lock. 555 * we rely on whead->lock. 644 */ 556 */ 645 whead = smp_load_acquire(&pwq->whead); 557 whead = smp_load_acquire(&pwq->whead); 646 if (whead) 558 if (whead) 647 remove_wait_queue(whead, &pwq- 559 remove_wait_queue(whead, &pwq->wait); 648 rcu_read_unlock(); 560 rcu_read_unlock(); 649 } 561 } 650 562 651 /* 563 /* 652 * This function unregisters poll callbacks fr 564 * This function unregisters poll callbacks from the associated file 653 * descriptor. Must be called with "mtx" held 565 * descriptor. Must be called with "mtx" held. 654 */ 566 */ 655 static void ep_unregister_pollwait(struct even 567 static void ep_unregister_pollwait(struct eventpoll *ep, struct epitem *epi) 656 { 568 { 657 struct eppoll_entry **p = &epi->pwqlis 569 struct eppoll_entry **p = &epi->pwqlist; 658 struct eppoll_entry *pwq; 570 struct eppoll_entry *pwq; 659 571 660 while ((pwq = *p) != NULL) { 572 while ((pwq = *p) != NULL) { 661 *p = pwq->next; 573 *p = pwq->next; 662 ep_remove_wait_queue(pwq); 574 ep_remove_wait_queue(pwq); 663 kmem_cache_free(pwq_cache, pwq 575 kmem_cache_free(pwq_cache, pwq); 664 } 576 } 665 } 577 } 666 578 667 /* call only when ep->mtx is held */ 579 /* call only when ep->mtx is held */ 668 static inline struct wakeup_source *ep_wakeup_ 580 static inline struct wakeup_source *ep_wakeup_source(struct epitem *epi) 669 { 581 { 670 return rcu_dereference_check(epi->ws, 582 return rcu_dereference_check(epi->ws, lockdep_is_held(&epi->ep->mtx)); 671 } 583 } 672 584 673 /* call only when ep->mtx is held */ 585 /* call only when ep->mtx is held */ 674 static inline void ep_pm_stay_awake(struct epi 586 static inline void ep_pm_stay_awake(struct epitem *epi) 675 { 587 { 676 struct wakeup_source *ws = ep_wakeup_s 588 struct wakeup_source *ws = ep_wakeup_source(epi); 677 589 678 if (ws) 590 if (ws) 679 __pm_stay_awake(ws); 591 __pm_stay_awake(ws); 680 } 592 } 681 593 682 static inline bool ep_has_wakeup_source(struct 594 static inline bool ep_has_wakeup_source(struct epitem *epi) 683 { 595 { 684 return rcu_access_pointer(epi->ws) ? t 596 return rcu_access_pointer(epi->ws) ? true : false; 685 } 597 } 686 598 687 /* call when ep->mtx cannot be held (ep_poll_c 599 /* call when ep->mtx cannot be held (ep_poll_callback) */ 688 static inline void ep_pm_stay_awake_rcu(struct 600 static inline void ep_pm_stay_awake_rcu(struct epitem *epi) 689 { 601 { 690 struct wakeup_source *ws; 602 struct wakeup_source *ws; 691 603 692 rcu_read_lock(); 604 rcu_read_lock(); 693 ws = rcu_dereference(epi->ws); 605 ws = rcu_dereference(epi->ws); 694 if (ws) 606 if (ws) 695 __pm_stay_awake(ws); 607 __pm_stay_awake(ws); 696 rcu_read_unlock(); 608 rcu_read_unlock(); 697 } 609 } 698 610 699 611 700 /* 612 /* 701 * ep->mutex needs to be held because we could 613 * ep->mutex needs to be held because we could be hit by 702 * eventpoll_release_file() and epoll_ctl(). 614 * eventpoll_release_file() and epoll_ctl(). 703 */ 615 */ 704 static void ep_start_scan(struct eventpoll *ep 616 static void ep_start_scan(struct eventpoll *ep, struct list_head *txlist) 705 { 617 { 706 /* 618 /* 707 * Steal the ready list, and re-init t 619 * Steal the ready list, and re-init the original one to the 708 * empty list. Also, set ep->ovflist t 620 * empty list. Also, set ep->ovflist to NULL so that events 709 * happening while looping w/out locks 621 * happening while looping w/out locks, are not lost. We cannot 710 * have the poll callback to queue dir 622 * have the poll callback to queue directly on ep->rdllist, 711 * because we want the "sproc" callbac 623 * because we want the "sproc" callback to be able to do it 712 * in a lockless way. 624 * in a lockless way. 713 */ 625 */ 714 lockdep_assert_irqs_enabled(); 626 lockdep_assert_irqs_enabled(); 715 write_lock_irq(&ep->lock); 627 write_lock_irq(&ep->lock); 716 list_splice_init(&ep->rdllist, txlist) 628 list_splice_init(&ep->rdllist, txlist); 717 WRITE_ONCE(ep->ovflist, NULL); 629 WRITE_ONCE(ep->ovflist, NULL); 718 write_unlock_irq(&ep->lock); 630 write_unlock_irq(&ep->lock); 719 } 631 } 720 632 721 static void ep_done_scan(struct eventpoll *ep, 633 static void ep_done_scan(struct eventpoll *ep, 722 struct list_head *txl 634 struct list_head *txlist) 723 { 635 { 724 struct epitem *epi, *nepi; 636 struct epitem *epi, *nepi; 725 637 726 write_lock_irq(&ep->lock); 638 write_lock_irq(&ep->lock); 727 /* 639 /* 728 * During the time we spent inside the 640 * During the time we spent inside the "sproc" callback, some 729 * other events might have been queued 641 * other events might have been queued by the poll callback. 730 * We re-insert them inside the main r 642 * We re-insert them inside the main ready-list here. 731 */ 643 */ 732 for (nepi = READ_ONCE(ep->ovflist); (e 644 for (nepi = READ_ONCE(ep->ovflist); (epi = nepi) != NULL; 733 nepi = epi->next, epi->next = EP_ 645 nepi = epi->next, epi->next = EP_UNACTIVE_PTR) { 734 /* 646 /* 735 * We need to check if the ite 647 * We need to check if the item is already in the list. 736 * During the "sproc" callback 648 * During the "sproc" callback execution time, items are 737 * queued into ->ovflist but t 649 * queued into ->ovflist but the "txlist" might already 738 * contain them, and the list_ 650 * contain them, and the list_splice() below takes care of them. 739 */ 651 */ 740 if (!ep_is_linked(epi)) { 652 if (!ep_is_linked(epi)) { 741 /* 653 /* 742 * ->ovflist is LIFO, 654 * ->ovflist is LIFO, so we have to reverse it in order 743 * to keep in FIFO. 655 * to keep in FIFO. 744 */ 656 */ 745 list_add(&epi->rdllink 657 list_add(&epi->rdllink, &ep->rdllist); 746 ep_pm_stay_awake(epi); 658 ep_pm_stay_awake(epi); 747 } 659 } 748 } 660 } 749 /* 661 /* 750 * We need to set back ep->ovflist to 662 * We need to set back ep->ovflist to EP_UNACTIVE_PTR, so that after 751 * releasing the lock, events will be 663 * releasing the lock, events will be queued in the normal way inside 752 * ep->rdllist. 664 * ep->rdllist. 753 */ 665 */ 754 WRITE_ONCE(ep->ovflist, EP_UNACTIVE_PT 666 WRITE_ONCE(ep->ovflist, EP_UNACTIVE_PTR); 755 667 756 /* 668 /* 757 * Quickly re-inject items left on "tx 669 * Quickly re-inject items left on "txlist". 758 */ 670 */ 759 list_splice(txlist, &ep->rdllist); 671 list_splice(txlist, &ep->rdllist); 760 __pm_relax(ep->ws); 672 __pm_relax(ep->ws); 761 673 762 if (!list_empty(&ep->rdllist)) { 674 if (!list_empty(&ep->rdllist)) { 763 if (waitqueue_active(&ep->wq)) 675 if (waitqueue_active(&ep->wq)) 764 wake_up(&ep->wq); 676 wake_up(&ep->wq); 765 } 677 } 766 678 767 write_unlock_irq(&ep->lock); 679 write_unlock_irq(&ep->lock); 768 } 680 } 769 681 >> 682 static void epi_rcu_free(struct rcu_head *head) >> 683 { >> 684 struct epitem *epi = container_of(head, struct epitem, rcu); >> 685 kmem_cache_free(epi_cache, epi); >> 686 } >> 687 770 static void ep_get(struct eventpoll *ep) 688 static void ep_get(struct eventpoll *ep) 771 { 689 { 772 refcount_inc(&ep->refcount); 690 refcount_inc(&ep->refcount); 773 } 691 } 774 692 775 /* 693 /* 776 * Returns true if the event poll can be dispo 694 * Returns true if the event poll can be disposed 777 */ 695 */ 778 static bool ep_refcount_dec_and_test(struct ev 696 static bool ep_refcount_dec_and_test(struct eventpoll *ep) 779 { 697 { 780 if (!refcount_dec_and_test(&ep->refcou 698 if (!refcount_dec_and_test(&ep->refcount)) 781 return false; 699 return false; 782 700 783 WARN_ON_ONCE(!RB_EMPTY_ROOT(&ep->rbr.r 701 WARN_ON_ONCE(!RB_EMPTY_ROOT(&ep->rbr.rb_root)); 784 return true; 702 return true; 785 } 703 } 786 704 787 static void ep_free(struct eventpoll *ep) 705 static void ep_free(struct eventpoll *ep) 788 { 706 { 789 mutex_destroy(&ep->mtx); 707 mutex_destroy(&ep->mtx); 790 free_uid(ep->user); 708 free_uid(ep->user); 791 wakeup_source_unregister(ep->ws); 709 wakeup_source_unregister(ep->ws); 792 kfree(ep); 710 kfree(ep); 793 } 711 } 794 712 795 /* 713 /* 796 * Removes a "struct epitem" from the eventpol 714 * Removes a "struct epitem" from the eventpoll RB tree and deallocates 797 * all the associated resources. Must be calle 715 * all the associated resources. Must be called with "mtx" held. 798 * If the dying flag is set, do the removal on 716 * If the dying flag is set, do the removal only if force is true. 799 * This prevents ep_clear_and_put() from dropp 717 * This prevents ep_clear_and_put() from dropping all the ep references 800 * while running concurrently with eventpoll_r 718 * while running concurrently with eventpoll_release_file(). 801 * Returns true if the eventpoll can be dispos 719 * Returns true if the eventpoll can be disposed. 802 */ 720 */ 803 static bool __ep_remove(struct eventpoll *ep, 721 static bool __ep_remove(struct eventpoll *ep, struct epitem *epi, bool force) 804 { 722 { 805 struct file *file = epi->ffd.file; 723 struct file *file = epi->ffd.file; 806 struct epitems_head *to_free; 724 struct epitems_head *to_free; 807 struct hlist_head *head; 725 struct hlist_head *head; 808 726 809 lockdep_assert_irqs_enabled(); 727 lockdep_assert_irqs_enabled(); 810 728 811 /* 729 /* 812 * Removes poll wait queue hooks. 730 * Removes poll wait queue hooks. 813 */ 731 */ 814 ep_unregister_pollwait(ep, epi); 732 ep_unregister_pollwait(ep, epi); 815 733 816 /* Remove the current item from the li 734 /* Remove the current item from the list of epoll hooks */ 817 spin_lock(&file->f_lock); 735 spin_lock(&file->f_lock); 818 if (epi->dying && !force) { 736 if (epi->dying && !force) { 819 spin_unlock(&file->f_lock); 737 spin_unlock(&file->f_lock); 820 return false; 738 return false; 821 } 739 } 822 740 823 to_free = NULL; 741 to_free = NULL; 824 head = file->f_ep; 742 head = file->f_ep; 825 if (head->first == &epi->fllink && !ep 743 if (head->first == &epi->fllink && !epi->fllink.next) { 826 file->f_ep = NULL; 744 file->f_ep = NULL; 827 if (!is_file_epoll(file)) { 745 if (!is_file_epoll(file)) { 828 struct epitems_head *v 746 struct epitems_head *v; 829 v = container_of(head, 747 v = container_of(head, struct epitems_head, epitems); 830 if (!smp_load_acquire( 748 if (!smp_load_acquire(&v->next)) 831 to_free = v; 749 to_free = v; 832 } 750 } 833 } 751 } 834 hlist_del_rcu(&epi->fllink); 752 hlist_del_rcu(&epi->fllink); 835 spin_unlock(&file->f_lock); 753 spin_unlock(&file->f_lock); 836 free_ephead(to_free); 754 free_ephead(to_free); 837 755 838 rb_erase_cached(&epi->rbn, &ep->rbr); 756 rb_erase_cached(&epi->rbn, &ep->rbr); 839 757 840 write_lock_irq(&ep->lock); 758 write_lock_irq(&ep->lock); 841 if (ep_is_linked(epi)) 759 if (ep_is_linked(epi)) 842 list_del_init(&epi->rdllink); 760 list_del_init(&epi->rdllink); 843 write_unlock_irq(&ep->lock); 761 write_unlock_irq(&ep->lock); 844 762 845 wakeup_source_unregister(ep_wakeup_sou 763 wakeup_source_unregister(ep_wakeup_source(epi)); 846 /* 764 /* 847 * At this point it is safe to free th 765 * At this point it is safe to free the eventpoll item. Use the union 848 * field epi->rcu, since we are trying 766 * field epi->rcu, since we are trying to minimize the size of 849 * 'struct epitem'. The 'rbn' field is 767 * 'struct epitem'. The 'rbn' field is no longer in use. Protected by 850 * ep->mtx. The rcu read side, reverse 768 * ep->mtx. The rcu read side, reverse_path_check_proc(), does not make 851 * use of the rbn field. 769 * use of the rbn field. 852 */ 770 */ 853 kfree_rcu(epi, rcu); !! 771 call_rcu(&epi->rcu, epi_rcu_free); 854 772 855 percpu_counter_dec(&ep->user->epoll_wa 773 percpu_counter_dec(&ep->user->epoll_watches); 856 return ep_refcount_dec_and_test(ep); 774 return ep_refcount_dec_and_test(ep); 857 } 775 } 858 776 859 /* 777 /* 860 * ep_remove variant for callers owing an addi 778 * ep_remove variant for callers owing an additional reference to the ep 861 */ 779 */ 862 static void ep_remove_safe(struct eventpoll *e 780 static void ep_remove_safe(struct eventpoll *ep, struct epitem *epi) 863 { 781 { 864 WARN_ON_ONCE(__ep_remove(ep, epi, fals 782 WARN_ON_ONCE(__ep_remove(ep, epi, false)); 865 } 783 } 866 784 867 static void ep_clear_and_put(struct eventpoll 785 static void ep_clear_and_put(struct eventpoll *ep) 868 { 786 { 869 struct rb_node *rbp, *next; 787 struct rb_node *rbp, *next; 870 struct epitem *epi; 788 struct epitem *epi; 871 bool dispose; 789 bool dispose; 872 790 873 /* We need to release all tasks waitin 791 /* We need to release all tasks waiting for these file */ 874 if (waitqueue_active(&ep->poll_wait)) 792 if (waitqueue_active(&ep->poll_wait)) 875 ep_poll_safewake(ep, NULL, 0); 793 ep_poll_safewake(ep, NULL, 0); 876 794 877 mutex_lock(&ep->mtx); 795 mutex_lock(&ep->mtx); 878 796 879 /* 797 /* 880 * Walks through the whole tree by unr 798 * Walks through the whole tree by unregistering poll callbacks. 881 */ 799 */ 882 for (rbp = rb_first_cached(&ep->rbr); 800 for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) { 883 epi = rb_entry(rbp, struct epi 801 epi = rb_entry(rbp, struct epitem, rbn); 884 802 885 ep_unregister_pollwait(ep, epi 803 ep_unregister_pollwait(ep, epi); 886 cond_resched(); 804 cond_resched(); 887 } 805 } 888 806 889 /* 807 /* 890 * Walks through the whole tree and tr 808 * Walks through the whole tree and try to free each "struct epitem". 891 * Note that ep_remove_safe() will not 809 * Note that ep_remove_safe() will not remove the epitem in case of a 892 * racing eventpoll_release_file(); th 810 * racing eventpoll_release_file(); the latter will do the removal. 893 * At this point we are sure no poll c 811 * At this point we are sure no poll callbacks will be lingering around. 894 * Since we still own a reference to t 812 * Since we still own a reference to the eventpoll struct, the loop can't 895 * dispose it. 813 * dispose it. 896 */ 814 */ 897 for (rbp = rb_first_cached(&ep->rbr); 815 for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = next) { 898 next = rb_next(rbp); 816 next = rb_next(rbp); 899 epi = rb_entry(rbp, struct epi 817 epi = rb_entry(rbp, struct epitem, rbn); 900 ep_remove_safe(ep, epi); 818 ep_remove_safe(ep, epi); 901 cond_resched(); 819 cond_resched(); 902 } 820 } 903 821 904 dispose = ep_refcount_dec_and_test(ep) 822 dispose = ep_refcount_dec_and_test(ep); 905 mutex_unlock(&ep->mtx); 823 mutex_unlock(&ep->mtx); 906 824 907 if (dispose) 825 if (dispose) 908 ep_free(ep); 826 ep_free(ep); 909 } 827 } 910 828 911 static long ep_eventpoll_ioctl(struct file *fi << 912 unsigned long a << 913 { << 914 int ret; << 915 << 916 if (!is_file_epoll(file)) << 917 return -EINVAL; << 918 << 919 switch (cmd) { << 920 case EPIOCSPARAMS: << 921 case EPIOCGPARAMS: << 922 ret = ep_eventpoll_bp_ioctl(fi << 923 break; << 924 default: << 925 ret = -EINVAL; << 926 break; << 927 } << 928 << 929 return ret; << 930 } << 931 << 932 static int ep_eventpoll_release(struct inode * 829 static int ep_eventpoll_release(struct inode *inode, struct file *file) 933 { 830 { 934 struct eventpoll *ep = file->private_d 831 struct eventpoll *ep = file->private_data; 935 832 936 if (ep) 833 if (ep) 937 ep_clear_and_put(ep); 834 ep_clear_and_put(ep); 938 835 939 return 0; 836 return 0; 940 } 837 } 941 838 942 static __poll_t ep_item_poll(const struct epit 839 static __poll_t ep_item_poll(const struct epitem *epi, poll_table *pt, int depth); 943 840 944 static __poll_t __ep_eventpoll_poll(struct fil 841 static __poll_t __ep_eventpoll_poll(struct file *file, poll_table *wait, int depth) 945 { 842 { 946 struct eventpoll *ep = file->private_d 843 struct eventpoll *ep = file->private_data; 947 LIST_HEAD(txlist); 844 LIST_HEAD(txlist); 948 struct epitem *epi, *tmp; 845 struct epitem *epi, *tmp; 949 poll_table pt; 846 poll_table pt; 950 __poll_t res = 0; 847 __poll_t res = 0; 951 848 952 init_poll_funcptr(&pt, NULL); 849 init_poll_funcptr(&pt, NULL); 953 850 954 /* Insert inside our poll wait queue * 851 /* Insert inside our poll wait queue */ 955 poll_wait(file, &ep->poll_wait, wait); 852 poll_wait(file, &ep->poll_wait, wait); 956 853 957 /* 854 /* 958 * Proceed to find out if wanted event 855 * Proceed to find out if wanted events are really available inside 959 * the ready list. 856 * the ready list. 960 */ 857 */ 961 mutex_lock_nested(&ep->mtx, depth); 858 mutex_lock_nested(&ep->mtx, depth); 962 ep_start_scan(ep, &txlist); 859 ep_start_scan(ep, &txlist); 963 list_for_each_entry_safe(epi, tmp, &tx 860 list_for_each_entry_safe(epi, tmp, &txlist, rdllink) { 964 if (ep_item_poll(epi, &pt, dep 861 if (ep_item_poll(epi, &pt, depth + 1)) { 965 res = EPOLLIN | EPOLLR 862 res = EPOLLIN | EPOLLRDNORM; 966 break; 863 break; 967 } else { 864 } else { 968 /* 865 /* 969 * Item has been dropp 866 * Item has been dropped into the ready list by the poll 970 * callback, but it's 867 * callback, but it's not actually ready, as far as 971 * caller requested ev 868 * caller requested events goes. We can remove it here. 972 */ 869 */ 973 __pm_relax(ep_wakeup_s 870 __pm_relax(ep_wakeup_source(epi)); 974 list_del_init(&epi->rd 871 list_del_init(&epi->rdllink); 975 } 872 } 976 } 873 } 977 ep_done_scan(ep, &txlist); 874 ep_done_scan(ep, &txlist); 978 mutex_unlock(&ep->mtx); 875 mutex_unlock(&ep->mtx); 979 return res; 876 return res; 980 } 877 } 981 878 982 /* 879 /* 983 * The ffd.file pointer may be in the process << 984 * being closed, but we may not have finished << 985 * << 986 * Normally, even with the atomic_long_inc_not << 987 * been free'd and then gotten re-allocated to << 988 * files are not RCU-delayed, they are SLAB_TY << 989 * << 990 * But for epoll, users hold the ep->mtx mutex << 991 * the process of being free'd will block in e << 992 * and thus the underlying file allocation wil << 993 * file re-use cannot happen. << 994 * << 995 * For the same reason we can avoid a rcu_read << 996 * operation - 'ffd.file' cannot go away even << 997 * reached zero (but we must still not call ou << 998 * etc). << 999 */ << 1000 static struct file *epi_fget(const struct epi << 1001 { << 1002 struct file *file; << 1003 << 1004 file = epi->ffd.file; << 1005 if (!atomic_long_inc_not_zero(&file-> << 1006 file = NULL; << 1007 return file; << 1008 } << 1009 << 1010 /* << 1011 * Differs from ep_eventpoll_poll() in that i 880 * Differs from ep_eventpoll_poll() in that internal callers already have 1012 * the ep->mtx so we need to start from depth 881 * the ep->mtx so we need to start from depth=1, such that mutex_lock_nested() 1013 * is correctly annotated. 882 * is correctly annotated. 1014 */ 883 */ 1015 static __poll_t ep_item_poll(const struct epi 884 static __poll_t ep_item_poll(const struct epitem *epi, poll_table *pt, 1016 int depth) 885 int depth) 1017 { 886 { 1018 struct file *file = epi_fget(epi); !! 887 struct file *file = epi->ffd.file; 1019 __poll_t res; 888 __poll_t res; 1020 889 1021 /* << 1022 * We could return EPOLLERR | EPOLLHU << 1023 * treat this more as "file doesn't e << 1024 */ << 1025 if (!file) << 1026 return 0; << 1027 << 1028 pt->_key = epi->event.events; 890 pt->_key = epi->event.events; 1029 if (!is_file_epoll(file)) 891 if (!is_file_epoll(file)) 1030 res = vfs_poll(file, pt); 892 res = vfs_poll(file, pt); 1031 else 893 else 1032 res = __ep_eventpoll_poll(fil 894 res = __ep_eventpoll_poll(file, pt, depth); 1033 fput(file); << 1034 return res & epi->event.events; 895 return res & epi->event.events; 1035 } 896 } 1036 897 1037 static __poll_t ep_eventpoll_poll(struct file 898 static __poll_t ep_eventpoll_poll(struct file *file, poll_table *wait) 1038 { 899 { 1039 return __ep_eventpoll_poll(file, wait 900 return __ep_eventpoll_poll(file, wait, 0); 1040 } 901 } 1041 902 1042 #ifdef CONFIG_PROC_FS 903 #ifdef CONFIG_PROC_FS 1043 static void ep_show_fdinfo(struct seq_file *m 904 static void ep_show_fdinfo(struct seq_file *m, struct file *f) 1044 { 905 { 1045 struct eventpoll *ep = f->private_dat 906 struct eventpoll *ep = f->private_data; 1046 struct rb_node *rbp; 907 struct rb_node *rbp; 1047 908 1048 mutex_lock(&ep->mtx); 909 mutex_lock(&ep->mtx); 1049 for (rbp = rb_first_cached(&ep->rbr); 910 for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) { 1050 struct epitem *epi = rb_entry 911 struct epitem *epi = rb_entry(rbp, struct epitem, rbn); 1051 struct inode *inode = file_in 912 struct inode *inode = file_inode(epi->ffd.file); 1052 913 1053 seq_printf(m, "tfd: %8d event 914 seq_printf(m, "tfd: %8d events: %8x data: %16llx " 1054 " pos:%lli ino:%lx 915 " pos:%lli ino:%lx sdev:%x\n", 1055 epi->ffd.fd, epi-> 916 epi->ffd.fd, epi->event.events, 1056 (long long)epi->ev 917 (long long)epi->event.data, 1057 (long long)epi->ff 918 (long long)epi->ffd.file->f_pos, 1058 inode->i_ino, inod 919 inode->i_ino, inode->i_sb->s_dev); 1059 if (seq_has_overflowed(m)) 920 if (seq_has_overflowed(m)) 1060 break; 921 break; 1061 } 922 } 1062 mutex_unlock(&ep->mtx); 923 mutex_unlock(&ep->mtx); 1063 } 924 } 1064 #endif 925 #endif 1065 926 1066 /* File callbacks that implement the eventpol 927 /* File callbacks that implement the eventpoll file behaviour */ 1067 static const struct file_operations eventpoll 928 static const struct file_operations eventpoll_fops = { 1068 #ifdef CONFIG_PROC_FS 929 #ifdef CONFIG_PROC_FS 1069 .show_fdinfo = ep_show_fdinfo, 930 .show_fdinfo = ep_show_fdinfo, 1070 #endif 931 #endif 1071 .release = ep_eventpoll_releas 932 .release = ep_eventpoll_release, 1072 .poll = ep_eventpoll_poll, 933 .poll = ep_eventpoll_poll, 1073 .llseek = noop_llseek, 934 .llseek = noop_llseek, 1074 .unlocked_ioctl = ep_eventpoll_ioctl, << 1075 .compat_ioctl = compat_ptr_ioctl, << 1076 }; 935 }; 1077 936 1078 /* 937 /* 1079 * This is called from eventpoll_release() to 938 * This is called from eventpoll_release() to unlink files from the eventpoll 1080 * interface. We need to have this facility t 939 * interface. We need to have this facility to cleanup correctly files that are 1081 * closed without being removed from the even 940 * closed without being removed from the eventpoll interface. 1082 */ 941 */ 1083 void eventpoll_release_file(struct file *file 942 void eventpoll_release_file(struct file *file) 1084 { 943 { 1085 struct eventpoll *ep; 944 struct eventpoll *ep; 1086 struct epitem *epi; 945 struct epitem *epi; 1087 bool dispose; 946 bool dispose; 1088 947 1089 /* 948 /* 1090 * Use the 'dying' flag to prevent a 949 * Use the 'dying' flag to prevent a concurrent ep_clear_and_put() from 1091 * touching the epitems list before e 950 * touching the epitems list before eventpoll_release_file() can access 1092 * the ep->mtx. 951 * the ep->mtx. 1093 */ 952 */ 1094 again: 953 again: 1095 spin_lock(&file->f_lock); 954 spin_lock(&file->f_lock); 1096 if (file->f_ep && file->f_ep->first) 955 if (file->f_ep && file->f_ep->first) { 1097 epi = hlist_entry(file->f_ep- 956 epi = hlist_entry(file->f_ep->first, struct epitem, fllink); 1098 epi->dying = true; 957 epi->dying = true; 1099 spin_unlock(&file->f_lock); 958 spin_unlock(&file->f_lock); 1100 959 1101 /* 960 /* 1102 * ep access is safe as we st 961 * ep access is safe as we still own a reference to the ep 1103 * struct 962 * struct 1104 */ 963 */ 1105 ep = epi->ep; 964 ep = epi->ep; 1106 mutex_lock(&ep->mtx); 965 mutex_lock(&ep->mtx); 1107 dispose = __ep_remove(ep, epi 966 dispose = __ep_remove(ep, epi, true); 1108 mutex_unlock(&ep->mtx); 967 mutex_unlock(&ep->mtx); 1109 968 1110 if (dispose) 969 if (dispose) 1111 ep_free(ep); 970 ep_free(ep); 1112 goto again; 971 goto again; 1113 } 972 } 1114 spin_unlock(&file->f_lock); 973 spin_unlock(&file->f_lock); 1115 } 974 } 1116 975 1117 static int ep_alloc(struct eventpoll **pep) 976 static int ep_alloc(struct eventpoll **pep) 1118 { 977 { 1119 struct eventpoll *ep; 978 struct eventpoll *ep; 1120 979 1121 ep = kzalloc(sizeof(*ep), GFP_KERNEL) 980 ep = kzalloc(sizeof(*ep), GFP_KERNEL); 1122 if (unlikely(!ep)) 981 if (unlikely(!ep)) 1123 return -ENOMEM; 982 return -ENOMEM; 1124 983 1125 mutex_init(&ep->mtx); 984 mutex_init(&ep->mtx); 1126 rwlock_init(&ep->lock); 985 rwlock_init(&ep->lock); 1127 init_waitqueue_head(&ep->wq); 986 init_waitqueue_head(&ep->wq); 1128 init_waitqueue_head(&ep->poll_wait); 987 init_waitqueue_head(&ep->poll_wait); 1129 INIT_LIST_HEAD(&ep->rdllist); 988 INIT_LIST_HEAD(&ep->rdllist); 1130 ep->rbr = RB_ROOT_CACHED; 989 ep->rbr = RB_ROOT_CACHED; 1131 ep->ovflist = EP_UNACTIVE_PTR; 990 ep->ovflist = EP_UNACTIVE_PTR; 1132 ep->user = get_current_user(); 991 ep->user = get_current_user(); 1133 refcount_set(&ep->refcount, 1); 992 refcount_set(&ep->refcount, 1); 1134 993 1135 *pep = ep; 994 *pep = ep; 1136 995 1137 return 0; 996 return 0; 1138 } 997 } 1139 998 1140 /* 999 /* 1141 * Search the file inside the eventpoll tree. 1000 * Search the file inside the eventpoll tree. The RB tree operations 1142 * are protected by the "mtx" mutex, and ep_f 1001 * are protected by the "mtx" mutex, and ep_find() must be called with 1143 * "mtx" held. 1002 * "mtx" held. 1144 */ 1003 */ 1145 static struct epitem *ep_find(struct eventpol 1004 static struct epitem *ep_find(struct eventpoll *ep, struct file *file, int fd) 1146 { 1005 { 1147 int kcmp; 1006 int kcmp; 1148 struct rb_node *rbp; 1007 struct rb_node *rbp; 1149 struct epitem *epi, *epir = NULL; 1008 struct epitem *epi, *epir = NULL; 1150 struct epoll_filefd ffd; 1009 struct epoll_filefd ffd; 1151 1010 1152 ep_set_ffd(&ffd, file, fd); 1011 ep_set_ffd(&ffd, file, fd); 1153 for (rbp = ep->rbr.rb_root.rb_node; r 1012 for (rbp = ep->rbr.rb_root.rb_node; rbp; ) { 1154 epi = rb_entry(rbp, struct ep 1013 epi = rb_entry(rbp, struct epitem, rbn); 1155 kcmp = ep_cmp_ffd(&ffd, &epi- 1014 kcmp = ep_cmp_ffd(&ffd, &epi->ffd); 1156 if (kcmp > 0) 1015 if (kcmp > 0) 1157 rbp = rbp->rb_right; 1016 rbp = rbp->rb_right; 1158 else if (kcmp < 0) 1017 else if (kcmp < 0) 1159 rbp = rbp->rb_left; 1018 rbp = rbp->rb_left; 1160 else { 1019 else { 1161 epir = epi; 1020 epir = epi; 1162 break; 1021 break; 1163 } 1022 } 1164 } 1023 } 1165 1024 1166 return epir; 1025 return epir; 1167 } 1026 } 1168 1027 1169 #ifdef CONFIG_KCMP 1028 #ifdef CONFIG_KCMP 1170 static struct epitem *ep_find_tfd(struct even 1029 static struct epitem *ep_find_tfd(struct eventpoll *ep, int tfd, unsigned long toff) 1171 { 1030 { 1172 struct rb_node *rbp; 1031 struct rb_node *rbp; 1173 struct epitem *epi; 1032 struct epitem *epi; 1174 1033 1175 for (rbp = rb_first_cached(&ep->rbr); 1034 for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) { 1176 epi = rb_entry(rbp, struct ep 1035 epi = rb_entry(rbp, struct epitem, rbn); 1177 if (epi->ffd.fd == tfd) { 1036 if (epi->ffd.fd == tfd) { 1178 if (toff == 0) 1037 if (toff == 0) 1179 return epi; 1038 return epi; 1180 else 1039 else 1181 toff--; 1040 toff--; 1182 } 1041 } 1183 cond_resched(); 1042 cond_resched(); 1184 } 1043 } 1185 1044 1186 return NULL; 1045 return NULL; 1187 } 1046 } 1188 1047 1189 struct file *get_epoll_tfile_raw_ptr(struct f 1048 struct file *get_epoll_tfile_raw_ptr(struct file *file, int tfd, 1190 unsigned 1049 unsigned long toff) 1191 { 1050 { 1192 struct file *file_raw; 1051 struct file *file_raw; 1193 struct eventpoll *ep; 1052 struct eventpoll *ep; 1194 struct epitem *epi; 1053 struct epitem *epi; 1195 1054 1196 if (!is_file_epoll(file)) 1055 if (!is_file_epoll(file)) 1197 return ERR_PTR(-EINVAL); 1056 return ERR_PTR(-EINVAL); 1198 1057 1199 ep = file->private_data; 1058 ep = file->private_data; 1200 1059 1201 mutex_lock(&ep->mtx); 1060 mutex_lock(&ep->mtx); 1202 epi = ep_find_tfd(ep, tfd, toff); 1061 epi = ep_find_tfd(ep, tfd, toff); 1203 if (epi) 1062 if (epi) 1204 file_raw = epi->ffd.file; 1063 file_raw = epi->ffd.file; 1205 else 1064 else 1206 file_raw = ERR_PTR(-ENOENT); 1065 file_raw = ERR_PTR(-ENOENT); 1207 mutex_unlock(&ep->mtx); 1066 mutex_unlock(&ep->mtx); 1208 1067 1209 return file_raw; 1068 return file_raw; 1210 } 1069 } 1211 #endif /* CONFIG_KCMP */ 1070 #endif /* CONFIG_KCMP */ 1212 1071 1213 /* 1072 /* 1214 * Adds a new entry to the tail of the list i 1073 * Adds a new entry to the tail of the list in a lockless way, i.e. 1215 * multiple CPUs are allowed to call this fun 1074 * multiple CPUs are allowed to call this function concurrently. 1216 * 1075 * 1217 * Beware: it is necessary to prevent any oth 1076 * Beware: it is necessary to prevent any other modifications of the 1218 * existing list until all changes ar 1077 * existing list until all changes are completed, in other words 1219 * concurrent list_add_tail_lockless( 1078 * concurrent list_add_tail_lockless() calls should be protected 1220 * with a read lock, where write lock 1079 * with a read lock, where write lock acts as a barrier which 1221 * makes sure all list_add_tail_lockl 1080 * makes sure all list_add_tail_lockless() calls are fully 1222 * completed. 1081 * completed. 1223 * 1082 * 1224 * Also an element can be locklessly a 1083 * Also an element can be locklessly added to the list only in one 1225 * direction i.e. either to the tail o 1084 * direction i.e. either to the tail or to the head, otherwise 1226 * concurrent access will corrupt the 1085 * concurrent access will corrupt the list. 1227 * 1086 * 1228 * Return: %false if element has been already 1087 * Return: %false if element has been already added to the list, %true 1229 * otherwise. 1088 * otherwise. 1230 */ 1089 */ 1231 static inline bool list_add_tail_lockless(str 1090 static inline bool list_add_tail_lockless(struct list_head *new, 1232 str 1091 struct list_head *head) 1233 { 1092 { 1234 struct list_head *prev; 1093 struct list_head *prev; 1235 1094 1236 /* 1095 /* 1237 * This is simple 'new->next = head' 1096 * This is simple 'new->next = head' operation, but cmpxchg() 1238 * is used in order to detect that sa 1097 * is used in order to detect that same element has been just 1239 * added to the list from another CPU 1098 * added to the list from another CPU: the winner observes 1240 * new->next == new. 1099 * new->next == new. 1241 */ 1100 */ 1242 if (!try_cmpxchg(&new->next, &new, he 1101 if (!try_cmpxchg(&new->next, &new, head)) 1243 return false; 1102 return false; 1244 1103 1245 /* 1104 /* 1246 * Initially ->next of a new element 1105 * Initially ->next of a new element must be updated with the head 1247 * (we are inserting to the tail) and 1106 * (we are inserting to the tail) and only then pointers are atomically 1248 * exchanged. XCHG guarantees memory 1107 * exchanged. XCHG guarantees memory ordering, thus ->next should be 1249 * updated before pointers are actual 1108 * updated before pointers are actually swapped and pointers are 1250 * swapped before prev->next is updat 1109 * swapped before prev->next is updated. 1251 */ 1110 */ 1252 1111 1253 prev = xchg(&head->prev, new); 1112 prev = xchg(&head->prev, new); 1254 1113 1255 /* 1114 /* 1256 * It is safe to modify prev->next an 1115 * It is safe to modify prev->next and new->prev, because a new element 1257 * is added only to the tail and new- 1116 * is added only to the tail and new->next is updated before XCHG. 1258 */ 1117 */ 1259 1118 1260 prev->next = new; 1119 prev->next = new; 1261 new->prev = prev; 1120 new->prev = prev; 1262 1121 1263 return true; 1122 return true; 1264 } 1123 } 1265 1124 1266 /* 1125 /* 1267 * Chains a new epi entry to the tail of the 1126 * Chains a new epi entry to the tail of the ep->ovflist in a lockless way, 1268 * i.e. multiple CPUs are allowed to call thi 1127 * i.e. multiple CPUs are allowed to call this function concurrently. 1269 * 1128 * 1270 * Return: %false if epi element has been alr 1129 * Return: %false if epi element has been already chained, %true otherwise. 1271 */ 1130 */ 1272 static inline bool chain_epi_lockless(struct 1131 static inline bool chain_epi_lockless(struct epitem *epi) 1273 { 1132 { 1274 struct eventpoll *ep = epi->ep; 1133 struct eventpoll *ep = epi->ep; 1275 1134 1276 /* Fast preliminary check */ 1135 /* Fast preliminary check */ 1277 if (epi->next != EP_UNACTIVE_PTR) 1136 if (epi->next != EP_UNACTIVE_PTR) 1278 return false; 1137 return false; 1279 1138 1280 /* Check that the same epi has not be 1139 /* Check that the same epi has not been just chained from another CPU */ 1281 if (cmpxchg(&epi->next, EP_UNACTIVE_P 1140 if (cmpxchg(&epi->next, EP_UNACTIVE_PTR, NULL) != EP_UNACTIVE_PTR) 1282 return false; 1141 return false; 1283 1142 1284 /* Atomically exchange tail */ 1143 /* Atomically exchange tail */ 1285 epi->next = xchg(&ep->ovflist, epi); 1144 epi->next = xchg(&ep->ovflist, epi); 1286 1145 1287 return true; 1146 return true; 1288 } 1147 } 1289 1148 1290 /* 1149 /* 1291 * This is the callback that is passed to the 1150 * This is the callback that is passed to the wait queue wakeup 1292 * mechanism. It is called by the stored file 1151 * mechanism. It is called by the stored file descriptors when they 1293 * have events to report. 1152 * have events to report. 1294 * 1153 * 1295 * This callback takes a read lock in order n 1154 * This callback takes a read lock in order not to contend with concurrent 1296 * events from another file descriptor, thus 1155 * events from another file descriptor, thus all modifications to ->rdllist 1297 * or ->ovflist are lockless. Read lock is p 1156 * or ->ovflist are lockless. Read lock is paired with the write lock from 1298 * ep_start/done_scan(), which stops all list !! 1157 * ep_scan_ready_list(), which stops all list modifications and guarantees 1299 * that lists state is seen correctly. 1158 * that lists state is seen correctly. 1300 * 1159 * 1301 * Another thing worth to mention is that ep_ 1160 * Another thing worth to mention is that ep_poll_callback() can be called 1302 * concurrently for the same @epi from differ 1161 * concurrently for the same @epi from different CPUs if poll table was inited 1303 * with several wait queues entries. Plural 1162 * with several wait queues entries. Plural wakeup from different CPUs of a 1304 * single wait queue is serialized by wq.lock 1163 * single wait queue is serialized by wq.lock, but the case when multiple wait 1305 * queues are used should be detected accordi 1164 * queues are used should be detected accordingly. This is detected using 1306 * cmpxchg() operation. 1165 * cmpxchg() operation. 1307 */ 1166 */ 1308 static int ep_poll_callback(wait_queue_entry_ 1167 static int ep_poll_callback(wait_queue_entry_t *wait, unsigned mode, int sync, void *key) 1309 { 1168 { 1310 int pwake = 0; 1169 int pwake = 0; 1311 struct epitem *epi = ep_item_from_wai 1170 struct epitem *epi = ep_item_from_wait(wait); 1312 struct eventpoll *ep = epi->ep; 1171 struct eventpoll *ep = epi->ep; 1313 __poll_t pollflags = key_to_poll(key) 1172 __poll_t pollflags = key_to_poll(key); 1314 unsigned long flags; 1173 unsigned long flags; 1315 int ewake = 0; 1174 int ewake = 0; 1316 1175 1317 read_lock_irqsave(&ep->lock, flags); 1176 read_lock_irqsave(&ep->lock, flags); 1318 1177 1319 ep_set_busy_poll_napi_id(epi); 1178 ep_set_busy_poll_napi_id(epi); 1320 1179 1321 /* 1180 /* 1322 * If the event mask does not contain 1181 * If the event mask does not contain any poll(2) event, we consider the 1323 * descriptor to be disabled. This co 1182 * descriptor to be disabled. This condition is likely the effect of the 1324 * EPOLLONESHOT bit that disables the 1183 * EPOLLONESHOT bit that disables the descriptor when an event is received, 1325 * until the next EPOLL_CTL_MOD will 1184 * until the next EPOLL_CTL_MOD will be issued. 1326 */ 1185 */ 1327 if (!(epi->event.events & ~EP_PRIVATE 1186 if (!(epi->event.events & ~EP_PRIVATE_BITS)) 1328 goto out_unlock; 1187 goto out_unlock; 1329 1188 1330 /* 1189 /* 1331 * Check the events coming with the c 1190 * Check the events coming with the callback. At this stage, not 1332 * every device reports the events in 1191 * every device reports the events in the "key" parameter of the 1333 * callback. We need to be able to ha 1192 * callback. We need to be able to handle both cases here, hence the 1334 * test for "key" != NULL before the 1193 * test for "key" != NULL before the event match test. 1335 */ 1194 */ 1336 if (pollflags && !(pollflags & epi->e 1195 if (pollflags && !(pollflags & epi->event.events)) 1337 goto out_unlock; 1196 goto out_unlock; 1338 1197 1339 /* 1198 /* 1340 * If we are transferring events to u 1199 * If we are transferring events to userspace, we can hold no locks 1341 * (because we're accessing user memo 1200 * (because we're accessing user memory, and because of linux f_op->poll() 1342 * semantics). All the events that ha 1201 * semantics). All the events that happen during that period of time are 1343 * chained in ep->ovflist and requeue 1202 * chained in ep->ovflist and requeued later on. 1344 */ 1203 */ 1345 if (READ_ONCE(ep->ovflist) != EP_UNAC 1204 if (READ_ONCE(ep->ovflist) != EP_UNACTIVE_PTR) { 1346 if (chain_epi_lockless(epi)) 1205 if (chain_epi_lockless(epi)) 1347 ep_pm_stay_awake_rcu( 1206 ep_pm_stay_awake_rcu(epi); 1348 } else if (!ep_is_linked(epi)) { 1207 } else if (!ep_is_linked(epi)) { 1349 /* In the usual case, add eve 1208 /* In the usual case, add event to ready list. */ 1350 if (list_add_tail_lockless(&e 1209 if (list_add_tail_lockless(&epi->rdllink, &ep->rdllist)) 1351 ep_pm_stay_awake_rcu( 1210 ep_pm_stay_awake_rcu(epi); 1352 } 1211 } 1353 1212 1354 /* 1213 /* 1355 * Wake up ( if active ) both the eve 1214 * Wake up ( if active ) both the eventpoll wait list and the ->poll() 1356 * wait list. 1215 * wait list. 1357 */ 1216 */ 1358 if (waitqueue_active(&ep->wq)) { 1217 if (waitqueue_active(&ep->wq)) { 1359 if ((epi->event.events & EPOL 1218 if ((epi->event.events & EPOLLEXCLUSIVE) && 1360 !(pol 1219 !(pollflags & POLLFREE)) { 1361 switch (pollflags & E 1220 switch (pollflags & EPOLLINOUT_BITS) { 1362 case EPOLLIN: 1221 case EPOLLIN: 1363 if (epi->even 1222 if (epi->event.events & EPOLLIN) 1364 ewake 1223 ewake = 1; 1365 break; 1224 break; 1366 case EPOLLOUT: 1225 case EPOLLOUT: 1367 if (epi->even 1226 if (epi->event.events & EPOLLOUT) 1368 ewake 1227 ewake = 1; 1369 break; 1228 break; 1370 case 0: 1229 case 0: 1371 ewake = 1; 1230 ewake = 1; 1372 break; 1231 break; 1373 } 1232 } 1374 } 1233 } 1375 wake_up(&ep->wq); 1234 wake_up(&ep->wq); 1376 } 1235 } 1377 if (waitqueue_active(&ep->poll_wait)) 1236 if (waitqueue_active(&ep->poll_wait)) 1378 pwake++; 1237 pwake++; 1379 1238 1380 out_unlock: 1239 out_unlock: 1381 read_unlock_irqrestore(&ep->lock, fla 1240 read_unlock_irqrestore(&ep->lock, flags); 1382 1241 1383 /* We have to call this outside the l 1242 /* We have to call this outside the lock */ 1384 if (pwake) 1243 if (pwake) 1385 ep_poll_safewake(ep, epi, pol 1244 ep_poll_safewake(ep, epi, pollflags & EPOLL_URING_WAKE); 1386 1245 1387 if (!(epi->event.events & EPOLLEXCLUS 1246 if (!(epi->event.events & EPOLLEXCLUSIVE)) 1388 ewake = 1; 1247 ewake = 1; 1389 1248 1390 if (pollflags & POLLFREE) { 1249 if (pollflags & POLLFREE) { 1391 /* 1250 /* 1392 * If we race with ep_remove_ 1251 * If we race with ep_remove_wait_queue() it can miss 1393 * ->whead = NULL and do anot 1252 * ->whead = NULL and do another remove_wait_queue() after 1394 * us, so we can't use __remo 1253 * us, so we can't use __remove_wait_queue(). 1395 */ 1254 */ 1396 list_del_init(&wait->entry); 1255 list_del_init(&wait->entry); 1397 /* 1256 /* 1398 * ->whead != NULL protects u 1257 * ->whead != NULL protects us from the race with 1399 * ep_clear_and_put() or ep_r 1258 * ep_clear_and_put() or ep_remove(), ep_remove_wait_queue() 1400 * takes whead->lock held by 1259 * takes whead->lock held by the caller. Once we nullify it, 1401 * nothing protects ep/epi or 1260 * nothing protects ep/epi or even wait. 1402 */ 1261 */ 1403 smp_store_release(&ep_pwq_fro 1262 smp_store_release(&ep_pwq_from_wait(wait)->whead, NULL); 1404 } 1263 } 1405 1264 1406 return ewake; 1265 return ewake; 1407 } 1266 } 1408 1267 1409 /* 1268 /* 1410 * This is the callback that is used to add o 1269 * This is the callback that is used to add our wait queue to the 1411 * target file wakeup lists. 1270 * target file wakeup lists. 1412 */ 1271 */ 1413 static void ep_ptable_queue_proc(struct file 1272 static void ep_ptable_queue_proc(struct file *file, wait_queue_head_t *whead, 1414 poll_table * 1273 poll_table *pt) 1415 { 1274 { 1416 struct ep_pqueue *epq = container_of( 1275 struct ep_pqueue *epq = container_of(pt, struct ep_pqueue, pt); 1417 struct epitem *epi = epq->epi; 1276 struct epitem *epi = epq->epi; 1418 struct eppoll_entry *pwq; 1277 struct eppoll_entry *pwq; 1419 1278 1420 if (unlikely(!epi)) // an earlier 1279 if (unlikely(!epi)) // an earlier allocation has failed 1421 return; 1280 return; 1422 1281 1423 pwq = kmem_cache_alloc(pwq_cache, GFP 1282 pwq = kmem_cache_alloc(pwq_cache, GFP_KERNEL); 1424 if (unlikely(!pwq)) { 1283 if (unlikely(!pwq)) { 1425 epq->epi = NULL; 1284 epq->epi = NULL; 1426 return; 1285 return; 1427 } 1286 } 1428 1287 1429 init_waitqueue_func_entry(&pwq->wait, 1288 init_waitqueue_func_entry(&pwq->wait, ep_poll_callback); 1430 pwq->whead = whead; 1289 pwq->whead = whead; 1431 pwq->base = epi; 1290 pwq->base = epi; 1432 if (epi->event.events & EPOLLEXCLUSIV 1291 if (epi->event.events & EPOLLEXCLUSIVE) 1433 add_wait_queue_exclusive(whea 1292 add_wait_queue_exclusive(whead, &pwq->wait); 1434 else 1293 else 1435 add_wait_queue(whead, &pwq->w 1294 add_wait_queue(whead, &pwq->wait); 1436 pwq->next = epi->pwqlist; 1295 pwq->next = epi->pwqlist; 1437 epi->pwqlist = pwq; 1296 epi->pwqlist = pwq; 1438 } 1297 } 1439 1298 1440 static void ep_rbtree_insert(struct eventpoll 1299 static void ep_rbtree_insert(struct eventpoll *ep, struct epitem *epi) 1441 { 1300 { 1442 int kcmp; 1301 int kcmp; 1443 struct rb_node **p = &ep->rbr.rb_root 1302 struct rb_node **p = &ep->rbr.rb_root.rb_node, *parent = NULL; 1444 struct epitem *epic; 1303 struct epitem *epic; 1445 bool leftmost = true; 1304 bool leftmost = true; 1446 1305 1447 while (*p) { 1306 while (*p) { 1448 parent = *p; 1307 parent = *p; 1449 epic = rb_entry(parent, struc 1308 epic = rb_entry(parent, struct epitem, rbn); 1450 kcmp = ep_cmp_ffd(&epi->ffd, 1309 kcmp = ep_cmp_ffd(&epi->ffd, &epic->ffd); 1451 if (kcmp > 0) { 1310 if (kcmp > 0) { 1452 p = &parent->rb_right 1311 p = &parent->rb_right; 1453 leftmost = false; 1312 leftmost = false; 1454 } else 1313 } else 1455 p = &parent->rb_left; 1314 p = &parent->rb_left; 1456 } 1315 } 1457 rb_link_node(&epi->rbn, parent, p); 1316 rb_link_node(&epi->rbn, parent, p); 1458 rb_insert_color_cached(&epi->rbn, &ep 1317 rb_insert_color_cached(&epi->rbn, &ep->rbr, leftmost); 1459 } 1318 } 1460 1319 1461 1320 1462 1321 1463 #define PATH_ARR_SIZE 5 1322 #define PATH_ARR_SIZE 5 1464 /* 1323 /* 1465 * These are the number paths of length 1 to 1324 * These are the number paths of length 1 to 5, that we are allowing to emanate 1466 * from a single file of interest. For exampl 1325 * from a single file of interest. For example, we allow 1000 paths of length 1467 * 1, to emanate from each file of interest. 1326 * 1, to emanate from each file of interest. This essentially represents the 1468 * potential wakeup paths, which need to be l 1327 * potential wakeup paths, which need to be limited in order to avoid massive 1469 * uncontrolled wakeup storms. The common use 1328 * uncontrolled wakeup storms. The common use case should be a single ep which 1470 * is connected to n file sources. In this ca 1329 * is connected to n file sources. In this case each file source has 1 path 1471 * of length 1. Thus, the numbers below shoul 1330 * of length 1. Thus, the numbers below should be more than sufficient. These 1472 * path limits are enforced during an EPOLL_C 1331 * path limits are enforced during an EPOLL_CTL_ADD operation, since a modify 1473 * and delete can't add additional paths. Pro 1332 * and delete can't add additional paths. Protected by the epnested_mutex. 1474 */ 1333 */ 1475 static const int path_limits[PATH_ARR_SIZE] = 1334 static const int path_limits[PATH_ARR_SIZE] = { 1000, 500, 100, 50, 10 }; 1476 static int path_count[PATH_ARR_SIZE]; 1335 static int path_count[PATH_ARR_SIZE]; 1477 1336 1478 static int path_count_inc(int nests) 1337 static int path_count_inc(int nests) 1479 { 1338 { 1480 /* Allow an arbitrary number of depth 1339 /* Allow an arbitrary number of depth 1 paths */ 1481 if (nests == 0) 1340 if (nests == 0) 1482 return 0; 1341 return 0; 1483 1342 1484 if (++path_count[nests] > path_limits 1343 if (++path_count[nests] > path_limits[nests]) 1485 return -1; 1344 return -1; 1486 return 0; 1345 return 0; 1487 } 1346 } 1488 1347 1489 static void path_count_init(void) 1348 static void path_count_init(void) 1490 { 1349 { 1491 int i; 1350 int i; 1492 1351 1493 for (i = 0; i < PATH_ARR_SIZE; i++) 1352 for (i = 0; i < PATH_ARR_SIZE; i++) 1494 path_count[i] = 0; 1353 path_count[i] = 0; 1495 } 1354 } 1496 1355 1497 static int reverse_path_check_proc(struct hli 1356 static int reverse_path_check_proc(struct hlist_head *refs, int depth) 1498 { 1357 { 1499 int error = 0; 1358 int error = 0; 1500 struct epitem *epi; 1359 struct epitem *epi; 1501 1360 1502 if (depth > EP_MAX_NESTS) /* too deep 1361 if (depth > EP_MAX_NESTS) /* too deep nesting */ 1503 return -1; 1362 return -1; 1504 1363 1505 /* CTL_DEL can remove links here, but 1364 /* CTL_DEL can remove links here, but that can't increase our count */ 1506 hlist_for_each_entry_rcu(epi, refs, f 1365 hlist_for_each_entry_rcu(epi, refs, fllink) { 1507 struct hlist_head *refs = &ep 1366 struct hlist_head *refs = &epi->ep->refs; 1508 if (hlist_empty(refs)) 1367 if (hlist_empty(refs)) 1509 error = path_count_in 1368 error = path_count_inc(depth); 1510 else 1369 else 1511 error = reverse_path_ 1370 error = reverse_path_check_proc(refs, depth + 1); 1512 if (error != 0) 1371 if (error != 0) 1513 break; 1372 break; 1514 } 1373 } 1515 return error; 1374 return error; 1516 } 1375 } 1517 1376 1518 /** 1377 /** 1519 * reverse_path_check - The tfile_check_list 1378 * reverse_path_check - The tfile_check_list is list of epitem_head, which have 1520 * links that are propos 1379 * links that are proposed to be newly added. We need to 1521 * make sure that those 1380 * make sure that those added links don't add too many 1522 * paths such that we wi 1381 * paths such that we will spend all our time waking up 1523 * eventpoll objects. 1382 * eventpoll objects. 1524 * 1383 * 1525 * Return: %zero if the proposed links don't 1384 * Return: %zero if the proposed links don't create too many paths, 1526 * %-1 otherwise. 1385 * %-1 otherwise. 1527 */ 1386 */ 1528 static int reverse_path_check(void) 1387 static int reverse_path_check(void) 1529 { 1388 { 1530 struct epitems_head *p; 1389 struct epitems_head *p; 1531 1390 1532 for (p = tfile_check_list; p != EP_UN 1391 for (p = tfile_check_list; p != EP_UNACTIVE_PTR; p = p->next) { 1533 int error; 1392 int error; 1534 path_count_init(); 1393 path_count_init(); 1535 rcu_read_lock(); 1394 rcu_read_lock(); 1536 error = reverse_path_check_pr 1395 error = reverse_path_check_proc(&p->epitems, 0); 1537 rcu_read_unlock(); 1396 rcu_read_unlock(); 1538 if (error) 1397 if (error) 1539 return error; 1398 return error; 1540 } 1399 } 1541 return 0; 1400 return 0; 1542 } 1401 } 1543 1402 1544 static int ep_create_wakeup_source(struct epi 1403 static int ep_create_wakeup_source(struct epitem *epi) 1545 { 1404 { 1546 struct name_snapshot n; 1405 struct name_snapshot n; 1547 struct wakeup_source *ws; 1406 struct wakeup_source *ws; 1548 1407 1549 if (!epi->ep->ws) { 1408 if (!epi->ep->ws) { 1550 epi->ep->ws = wakeup_source_r 1409 epi->ep->ws = wakeup_source_register(NULL, "eventpoll"); 1551 if (!epi->ep->ws) 1410 if (!epi->ep->ws) 1552 return -ENOMEM; 1411 return -ENOMEM; 1553 } 1412 } 1554 1413 1555 take_dentry_name_snapshot(&n, epi->ff 1414 take_dentry_name_snapshot(&n, epi->ffd.file->f_path.dentry); 1556 ws = wakeup_source_register(NULL, n.n 1415 ws = wakeup_source_register(NULL, n.name.name); 1557 release_dentry_name_snapshot(&n); 1416 release_dentry_name_snapshot(&n); 1558 1417 1559 if (!ws) 1418 if (!ws) 1560 return -ENOMEM; 1419 return -ENOMEM; 1561 rcu_assign_pointer(epi->ws, ws); 1420 rcu_assign_pointer(epi->ws, ws); 1562 1421 1563 return 0; 1422 return 0; 1564 } 1423 } 1565 1424 1566 /* rare code path, only used when EPOLL_CTL_M 1425 /* rare code path, only used when EPOLL_CTL_MOD removes a wakeup source */ 1567 static noinline void ep_destroy_wakeup_source 1426 static noinline void ep_destroy_wakeup_source(struct epitem *epi) 1568 { 1427 { 1569 struct wakeup_source *ws = ep_wakeup_ 1428 struct wakeup_source *ws = ep_wakeup_source(epi); 1570 1429 1571 RCU_INIT_POINTER(epi->ws, NULL); 1430 RCU_INIT_POINTER(epi->ws, NULL); 1572 1431 1573 /* 1432 /* 1574 * wait for ep_pm_stay_awake_rcu to f 1433 * wait for ep_pm_stay_awake_rcu to finish, synchronize_rcu is 1575 * used internally by wakeup_source_r 1434 * used internally by wakeup_source_remove, too (called by 1576 * wakeup_source_unregister), so we c 1435 * wakeup_source_unregister), so we cannot use call_rcu 1577 */ 1436 */ 1578 synchronize_rcu(); 1437 synchronize_rcu(); 1579 wakeup_source_unregister(ws); 1438 wakeup_source_unregister(ws); 1580 } 1439 } 1581 1440 1582 static int attach_epitem(struct file *file, s 1441 static int attach_epitem(struct file *file, struct epitem *epi) 1583 { 1442 { 1584 struct epitems_head *to_free = NULL; 1443 struct epitems_head *to_free = NULL; 1585 struct hlist_head *head = NULL; 1444 struct hlist_head *head = NULL; 1586 struct eventpoll *ep = NULL; 1445 struct eventpoll *ep = NULL; 1587 1446 1588 if (is_file_epoll(file)) 1447 if (is_file_epoll(file)) 1589 ep = file->private_data; 1448 ep = file->private_data; 1590 1449 1591 if (ep) { 1450 if (ep) { 1592 head = &ep->refs; 1451 head = &ep->refs; 1593 } else if (!READ_ONCE(file->f_ep)) { 1452 } else if (!READ_ONCE(file->f_ep)) { 1594 allocate: 1453 allocate: 1595 to_free = kmem_cache_zalloc(e 1454 to_free = kmem_cache_zalloc(ephead_cache, GFP_KERNEL); 1596 if (!to_free) 1455 if (!to_free) 1597 return -ENOMEM; 1456 return -ENOMEM; 1598 head = &to_free->epitems; 1457 head = &to_free->epitems; 1599 } 1458 } 1600 spin_lock(&file->f_lock); 1459 spin_lock(&file->f_lock); 1601 if (!file->f_ep) { 1460 if (!file->f_ep) { 1602 if (unlikely(!head)) { 1461 if (unlikely(!head)) { 1603 spin_unlock(&file->f_ 1462 spin_unlock(&file->f_lock); 1604 goto allocate; 1463 goto allocate; 1605 } 1464 } 1606 file->f_ep = head; 1465 file->f_ep = head; 1607 to_free = NULL; 1466 to_free = NULL; 1608 } 1467 } 1609 hlist_add_head_rcu(&epi->fllink, file 1468 hlist_add_head_rcu(&epi->fllink, file->f_ep); 1610 spin_unlock(&file->f_lock); 1469 spin_unlock(&file->f_lock); 1611 free_ephead(to_free); 1470 free_ephead(to_free); 1612 return 0; 1471 return 0; 1613 } 1472 } 1614 1473 1615 /* 1474 /* 1616 * Must be called with "mtx" held. 1475 * Must be called with "mtx" held. 1617 */ 1476 */ 1618 static int ep_insert(struct eventpoll *ep, co 1477 static int ep_insert(struct eventpoll *ep, const struct epoll_event *event, 1619 struct file *tfile, int 1478 struct file *tfile, int fd, int full_check) 1620 { 1479 { 1621 int error, pwake = 0; 1480 int error, pwake = 0; 1622 __poll_t revents; 1481 __poll_t revents; 1623 struct epitem *epi; 1482 struct epitem *epi; 1624 struct ep_pqueue epq; 1483 struct ep_pqueue epq; 1625 struct eventpoll *tep = NULL; 1484 struct eventpoll *tep = NULL; 1626 1485 1627 if (is_file_epoll(tfile)) 1486 if (is_file_epoll(tfile)) 1628 tep = tfile->private_data; 1487 tep = tfile->private_data; 1629 1488 1630 lockdep_assert_irqs_enabled(); 1489 lockdep_assert_irqs_enabled(); 1631 1490 1632 if (unlikely(percpu_counter_compare(& 1491 if (unlikely(percpu_counter_compare(&ep->user->epoll_watches, 1633 m 1492 max_user_watches) >= 0)) 1634 return -ENOSPC; 1493 return -ENOSPC; 1635 percpu_counter_inc(&ep->user->epoll_w 1494 percpu_counter_inc(&ep->user->epoll_watches); 1636 1495 1637 if (!(epi = kmem_cache_zalloc(epi_cac 1496 if (!(epi = kmem_cache_zalloc(epi_cache, GFP_KERNEL))) { 1638 percpu_counter_dec(&ep->user- 1497 percpu_counter_dec(&ep->user->epoll_watches); 1639 return -ENOMEM; 1498 return -ENOMEM; 1640 } 1499 } 1641 1500 1642 /* Item initialization follow here .. 1501 /* Item initialization follow here ... */ 1643 INIT_LIST_HEAD(&epi->rdllink); 1502 INIT_LIST_HEAD(&epi->rdllink); 1644 epi->ep = ep; 1503 epi->ep = ep; 1645 ep_set_ffd(&epi->ffd, tfile, fd); 1504 ep_set_ffd(&epi->ffd, tfile, fd); 1646 epi->event = *event; 1505 epi->event = *event; 1647 epi->next = EP_UNACTIVE_PTR; 1506 epi->next = EP_UNACTIVE_PTR; 1648 1507 1649 if (tep) 1508 if (tep) 1650 mutex_lock_nested(&tep->mtx, 1509 mutex_lock_nested(&tep->mtx, 1); 1651 /* Add the current item to the list o 1510 /* Add the current item to the list of active epoll hook for this file */ 1652 if (unlikely(attach_epitem(tfile, epi 1511 if (unlikely(attach_epitem(tfile, epi) < 0)) { 1653 if (tep) 1512 if (tep) 1654 mutex_unlock(&tep->mt 1513 mutex_unlock(&tep->mtx); 1655 kmem_cache_free(epi_cache, ep 1514 kmem_cache_free(epi_cache, epi); 1656 percpu_counter_dec(&ep->user- 1515 percpu_counter_dec(&ep->user->epoll_watches); 1657 return -ENOMEM; 1516 return -ENOMEM; 1658 } 1517 } 1659 1518 1660 if (full_check && !tep) 1519 if (full_check && !tep) 1661 list_file(tfile); 1520 list_file(tfile); 1662 1521 1663 /* 1522 /* 1664 * Add the current item to the RB tre 1523 * Add the current item to the RB tree. All RB tree operations are 1665 * protected by "mtx", and ep_insert( 1524 * protected by "mtx", and ep_insert() is called with "mtx" held. 1666 */ 1525 */ 1667 ep_rbtree_insert(ep, epi); 1526 ep_rbtree_insert(ep, epi); 1668 if (tep) 1527 if (tep) 1669 mutex_unlock(&tep->mtx); 1528 mutex_unlock(&tep->mtx); 1670 1529 1671 /* 1530 /* 1672 * ep_remove_safe() calls in the late 1531 * ep_remove_safe() calls in the later error paths can't lead to 1673 * ep_free() as the ep file itself st 1532 * ep_free() as the ep file itself still holds an ep reference. 1674 */ 1533 */ 1675 ep_get(ep); 1534 ep_get(ep); 1676 1535 1677 /* now check if we've created too man 1536 /* now check if we've created too many backpaths */ 1678 if (unlikely(full_check && reverse_pa 1537 if (unlikely(full_check && reverse_path_check())) { 1679 ep_remove_safe(ep, epi); 1538 ep_remove_safe(ep, epi); 1680 return -EINVAL; 1539 return -EINVAL; 1681 } 1540 } 1682 1541 1683 if (epi->event.events & EPOLLWAKEUP) 1542 if (epi->event.events & EPOLLWAKEUP) { 1684 error = ep_create_wakeup_sour 1543 error = ep_create_wakeup_source(epi); 1685 if (error) { 1544 if (error) { 1686 ep_remove_safe(ep, ep 1545 ep_remove_safe(ep, epi); 1687 return error; 1546 return error; 1688 } 1547 } 1689 } 1548 } 1690 1549 1691 /* Initialize the poll table using th 1550 /* Initialize the poll table using the queue callback */ 1692 epq.epi = epi; 1551 epq.epi = epi; 1693 init_poll_funcptr(&epq.pt, ep_ptable_ 1552 init_poll_funcptr(&epq.pt, ep_ptable_queue_proc); 1694 1553 1695 /* 1554 /* 1696 * Attach the item to the poll hooks 1555 * Attach the item to the poll hooks and get current event bits. 1697 * We can safely use the file* here b 1556 * We can safely use the file* here because its usage count has 1698 * been increased by the caller of th 1557 * been increased by the caller of this function. Note that after 1699 * this operation completes, the poll 1558 * this operation completes, the poll callback can start hitting 1700 * the new item. 1559 * the new item. 1701 */ 1560 */ 1702 revents = ep_item_poll(epi, &epq.pt, 1561 revents = ep_item_poll(epi, &epq.pt, 1); 1703 1562 1704 /* 1563 /* 1705 * We have to check if something went 1564 * We have to check if something went wrong during the poll wait queue 1706 * install process. Namely an allocat 1565 * install process. Namely an allocation for a wait queue failed due 1707 * high memory pressure. 1566 * high memory pressure. 1708 */ 1567 */ 1709 if (unlikely(!epq.epi)) { 1568 if (unlikely(!epq.epi)) { 1710 ep_remove_safe(ep, epi); 1569 ep_remove_safe(ep, epi); 1711 return -ENOMEM; 1570 return -ENOMEM; 1712 } 1571 } 1713 1572 1714 /* We have to drop the new item insid 1573 /* We have to drop the new item inside our item list to keep track of it */ 1715 write_lock_irq(&ep->lock); 1574 write_lock_irq(&ep->lock); 1716 1575 1717 /* record NAPI ID of new item if pres 1576 /* record NAPI ID of new item if present */ 1718 ep_set_busy_poll_napi_id(epi); 1577 ep_set_busy_poll_napi_id(epi); 1719 1578 1720 /* If the file is already "ready" we 1579 /* If the file is already "ready" we drop it inside the ready list */ 1721 if (revents && !ep_is_linked(epi)) { 1580 if (revents && !ep_is_linked(epi)) { 1722 list_add_tail(&epi->rdllink, 1581 list_add_tail(&epi->rdllink, &ep->rdllist); 1723 ep_pm_stay_awake(epi); 1582 ep_pm_stay_awake(epi); 1724 1583 1725 /* Notify waiting tasks that 1584 /* Notify waiting tasks that events are available */ 1726 if (waitqueue_active(&ep->wq) 1585 if (waitqueue_active(&ep->wq)) 1727 wake_up(&ep->wq); 1586 wake_up(&ep->wq); 1728 if (waitqueue_active(&ep->pol 1587 if (waitqueue_active(&ep->poll_wait)) 1729 pwake++; 1588 pwake++; 1730 } 1589 } 1731 1590 1732 write_unlock_irq(&ep->lock); 1591 write_unlock_irq(&ep->lock); 1733 1592 1734 /* We have to call this outside the l 1593 /* We have to call this outside the lock */ 1735 if (pwake) 1594 if (pwake) 1736 ep_poll_safewake(ep, NULL, 0) 1595 ep_poll_safewake(ep, NULL, 0); 1737 1596 1738 return 0; 1597 return 0; 1739 } 1598 } 1740 1599 1741 /* 1600 /* 1742 * Modify the interest event mask by dropping 1601 * Modify the interest event mask by dropping an event if the new mask 1743 * has a match in the current file status. Mu 1602 * has a match in the current file status. Must be called with "mtx" held. 1744 */ 1603 */ 1745 static int ep_modify(struct eventpoll *ep, st 1604 static int ep_modify(struct eventpoll *ep, struct epitem *epi, 1746 const struct epoll_event 1605 const struct epoll_event *event) 1747 { 1606 { 1748 int pwake = 0; 1607 int pwake = 0; 1749 poll_table pt; 1608 poll_table pt; 1750 1609 1751 lockdep_assert_irqs_enabled(); 1610 lockdep_assert_irqs_enabled(); 1752 1611 1753 init_poll_funcptr(&pt, NULL); 1612 init_poll_funcptr(&pt, NULL); 1754 1613 1755 /* 1614 /* 1756 * Set the new event interest mask be 1615 * Set the new event interest mask before calling f_op->poll(); 1757 * otherwise we might miss an event t 1616 * otherwise we might miss an event that happens between the 1758 * f_op->poll() call and the new even 1617 * f_op->poll() call and the new event set registering. 1759 */ 1618 */ 1760 epi->event.events = event->events; /* 1619 epi->event.events = event->events; /* need barrier below */ 1761 epi->event.data = event->data; /* pro 1620 epi->event.data = event->data; /* protected by mtx */ 1762 if (epi->event.events & EPOLLWAKEUP) 1621 if (epi->event.events & EPOLLWAKEUP) { 1763 if (!ep_has_wakeup_source(epi 1622 if (!ep_has_wakeup_source(epi)) 1764 ep_create_wakeup_sour 1623 ep_create_wakeup_source(epi); 1765 } else if (ep_has_wakeup_source(epi)) 1624 } else if (ep_has_wakeup_source(epi)) { 1766 ep_destroy_wakeup_source(epi) 1625 ep_destroy_wakeup_source(epi); 1767 } 1626 } 1768 1627 1769 /* 1628 /* 1770 * The following barrier has two effe 1629 * The following barrier has two effects: 1771 * 1630 * 1772 * 1) Flush epi changes above to othe 1631 * 1) Flush epi changes above to other CPUs. This ensures 1773 * we do not miss events from ep_p 1632 * we do not miss events from ep_poll_callback if an 1774 * event occurs immediately after 1633 * event occurs immediately after we call f_op->poll(). 1775 * We need this because we did not 1634 * We need this because we did not take ep->lock while 1776 * changing epi above (but ep_poll 1635 * changing epi above (but ep_poll_callback does take 1777 * ep->lock). 1636 * ep->lock). 1778 * 1637 * 1779 * 2) We also need to ensure we do no 1638 * 2) We also need to ensure we do not miss _past_ events 1780 * when calling f_op->poll(). Thi 1639 * when calling f_op->poll(). This barrier also 1781 * pairs with the barrier in wq_ha 1640 * pairs with the barrier in wq_has_sleeper (see 1782 * comments for wq_has_sleeper). 1641 * comments for wq_has_sleeper). 1783 * 1642 * 1784 * This barrier will now guarantee ep 1643 * This barrier will now guarantee ep_poll_callback or f_op->poll 1785 * (or both) will notice the readines 1644 * (or both) will notice the readiness of an item. 1786 */ 1645 */ 1787 smp_mb(); 1646 smp_mb(); 1788 1647 1789 /* 1648 /* 1790 * Get current event bits. We can saf 1649 * Get current event bits. We can safely use the file* here because 1791 * its usage count has been increased 1650 * its usage count has been increased by the caller of this function. 1792 * If the item is "hot" and it is not 1651 * If the item is "hot" and it is not registered inside the ready 1793 * list, push it inside. 1652 * list, push it inside. 1794 */ 1653 */ 1795 if (ep_item_poll(epi, &pt, 1)) { 1654 if (ep_item_poll(epi, &pt, 1)) { 1796 write_lock_irq(&ep->lock); 1655 write_lock_irq(&ep->lock); 1797 if (!ep_is_linked(epi)) { 1656 if (!ep_is_linked(epi)) { 1798 list_add_tail(&epi->r 1657 list_add_tail(&epi->rdllink, &ep->rdllist); 1799 ep_pm_stay_awake(epi) 1658 ep_pm_stay_awake(epi); 1800 1659 1801 /* Notify waiting tas 1660 /* Notify waiting tasks that events are available */ 1802 if (waitqueue_active( 1661 if (waitqueue_active(&ep->wq)) 1803 wake_up(&ep-> 1662 wake_up(&ep->wq); 1804 if (waitqueue_active( 1663 if (waitqueue_active(&ep->poll_wait)) 1805 pwake++; 1664 pwake++; 1806 } 1665 } 1807 write_unlock_irq(&ep->lock); 1666 write_unlock_irq(&ep->lock); 1808 } 1667 } 1809 1668 1810 /* We have to call this outside the l 1669 /* We have to call this outside the lock */ 1811 if (pwake) 1670 if (pwake) 1812 ep_poll_safewake(ep, NULL, 0) 1671 ep_poll_safewake(ep, NULL, 0); 1813 1672 1814 return 0; 1673 return 0; 1815 } 1674 } 1816 1675 1817 static int ep_send_events(struct eventpoll *e 1676 static int ep_send_events(struct eventpoll *ep, 1818 struct epoll_event 1677 struct epoll_event __user *events, int maxevents) 1819 { 1678 { 1820 struct epitem *epi, *tmp; 1679 struct epitem *epi, *tmp; 1821 LIST_HEAD(txlist); 1680 LIST_HEAD(txlist); 1822 poll_table pt; 1681 poll_table pt; 1823 int res = 0; 1682 int res = 0; 1824 1683 1825 /* 1684 /* 1826 * Always short-circuit for fatal sig 1685 * Always short-circuit for fatal signals to allow threads to make a 1827 * timely exit without the chance of 1686 * timely exit without the chance of finding more events available and 1828 * fetching repeatedly. 1687 * fetching repeatedly. 1829 */ 1688 */ 1830 if (fatal_signal_pending(current)) 1689 if (fatal_signal_pending(current)) 1831 return -EINTR; 1690 return -EINTR; 1832 1691 1833 init_poll_funcptr(&pt, NULL); 1692 init_poll_funcptr(&pt, NULL); 1834 1693 1835 mutex_lock(&ep->mtx); 1694 mutex_lock(&ep->mtx); 1836 ep_start_scan(ep, &txlist); 1695 ep_start_scan(ep, &txlist); 1837 1696 1838 /* 1697 /* 1839 * We can loop without lock because w 1698 * We can loop without lock because we are passed a task private list. 1840 * Items cannot vanish during the loo 1699 * Items cannot vanish during the loop we are holding ep->mtx. 1841 */ 1700 */ 1842 list_for_each_entry_safe(epi, tmp, &t 1701 list_for_each_entry_safe(epi, tmp, &txlist, rdllink) { 1843 struct wakeup_source *ws; 1702 struct wakeup_source *ws; 1844 __poll_t revents; 1703 __poll_t revents; 1845 1704 1846 if (res >= maxevents) 1705 if (res >= maxevents) 1847 break; 1706 break; 1848 1707 1849 /* 1708 /* 1850 * Activate ep->ws before dea 1709 * Activate ep->ws before deactivating epi->ws to prevent 1851 * triggering auto-suspend he 1710 * triggering auto-suspend here (in case we reactive epi->ws 1852 * below). 1711 * below). 1853 * 1712 * 1854 * This could be rearranged t 1713 * This could be rearranged to delay the deactivation of epi->ws 1855 * instead, but then epi->ws 1714 * instead, but then epi->ws would temporarily be out of sync 1856 * with ep_is_linked(). 1715 * with ep_is_linked(). 1857 */ 1716 */ 1858 ws = ep_wakeup_source(epi); 1717 ws = ep_wakeup_source(epi); 1859 if (ws) { 1718 if (ws) { 1860 if (ws->active) 1719 if (ws->active) 1861 __pm_stay_awa 1720 __pm_stay_awake(ep->ws); 1862 __pm_relax(ws); 1721 __pm_relax(ws); 1863 } 1722 } 1864 1723 1865 list_del_init(&epi->rdllink); 1724 list_del_init(&epi->rdllink); 1866 1725 1867 /* 1726 /* 1868 * If the event mask intersec 1727 * If the event mask intersect the caller-requested one, 1869 * deliver the event to users 1728 * deliver the event to userspace. Again, we are holding ep->mtx, 1870 * so no operations coming fr 1729 * so no operations coming from userspace can change the item. 1871 */ 1730 */ 1872 revents = ep_item_poll(epi, & 1731 revents = ep_item_poll(epi, &pt, 1); 1873 if (!revents) 1732 if (!revents) 1874 continue; 1733 continue; 1875 1734 1876 events = epoll_put_uevent(rev 1735 events = epoll_put_uevent(revents, epi->event.data, events); 1877 if (!events) { 1736 if (!events) { 1878 list_add(&epi->rdllin 1737 list_add(&epi->rdllink, &txlist); 1879 ep_pm_stay_awake(epi) 1738 ep_pm_stay_awake(epi); 1880 if (!res) 1739 if (!res) 1881 res = -EFAULT 1740 res = -EFAULT; 1882 break; 1741 break; 1883 } 1742 } 1884 res++; 1743 res++; 1885 if (epi->event.events & EPOLL 1744 if (epi->event.events & EPOLLONESHOT) 1886 epi->event.events &= 1745 epi->event.events &= EP_PRIVATE_BITS; 1887 else if (!(epi->event.events 1746 else if (!(epi->event.events & EPOLLET)) { 1888 /* 1747 /* 1889 * If this file has b 1748 * If this file has been added with Level 1890 * Trigger mode, we n 1749 * Trigger mode, we need to insert back inside 1891 * the ready list, so 1750 * the ready list, so that the next call to 1892 * epoll_wait() will 1751 * epoll_wait() will check again the events 1893 * availability. At t 1752 * availability. At this point, no one can insert 1894 * into ep->rdllist b 1753 * into ep->rdllist besides us. The epoll_ctl() 1895 * callers are locked 1754 * callers are locked out by 1896 * ep_send_events() h !! 1755 * ep_scan_ready_list() holding "mtx" and the 1897 * poll callback will 1756 * poll callback will queue them in ep->ovflist. 1898 */ 1757 */ 1899 list_add_tail(&epi->r 1758 list_add_tail(&epi->rdllink, &ep->rdllist); 1900 ep_pm_stay_awake(epi) 1759 ep_pm_stay_awake(epi); 1901 } 1760 } 1902 } 1761 } 1903 ep_done_scan(ep, &txlist); 1762 ep_done_scan(ep, &txlist); 1904 mutex_unlock(&ep->mtx); 1763 mutex_unlock(&ep->mtx); 1905 1764 1906 return res; 1765 return res; 1907 } 1766 } 1908 1767 1909 static struct timespec64 *ep_timeout_to_times 1768 static struct timespec64 *ep_timeout_to_timespec(struct timespec64 *to, long ms) 1910 { 1769 { 1911 struct timespec64 now; 1770 struct timespec64 now; 1912 1771 1913 if (ms < 0) 1772 if (ms < 0) 1914 return NULL; 1773 return NULL; 1915 1774 1916 if (!ms) { 1775 if (!ms) { 1917 to->tv_sec = 0; 1776 to->tv_sec = 0; 1918 to->tv_nsec = 0; 1777 to->tv_nsec = 0; 1919 return to; 1778 return to; 1920 } 1779 } 1921 1780 1922 to->tv_sec = ms / MSEC_PER_SEC; 1781 to->tv_sec = ms / MSEC_PER_SEC; 1923 to->tv_nsec = NSEC_PER_MSEC * (ms % M 1782 to->tv_nsec = NSEC_PER_MSEC * (ms % MSEC_PER_SEC); 1924 1783 1925 ktime_get_ts64(&now); 1784 ktime_get_ts64(&now); 1926 *to = timespec64_add_safe(now, *to); 1785 *to = timespec64_add_safe(now, *to); 1927 return to; 1786 return to; 1928 } 1787 } 1929 1788 1930 /* 1789 /* 1931 * autoremove_wake_function, but remove even 1790 * autoremove_wake_function, but remove even on failure to wake up, because we 1932 * know that default_wake_function/ttwu will 1791 * know that default_wake_function/ttwu will only fail if the thread is already 1933 * woken, and in that case the ep_poll loop w 1792 * woken, and in that case the ep_poll loop will remove the entry anyways, not 1934 * try to reuse it. 1793 * try to reuse it. 1935 */ 1794 */ 1936 static int ep_autoremove_wake_function(struct 1795 static int ep_autoremove_wake_function(struct wait_queue_entry *wq_entry, 1937 unsign 1796 unsigned int mode, int sync, void *key) 1938 { 1797 { 1939 int ret = default_wake_function(wq_en 1798 int ret = default_wake_function(wq_entry, mode, sync, key); 1940 1799 1941 /* 1800 /* 1942 * Pairs with list_empty_careful in e 1801 * Pairs with list_empty_careful in ep_poll, and ensures future loop 1943 * iterations see the cause of this w 1802 * iterations see the cause of this wakeup. 1944 */ 1803 */ 1945 list_del_init_careful(&wq_entry->entr 1804 list_del_init_careful(&wq_entry->entry); 1946 return ret; 1805 return ret; 1947 } 1806 } 1948 1807 1949 /** 1808 /** 1950 * ep_poll - Retrieves ready events, and deli 1809 * ep_poll - Retrieves ready events, and delivers them to the caller-supplied 1951 * event buffer. 1810 * event buffer. 1952 * 1811 * 1953 * @ep: Pointer to the eventpoll context. 1812 * @ep: Pointer to the eventpoll context. 1954 * @events: Pointer to the userspace buffer w 1813 * @events: Pointer to the userspace buffer where the ready events should be 1955 * stored. 1814 * stored. 1956 * @maxevents: Size (in terms of number of ev 1815 * @maxevents: Size (in terms of number of events) of the caller event buffer. 1957 * @timeout: Maximum timeout for the ready ev 1816 * @timeout: Maximum timeout for the ready events fetch operation, in 1958 * timespec. If the timeout is zero 1817 * timespec. If the timeout is zero, the function will not block, 1959 * while if the @timeout ptr is NUL 1818 * while if the @timeout ptr is NULL, the function will block 1960 * until at least one event has bee 1819 * until at least one event has been retrieved (or an error 1961 * occurred). 1820 * occurred). 1962 * 1821 * 1963 * Return: the number of ready events which h 1822 * Return: the number of ready events which have been fetched, or an 1964 * error code, in case of error. 1823 * error code, in case of error. 1965 */ 1824 */ 1966 static int ep_poll(struct eventpoll *ep, stru 1825 static int ep_poll(struct eventpoll *ep, struct epoll_event __user *events, 1967 int maxevents, struct time 1826 int maxevents, struct timespec64 *timeout) 1968 { 1827 { 1969 int res, eavail, timed_out = 0; 1828 int res, eavail, timed_out = 0; 1970 u64 slack = 0; 1829 u64 slack = 0; 1971 wait_queue_entry_t wait; 1830 wait_queue_entry_t wait; 1972 ktime_t expires, *to = NULL; 1831 ktime_t expires, *to = NULL; 1973 1832 1974 lockdep_assert_irqs_enabled(); 1833 lockdep_assert_irqs_enabled(); 1975 1834 1976 if (timeout && (timeout->tv_sec | tim 1835 if (timeout && (timeout->tv_sec | timeout->tv_nsec)) { 1977 slack = select_estimate_accur 1836 slack = select_estimate_accuracy(timeout); 1978 to = &expires; 1837 to = &expires; 1979 *to = timespec64_to_ktime(*ti 1838 *to = timespec64_to_ktime(*timeout); 1980 } else if (timeout) { 1839 } else if (timeout) { 1981 /* 1840 /* 1982 * Avoid the unnecessary trip 1841 * Avoid the unnecessary trip to the wait queue loop, if the 1983 * caller specified a non blo 1842 * caller specified a non blocking operation. 1984 */ 1843 */ 1985 timed_out = 1; 1844 timed_out = 1; 1986 } 1845 } 1987 1846 1988 /* 1847 /* 1989 * This call is racy: We may or may n 1848 * This call is racy: We may or may not see events that are being added 1990 * to the ready list under the lock ( 1849 * to the ready list under the lock (e.g., in IRQ callbacks). For cases 1991 * with a non-zero timeout, this thre 1850 * with a non-zero timeout, this thread will check the ready list under 1992 * lock and will add to the wait queu 1851 * lock and will add to the wait queue. For cases with a zero 1993 * timeout, the user by definition sh 1852 * timeout, the user by definition should not care and will have to 1994 * recheck again. 1853 * recheck again. 1995 */ 1854 */ 1996 eavail = ep_events_available(ep); 1855 eavail = ep_events_available(ep); 1997 1856 1998 while (1) { 1857 while (1) { 1999 if (eavail) { 1858 if (eavail) { 2000 /* 1859 /* 2001 * Try to transfer ev 1860 * Try to transfer events to user space. In case we get 2002 * 0 events and there 1861 * 0 events and there's still timeout left over, we go 2003 * trying again in se 1862 * trying again in search of more luck. 2004 */ 1863 */ 2005 res = ep_send_events( 1864 res = ep_send_events(ep, events, maxevents); 2006 if (res) 1865 if (res) 2007 return res; 1866 return res; 2008 } 1867 } 2009 1868 2010 if (timed_out) 1869 if (timed_out) 2011 return 0; 1870 return 0; 2012 1871 2013 eavail = ep_busy_loop(ep, tim 1872 eavail = ep_busy_loop(ep, timed_out); 2014 if (eavail) 1873 if (eavail) 2015 continue; 1874 continue; 2016 1875 2017 if (signal_pending(current)) 1876 if (signal_pending(current)) 2018 return -EINTR; 1877 return -EINTR; 2019 1878 2020 /* 1879 /* 2021 * Internally init_wait() use 1880 * Internally init_wait() uses autoremove_wake_function(), 2022 * thus wait entry is removed 1881 * thus wait entry is removed from the wait queue on each 2023 * wakeup. Why it is importan 1882 * wakeup. Why it is important? In case of several waiters 2024 * each new wakeup will hit t 1883 * each new wakeup will hit the next waiter, giving it the 2025 * chance to harvest new even 1884 * chance to harvest new event. Otherwise wakeup can be 2026 * lost. This is also good pe 1885 * lost. This is also good performance-wise, because on 2027 * normal wakeup path no need 1886 * normal wakeup path no need to call __remove_wait_queue() 2028 * explicitly, thus ep->lock 1887 * explicitly, thus ep->lock is not taken, which halts the 2029 * event delivery. 1888 * event delivery. 2030 * 1889 * 2031 * In fact, we now use an eve 1890 * In fact, we now use an even more aggressive function that 2032 * unconditionally removes, b 1891 * unconditionally removes, because we don't reuse the wait 2033 * entry between loop iterati 1892 * entry between loop iterations. This lets us also avoid the 2034 * performance issue if a pro 1893 * performance issue if a process is killed, causing all of its 2035 * threads to wake up without 1894 * threads to wake up without being removed normally. 2036 */ 1895 */ 2037 init_wait(&wait); 1896 init_wait(&wait); 2038 wait.func = ep_autoremove_wak 1897 wait.func = ep_autoremove_wake_function; 2039 1898 2040 write_lock_irq(&ep->lock); 1899 write_lock_irq(&ep->lock); 2041 /* 1900 /* 2042 * Barrierless variant, waitq 1901 * Barrierless variant, waitqueue_active() is called under 2043 * the same lock on wakeup ep 1902 * the same lock on wakeup ep_poll_callback() side, so it 2044 * is safe to avoid an explic 1903 * is safe to avoid an explicit barrier. 2045 */ 1904 */ 2046 __set_current_state(TASK_INTE 1905 __set_current_state(TASK_INTERRUPTIBLE); 2047 1906 2048 /* 1907 /* 2049 * Do the final check under t !! 1908 * Do the final check under the lock. ep_scan_ready_list() 2050 * plays with two lists (->rd 1909 * plays with two lists (->rdllist and ->ovflist) and there 2051 * is always a race when both 1910 * is always a race when both lists are empty for short 2052 * period of time although ev 1911 * period of time although events are pending, so lock is 2053 * important. 1912 * important. 2054 */ 1913 */ 2055 eavail = ep_events_available( 1914 eavail = ep_events_available(ep); 2056 if (!eavail) 1915 if (!eavail) 2057 __add_wait_queue_excl 1916 __add_wait_queue_exclusive(&ep->wq, &wait); 2058 1917 2059 write_unlock_irq(&ep->lock); 1918 write_unlock_irq(&ep->lock); 2060 1919 2061 if (!eavail) 1920 if (!eavail) 2062 timed_out = !schedule 1921 timed_out = !schedule_hrtimeout_range(to, slack, 2063 1922 HRTIMER_MODE_ABS); 2064 __set_current_state(TASK_RUNN 1923 __set_current_state(TASK_RUNNING); 2065 1924 2066 /* 1925 /* 2067 * We were woken up, thus go 1926 * We were woken up, thus go and try to harvest some events. 2068 * If timed out and still on 1927 * If timed out and still on the wait queue, recheck eavail 2069 * carefully under lock, belo 1928 * carefully under lock, below. 2070 */ 1929 */ 2071 eavail = 1; 1930 eavail = 1; 2072 1931 2073 if (!list_empty_careful(&wait 1932 if (!list_empty_careful(&wait.entry)) { 2074 write_lock_irq(&ep->l 1933 write_lock_irq(&ep->lock); 2075 /* 1934 /* 2076 * If the thread time 1935 * If the thread timed out and is not on the wait queue, 2077 * it means that the 1936 * it means that the thread was woken up after its 2078 * timeout expired be 1937 * timeout expired before it could reacquire the lock. 2079 * Thus, when wait.en 1938 * Thus, when wait.entry is empty, it needs to harvest 2080 * events. 1939 * events. 2081 */ 1940 */ 2082 if (timed_out) 1941 if (timed_out) 2083 eavail = list 1942 eavail = list_empty(&wait.entry); 2084 __remove_wait_queue(& 1943 __remove_wait_queue(&ep->wq, &wait); 2085 write_unlock_irq(&ep- 1944 write_unlock_irq(&ep->lock); 2086 } 1945 } 2087 } 1946 } 2088 } 1947 } 2089 1948 2090 /** 1949 /** 2091 * ep_loop_check_proc - verify that adding an 1950 * ep_loop_check_proc - verify that adding an epoll file inside another 2092 * epoll structure does 1951 * epoll structure does not violate the constraints, in 2093 * terms of closed loops 1952 * terms of closed loops, or too deep chains (which can 2094 * result in excessive s 1953 * result in excessive stack usage). 2095 * 1954 * 2096 * @ep: the &struct eventpoll to be currently 1955 * @ep: the &struct eventpoll to be currently checked. 2097 * @depth: Current depth of the path being ch 1956 * @depth: Current depth of the path being checked. 2098 * 1957 * 2099 * Return: %zero if adding the epoll @file in 1958 * Return: %zero if adding the epoll @file inside current epoll 2100 * structure @ep does not violate th 1959 * structure @ep does not violate the constraints, or %-1 otherwise. 2101 */ 1960 */ 2102 static int ep_loop_check_proc(struct eventpol 1961 static int ep_loop_check_proc(struct eventpoll *ep, int depth) 2103 { 1962 { 2104 int error = 0; 1963 int error = 0; 2105 struct rb_node *rbp; 1964 struct rb_node *rbp; 2106 struct epitem *epi; 1965 struct epitem *epi; 2107 1966 2108 mutex_lock_nested(&ep->mtx, depth + 1 1967 mutex_lock_nested(&ep->mtx, depth + 1); 2109 ep->gen = loop_check_gen; 1968 ep->gen = loop_check_gen; 2110 for (rbp = rb_first_cached(&ep->rbr); 1969 for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) { 2111 epi = rb_entry(rbp, struct ep 1970 epi = rb_entry(rbp, struct epitem, rbn); 2112 if (unlikely(is_file_epoll(ep 1971 if (unlikely(is_file_epoll(epi->ffd.file))) { 2113 struct eventpoll *ep_ 1972 struct eventpoll *ep_tovisit; 2114 ep_tovisit = epi->ffd 1973 ep_tovisit = epi->ffd.file->private_data; 2115 if (ep_tovisit->gen = 1974 if (ep_tovisit->gen == loop_check_gen) 2116 continue; 1975 continue; 2117 if (ep_tovisit == ins 1976 if (ep_tovisit == inserting_into || depth > EP_MAX_NESTS) 2118 error = -1; 1977 error = -1; 2119 else 1978 else 2120 error = ep_lo 1979 error = ep_loop_check_proc(ep_tovisit, depth + 1); 2121 if (error != 0) 1980 if (error != 0) 2122 break; 1981 break; 2123 } else { 1982 } else { 2124 /* 1983 /* 2125 * If we've reached a 1984 * If we've reached a file that is not associated with 2126 * an ep, then we nee 1985 * an ep, then we need to check if the newly added 2127 * links are going to 1986 * links are going to add too many wakeup paths. We do 2128 * this by adding it 1987 * this by adding it to the tfile_check_list, if it's 2129 * not already there, 1988 * not already there, and calling reverse_path_check() 2130 * during ep_insert() 1989 * during ep_insert(). 2131 */ 1990 */ 2132 list_file(epi->ffd.fi 1991 list_file(epi->ffd.file); 2133 } 1992 } 2134 } 1993 } 2135 mutex_unlock(&ep->mtx); 1994 mutex_unlock(&ep->mtx); 2136 1995 2137 return error; 1996 return error; 2138 } 1997 } 2139 1998 2140 /** 1999 /** 2141 * ep_loop_check - Performs a check to verify 2000 * ep_loop_check - Performs a check to verify that adding an epoll file (@to) 2142 * into another epoll file (r 2001 * into another epoll file (represented by @ep) does not create 2143 * closed loops or too deep c 2002 * closed loops or too deep chains. 2144 * 2003 * 2145 * @ep: Pointer to the epoll we are inserting 2004 * @ep: Pointer to the epoll we are inserting into. 2146 * @to: Pointer to the epoll to be inserted. 2005 * @to: Pointer to the epoll to be inserted. 2147 * 2006 * 2148 * Return: %zero if adding the epoll @to insi 2007 * Return: %zero if adding the epoll @to inside the epoll @from 2149 * does not violate the constraints, or %-1 o 2008 * does not violate the constraints, or %-1 otherwise. 2150 */ 2009 */ 2151 static int ep_loop_check(struct eventpoll *ep 2010 static int ep_loop_check(struct eventpoll *ep, struct eventpoll *to) 2152 { 2011 { 2153 inserting_into = ep; 2012 inserting_into = ep; 2154 return ep_loop_check_proc(to, 0); 2013 return ep_loop_check_proc(to, 0); 2155 } 2014 } 2156 2015 2157 static void clear_tfile_check_list(void) 2016 static void clear_tfile_check_list(void) 2158 { 2017 { 2159 rcu_read_lock(); 2018 rcu_read_lock(); 2160 while (tfile_check_list != EP_UNACTIV 2019 while (tfile_check_list != EP_UNACTIVE_PTR) { 2161 struct epitems_head *head = t 2020 struct epitems_head *head = tfile_check_list; 2162 tfile_check_list = head->next 2021 tfile_check_list = head->next; 2163 unlist_file(head); 2022 unlist_file(head); 2164 } 2023 } 2165 rcu_read_unlock(); 2024 rcu_read_unlock(); 2166 } 2025 } 2167 2026 2168 /* 2027 /* 2169 * Open an eventpoll file descriptor. 2028 * Open an eventpoll file descriptor. 2170 */ 2029 */ 2171 static int do_epoll_create(int flags) 2030 static int do_epoll_create(int flags) 2172 { 2031 { 2173 int error, fd; 2032 int error, fd; 2174 struct eventpoll *ep = NULL; 2033 struct eventpoll *ep = NULL; 2175 struct file *file; 2034 struct file *file; 2176 2035 2177 /* Check the EPOLL_* constant for con 2036 /* Check the EPOLL_* constant for consistency. */ 2178 BUILD_BUG_ON(EPOLL_CLOEXEC != O_CLOEX 2037 BUILD_BUG_ON(EPOLL_CLOEXEC != O_CLOEXEC); 2179 2038 2180 if (flags & ~EPOLL_CLOEXEC) 2039 if (flags & ~EPOLL_CLOEXEC) 2181 return -EINVAL; 2040 return -EINVAL; 2182 /* 2041 /* 2183 * Create the internal data structure 2042 * Create the internal data structure ("struct eventpoll"). 2184 */ 2043 */ 2185 error = ep_alloc(&ep); 2044 error = ep_alloc(&ep); 2186 if (error < 0) 2045 if (error < 0) 2187 return error; 2046 return error; 2188 /* 2047 /* 2189 * Creates all the items needed to se 2048 * Creates all the items needed to setup an eventpoll file. That is, 2190 * a file structure and a free file d 2049 * a file structure and a free file descriptor. 2191 */ 2050 */ 2192 fd = get_unused_fd_flags(O_RDWR | (fl 2051 fd = get_unused_fd_flags(O_RDWR | (flags & O_CLOEXEC)); 2193 if (fd < 0) { 2052 if (fd < 0) { 2194 error = fd; 2053 error = fd; 2195 goto out_free_ep; 2054 goto out_free_ep; 2196 } 2055 } 2197 file = anon_inode_getfile("[eventpoll 2056 file = anon_inode_getfile("[eventpoll]", &eventpoll_fops, ep, 2198 O_RDWR | (fl 2057 O_RDWR | (flags & O_CLOEXEC)); 2199 if (IS_ERR(file)) { 2058 if (IS_ERR(file)) { 2200 error = PTR_ERR(file); 2059 error = PTR_ERR(file); 2201 goto out_free_fd; 2060 goto out_free_fd; 2202 } 2061 } 2203 #ifdef CONFIG_NET_RX_BUSY_POLL << 2204 ep->busy_poll_usecs = 0; << 2205 ep->busy_poll_budget = 0; << 2206 ep->prefer_busy_poll = false; << 2207 #endif << 2208 ep->file = file; 2062 ep->file = file; 2209 fd_install(fd, file); 2063 fd_install(fd, file); 2210 return fd; 2064 return fd; 2211 2065 2212 out_free_fd: 2066 out_free_fd: 2213 put_unused_fd(fd); 2067 put_unused_fd(fd); 2214 out_free_ep: 2068 out_free_ep: 2215 ep_clear_and_put(ep); 2069 ep_clear_and_put(ep); 2216 return error; 2070 return error; 2217 } 2071 } 2218 2072 2219 SYSCALL_DEFINE1(epoll_create1, int, flags) 2073 SYSCALL_DEFINE1(epoll_create1, int, flags) 2220 { 2074 { 2221 return do_epoll_create(flags); 2075 return do_epoll_create(flags); 2222 } 2076 } 2223 2077 2224 SYSCALL_DEFINE1(epoll_create, int, size) 2078 SYSCALL_DEFINE1(epoll_create, int, size) 2225 { 2079 { 2226 if (size <= 0) 2080 if (size <= 0) 2227 return -EINVAL; 2081 return -EINVAL; 2228 2082 2229 return do_epoll_create(0); 2083 return do_epoll_create(0); 2230 } 2084 } 2231 2085 2232 #ifdef CONFIG_PM_SLEEP 2086 #ifdef CONFIG_PM_SLEEP 2233 static inline void ep_take_care_of_epollwakeu 2087 static inline void ep_take_care_of_epollwakeup(struct epoll_event *epev) 2234 { 2088 { 2235 if ((epev->events & EPOLLWAKEUP) && ! 2089 if ((epev->events & EPOLLWAKEUP) && !capable(CAP_BLOCK_SUSPEND)) 2236 epev->events &= ~EPOLLWAKEUP; 2090 epev->events &= ~EPOLLWAKEUP; 2237 } 2091 } 2238 #else 2092 #else 2239 static inline void ep_take_care_of_epollwakeu 2093 static inline void ep_take_care_of_epollwakeup(struct epoll_event *epev) 2240 { 2094 { 2241 epev->events &= ~EPOLLWAKEUP; 2095 epev->events &= ~EPOLLWAKEUP; 2242 } 2096 } 2243 #endif 2097 #endif 2244 2098 2245 static inline int epoll_mutex_lock(struct mut 2099 static inline int epoll_mutex_lock(struct mutex *mutex, int depth, 2246 bool nonbl 2100 bool nonblock) 2247 { 2101 { 2248 if (!nonblock) { 2102 if (!nonblock) { 2249 mutex_lock_nested(mutex, dept 2103 mutex_lock_nested(mutex, depth); 2250 return 0; 2104 return 0; 2251 } 2105 } 2252 if (mutex_trylock(mutex)) 2106 if (mutex_trylock(mutex)) 2253 return 0; 2107 return 0; 2254 return -EAGAIN; 2108 return -EAGAIN; 2255 } 2109 } 2256 2110 2257 int do_epoll_ctl(int epfd, int op, int fd, st 2111 int do_epoll_ctl(int epfd, int op, int fd, struct epoll_event *epds, 2258 bool nonblock) 2112 bool nonblock) 2259 { 2113 { 2260 int error; 2114 int error; 2261 int full_check = 0; 2115 int full_check = 0; 2262 struct fd f, tf; 2116 struct fd f, tf; 2263 struct eventpoll *ep; 2117 struct eventpoll *ep; 2264 struct epitem *epi; 2118 struct epitem *epi; 2265 struct eventpoll *tep = NULL; 2119 struct eventpoll *tep = NULL; 2266 2120 2267 error = -EBADF; 2121 error = -EBADF; 2268 f = fdget(epfd); 2122 f = fdget(epfd); 2269 if (!f.file) 2123 if (!f.file) 2270 goto error_return; 2124 goto error_return; 2271 2125 2272 /* Get the "struct file *" for the ta 2126 /* Get the "struct file *" for the target file */ 2273 tf = fdget(fd); 2127 tf = fdget(fd); 2274 if (!tf.file) 2128 if (!tf.file) 2275 goto error_fput; 2129 goto error_fput; 2276 2130 2277 /* The target file descriptor must su 2131 /* The target file descriptor must support poll */ 2278 error = -EPERM; 2132 error = -EPERM; 2279 if (!file_can_poll(tf.file)) 2133 if (!file_can_poll(tf.file)) 2280 goto error_tgt_fput; 2134 goto error_tgt_fput; 2281 2135 2282 /* Check if EPOLLWAKEUP is allowed */ 2136 /* Check if EPOLLWAKEUP is allowed */ 2283 if (ep_op_has_event(op)) 2137 if (ep_op_has_event(op)) 2284 ep_take_care_of_epollwakeup(e 2138 ep_take_care_of_epollwakeup(epds); 2285 2139 2286 /* 2140 /* 2287 * We have to check that the file str 2141 * We have to check that the file structure underneath the file descriptor 2288 * the user passed to us _is_ an even 2142 * the user passed to us _is_ an eventpoll file. And also we do not permit 2289 * adding an epoll file descriptor in 2143 * adding an epoll file descriptor inside itself. 2290 */ 2144 */ 2291 error = -EINVAL; 2145 error = -EINVAL; 2292 if (f.file == tf.file || !is_file_epo 2146 if (f.file == tf.file || !is_file_epoll(f.file)) 2293 goto error_tgt_fput; 2147 goto error_tgt_fput; 2294 2148 2295 /* 2149 /* 2296 * epoll adds to the wakeup queue at 2150 * epoll adds to the wakeup queue at EPOLL_CTL_ADD time only, 2297 * so EPOLLEXCLUSIVE is not allowed f 2151 * so EPOLLEXCLUSIVE is not allowed for a EPOLL_CTL_MOD operation. 2298 * Also, we do not currently supporte 2152 * Also, we do not currently supported nested exclusive wakeups. 2299 */ 2153 */ 2300 if (ep_op_has_event(op) && (epds->eve 2154 if (ep_op_has_event(op) && (epds->events & EPOLLEXCLUSIVE)) { 2301 if (op == EPOLL_CTL_MOD) 2155 if (op == EPOLL_CTL_MOD) 2302 goto error_tgt_fput; 2156 goto error_tgt_fput; 2303 if (op == EPOLL_CTL_ADD && (i 2157 if (op == EPOLL_CTL_ADD && (is_file_epoll(tf.file) || 2304 (epds->events 2158 (epds->events & ~EPOLLEXCLUSIVE_OK_BITS))) 2305 goto error_tgt_fput; 2159 goto error_tgt_fput; 2306 } 2160 } 2307 2161 2308 /* 2162 /* 2309 * At this point it is safe to assume 2163 * At this point it is safe to assume that the "private_data" contains 2310 * our own data structure. 2164 * our own data structure. 2311 */ 2165 */ 2312 ep = f.file->private_data; 2166 ep = f.file->private_data; 2313 2167 2314 /* 2168 /* 2315 * When we insert an epoll file descr 2169 * When we insert an epoll file descriptor inside another epoll file 2316 * descriptor, there is the chance of 2170 * descriptor, there is the chance of creating closed loops, which are 2317 * better be handled here, than in mo 2171 * better be handled here, than in more critical paths. While we are 2318 * checking for loops we also determi 2172 * checking for loops we also determine the list of files reachable 2319 * and hang them on the tfile_check_l 2173 * and hang them on the tfile_check_list, so we can check that we 2320 * haven't created too many possible 2174 * haven't created too many possible wakeup paths. 2321 * 2175 * 2322 * We do not need to take the global 2176 * We do not need to take the global 'epumutex' on EPOLL_CTL_ADD when 2323 * the epoll file descriptor is attac 2177 * the epoll file descriptor is attaching directly to a wakeup source, 2324 * unless the epoll file descriptor i 2178 * unless the epoll file descriptor is nested. The purpose of taking the 2325 * 'epnested_mutex' on add is to prev 2179 * 'epnested_mutex' on add is to prevent complex toplogies such as loops and 2326 * deep wakeup paths from forming in 2180 * deep wakeup paths from forming in parallel through multiple 2327 * EPOLL_CTL_ADD operations. 2181 * EPOLL_CTL_ADD operations. 2328 */ 2182 */ 2329 error = epoll_mutex_lock(&ep->mtx, 0, 2183 error = epoll_mutex_lock(&ep->mtx, 0, nonblock); 2330 if (error) 2184 if (error) 2331 goto error_tgt_fput; 2185 goto error_tgt_fput; 2332 if (op == EPOLL_CTL_ADD) { 2186 if (op == EPOLL_CTL_ADD) { 2333 if (READ_ONCE(f.file->f_ep) | 2187 if (READ_ONCE(f.file->f_ep) || ep->gen == loop_check_gen || 2334 is_file_epoll(tf.file)) { 2188 is_file_epoll(tf.file)) { 2335 mutex_unlock(&ep->mtx 2189 mutex_unlock(&ep->mtx); 2336 error = epoll_mutex_l 2190 error = epoll_mutex_lock(&epnested_mutex, 0, nonblock); 2337 if (error) 2191 if (error) 2338 goto error_tg 2192 goto error_tgt_fput; 2339 loop_check_gen++; 2193 loop_check_gen++; 2340 full_check = 1; 2194 full_check = 1; 2341 if (is_file_epoll(tf. 2195 if (is_file_epoll(tf.file)) { 2342 tep = tf.file 2196 tep = tf.file->private_data; 2343 error = -ELOO 2197 error = -ELOOP; 2344 if (ep_loop_c 2198 if (ep_loop_check(ep, tep) != 0) 2345 goto 2199 goto error_tgt_fput; 2346 } 2200 } 2347 error = epoll_mutex_l 2201 error = epoll_mutex_lock(&ep->mtx, 0, nonblock); 2348 if (error) 2202 if (error) 2349 goto error_tg 2203 goto error_tgt_fput; 2350 } 2204 } 2351 } 2205 } 2352 2206 2353 /* 2207 /* 2354 * Try to lookup the file inside our 2208 * Try to lookup the file inside our RB tree. Since we grabbed "mtx" 2355 * above, we can be sure to be able t 2209 * above, we can be sure to be able to use the item looked up by 2356 * ep_find() till we release the mute 2210 * ep_find() till we release the mutex. 2357 */ 2211 */ 2358 epi = ep_find(ep, tf.file, fd); 2212 epi = ep_find(ep, tf.file, fd); 2359 2213 2360 error = -EINVAL; 2214 error = -EINVAL; 2361 switch (op) { 2215 switch (op) { 2362 case EPOLL_CTL_ADD: 2216 case EPOLL_CTL_ADD: 2363 if (!epi) { 2217 if (!epi) { 2364 epds->events |= EPOLL 2218 epds->events |= EPOLLERR | EPOLLHUP; 2365 error = ep_insert(ep, 2219 error = ep_insert(ep, epds, tf.file, fd, full_check); 2366 } else 2220 } else 2367 error = -EEXIST; 2221 error = -EEXIST; 2368 break; 2222 break; 2369 case EPOLL_CTL_DEL: 2223 case EPOLL_CTL_DEL: 2370 if (epi) { 2224 if (epi) { 2371 /* 2225 /* 2372 * The eventpoll itse 2226 * The eventpoll itself is still alive: the refcount 2373 * can't go to zero h 2227 * can't go to zero here. 2374 */ 2228 */ 2375 ep_remove_safe(ep, ep 2229 ep_remove_safe(ep, epi); 2376 error = 0; 2230 error = 0; 2377 } else { 2231 } else { 2378 error = -ENOENT; 2232 error = -ENOENT; 2379 } 2233 } 2380 break; 2234 break; 2381 case EPOLL_CTL_MOD: 2235 case EPOLL_CTL_MOD: 2382 if (epi) { 2236 if (epi) { 2383 if (!(epi->event.even 2237 if (!(epi->event.events & EPOLLEXCLUSIVE)) { 2384 epds->events 2238 epds->events |= EPOLLERR | EPOLLHUP; 2385 error = ep_mo 2239 error = ep_modify(ep, epi, epds); 2386 } 2240 } 2387 } else 2241 } else 2388 error = -ENOENT; 2242 error = -ENOENT; 2389 break; 2243 break; 2390 } 2244 } 2391 mutex_unlock(&ep->mtx); 2245 mutex_unlock(&ep->mtx); 2392 2246 2393 error_tgt_fput: 2247 error_tgt_fput: 2394 if (full_check) { 2248 if (full_check) { 2395 clear_tfile_check_list(); 2249 clear_tfile_check_list(); 2396 loop_check_gen++; 2250 loop_check_gen++; 2397 mutex_unlock(&epnested_mutex) 2251 mutex_unlock(&epnested_mutex); 2398 } 2252 } 2399 2253 2400 fdput(tf); 2254 fdput(tf); 2401 error_fput: 2255 error_fput: 2402 fdput(f); 2256 fdput(f); 2403 error_return: 2257 error_return: 2404 2258 2405 return error; 2259 return error; 2406 } 2260 } 2407 2261 2408 /* 2262 /* 2409 * The following function implements the cont 2263 * The following function implements the controller interface for 2410 * the eventpoll file that enables the insert 2264 * the eventpoll file that enables the insertion/removal/change of 2411 * file descriptors inside the interest set. 2265 * file descriptors inside the interest set. 2412 */ 2266 */ 2413 SYSCALL_DEFINE4(epoll_ctl, int, epfd, int, op 2267 SYSCALL_DEFINE4(epoll_ctl, int, epfd, int, op, int, fd, 2414 struct epoll_event __user *, 2268 struct epoll_event __user *, event) 2415 { 2269 { 2416 struct epoll_event epds; 2270 struct epoll_event epds; 2417 2271 2418 if (ep_op_has_event(op) && 2272 if (ep_op_has_event(op) && 2419 copy_from_user(&epds, event, size 2273 copy_from_user(&epds, event, sizeof(struct epoll_event))) 2420 return -EFAULT; 2274 return -EFAULT; 2421 2275 2422 return do_epoll_ctl(epfd, op, fd, &ep 2276 return do_epoll_ctl(epfd, op, fd, &epds, false); 2423 } 2277 } 2424 2278 2425 /* 2279 /* 2426 * Implement the event wait interface for the 2280 * Implement the event wait interface for the eventpoll file. It is the kernel 2427 * part of the user space epoll_wait(2). 2281 * part of the user space epoll_wait(2). 2428 */ 2282 */ 2429 static int do_epoll_wait(int epfd, struct epo 2283 static int do_epoll_wait(int epfd, struct epoll_event __user *events, 2430 int maxevents, struc 2284 int maxevents, struct timespec64 *to) 2431 { 2285 { 2432 int error; 2286 int error; 2433 struct fd f; 2287 struct fd f; 2434 struct eventpoll *ep; 2288 struct eventpoll *ep; 2435 2289 2436 /* The maximum number of event must b 2290 /* The maximum number of event must be greater than zero */ 2437 if (maxevents <= 0 || maxevents > EP_ 2291 if (maxevents <= 0 || maxevents > EP_MAX_EVENTS) 2438 return -EINVAL; 2292 return -EINVAL; 2439 2293 2440 /* Verify that the area passed by the 2294 /* Verify that the area passed by the user is writeable */ 2441 if (!access_ok(events, maxevents * si 2295 if (!access_ok(events, maxevents * sizeof(struct epoll_event))) 2442 return -EFAULT; 2296 return -EFAULT; 2443 2297 2444 /* Get the "struct file *" for the ev 2298 /* Get the "struct file *" for the eventpoll file */ 2445 f = fdget(epfd); 2299 f = fdget(epfd); 2446 if (!f.file) 2300 if (!f.file) 2447 return -EBADF; 2301 return -EBADF; 2448 2302 2449 /* 2303 /* 2450 * We have to check that the file str 2304 * We have to check that the file structure underneath the fd 2451 * the user passed to us _is_ an even 2305 * the user passed to us _is_ an eventpoll file. 2452 */ 2306 */ 2453 error = -EINVAL; 2307 error = -EINVAL; 2454 if (!is_file_epoll(f.file)) 2308 if (!is_file_epoll(f.file)) 2455 goto error_fput; 2309 goto error_fput; 2456 2310 2457 /* 2311 /* 2458 * At this point it is safe to assume 2312 * At this point it is safe to assume that the "private_data" contains 2459 * our own data structure. 2313 * our own data structure. 2460 */ 2314 */ 2461 ep = f.file->private_data; 2315 ep = f.file->private_data; 2462 2316 2463 /* Time to fish for events ... */ 2317 /* Time to fish for events ... */ 2464 error = ep_poll(ep, events, maxevents 2318 error = ep_poll(ep, events, maxevents, to); 2465 2319 2466 error_fput: 2320 error_fput: 2467 fdput(f); 2321 fdput(f); 2468 return error; 2322 return error; 2469 } 2323 } 2470 2324 2471 SYSCALL_DEFINE4(epoll_wait, int, epfd, struct 2325 SYSCALL_DEFINE4(epoll_wait, int, epfd, struct epoll_event __user *, events, 2472 int, maxevents, int, timeout) 2326 int, maxevents, int, timeout) 2473 { 2327 { 2474 struct timespec64 to; 2328 struct timespec64 to; 2475 2329 2476 return do_epoll_wait(epfd, events, ma 2330 return do_epoll_wait(epfd, events, maxevents, 2477 ep_timeout_to_ti 2331 ep_timeout_to_timespec(&to, timeout)); 2478 } 2332 } 2479 2333 2480 /* 2334 /* 2481 * Implement the event wait interface for the 2335 * Implement the event wait interface for the eventpoll file. It is the kernel 2482 * part of the user space epoll_pwait(2). 2336 * part of the user space epoll_pwait(2). 2483 */ 2337 */ 2484 static int do_epoll_pwait(int epfd, struct ep 2338 static int do_epoll_pwait(int epfd, struct epoll_event __user *events, 2485 int maxevents, stru 2339 int maxevents, struct timespec64 *to, 2486 const sigset_t __us 2340 const sigset_t __user *sigmask, size_t sigsetsize) 2487 { 2341 { 2488 int error; 2342 int error; 2489 2343 2490 /* 2344 /* 2491 * If the caller wants a certain sign 2345 * If the caller wants a certain signal mask to be set during the wait, 2492 * we apply it here. 2346 * we apply it here. 2493 */ 2347 */ 2494 error = set_user_sigmask(sigmask, sig 2348 error = set_user_sigmask(sigmask, sigsetsize); 2495 if (error) 2349 if (error) 2496 return error; 2350 return error; 2497 2351 2498 error = do_epoll_wait(epfd, events, m 2352 error = do_epoll_wait(epfd, events, maxevents, to); 2499 2353 2500 restore_saved_sigmask_unless(error == 2354 restore_saved_sigmask_unless(error == -EINTR); 2501 2355 2502 return error; 2356 return error; 2503 } 2357 } 2504 2358 2505 SYSCALL_DEFINE6(epoll_pwait, int, epfd, struc 2359 SYSCALL_DEFINE6(epoll_pwait, int, epfd, struct epoll_event __user *, events, 2506 int, maxevents, int, timeout, 2360 int, maxevents, int, timeout, const sigset_t __user *, sigmask, 2507 size_t, sigsetsize) 2361 size_t, sigsetsize) 2508 { 2362 { 2509 struct timespec64 to; 2363 struct timespec64 to; 2510 2364 2511 return do_epoll_pwait(epfd, events, m 2365 return do_epoll_pwait(epfd, events, maxevents, 2512 ep_timeout_to_t 2366 ep_timeout_to_timespec(&to, timeout), 2513 sigmask, sigset 2367 sigmask, sigsetsize); 2514 } 2368 } 2515 2369 2516 SYSCALL_DEFINE6(epoll_pwait2, int, epfd, stru 2370 SYSCALL_DEFINE6(epoll_pwait2, int, epfd, struct epoll_event __user *, events, 2517 int, maxevents, const struct 2371 int, maxevents, const struct __kernel_timespec __user *, timeout, 2518 const sigset_t __user *, sigm 2372 const sigset_t __user *, sigmask, size_t, sigsetsize) 2519 { 2373 { 2520 struct timespec64 ts, *to = NULL; 2374 struct timespec64 ts, *to = NULL; 2521 2375 2522 if (timeout) { 2376 if (timeout) { 2523 if (get_timespec64(&ts, timeo 2377 if (get_timespec64(&ts, timeout)) 2524 return -EFAULT; 2378 return -EFAULT; 2525 to = &ts; 2379 to = &ts; 2526 if (poll_select_set_timeout(t 2380 if (poll_select_set_timeout(to, ts.tv_sec, ts.tv_nsec)) 2527 return -EINVAL; 2381 return -EINVAL; 2528 } 2382 } 2529 2383 2530 return do_epoll_pwait(epfd, events, m 2384 return do_epoll_pwait(epfd, events, maxevents, to, 2531 sigmask, sigset 2385 sigmask, sigsetsize); 2532 } 2386 } 2533 2387 2534 #ifdef CONFIG_COMPAT 2388 #ifdef CONFIG_COMPAT 2535 static int do_compat_epoll_pwait(int epfd, st 2389 static int do_compat_epoll_pwait(int epfd, struct epoll_event __user *events, 2536 int maxevent 2390 int maxevents, struct timespec64 *timeout, 2537 const compat 2391 const compat_sigset_t __user *sigmask, 2538 compat_size_ 2392 compat_size_t sigsetsize) 2539 { 2393 { 2540 long err; 2394 long err; 2541 2395 2542 /* 2396 /* 2543 * If the caller wants a certain sign 2397 * If the caller wants a certain signal mask to be set during the wait, 2544 * we apply it here. 2398 * we apply it here. 2545 */ 2399 */ 2546 err = set_compat_user_sigmask(sigmask 2400 err = set_compat_user_sigmask(sigmask, sigsetsize); 2547 if (err) 2401 if (err) 2548 return err; 2402 return err; 2549 2403 2550 err = do_epoll_wait(epfd, events, max 2404 err = do_epoll_wait(epfd, events, maxevents, timeout); 2551 2405 2552 restore_saved_sigmask_unless(err == - 2406 restore_saved_sigmask_unless(err == -EINTR); 2553 2407 2554 return err; 2408 return err; 2555 } 2409 } 2556 2410 2557 COMPAT_SYSCALL_DEFINE6(epoll_pwait, int, epfd 2411 COMPAT_SYSCALL_DEFINE6(epoll_pwait, int, epfd, 2558 struct epoll_event __u 2412 struct epoll_event __user *, events, 2559 int, maxevents, int, t 2413 int, maxevents, int, timeout, 2560 const compat_sigset_t 2414 const compat_sigset_t __user *, sigmask, 2561 compat_size_t, sigsets 2415 compat_size_t, sigsetsize) 2562 { 2416 { 2563 struct timespec64 to; 2417 struct timespec64 to; 2564 2418 2565 return do_compat_epoll_pwait(epfd, ev 2419 return do_compat_epoll_pwait(epfd, events, maxevents, 2566 ep_timeo 2420 ep_timeout_to_timespec(&to, timeout), 2567 sigmask, 2421 sigmask, sigsetsize); 2568 } 2422 } 2569 2423 2570 COMPAT_SYSCALL_DEFINE6(epoll_pwait2, int, epf 2424 COMPAT_SYSCALL_DEFINE6(epoll_pwait2, int, epfd, 2571 struct epoll_event __u 2425 struct epoll_event __user *, events, 2572 int, maxevents, 2426 int, maxevents, 2573 const struct __kernel_ 2427 const struct __kernel_timespec __user *, timeout, 2574 const compat_sigset_t 2428 const compat_sigset_t __user *, sigmask, 2575 compat_size_t, sigsets 2429 compat_size_t, sigsetsize) 2576 { 2430 { 2577 struct timespec64 ts, *to = NULL; 2431 struct timespec64 ts, *to = NULL; 2578 2432 2579 if (timeout) { 2433 if (timeout) { 2580 if (get_timespec64(&ts, timeo 2434 if (get_timespec64(&ts, timeout)) 2581 return -EFAULT; 2435 return -EFAULT; 2582 to = &ts; 2436 to = &ts; 2583 if (poll_select_set_timeout(t 2437 if (poll_select_set_timeout(to, ts.tv_sec, ts.tv_nsec)) 2584 return -EINVAL; 2438 return -EINVAL; 2585 } 2439 } 2586 2440 2587 return do_compat_epoll_pwait(epfd, ev 2441 return do_compat_epoll_pwait(epfd, events, maxevents, to, 2588 sigmask, 2442 sigmask, sigsetsize); 2589 } 2443 } 2590 2444 2591 #endif 2445 #endif 2592 2446 2593 static int __init eventpoll_init(void) 2447 static int __init eventpoll_init(void) 2594 { 2448 { 2595 struct sysinfo si; 2449 struct sysinfo si; 2596 2450 2597 si_meminfo(&si); 2451 si_meminfo(&si); 2598 /* 2452 /* 2599 * Allows top 4% of lomem to be alloc 2453 * Allows top 4% of lomem to be allocated for epoll watches (per user). 2600 */ 2454 */ 2601 max_user_watches = (((si.totalram - s 2455 max_user_watches = (((si.totalram - si.totalhigh) / 25) << PAGE_SHIFT) / 2602 EP_ITEM_COST; 2456 EP_ITEM_COST; 2603 BUG_ON(max_user_watches < 0); 2457 BUG_ON(max_user_watches < 0); 2604 2458 2605 /* 2459 /* 2606 * We can have many thousands of epit 2460 * We can have many thousands of epitems, so prevent this from 2607 * using an extra cache line on 64-bi 2461 * using an extra cache line on 64-bit (and smaller) CPUs 2608 */ 2462 */ 2609 BUILD_BUG_ON(sizeof(void *) <= 8 && s 2463 BUILD_BUG_ON(sizeof(void *) <= 8 && sizeof(struct epitem) > 128); 2610 2464 2611 /* Allocates slab cache used to alloc 2465 /* Allocates slab cache used to allocate "struct epitem" items */ 2612 epi_cache = kmem_cache_create("eventp 2466 epi_cache = kmem_cache_create("eventpoll_epi", sizeof(struct epitem), 2613 0, SLAB_HWCACHE_ALIGN 2467 0, SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, NULL); 2614 2468 2615 /* Allocates slab cache used to alloc 2469 /* Allocates slab cache used to allocate "struct eppoll_entry" */ 2616 pwq_cache = kmem_cache_create("eventp 2470 pwq_cache = kmem_cache_create("eventpoll_pwq", 2617 sizeof(struct eppoll_entry), 2471 sizeof(struct eppoll_entry), 0, SLAB_PANIC|SLAB_ACCOUNT, NULL); 2618 epoll_sysctls_init(); 2472 epoll_sysctls_init(); 2619 2473 2620 ephead_cache = kmem_cache_create("ep_ 2474 ephead_cache = kmem_cache_create("ep_head", 2621 sizeof(struct epitems_head), 2475 sizeof(struct epitems_head), 0, SLAB_PANIC|SLAB_ACCOUNT, NULL); 2622 2476 2623 return 0; 2477 return 0; 2624 } 2478 } 2625 fs_initcall(eventpoll_init); 2479 fs_initcall(eventpoll_init); 2626 2480
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.