1 // SPDX-License-Identifier: GPL-2.0-only 1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 2 /* 3 * linux/fs/exec.c 3 * linux/fs/exec.c 4 * 4 * 5 * Copyright (C) 1991, 1992 Linus Torvalds 5 * Copyright (C) 1991, 1992 Linus Torvalds 6 */ 6 */ 7 7 8 /* 8 /* 9 * #!-checking implemented by tytso. 9 * #!-checking implemented by tytso. 10 */ 10 */ 11 /* 11 /* 12 * Demand-loading implemented 01.12.91 - no ne 12 * Demand-loading implemented 01.12.91 - no need to read anything but 13 * the header into memory. The inode of the ex 13 * the header into memory. The inode of the executable is put into 14 * "current->executable", and page faults do t 14 * "current->executable", and page faults do the actual loading. Clean. 15 * 15 * 16 * Once more I can proudly say that linux stoo 16 * Once more I can proudly say that linux stood up to being changed: it 17 * was less than 2 hours work to get demand-lo 17 * was less than 2 hours work to get demand-loading completely implemented. 18 * 18 * 19 * Demand loading changed July 1993 by Eric Yo 19 * Demand loading changed July 1993 by Eric Youngdale. Use mmap instead, 20 * current->executable is only used by the pro 20 * current->executable is only used by the procfs. This allows a dispatch 21 * table to check for several different types 21 * table to check for several different types of binary formats. We keep 22 * trying until we recognize the file or we ru 22 * trying until we recognize the file or we run out of supported binary 23 * formats. 23 * formats. 24 */ 24 */ 25 25 26 #include <linux/kernel_read_file.h> 26 #include <linux/kernel_read_file.h> 27 #include <linux/slab.h> 27 #include <linux/slab.h> 28 #include <linux/file.h> 28 #include <linux/file.h> 29 #include <linux/fdtable.h> 29 #include <linux/fdtable.h> 30 #include <linux/mm.h> 30 #include <linux/mm.h> >> 31 #include <linux/vmacache.h> 31 #include <linux/stat.h> 32 #include <linux/stat.h> 32 #include <linux/fcntl.h> 33 #include <linux/fcntl.h> 33 #include <linux/swap.h> 34 #include <linux/swap.h> 34 #include <linux/string.h> 35 #include <linux/string.h> 35 #include <linux/init.h> 36 #include <linux/init.h> 36 #include <linux/sched/mm.h> 37 #include <linux/sched/mm.h> 37 #include <linux/sched/coredump.h> 38 #include <linux/sched/coredump.h> 38 #include <linux/sched/signal.h> 39 #include <linux/sched/signal.h> 39 #include <linux/sched/numa_balancing.h> 40 #include <linux/sched/numa_balancing.h> 40 #include <linux/sched/task.h> 41 #include <linux/sched/task.h> 41 #include <linux/pagemap.h> 42 #include <linux/pagemap.h> 42 #include <linux/perf_event.h> 43 #include <linux/perf_event.h> 43 #include <linux/highmem.h> 44 #include <linux/highmem.h> 44 #include <linux/spinlock.h> 45 #include <linux/spinlock.h> 45 #include <linux/key.h> 46 #include <linux/key.h> 46 #include <linux/personality.h> 47 #include <linux/personality.h> 47 #include <linux/binfmts.h> 48 #include <linux/binfmts.h> 48 #include <linux/utsname.h> 49 #include <linux/utsname.h> 49 #include <linux/pid_namespace.h> 50 #include <linux/pid_namespace.h> 50 #include <linux/module.h> 51 #include <linux/module.h> 51 #include <linux/namei.h> 52 #include <linux/namei.h> 52 #include <linux/mount.h> 53 #include <linux/mount.h> 53 #include <linux/security.h> 54 #include <linux/security.h> 54 #include <linux/syscalls.h> 55 #include <linux/syscalls.h> 55 #include <linux/tsacct_kern.h> 56 #include <linux/tsacct_kern.h> 56 #include <linux/cn_proc.h> 57 #include <linux/cn_proc.h> 57 #include <linux/audit.h> 58 #include <linux/audit.h> >> 59 #include <linux/tracehook.h> 58 #include <linux/kmod.h> 60 #include <linux/kmod.h> 59 #include <linux/fsnotify.h> 61 #include <linux/fsnotify.h> 60 #include <linux/fs_struct.h> 62 #include <linux/fs_struct.h> 61 #include <linux/oom.h> 63 #include <linux/oom.h> 62 #include <linux/compat.h> 64 #include <linux/compat.h> 63 #include <linux/vmalloc.h> 65 #include <linux/vmalloc.h> 64 #include <linux/io_uring.h> 66 #include <linux/io_uring.h> 65 #include <linux/syscall_user_dispatch.h> 67 #include <linux/syscall_user_dispatch.h> 66 #include <linux/coredump.h> 68 #include <linux/coredump.h> 67 #include <linux/time_namespace.h> << 68 #include <linux/user_events.h> << 69 #include <linux/rseq.h> << 70 #include <linux/ksm.h> << 71 69 72 #include <linux/uaccess.h> 70 #include <linux/uaccess.h> 73 #include <asm/mmu_context.h> 71 #include <asm/mmu_context.h> 74 #include <asm/tlb.h> 72 #include <asm/tlb.h> 75 73 76 #include <trace/events/task.h> 74 #include <trace/events/task.h> 77 #include "internal.h" 75 #include "internal.h" 78 76 79 #include <trace/events/sched.h> 77 #include <trace/events/sched.h> 80 78 81 static int bprm_creds_from_file(struct linux_b 79 static int bprm_creds_from_file(struct linux_binprm *bprm); 82 80 83 int suid_dumpable = 0; 81 int suid_dumpable = 0; 84 82 85 static LIST_HEAD(formats); 83 static LIST_HEAD(formats); 86 static DEFINE_RWLOCK(binfmt_lock); 84 static DEFINE_RWLOCK(binfmt_lock); 87 85 88 void __register_binfmt(struct linux_binfmt * f 86 void __register_binfmt(struct linux_binfmt * fmt, int insert) 89 { 87 { 90 write_lock(&binfmt_lock); 88 write_lock(&binfmt_lock); 91 insert ? list_add(&fmt->lh, &formats) 89 insert ? list_add(&fmt->lh, &formats) : 92 list_add_tail(&fmt->lh, &form 90 list_add_tail(&fmt->lh, &formats); 93 write_unlock(&binfmt_lock); 91 write_unlock(&binfmt_lock); 94 } 92 } 95 93 96 EXPORT_SYMBOL(__register_binfmt); 94 EXPORT_SYMBOL(__register_binfmt); 97 95 98 void unregister_binfmt(struct linux_binfmt * f 96 void unregister_binfmt(struct linux_binfmt * fmt) 99 { 97 { 100 write_lock(&binfmt_lock); 98 write_lock(&binfmt_lock); 101 list_del(&fmt->lh); 99 list_del(&fmt->lh); 102 write_unlock(&binfmt_lock); 100 write_unlock(&binfmt_lock); 103 } 101 } 104 102 105 EXPORT_SYMBOL(unregister_binfmt); 103 EXPORT_SYMBOL(unregister_binfmt); 106 104 107 static inline void put_binfmt(struct linux_bin 105 static inline void put_binfmt(struct linux_binfmt * fmt) 108 { 106 { 109 module_put(fmt->module); 107 module_put(fmt->module); 110 } 108 } 111 109 112 bool path_noexec(const struct path *path) 110 bool path_noexec(const struct path *path) 113 { 111 { 114 return (path->mnt->mnt_flags & MNT_NOE 112 return (path->mnt->mnt_flags & MNT_NOEXEC) || 115 (path->mnt->mnt_sb->s_iflags & 113 (path->mnt->mnt_sb->s_iflags & SB_I_NOEXEC); 116 } 114 } 117 115 118 #ifdef CONFIG_USELIB 116 #ifdef CONFIG_USELIB 119 /* 117 /* 120 * Note that a shared library must be both rea 118 * Note that a shared library must be both readable and executable due to 121 * security reasons. 119 * security reasons. 122 * 120 * 123 * Also note that we take the address to load !! 121 * Also note that we take the address to load from from the file itself. 124 */ 122 */ 125 SYSCALL_DEFINE1(uselib, const char __user *, l 123 SYSCALL_DEFINE1(uselib, const char __user *, library) 126 { 124 { 127 struct linux_binfmt *fmt; 125 struct linux_binfmt *fmt; 128 struct file *file; 126 struct file *file; 129 struct filename *tmp = getname(library 127 struct filename *tmp = getname(library); 130 int error = PTR_ERR(tmp); 128 int error = PTR_ERR(tmp); 131 static const struct open_flags uselib_ 129 static const struct open_flags uselib_flags = { 132 .open_flag = O_LARGEFILE | O_R !! 130 .open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC, 133 .acc_mode = MAY_READ | MAY_EXE 131 .acc_mode = MAY_READ | MAY_EXEC, 134 .intent = LOOKUP_OPEN, 132 .intent = LOOKUP_OPEN, 135 .lookup_flags = LOOKUP_FOLLOW, 133 .lookup_flags = LOOKUP_FOLLOW, 136 }; 134 }; 137 135 138 if (IS_ERR(tmp)) 136 if (IS_ERR(tmp)) 139 goto out; 137 goto out; 140 138 141 file = do_filp_open(AT_FDCWD, tmp, &us 139 file = do_filp_open(AT_FDCWD, tmp, &uselib_flags); 142 putname(tmp); 140 putname(tmp); 143 error = PTR_ERR(file); 141 error = PTR_ERR(file); 144 if (IS_ERR(file)) 142 if (IS_ERR(file)) 145 goto out; 143 goto out; 146 144 147 /* 145 /* 148 * Check do_open_execat() for an expla !! 146 * may_open() has already checked for this, so it should be >> 147 * impossible to trip now. But we need to be extra cautious >> 148 * and check again at the very end too. 149 */ 149 */ 150 error = -EACCES; 150 error = -EACCES; 151 if (WARN_ON_ONCE(!S_ISREG(file_inode(f !! 151 if (WARN_ON_ONCE(!S_ISREG(file_inode(file)->i_mode) || 152 path_noexec(&file->f_path)) !! 152 path_noexec(&file->f_path))) 153 goto exit; 153 goto exit; 154 154 >> 155 fsnotify_open(file); >> 156 155 error = -ENOEXEC; 157 error = -ENOEXEC; 156 158 157 read_lock(&binfmt_lock); 159 read_lock(&binfmt_lock); 158 list_for_each_entry(fmt, &formats, lh) 160 list_for_each_entry(fmt, &formats, lh) { 159 if (!fmt->load_shlib) 161 if (!fmt->load_shlib) 160 continue; 162 continue; 161 if (!try_module_get(fmt->modul 163 if (!try_module_get(fmt->module)) 162 continue; 164 continue; 163 read_unlock(&binfmt_lock); 165 read_unlock(&binfmt_lock); 164 error = fmt->load_shlib(file); 166 error = fmt->load_shlib(file); 165 read_lock(&binfmt_lock); 167 read_lock(&binfmt_lock); 166 put_binfmt(fmt); 168 put_binfmt(fmt); 167 if (error != -ENOEXEC) 169 if (error != -ENOEXEC) 168 break; 170 break; 169 } 171 } 170 read_unlock(&binfmt_lock); 172 read_unlock(&binfmt_lock); 171 exit: 173 exit: 172 fput(file); 174 fput(file); 173 out: 175 out: 174 return error; !! 176 return error; 175 } 177 } 176 #endif /* #ifdef CONFIG_USELIB */ 178 #endif /* #ifdef CONFIG_USELIB */ 177 179 178 #ifdef CONFIG_MMU 180 #ifdef CONFIG_MMU 179 /* 181 /* 180 * The nascent bprm->mm is not visible until e 182 * The nascent bprm->mm is not visible until exec_mmap() but it can 181 * use a lot of memory, account these pages in 183 * use a lot of memory, account these pages in current->mm temporary 182 * for oom_badness()->get_mm_rss(). Once exec 184 * for oom_badness()->get_mm_rss(). Once exec succeeds or fails, we 183 * change the counter back via acct_arg_size(0 185 * change the counter back via acct_arg_size(0). 184 */ 186 */ 185 static void acct_arg_size(struct linux_binprm 187 static void acct_arg_size(struct linux_binprm *bprm, unsigned long pages) 186 { 188 { 187 struct mm_struct *mm = current->mm; 189 struct mm_struct *mm = current->mm; 188 long diff = (long)(pages - bprm->vma_p 190 long diff = (long)(pages - bprm->vma_pages); 189 191 190 if (!mm || !diff) 192 if (!mm || !diff) 191 return; 193 return; 192 194 193 bprm->vma_pages = pages; 195 bprm->vma_pages = pages; 194 add_mm_counter(mm, MM_ANONPAGES, diff) 196 add_mm_counter(mm, MM_ANONPAGES, diff); 195 } 197 } 196 198 197 static struct page *get_arg_page(struct linux_ 199 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos, 198 int write) 200 int write) 199 { 201 { 200 struct page *page; 202 struct page *page; 201 struct vm_area_struct *vma = bprm->vma << 202 struct mm_struct *mm = bprm->mm; << 203 int ret; 203 int ret; >> 204 unsigned int gup_flags = FOLL_FORCE; 204 205 205 /* !! 206 #ifdef CONFIG_STACK_GROWSUP 206 * Avoid relying on expanding the stac !! 207 if (write) { 207 * does not work for STACK_GROWSUP any !! 208 ret = expand_downwards(bprm->vma, pos); 208 * by hand ahead of time. !! 209 if (ret < 0) 209 */ << 210 if (write && pos < vma->vm_start) { << 211 mmap_write_lock(mm); << 212 ret = expand_downwards(vma, po << 213 if (unlikely(ret < 0)) { << 214 mmap_write_unlock(mm); << 215 return NULL; 210 return NULL; 216 } !! 211 } 217 mmap_write_downgrade(mm); !! 212 #endif 218 } else !! 213 219 mmap_read_lock(mm); !! 214 if (write) >> 215 gup_flags |= FOLL_WRITE; 220 216 221 /* 217 /* 222 * We are doing an exec(). 'current' 218 * We are doing an exec(). 'current' is the process 223 * doing the exec and 'mm' is the new !! 219 * doing the exec and bprm->mm is the new process's mm. 224 */ 220 */ 225 ret = get_user_pages_remote(mm, pos, 1 !! 221 mmap_read_lock(bprm->mm); 226 write ? FOLL_WRITE : 0 !! 222 ret = get_user_pages_remote(bprm->mm, pos, 1, gup_flags, 227 &page, NULL); !! 223 &page, NULL, NULL); 228 mmap_read_unlock(mm); !! 224 mmap_read_unlock(bprm->mm); 229 if (ret <= 0) 225 if (ret <= 0) 230 return NULL; 226 return NULL; 231 227 232 if (write) 228 if (write) 233 acct_arg_size(bprm, vma_pages( !! 229 acct_arg_size(bprm, vma_pages(bprm->vma)); 234 230 235 return page; 231 return page; 236 } 232 } 237 233 238 static void put_arg_page(struct page *page) 234 static void put_arg_page(struct page *page) 239 { 235 { 240 put_page(page); 236 put_page(page); 241 } 237 } 242 238 243 static void free_arg_pages(struct linux_binprm 239 static void free_arg_pages(struct linux_binprm *bprm) 244 { 240 { 245 } 241 } 246 242 247 static void flush_arg_page(struct linux_binprm 243 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos, 248 struct page *page) 244 struct page *page) 249 { 245 { 250 flush_cache_page(bprm->vma, pos, page_ 246 flush_cache_page(bprm->vma, pos, page_to_pfn(page)); 251 } 247 } 252 248 253 static int __bprm_mm_init(struct linux_binprm 249 static int __bprm_mm_init(struct linux_binprm *bprm) 254 { 250 { 255 int err; 251 int err; 256 struct vm_area_struct *vma = NULL; 252 struct vm_area_struct *vma = NULL; 257 struct mm_struct *mm = bprm->mm; 253 struct mm_struct *mm = bprm->mm; 258 254 259 bprm->vma = vma = vm_area_alloc(mm); 255 bprm->vma = vma = vm_area_alloc(mm); 260 if (!vma) 256 if (!vma) 261 return -ENOMEM; 257 return -ENOMEM; 262 vma_set_anonymous(vma); 258 vma_set_anonymous(vma); 263 259 264 if (mmap_write_lock_killable(mm)) { 260 if (mmap_write_lock_killable(mm)) { 265 err = -EINTR; 261 err = -EINTR; 266 goto err_free; 262 goto err_free; 267 } 263 } 268 264 269 /* 265 /* 270 * Need to be called with mmap write l << 271 * held, to avoid race with ksmd. << 272 */ << 273 err = ksm_execve(mm); << 274 if (err) << 275 goto err_ksm; << 276 << 277 /* << 278 * Place the stack at the largest stac 266 * Place the stack at the largest stack address the architecture 279 * supports. Later, we'll move this to 267 * supports. Later, we'll move this to an appropriate place. We don't 280 * use STACK_TOP because that can depe 268 * use STACK_TOP because that can depend on attributes which aren't 281 * configured yet. 269 * configured yet. 282 */ 270 */ 283 BUILD_BUG_ON(VM_STACK_FLAGS & VM_STACK 271 BUILD_BUG_ON(VM_STACK_FLAGS & VM_STACK_INCOMPLETE_SETUP); 284 vma->vm_end = STACK_TOP_MAX; 272 vma->vm_end = STACK_TOP_MAX; 285 vma->vm_start = vma->vm_end - PAGE_SIZ 273 vma->vm_start = vma->vm_end - PAGE_SIZE; 286 vm_flags_init(vma, VM_SOFTDIRTY | VM_S !! 274 vma->vm_flags = VM_SOFTDIRTY | VM_STACK_FLAGS | VM_STACK_INCOMPLETE_SETUP; 287 vma->vm_page_prot = vm_get_page_prot(v 275 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags); 288 276 289 err = insert_vm_struct(mm, vma); 277 err = insert_vm_struct(mm, vma); 290 if (err) 278 if (err) 291 goto err; 279 goto err; 292 280 293 mm->stack_vm = mm->total_vm = 1; 281 mm->stack_vm = mm->total_vm = 1; 294 mmap_write_unlock(mm); 282 mmap_write_unlock(mm); 295 bprm->p = vma->vm_end - sizeof(void *) 283 bprm->p = vma->vm_end - sizeof(void *); 296 return 0; 284 return 0; 297 err: 285 err: 298 ksm_exit(mm); << 299 err_ksm: << 300 mmap_write_unlock(mm); 286 mmap_write_unlock(mm); 301 err_free: 287 err_free: 302 bprm->vma = NULL; 288 bprm->vma = NULL; 303 vm_area_free(vma); 289 vm_area_free(vma); 304 return err; 290 return err; 305 } 291 } 306 292 307 static bool valid_arg_len(struct linux_binprm 293 static bool valid_arg_len(struct linux_binprm *bprm, long len) 308 { 294 { 309 return len <= MAX_ARG_STRLEN; 295 return len <= MAX_ARG_STRLEN; 310 } 296 } 311 297 312 #else 298 #else 313 299 314 static inline void acct_arg_size(struct linux_ 300 static inline void acct_arg_size(struct linux_binprm *bprm, unsigned long pages) 315 { 301 { 316 } 302 } 317 303 318 static struct page *get_arg_page(struct linux_ 304 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos, 319 int write) 305 int write) 320 { 306 { 321 struct page *page; 307 struct page *page; 322 308 323 page = bprm->page[pos / PAGE_SIZE]; 309 page = bprm->page[pos / PAGE_SIZE]; 324 if (!page && write) { 310 if (!page && write) { 325 page = alloc_page(GFP_HIGHUSER 311 page = alloc_page(GFP_HIGHUSER|__GFP_ZERO); 326 if (!page) 312 if (!page) 327 return NULL; 313 return NULL; 328 bprm->page[pos / PAGE_SIZE] = 314 bprm->page[pos / PAGE_SIZE] = page; 329 } 315 } 330 316 331 return page; 317 return page; 332 } 318 } 333 319 334 static void put_arg_page(struct page *page) 320 static void put_arg_page(struct page *page) 335 { 321 { 336 } 322 } 337 323 338 static void free_arg_page(struct linux_binprm 324 static void free_arg_page(struct linux_binprm *bprm, int i) 339 { 325 { 340 if (bprm->page[i]) { 326 if (bprm->page[i]) { 341 __free_page(bprm->page[i]); 327 __free_page(bprm->page[i]); 342 bprm->page[i] = NULL; 328 bprm->page[i] = NULL; 343 } 329 } 344 } 330 } 345 331 346 static void free_arg_pages(struct linux_binprm 332 static void free_arg_pages(struct linux_binprm *bprm) 347 { 333 { 348 int i; 334 int i; 349 335 350 for (i = 0; i < MAX_ARG_PAGES; i++) 336 for (i = 0; i < MAX_ARG_PAGES; i++) 351 free_arg_page(bprm, i); 337 free_arg_page(bprm, i); 352 } 338 } 353 339 354 static void flush_arg_page(struct linux_binprm 340 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos, 355 struct page *page) 341 struct page *page) 356 { 342 { 357 } 343 } 358 344 359 static int __bprm_mm_init(struct linux_binprm 345 static int __bprm_mm_init(struct linux_binprm *bprm) 360 { 346 { 361 bprm->p = PAGE_SIZE * MAX_ARG_PAGES - 347 bprm->p = PAGE_SIZE * MAX_ARG_PAGES - sizeof(void *); 362 return 0; 348 return 0; 363 } 349 } 364 350 365 static bool valid_arg_len(struct linux_binprm 351 static bool valid_arg_len(struct linux_binprm *bprm, long len) 366 { 352 { 367 return len <= bprm->p; 353 return len <= bprm->p; 368 } 354 } 369 355 370 #endif /* CONFIG_MMU */ 356 #endif /* CONFIG_MMU */ 371 357 372 /* 358 /* 373 * Create a new mm_struct and populate it with 359 * Create a new mm_struct and populate it with a temporary stack 374 * vm_area_struct. We don't have enough conte 360 * vm_area_struct. We don't have enough context at this point to set the stack 375 * flags, permissions, and offset, so we use t 361 * flags, permissions, and offset, so we use temporary values. We'll update 376 * them later in setup_arg_pages(). 362 * them later in setup_arg_pages(). 377 */ 363 */ 378 static int bprm_mm_init(struct linux_binprm *b 364 static int bprm_mm_init(struct linux_binprm *bprm) 379 { 365 { 380 int err; 366 int err; 381 struct mm_struct *mm = NULL; 367 struct mm_struct *mm = NULL; 382 368 383 bprm->mm = mm = mm_alloc(); 369 bprm->mm = mm = mm_alloc(); 384 err = -ENOMEM; 370 err = -ENOMEM; 385 if (!mm) 371 if (!mm) 386 goto err; 372 goto err; 387 373 388 /* Save current stack limit for all ca 374 /* Save current stack limit for all calculations made during exec. */ 389 task_lock(current->group_leader); 375 task_lock(current->group_leader); 390 bprm->rlim_stack = current->signal->rl 376 bprm->rlim_stack = current->signal->rlim[RLIMIT_STACK]; 391 task_unlock(current->group_leader); 377 task_unlock(current->group_leader); 392 378 393 err = __bprm_mm_init(bprm); 379 err = __bprm_mm_init(bprm); 394 if (err) 380 if (err) 395 goto err; 381 goto err; 396 382 397 return 0; 383 return 0; 398 384 399 err: 385 err: 400 if (mm) { 386 if (mm) { 401 bprm->mm = NULL; 387 bprm->mm = NULL; 402 mmdrop(mm); 388 mmdrop(mm); 403 } 389 } 404 390 405 return err; 391 return err; 406 } 392 } 407 393 408 struct user_arg_ptr { 394 struct user_arg_ptr { 409 #ifdef CONFIG_COMPAT 395 #ifdef CONFIG_COMPAT 410 bool is_compat; 396 bool is_compat; 411 #endif 397 #endif 412 union { 398 union { 413 const char __user *const __use 399 const char __user *const __user *native; 414 #ifdef CONFIG_COMPAT 400 #ifdef CONFIG_COMPAT 415 const compat_uptr_t __user *co 401 const compat_uptr_t __user *compat; 416 #endif 402 #endif 417 } ptr; 403 } ptr; 418 }; 404 }; 419 405 420 static const char __user *get_user_arg_ptr(str 406 static const char __user *get_user_arg_ptr(struct user_arg_ptr argv, int nr) 421 { 407 { 422 const char __user *native; 408 const char __user *native; 423 409 424 #ifdef CONFIG_COMPAT 410 #ifdef CONFIG_COMPAT 425 if (unlikely(argv.is_compat)) { 411 if (unlikely(argv.is_compat)) { 426 compat_uptr_t compat; 412 compat_uptr_t compat; 427 413 428 if (get_user(compat, argv.ptr. 414 if (get_user(compat, argv.ptr.compat + nr)) 429 return ERR_PTR(-EFAULT 415 return ERR_PTR(-EFAULT); 430 416 431 return compat_ptr(compat); 417 return compat_ptr(compat); 432 } 418 } 433 #endif 419 #endif 434 420 435 if (get_user(native, argv.ptr.native + 421 if (get_user(native, argv.ptr.native + nr)) 436 return ERR_PTR(-EFAULT); 422 return ERR_PTR(-EFAULT); 437 423 438 return native; 424 return native; 439 } 425 } 440 426 441 /* 427 /* 442 * count() counts the number of strings in arr 428 * count() counts the number of strings in array ARGV. 443 */ 429 */ 444 static int count(struct user_arg_ptr argv, int 430 static int count(struct user_arg_ptr argv, int max) 445 { 431 { 446 int i = 0; 432 int i = 0; 447 433 448 if (argv.ptr.native != NULL) { 434 if (argv.ptr.native != NULL) { 449 for (;;) { 435 for (;;) { 450 const char __user *p = 436 const char __user *p = get_user_arg_ptr(argv, i); 451 437 452 if (!p) 438 if (!p) 453 break; 439 break; 454 440 455 if (IS_ERR(p)) 441 if (IS_ERR(p)) 456 return -EFAULT 442 return -EFAULT; 457 443 458 if (i >= max) 444 if (i >= max) 459 return -E2BIG; 445 return -E2BIG; 460 ++i; 446 ++i; 461 447 462 if (fatal_signal_pendi 448 if (fatal_signal_pending(current)) 463 return -ERESTA 449 return -ERESTARTNOHAND; 464 cond_resched(); 450 cond_resched(); 465 } 451 } 466 } 452 } 467 return i; 453 return i; 468 } 454 } 469 455 470 static int count_strings_kernel(const char *co 456 static int count_strings_kernel(const char *const *argv) 471 { 457 { 472 int i; 458 int i; 473 459 474 if (!argv) 460 if (!argv) 475 return 0; 461 return 0; 476 462 477 for (i = 0; argv[i]; ++i) { 463 for (i = 0; argv[i]; ++i) { 478 if (i >= MAX_ARG_STRINGS) 464 if (i >= MAX_ARG_STRINGS) 479 return -E2BIG; 465 return -E2BIG; 480 if (fatal_signal_pending(curre 466 if (fatal_signal_pending(current)) 481 return -ERESTARTNOHAND 467 return -ERESTARTNOHAND; 482 cond_resched(); 468 cond_resched(); 483 } 469 } 484 return i; 470 return i; 485 } 471 } 486 472 487 static inline int bprm_set_stack_limit(struct << 488 unsigne << 489 { << 490 #ifdef CONFIG_MMU << 491 /* Avoid a pathological bprm->p. */ << 492 if (bprm->p < limit) << 493 return -E2BIG; << 494 bprm->argmin = bprm->p - limit; << 495 #endif << 496 return 0; << 497 } << 498 static inline bool bprm_hit_stack_limit(struct << 499 { << 500 #ifdef CONFIG_MMU << 501 return bprm->p < bprm->argmin; << 502 #else << 503 return false; << 504 #endif << 505 } << 506 << 507 /* << 508 * Calculate bprm->argmin from: << 509 * - _STK_LIM << 510 * - ARG_MAX << 511 * - bprm->rlim_stack.rlim_cur << 512 * - bprm->argc << 513 * - bprm->envc << 514 * - bprm->p << 515 */ << 516 static int bprm_stack_limits(struct linux_binp 473 static int bprm_stack_limits(struct linux_binprm *bprm) 517 { 474 { 518 unsigned long limit, ptr_size; 475 unsigned long limit, ptr_size; 519 476 520 /* 477 /* 521 * Limit to 1/4 of the max stack size 478 * Limit to 1/4 of the max stack size or 3/4 of _STK_LIM 522 * (whichever is smaller) for the argv 479 * (whichever is smaller) for the argv+env strings. 523 * This ensures that: 480 * This ensures that: 524 * - the remaining binfmt code will n 481 * - the remaining binfmt code will not run out of stack space, 525 * - the program will have a reasonab 482 * - the program will have a reasonable amount of stack left 526 * to work from. 483 * to work from. 527 */ 484 */ 528 limit = _STK_LIM / 4 * 3; 485 limit = _STK_LIM / 4 * 3; 529 limit = min(limit, bprm->rlim_stack.rl 486 limit = min(limit, bprm->rlim_stack.rlim_cur / 4); 530 /* 487 /* 531 * We've historically supported up to 488 * We've historically supported up to 32 pages (ARG_MAX) 532 * of argument strings even with small 489 * of argument strings even with small stacks 533 */ 490 */ 534 limit = max_t(unsigned long, limit, AR 491 limit = max_t(unsigned long, limit, ARG_MAX); 535 /* Reject totally pathological counts. << 536 if (bprm->argc < 0 || bprm->envc < 0) << 537 return -E2BIG; << 538 /* 492 /* 539 * We must account for the size of all 493 * We must account for the size of all the argv and envp pointers to 540 * the argv and envp strings, since th 494 * the argv and envp strings, since they will also take up space in 541 * the stack. They aren't stored until 495 * the stack. They aren't stored until much later when we can't 542 * signal to the parent that the child 496 * signal to the parent that the child has run out of stack space. 543 * Instead, calculate it here so it's 497 * Instead, calculate it here so it's possible to fail gracefully. 544 * 498 * 545 * In the case of argc = 0, make sure 499 * In the case of argc = 0, make sure there is space for adding a 546 * empty string (which will bump argc 500 * empty string (which will bump argc to 1), to ensure confused 547 * userspace programs don't start proc 501 * userspace programs don't start processing from argv[1], thinking 548 * argc can never be 0, to keep them f 502 * argc can never be 0, to keep them from walking envp by accident. 549 * See do_execveat_common(). 503 * See do_execveat_common(). 550 */ 504 */ 551 if (check_add_overflow(max(bprm->argc, !! 505 ptr_size = (max(bprm->argc, 1) + bprm->envc) * sizeof(void *); 552 check_mul_overflow(ptr_size, sizeo << 553 return -E2BIG; << 554 if (limit <= ptr_size) 506 if (limit <= ptr_size) 555 return -E2BIG; 507 return -E2BIG; 556 limit -= ptr_size; 508 limit -= ptr_size; 557 509 558 return bprm_set_stack_limit(bprm, limi !! 510 bprm->argmin = bprm->p - limit; >> 511 return 0; 559 } 512 } 560 513 561 /* 514 /* 562 * 'copy_strings()' copies argument/environmen 515 * 'copy_strings()' copies argument/environment strings from the old 563 * processes's memory to the new process's sta 516 * processes's memory to the new process's stack. The call to get_user_pages() 564 * ensures the destination page is created and 517 * ensures the destination page is created and not swapped out. 565 */ 518 */ 566 static int copy_strings(int argc, struct user_ 519 static int copy_strings(int argc, struct user_arg_ptr argv, 567 struct linux_binprm *b 520 struct linux_binprm *bprm) 568 { 521 { 569 struct page *kmapped_page = NULL; 522 struct page *kmapped_page = NULL; 570 char *kaddr = NULL; 523 char *kaddr = NULL; 571 unsigned long kpos = 0; 524 unsigned long kpos = 0; 572 int ret; 525 int ret; 573 526 574 while (argc-- > 0) { 527 while (argc-- > 0) { 575 const char __user *str; 528 const char __user *str; 576 int len; 529 int len; 577 unsigned long pos; 530 unsigned long pos; 578 531 579 ret = -EFAULT; 532 ret = -EFAULT; 580 str = get_user_arg_ptr(argv, a 533 str = get_user_arg_ptr(argv, argc); 581 if (IS_ERR(str)) 534 if (IS_ERR(str)) 582 goto out; 535 goto out; 583 536 584 len = strnlen_user(str, MAX_AR 537 len = strnlen_user(str, MAX_ARG_STRLEN); 585 if (!len) 538 if (!len) 586 goto out; 539 goto out; 587 540 588 ret = -E2BIG; 541 ret = -E2BIG; 589 if (!valid_arg_len(bprm, len)) 542 if (!valid_arg_len(bprm, len)) 590 goto out; 543 goto out; 591 544 592 /* We're going to work our way !! 545 /* We're going to work our way backwords. */ 593 pos = bprm->p; 546 pos = bprm->p; 594 str += len; 547 str += len; 595 bprm->p -= len; 548 bprm->p -= len; 596 if (bprm_hit_stack_limit(bprm) !! 549 #ifdef CONFIG_MMU >> 550 if (bprm->p < bprm->argmin) 597 goto out; 551 goto out; >> 552 #endif 598 553 599 while (len > 0) { 554 while (len > 0) { 600 int offset, bytes_to_c 555 int offset, bytes_to_copy; 601 556 602 if (fatal_signal_pendi 557 if (fatal_signal_pending(current)) { 603 ret = -ERESTAR 558 ret = -ERESTARTNOHAND; 604 goto out; 559 goto out; 605 } 560 } 606 cond_resched(); 561 cond_resched(); 607 562 608 offset = pos % PAGE_SI 563 offset = pos % PAGE_SIZE; 609 if (offset == 0) 564 if (offset == 0) 610 offset = PAGE_ 565 offset = PAGE_SIZE; 611 566 612 bytes_to_copy = offset 567 bytes_to_copy = offset; 613 if (bytes_to_copy > le 568 if (bytes_to_copy > len) 614 bytes_to_copy 569 bytes_to_copy = len; 615 570 616 offset -= bytes_to_cop 571 offset -= bytes_to_copy; 617 pos -= bytes_to_copy; 572 pos -= bytes_to_copy; 618 str -= bytes_to_copy; 573 str -= bytes_to_copy; 619 len -= bytes_to_copy; 574 len -= bytes_to_copy; 620 575 621 if (!kmapped_page || k 576 if (!kmapped_page || kpos != (pos & PAGE_MASK)) { 622 struct page *p 577 struct page *page; 623 578 624 page = get_arg 579 page = get_arg_page(bprm, pos, 1); 625 if (!page) { 580 if (!page) { 626 ret = 581 ret = -E2BIG; 627 goto o 582 goto out; 628 } 583 } 629 584 630 if (kmapped_pa 585 if (kmapped_page) { 631 flush_ 586 flush_dcache_page(kmapped_page); 632 kunmap !! 587 kunmap(kmapped_page); 633 put_ar 588 put_arg_page(kmapped_page); 634 } 589 } 635 kmapped_page = 590 kmapped_page = page; 636 kaddr = kmap_l !! 591 kaddr = kmap(kmapped_page); 637 kpos = pos & P 592 kpos = pos & PAGE_MASK; 638 flush_arg_page 593 flush_arg_page(bprm, kpos, kmapped_page); 639 } 594 } 640 if (copy_from_user(kad 595 if (copy_from_user(kaddr+offset, str, bytes_to_copy)) { 641 ret = -EFAULT; 596 ret = -EFAULT; 642 goto out; 597 goto out; 643 } 598 } 644 } 599 } 645 } 600 } 646 ret = 0; 601 ret = 0; 647 out: 602 out: 648 if (kmapped_page) { 603 if (kmapped_page) { 649 flush_dcache_page(kmapped_page 604 flush_dcache_page(kmapped_page); 650 kunmap_local(kaddr); !! 605 kunmap(kmapped_page); 651 put_arg_page(kmapped_page); 606 put_arg_page(kmapped_page); 652 } 607 } 653 return ret; 608 return ret; 654 } 609 } 655 610 656 /* 611 /* 657 * Copy and argument/environment string from t 612 * Copy and argument/environment string from the kernel to the processes stack. 658 */ 613 */ 659 int copy_string_kernel(const char *arg, struct 614 int copy_string_kernel(const char *arg, struct linux_binprm *bprm) 660 { 615 { 661 int len = strnlen(arg, MAX_ARG_STRLEN) 616 int len = strnlen(arg, MAX_ARG_STRLEN) + 1 /* terminating NUL */; 662 unsigned long pos = bprm->p; 617 unsigned long pos = bprm->p; 663 618 664 if (len == 0) 619 if (len == 0) 665 return -EFAULT; 620 return -EFAULT; 666 if (!valid_arg_len(bprm, len)) 621 if (!valid_arg_len(bprm, len)) 667 return -E2BIG; 622 return -E2BIG; 668 623 669 /* We're going to work our way backwar 624 /* We're going to work our way backwards. */ 670 arg += len; 625 arg += len; 671 bprm->p -= len; 626 bprm->p -= len; 672 if (bprm_hit_stack_limit(bprm)) !! 627 if (IS_ENABLED(CONFIG_MMU) && bprm->p < bprm->argmin) 673 return -E2BIG; 628 return -E2BIG; 674 629 675 while (len > 0) { 630 while (len > 0) { 676 unsigned int bytes_to_copy = m 631 unsigned int bytes_to_copy = min_t(unsigned int, len, 677 min_not_zero(o 632 min_not_zero(offset_in_page(pos), PAGE_SIZE)); 678 struct page *page; 633 struct page *page; >> 634 char *kaddr; 679 635 680 pos -= bytes_to_copy; 636 pos -= bytes_to_copy; 681 arg -= bytes_to_copy; 637 arg -= bytes_to_copy; 682 len -= bytes_to_copy; 638 len -= bytes_to_copy; 683 639 684 page = get_arg_page(bprm, pos, 640 page = get_arg_page(bprm, pos, 1); 685 if (!page) 641 if (!page) 686 return -E2BIG; 642 return -E2BIG; >> 643 kaddr = kmap_atomic(page); 687 flush_arg_page(bprm, pos & PAG 644 flush_arg_page(bprm, pos & PAGE_MASK, page); 688 memcpy_to_page(page, offset_in !! 645 memcpy(kaddr + offset_in_page(pos), arg, bytes_to_copy); >> 646 flush_dcache_page(page); >> 647 kunmap_atomic(kaddr); 689 put_arg_page(page); 648 put_arg_page(page); 690 } 649 } 691 650 692 return 0; 651 return 0; 693 } 652 } 694 EXPORT_SYMBOL(copy_string_kernel); 653 EXPORT_SYMBOL(copy_string_kernel); 695 654 696 static int copy_strings_kernel(int argc, const 655 static int copy_strings_kernel(int argc, const char *const *argv, 697 struct linux_bi 656 struct linux_binprm *bprm) 698 { 657 { 699 while (argc-- > 0) { 658 while (argc-- > 0) { 700 int ret = copy_string_kernel(a 659 int ret = copy_string_kernel(argv[argc], bprm); 701 if (ret < 0) 660 if (ret < 0) 702 return ret; 661 return ret; 703 if (fatal_signal_pending(curre 662 if (fatal_signal_pending(current)) 704 return -ERESTARTNOHAND 663 return -ERESTARTNOHAND; 705 cond_resched(); 664 cond_resched(); 706 } 665 } 707 return 0; 666 return 0; 708 } 667 } 709 668 710 #ifdef CONFIG_MMU 669 #ifdef CONFIG_MMU 711 670 712 /* 671 /* >> 672 * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX. Once >> 673 * the binfmt code determines where the new stack should reside, we shift it to >> 674 * its final location. The process proceeds as follows: >> 675 * >> 676 * 1) Use shift to calculate the new vma endpoints. >> 677 * 2) Extend vma to cover both the old and new ranges. This ensures the >> 678 * arguments passed to subsequent functions are consistent. >> 679 * 3) Move vma's page tables to the new range. >> 680 * 4) Free up any cleared pgd range. >> 681 * 5) Shrink the vma to cover only the new range. >> 682 */ >> 683 static int shift_arg_pages(struct vm_area_struct *vma, unsigned long shift) >> 684 { >> 685 struct mm_struct *mm = vma->vm_mm; >> 686 unsigned long old_start = vma->vm_start; >> 687 unsigned long old_end = vma->vm_end; >> 688 unsigned long length = old_end - old_start; >> 689 unsigned long new_start = old_start - shift; >> 690 unsigned long new_end = old_end - shift; >> 691 struct mmu_gather tlb; >> 692 >> 693 BUG_ON(new_start > new_end); >> 694 >> 695 /* >> 696 * ensure there are no vmas between where we want to go >> 697 * and where we are >> 698 */ >> 699 if (vma != find_vma(mm, new_start)) >> 700 return -EFAULT; >> 701 >> 702 /* >> 703 * cover the whole range: [new_start, old_end) >> 704 */ >> 705 if (vma_adjust(vma, new_start, old_end, vma->vm_pgoff, NULL)) >> 706 return -ENOMEM; >> 707 >> 708 /* >> 709 * move the page tables downwards, on failure we rely on >> 710 * process cleanup to remove whatever mess we made. >> 711 */ >> 712 if (length != move_page_tables(vma, old_start, >> 713 vma, new_start, length, false)) >> 714 return -ENOMEM; >> 715 >> 716 lru_add_drain(); >> 717 tlb_gather_mmu(&tlb, mm); >> 718 if (new_end > old_start) { >> 719 /* >> 720 * when the old and new regions overlap clear from new_end. >> 721 */ >> 722 free_pgd_range(&tlb, new_end, old_end, new_end, >> 723 vma->vm_next ? vma->vm_next->vm_start : USER_PGTABLES_CEILING); >> 724 } else { >> 725 /* >> 726 * otherwise, clean from old_start; this is done to not touch >> 727 * the address space in [new_end, old_start) some architectures >> 728 * have constraints on va-space that make this illegal (IA64) - >> 729 * for the others its just a little faster. >> 730 */ >> 731 free_pgd_range(&tlb, old_start, old_end, new_end, >> 732 vma->vm_next ? vma->vm_next->vm_start : USER_PGTABLES_CEILING); >> 733 } >> 734 tlb_finish_mmu(&tlb); >> 735 >> 736 /* >> 737 * Shrink the vma to just the new range. Always succeeds. >> 738 */ >> 739 vma_adjust(vma, new_start, new_end, vma->vm_pgoff, NULL); >> 740 >> 741 return 0; >> 742 } >> 743 >> 744 /* 713 * Finalizes the stack vm_area_struct. The fla 745 * Finalizes the stack vm_area_struct. The flags and permissions are updated, 714 * the stack is optionally relocated, and some 746 * the stack is optionally relocated, and some extra space is added. 715 */ 747 */ 716 int setup_arg_pages(struct linux_binprm *bprm, 748 int setup_arg_pages(struct linux_binprm *bprm, 717 unsigned long stack_top, 749 unsigned long stack_top, 718 int executable_stack) 750 int executable_stack) 719 { 751 { 720 unsigned long ret; 752 unsigned long ret; 721 unsigned long stack_shift; 753 unsigned long stack_shift; 722 struct mm_struct *mm = current->mm; 754 struct mm_struct *mm = current->mm; 723 struct vm_area_struct *vma = bprm->vma 755 struct vm_area_struct *vma = bprm->vma; 724 struct vm_area_struct *prev = NULL; 756 struct vm_area_struct *prev = NULL; 725 unsigned long vm_flags; 757 unsigned long vm_flags; 726 unsigned long stack_base; 758 unsigned long stack_base; 727 unsigned long stack_size; 759 unsigned long stack_size; 728 unsigned long stack_expand; 760 unsigned long stack_expand; 729 unsigned long rlim_stack; 761 unsigned long rlim_stack; 730 struct mmu_gather tlb; << 731 struct vma_iterator vmi; << 732 762 733 #ifdef CONFIG_STACK_GROWSUP 763 #ifdef CONFIG_STACK_GROWSUP 734 /* Limit stack size */ 764 /* Limit stack size */ 735 stack_base = bprm->rlim_stack.rlim_max 765 stack_base = bprm->rlim_stack.rlim_max; 736 766 737 stack_base = calc_max_stack_size(stack 767 stack_base = calc_max_stack_size(stack_base); 738 768 739 /* Add space for stack randomization. 769 /* Add space for stack randomization. */ 740 if (current->flags & PF_RANDOMIZE) !! 770 stack_base += (STACK_RND_MASK << PAGE_SHIFT); 741 stack_base += (STACK_RND_MASK << 742 771 743 /* Make sure we didn't let the argumen 772 /* Make sure we didn't let the argument array grow too large. */ 744 if (vma->vm_end - vma->vm_start > stac 773 if (vma->vm_end - vma->vm_start > stack_base) 745 return -ENOMEM; 774 return -ENOMEM; 746 775 747 stack_base = PAGE_ALIGN(stack_top - st 776 stack_base = PAGE_ALIGN(stack_top - stack_base); 748 777 749 stack_shift = vma->vm_start - stack_ba 778 stack_shift = vma->vm_start - stack_base; 750 mm->arg_start = bprm->p - stack_shift; 779 mm->arg_start = bprm->p - stack_shift; 751 bprm->p = vma->vm_end - stack_shift; 780 bprm->p = vma->vm_end - stack_shift; 752 #else 781 #else 753 stack_top = arch_align_stack(stack_top 782 stack_top = arch_align_stack(stack_top); 754 stack_top = PAGE_ALIGN(stack_top); 783 stack_top = PAGE_ALIGN(stack_top); 755 784 756 if (unlikely(stack_top < mmap_min_addr 785 if (unlikely(stack_top < mmap_min_addr) || 757 unlikely(vma->vm_end - vma->vm_sta 786 unlikely(vma->vm_end - vma->vm_start >= stack_top - mmap_min_addr)) 758 return -ENOMEM; 787 return -ENOMEM; 759 788 760 stack_shift = vma->vm_end - stack_top; 789 stack_shift = vma->vm_end - stack_top; 761 790 762 bprm->p -= stack_shift; 791 bprm->p -= stack_shift; 763 mm->arg_start = bprm->p; 792 mm->arg_start = bprm->p; 764 #endif 793 #endif 765 794 766 if (bprm->loader) 795 if (bprm->loader) 767 bprm->loader -= stack_shift; 796 bprm->loader -= stack_shift; 768 bprm->exec -= stack_shift; 797 bprm->exec -= stack_shift; 769 798 770 if (mmap_write_lock_killable(mm)) 799 if (mmap_write_lock_killable(mm)) 771 return -EINTR; 800 return -EINTR; 772 801 773 vm_flags = VM_STACK_FLAGS; 802 vm_flags = VM_STACK_FLAGS; 774 803 775 /* 804 /* 776 * Adjust stack execute permissions; e 805 * Adjust stack execute permissions; explicitly enable for 777 * EXSTACK_ENABLE_X, disable for EXSTA 806 * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone 778 * (arch default) otherwise. 807 * (arch default) otherwise. 779 */ 808 */ 780 if (unlikely(executable_stack == EXSTA 809 if (unlikely(executable_stack == EXSTACK_ENABLE_X)) 781 vm_flags |= VM_EXEC; 810 vm_flags |= VM_EXEC; 782 else if (executable_stack == EXSTACK_D 811 else if (executable_stack == EXSTACK_DISABLE_X) 783 vm_flags &= ~VM_EXEC; 812 vm_flags &= ~VM_EXEC; 784 vm_flags |= mm->def_flags; 813 vm_flags |= mm->def_flags; 785 vm_flags |= VM_STACK_INCOMPLETE_SETUP; 814 vm_flags |= VM_STACK_INCOMPLETE_SETUP; 786 815 787 vma_iter_init(&vmi, mm, vma->vm_start) !! 816 ret = mprotect_fixup(vma, &prev, vma->vm_start, vma->vm_end, 788 << 789 tlb_gather_mmu(&tlb, mm); << 790 ret = mprotect_fixup(&vmi, &tlb, vma, << 791 vm_flags); 817 vm_flags); 792 tlb_finish_mmu(&tlb); << 793 << 794 if (ret) 818 if (ret) 795 goto out_unlock; 819 goto out_unlock; 796 BUG_ON(prev != vma); 820 BUG_ON(prev != vma); 797 821 798 if (unlikely(vm_flags & VM_EXEC)) { 822 if (unlikely(vm_flags & VM_EXEC)) { 799 pr_warn_once("process '%pD4' s 823 pr_warn_once("process '%pD4' started with executable stack\n", 800 bprm->file); 824 bprm->file); 801 } 825 } 802 826 803 /* Move stack pages down in memory. */ 827 /* Move stack pages down in memory. */ 804 if (stack_shift) { 828 if (stack_shift) { 805 /* !! 829 ret = shift_arg_pages(vma, stack_shift); 806 * During bprm_mm_init(), we c << 807 * the binfmt code determines << 808 * its final location. << 809 */ << 810 ret = relocate_vma_down(vma, s << 811 if (ret) 830 if (ret) 812 goto out_unlock; 831 goto out_unlock; 813 } 832 } 814 833 815 /* mprotect_fixup is overkill to remov 834 /* mprotect_fixup is overkill to remove the temporary stack flags */ 816 vm_flags_clear(vma, VM_STACK_INCOMPLET !! 835 vma->vm_flags &= ~VM_STACK_INCOMPLETE_SETUP; 817 836 818 stack_expand = 131072UL; /* randomly 3 837 stack_expand = 131072UL; /* randomly 32*4k (or 2*64k) pages */ 819 stack_size = vma->vm_end - vma->vm_sta 838 stack_size = vma->vm_end - vma->vm_start; 820 /* 839 /* 821 * Align this down to a page boundary 840 * Align this down to a page boundary as expand_stack 822 * will align it up. 841 * will align it up. 823 */ 842 */ 824 rlim_stack = bprm->rlim_stack.rlim_cur 843 rlim_stack = bprm->rlim_stack.rlim_cur & PAGE_MASK; 825 << 826 stack_expand = min(rlim_stack, stack_s << 827 << 828 #ifdef CONFIG_STACK_GROWSUP 844 #ifdef CONFIG_STACK_GROWSUP 829 stack_base = vma->vm_start + stack_exp !! 845 if (stack_size + stack_expand > rlim_stack) >> 846 stack_base = vma->vm_start + rlim_stack; >> 847 else >> 848 stack_base = vma->vm_end + stack_expand; 830 #else 849 #else 831 stack_base = vma->vm_end - stack_expan !! 850 if (stack_size + stack_expand > rlim_stack) >> 851 stack_base = vma->vm_end - rlim_stack; >> 852 else >> 853 stack_base = vma->vm_start - stack_expand; 832 #endif 854 #endif 833 current->mm->start_stack = bprm->p; 855 current->mm->start_stack = bprm->p; 834 ret = expand_stack_locked(vma, stack_b !! 856 ret = expand_stack(vma, stack_base); 835 if (ret) 857 if (ret) 836 ret = -EFAULT; 858 ret = -EFAULT; 837 859 838 out_unlock: 860 out_unlock: 839 mmap_write_unlock(mm); 861 mmap_write_unlock(mm); 840 return ret; 862 return ret; 841 } 863 } 842 EXPORT_SYMBOL(setup_arg_pages); 864 EXPORT_SYMBOL(setup_arg_pages); 843 865 844 #else 866 #else 845 867 846 /* 868 /* 847 * Transfer the program arguments and environm 869 * Transfer the program arguments and environment from the holding pages 848 * onto the stack. The provided stack pointer 870 * onto the stack. The provided stack pointer is adjusted accordingly. 849 */ 871 */ 850 int transfer_args_to_stack(struct linux_binprm 872 int transfer_args_to_stack(struct linux_binprm *bprm, 851 unsigned long *sp_l 873 unsigned long *sp_location) 852 { 874 { 853 unsigned long index, stop, sp; 875 unsigned long index, stop, sp; 854 int ret = 0; 876 int ret = 0; 855 877 856 stop = bprm->p >> PAGE_SHIFT; 878 stop = bprm->p >> PAGE_SHIFT; 857 sp = *sp_location; 879 sp = *sp_location; 858 880 859 for (index = MAX_ARG_PAGES - 1; index 881 for (index = MAX_ARG_PAGES - 1; index >= stop; index--) { 860 unsigned int offset = index == 882 unsigned int offset = index == stop ? bprm->p & ~PAGE_MASK : 0; 861 char *src = kmap_local_page(bp !! 883 char *src = kmap(bprm->page[index]) + offset; 862 sp -= PAGE_SIZE - offset; 884 sp -= PAGE_SIZE - offset; 863 if (copy_to_user((void *) sp, 885 if (copy_to_user((void *) sp, src, PAGE_SIZE - offset) != 0) 864 ret = -EFAULT; 886 ret = -EFAULT; 865 kunmap_local(src); !! 887 kunmap(bprm->page[index]); 866 if (ret) 888 if (ret) 867 goto out; 889 goto out; 868 } 890 } 869 891 870 bprm->exec += *sp_location - MAX_ARG_P << 871 *sp_location = sp; 892 *sp_location = sp; 872 893 873 out: 894 out: 874 return ret; 895 return ret; 875 } 896 } 876 EXPORT_SYMBOL(transfer_args_to_stack); 897 EXPORT_SYMBOL(transfer_args_to_stack); 877 898 878 #endif /* CONFIG_MMU */ 899 #endif /* CONFIG_MMU */ 879 900 880 /* << 881 * On success, caller must call do_close_execa << 882 * struct file to close it. << 883 */ << 884 static struct file *do_open_execat(int fd, str 901 static struct file *do_open_execat(int fd, struct filename *name, int flags) 885 { 902 { 886 struct file *file; 903 struct file *file; >> 904 int err; 887 struct open_flags open_exec_flags = { 905 struct open_flags open_exec_flags = { 888 .open_flag = O_LARGEFILE | O_R 906 .open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC, 889 .acc_mode = MAY_EXEC, 907 .acc_mode = MAY_EXEC, 890 .intent = LOOKUP_OPEN, 908 .intent = LOOKUP_OPEN, 891 .lookup_flags = LOOKUP_FOLLOW, 909 .lookup_flags = LOOKUP_FOLLOW, 892 }; 910 }; 893 911 894 if ((flags & ~(AT_SYMLINK_NOFOLLOW | A 912 if ((flags & ~(AT_SYMLINK_NOFOLLOW | AT_EMPTY_PATH)) != 0) 895 return ERR_PTR(-EINVAL); 913 return ERR_PTR(-EINVAL); 896 if (flags & AT_SYMLINK_NOFOLLOW) 914 if (flags & AT_SYMLINK_NOFOLLOW) 897 open_exec_flags.lookup_flags & 915 open_exec_flags.lookup_flags &= ~LOOKUP_FOLLOW; 898 if (flags & AT_EMPTY_PATH) 916 if (flags & AT_EMPTY_PATH) 899 open_exec_flags.lookup_flags | 917 open_exec_flags.lookup_flags |= LOOKUP_EMPTY; 900 918 901 file = do_filp_open(fd, name, &open_ex 919 file = do_filp_open(fd, name, &open_exec_flags); 902 if (IS_ERR(file)) 920 if (IS_ERR(file)) 903 return file; !! 921 goto out; 904 922 905 /* 923 /* 906 * In the past the regular type check !! 924 * may_open() has already checked for this, so it should be 907 * 633fb6ac3980 ("exec: move S_ISREG() !! 925 * impossible to trip now. But we need to be extra cautious 908 * an invariant that all non-regular f !! 926 * and check again at the very end too. 909 */ !! 927 */ 910 if (WARN_ON_ONCE(!S_ISREG(file_inode(f !! 928 err = -EACCES; 911 path_noexec(&file->f_path)) { !! 929 if (WARN_ON_ONCE(!S_ISREG(file_inode(file)->i_mode) || 912 fput(file); !! 930 path_noexec(&file->f_path))) 913 return ERR_PTR(-EACCES); !! 931 goto exit; 914 } << 915 932 >> 933 err = deny_write_access(file); >> 934 if (err) >> 935 goto exit; >> 936 >> 937 if (name->name[0] != '\0') >> 938 fsnotify_open(file); >> 939 >> 940 out: 916 return file; 941 return file; >> 942 >> 943 exit: >> 944 fput(file); >> 945 return ERR_PTR(err); 917 } 946 } 918 947 919 /** << 920 * open_exec - Open a path name for execution << 921 * << 922 * @name: path name to open with the intent of << 923 * << 924 * Returns ERR_PTR on failure or allocated str << 925 * << 926 * As this is a wrapper for the internal do_op << 927 * do_close_execat(). << 928 */ << 929 struct file *open_exec(const char *name) 948 struct file *open_exec(const char *name) 930 { 949 { 931 struct filename *filename = getname_ke 950 struct filename *filename = getname_kernel(name); 932 struct file *f = ERR_CAST(filename); 951 struct file *f = ERR_CAST(filename); 933 952 934 if (!IS_ERR(filename)) { 953 if (!IS_ERR(filename)) { 935 f = do_open_execat(AT_FDCWD, f 954 f = do_open_execat(AT_FDCWD, filename, 0); 936 putname(filename); 955 putname(filename); 937 } 956 } 938 return f; 957 return f; 939 } 958 } 940 EXPORT_SYMBOL(open_exec); 959 EXPORT_SYMBOL(open_exec); 941 960 942 #if defined(CONFIG_BINFMT_FLAT) || defined(CON !! 961 #if defined(CONFIG_HAVE_AOUT) || defined(CONFIG_BINFMT_FLAT) || \ >> 962 defined(CONFIG_BINFMT_ELF_FDPIC) 943 ssize_t read_code(struct file *file, unsigned 963 ssize_t read_code(struct file *file, unsigned long addr, loff_t pos, size_t len) 944 { 964 { 945 ssize_t res = vfs_read(file, (void __u 965 ssize_t res = vfs_read(file, (void __user *)addr, len, &pos); 946 if (res > 0) 966 if (res > 0) 947 flush_icache_user_range(addr, 967 flush_icache_user_range(addr, addr + len); 948 return res; 968 return res; 949 } 969 } 950 EXPORT_SYMBOL(read_code); 970 EXPORT_SYMBOL(read_code); 951 #endif 971 #endif 952 972 953 /* 973 /* 954 * Maps the mm_struct mm into the current task 974 * Maps the mm_struct mm into the current task struct. 955 * On success, this function returns with exec 975 * On success, this function returns with exec_update_lock 956 * held for writing. 976 * held for writing. 957 */ 977 */ 958 static int exec_mmap(struct mm_struct *mm) 978 static int exec_mmap(struct mm_struct *mm) 959 { 979 { 960 struct task_struct *tsk; 980 struct task_struct *tsk; 961 struct mm_struct *old_mm, *active_mm; 981 struct mm_struct *old_mm, *active_mm; 962 int ret; 982 int ret; 963 983 964 /* Notify parent that we're no longer 984 /* Notify parent that we're no longer interested in the old VM */ 965 tsk = current; 985 tsk = current; 966 old_mm = current->mm; 986 old_mm = current->mm; 967 exec_mm_release(tsk, old_mm); 987 exec_mm_release(tsk, old_mm); >> 988 if (old_mm) >> 989 sync_mm_rss(old_mm); 968 990 969 ret = down_write_killable(&tsk->signal 991 ret = down_write_killable(&tsk->signal->exec_update_lock); 970 if (ret) 992 if (ret) 971 return ret; 993 return ret; 972 994 973 if (old_mm) { 995 if (old_mm) { 974 /* 996 /* 975 * If there is a pending fatal 997 * If there is a pending fatal signal perhaps a signal 976 * whose default action is to 998 * whose default action is to create a coredump get 977 * out and die instead of goin 999 * out and die instead of going through with the exec. 978 */ 1000 */ 979 ret = mmap_read_lock_killable( 1001 ret = mmap_read_lock_killable(old_mm); 980 if (ret) { 1002 if (ret) { 981 up_write(&tsk->signal- 1003 up_write(&tsk->signal->exec_update_lock); 982 return ret; 1004 return ret; 983 } 1005 } 984 } 1006 } 985 1007 986 task_lock(tsk); 1008 task_lock(tsk); 987 membarrier_exec_mmap(mm); 1009 membarrier_exec_mmap(mm); 988 1010 989 local_irq_disable(); 1011 local_irq_disable(); 990 active_mm = tsk->active_mm; 1012 active_mm = tsk->active_mm; 991 tsk->active_mm = mm; 1013 tsk->active_mm = mm; 992 tsk->mm = mm; 1014 tsk->mm = mm; 993 mm_init_cid(mm); << 994 /* 1015 /* 995 * This prevents preemption while acti 1016 * This prevents preemption while active_mm is being loaded and 996 * it and mm are being updated, which 1017 * it and mm are being updated, which could cause problems for 997 * lazy tlb mm refcounting when these 1018 * lazy tlb mm refcounting when these are updated by context 998 * switches. Not all architectures can 1019 * switches. Not all architectures can handle irqs off over 999 * activate_mm yet. 1020 * activate_mm yet. 1000 */ 1021 */ 1001 if (!IS_ENABLED(CONFIG_ARCH_WANT_IRQS 1022 if (!IS_ENABLED(CONFIG_ARCH_WANT_IRQS_OFF_ACTIVATE_MM)) 1002 local_irq_enable(); 1023 local_irq_enable(); 1003 activate_mm(active_mm, mm); 1024 activate_mm(active_mm, mm); 1004 if (IS_ENABLED(CONFIG_ARCH_WANT_IRQS_ 1025 if (IS_ENABLED(CONFIG_ARCH_WANT_IRQS_OFF_ACTIVATE_MM)) 1005 local_irq_enable(); 1026 local_irq_enable(); 1006 lru_gen_add_mm(mm); !! 1027 tsk->mm->vmacache_seqnum = 0; >> 1028 vmacache_flush(tsk); 1007 task_unlock(tsk); 1029 task_unlock(tsk); 1008 lru_gen_use_mm(mm); << 1009 if (old_mm) { 1030 if (old_mm) { 1010 mmap_read_unlock(old_mm); 1031 mmap_read_unlock(old_mm); 1011 BUG_ON(active_mm != old_mm); 1032 BUG_ON(active_mm != old_mm); 1012 setmax_mm_hiwater_rss(&tsk->s 1033 setmax_mm_hiwater_rss(&tsk->signal->maxrss, old_mm); 1013 mm_update_next_owner(old_mm); 1034 mm_update_next_owner(old_mm); 1014 mmput(old_mm); 1035 mmput(old_mm); 1015 return 0; 1036 return 0; 1016 } 1037 } 1017 mmdrop_lazy_tlb(active_mm); !! 1038 mmdrop(active_mm); 1018 return 0; 1039 return 0; 1019 } 1040 } 1020 1041 1021 static int de_thread(struct task_struct *tsk) 1042 static int de_thread(struct task_struct *tsk) 1022 { 1043 { 1023 struct signal_struct *sig = tsk->sign 1044 struct signal_struct *sig = tsk->signal; 1024 struct sighand_struct *oldsighand = t 1045 struct sighand_struct *oldsighand = tsk->sighand; 1025 spinlock_t *lock = &oldsighand->siglo 1046 spinlock_t *lock = &oldsighand->siglock; 1026 1047 1027 if (thread_group_empty(tsk)) 1048 if (thread_group_empty(tsk)) 1028 goto no_thread_group; 1049 goto no_thread_group; 1029 1050 1030 /* 1051 /* 1031 * Kill all other threads in the thre 1052 * Kill all other threads in the thread group. 1032 */ 1053 */ 1033 spin_lock_irq(lock); 1054 spin_lock_irq(lock); 1034 if ((sig->flags & SIGNAL_GROUP_EXIT) 1055 if ((sig->flags & SIGNAL_GROUP_EXIT) || sig->group_exec_task) { 1035 /* 1056 /* 1036 * Another group action in pr 1057 * Another group action in progress, just 1037 * return so that the signal 1058 * return so that the signal is processed. 1038 */ 1059 */ 1039 spin_unlock_irq(lock); 1060 spin_unlock_irq(lock); 1040 return -EAGAIN; 1061 return -EAGAIN; 1041 } 1062 } 1042 1063 1043 sig->group_exec_task = tsk; 1064 sig->group_exec_task = tsk; 1044 sig->notify_count = zap_other_threads 1065 sig->notify_count = zap_other_threads(tsk); 1045 if (!thread_group_leader(tsk)) 1066 if (!thread_group_leader(tsk)) 1046 sig->notify_count--; 1067 sig->notify_count--; 1047 1068 1048 while (sig->notify_count) { 1069 while (sig->notify_count) { 1049 __set_current_state(TASK_KILL 1070 __set_current_state(TASK_KILLABLE); 1050 spin_unlock_irq(lock); 1071 spin_unlock_irq(lock); 1051 schedule(); 1072 schedule(); 1052 if (__fatal_signal_pending(ts 1073 if (__fatal_signal_pending(tsk)) 1053 goto killed; 1074 goto killed; 1054 spin_lock_irq(lock); 1075 spin_lock_irq(lock); 1055 } 1076 } 1056 spin_unlock_irq(lock); 1077 spin_unlock_irq(lock); 1057 1078 1058 /* 1079 /* 1059 * At this point all other threads ha 1080 * At this point all other threads have exited, all we have to 1060 * do is to wait for the thread group 1081 * do is to wait for the thread group leader to become inactive, 1061 * and to assume its PID: 1082 * and to assume its PID: 1062 */ 1083 */ 1063 if (!thread_group_leader(tsk)) { 1084 if (!thread_group_leader(tsk)) { 1064 struct task_struct *leader = 1085 struct task_struct *leader = tsk->group_leader; 1065 1086 1066 for (;;) { 1087 for (;;) { 1067 cgroup_threadgroup_ch 1088 cgroup_threadgroup_change_begin(tsk); 1068 write_lock_irq(&taskl 1089 write_lock_irq(&tasklist_lock); 1069 /* 1090 /* 1070 * Do this under task 1091 * Do this under tasklist_lock to ensure that 1071 * exit_notify() can' 1092 * exit_notify() can't miss ->group_exec_task 1072 */ 1093 */ 1073 sig->notify_count = - 1094 sig->notify_count = -1; 1074 if (likely(leader->ex 1095 if (likely(leader->exit_state)) 1075 break; 1096 break; 1076 __set_current_state(T 1097 __set_current_state(TASK_KILLABLE); 1077 write_unlock_irq(&tas 1098 write_unlock_irq(&tasklist_lock); 1078 cgroup_threadgroup_ch 1099 cgroup_threadgroup_change_end(tsk); 1079 schedule(); 1100 schedule(); 1080 if (__fatal_signal_pe 1101 if (__fatal_signal_pending(tsk)) 1081 goto killed; 1102 goto killed; 1082 } 1103 } 1083 1104 1084 /* 1105 /* 1085 * The only record we have of 1106 * The only record we have of the real-time age of a 1086 * process, regardless of exe 1107 * process, regardless of execs it's done, is start_time. 1087 * All the past CPU time is a 1108 * All the past CPU time is accumulated in signal_struct 1088 * from sister threads now de 1109 * from sister threads now dead. But in this non-leader 1089 * exec, nothing survives fro 1110 * exec, nothing survives from the original leader thread, 1090 * whose birth marks the true 1111 * whose birth marks the true age of this process now. 1091 * When we take on its identi 1112 * When we take on its identity by switching to its PID, we 1092 * also take its birthdate (a 1113 * also take its birthdate (always earlier than our own). 1093 */ 1114 */ 1094 tsk->start_time = leader->sta 1115 tsk->start_time = leader->start_time; 1095 tsk->start_boottime = leader- 1116 tsk->start_boottime = leader->start_boottime; 1096 1117 1097 BUG_ON(!same_thread_group(lea 1118 BUG_ON(!same_thread_group(leader, tsk)); 1098 /* 1119 /* 1099 * An exec() starts a new thr 1120 * An exec() starts a new thread group with the 1100 * TGID of the previous threa 1121 * TGID of the previous thread group. Rehash the 1101 * two threads with a switche 1122 * two threads with a switched PID, and release 1102 * the former thread group le 1123 * the former thread group leader: 1103 */ 1124 */ 1104 1125 1105 /* Become a process group lea 1126 /* Become a process group leader with the old leader's pid. 1106 * The old leader becomes a t 1127 * The old leader becomes a thread of the this thread group. 1107 */ 1128 */ 1108 exchange_tids(tsk, leader); 1129 exchange_tids(tsk, leader); 1109 transfer_pid(leader, tsk, PID 1130 transfer_pid(leader, tsk, PIDTYPE_TGID); 1110 transfer_pid(leader, tsk, PID 1131 transfer_pid(leader, tsk, PIDTYPE_PGID); 1111 transfer_pid(leader, tsk, PID 1132 transfer_pid(leader, tsk, PIDTYPE_SID); 1112 1133 1113 list_replace_rcu(&leader->tas 1134 list_replace_rcu(&leader->tasks, &tsk->tasks); 1114 list_replace_init(&leader->si 1135 list_replace_init(&leader->sibling, &tsk->sibling); 1115 1136 1116 tsk->group_leader = tsk; 1137 tsk->group_leader = tsk; 1117 leader->group_leader = tsk; 1138 leader->group_leader = tsk; 1118 1139 1119 tsk->exit_signal = SIGCHLD; 1140 tsk->exit_signal = SIGCHLD; 1120 leader->exit_signal = -1; 1141 leader->exit_signal = -1; 1121 1142 1122 BUG_ON(leader->exit_state != 1143 BUG_ON(leader->exit_state != EXIT_ZOMBIE); 1123 leader->exit_state = EXIT_DEA 1144 leader->exit_state = EXIT_DEAD; >> 1145 1124 /* 1146 /* 1125 * We are going to release_ta 1147 * We are going to release_task()->ptrace_unlink() silently, 1126 * the tracer can sleep in do 1148 * the tracer can sleep in do_wait(). EXIT_DEAD guarantees 1127 * the tracer won't block aga !! 1149 * the tracer wont't block again waiting for this thread. 1128 */ 1150 */ 1129 if (unlikely(leader->ptrace)) 1151 if (unlikely(leader->ptrace)) 1130 __wake_up_parent(lead 1152 __wake_up_parent(leader, leader->parent); 1131 write_unlock_irq(&tasklist_lo 1153 write_unlock_irq(&tasklist_lock); 1132 cgroup_threadgroup_change_end 1154 cgroup_threadgroup_change_end(tsk); 1133 1155 1134 release_task(leader); 1156 release_task(leader); 1135 } 1157 } 1136 1158 1137 sig->group_exec_task = NULL; 1159 sig->group_exec_task = NULL; 1138 sig->notify_count = 0; 1160 sig->notify_count = 0; 1139 1161 1140 no_thread_group: 1162 no_thread_group: 1141 /* we have changed execution domain * 1163 /* we have changed execution domain */ 1142 tsk->exit_signal = SIGCHLD; 1164 tsk->exit_signal = SIGCHLD; 1143 1165 1144 BUG_ON(!thread_group_leader(tsk)); 1166 BUG_ON(!thread_group_leader(tsk)); 1145 return 0; 1167 return 0; 1146 1168 1147 killed: 1169 killed: 1148 /* protects against exit_notify() and 1170 /* protects against exit_notify() and __exit_signal() */ 1149 read_lock(&tasklist_lock); 1171 read_lock(&tasklist_lock); 1150 sig->group_exec_task = NULL; 1172 sig->group_exec_task = NULL; 1151 sig->notify_count = 0; 1173 sig->notify_count = 0; 1152 read_unlock(&tasklist_lock); 1174 read_unlock(&tasklist_lock); 1153 return -EAGAIN; 1175 return -EAGAIN; 1154 } 1176 } 1155 1177 1156 1178 1157 /* 1179 /* 1158 * This function makes sure the current proce 1180 * This function makes sure the current process has its own signal table, 1159 * so that flush_signal_handlers can later re 1181 * so that flush_signal_handlers can later reset the handlers without 1160 * disturbing other processes. (Other proces 1182 * disturbing other processes. (Other processes might share the signal 1161 * table via the CLONE_SIGHAND option to clon 1183 * table via the CLONE_SIGHAND option to clone().) 1162 */ 1184 */ 1163 static int unshare_sighand(struct task_struct 1185 static int unshare_sighand(struct task_struct *me) 1164 { 1186 { 1165 struct sighand_struct *oldsighand = m 1187 struct sighand_struct *oldsighand = me->sighand; 1166 1188 1167 if (refcount_read(&oldsighand->count) 1189 if (refcount_read(&oldsighand->count) != 1) { 1168 struct sighand_struct *newsig 1190 struct sighand_struct *newsighand; 1169 /* 1191 /* 1170 * This ->sighand is shared w 1192 * This ->sighand is shared with the CLONE_SIGHAND 1171 * but not CLONE_THREAD task, 1193 * but not CLONE_THREAD task, switch to the new one. 1172 */ 1194 */ 1173 newsighand = kmem_cache_alloc 1195 newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL); 1174 if (!newsighand) 1196 if (!newsighand) 1175 return -ENOMEM; 1197 return -ENOMEM; 1176 1198 1177 refcount_set(&newsighand->cou 1199 refcount_set(&newsighand->count, 1); >> 1200 memcpy(newsighand->action, oldsighand->action, >> 1201 sizeof(newsighand->action)); 1178 1202 1179 write_lock_irq(&tasklist_lock 1203 write_lock_irq(&tasklist_lock); 1180 spin_lock(&oldsighand->sigloc 1204 spin_lock(&oldsighand->siglock); 1181 memcpy(newsighand->action, ol << 1182 sizeof(newsighand->act << 1183 rcu_assign_pointer(me->sighan 1205 rcu_assign_pointer(me->sighand, newsighand); 1184 spin_unlock(&oldsighand->sigl 1206 spin_unlock(&oldsighand->siglock); 1185 write_unlock_irq(&tasklist_lo 1207 write_unlock_irq(&tasklist_lock); 1186 1208 1187 __cleanup_sighand(oldsighand) 1209 __cleanup_sighand(oldsighand); 1188 } 1210 } 1189 return 0; 1211 return 0; 1190 } 1212 } 1191 1213 1192 char *__get_task_comm(char *buf, size_t buf_s 1214 char *__get_task_comm(char *buf, size_t buf_size, struct task_struct *tsk) 1193 { 1215 { 1194 task_lock(tsk); 1216 task_lock(tsk); 1195 /* Always NUL terminated and zero-pad 1217 /* Always NUL terminated and zero-padded */ 1196 strscpy_pad(buf, tsk->comm, buf_size) 1218 strscpy_pad(buf, tsk->comm, buf_size); 1197 task_unlock(tsk); 1219 task_unlock(tsk); 1198 return buf; 1220 return buf; 1199 } 1221 } 1200 EXPORT_SYMBOL_GPL(__get_task_comm); 1222 EXPORT_SYMBOL_GPL(__get_task_comm); 1201 1223 1202 /* 1224 /* 1203 * These functions flushes out all traces of 1225 * These functions flushes out all traces of the currently running executable 1204 * so that a new one can be started 1226 * so that a new one can be started 1205 */ 1227 */ 1206 1228 1207 void __set_task_comm(struct task_struct *tsk, 1229 void __set_task_comm(struct task_struct *tsk, const char *buf, bool exec) 1208 { 1230 { 1209 task_lock(tsk); 1231 task_lock(tsk); 1210 trace_task_rename(tsk, buf); 1232 trace_task_rename(tsk, buf); 1211 strscpy_pad(tsk->comm, buf, sizeof(ts 1233 strscpy_pad(tsk->comm, buf, sizeof(tsk->comm)); 1212 task_unlock(tsk); 1234 task_unlock(tsk); 1213 perf_event_comm(tsk, exec); 1235 perf_event_comm(tsk, exec); 1214 } 1236 } 1215 1237 1216 /* 1238 /* 1217 * Calling this is the point of no return. No 1239 * Calling this is the point of no return. None of the failures will be 1218 * seen by userspace since either the process 1240 * seen by userspace since either the process is already taking a fatal 1219 * signal (via de_thread() or coredump), or w 1241 * signal (via de_thread() or coredump), or will have SEGV raised 1220 * (after exec_mmap()) by search_binary_handl 1242 * (after exec_mmap()) by search_binary_handler (see below). 1221 */ 1243 */ 1222 int begin_new_exec(struct linux_binprm * bprm 1244 int begin_new_exec(struct linux_binprm * bprm) 1223 { 1245 { 1224 struct task_struct *me = current; 1246 struct task_struct *me = current; 1225 int retval; 1247 int retval; 1226 1248 1227 /* Once we are committed compute the 1249 /* Once we are committed compute the creds */ 1228 retval = bprm_creds_from_file(bprm); 1250 retval = bprm_creds_from_file(bprm); 1229 if (retval) 1251 if (retval) 1230 return retval; 1252 return retval; 1231 1253 1232 /* 1254 /* 1233 * This tracepoint marks the point be << 1234 * the current task is still unchange << 1235 * no return). The later "sched_proce << 1236 * the current task has successfully << 1237 */ << 1238 trace_sched_prepare_exec(current, bpr << 1239 << 1240 /* << 1241 * Ensure all future errors are fatal 1255 * Ensure all future errors are fatal. 1242 */ 1256 */ 1243 bprm->point_of_no_return = true; 1257 bprm->point_of_no_return = true; 1244 1258 1245 /* 1259 /* 1246 * Make this the only thread in the t 1260 * Make this the only thread in the thread group. 1247 */ 1261 */ 1248 retval = de_thread(me); 1262 retval = de_thread(me); 1249 if (retval) 1263 if (retval) 1250 goto out; 1264 goto out; 1251 1265 1252 /* 1266 /* 1253 * Cancel any io_uring activity acros 1267 * Cancel any io_uring activity across execve 1254 */ 1268 */ 1255 io_uring_task_cancel(); 1269 io_uring_task_cancel(); 1256 1270 1257 /* Ensure the files table is not shar 1271 /* Ensure the files table is not shared. */ 1258 retval = unshare_files(); 1272 retval = unshare_files(); 1259 if (retval) 1273 if (retval) 1260 goto out; 1274 goto out; 1261 1275 1262 /* 1276 /* 1263 * Must be called _before_ exec_mmap( 1277 * Must be called _before_ exec_mmap() as bprm->mm is 1264 * not visible until then. Doing it h !! 1278 * not visibile until then. This also enables the update 1265 * we don't race against replace_mm_e !! 1279 * to be lockless. 1266 */ 1280 */ 1267 retval = set_mm_exe_file(bprm->mm, bp 1281 retval = set_mm_exe_file(bprm->mm, bprm->file); 1268 if (retval) 1282 if (retval) 1269 goto out; 1283 goto out; 1270 1284 1271 /* If the binary is not readable then 1285 /* If the binary is not readable then enforce mm->dumpable=0 */ 1272 would_dump(bprm, bprm->file); 1286 would_dump(bprm, bprm->file); 1273 if (bprm->have_execfd) 1287 if (bprm->have_execfd) 1274 would_dump(bprm, bprm->execut 1288 would_dump(bprm, bprm->executable); 1275 1289 1276 /* 1290 /* 1277 * Release all of the old mmap stuff 1291 * Release all of the old mmap stuff 1278 */ 1292 */ 1279 acct_arg_size(bprm, 0); 1293 acct_arg_size(bprm, 0); 1280 retval = exec_mmap(bprm->mm); 1294 retval = exec_mmap(bprm->mm); 1281 if (retval) 1295 if (retval) 1282 goto out; 1296 goto out; 1283 1297 1284 bprm->mm = NULL; 1298 bprm->mm = NULL; 1285 1299 1286 retval = exec_task_namespaces(); << 1287 if (retval) << 1288 goto out_unlock; << 1289 << 1290 #ifdef CONFIG_POSIX_TIMERS 1300 #ifdef CONFIG_POSIX_TIMERS 1291 spin_lock_irq(&me->sighand->siglock); !! 1301 exit_itimers(me->signal); 1292 posix_cpu_timers_exit(me); << 1293 spin_unlock_irq(&me->sighand->siglock << 1294 exit_itimers(me); << 1295 flush_itimer_signals(); 1302 flush_itimer_signals(); 1296 #endif 1303 #endif 1297 1304 1298 /* 1305 /* 1299 * Make the signal table private. 1306 * Make the signal table private. 1300 */ 1307 */ 1301 retval = unshare_sighand(me); 1308 retval = unshare_sighand(me); 1302 if (retval) 1309 if (retval) 1303 goto out_unlock; 1310 goto out_unlock; 1304 1311 1305 me->flags &= ~(PF_RANDOMIZE | PF_FORK !! 1312 /* >> 1313 * Ensure that the uaccess routines can actually operate on userspace >> 1314 * pointers: >> 1315 */ >> 1316 force_uaccess_begin(); >> 1317 >> 1318 me->flags &= ~(PF_RANDOMIZE | PF_FORKNOEXEC | PF_KTHREAD | 1306 PF_NO 1319 PF_NOFREEZE | PF_NO_SETAFFINITY); 1307 flush_thread(); 1320 flush_thread(); 1308 me->personality &= ~bprm->per_clear; 1321 me->personality &= ~bprm->per_clear; 1309 1322 1310 clear_syscall_work_syscall_user_dispa 1323 clear_syscall_work_syscall_user_dispatch(me); 1311 1324 1312 /* 1325 /* 1313 * We have to apply CLOEXEC before we 1326 * We have to apply CLOEXEC before we change whether the process is 1314 * dumpable (in setup_new_exec) to av 1327 * dumpable (in setup_new_exec) to avoid a race with a process in userspace 1315 * trying to access the should-be-clo 1328 * trying to access the should-be-closed file descriptors of a process 1316 * undergoing exec(2). 1329 * undergoing exec(2). 1317 */ 1330 */ 1318 do_close_on_exec(me->files); 1331 do_close_on_exec(me->files); 1319 1332 1320 if (bprm->secureexec) { 1333 if (bprm->secureexec) { 1321 /* Make sure parent cannot si 1334 /* Make sure parent cannot signal privileged process. */ 1322 me->pdeath_signal = 0; 1335 me->pdeath_signal = 0; 1323 1336 1324 /* 1337 /* 1325 * For secureexec, reset the 1338 * For secureexec, reset the stack limit to sane default to 1326 * avoid bad behavior from th 1339 * avoid bad behavior from the prior rlimits. This has to 1327 * happen before arch_pick_mm 1340 * happen before arch_pick_mmap_layout(), which examines 1328 * RLIMIT_STACK, but after th 1341 * RLIMIT_STACK, but after the point of no return to avoid 1329 * needing to clean up the ch 1342 * needing to clean up the change on failure. 1330 */ 1343 */ 1331 if (bprm->rlim_stack.rlim_cur 1344 if (bprm->rlim_stack.rlim_cur > _STK_LIM) 1332 bprm->rlim_stack.rlim 1345 bprm->rlim_stack.rlim_cur = _STK_LIM; 1333 } 1346 } 1334 1347 1335 me->sas_ss_sp = me->sas_ss_size = 0; 1348 me->sas_ss_sp = me->sas_ss_size = 0; 1336 1349 1337 /* 1350 /* 1338 * Figure out dumpability. Note that 1351 * Figure out dumpability. Note that this checking only of current 1339 * is wrong, but userspace depends on 1352 * is wrong, but userspace depends on it. This should be testing 1340 * bprm->secureexec instead. 1353 * bprm->secureexec instead. 1341 */ 1354 */ 1342 if (bprm->interp_flags & BINPRM_FLAGS 1355 if (bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP || 1343 !(uid_eq(current_euid(), current_ 1356 !(uid_eq(current_euid(), current_uid()) && 1344 gid_eq(current_egid(), current_ 1357 gid_eq(current_egid(), current_gid()))) 1345 set_dumpable(current->mm, sui 1358 set_dumpable(current->mm, suid_dumpable); 1346 else 1359 else 1347 set_dumpable(current->mm, SUI 1360 set_dumpable(current->mm, SUID_DUMP_USER); 1348 1361 1349 perf_event_exec(); 1362 perf_event_exec(); 1350 __set_task_comm(me, kbasename(bprm->f 1363 __set_task_comm(me, kbasename(bprm->filename), true); 1351 1364 1352 /* An exec changes our domain. We are 1365 /* An exec changes our domain. We are no longer part of the thread 1353 group */ 1366 group */ 1354 WRITE_ONCE(me->self_exec_id, me->self 1367 WRITE_ONCE(me->self_exec_id, me->self_exec_id + 1); 1355 flush_signal_handlers(me, 0); 1368 flush_signal_handlers(me, 0); 1356 1369 1357 retval = set_cred_ucounts(bprm->cred) 1370 retval = set_cred_ucounts(bprm->cred); 1358 if (retval < 0) 1371 if (retval < 0) 1359 goto out_unlock; 1372 goto out_unlock; 1360 1373 1361 /* 1374 /* 1362 * install the new credentials for th 1375 * install the new credentials for this executable 1363 */ 1376 */ 1364 security_bprm_committing_creds(bprm); 1377 security_bprm_committing_creds(bprm); 1365 1378 1366 commit_creds(bprm->cred); 1379 commit_creds(bprm->cred); 1367 bprm->cred = NULL; 1380 bprm->cred = NULL; 1368 1381 1369 /* 1382 /* 1370 * Disable monitoring for regular use 1383 * Disable monitoring for regular users 1371 * when executing setuid binaries. Mu 1384 * when executing setuid binaries. Must 1372 * wait until new credentials are com 1385 * wait until new credentials are committed 1373 * by commit_creds() above 1386 * by commit_creds() above 1374 */ 1387 */ 1375 if (get_dumpable(me->mm) != SUID_DUMP 1388 if (get_dumpable(me->mm) != SUID_DUMP_USER) 1376 perf_event_exit_task(me); 1389 perf_event_exit_task(me); 1377 /* 1390 /* 1378 * cred_guard_mutex must be held at l 1391 * cred_guard_mutex must be held at least to this point to prevent 1379 * ptrace_attach() from altering our 1392 * ptrace_attach() from altering our determination of the task's 1380 * credentials; any time after this i 1393 * credentials; any time after this it may be unlocked. 1381 */ 1394 */ 1382 security_bprm_committed_creds(bprm); 1395 security_bprm_committed_creds(bprm); 1383 1396 1384 /* Pass the opened binary to the inte 1397 /* Pass the opened binary to the interpreter. */ 1385 if (bprm->have_execfd) { 1398 if (bprm->have_execfd) { 1386 retval = get_unused_fd_flags( 1399 retval = get_unused_fd_flags(0); 1387 if (retval < 0) 1400 if (retval < 0) 1388 goto out_unlock; 1401 goto out_unlock; 1389 fd_install(retval, bprm->exec 1402 fd_install(retval, bprm->executable); 1390 bprm->executable = NULL; 1403 bprm->executable = NULL; 1391 bprm->execfd = retval; 1404 bprm->execfd = retval; 1392 } 1405 } 1393 return 0; 1406 return 0; 1394 1407 1395 out_unlock: 1408 out_unlock: 1396 up_write(&me->signal->exec_update_loc 1409 up_write(&me->signal->exec_update_lock); 1397 if (!bprm->cred) << 1398 mutex_unlock(&me->signal->cre << 1399 << 1400 out: 1410 out: 1401 return retval; 1411 return retval; 1402 } 1412 } 1403 EXPORT_SYMBOL(begin_new_exec); 1413 EXPORT_SYMBOL(begin_new_exec); 1404 1414 1405 void would_dump(struct linux_binprm *bprm, st 1415 void would_dump(struct linux_binprm *bprm, struct file *file) 1406 { 1416 { 1407 struct inode *inode = file_inode(file 1417 struct inode *inode = file_inode(file); 1408 struct mnt_idmap *idmap = file_mnt_id !! 1418 struct user_namespace *mnt_userns = file_mnt_user_ns(file); 1409 if (inode_permission(idmap, inode, MA !! 1419 if (inode_permission(mnt_userns, inode, MAY_READ) < 0) { 1410 struct user_namespace *old, * 1420 struct user_namespace *old, *user_ns; 1411 bprm->interp_flags |= BINPRM_ 1421 bprm->interp_flags |= BINPRM_FLAGS_ENFORCE_NONDUMP; 1412 1422 1413 /* Ensure mm->user_ns contain 1423 /* Ensure mm->user_ns contains the executable */ 1414 user_ns = old = bprm->mm->use 1424 user_ns = old = bprm->mm->user_ns; 1415 while ((user_ns != &init_user 1425 while ((user_ns != &init_user_ns) && 1416 !privileged_wrt_inode_ !! 1426 !privileged_wrt_inode_uidgid(user_ns, mnt_userns, inode)) 1417 user_ns = user_ns->pa 1427 user_ns = user_ns->parent; 1418 1428 1419 if (old != user_ns) { 1429 if (old != user_ns) { 1420 bprm->mm->user_ns = g 1430 bprm->mm->user_ns = get_user_ns(user_ns); 1421 put_user_ns(old); 1431 put_user_ns(old); 1422 } 1432 } 1423 } 1433 } 1424 } 1434 } 1425 EXPORT_SYMBOL(would_dump); 1435 EXPORT_SYMBOL(would_dump); 1426 1436 1427 void setup_new_exec(struct linux_binprm * bpr 1437 void setup_new_exec(struct linux_binprm * bprm) 1428 { 1438 { 1429 /* Setup things that can depend upon 1439 /* Setup things that can depend upon the personality */ 1430 struct task_struct *me = current; 1440 struct task_struct *me = current; 1431 1441 1432 arch_pick_mmap_layout(me->mm, &bprm-> 1442 arch_pick_mmap_layout(me->mm, &bprm->rlim_stack); 1433 1443 1434 arch_setup_new_exec(); 1444 arch_setup_new_exec(); 1435 1445 1436 /* Set the new mm task size. We have 1446 /* Set the new mm task size. We have to do that late because it may 1437 * depend on TIF_32BIT which is only 1447 * depend on TIF_32BIT which is only updated in flush_thread() on 1438 * some architectures like powerpc 1448 * some architectures like powerpc 1439 */ 1449 */ 1440 me->mm->task_size = TASK_SIZE; 1450 me->mm->task_size = TASK_SIZE; 1441 up_write(&me->signal->exec_update_loc 1451 up_write(&me->signal->exec_update_lock); 1442 mutex_unlock(&me->signal->cred_guard_ 1452 mutex_unlock(&me->signal->cred_guard_mutex); 1443 } 1453 } 1444 EXPORT_SYMBOL(setup_new_exec); 1454 EXPORT_SYMBOL(setup_new_exec); 1445 1455 1446 /* Runs immediately before start_thread() tak 1456 /* Runs immediately before start_thread() takes over. */ 1447 void finalize_exec(struct linux_binprm *bprm) 1457 void finalize_exec(struct linux_binprm *bprm) 1448 { 1458 { 1449 /* Store any stack rlimit changes bef 1459 /* Store any stack rlimit changes before starting thread. */ 1450 task_lock(current->group_leader); 1460 task_lock(current->group_leader); 1451 current->signal->rlim[RLIMIT_STACK] = 1461 current->signal->rlim[RLIMIT_STACK] = bprm->rlim_stack; 1452 task_unlock(current->group_leader); 1462 task_unlock(current->group_leader); 1453 } 1463 } 1454 EXPORT_SYMBOL(finalize_exec); 1464 EXPORT_SYMBOL(finalize_exec); 1455 1465 1456 /* 1466 /* 1457 * Prepare credentials and lock ->cred_guard_ 1467 * Prepare credentials and lock ->cred_guard_mutex. 1458 * setup_new_exec() commits the new creds and 1468 * setup_new_exec() commits the new creds and drops the lock. 1459 * Or, if exec fails before, free_bprm() shou 1469 * Or, if exec fails before, free_bprm() should release ->cred 1460 * and unlock. 1470 * and unlock. 1461 */ 1471 */ 1462 static int prepare_bprm_creds(struct linux_bi 1472 static int prepare_bprm_creds(struct linux_binprm *bprm) 1463 { 1473 { 1464 if (mutex_lock_interruptible(¤t 1474 if (mutex_lock_interruptible(¤t->signal->cred_guard_mutex)) 1465 return -ERESTARTNOINTR; 1475 return -ERESTARTNOINTR; 1466 1476 1467 bprm->cred = prepare_exec_creds(); 1477 bprm->cred = prepare_exec_creds(); 1468 if (likely(bprm->cred)) 1478 if (likely(bprm->cred)) 1469 return 0; 1479 return 0; 1470 1480 1471 mutex_unlock(¤t->signal->cred_g 1481 mutex_unlock(¤t->signal->cred_guard_mutex); 1472 return -ENOMEM; 1482 return -ENOMEM; 1473 } 1483 } 1474 1484 1475 /* Matches do_open_execat() */ << 1476 static void do_close_execat(struct file *file << 1477 { << 1478 if (file) << 1479 fput(file); << 1480 } << 1481 << 1482 static void free_bprm(struct linux_binprm *bp 1485 static void free_bprm(struct linux_binprm *bprm) 1483 { 1486 { 1484 if (bprm->mm) { 1487 if (bprm->mm) { 1485 acct_arg_size(bprm, 0); 1488 acct_arg_size(bprm, 0); 1486 mmput(bprm->mm); 1489 mmput(bprm->mm); 1487 } 1490 } 1488 free_arg_pages(bprm); 1491 free_arg_pages(bprm); 1489 if (bprm->cred) { 1492 if (bprm->cred) { 1490 mutex_unlock(¤t->signal 1493 mutex_unlock(¤t->signal->cred_guard_mutex); 1491 abort_creds(bprm->cred); 1494 abort_creds(bprm->cred); 1492 } 1495 } 1493 do_close_execat(bprm->file); !! 1496 if (bprm->file) { >> 1497 allow_write_access(bprm->file); >> 1498 fput(bprm->file); >> 1499 } 1494 if (bprm->executable) 1500 if (bprm->executable) 1495 fput(bprm->executable); 1501 fput(bprm->executable); 1496 /* If a binfmt changed the interp, fr 1502 /* If a binfmt changed the interp, free it. */ 1497 if (bprm->interp != bprm->filename) 1503 if (bprm->interp != bprm->filename) 1498 kfree(bprm->interp); 1504 kfree(bprm->interp); 1499 kfree(bprm->fdpath); 1505 kfree(bprm->fdpath); 1500 kfree(bprm); 1506 kfree(bprm); 1501 } 1507 } 1502 1508 1503 static struct linux_binprm *alloc_bprm(int fd !! 1509 static struct linux_binprm *alloc_bprm(int fd, struct filename *filename) 1504 { 1510 { 1505 struct linux_binprm *bprm; !! 1511 struct linux_binprm *bprm = kzalloc(sizeof(*bprm), GFP_KERNEL); 1506 struct file *file; << 1507 int retval = -ENOMEM; 1512 int retval = -ENOMEM; 1508 !! 1513 if (!bprm) 1509 file = do_open_execat(fd, filename, f !! 1514 goto out; 1510 if (IS_ERR(file)) << 1511 return ERR_CAST(file); << 1512 << 1513 bprm = kzalloc(sizeof(*bprm), GFP_KER << 1514 if (!bprm) { << 1515 do_close_execat(file); << 1516 return ERR_PTR(-ENOMEM); << 1517 } << 1518 << 1519 bprm->file = file; << 1520 1515 1521 if (fd == AT_FDCWD || filename->name[ 1516 if (fd == AT_FDCWD || filename->name[0] == '/') { 1522 bprm->filename = filename->na 1517 bprm->filename = filename->name; 1523 } else { 1518 } else { 1524 if (filename->name[0] == '\0' 1519 if (filename->name[0] == '\0') 1525 bprm->fdpath = kaspri 1520 bprm->fdpath = kasprintf(GFP_KERNEL, "/dev/fd/%d", fd); 1526 else 1521 else 1527 bprm->fdpath = kaspri 1522 bprm->fdpath = kasprintf(GFP_KERNEL, "/dev/fd/%d/%s", 1528 1523 fd, filename->name); 1529 if (!bprm->fdpath) 1524 if (!bprm->fdpath) 1530 goto out_free; 1525 goto out_free; 1531 1526 1532 /* << 1533 * Record that a name derived << 1534 * inaccessible after exec. << 1535 * choose to fail when the ex << 1536 * interpreter and an open fi << 1537 * the interpreter. This mak << 1538 * than having the interprete << 1539 * when it finds the executab << 1540 */ << 1541 if (get_close_on_exec(fd)) << 1542 bprm->interp_flags |= << 1543 << 1544 bprm->filename = bprm->fdpath 1527 bprm->filename = bprm->fdpath; 1545 } 1528 } 1546 bprm->interp = bprm->filename; 1529 bprm->interp = bprm->filename; 1547 1530 1548 retval = bprm_mm_init(bprm); 1531 retval = bprm_mm_init(bprm); 1549 if (!retval) !! 1532 if (retval) 1550 return bprm; !! 1533 goto out_free; >> 1534 return bprm; 1551 1535 1552 out_free: 1536 out_free: 1553 free_bprm(bprm); 1537 free_bprm(bprm); >> 1538 out: 1554 return ERR_PTR(retval); 1539 return ERR_PTR(retval); 1555 } 1540 } 1556 1541 1557 int bprm_change_interp(const char *interp, st 1542 int bprm_change_interp(const char *interp, struct linux_binprm *bprm) 1558 { 1543 { 1559 /* If a binfmt changed the interp, fr 1544 /* If a binfmt changed the interp, free it first. */ 1560 if (bprm->interp != bprm->filename) 1545 if (bprm->interp != bprm->filename) 1561 kfree(bprm->interp); 1546 kfree(bprm->interp); 1562 bprm->interp = kstrdup(interp, GFP_KE 1547 bprm->interp = kstrdup(interp, GFP_KERNEL); 1563 if (!bprm->interp) 1548 if (!bprm->interp) 1564 return -ENOMEM; 1549 return -ENOMEM; 1565 return 0; 1550 return 0; 1566 } 1551 } 1567 EXPORT_SYMBOL(bprm_change_interp); 1552 EXPORT_SYMBOL(bprm_change_interp); 1568 1553 1569 /* 1554 /* 1570 * determine how safe it is to execute the pr 1555 * determine how safe it is to execute the proposed program 1571 * - the caller must hold ->cred_guard_mutex 1556 * - the caller must hold ->cred_guard_mutex to protect against 1572 * PTRACE_ATTACH or seccomp thread-sync 1557 * PTRACE_ATTACH or seccomp thread-sync 1573 */ 1558 */ 1574 static void check_unsafe_exec(struct linux_bi 1559 static void check_unsafe_exec(struct linux_binprm *bprm) 1575 { 1560 { 1576 struct task_struct *p = current, *t; 1561 struct task_struct *p = current, *t; 1577 unsigned n_fs; 1562 unsigned n_fs; 1578 1563 1579 if (p->ptrace) 1564 if (p->ptrace) 1580 bprm->unsafe |= LSM_UNSAFE_PT 1565 bprm->unsafe |= LSM_UNSAFE_PTRACE; 1581 1566 1582 /* 1567 /* 1583 * This isn't strictly necessary, but 1568 * This isn't strictly necessary, but it makes it harder for LSMs to 1584 * mess up. 1569 * mess up. 1585 */ 1570 */ 1586 if (task_no_new_privs(current)) 1571 if (task_no_new_privs(current)) 1587 bprm->unsafe |= LSM_UNSAFE_NO 1572 bprm->unsafe |= LSM_UNSAFE_NO_NEW_PRIVS; 1588 1573 1589 /* !! 1574 t = p; 1590 * If another task is sharing our fs, << 1591 * suid exec because the differently << 1592 * will be able to manipulate the cur << 1593 * It would be nice to force an unsha << 1594 */ << 1595 n_fs = 1; 1575 n_fs = 1; 1596 spin_lock(&p->fs->lock); 1576 spin_lock(&p->fs->lock); 1597 rcu_read_lock(); 1577 rcu_read_lock(); 1598 for_other_threads(p, t) { !! 1578 while_each_thread(p, t) { 1599 if (t->fs == p->fs) 1579 if (t->fs == p->fs) 1600 n_fs++; 1580 n_fs++; 1601 } 1581 } 1602 rcu_read_unlock(); 1582 rcu_read_unlock(); 1603 1583 1604 /* "users" and "in_exec" locked for c << 1605 if (p->fs->users > n_fs) 1584 if (p->fs->users > n_fs) 1606 bprm->unsafe |= LSM_UNSAFE_SH 1585 bprm->unsafe |= LSM_UNSAFE_SHARE; 1607 else 1586 else 1608 p->fs->in_exec = 1; 1587 p->fs->in_exec = 1; 1609 spin_unlock(&p->fs->lock); 1588 spin_unlock(&p->fs->lock); 1610 } 1589 } 1611 1590 1612 static void bprm_fill_uid(struct linux_binprm 1591 static void bprm_fill_uid(struct linux_binprm *bprm, struct file *file) 1613 { 1592 { 1614 /* Handle suid and sgid on files */ 1593 /* Handle suid and sgid on files */ 1615 struct mnt_idmap *idmap; !! 1594 struct user_namespace *mnt_userns; 1616 struct inode *inode = file_inode(file !! 1595 struct inode *inode; 1617 unsigned int mode; 1596 unsigned int mode; 1618 vfsuid_t vfsuid; !! 1597 kuid_t uid; 1619 vfsgid_t vfsgid; !! 1598 kgid_t gid; 1620 int err; << 1621 1599 1622 if (!mnt_may_suid(file->f_path.mnt)) 1600 if (!mnt_may_suid(file->f_path.mnt)) 1623 return; 1601 return; 1624 1602 1625 if (task_no_new_privs(current)) 1603 if (task_no_new_privs(current)) 1626 return; 1604 return; 1627 1605 >> 1606 inode = file->f_path.dentry->d_inode; 1628 mode = READ_ONCE(inode->i_mode); 1607 mode = READ_ONCE(inode->i_mode); 1629 if (!(mode & (S_ISUID|S_ISGID))) 1608 if (!(mode & (S_ISUID|S_ISGID))) 1630 return; 1609 return; 1631 1610 1632 idmap = file_mnt_idmap(file); !! 1611 mnt_userns = file_mnt_user_ns(file); 1633 1612 1634 /* Be careful if suid/sgid is set */ 1613 /* Be careful if suid/sgid is set */ 1635 inode_lock(inode); 1614 inode_lock(inode); 1636 1615 1637 /* Atomically reload and check mode/u !! 1616 /* reload atomically mode/uid/gid now that lock held */ 1638 mode = inode->i_mode; 1617 mode = inode->i_mode; 1639 vfsuid = i_uid_into_vfsuid(idmap, ino !! 1618 uid = i_uid_into_mnt(mnt_userns, inode); 1640 vfsgid = i_gid_into_vfsgid(idmap, ino !! 1619 gid = i_gid_into_mnt(mnt_userns, inode); 1641 err = inode_permission(idmap, inode, << 1642 inode_unlock(inode); 1620 inode_unlock(inode); 1643 1621 1644 /* Did the exec bit vanish out from u << 1645 if (err) << 1646 return; << 1647 << 1648 /* We ignore suid/sgid if there are n 1622 /* We ignore suid/sgid if there are no mappings for them in the ns */ 1649 if (!vfsuid_has_mapping(bprm->cred->u !! 1623 if (!kuid_has_mapping(bprm->cred->user_ns, uid) || 1650 !vfsgid_has_mapping(bprm->cred->u !! 1624 !kgid_has_mapping(bprm->cred->user_ns, gid)) 1651 return; 1625 return; 1652 1626 1653 if (mode & S_ISUID) { 1627 if (mode & S_ISUID) { 1654 bprm->per_clear |= PER_CLEAR_ 1628 bprm->per_clear |= PER_CLEAR_ON_SETID; 1655 bprm->cred->euid = vfsuid_int !! 1629 bprm->cred->euid = uid; 1656 } 1630 } 1657 1631 1658 if ((mode & (S_ISGID | S_IXGRP)) == ( 1632 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) { 1659 bprm->per_clear |= PER_CLEAR_ 1633 bprm->per_clear |= PER_CLEAR_ON_SETID; 1660 bprm->cred->egid = vfsgid_int !! 1634 bprm->cred->egid = gid; 1661 } 1635 } 1662 } 1636 } 1663 1637 1664 /* 1638 /* 1665 * Compute brpm->cred based upon the final bi 1639 * Compute brpm->cred based upon the final binary. 1666 */ 1640 */ 1667 static int bprm_creds_from_file(struct linux_ 1641 static int bprm_creds_from_file(struct linux_binprm *bprm) 1668 { 1642 { 1669 /* Compute creds based on which file? 1643 /* Compute creds based on which file? */ 1670 struct file *file = bprm->execfd_cred 1644 struct file *file = bprm->execfd_creds ? bprm->executable : bprm->file; 1671 1645 1672 bprm_fill_uid(bprm, file); 1646 bprm_fill_uid(bprm, file); 1673 return security_bprm_creds_from_file( 1647 return security_bprm_creds_from_file(bprm, file); 1674 } 1648 } 1675 1649 1676 /* 1650 /* 1677 * Fill the binprm structure from the inode. 1651 * Fill the binprm structure from the inode. 1678 * Read the first BINPRM_BUF_SIZE bytes 1652 * Read the first BINPRM_BUF_SIZE bytes 1679 * 1653 * 1680 * This may be called multiple times for bina 1654 * This may be called multiple times for binary chains (scripts for example). 1681 */ 1655 */ 1682 static int prepare_binprm(struct linux_binprm 1656 static int prepare_binprm(struct linux_binprm *bprm) 1683 { 1657 { 1684 loff_t pos = 0; 1658 loff_t pos = 0; 1685 1659 1686 memset(bprm->buf, 0, BINPRM_BUF_SIZE) 1660 memset(bprm->buf, 0, BINPRM_BUF_SIZE); 1687 return kernel_read(bprm->file, bprm-> 1661 return kernel_read(bprm->file, bprm->buf, BINPRM_BUF_SIZE, &pos); 1688 } 1662 } 1689 1663 1690 /* 1664 /* 1691 * Arguments are '\0' separated strings found 1665 * Arguments are '\0' separated strings found at the location bprm->p 1692 * points to; chop off the first by relocatin 1666 * points to; chop off the first by relocating brpm->p to right after 1693 * the first '\0' encountered. 1667 * the first '\0' encountered. 1694 */ 1668 */ 1695 int remove_arg_zero(struct linux_binprm *bprm 1669 int remove_arg_zero(struct linux_binprm *bprm) 1696 { 1670 { >> 1671 int ret = 0; 1697 unsigned long offset; 1672 unsigned long offset; 1698 char *kaddr; 1673 char *kaddr; 1699 struct page *page; 1674 struct page *page; 1700 1675 1701 if (!bprm->argc) 1676 if (!bprm->argc) 1702 return 0; 1677 return 0; 1703 1678 1704 do { 1679 do { 1705 offset = bprm->p & ~PAGE_MASK 1680 offset = bprm->p & ~PAGE_MASK; 1706 page = get_arg_page(bprm, bpr 1681 page = get_arg_page(bprm, bprm->p, 0); 1707 if (!page) !! 1682 if (!page) { 1708 return -EFAULT; !! 1683 ret = -EFAULT; 1709 kaddr = kmap_local_page(page) !! 1684 goto out; >> 1685 } >> 1686 kaddr = kmap_atomic(page); 1710 1687 1711 for (; offset < PAGE_SIZE && 1688 for (; offset < PAGE_SIZE && kaddr[offset]; 1712 offset++, bpr 1689 offset++, bprm->p++) 1713 ; 1690 ; 1714 1691 1715 kunmap_local(kaddr); !! 1692 kunmap_atomic(kaddr); 1716 put_arg_page(page); 1693 put_arg_page(page); 1717 } while (offset == PAGE_SIZE); 1694 } while (offset == PAGE_SIZE); 1718 1695 1719 bprm->p++; 1696 bprm->p++; 1720 bprm->argc--; 1697 bprm->argc--; >> 1698 ret = 0; 1721 1699 1722 return 0; !! 1700 out: >> 1701 return ret; 1723 } 1702 } 1724 EXPORT_SYMBOL(remove_arg_zero); 1703 EXPORT_SYMBOL(remove_arg_zero); 1725 1704 1726 #define printable(c) (((c)=='\t') || ((c)=='\ 1705 #define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e)) 1727 /* 1706 /* 1728 * cycle the list of binary formats handler, 1707 * cycle the list of binary formats handler, until one recognizes the image 1729 */ 1708 */ 1730 static int search_binary_handler(struct linux 1709 static int search_binary_handler(struct linux_binprm *bprm) 1731 { 1710 { 1732 bool need_retry = IS_ENABLED(CONFIG_M 1711 bool need_retry = IS_ENABLED(CONFIG_MODULES); 1733 struct linux_binfmt *fmt; 1712 struct linux_binfmt *fmt; 1734 int retval; 1713 int retval; 1735 1714 1736 retval = prepare_binprm(bprm); 1715 retval = prepare_binprm(bprm); 1737 if (retval < 0) 1716 if (retval < 0) 1738 return retval; 1717 return retval; 1739 1718 1740 retval = security_bprm_check(bprm); 1719 retval = security_bprm_check(bprm); 1741 if (retval) 1720 if (retval) 1742 return retval; 1721 return retval; 1743 1722 1744 retval = -ENOENT; 1723 retval = -ENOENT; 1745 retry: 1724 retry: 1746 read_lock(&binfmt_lock); 1725 read_lock(&binfmt_lock); 1747 list_for_each_entry(fmt, &formats, lh 1726 list_for_each_entry(fmt, &formats, lh) { 1748 if (!try_module_get(fmt->modu 1727 if (!try_module_get(fmt->module)) 1749 continue; 1728 continue; 1750 read_unlock(&binfmt_lock); 1729 read_unlock(&binfmt_lock); 1751 1730 1752 retval = fmt->load_binary(bpr 1731 retval = fmt->load_binary(bprm); 1753 1732 1754 read_lock(&binfmt_lock); 1733 read_lock(&binfmt_lock); 1755 put_binfmt(fmt); 1734 put_binfmt(fmt); 1756 if (bprm->point_of_no_return 1735 if (bprm->point_of_no_return || (retval != -ENOEXEC)) { 1757 read_unlock(&binfmt_l 1736 read_unlock(&binfmt_lock); 1758 return retval; 1737 return retval; 1759 } 1738 } 1760 } 1739 } 1761 read_unlock(&binfmt_lock); 1740 read_unlock(&binfmt_lock); 1762 1741 1763 if (need_retry) { 1742 if (need_retry) { 1764 if (printable(bprm->buf[0]) & 1743 if (printable(bprm->buf[0]) && printable(bprm->buf[1]) && 1765 printable(bprm->buf[2]) & 1744 printable(bprm->buf[2]) && printable(bprm->buf[3])) 1766 return retval; 1745 return retval; 1767 if (request_module("binfmt-%0 1746 if (request_module("binfmt-%04x", *(ushort *)(bprm->buf + 2)) < 0) 1768 return retval; 1747 return retval; 1769 need_retry = false; 1748 need_retry = false; 1770 goto retry; 1749 goto retry; 1771 } 1750 } 1772 1751 1773 return retval; 1752 return retval; 1774 } 1753 } 1775 1754 1776 /* binfmt handlers will call back into begin_ << 1777 static int exec_binprm(struct linux_binprm *b 1755 static int exec_binprm(struct linux_binprm *bprm) 1778 { 1756 { 1779 pid_t old_pid, old_vpid; 1757 pid_t old_pid, old_vpid; 1780 int ret, depth; 1758 int ret, depth; 1781 1759 1782 /* Need to fetch pid before load_bina 1760 /* Need to fetch pid before load_binary changes it */ 1783 old_pid = current->pid; 1761 old_pid = current->pid; 1784 rcu_read_lock(); 1762 rcu_read_lock(); 1785 old_vpid = task_pid_nr_ns(current, ta 1763 old_vpid = task_pid_nr_ns(current, task_active_pid_ns(current->parent)); 1786 rcu_read_unlock(); 1764 rcu_read_unlock(); 1787 1765 1788 /* This allows 4 levels of binfmt rew 1766 /* This allows 4 levels of binfmt rewrites before failing hard. */ 1789 for (depth = 0;; depth++) { 1767 for (depth = 0;; depth++) { 1790 struct file *exec; 1768 struct file *exec; 1791 if (depth > 5) 1769 if (depth > 5) 1792 return -ELOOP; 1770 return -ELOOP; 1793 1771 1794 ret = search_binary_handler(b 1772 ret = search_binary_handler(bprm); 1795 if (ret < 0) 1773 if (ret < 0) 1796 return ret; 1774 return ret; 1797 if (!bprm->interpreter) 1775 if (!bprm->interpreter) 1798 break; 1776 break; 1799 1777 1800 exec = bprm->file; 1778 exec = bprm->file; 1801 bprm->file = bprm->interprete 1779 bprm->file = bprm->interpreter; 1802 bprm->interpreter = NULL; 1780 bprm->interpreter = NULL; 1803 1781 >> 1782 allow_write_access(exec); 1804 if (unlikely(bprm->have_execf 1783 if (unlikely(bprm->have_execfd)) { 1805 if (bprm->executable) 1784 if (bprm->executable) { 1806 fput(exec); 1785 fput(exec); 1807 return -ENOEX 1786 return -ENOEXEC; 1808 } 1787 } 1809 bprm->executable = ex 1788 bprm->executable = exec; 1810 } else 1789 } else 1811 fput(exec); 1790 fput(exec); 1812 } 1791 } 1813 1792 1814 audit_bprm(bprm); 1793 audit_bprm(bprm); 1815 trace_sched_process_exec(current, old 1794 trace_sched_process_exec(current, old_pid, bprm); 1816 ptrace_event(PTRACE_EVENT_EXEC, old_v 1795 ptrace_event(PTRACE_EVENT_EXEC, old_vpid); 1817 proc_exec_connector(current); 1796 proc_exec_connector(current); 1818 return 0; 1797 return 0; 1819 } 1798 } 1820 1799 1821 static int bprm_execve(struct linux_binprm *b !! 1800 /* >> 1801 * sys_execve() executes a new program. >> 1802 */ >> 1803 static int bprm_execve(struct linux_binprm *bprm, >> 1804 int fd, struct filename *filename, int flags) 1822 { 1805 { >> 1806 struct file *file; 1823 int retval; 1807 int retval; 1824 1808 1825 retval = prepare_bprm_creds(bprm); 1809 retval = prepare_bprm_creds(bprm); 1826 if (retval) 1810 if (retval) 1827 return retval; 1811 return retval; 1828 1812 1829 /* << 1830 * Check for unsafe execution states << 1831 * will call back into begin_new_exec << 1832 * where setuid-ness is evaluated. << 1833 */ << 1834 check_unsafe_exec(bprm); 1813 check_unsafe_exec(bprm); 1835 current->in_execve = 1; 1814 current->in_execve = 1; 1836 sched_mm_cid_before_execve(current); !! 1815 >> 1816 file = do_open_execat(fd, filename, flags); >> 1817 retval = PTR_ERR(file); >> 1818 if (IS_ERR(file)) >> 1819 goto out_unmark; 1837 1820 1838 sched_exec(); 1821 sched_exec(); 1839 1822 >> 1823 bprm->file = file; >> 1824 /* >> 1825 * Record that a name derived from an O_CLOEXEC fd will be >> 1826 * inaccessible after exec. This allows the code in exec to >> 1827 * choose to fail when the executable is not mmaped into the >> 1828 * interpreter and an open file descriptor is not passed to >> 1829 * the interpreter. This makes for a better user experience >> 1830 * than having the interpreter start and then immediately fail >> 1831 * when it finds the executable is inaccessible. >> 1832 */ >> 1833 if (bprm->fdpath && get_close_on_exec(fd)) >> 1834 bprm->interp_flags |= BINPRM_FLAGS_PATH_INACCESSIBLE; >> 1835 1840 /* Set the unchanging part of bprm->c 1836 /* Set the unchanging part of bprm->cred */ 1841 retval = security_bprm_creds_for_exec 1837 retval = security_bprm_creds_for_exec(bprm); 1842 if (retval) 1838 if (retval) 1843 goto out; 1839 goto out; 1844 1840 1845 retval = ccs_exec_binprm(bprm); 1841 retval = ccs_exec_binprm(bprm); 1846 if (retval < 0) 1842 if (retval < 0) 1847 goto out; 1843 goto out; 1848 1844 1849 sched_mm_cid_after_execve(current); << 1850 /* execve succeeded */ 1845 /* execve succeeded */ 1851 current->fs->in_exec = 0; 1846 current->fs->in_exec = 0; 1852 current->in_execve = 0; 1847 current->in_execve = 0; 1853 rseq_execve(current); 1848 rseq_execve(current); 1854 user_events_execve(current); << 1855 acct_update_integrals(current); 1849 acct_update_integrals(current); 1856 task_numa_free(current, false); 1850 task_numa_free(current, false); 1857 return retval; 1851 return retval; 1858 1852 1859 out: 1853 out: 1860 /* 1854 /* 1861 * If past the point of no return ens 1855 * If past the point of no return ensure the code never 1862 * returns to the userspace process. 1856 * returns to the userspace process. Use an existing fatal 1863 * signal if present otherwise termin 1857 * signal if present otherwise terminate the process with 1864 * SIGSEGV. 1858 * SIGSEGV. 1865 */ 1859 */ 1866 if (bprm->point_of_no_return && !fata 1860 if (bprm->point_of_no_return && !fatal_signal_pending(current)) 1867 force_fatal_sig(SIGSEGV); 1861 force_fatal_sig(SIGSEGV); 1868 1862 1869 sched_mm_cid_after_execve(current); !! 1863 out_unmark: 1870 current->fs->in_exec = 0; 1864 current->fs->in_exec = 0; 1871 current->in_execve = 0; 1865 current->in_execve = 0; 1872 1866 1873 return retval; 1867 return retval; 1874 } 1868 } 1875 1869 1876 static int do_execveat_common(int fd, struct 1870 static int do_execveat_common(int fd, struct filename *filename, 1877 struct user_arg 1871 struct user_arg_ptr argv, 1878 struct user_arg 1872 struct user_arg_ptr envp, 1879 int flags) 1873 int flags) 1880 { 1874 { 1881 struct linux_binprm *bprm; 1875 struct linux_binprm *bprm; 1882 int retval; 1876 int retval; 1883 1877 1884 if (IS_ERR(filename)) 1878 if (IS_ERR(filename)) 1885 return PTR_ERR(filename); 1879 return PTR_ERR(filename); 1886 1880 1887 /* 1881 /* 1888 * We move the actual failure in case 1882 * We move the actual failure in case of RLIMIT_NPROC excess from 1889 * set*uid() to execve() because too 1883 * set*uid() to execve() because too many poorly written programs 1890 * don't check setuid() return code. 1884 * don't check setuid() return code. Here we additionally recheck 1891 * whether NPROC limit is still excee 1885 * whether NPROC limit is still exceeded. 1892 */ 1886 */ 1893 if ((current->flags & PF_NPROC_EXCEED 1887 if ((current->flags & PF_NPROC_EXCEEDED) && 1894 is_rlimit_overlimit(current_ucoun !! 1888 is_ucounts_overlimit(current_ucounts(), UCOUNT_RLIMIT_NPROC, rlimit(RLIMIT_NPROC))) { 1895 retval = -EAGAIN; 1889 retval = -EAGAIN; 1896 goto out_ret; 1890 goto out_ret; 1897 } 1891 } 1898 1892 1899 /* We're below the limit (still or ag 1893 /* We're below the limit (still or again), so we don't want to make 1900 * further execve() calls fail. */ 1894 * further execve() calls fail. */ 1901 current->flags &= ~PF_NPROC_EXCEEDED; 1895 current->flags &= ~PF_NPROC_EXCEEDED; 1902 1896 1903 bprm = alloc_bprm(fd, filename, flags !! 1897 bprm = alloc_bprm(fd, filename); 1904 if (IS_ERR(bprm)) { 1898 if (IS_ERR(bprm)) { 1905 retval = PTR_ERR(bprm); 1899 retval = PTR_ERR(bprm); 1906 goto out_ret; 1900 goto out_ret; 1907 } 1901 } 1908 1902 1909 retval = count(argv, MAX_ARG_STRINGS) 1903 retval = count(argv, MAX_ARG_STRINGS); 1910 if (retval == 0) 1904 if (retval == 0) 1911 pr_warn_once("process '%s' la 1905 pr_warn_once("process '%s' launched '%s' with NULL argv: empty string added\n", 1912 current->comm, b 1906 current->comm, bprm->filename); 1913 if (retval < 0) 1907 if (retval < 0) 1914 goto out_free; 1908 goto out_free; 1915 bprm->argc = retval; 1909 bprm->argc = retval; 1916 1910 1917 retval = count(envp, MAX_ARG_STRINGS) 1911 retval = count(envp, MAX_ARG_STRINGS); 1918 if (retval < 0) 1912 if (retval < 0) 1919 goto out_free; 1913 goto out_free; 1920 bprm->envc = retval; 1914 bprm->envc = retval; 1921 1915 1922 retval = bprm_stack_limits(bprm); 1916 retval = bprm_stack_limits(bprm); 1923 if (retval < 0) 1917 if (retval < 0) 1924 goto out_free; 1918 goto out_free; 1925 1919 1926 retval = copy_string_kernel(bprm->fil 1920 retval = copy_string_kernel(bprm->filename, bprm); 1927 if (retval < 0) 1921 if (retval < 0) 1928 goto out_free; 1922 goto out_free; 1929 bprm->exec = bprm->p; 1923 bprm->exec = bprm->p; 1930 1924 1931 retval = copy_strings(bprm->envc, env 1925 retval = copy_strings(bprm->envc, envp, bprm); 1932 if (retval < 0) 1926 if (retval < 0) 1933 goto out_free; 1927 goto out_free; 1934 1928 1935 retval = copy_strings(bprm->argc, arg 1929 retval = copy_strings(bprm->argc, argv, bprm); 1936 if (retval < 0) 1930 if (retval < 0) 1937 goto out_free; 1931 goto out_free; 1938 1932 1939 /* 1933 /* 1940 * When argv is empty, add an empty s 1934 * When argv is empty, add an empty string ("") as argv[0] to 1941 * ensure confused userspace programs 1935 * ensure confused userspace programs that start processing 1942 * from argv[1] won't end up walking 1936 * from argv[1] won't end up walking envp. See also 1943 * bprm_stack_limits(). 1937 * bprm_stack_limits(). 1944 */ 1938 */ 1945 if (bprm->argc == 0) { 1939 if (bprm->argc == 0) { 1946 retval = copy_string_kernel(" 1940 retval = copy_string_kernel("", bprm); 1947 if (retval < 0) 1941 if (retval < 0) 1948 goto out_free; 1942 goto out_free; 1949 bprm->argc = 1; 1943 bprm->argc = 1; 1950 } 1944 } 1951 1945 1952 retval = bprm_execve(bprm); !! 1946 retval = bprm_execve(bprm, fd, filename, flags); 1953 out_free: 1947 out_free: 1954 free_bprm(bprm); 1948 free_bprm(bprm); 1955 1949 1956 out_ret: 1950 out_ret: 1957 putname(filename); 1951 putname(filename); 1958 return retval; 1952 return retval; 1959 } 1953 } 1960 1954 1961 int kernel_execve(const char *kernel_filename 1955 int kernel_execve(const char *kernel_filename, 1962 const char *const *argv, co 1956 const char *const *argv, const char *const *envp) 1963 { 1957 { 1964 struct filename *filename; 1958 struct filename *filename; 1965 struct linux_binprm *bprm; 1959 struct linux_binprm *bprm; 1966 int fd = AT_FDCWD; 1960 int fd = AT_FDCWD; 1967 int retval; 1961 int retval; 1968 1962 1969 /* It is non-sense for kernel threads !! 1963 if (WARN_ON_ONCE((current->flags & PF_KTHREAD) && 1970 if (WARN_ON_ONCE(current->flags & PF_ !! 1964 (current->worker_private))) 1971 return -EINVAL; 1965 return -EINVAL; 1972 1966 1973 filename = getname_kernel(kernel_file 1967 filename = getname_kernel(kernel_filename); 1974 if (IS_ERR(filename)) 1968 if (IS_ERR(filename)) 1975 return PTR_ERR(filename); 1969 return PTR_ERR(filename); 1976 1970 1977 bprm = alloc_bprm(fd, filename, 0); !! 1971 bprm = alloc_bprm(fd, filename); 1978 if (IS_ERR(bprm)) { 1972 if (IS_ERR(bprm)) { 1979 retval = PTR_ERR(bprm); 1973 retval = PTR_ERR(bprm); 1980 goto out_ret; 1974 goto out_ret; 1981 } 1975 } 1982 1976 1983 retval = count_strings_kernel(argv); 1977 retval = count_strings_kernel(argv); 1984 if (WARN_ON_ONCE(retval == 0)) 1978 if (WARN_ON_ONCE(retval == 0)) 1985 retval = -EINVAL; 1979 retval = -EINVAL; 1986 if (retval < 0) 1980 if (retval < 0) 1987 goto out_free; 1981 goto out_free; 1988 bprm->argc = retval; 1982 bprm->argc = retval; 1989 1983 1990 retval = count_strings_kernel(envp); 1984 retval = count_strings_kernel(envp); 1991 if (retval < 0) 1985 if (retval < 0) 1992 goto out_free; 1986 goto out_free; 1993 bprm->envc = retval; 1987 bprm->envc = retval; 1994 1988 1995 retval = bprm_stack_limits(bprm); 1989 retval = bprm_stack_limits(bprm); 1996 if (retval < 0) 1990 if (retval < 0) 1997 goto out_free; 1991 goto out_free; 1998 1992 1999 retval = copy_string_kernel(bprm->fil 1993 retval = copy_string_kernel(bprm->filename, bprm); 2000 if (retval < 0) 1994 if (retval < 0) 2001 goto out_free; 1995 goto out_free; 2002 bprm->exec = bprm->p; 1996 bprm->exec = bprm->p; 2003 1997 2004 retval = copy_strings_kernel(bprm->en 1998 retval = copy_strings_kernel(bprm->envc, envp, bprm); 2005 if (retval < 0) 1999 if (retval < 0) 2006 goto out_free; 2000 goto out_free; 2007 2001 2008 retval = copy_strings_kernel(bprm->ar 2002 retval = copy_strings_kernel(bprm->argc, argv, bprm); 2009 if (retval < 0) 2003 if (retval < 0) 2010 goto out_free; 2004 goto out_free; 2011 2005 2012 retval = bprm_execve(bprm); !! 2006 retval = bprm_execve(bprm, fd, filename, 0); 2013 out_free: 2007 out_free: 2014 free_bprm(bprm); 2008 free_bprm(bprm); 2015 out_ret: 2009 out_ret: 2016 putname(filename); 2010 putname(filename); 2017 return retval; 2011 return retval; 2018 } 2012 } 2019 2013 2020 static int do_execve(struct filename *filenam 2014 static int do_execve(struct filename *filename, 2021 const char __user *const __user *__ar 2015 const char __user *const __user *__argv, 2022 const char __user *const __user *__en 2016 const char __user *const __user *__envp) 2023 { 2017 { 2024 struct user_arg_ptr argv = { .ptr.nat 2018 struct user_arg_ptr argv = { .ptr.native = __argv }; 2025 struct user_arg_ptr envp = { .ptr.nat 2019 struct user_arg_ptr envp = { .ptr.native = __envp }; 2026 return do_execveat_common(AT_FDCWD, f 2020 return do_execveat_common(AT_FDCWD, filename, argv, envp, 0); 2027 } 2021 } 2028 2022 2029 static int do_execveat(int fd, struct filenam 2023 static int do_execveat(int fd, struct filename *filename, 2030 const char __user *const __us 2024 const char __user *const __user *__argv, 2031 const char __user *const __us 2025 const char __user *const __user *__envp, 2032 int flags) 2026 int flags) 2033 { 2027 { 2034 struct user_arg_ptr argv = { .ptr.nat 2028 struct user_arg_ptr argv = { .ptr.native = __argv }; 2035 struct user_arg_ptr envp = { .ptr.nat 2029 struct user_arg_ptr envp = { .ptr.native = __envp }; 2036 2030 2037 return do_execveat_common(fd, filenam 2031 return do_execveat_common(fd, filename, argv, envp, flags); 2038 } 2032 } 2039 2033 2040 #ifdef CONFIG_COMPAT 2034 #ifdef CONFIG_COMPAT 2041 static int compat_do_execve(struct filename * 2035 static int compat_do_execve(struct filename *filename, 2042 const compat_uptr_t __user *__argv, 2036 const compat_uptr_t __user *__argv, 2043 const compat_uptr_t __user *__envp) 2037 const compat_uptr_t __user *__envp) 2044 { 2038 { 2045 struct user_arg_ptr argv = { 2039 struct user_arg_ptr argv = { 2046 .is_compat = true, 2040 .is_compat = true, 2047 .ptr.compat = __argv, 2041 .ptr.compat = __argv, 2048 }; 2042 }; 2049 struct user_arg_ptr envp = { 2043 struct user_arg_ptr envp = { 2050 .is_compat = true, 2044 .is_compat = true, 2051 .ptr.compat = __envp, 2045 .ptr.compat = __envp, 2052 }; 2046 }; 2053 return do_execveat_common(AT_FDCWD, f 2047 return do_execveat_common(AT_FDCWD, filename, argv, envp, 0); 2054 } 2048 } 2055 2049 2056 static int compat_do_execveat(int fd, struct 2050 static int compat_do_execveat(int fd, struct filename *filename, 2057 const compat_up 2051 const compat_uptr_t __user *__argv, 2058 const compat_up 2052 const compat_uptr_t __user *__envp, 2059 int flags) 2053 int flags) 2060 { 2054 { 2061 struct user_arg_ptr argv = { 2055 struct user_arg_ptr argv = { 2062 .is_compat = true, 2056 .is_compat = true, 2063 .ptr.compat = __argv, 2057 .ptr.compat = __argv, 2064 }; 2058 }; 2065 struct user_arg_ptr envp = { 2059 struct user_arg_ptr envp = { 2066 .is_compat = true, 2060 .is_compat = true, 2067 .ptr.compat = __envp, 2061 .ptr.compat = __envp, 2068 }; 2062 }; 2069 return do_execveat_common(fd, filenam 2063 return do_execveat_common(fd, filename, argv, envp, flags); 2070 } 2064 } 2071 #endif 2065 #endif 2072 2066 2073 void set_binfmt(struct linux_binfmt *new) 2067 void set_binfmt(struct linux_binfmt *new) 2074 { 2068 { 2075 struct mm_struct *mm = current->mm; 2069 struct mm_struct *mm = current->mm; 2076 2070 2077 if (mm->binfmt) 2071 if (mm->binfmt) 2078 module_put(mm->binfmt->module 2072 module_put(mm->binfmt->module); 2079 2073 2080 mm->binfmt = new; 2074 mm->binfmt = new; 2081 if (new) 2075 if (new) 2082 __module_get(new->module); 2076 __module_get(new->module); 2083 } 2077 } 2084 EXPORT_SYMBOL(set_binfmt); 2078 EXPORT_SYMBOL(set_binfmt); 2085 2079 2086 /* 2080 /* 2087 * set_dumpable stores three-value SUID_DUMP_ 2081 * set_dumpable stores three-value SUID_DUMP_* into mm->flags. 2088 */ 2082 */ 2089 void set_dumpable(struct mm_struct *mm, int v 2083 void set_dumpable(struct mm_struct *mm, int value) 2090 { 2084 { 2091 if (WARN_ON((unsigned)value > SUID_DU 2085 if (WARN_ON((unsigned)value > SUID_DUMP_ROOT)) 2092 return; 2086 return; 2093 2087 2094 set_mask_bits(&mm->flags, MMF_DUMPABL 2088 set_mask_bits(&mm->flags, MMF_DUMPABLE_MASK, value); 2095 } 2089 } 2096 2090 2097 SYSCALL_DEFINE3(execve, 2091 SYSCALL_DEFINE3(execve, 2098 const char __user *, filename 2092 const char __user *, filename, 2099 const char __user *const __us 2093 const char __user *const __user *, argv, 2100 const char __user *const __us 2094 const char __user *const __user *, envp) 2101 { 2095 { 2102 return do_execve(getname(filename), a 2096 return do_execve(getname(filename), argv, envp); 2103 } 2097 } 2104 2098 2105 SYSCALL_DEFINE5(execveat, 2099 SYSCALL_DEFINE5(execveat, 2106 int, fd, const char __user *, 2100 int, fd, const char __user *, filename, 2107 const char __user *const __us 2101 const char __user *const __user *, argv, 2108 const char __user *const __us 2102 const char __user *const __user *, envp, 2109 int, flags) 2103 int, flags) 2110 { 2104 { 2111 return do_execveat(fd, 2105 return do_execveat(fd, 2112 getname_uflags(fil 2106 getname_uflags(filename, flags), 2113 argv, envp, flags) 2107 argv, envp, flags); 2114 } 2108 } 2115 2109 2116 #ifdef CONFIG_COMPAT 2110 #ifdef CONFIG_COMPAT 2117 COMPAT_SYSCALL_DEFINE3(execve, const char __u 2111 COMPAT_SYSCALL_DEFINE3(execve, const char __user *, filename, 2118 const compat_uptr_t __user *, argv, 2112 const compat_uptr_t __user *, argv, 2119 const compat_uptr_t __user *, envp) 2113 const compat_uptr_t __user *, envp) 2120 { 2114 { 2121 return compat_do_execve(getname(filen 2115 return compat_do_execve(getname(filename), argv, envp); 2122 } 2116 } 2123 2117 2124 COMPAT_SYSCALL_DEFINE5(execveat, int, fd, 2118 COMPAT_SYSCALL_DEFINE5(execveat, int, fd, 2125 const char __user *, f 2119 const char __user *, filename, 2126 const compat_uptr_t __ 2120 const compat_uptr_t __user *, argv, 2127 const compat_uptr_t __ 2121 const compat_uptr_t __user *, envp, 2128 int, flags) 2122 int, flags) 2129 { 2123 { 2130 return compat_do_execveat(fd, 2124 return compat_do_execveat(fd, 2131 getname_ufl 2125 getname_uflags(filename, flags), 2132 argv, envp, 2126 argv, envp, flags); 2133 } 2127 } 2134 #endif 2128 #endif 2135 2129 2136 #ifdef CONFIG_SYSCTL 2130 #ifdef CONFIG_SYSCTL 2137 2131 2138 static int proc_dointvec_minmax_coredump(cons !! 2132 static int proc_dointvec_minmax_coredump(struct ctl_table *table, int write, 2139 void *buffer, size_t *lenp, l 2133 void *buffer, size_t *lenp, loff_t *ppos) 2140 { 2134 { 2141 int error = proc_dointvec_minmax(tabl 2135 int error = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 2142 2136 2143 if (!error) 2137 if (!error) 2144 validate_coredump_safety(); 2138 validate_coredump_safety(); 2145 return error; 2139 return error; 2146 } 2140 } 2147 2141 2148 static struct ctl_table fs_exec_sysctls[] = { 2142 static struct ctl_table fs_exec_sysctls[] = { 2149 { 2143 { 2150 .procname = "suid_dumpa 2144 .procname = "suid_dumpable", 2151 .data = &suid_dumpa 2145 .data = &suid_dumpable, 2152 .maxlen = sizeof(int) 2146 .maxlen = sizeof(int), 2153 .mode = 0644, 2147 .mode = 0644, 2154 .proc_handler = proc_dointv 2148 .proc_handler = proc_dointvec_minmax_coredump, 2155 .extra1 = SYSCTL_ZERO 2149 .extra1 = SYSCTL_ZERO, 2156 .extra2 = SYSCTL_TWO, 2150 .extra2 = SYSCTL_TWO, 2157 }, 2151 }, >> 2152 { } 2158 }; 2153 }; 2159 2154 2160 static int __init init_fs_exec_sysctls(void) 2155 static int __init init_fs_exec_sysctls(void) 2161 { 2156 { 2162 register_sysctl_init("fs", fs_exec_sy 2157 register_sysctl_init("fs", fs_exec_sysctls); 2163 return 0; 2158 return 0; 2164 } 2159 } 2165 2160 2166 fs_initcall(init_fs_exec_sysctls); 2161 fs_initcall(init_fs_exec_sysctls); 2167 #endif /* CONFIG_SYSCTL */ 2162 #endif /* CONFIG_SYSCTL */ 2168 << 2169 #ifdef CONFIG_EXEC_KUNIT_TEST << 2170 #include "tests/exec_kunit.c" << 2171 #endif << 2172 2163
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.