1 // SPDX-License-Identifier: GPL-2.0-only << 2 /* 1 /* 3 * linux/fs/exec.c 2 * linux/fs/exec.c 4 * 3 * 5 * Copyright (C) 1991, 1992 Linus Torvalds 4 * Copyright (C) 1991, 1992 Linus Torvalds 6 */ 5 */ 7 6 8 /* 7 /* 9 * #!-checking implemented by tytso. 8 * #!-checking implemented by tytso. 10 */ 9 */ 11 /* 10 /* 12 * Demand-loading implemented 01.12.91 - no ne 11 * Demand-loading implemented 01.12.91 - no need to read anything but 13 * the header into memory. The inode of the ex 12 * the header into memory. The inode of the executable is put into 14 * "current->executable", and page faults do t 13 * "current->executable", and page faults do the actual loading. Clean. 15 * 14 * 16 * Once more I can proudly say that linux stoo 15 * Once more I can proudly say that linux stood up to being changed: it 17 * was less than 2 hours work to get demand-lo 16 * was less than 2 hours work to get demand-loading completely implemented. 18 * 17 * 19 * Demand loading changed July 1993 by Eric Yo 18 * Demand loading changed July 1993 by Eric Youngdale. Use mmap instead, 20 * current->executable is only used by the pro 19 * current->executable is only used by the procfs. This allows a dispatch 21 * table to check for several different types 20 * table to check for several different types of binary formats. We keep 22 * trying until we recognize the file or we ru 21 * trying until we recognize the file or we run out of supported binary 23 * formats. 22 * formats. 24 */ 23 */ 25 24 26 #include <linux/kernel_read_file.h> << 27 #include <linux/slab.h> 25 #include <linux/slab.h> 28 #include <linux/file.h> 26 #include <linux/file.h> 29 #include <linux/fdtable.h> 27 #include <linux/fdtable.h> 30 #include <linux/mm.h> 28 #include <linux/mm.h> >> 29 #include <linux/vmacache.h> 31 #include <linux/stat.h> 30 #include <linux/stat.h> 32 #include <linux/fcntl.h> 31 #include <linux/fcntl.h> 33 #include <linux/swap.h> 32 #include <linux/swap.h> 34 #include <linux/string.h> 33 #include <linux/string.h> 35 #include <linux/init.h> 34 #include <linux/init.h> 36 #include <linux/sched/mm.h> 35 #include <linux/sched/mm.h> 37 #include <linux/sched/coredump.h> 36 #include <linux/sched/coredump.h> 38 #include <linux/sched/signal.h> 37 #include <linux/sched/signal.h> 39 #include <linux/sched/numa_balancing.h> 38 #include <linux/sched/numa_balancing.h> 40 #include <linux/sched/task.h> 39 #include <linux/sched/task.h> 41 #include <linux/pagemap.h> 40 #include <linux/pagemap.h> 42 #include <linux/perf_event.h> 41 #include <linux/perf_event.h> 43 #include <linux/highmem.h> 42 #include <linux/highmem.h> 44 #include <linux/spinlock.h> 43 #include <linux/spinlock.h> 45 #include <linux/key.h> 44 #include <linux/key.h> 46 #include <linux/personality.h> 45 #include <linux/personality.h> 47 #include <linux/binfmts.h> 46 #include <linux/binfmts.h> 48 #include <linux/utsname.h> 47 #include <linux/utsname.h> 49 #include <linux/pid_namespace.h> 48 #include <linux/pid_namespace.h> 50 #include <linux/module.h> 49 #include <linux/module.h> 51 #include <linux/namei.h> 50 #include <linux/namei.h> 52 #include <linux/mount.h> 51 #include <linux/mount.h> 53 #include <linux/security.h> 52 #include <linux/security.h> 54 #include <linux/syscalls.h> 53 #include <linux/syscalls.h> 55 #include <linux/tsacct_kern.h> 54 #include <linux/tsacct_kern.h> 56 #include <linux/cn_proc.h> 55 #include <linux/cn_proc.h> 57 #include <linux/audit.h> 56 #include <linux/audit.h> >> 57 #include <linux/tracehook.h> 58 #include <linux/kmod.h> 58 #include <linux/kmod.h> 59 #include <linux/fsnotify.h> 59 #include <linux/fsnotify.h> 60 #include <linux/fs_struct.h> 60 #include <linux/fs_struct.h> >> 61 #include <linux/pipe_fs_i.h> 61 #include <linux/oom.h> 62 #include <linux/oom.h> 62 #include <linux/compat.h> 63 #include <linux/compat.h> 63 #include <linux/vmalloc.h> 64 #include <linux/vmalloc.h> 64 #include <linux/io_uring.h> << 65 #include <linux/syscall_user_dispatch.h> << 66 #include <linux/coredump.h> << 67 #include <linux/time_namespace.h> << 68 #include <linux/user_events.h> << 69 #include <linux/rseq.h> << 70 #include <linux/ksm.h> << 71 65 72 #include <linux/uaccess.h> 66 #include <linux/uaccess.h> 73 #include <asm/mmu_context.h> 67 #include <asm/mmu_context.h> 74 #include <asm/tlb.h> 68 #include <asm/tlb.h> 75 69 76 #include <trace/events/task.h> 70 #include <trace/events/task.h> 77 #include "internal.h" 71 #include "internal.h" 78 72 79 #include <trace/events/sched.h> 73 #include <trace/events/sched.h> 80 74 81 static int bprm_creds_from_file(struct linux_b << 82 << 83 int suid_dumpable = 0; 75 int suid_dumpable = 0; 84 76 85 static LIST_HEAD(formats); 77 static LIST_HEAD(formats); 86 static DEFINE_RWLOCK(binfmt_lock); 78 static DEFINE_RWLOCK(binfmt_lock); 87 79 88 void __register_binfmt(struct linux_binfmt * f 80 void __register_binfmt(struct linux_binfmt * fmt, int insert) 89 { 81 { >> 82 BUG_ON(!fmt); >> 83 if (WARN_ON(!fmt->load_binary)) >> 84 return; 90 write_lock(&binfmt_lock); 85 write_lock(&binfmt_lock); 91 insert ? list_add(&fmt->lh, &formats) 86 insert ? list_add(&fmt->lh, &formats) : 92 list_add_tail(&fmt->lh, &form 87 list_add_tail(&fmt->lh, &formats); 93 write_unlock(&binfmt_lock); 88 write_unlock(&binfmt_lock); 94 } 89 } 95 90 96 EXPORT_SYMBOL(__register_binfmt); 91 EXPORT_SYMBOL(__register_binfmt); 97 92 98 void unregister_binfmt(struct linux_binfmt * f 93 void unregister_binfmt(struct linux_binfmt * fmt) 99 { 94 { 100 write_lock(&binfmt_lock); 95 write_lock(&binfmt_lock); 101 list_del(&fmt->lh); 96 list_del(&fmt->lh); 102 write_unlock(&binfmt_lock); 97 write_unlock(&binfmt_lock); 103 } 98 } 104 99 105 EXPORT_SYMBOL(unregister_binfmt); 100 EXPORT_SYMBOL(unregister_binfmt); 106 101 107 static inline void put_binfmt(struct linux_bin 102 static inline void put_binfmt(struct linux_binfmt * fmt) 108 { 103 { 109 module_put(fmt->module); 104 module_put(fmt->module); 110 } 105 } 111 106 112 bool path_noexec(const struct path *path) 107 bool path_noexec(const struct path *path) 113 { 108 { 114 return (path->mnt->mnt_flags & MNT_NOE 109 return (path->mnt->mnt_flags & MNT_NOEXEC) || 115 (path->mnt->mnt_sb->s_iflags & 110 (path->mnt->mnt_sb->s_iflags & SB_I_NOEXEC); 116 } 111 } 117 112 118 #ifdef CONFIG_USELIB 113 #ifdef CONFIG_USELIB 119 /* 114 /* 120 * Note that a shared library must be both rea 115 * Note that a shared library must be both readable and executable due to 121 * security reasons. 116 * security reasons. 122 * 117 * 123 * Also note that we take the address to load !! 118 * Also note that we take the address to load from from the file itself. 124 */ 119 */ 125 SYSCALL_DEFINE1(uselib, const char __user *, l 120 SYSCALL_DEFINE1(uselib, const char __user *, library) 126 { 121 { 127 struct linux_binfmt *fmt; 122 struct linux_binfmt *fmt; 128 struct file *file; 123 struct file *file; 129 struct filename *tmp = getname(library 124 struct filename *tmp = getname(library); 130 int error = PTR_ERR(tmp); 125 int error = PTR_ERR(tmp); 131 static const struct open_flags uselib_ 126 static const struct open_flags uselib_flags = { 132 .open_flag = O_LARGEFILE | O_R !! 127 .open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC, 133 .acc_mode = MAY_READ | MAY_EXE 128 .acc_mode = MAY_READ | MAY_EXEC, 134 .intent = LOOKUP_OPEN, 129 .intent = LOOKUP_OPEN, 135 .lookup_flags = LOOKUP_FOLLOW, 130 .lookup_flags = LOOKUP_FOLLOW, 136 }; 131 }; 137 132 138 if (IS_ERR(tmp)) 133 if (IS_ERR(tmp)) 139 goto out; 134 goto out; 140 135 141 file = do_filp_open(AT_FDCWD, tmp, &us 136 file = do_filp_open(AT_FDCWD, tmp, &uselib_flags); 142 putname(tmp); 137 putname(tmp); 143 error = PTR_ERR(file); 138 error = PTR_ERR(file); 144 if (IS_ERR(file)) 139 if (IS_ERR(file)) 145 goto out; 140 goto out; 146 141 147 /* !! 142 error = -EINVAL; 148 * Check do_open_execat() for an expla !! 143 if (!S_ISREG(file_inode(file)->i_mode)) 149 */ !! 144 goto exit; >> 145 150 error = -EACCES; 146 error = -EACCES; 151 if (WARN_ON_ONCE(!S_ISREG(file_inode(f !! 147 if (path_noexec(&file->f_path)) 152 path_noexec(&file->f_path)) << 153 goto exit; 148 goto exit; 154 149 >> 150 fsnotify_open(file); >> 151 155 error = -ENOEXEC; 152 error = -ENOEXEC; 156 153 157 read_lock(&binfmt_lock); 154 read_lock(&binfmt_lock); 158 list_for_each_entry(fmt, &formats, lh) 155 list_for_each_entry(fmt, &formats, lh) { 159 if (!fmt->load_shlib) 156 if (!fmt->load_shlib) 160 continue; 157 continue; 161 if (!try_module_get(fmt->modul 158 if (!try_module_get(fmt->module)) 162 continue; 159 continue; 163 read_unlock(&binfmt_lock); 160 read_unlock(&binfmt_lock); 164 error = fmt->load_shlib(file); 161 error = fmt->load_shlib(file); 165 read_lock(&binfmt_lock); 162 read_lock(&binfmt_lock); 166 put_binfmt(fmt); 163 put_binfmt(fmt); 167 if (error != -ENOEXEC) 164 if (error != -ENOEXEC) 168 break; 165 break; 169 } 166 } 170 read_unlock(&binfmt_lock); 167 read_unlock(&binfmt_lock); 171 exit: 168 exit: 172 fput(file); 169 fput(file); 173 out: 170 out: 174 return error; !! 171 return error; 175 } 172 } 176 #endif /* #ifdef CONFIG_USELIB */ 173 #endif /* #ifdef CONFIG_USELIB */ 177 174 178 #ifdef CONFIG_MMU 175 #ifdef CONFIG_MMU 179 /* 176 /* 180 * The nascent bprm->mm is not visible until e 177 * The nascent bprm->mm is not visible until exec_mmap() but it can 181 * use a lot of memory, account these pages in 178 * use a lot of memory, account these pages in current->mm temporary 182 * for oom_badness()->get_mm_rss(). Once exec 179 * for oom_badness()->get_mm_rss(). Once exec succeeds or fails, we 183 * change the counter back via acct_arg_size(0 180 * change the counter back via acct_arg_size(0). 184 */ 181 */ 185 static void acct_arg_size(struct linux_binprm 182 static void acct_arg_size(struct linux_binprm *bprm, unsigned long pages) 186 { 183 { 187 struct mm_struct *mm = current->mm; 184 struct mm_struct *mm = current->mm; 188 long diff = (long)(pages - bprm->vma_p 185 long diff = (long)(pages - bprm->vma_pages); 189 186 190 if (!mm || !diff) 187 if (!mm || !diff) 191 return; 188 return; 192 189 193 bprm->vma_pages = pages; 190 bprm->vma_pages = pages; 194 add_mm_counter(mm, MM_ANONPAGES, diff) 191 add_mm_counter(mm, MM_ANONPAGES, diff); 195 } 192 } 196 193 197 static struct page *get_arg_page(struct linux_ 194 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos, 198 int write) 195 int write) 199 { 196 { 200 struct page *page; 197 struct page *page; 201 struct vm_area_struct *vma = bprm->vma << 202 struct mm_struct *mm = bprm->mm; << 203 int ret; 198 int ret; >> 199 unsigned int gup_flags = FOLL_FORCE; 204 200 205 /* !! 201 #ifdef CONFIG_STACK_GROWSUP 206 * Avoid relying on expanding the stac !! 202 if (write) { 207 * does not work for STACK_GROWSUP any !! 203 ret = expand_downwards(bprm->vma, pos); 208 * by hand ahead of time. !! 204 if (ret < 0) 209 */ << 210 if (write && pos < vma->vm_start) { << 211 mmap_write_lock(mm); << 212 ret = expand_downwards(vma, po << 213 if (unlikely(ret < 0)) { << 214 mmap_write_unlock(mm); << 215 return NULL; 205 return NULL; 216 } !! 206 } 217 mmap_write_downgrade(mm); !! 207 #endif 218 } else !! 208 219 mmap_read_lock(mm); !! 209 if (write) >> 210 gup_flags |= FOLL_WRITE; 220 211 221 /* 212 /* 222 * We are doing an exec(). 'current' 213 * We are doing an exec(). 'current' is the process 223 * doing the exec and 'mm' is the new !! 214 * doing the exec and bprm->mm is the new process's mm. 224 */ 215 */ 225 ret = get_user_pages_remote(mm, pos, 1 !! 216 ret = get_user_pages_remote(current, bprm->mm, pos, 1, gup_flags, 226 write ? FOLL_WRITE : 0 !! 217 &page, NULL, NULL); 227 &page, NULL); << 228 mmap_read_unlock(mm); << 229 if (ret <= 0) 218 if (ret <= 0) 230 return NULL; 219 return NULL; 231 220 232 if (write) !! 221 if (write) { 233 acct_arg_size(bprm, vma_pages( !! 222 unsigned long size = bprm->vma->vm_end - bprm->vma->vm_start; >> 223 unsigned long ptr_size, limit; >> 224 >> 225 /* >> 226 * Since the stack will hold pointers to the strings, we >> 227 * must account for them as well. >> 228 * >> 229 * The size calculation is the entire vma while each arg page is >> 230 * built, so each time we get here it's calculating how far it >> 231 * is currently (rather than each call being just the newly >> 232 * added size from the arg page). As a result, we need to >> 233 * always add the entire size of the pointers, so that on the >> 234 * last call to get_arg_page() we'll actually have the entire >> 235 * correct size. >> 236 */ >> 237 ptr_size = (bprm->argc + bprm->envc) * sizeof(void *); >> 238 if (ptr_size > ULONG_MAX - size) >> 239 goto fail; >> 240 size += ptr_size; >> 241 >> 242 acct_arg_size(bprm, size / PAGE_SIZE); >> 243 >> 244 /* >> 245 * We've historically supported up to 32 pages (ARG_MAX) >> 246 * of argument strings even with small stacks >> 247 */ >> 248 if (size <= ARG_MAX) >> 249 return page; >> 250 >> 251 /* >> 252 * Limit to 1/4 of the max stack size or 3/4 of _STK_LIM >> 253 * (whichever is smaller) for the argv+env strings. >> 254 * This ensures that: >> 255 * - the remaining binfmt code will not run out of stack space, >> 256 * - the program will have a reasonable amount of stack left >> 257 * to work from. >> 258 */ >> 259 limit = _STK_LIM / 4 * 3; >> 260 limit = min(limit, rlimit(RLIMIT_STACK) / 4); >> 261 if (size > limit) >> 262 goto fail; >> 263 } 234 264 235 return page; 265 return page; >> 266 >> 267 fail: >> 268 put_page(page); >> 269 return NULL; 236 } 270 } 237 271 238 static void put_arg_page(struct page *page) 272 static void put_arg_page(struct page *page) 239 { 273 { 240 put_page(page); 274 put_page(page); 241 } 275 } 242 276 243 static void free_arg_pages(struct linux_binprm 277 static void free_arg_pages(struct linux_binprm *bprm) 244 { 278 { 245 } 279 } 246 280 247 static void flush_arg_page(struct linux_binprm 281 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos, 248 struct page *page) 282 struct page *page) 249 { 283 { 250 flush_cache_page(bprm->vma, pos, page_ 284 flush_cache_page(bprm->vma, pos, page_to_pfn(page)); 251 } 285 } 252 286 253 static int __bprm_mm_init(struct linux_binprm 287 static int __bprm_mm_init(struct linux_binprm *bprm) 254 { 288 { 255 int err; 289 int err; 256 struct vm_area_struct *vma = NULL; 290 struct vm_area_struct *vma = NULL; 257 struct mm_struct *mm = bprm->mm; 291 struct mm_struct *mm = bprm->mm; 258 292 259 bprm->vma = vma = vm_area_alloc(mm); !! 293 bprm->vma = vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL); 260 if (!vma) 294 if (!vma) 261 return -ENOMEM; 295 return -ENOMEM; 262 vma_set_anonymous(vma); << 263 296 264 if (mmap_write_lock_killable(mm)) { !! 297 if (down_write_killable(&mm->mmap_sem)) { 265 err = -EINTR; 298 err = -EINTR; 266 goto err_free; 299 goto err_free; 267 } 300 } 268 !! 301 vma->vm_mm = mm; 269 /* << 270 * Need to be called with mmap write l << 271 * held, to avoid race with ksmd. << 272 */ << 273 err = ksm_execve(mm); << 274 if (err) << 275 goto err_ksm; << 276 302 277 /* 303 /* 278 * Place the stack at the largest stac 304 * Place the stack at the largest stack address the architecture 279 * supports. Later, we'll move this to 305 * supports. Later, we'll move this to an appropriate place. We don't 280 * use STACK_TOP because that can depe 306 * use STACK_TOP because that can depend on attributes which aren't 281 * configured yet. 307 * configured yet. 282 */ 308 */ 283 BUILD_BUG_ON(VM_STACK_FLAGS & VM_STACK 309 BUILD_BUG_ON(VM_STACK_FLAGS & VM_STACK_INCOMPLETE_SETUP); 284 vma->vm_end = STACK_TOP_MAX; 310 vma->vm_end = STACK_TOP_MAX; 285 vma->vm_start = vma->vm_end - PAGE_SIZ 311 vma->vm_start = vma->vm_end - PAGE_SIZE; 286 vm_flags_init(vma, VM_SOFTDIRTY | VM_S !! 312 vma->vm_flags = VM_SOFTDIRTY | VM_STACK_FLAGS | VM_STACK_INCOMPLETE_SETUP; 287 vma->vm_page_prot = vm_get_page_prot(v 313 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags); >> 314 INIT_LIST_HEAD(&vma->anon_vma_chain); 288 315 289 err = insert_vm_struct(mm, vma); 316 err = insert_vm_struct(mm, vma); 290 if (err) 317 if (err) 291 goto err; 318 goto err; 292 319 293 mm->stack_vm = mm->total_vm = 1; 320 mm->stack_vm = mm->total_vm = 1; 294 mmap_write_unlock(mm); !! 321 arch_bprm_mm_init(mm, vma); >> 322 up_write(&mm->mmap_sem); 295 bprm->p = vma->vm_end - sizeof(void *) 323 bprm->p = vma->vm_end - sizeof(void *); 296 return 0; 324 return 0; 297 err: 325 err: 298 ksm_exit(mm); !! 326 up_write(&mm->mmap_sem); 299 err_ksm: << 300 mmap_write_unlock(mm); << 301 err_free: 327 err_free: 302 bprm->vma = NULL; 328 bprm->vma = NULL; 303 vm_area_free(vma); !! 329 kmem_cache_free(vm_area_cachep, vma); 304 return err; 330 return err; 305 } 331 } 306 332 307 static bool valid_arg_len(struct linux_binprm 333 static bool valid_arg_len(struct linux_binprm *bprm, long len) 308 { 334 { 309 return len <= MAX_ARG_STRLEN; 335 return len <= MAX_ARG_STRLEN; 310 } 336 } 311 337 312 #else 338 #else 313 339 314 static inline void acct_arg_size(struct linux_ 340 static inline void acct_arg_size(struct linux_binprm *bprm, unsigned long pages) 315 { 341 { 316 } 342 } 317 343 318 static struct page *get_arg_page(struct linux_ 344 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos, 319 int write) 345 int write) 320 { 346 { 321 struct page *page; 347 struct page *page; 322 348 323 page = bprm->page[pos / PAGE_SIZE]; 349 page = bprm->page[pos / PAGE_SIZE]; 324 if (!page && write) { 350 if (!page && write) { 325 page = alloc_page(GFP_HIGHUSER 351 page = alloc_page(GFP_HIGHUSER|__GFP_ZERO); 326 if (!page) 352 if (!page) 327 return NULL; 353 return NULL; 328 bprm->page[pos / PAGE_SIZE] = 354 bprm->page[pos / PAGE_SIZE] = page; 329 } 355 } 330 356 331 return page; 357 return page; 332 } 358 } 333 359 334 static void put_arg_page(struct page *page) 360 static void put_arg_page(struct page *page) 335 { 361 { 336 } 362 } 337 363 338 static void free_arg_page(struct linux_binprm 364 static void free_arg_page(struct linux_binprm *bprm, int i) 339 { 365 { 340 if (bprm->page[i]) { 366 if (bprm->page[i]) { 341 __free_page(bprm->page[i]); 367 __free_page(bprm->page[i]); 342 bprm->page[i] = NULL; 368 bprm->page[i] = NULL; 343 } 369 } 344 } 370 } 345 371 346 static void free_arg_pages(struct linux_binprm 372 static void free_arg_pages(struct linux_binprm *bprm) 347 { 373 { 348 int i; 374 int i; 349 375 350 for (i = 0; i < MAX_ARG_PAGES; i++) 376 for (i = 0; i < MAX_ARG_PAGES; i++) 351 free_arg_page(bprm, i); 377 free_arg_page(bprm, i); 352 } 378 } 353 379 354 static void flush_arg_page(struct linux_binprm 380 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos, 355 struct page *page) 381 struct page *page) 356 { 382 { 357 } 383 } 358 384 359 static int __bprm_mm_init(struct linux_binprm 385 static int __bprm_mm_init(struct linux_binprm *bprm) 360 { 386 { 361 bprm->p = PAGE_SIZE * MAX_ARG_PAGES - 387 bprm->p = PAGE_SIZE * MAX_ARG_PAGES - sizeof(void *); 362 return 0; 388 return 0; 363 } 389 } 364 390 365 static bool valid_arg_len(struct linux_binprm 391 static bool valid_arg_len(struct linux_binprm *bprm, long len) 366 { 392 { 367 return len <= bprm->p; 393 return len <= bprm->p; 368 } 394 } 369 395 370 #endif /* CONFIG_MMU */ 396 #endif /* CONFIG_MMU */ 371 397 372 /* 398 /* 373 * Create a new mm_struct and populate it with 399 * Create a new mm_struct and populate it with a temporary stack 374 * vm_area_struct. We don't have enough conte 400 * vm_area_struct. We don't have enough context at this point to set the stack 375 * flags, permissions, and offset, so we use t 401 * flags, permissions, and offset, so we use temporary values. We'll update 376 * them later in setup_arg_pages(). 402 * them later in setup_arg_pages(). 377 */ 403 */ 378 static int bprm_mm_init(struct linux_binprm *b 404 static int bprm_mm_init(struct linux_binprm *bprm) 379 { 405 { 380 int err; 406 int err; 381 struct mm_struct *mm = NULL; 407 struct mm_struct *mm = NULL; 382 408 383 bprm->mm = mm = mm_alloc(); 409 bprm->mm = mm = mm_alloc(); 384 err = -ENOMEM; 410 err = -ENOMEM; 385 if (!mm) 411 if (!mm) 386 goto err; 412 goto err; 387 413 388 /* Save current stack limit for all ca << 389 task_lock(current->group_leader); << 390 bprm->rlim_stack = current->signal->rl << 391 task_unlock(current->group_leader); << 392 << 393 err = __bprm_mm_init(bprm); 414 err = __bprm_mm_init(bprm); 394 if (err) 415 if (err) 395 goto err; 416 goto err; 396 417 397 return 0; 418 return 0; 398 419 399 err: 420 err: 400 if (mm) { 421 if (mm) { 401 bprm->mm = NULL; 422 bprm->mm = NULL; 402 mmdrop(mm); 423 mmdrop(mm); 403 } 424 } 404 425 405 return err; 426 return err; 406 } 427 } 407 428 408 struct user_arg_ptr { 429 struct user_arg_ptr { 409 #ifdef CONFIG_COMPAT 430 #ifdef CONFIG_COMPAT 410 bool is_compat; 431 bool is_compat; 411 #endif 432 #endif 412 union { 433 union { 413 const char __user *const __use 434 const char __user *const __user *native; 414 #ifdef CONFIG_COMPAT 435 #ifdef CONFIG_COMPAT 415 const compat_uptr_t __user *co 436 const compat_uptr_t __user *compat; 416 #endif 437 #endif 417 } ptr; 438 } ptr; 418 }; 439 }; 419 440 420 static const char __user *get_user_arg_ptr(str 441 static const char __user *get_user_arg_ptr(struct user_arg_ptr argv, int nr) 421 { 442 { 422 const char __user *native; 443 const char __user *native; 423 444 424 #ifdef CONFIG_COMPAT 445 #ifdef CONFIG_COMPAT 425 if (unlikely(argv.is_compat)) { 446 if (unlikely(argv.is_compat)) { 426 compat_uptr_t compat; 447 compat_uptr_t compat; 427 448 428 if (get_user(compat, argv.ptr. 449 if (get_user(compat, argv.ptr.compat + nr)) 429 return ERR_PTR(-EFAULT 450 return ERR_PTR(-EFAULT); 430 451 431 return compat_ptr(compat); 452 return compat_ptr(compat); 432 } 453 } 433 #endif 454 #endif 434 455 435 if (get_user(native, argv.ptr.native + 456 if (get_user(native, argv.ptr.native + nr)) 436 return ERR_PTR(-EFAULT); 457 return ERR_PTR(-EFAULT); 437 458 438 return native; 459 return native; 439 } 460 } 440 461 441 /* 462 /* 442 * count() counts the number of strings in arr 463 * count() counts the number of strings in array ARGV. 443 */ 464 */ 444 static int count(struct user_arg_ptr argv, int 465 static int count(struct user_arg_ptr argv, int max) 445 { 466 { 446 int i = 0; 467 int i = 0; 447 468 448 if (argv.ptr.native != NULL) { 469 if (argv.ptr.native != NULL) { 449 for (;;) { 470 for (;;) { 450 const char __user *p = 471 const char __user *p = get_user_arg_ptr(argv, i); 451 472 452 if (!p) 473 if (!p) 453 break; 474 break; 454 475 455 if (IS_ERR(p)) 476 if (IS_ERR(p)) 456 return -EFAULT 477 return -EFAULT; 457 478 458 if (i >= max) 479 if (i >= max) 459 return -E2BIG; 480 return -E2BIG; 460 ++i; 481 ++i; 461 482 462 if (fatal_signal_pendi 483 if (fatal_signal_pending(current)) 463 return -ERESTA 484 return -ERESTARTNOHAND; 464 cond_resched(); 485 cond_resched(); 465 } 486 } 466 } 487 } 467 return i; 488 return i; 468 } 489 } 469 490 470 static int count_strings_kernel(const char *co << 471 { << 472 int i; << 473 << 474 if (!argv) << 475 return 0; << 476 << 477 for (i = 0; argv[i]; ++i) { << 478 if (i >= MAX_ARG_STRINGS) << 479 return -E2BIG; << 480 if (fatal_signal_pending(curre << 481 return -ERESTARTNOHAND << 482 cond_resched(); << 483 } << 484 return i; << 485 } << 486 << 487 static inline int bprm_set_stack_limit(struct << 488 unsigne << 489 { << 490 #ifdef CONFIG_MMU << 491 /* Avoid a pathological bprm->p. */ << 492 if (bprm->p < limit) << 493 return -E2BIG; << 494 bprm->argmin = bprm->p - limit; << 495 #endif << 496 return 0; << 497 } << 498 static inline bool bprm_hit_stack_limit(struct << 499 { << 500 #ifdef CONFIG_MMU << 501 return bprm->p < bprm->argmin; << 502 #else << 503 return false; << 504 #endif << 505 } << 506 << 507 /* << 508 * Calculate bprm->argmin from: << 509 * - _STK_LIM << 510 * - ARG_MAX << 511 * - bprm->rlim_stack.rlim_cur << 512 * - bprm->argc << 513 * - bprm->envc << 514 * - bprm->p << 515 */ << 516 static int bprm_stack_limits(struct linux_binp << 517 { << 518 unsigned long limit, ptr_size; << 519 << 520 /* << 521 * Limit to 1/4 of the max stack size << 522 * (whichever is smaller) for the argv << 523 * This ensures that: << 524 * - the remaining binfmt code will n << 525 * - the program will have a reasonab << 526 * to work from. << 527 */ << 528 limit = _STK_LIM / 4 * 3; << 529 limit = min(limit, bprm->rlim_stack.rl << 530 /* << 531 * We've historically supported up to << 532 * of argument strings even with small << 533 */ << 534 limit = max_t(unsigned long, limit, AR << 535 /* Reject totally pathological counts. << 536 if (bprm->argc < 0 || bprm->envc < 0) << 537 return -E2BIG; << 538 /* << 539 * We must account for the size of all << 540 * the argv and envp strings, since th << 541 * the stack. They aren't stored until << 542 * signal to the parent that the child << 543 * Instead, calculate it here so it's << 544 * << 545 * In the case of argc = 0, make sure << 546 * empty string (which will bump argc << 547 * userspace programs don't start proc << 548 * argc can never be 0, to keep them f << 549 * See do_execveat_common(). << 550 */ << 551 if (check_add_overflow(max(bprm->argc, << 552 check_mul_overflow(ptr_size, sizeo << 553 return -E2BIG; << 554 if (limit <= ptr_size) << 555 return -E2BIG; << 556 limit -= ptr_size; << 557 << 558 return bprm_set_stack_limit(bprm, limi << 559 } << 560 << 561 /* 491 /* 562 * 'copy_strings()' copies argument/environmen 492 * 'copy_strings()' copies argument/environment strings from the old 563 * processes's memory to the new process's sta 493 * processes's memory to the new process's stack. The call to get_user_pages() 564 * ensures the destination page is created and 494 * ensures the destination page is created and not swapped out. 565 */ 495 */ 566 static int copy_strings(int argc, struct user_ 496 static int copy_strings(int argc, struct user_arg_ptr argv, 567 struct linux_binprm *b 497 struct linux_binprm *bprm) 568 { 498 { 569 struct page *kmapped_page = NULL; 499 struct page *kmapped_page = NULL; 570 char *kaddr = NULL; 500 char *kaddr = NULL; 571 unsigned long kpos = 0; 501 unsigned long kpos = 0; 572 int ret; 502 int ret; 573 503 574 while (argc-- > 0) { 504 while (argc-- > 0) { 575 const char __user *str; 505 const char __user *str; 576 int len; 506 int len; 577 unsigned long pos; 507 unsigned long pos; 578 508 579 ret = -EFAULT; 509 ret = -EFAULT; 580 str = get_user_arg_ptr(argv, a 510 str = get_user_arg_ptr(argv, argc); 581 if (IS_ERR(str)) 511 if (IS_ERR(str)) 582 goto out; 512 goto out; 583 513 584 len = strnlen_user(str, MAX_AR 514 len = strnlen_user(str, MAX_ARG_STRLEN); 585 if (!len) 515 if (!len) 586 goto out; 516 goto out; 587 517 588 ret = -E2BIG; 518 ret = -E2BIG; 589 if (!valid_arg_len(bprm, len)) 519 if (!valid_arg_len(bprm, len)) 590 goto out; 520 goto out; 591 521 592 /* We're going to work our way !! 522 /* We're going to work our way backwords. */ 593 pos = bprm->p; 523 pos = bprm->p; 594 str += len; 524 str += len; 595 bprm->p -= len; 525 bprm->p -= len; 596 if (bprm_hit_stack_limit(bprm) << 597 goto out; << 598 526 599 while (len > 0) { 527 while (len > 0) { 600 int offset, bytes_to_c 528 int offset, bytes_to_copy; 601 529 602 if (fatal_signal_pendi 530 if (fatal_signal_pending(current)) { 603 ret = -ERESTAR 531 ret = -ERESTARTNOHAND; 604 goto out; 532 goto out; 605 } 533 } 606 cond_resched(); 534 cond_resched(); 607 535 608 offset = pos % PAGE_SI 536 offset = pos % PAGE_SIZE; 609 if (offset == 0) 537 if (offset == 0) 610 offset = PAGE_ 538 offset = PAGE_SIZE; 611 539 612 bytes_to_copy = offset 540 bytes_to_copy = offset; 613 if (bytes_to_copy > le 541 if (bytes_to_copy > len) 614 bytes_to_copy 542 bytes_to_copy = len; 615 543 616 offset -= bytes_to_cop 544 offset -= bytes_to_copy; 617 pos -= bytes_to_copy; 545 pos -= bytes_to_copy; 618 str -= bytes_to_copy; 546 str -= bytes_to_copy; 619 len -= bytes_to_copy; 547 len -= bytes_to_copy; 620 548 621 if (!kmapped_page || k 549 if (!kmapped_page || kpos != (pos & PAGE_MASK)) { 622 struct page *p 550 struct page *page; 623 551 624 page = get_arg 552 page = get_arg_page(bprm, pos, 1); 625 if (!page) { 553 if (!page) { 626 ret = 554 ret = -E2BIG; 627 goto o 555 goto out; 628 } 556 } 629 557 630 if (kmapped_pa 558 if (kmapped_page) { 631 flush_ !! 559 flush_kernel_dcache_page(kmapped_page); 632 kunmap !! 560 kunmap(kmapped_page); 633 put_ar 561 put_arg_page(kmapped_page); 634 } 562 } 635 kmapped_page = 563 kmapped_page = page; 636 kaddr = kmap_l !! 564 kaddr = kmap(kmapped_page); 637 kpos = pos & P 565 kpos = pos & PAGE_MASK; 638 flush_arg_page 566 flush_arg_page(bprm, kpos, kmapped_page); 639 } 567 } 640 if (copy_from_user(kad 568 if (copy_from_user(kaddr+offset, str, bytes_to_copy)) { 641 ret = -EFAULT; 569 ret = -EFAULT; 642 goto out; 570 goto out; 643 } 571 } 644 } 572 } 645 } 573 } 646 ret = 0; 574 ret = 0; 647 out: 575 out: 648 if (kmapped_page) { 576 if (kmapped_page) { 649 flush_dcache_page(kmapped_page !! 577 flush_kernel_dcache_page(kmapped_page); 650 kunmap_local(kaddr); !! 578 kunmap(kmapped_page); 651 put_arg_page(kmapped_page); 579 put_arg_page(kmapped_page); 652 } 580 } 653 return ret; 581 return ret; 654 } 582 } 655 583 656 /* 584 /* 657 * Copy and argument/environment string from t !! 585 * Like copy_strings, but get argv and its values from kernel memory. 658 */ 586 */ 659 int copy_string_kernel(const char *arg, struct !! 587 int copy_strings_kernel(int argc, const char *const *__argv, >> 588 struct linux_binprm *bprm) 660 { 589 { 661 int len = strnlen(arg, MAX_ARG_STRLEN) !! 590 int r; 662 unsigned long pos = bprm->p; !! 591 mm_segment_t oldfs = get_fs(); >> 592 struct user_arg_ptr argv = { >> 593 .ptr.native = (const char __user *const __user *)__argv, >> 594 }; >> 595 >> 596 set_fs(KERNEL_DS); >> 597 r = copy_strings(argc, argv, bprm); >> 598 set_fs(oldfs); >> 599 >> 600 return r; >> 601 } >> 602 EXPORT_SYMBOL(copy_strings_kernel); 663 603 664 if (len == 0) !! 604 #ifdef CONFIG_MMU >> 605 >> 606 /* >> 607 * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX. Once >> 608 * the binfmt code determines where the new stack should reside, we shift it to >> 609 * its final location. The process proceeds as follows: >> 610 * >> 611 * 1) Use shift to calculate the new vma endpoints. >> 612 * 2) Extend vma to cover both the old and new ranges. This ensures the >> 613 * arguments passed to subsequent functions are consistent. >> 614 * 3) Move vma's page tables to the new range. >> 615 * 4) Free up any cleared pgd range. >> 616 * 5) Shrink the vma to cover only the new range. >> 617 */ >> 618 static int shift_arg_pages(struct vm_area_struct *vma, unsigned long shift) >> 619 { >> 620 struct mm_struct *mm = vma->vm_mm; >> 621 unsigned long old_start = vma->vm_start; >> 622 unsigned long old_end = vma->vm_end; >> 623 unsigned long length = old_end - old_start; >> 624 unsigned long new_start = old_start - shift; >> 625 unsigned long new_end = old_end - shift; >> 626 struct mmu_gather tlb; >> 627 >> 628 BUG_ON(new_start > new_end); >> 629 >> 630 /* >> 631 * ensure there are no vmas between where we want to go >> 632 * and where we are >> 633 */ >> 634 if (vma != find_vma(mm, new_start)) 665 return -EFAULT; 635 return -EFAULT; 666 if (!valid_arg_len(bprm, len)) << 667 return -E2BIG; << 668 636 669 /* We're going to work our way backwar !! 637 /* 670 arg += len; !! 638 * cover the whole range: [new_start, old_end) 671 bprm->p -= len; !! 639 */ 672 if (bprm_hit_stack_limit(bprm)) !! 640 if (vma_adjust(vma, new_start, old_end, vma->vm_pgoff, NULL)) 673 return -E2BIG; !! 641 return -ENOMEM; 674 !! 642 675 while (len > 0) { !! 643 /* 676 unsigned int bytes_to_copy = m !! 644 * move the page tables downwards, on failure we rely on 677 min_not_zero(o !! 645 * process cleanup to remove whatever mess we made. 678 struct page *page; !! 646 */ 679 !! 647 if (length != move_page_tables(vma, old_start, 680 pos -= bytes_to_copy; !! 648 vma, new_start, length, false)) 681 arg -= bytes_to_copy; !! 649 return -ENOMEM; 682 len -= bytes_to_copy; << 683 650 684 page = get_arg_page(bprm, pos, !! 651 lru_add_drain(); 685 if (!page) !! 652 tlb_gather_mmu(&tlb, mm, old_start, old_end); 686 return -E2BIG; !! 653 if (new_end > old_start) { 687 flush_arg_page(bprm, pos & PAG !! 654 /* 688 memcpy_to_page(page, offset_in !! 655 * when the old and new regions overlap clear from new_end. 689 put_arg_page(page); !! 656 */ >> 657 free_pgd_range(&tlb, new_end, old_end, new_end, >> 658 vma->vm_next ? vma->vm_next->vm_start : USER_PGTABLES_CEILING); >> 659 } else { >> 660 /* >> 661 * otherwise, clean from old_start; this is done to not touch >> 662 * the address space in [new_end, old_start) some architectures >> 663 * have constraints on va-space that make this illegal (IA64) - >> 664 * for the others its just a little faster. >> 665 */ >> 666 free_pgd_range(&tlb, old_start, old_end, new_end, >> 667 vma->vm_next ? vma->vm_next->vm_start : USER_PGTABLES_CEILING); 690 } 668 } >> 669 tlb_finish_mmu(&tlb, old_start, old_end); 691 670 692 return 0; !! 671 /* 693 } !! 672 * Shrink the vma to just the new range. Always succeeds. 694 EXPORT_SYMBOL(copy_string_kernel); !! 673 */ >> 674 vma_adjust(vma, new_start, new_end, vma->vm_pgoff, NULL); 695 675 696 static int copy_strings_kernel(int argc, const << 697 struct linux_bi << 698 { << 699 while (argc-- > 0) { << 700 int ret = copy_string_kernel(a << 701 if (ret < 0) << 702 return ret; << 703 if (fatal_signal_pending(curre << 704 return -ERESTARTNOHAND << 705 cond_resched(); << 706 } << 707 return 0; 676 return 0; 708 } 677 } 709 678 710 #ifdef CONFIG_MMU << 711 << 712 /* 679 /* 713 * Finalizes the stack vm_area_struct. The fla 680 * Finalizes the stack vm_area_struct. The flags and permissions are updated, 714 * the stack is optionally relocated, and some 681 * the stack is optionally relocated, and some extra space is added. 715 */ 682 */ 716 int setup_arg_pages(struct linux_binprm *bprm, 683 int setup_arg_pages(struct linux_binprm *bprm, 717 unsigned long stack_top, 684 unsigned long stack_top, 718 int executable_stack) 685 int executable_stack) 719 { 686 { 720 unsigned long ret; 687 unsigned long ret; 721 unsigned long stack_shift; 688 unsigned long stack_shift; 722 struct mm_struct *mm = current->mm; 689 struct mm_struct *mm = current->mm; 723 struct vm_area_struct *vma = bprm->vma 690 struct vm_area_struct *vma = bprm->vma; 724 struct vm_area_struct *prev = NULL; 691 struct vm_area_struct *prev = NULL; 725 unsigned long vm_flags; 692 unsigned long vm_flags; 726 unsigned long stack_base; 693 unsigned long stack_base; 727 unsigned long stack_size; 694 unsigned long stack_size; 728 unsigned long stack_expand; 695 unsigned long stack_expand; 729 unsigned long rlim_stack; 696 unsigned long rlim_stack; 730 struct mmu_gather tlb; << 731 struct vma_iterator vmi; << 732 697 733 #ifdef CONFIG_STACK_GROWSUP 698 #ifdef CONFIG_STACK_GROWSUP 734 /* Limit stack size */ 699 /* Limit stack size */ 735 stack_base = bprm->rlim_stack.rlim_max !! 700 stack_base = rlimit_max(RLIMIT_STACK); 736 !! 701 if (stack_base > STACK_SIZE_MAX) 737 stack_base = calc_max_stack_size(stack !! 702 stack_base = STACK_SIZE_MAX; 738 703 739 /* Add space for stack randomization. 704 /* Add space for stack randomization. */ 740 if (current->flags & PF_RANDOMIZE) !! 705 stack_base += (STACK_RND_MASK << PAGE_SHIFT); 741 stack_base += (STACK_RND_MASK << 742 706 743 /* Make sure we didn't let the argumen 707 /* Make sure we didn't let the argument array grow too large. */ 744 if (vma->vm_end - vma->vm_start > stac 708 if (vma->vm_end - vma->vm_start > stack_base) 745 return -ENOMEM; 709 return -ENOMEM; 746 710 747 stack_base = PAGE_ALIGN(stack_top - st 711 stack_base = PAGE_ALIGN(stack_top - stack_base); 748 712 749 stack_shift = vma->vm_start - stack_ba 713 stack_shift = vma->vm_start - stack_base; 750 mm->arg_start = bprm->p - stack_shift; 714 mm->arg_start = bprm->p - stack_shift; 751 bprm->p = vma->vm_end - stack_shift; 715 bprm->p = vma->vm_end - stack_shift; 752 #else 716 #else 753 stack_top = arch_align_stack(stack_top 717 stack_top = arch_align_stack(stack_top); 754 stack_top = PAGE_ALIGN(stack_top); 718 stack_top = PAGE_ALIGN(stack_top); 755 719 756 if (unlikely(stack_top < mmap_min_addr 720 if (unlikely(stack_top < mmap_min_addr) || 757 unlikely(vma->vm_end - vma->vm_sta 721 unlikely(vma->vm_end - vma->vm_start >= stack_top - mmap_min_addr)) 758 return -ENOMEM; 722 return -ENOMEM; 759 723 760 stack_shift = vma->vm_end - stack_top; 724 stack_shift = vma->vm_end - stack_top; 761 725 762 bprm->p -= stack_shift; 726 bprm->p -= stack_shift; 763 mm->arg_start = bprm->p; 727 mm->arg_start = bprm->p; 764 #endif 728 #endif 765 729 766 if (bprm->loader) 730 if (bprm->loader) 767 bprm->loader -= stack_shift; 731 bprm->loader -= stack_shift; 768 bprm->exec -= stack_shift; 732 bprm->exec -= stack_shift; 769 733 770 if (mmap_write_lock_killable(mm)) !! 734 if (down_write_killable(&mm->mmap_sem)) 771 return -EINTR; 735 return -EINTR; 772 736 773 vm_flags = VM_STACK_FLAGS; 737 vm_flags = VM_STACK_FLAGS; 774 738 775 /* 739 /* 776 * Adjust stack execute permissions; e 740 * Adjust stack execute permissions; explicitly enable for 777 * EXSTACK_ENABLE_X, disable for EXSTA 741 * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone 778 * (arch default) otherwise. 742 * (arch default) otherwise. 779 */ 743 */ 780 if (unlikely(executable_stack == EXSTA 744 if (unlikely(executable_stack == EXSTACK_ENABLE_X)) 781 vm_flags |= VM_EXEC; 745 vm_flags |= VM_EXEC; 782 else if (executable_stack == EXSTACK_D 746 else if (executable_stack == EXSTACK_DISABLE_X) 783 vm_flags &= ~VM_EXEC; 747 vm_flags &= ~VM_EXEC; 784 vm_flags |= mm->def_flags; 748 vm_flags |= mm->def_flags; 785 vm_flags |= VM_STACK_INCOMPLETE_SETUP; 749 vm_flags |= VM_STACK_INCOMPLETE_SETUP; 786 750 787 vma_iter_init(&vmi, mm, vma->vm_start) !! 751 ret = mprotect_fixup(vma, &prev, vma->vm_start, vma->vm_end, 788 << 789 tlb_gather_mmu(&tlb, mm); << 790 ret = mprotect_fixup(&vmi, &tlb, vma, << 791 vm_flags); 752 vm_flags); 792 tlb_finish_mmu(&tlb); << 793 << 794 if (ret) 753 if (ret) 795 goto out_unlock; 754 goto out_unlock; 796 BUG_ON(prev != vma); 755 BUG_ON(prev != vma); 797 756 798 if (unlikely(vm_flags & VM_EXEC)) { << 799 pr_warn_once("process '%pD4' s << 800 bprm->file); << 801 } << 802 << 803 /* Move stack pages down in memory. */ 757 /* Move stack pages down in memory. */ 804 if (stack_shift) { 758 if (stack_shift) { 805 /* !! 759 ret = shift_arg_pages(vma, stack_shift); 806 * During bprm_mm_init(), we c << 807 * the binfmt code determines << 808 * its final location. << 809 */ << 810 ret = relocate_vma_down(vma, s << 811 if (ret) 760 if (ret) 812 goto out_unlock; 761 goto out_unlock; 813 } 762 } 814 763 815 /* mprotect_fixup is overkill to remov 764 /* mprotect_fixup is overkill to remove the temporary stack flags */ 816 vm_flags_clear(vma, VM_STACK_INCOMPLET !! 765 vma->vm_flags &= ~VM_STACK_INCOMPLETE_SETUP; 817 766 818 stack_expand = 131072UL; /* randomly 3 767 stack_expand = 131072UL; /* randomly 32*4k (or 2*64k) pages */ 819 stack_size = vma->vm_end - vma->vm_sta 768 stack_size = vma->vm_end - vma->vm_start; 820 /* 769 /* 821 * Align this down to a page boundary 770 * Align this down to a page boundary as expand_stack 822 * will align it up. 771 * will align it up. 823 */ 772 */ 824 rlim_stack = bprm->rlim_stack.rlim_cur !! 773 rlim_stack = rlimit(RLIMIT_STACK) & PAGE_MASK; 825 << 826 stack_expand = min(rlim_stack, stack_s << 827 << 828 #ifdef CONFIG_STACK_GROWSUP 774 #ifdef CONFIG_STACK_GROWSUP 829 stack_base = vma->vm_start + stack_exp !! 775 if (stack_size + stack_expand > rlim_stack) >> 776 stack_base = vma->vm_start + rlim_stack; >> 777 else >> 778 stack_base = vma->vm_end + stack_expand; 830 #else 779 #else 831 stack_base = vma->vm_end - stack_expan !! 780 if (stack_size + stack_expand > rlim_stack) >> 781 stack_base = vma->vm_end - rlim_stack; >> 782 else >> 783 stack_base = vma->vm_start - stack_expand; 832 #endif 784 #endif 833 current->mm->start_stack = bprm->p; 785 current->mm->start_stack = bprm->p; 834 ret = expand_stack_locked(vma, stack_b !! 786 ret = expand_stack(vma, stack_base); 835 if (ret) 787 if (ret) 836 ret = -EFAULT; 788 ret = -EFAULT; 837 789 838 out_unlock: 790 out_unlock: 839 mmap_write_unlock(mm); !! 791 up_write(&mm->mmap_sem); 840 return ret; 792 return ret; 841 } 793 } 842 EXPORT_SYMBOL(setup_arg_pages); 794 EXPORT_SYMBOL(setup_arg_pages); 843 795 844 #else 796 #else 845 797 846 /* 798 /* 847 * Transfer the program arguments and environm 799 * Transfer the program arguments and environment from the holding pages 848 * onto the stack. The provided stack pointer 800 * onto the stack. The provided stack pointer is adjusted accordingly. 849 */ 801 */ 850 int transfer_args_to_stack(struct linux_binprm 802 int transfer_args_to_stack(struct linux_binprm *bprm, 851 unsigned long *sp_l 803 unsigned long *sp_location) 852 { 804 { 853 unsigned long index, stop, sp; 805 unsigned long index, stop, sp; 854 int ret = 0; 806 int ret = 0; 855 807 856 stop = bprm->p >> PAGE_SHIFT; 808 stop = bprm->p >> PAGE_SHIFT; 857 sp = *sp_location; 809 sp = *sp_location; 858 810 859 for (index = MAX_ARG_PAGES - 1; index 811 for (index = MAX_ARG_PAGES - 1; index >= stop; index--) { 860 unsigned int offset = index == 812 unsigned int offset = index == stop ? bprm->p & ~PAGE_MASK : 0; 861 char *src = kmap_local_page(bp !! 813 char *src = kmap(bprm->page[index]) + offset; 862 sp -= PAGE_SIZE - offset; 814 sp -= PAGE_SIZE - offset; 863 if (copy_to_user((void *) sp, 815 if (copy_to_user((void *) sp, src, PAGE_SIZE - offset) != 0) 864 ret = -EFAULT; 816 ret = -EFAULT; 865 kunmap_local(src); !! 817 kunmap(bprm->page[index]); 866 if (ret) 818 if (ret) 867 goto out; 819 goto out; 868 } 820 } 869 821 870 bprm->exec += *sp_location - MAX_ARG_P << 871 *sp_location = sp; 822 *sp_location = sp; 872 823 873 out: 824 out: 874 return ret; 825 return ret; 875 } 826 } 876 EXPORT_SYMBOL(transfer_args_to_stack); 827 EXPORT_SYMBOL(transfer_args_to_stack); 877 828 878 #endif /* CONFIG_MMU */ 829 #endif /* CONFIG_MMU */ 879 830 880 /* << 881 * On success, caller must call do_close_execa << 882 * struct file to close it. << 883 */ << 884 static struct file *do_open_execat(int fd, str 831 static struct file *do_open_execat(int fd, struct filename *name, int flags) 885 { 832 { 886 struct file *file; 833 struct file *file; >> 834 int err; 887 struct open_flags open_exec_flags = { 835 struct open_flags open_exec_flags = { 888 .open_flag = O_LARGEFILE | O_R 836 .open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC, 889 .acc_mode = MAY_EXEC, 837 .acc_mode = MAY_EXEC, 890 .intent = LOOKUP_OPEN, 838 .intent = LOOKUP_OPEN, 891 .lookup_flags = LOOKUP_FOLLOW, 839 .lookup_flags = LOOKUP_FOLLOW, 892 }; 840 }; 893 841 894 if ((flags & ~(AT_SYMLINK_NOFOLLOW | A 842 if ((flags & ~(AT_SYMLINK_NOFOLLOW | AT_EMPTY_PATH)) != 0) 895 return ERR_PTR(-EINVAL); 843 return ERR_PTR(-EINVAL); 896 if (flags & AT_SYMLINK_NOFOLLOW) 844 if (flags & AT_SYMLINK_NOFOLLOW) 897 open_exec_flags.lookup_flags & 845 open_exec_flags.lookup_flags &= ~LOOKUP_FOLLOW; 898 if (flags & AT_EMPTY_PATH) 846 if (flags & AT_EMPTY_PATH) 899 open_exec_flags.lookup_flags | 847 open_exec_flags.lookup_flags |= LOOKUP_EMPTY; 900 848 901 file = do_filp_open(fd, name, &open_ex 849 file = do_filp_open(fd, name, &open_exec_flags); 902 if (IS_ERR(file)) 850 if (IS_ERR(file)) 903 return file; !! 851 goto out; 904 852 905 /* !! 853 err = -EACCES; 906 * In the past the regular type check !! 854 if (!S_ISREG(file_inode(file)->i_mode)) 907 * 633fb6ac3980 ("exec: move S_ISREG() !! 855 goto exit; 908 * an invariant that all non-regular f !! 856 909 */ !! 857 if (path_noexec(&file->f_path)) 910 if (WARN_ON_ONCE(!S_ISREG(file_inode(f !! 858 goto exit; 911 path_noexec(&file->f_path)) { !! 859 912 fput(file); !! 860 err = deny_write_access(file); 913 return ERR_PTR(-EACCES); !! 861 if (err) 914 } !! 862 goto exit; 915 863 >> 864 if (name->name[0] != '\0') >> 865 fsnotify_open(file); >> 866 >> 867 out: 916 return file; 868 return file; >> 869 >> 870 exit: >> 871 fput(file); >> 872 return ERR_PTR(err); 917 } 873 } 918 874 919 /** << 920 * open_exec - Open a path name for execution << 921 * << 922 * @name: path name to open with the intent of << 923 * << 924 * Returns ERR_PTR on failure or allocated str << 925 * << 926 * As this is a wrapper for the internal do_op << 927 * do_close_execat(). << 928 */ << 929 struct file *open_exec(const char *name) 875 struct file *open_exec(const char *name) 930 { 876 { 931 struct filename *filename = getname_ke 877 struct filename *filename = getname_kernel(name); 932 struct file *f = ERR_CAST(filename); 878 struct file *f = ERR_CAST(filename); 933 879 934 if (!IS_ERR(filename)) { 880 if (!IS_ERR(filename)) { 935 f = do_open_execat(AT_FDCWD, f 881 f = do_open_execat(AT_FDCWD, filename, 0); 936 putname(filename); 882 putname(filename); 937 } 883 } 938 return f; 884 return f; 939 } 885 } 940 EXPORT_SYMBOL(open_exec); 886 EXPORT_SYMBOL(open_exec); 941 887 942 #if defined(CONFIG_BINFMT_FLAT) || defined(CON !! 888 int kernel_read(struct file *file, loff_t offset, >> 889 char *addr, unsigned long count) >> 890 { >> 891 mm_segment_t old_fs; >> 892 loff_t pos = offset; >> 893 int result; >> 894 >> 895 old_fs = get_fs(); >> 896 set_fs(get_ds()); >> 897 /* The cast to a user pointer is valid due to the set_fs() */ >> 898 result = vfs_read(file, (void __user *)addr, count, &pos); >> 899 set_fs(old_fs); >> 900 return result; >> 901 } >> 902 >> 903 EXPORT_SYMBOL(kernel_read); >> 904 >> 905 int kernel_read_file(struct file *file, void **buf, loff_t *size, >> 906 loff_t max_size, enum kernel_read_file_id id) >> 907 { >> 908 loff_t i_size, pos; >> 909 ssize_t bytes = 0; >> 910 int ret; >> 911 >> 912 if (!S_ISREG(file_inode(file)->i_mode) || max_size < 0) >> 913 return -EINVAL; >> 914 >> 915 ret = security_kernel_read_file(file, id); >> 916 if (ret) >> 917 return ret; >> 918 >> 919 ret = deny_write_access(file); >> 920 if (ret) >> 921 return ret; >> 922 >> 923 i_size = i_size_read(file_inode(file)); >> 924 if (max_size > 0 && i_size > max_size) { >> 925 ret = -EFBIG; >> 926 goto out; >> 927 } >> 928 if (i_size <= 0) { >> 929 ret = -EINVAL; >> 930 goto out; >> 931 } >> 932 >> 933 if (id != READING_FIRMWARE_PREALLOC_BUFFER) >> 934 *buf = vmalloc(i_size); >> 935 if (!*buf) { >> 936 ret = -ENOMEM; >> 937 goto out; >> 938 } >> 939 >> 940 pos = 0; >> 941 while (pos < i_size) { >> 942 bytes = kernel_read(file, pos, (char *)(*buf) + pos, >> 943 i_size - pos); >> 944 if (bytes < 0) { >> 945 ret = bytes; >> 946 goto out; >> 947 } >> 948 >> 949 if (bytes == 0) >> 950 break; >> 951 pos += bytes; >> 952 } >> 953 >> 954 if (pos != i_size) { >> 955 ret = -EIO; >> 956 goto out_free; >> 957 } >> 958 >> 959 ret = security_kernel_post_read_file(file, *buf, i_size, id); >> 960 if (!ret) >> 961 *size = pos; >> 962 >> 963 out_free: >> 964 if (ret < 0) { >> 965 if (id != READING_FIRMWARE_PREALLOC_BUFFER) { >> 966 vfree(*buf); >> 967 *buf = NULL; >> 968 } >> 969 } >> 970 >> 971 out: >> 972 allow_write_access(file); >> 973 return ret; >> 974 } >> 975 EXPORT_SYMBOL_GPL(kernel_read_file); >> 976 >> 977 int kernel_read_file_from_path(char *path, void **buf, loff_t *size, >> 978 loff_t max_size, enum kernel_read_file_id id) >> 979 { >> 980 struct file *file; >> 981 int ret; >> 982 >> 983 if (!path || !*path) >> 984 return -EINVAL; >> 985 >> 986 file = filp_open(path, O_RDONLY, 0); >> 987 if (IS_ERR(file)) >> 988 return PTR_ERR(file); >> 989 >> 990 ret = kernel_read_file(file, buf, size, max_size, id); >> 991 fput(file); >> 992 return ret; >> 993 } >> 994 EXPORT_SYMBOL_GPL(kernel_read_file_from_path); >> 995 >> 996 int kernel_read_file_from_fd(int fd, void **buf, loff_t *size, loff_t max_size, >> 997 enum kernel_read_file_id id) >> 998 { >> 999 struct fd f = fdget(fd); >> 1000 int ret = -EBADF; >> 1001 >> 1002 if (!f.file) >> 1003 goto out; >> 1004 >> 1005 ret = kernel_read_file(f.file, buf, size, max_size, id); >> 1006 out: >> 1007 fdput(f); >> 1008 return ret; >> 1009 } >> 1010 EXPORT_SYMBOL_GPL(kernel_read_file_from_fd); >> 1011 943 ssize_t read_code(struct file *file, unsigned 1012 ssize_t read_code(struct file *file, unsigned long addr, loff_t pos, size_t len) 944 { 1013 { 945 ssize_t res = vfs_read(file, (void __u 1014 ssize_t res = vfs_read(file, (void __user *)addr, len, &pos); 946 if (res > 0) 1015 if (res > 0) 947 flush_icache_user_range(addr, !! 1016 flush_icache_range(addr, addr + len); 948 return res; 1017 return res; 949 } 1018 } 950 EXPORT_SYMBOL(read_code); 1019 EXPORT_SYMBOL(read_code); 951 #endif << 952 1020 953 /* << 954 * Maps the mm_struct mm into the current task << 955 * On success, this function returns with exec << 956 * held for writing. << 957 */ << 958 static int exec_mmap(struct mm_struct *mm) 1021 static int exec_mmap(struct mm_struct *mm) 959 { 1022 { 960 struct task_struct *tsk; 1023 struct task_struct *tsk; 961 struct mm_struct *old_mm, *active_mm; 1024 struct mm_struct *old_mm, *active_mm; 962 int ret; << 963 1025 964 /* Notify parent that we're no longer 1026 /* Notify parent that we're no longer interested in the old VM */ 965 tsk = current; 1027 tsk = current; 966 old_mm = current->mm; 1028 old_mm = current->mm; 967 exec_mm_release(tsk, old_mm); !! 1029 mm_release(tsk, old_mm); 968 << 969 ret = down_write_killable(&tsk->signal << 970 if (ret) << 971 return ret; << 972 1030 973 if (old_mm) { 1031 if (old_mm) { >> 1032 sync_mm_rss(old_mm); 974 /* 1033 /* 975 * If there is a pending fatal !! 1034 * Make sure that if there is a core dump in progress 976 * whose default action is to !! 1035 * for the old mm, we get out and die instead of going 977 * out and die instead of goin !! 1036 * through with the exec. We must hold mmap_sem around >> 1037 * checking core_state and changing tsk->mm. 978 */ 1038 */ 979 ret = mmap_read_lock_killable( !! 1039 down_read(&old_mm->mmap_sem); 980 if (ret) { !! 1040 if (unlikely(old_mm->core_state)) { 981 up_write(&tsk->signal- !! 1041 up_read(&old_mm->mmap_sem); 982 return ret; !! 1042 return -EINTR; 983 } 1043 } 984 } 1044 } 985 << 986 task_lock(tsk); 1045 task_lock(tsk); 987 membarrier_exec_mmap(mm); << 988 << 989 local_irq_disable(); << 990 active_mm = tsk->active_mm; 1046 active_mm = tsk->active_mm; 991 tsk->active_mm = mm; << 992 tsk->mm = mm; 1047 tsk->mm = mm; 993 mm_init_cid(mm); !! 1048 tsk->active_mm = mm; 994 /* << 995 * This prevents preemption while acti << 996 * it and mm are being updated, which << 997 * lazy tlb mm refcounting when these << 998 * switches. Not all architectures can << 999 * activate_mm yet. << 1000 */ << 1001 if (!IS_ENABLED(CONFIG_ARCH_WANT_IRQS << 1002 local_irq_enable(); << 1003 activate_mm(active_mm, mm); 1049 activate_mm(active_mm, mm); 1004 if (IS_ENABLED(CONFIG_ARCH_WANT_IRQS_ !! 1050 tsk->mm->vmacache_seqnum = 0; 1005 local_irq_enable(); !! 1051 vmacache_flush(tsk); 1006 lru_gen_add_mm(mm); << 1007 task_unlock(tsk); 1052 task_unlock(tsk); 1008 lru_gen_use_mm(mm); << 1009 if (old_mm) { 1053 if (old_mm) { 1010 mmap_read_unlock(old_mm); !! 1054 up_read(&old_mm->mmap_sem); 1011 BUG_ON(active_mm != old_mm); 1055 BUG_ON(active_mm != old_mm); 1012 setmax_mm_hiwater_rss(&tsk->s 1056 setmax_mm_hiwater_rss(&tsk->signal->maxrss, old_mm); 1013 mm_update_next_owner(old_mm); 1057 mm_update_next_owner(old_mm); 1014 mmput(old_mm); 1058 mmput(old_mm); 1015 return 0; 1059 return 0; 1016 } 1060 } 1017 mmdrop_lazy_tlb(active_mm); !! 1061 mmdrop(active_mm); 1018 return 0; 1062 return 0; 1019 } 1063 } 1020 1064 >> 1065 /* >> 1066 * This function makes sure the current process has its own signal table, >> 1067 * so that flush_signal_handlers can later reset the handlers without >> 1068 * disturbing other processes. (Other processes might share the signal >> 1069 * table via the CLONE_SIGHAND option to clone().) >> 1070 */ 1021 static int de_thread(struct task_struct *tsk) 1071 static int de_thread(struct task_struct *tsk) 1022 { 1072 { 1023 struct signal_struct *sig = tsk->sign 1073 struct signal_struct *sig = tsk->signal; 1024 struct sighand_struct *oldsighand = t 1074 struct sighand_struct *oldsighand = tsk->sighand; 1025 spinlock_t *lock = &oldsighand->siglo 1075 spinlock_t *lock = &oldsighand->siglock; 1026 1076 1027 if (thread_group_empty(tsk)) 1077 if (thread_group_empty(tsk)) 1028 goto no_thread_group; 1078 goto no_thread_group; 1029 1079 1030 /* 1080 /* 1031 * Kill all other threads in the thre 1081 * Kill all other threads in the thread group. 1032 */ 1082 */ 1033 spin_lock_irq(lock); 1083 spin_lock_irq(lock); 1034 if ((sig->flags & SIGNAL_GROUP_EXIT) !! 1084 if (signal_group_exit(sig)) { 1035 /* 1085 /* 1036 * Another group action in pr 1086 * Another group action in progress, just 1037 * return so that the signal 1087 * return so that the signal is processed. 1038 */ 1088 */ 1039 spin_unlock_irq(lock); 1089 spin_unlock_irq(lock); 1040 return -EAGAIN; 1090 return -EAGAIN; 1041 } 1091 } 1042 1092 1043 sig->group_exec_task = tsk; !! 1093 sig->group_exit_task = tsk; 1044 sig->notify_count = zap_other_threads 1094 sig->notify_count = zap_other_threads(tsk); 1045 if (!thread_group_leader(tsk)) 1095 if (!thread_group_leader(tsk)) 1046 sig->notify_count--; 1096 sig->notify_count--; 1047 1097 1048 while (sig->notify_count) { 1098 while (sig->notify_count) { 1049 __set_current_state(TASK_KILL 1099 __set_current_state(TASK_KILLABLE); 1050 spin_unlock_irq(lock); 1100 spin_unlock_irq(lock); 1051 schedule(); 1101 schedule(); 1052 if (__fatal_signal_pending(ts !! 1102 if (unlikely(__fatal_signal_pending(tsk))) 1053 goto killed; 1103 goto killed; 1054 spin_lock_irq(lock); 1104 spin_lock_irq(lock); 1055 } 1105 } 1056 spin_unlock_irq(lock); 1106 spin_unlock_irq(lock); 1057 1107 1058 /* 1108 /* 1059 * At this point all other threads ha 1109 * At this point all other threads have exited, all we have to 1060 * do is to wait for the thread group 1110 * do is to wait for the thread group leader to become inactive, 1061 * and to assume its PID: 1111 * and to assume its PID: 1062 */ 1112 */ 1063 if (!thread_group_leader(tsk)) { 1113 if (!thread_group_leader(tsk)) { 1064 struct task_struct *leader = 1114 struct task_struct *leader = tsk->group_leader; 1065 1115 1066 for (;;) { 1116 for (;;) { 1067 cgroup_threadgroup_ch 1117 cgroup_threadgroup_change_begin(tsk); 1068 write_lock_irq(&taskl 1118 write_lock_irq(&tasklist_lock); 1069 /* 1119 /* 1070 * Do this under task 1120 * Do this under tasklist_lock to ensure that 1071 * exit_notify() can' !! 1121 * exit_notify() can't miss ->group_exit_task 1072 */ 1122 */ 1073 sig->notify_count = - 1123 sig->notify_count = -1; 1074 if (likely(leader->ex 1124 if (likely(leader->exit_state)) 1075 break; 1125 break; 1076 __set_current_state(T 1126 __set_current_state(TASK_KILLABLE); 1077 write_unlock_irq(&tas 1127 write_unlock_irq(&tasklist_lock); 1078 cgroup_threadgroup_ch 1128 cgroup_threadgroup_change_end(tsk); 1079 schedule(); 1129 schedule(); 1080 if (__fatal_signal_pe !! 1130 if (unlikely(__fatal_signal_pending(tsk))) 1081 goto killed; 1131 goto killed; 1082 } 1132 } 1083 1133 1084 /* 1134 /* 1085 * The only record we have of 1135 * The only record we have of the real-time age of a 1086 * process, regardless of exe 1136 * process, regardless of execs it's done, is start_time. 1087 * All the past CPU time is a 1137 * All the past CPU time is accumulated in signal_struct 1088 * from sister threads now de 1138 * from sister threads now dead. But in this non-leader 1089 * exec, nothing survives fro 1139 * exec, nothing survives from the original leader thread, 1090 * whose birth marks the true 1140 * whose birth marks the true age of this process now. 1091 * When we take on its identi 1141 * When we take on its identity by switching to its PID, we 1092 * also take its birthdate (a 1142 * also take its birthdate (always earlier than our own). 1093 */ 1143 */ 1094 tsk->start_time = leader->sta 1144 tsk->start_time = leader->start_time; 1095 tsk->start_boottime = leader- !! 1145 tsk->real_start_time = leader->real_start_time; 1096 1146 1097 BUG_ON(!same_thread_group(lea 1147 BUG_ON(!same_thread_group(leader, tsk)); >> 1148 BUG_ON(has_group_leader_pid(tsk)); 1098 /* 1149 /* 1099 * An exec() starts a new thr 1150 * An exec() starts a new thread group with the 1100 * TGID of the previous threa 1151 * TGID of the previous thread group. Rehash the 1101 * two threads with a switche 1152 * two threads with a switched PID, and release 1102 * the former thread group le 1153 * the former thread group leader: 1103 */ 1154 */ 1104 1155 1105 /* Become a process group lea 1156 /* Become a process group leader with the old leader's pid. 1106 * The old leader becomes a t 1157 * The old leader becomes a thread of the this thread group. >> 1158 * Note: The old leader also uses this pid until release_task >> 1159 * is called. Odd but simple and correct. 1107 */ 1160 */ 1108 exchange_tids(tsk, leader); !! 1161 tsk->pid = leader->pid; 1109 transfer_pid(leader, tsk, PID !! 1162 change_pid(tsk, PIDTYPE_PID, task_pid(leader)); 1110 transfer_pid(leader, tsk, PID 1163 transfer_pid(leader, tsk, PIDTYPE_PGID); 1111 transfer_pid(leader, tsk, PID 1164 transfer_pid(leader, tsk, PIDTYPE_SID); 1112 1165 1113 list_replace_rcu(&leader->tas 1166 list_replace_rcu(&leader->tasks, &tsk->tasks); 1114 list_replace_init(&leader->si 1167 list_replace_init(&leader->sibling, &tsk->sibling); 1115 1168 1116 tsk->group_leader = tsk; 1169 tsk->group_leader = tsk; 1117 leader->group_leader = tsk; 1170 leader->group_leader = tsk; 1118 1171 1119 tsk->exit_signal = SIGCHLD; 1172 tsk->exit_signal = SIGCHLD; 1120 leader->exit_signal = -1; 1173 leader->exit_signal = -1; 1121 1174 1122 BUG_ON(leader->exit_state != 1175 BUG_ON(leader->exit_state != EXIT_ZOMBIE); 1123 leader->exit_state = EXIT_DEA 1176 leader->exit_state = EXIT_DEAD; >> 1177 1124 /* 1178 /* 1125 * We are going to release_ta 1179 * We are going to release_task()->ptrace_unlink() silently, 1126 * the tracer can sleep in do 1180 * the tracer can sleep in do_wait(). EXIT_DEAD guarantees 1127 * the tracer won't block aga !! 1181 * the tracer wont't block again waiting for this thread. 1128 */ 1182 */ 1129 if (unlikely(leader->ptrace)) 1183 if (unlikely(leader->ptrace)) 1130 __wake_up_parent(lead 1184 __wake_up_parent(leader, leader->parent); 1131 write_unlock_irq(&tasklist_lo 1185 write_unlock_irq(&tasklist_lock); 1132 cgroup_threadgroup_change_end 1186 cgroup_threadgroup_change_end(tsk); 1133 1187 1134 release_task(leader); 1188 release_task(leader); 1135 } 1189 } 1136 1190 1137 sig->group_exec_task = NULL; !! 1191 sig->group_exit_task = NULL; 1138 sig->notify_count = 0; 1192 sig->notify_count = 0; 1139 1193 1140 no_thread_group: 1194 no_thread_group: 1141 /* we have changed execution domain * 1195 /* we have changed execution domain */ 1142 tsk->exit_signal = SIGCHLD; 1196 tsk->exit_signal = SIGCHLD; 1143 1197 1144 BUG_ON(!thread_group_leader(tsk)); !! 1198 #ifdef CONFIG_POSIX_TIMERS 1145 return 0; !! 1199 exit_itimers(sig); 1146 !! 1200 flush_itimer_signals(); 1147 killed: !! 1201 #endif 1148 /* protects against exit_notify() and << 1149 read_lock(&tasklist_lock); << 1150 sig->group_exec_task = NULL; << 1151 sig->notify_count = 0; << 1152 read_unlock(&tasklist_lock); << 1153 return -EAGAIN; << 1154 } << 1155 << 1156 << 1157 /* << 1158 * This function makes sure the current proce << 1159 * so that flush_signal_handlers can later re << 1160 * disturbing other processes. (Other proces << 1161 * table via the CLONE_SIGHAND option to clon << 1162 */ << 1163 static int unshare_sighand(struct task_struct << 1164 { << 1165 struct sighand_struct *oldsighand = m << 1166 1202 1167 if (refcount_read(&oldsighand->count) !! 1203 if (atomic_read(&oldsighand->count) != 1) { 1168 struct sighand_struct *newsig 1204 struct sighand_struct *newsighand; 1169 /* 1205 /* 1170 * This ->sighand is shared w 1206 * This ->sighand is shared with the CLONE_SIGHAND 1171 * but not CLONE_THREAD task, 1207 * but not CLONE_THREAD task, switch to the new one. 1172 */ 1208 */ 1173 newsighand = kmem_cache_alloc 1209 newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL); 1174 if (!newsighand) 1210 if (!newsighand) 1175 return -ENOMEM; 1211 return -ENOMEM; 1176 1212 1177 refcount_set(&newsighand->cou !! 1213 atomic_set(&newsighand->count, 1); >> 1214 memcpy(newsighand->action, oldsighand->action, >> 1215 sizeof(newsighand->action)); 1178 1216 1179 write_lock_irq(&tasklist_lock 1217 write_lock_irq(&tasklist_lock); 1180 spin_lock(&oldsighand->sigloc 1218 spin_lock(&oldsighand->siglock); 1181 memcpy(newsighand->action, ol !! 1219 rcu_assign_pointer(tsk->sighand, newsighand); 1182 sizeof(newsighand->act << 1183 rcu_assign_pointer(me->sighan << 1184 spin_unlock(&oldsighand->sigl 1220 spin_unlock(&oldsighand->siglock); 1185 write_unlock_irq(&tasklist_lo 1221 write_unlock_irq(&tasklist_lock); 1186 1222 1187 __cleanup_sighand(oldsighand) 1223 __cleanup_sighand(oldsighand); 1188 } 1224 } >> 1225 >> 1226 BUG_ON(!thread_group_leader(tsk)); 1189 return 0; 1227 return 0; >> 1228 >> 1229 killed: >> 1230 /* protects against exit_notify() and __exit_signal() */ >> 1231 read_lock(&tasklist_lock); >> 1232 sig->group_exit_task = NULL; >> 1233 sig->notify_count = 0; >> 1234 read_unlock(&tasklist_lock); >> 1235 return -EAGAIN; 1190 } 1236 } 1191 1237 1192 char *__get_task_comm(char *buf, size_t buf_s !! 1238 char *get_task_comm(char *buf, struct task_struct *tsk) 1193 { 1239 { >> 1240 /* buf must be at least sizeof(tsk->comm) in size */ 1194 task_lock(tsk); 1241 task_lock(tsk); 1195 /* Always NUL terminated and zero-pad !! 1242 strncpy(buf, tsk->comm, sizeof(tsk->comm)); 1196 strscpy_pad(buf, tsk->comm, buf_size) << 1197 task_unlock(tsk); 1243 task_unlock(tsk); 1198 return buf; 1244 return buf; 1199 } 1245 } 1200 EXPORT_SYMBOL_GPL(__get_task_comm); !! 1246 EXPORT_SYMBOL_GPL(get_task_comm); 1201 1247 1202 /* 1248 /* 1203 * These functions flushes out all traces of 1249 * These functions flushes out all traces of the currently running executable 1204 * so that a new one can be started 1250 * so that a new one can be started 1205 */ 1251 */ 1206 1252 1207 void __set_task_comm(struct task_struct *tsk, 1253 void __set_task_comm(struct task_struct *tsk, const char *buf, bool exec) 1208 { 1254 { 1209 task_lock(tsk); 1255 task_lock(tsk); 1210 trace_task_rename(tsk, buf); 1256 trace_task_rename(tsk, buf); 1211 strscpy_pad(tsk->comm, buf, sizeof(ts !! 1257 strlcpy(tsk->comm, buf, sizeof(tsk->comm)); 1212 task_unlock(tsk); 1258 task_unlock(tsk); 1213 perf_event_comm(tsk, exec); 1259 perf_event_comm(tsk, exec); 1214 } 1260 } 1215 1261 1216 /* !! 1262 int flush_old_exec(struct linux_binprm * bprm) 1217 * Calling this is the point of no return. No << 1218 * seen by userspace since either the process << 1219 * signal (via de_thread() or coredump), or w << 1220 * (after exec_mmap()) by search_binary_handl << 1221 */ << 1222 int begin_new_exec(struct linux_binprm * bprm << 1223 { 1263 { 1224 struct task_struct *me = current; << 1225 int retval; 1264 int retval; 1226 1265 1227 /* Once we are committed compute the << 1228 retval = bprm_creds_from_file(bprm); << 1229 if (retval) << 1230 return retval; << 1231 << 1232 /* 1266 /* 1233 * This tracepoint marks the point be !! 1267 * Make sure we have a private signal table and that 1234 * the current task is still unchange !! 1268 * we are unassociated from the previous thread group. 1235 * no return). The later "sched_proce << 1236 * the current task has successfully << 1237 */ 1269 */ 1238 trace_sched_prepare_exec(current, bpr !! 1270 retval = de_thread(current); 1239 << 1240 /* << 1241 * Ensure all future errors are fatal << 1242 */ << 1243 bprm->point_of_no_return = true; << 1244 << 1245 /* << 1246 * Make this the only thread in the t << 1247 */ << 1248 retval = de_thread(me); << 1249 if (retval) << 1250 goto out; << 1251 << 1252 /* << 1253 * Cancel any io_uring activity acros << 1254 */ << 1255 io_uring_task_cancel(); << 1256 << 1257 /* Ensure the files table is not shar << 1258 retval = unshare_files(); << 1259 if (retval) 1271 if (retval) 1260 goto out; 1272 goto out; 1261 1273 1262 /* 1274 /* 1263 * Must be called _before_ exec_mmap( 1275 * Must be called _before_ exec_mmap() as bprm->mm is 1264 * not visible until then. Doing it h !! 1276 * not visibile until then. This also enables the update 1265 * we don't race against replace_mm_e !! 1277 * to be lockless. 1266 */ 1278 */ 1267 retval = set_mm_exe_file(bprm->mm, bp !! 1279 set_mm_exe_file(bprm->mm, bprm->file); 1268 if (retval) << 1269 goto out; << 1270 << 1271 /* If the binary is not readable then << 1272 would_dump(bprm, bprm->file); << 1273 if (bprm->have_execfd) << 1274 would_dump(bprm, bprm->execut << 1275 1280 1276 /* 1281 /* 1277 * Release all of the old mmap stuff 1282 * Release all of the old mmap stuff 1278 */ 1283 */ 1279 acct_arg_size(bprm, 0); 1284 acct_arg_size(bprm, 0); 1280 retval = exec_mmap(bprm->mm); 1285 retval = exec_mmap(bprm->mm); 1281 if (retval) 1286 if (retval) 1282 goto out; 1287 goto out; 1283 1288 1284 bprm->mm = NULL; !! 1289 bprm->mm = NULL; /* We're using it now */ 1285 << 1286 retval = exec_task_namespaces(); << 1287 if (retval) << 1288 goto out_unlock; << 1289 << 1290 #ifdef CONFIG_POSIX_TIMERS << 1291 spin_lock_irq(&me->sighand->siglock); << 1292 posix_cpu_timers_exit(me); << 1293 spin_unlock_irq(&me->sighand->siglock << 1294 exit_itimers(me); << 1295 flush_itimer_signals(); << 1296 #endif << 1297 << 1298 /* << 1299 * Make the signal table private. << 1300 */ << 1301 retval = unshare_sighand(me); << 1302 if (retval) << 1303 goto out_unlock; << 1304 1290 1305 me->flags &= ~(PF_RANDOMIZE | PF_FORK !! 1291 set_fs(USER_DS); >> 1292 current->flags &= ~(PF_RANDOMIZE | PF_FORKNOEXEC | PF_KTHREAD | 1306 PF_NO 1293 PF_NOFREEZE | PF_NO_SETAFFINITY); 1307 flush_thread(); 1294 flush_thread(); 1308 me->personality &= ~bprm->per_clear; !! 1295 current->personality &= ~bprm->per_clear; 1309 << 1310 clear_syscall_work_syscall_user_dispa << 1311 1296 1312 /* 1297 /* 1313 * We have to apply CLOEXEC before we 1298 * We have to apply CLOEXEC before we change whether the process is 1314 * dumpable (in setup_new_exec) to av 1299 * dumpable (in setup_new_exec) to avoid a race with a process in userspace 1315 * trying to access the should-be-clo 1300 * trying to access the should-be-closed file descriptors of a process 1316 * undergoing exec(2). 1301 * undergoing exec(2). 1317 */ 1302 */ 1318 do_close_on_exec(me->files); !! 1303 do_close_on_exec(current->files); 1319 << 1320 if (bprm->secureexec) { << 1321 /* Make sure parent cannot si << 1322 me->pdeath_signal = 0; << 1323 << 1324 /* << 1325 * For secureexec, reset the << 1326 * avoid bad behavior from th << 1327 * happen before arch_pick_mm << 1328 * RLIMIT_STACK, but after th << 1329 * needing to clean up the ch << 1330 */ << 1331 if (bprm->rlim_stack.rlim_cur << 1332 bprm->rlim_stack.rlim << 1333 } << 1334 << 1335 me->sas_ss_sp = me->sas_ss_size = 0; << 1336 << 1337 /* << 1338 * Figure out dumpability. Note that << 1339 * is wrong, but userspace depends on << 1340 * bprm->secureexec instead. << 1341 */ << 1342 if (bprm->interp_flags & BINPRM_FLAGS << 1343 !(uid_eq(current_euid(), current_ << 1344 gid_eq(current_egid(), current_ << 1345 set_dumpable(current->mm, sui << 1346 else << 1347 set_dumpable(current->mm, SUI << 1348 << 1349 perf_event_exec(); << 1350 __set_task_comm(me, kbasename(bprm->f << 1351 << 1352 /* An exec changes our domain. We are << 1353 group */ << 1354 WRITE_ONCE(me->self_exec_id, me->self << 1355 flush_signal_handlers(me, 0); << 1356 << 1357 retval = set_cred_ucounts(bprm->cred) << 1358 if (retval < 0) << 1359 goto out_unlock; << 1360 << 1361 /* << 1362 * install the new credentials for th << 1363 */ << 1364 security_bprm_committing_creds(bprm); << 1365 << 1366 commit_creds(bprm->cred); << 1367 bprm->cred = NULL; << 1368 << 1369 /* << 1370 * Disable monitoring for regular use << 1371 * when executing setuid binaries. Mu << 1372 * wait until new credentials are com << 1373 * by commit_creds() above << 1374 */ << 1375 if (get_dumpable(me->mm) != SUID_DUMP << 1376 perf_event_exit_task(me); << 1377 /* << 1378 * cred_guard_mutex must be held at l << 1379 * ptrace_attach() from altering our << 1380 * credentials; any time after this i << 1381 */ << 1382 security_bprm_committed_creds(bprm); << 1383 << 1384 /* Pass the opened binary to the inte << 1385 if (bprm->have_execfd) { << 1386 retval = get_unused_fd_flags( << 1387 if (retval < 0) << 1388 goto out_unlock; << 1389 fd_install(retval, bprm->exec << 1390 bprm->executable = NULL; << 1391 bprm->execfd = retval; << 1392 } << 1393 return 0; 1304 return 0; 1394 1305 1395 out_unlock: << 1396 up_write(&me->signal->exec_update_loc << 1397 if (!bprm->cred) << 1398 mutex_unlock(&me->signal->cre << 1399 << 1400 out: 1306 out: 1401 return retval; 1307 return retval; 1402 } 1308 } 1403 EXPORT_SYMBOL(begin_new_exec); !! 1309 EXPORT_SYMBOL(flush_old_exec); 1404 1310 1405 void would_dump(struct linux_binprm *bprm, st 1311 void would_dump(struct linux_binprm *bprm, struct file *file) 1406 { 1312 { 1407 struct inode *inode = file_inode(file 1313 struct inode *inode = file_inode(file); 1408 struct mnt_idmap *idmap = file_mnt_id !! 1314 if (inode_permission(inode, MAY_READ) < 0) { 1409 if (inode_permission(idmap, inode, MA << 1410 struct user_namespace *old, * 1315 struct user_namespace *old, *user_ns; 1411 bprm->interp_flags |= BINPRM_ 1316 bprm->interp_flags |= BINPRM_FLAGS_ENFORCE_NONDUMP; 1412 1317 1413 /* Ensure mm->user_ns contain 1318 /* Ensure mm->user_ns contains the executable */ 1414 user_ns = old = bprm->mm->use 1319 user_ns = old = bprm->mm->user_ns; 1415 while ((user_ns != &init_user 1320 while ((user_ns != &init_user_ns) && 1416 !privileged_wrt_inode_ !! 1321 !privileged_wrt_inode_uidgid(user_ns, inode)) 1417 user_ns = user_ns->pa 1322 user_ns = user_ns->parent; 1418 1323 1419 if (old != user_ns) { 1324 if (old != user_ns) { 1420 bprm->mm->user_ns = g 1325 bprm->mm->user_ns = get_user_ns(user_ns); 1421 put_user_ns(old); 1326 put_user_ns(old); 1422 } 1327 } 1423 } 1328 } 1424 } 1329 } 1425 EXPORT_SYMBOL(would_dump); 1330 EXPORT_SYMBOL(would_dump); 1426 1331 1427 void setup_new_exec(struct linux_binprm * bpr 1332 void setup_new_exec(struct linux_binprm * bprm) 1428 { 1333 { 1429 /* Setup things that can depend upon !! 1334 arch_pick_mmap_layout(current->mm); 1430 struct task_struct *me = current; !! 1335 >> 1336 /* This is the point of no return */ >> 1337 current->sas_ss_sp = current->sas_ss_size = 0; 1431 1338 1432 arch_pick_mmap_layout(me->mm, &bprm-> !! 1339 if (uid_eq(current_euid(), current_uid()) && gid_eq(current_egid(), current_gid())) >> 1340 set_dumpable(current->mm, SUID_DUMP_USER); >> 1341 else >> 1342 set_dumpable(current->mm, suid_dumpable); 1433 1343 1434 arch_setup_new_exec(); 1344 arch_setup_new_exec(); >> 1345 perf_event_exec(); >> 1346 __set_task_comm(current, kbasename(bprm->filename), true); 1435 1347 1436 /* Set the new mm task size. We have 1348 /* Set the new mm task size. We have to do that late because it may 1437 * depend on TIF_32BIT which is only 1349 * depend on TIF_32BIT which is only updated in flush_thread() on 1438 * some architectures like powerpc 1350 * some architectures like powerpc 1439 */ 1351 */ 1440 me->mm->task_size = TASK_SIZE; !! 1352 current->mm->task_size = TASK_SIZE; 1441 up_write(&me->signal->exec_update_loc << 1442 mutex_unlock(&me->signal->cred_guard_ << 1443 } << 1444 EXPORT_SYMBOL(setup_new_exec); << 1445 1353 1446 /* Runs immediately before start_thread() tak !! 1354 /* install the new credentials */ 1447 void finalize_exec(struct linux_binprm *bprm) !! 1355 if (!uid_eq(bprm->cred->uid, current_euid()) || 1448 { !! 1356 !gid_eq(bprm->cred->gid, current_egid())) { 1449 /* Store any stack rlimit changes bef !! 1357 current->pdeath_signal = 0; 1450 task_lock(current->group_leader); !! 1358 } else { 1451 current->signal->rlim[RLIMIT_STACK] = !! 1359 if (bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP) 1452 task_unlock(current->group_leader); !! 1360 set_dumpable(current->mm, suid_dumpable); >> 1361 } >> 1362 >> 1363 /* An exec changes our domain. We are no longer part of the thread >> 1364 group */ >> 1365 current->self_exec_id++; >> 1366 flush_signal_handlers(current, 0); 1453 } 1367 } 1454 EXPORT_SYMBOL(finalize_exec); !! 1368 EXPORT_SYMBOL(setup_new_exec); 1455 1369 1456 /* 1370 /* 1457 * Prepare credentials and lock ->cred_guard_ 1371 * Prepare credentials and lock ->cred_guard_mutex. 1458 * setup_new_exec() commits the new creds and !! 1372 * install_exec_creds() commits the new creds and drops the lock. 1459 * Or, if exec fails before, free_bprm() shou !! 1373 * Or, if exec fails before, free_bprm() should release ->cred and 1460 * and unlock. 1374 * and unlock. 1461 */ 1375 */ 1462 static int prepare_bprm_creds(struct linux_bi !! 1376 int prepare_bprm_creds(struct linux_binprm *bprm) 1463 { 1377 { 1464 if (mutex_lock_interruptible(¤t 1378 if (mutex_lock_interruptible(¤t->signal->cred_guard_mutex)) 1465 return -ERESTARTNOINTR; 1379 return -ERESTARTNOINTR; 1466 1380 1467 bprm->cred = prepare_exec_creds(); 1381 bprm->cred = prepare_exec_creds(); 1468 if (likely(bprm->cred)) 1382 if (likely(bprm->cred)) 1469 return 0; 1383 return 0; 1470 1384 1471 mutex_unlock(¤t->signal->cred_g 1385 mutex_unlock(¤t->signal->cred_guard_mutex); 1472 return -ENOMEM; 1386 return -ENOMEM; 1473 } 1387 } 1474 1388 1475 /* Matches do_open_execat() */ << 1476 static void do_close_execat(struct file *file << 1477 { << 1478 if (file) << 1479 fput(file); << 1480 } << 1481 << 1482 static void free_bprm(struct linux_binprm *bp 1389 static void free_bprm(struct linux_binprm *bprm) 1483 { 1390 { 1484 if (bprm->mm) { << 1485 acct_arg_size(bprm, 0); << 1486 mmput(bprm->mm); << 1487 } << 1488 free_arg_pages(bprm); 1391 free_arg_pages(bprm); 1489 if (bprm->cred) { 1392 if (bprm->cred) { 1490 mutex_unlock(¤t->signal 1393 mutex_unlock(¤t->signal->cred_guard_mutex); 1491 abort_creds(bprm->cred); 1394 abort_creds(bprm->cred); 1492 } 1395 } 1493 do_close_execat(bprm->file); !! 1396 if (bprm->file) { 1494 if (bprm->executable) !! 1397 allow_write_access(bprm->file); 1495 fput(bprm->executable); !! 1398 fput(bprm->file); >> 1399 } 1496 /* If a binfmt changed the interp, fr 1400 /* If a binfmt changed the interp, free it. */ 1497 if (bprm->interp != bprm->filename) 1401 if (bprm->interp != bprm->filename) 1498 kfree(bprm->interp); 1402 kfree(bprm->interp); 1499 kfree(bprm->fdpath); << 1500 kfree(bprm); 1403 kfree(bprm); 1501 } 1404 } 1502 1405 1503 static struct linux_binprm *alloc_bprm(int fd !! 1406 int bprm_change_interp(char *interp, struct linux_binprm *bprm) 1504 { << 1505 struct linux_binprm *bprm; << 1506 struct file *file; << 1507 int retval = -ENOMEM; << 1508 << 1509 file = do_open_execat(fd, filename, f << 1510 if (IS_ERR(file)) << 1511 return ERR_CAST(file); << 1512 << 1513 bprm = kzalloc(sizeof(*bprm), GFP_KER << 1514 if (!bprm) { << 1515 do_close_execat(file); << 1516 return ERR_PTR(-ENOMEM); << 1517 } << 1518 << 1519 bprm->file = file; << 1520 << 1521 if (fd == AT_FDCWD || filename->name[ << 1522 bprm->filename = filename->na << 1523 } else { << 1524 if (filename->name[0] == '\0' << 1525 bprm->fdpath = kaspri << 1526 else << 1527 bprm->fdpath = kaspri << 1528 << 1529 if (!bprm->fdpath) << 1530 goto out_free; << 1531 << 1532 /* << 1533 * Record that a name derived << 1534 * inaccessible after exec. << 1535 * choose to fail when the ex << 1536 * interpreter and an open fi << 1537 * the interpreter. This mak << 1538 * than having the interprete << 1539 * when it finds the executab << 1540 */ << 1541 if (get_close_on_exec(fd)) << 1542 bprm->interp_flags |= << 1543 << 1544 bprm->filename = bprm->fdpath << 1545 } << 1546 bprm->interp = bprm->filename; << 1547 << 1548 retval = bprm_mm_init(bprm); << 1549 if (!retval) << 1550 return bprm; << 1551 << 1552 out_free: << 1553 free_bprm(bprm); << 1554 return ERR_PTR(retval); << 1555 } << 1556 << 1557 int bprm_change_interp(const char *interp, st << 1558 { 1407 { 1559 /* If a binfmt changed the interp, fr 1408 /* If a binfmt changed the interp, free it first. */ 1560 if (bprm->interp != bprm->filename) 1409 if (bprm->interp != bprm->filename) 1561 kfree(bprm->interp); 1410 kfree(bprm->interp); 1562 bprm->interp = kstrdup(interp, GFP_KE 1411 bprm->interp = kstrdup(interp, GFP_KERNEL); 1563 if (!bprm->interp) 1412 if (!bprm->interp) 1564 return -ENOMEM; 1413 return -ENOMEM; 1565 return 0; 1414 return 0; 1566 } 1415 } 1567 EXPORT_SYMBOL(bprm_change_interp); 1416 EXPORT_SYMBOL(bprm_change_interp); 1568 1417 1569 /* 1418 /* >> 1419 * install the new credentials for this executable >> 1420 */ >> 1421 void install_exec_creds(struct linux_binprm *bprm) >> 1422 { >> 1423 security_bprm_committing_creds(bprm); >> 1424 >> 1425 commit_creds(bprm->cred); >> 1426 bprm->cred = NULL; >> 1427 >> 1428 /* >> 1429 * Disable monitoring for regular users >> 1430 * when executing setuid binaries. Must >> 1431 * wait until new credentials are committed >> 1432 * by commit_creds() above >> 1433 */ >> 1434 if (get_dumpable(current->mm) != SUID_DUMP_USER) >> 1435 perf_event_exit_task(current); >> 1436 /* >> 1437 * cred_guard_mutex must be held at least to this point to prevent >> 1438 * ptrace_attach() from altering our determination of the task's >> 1439 * credentials; any time after this it may be unlocked. >> 1440 */ >> 1441 security_bprm_committed_creds(bprm); >> 1442 mutex_unlock(¤t->signal->cred_guard_mutex); >> 1443 } >> 1444 EXPORT_SYMBOL(install_exec_creds); >> 1445 >> 1446 /* 1570 * determine how safe it is to execute the pr 1447 * determine how safe it is to execute the proposed program 1571 * - the caller must hold ->cred_guard_mutex 1448 * - the caller must hold ->cred_guard_mutex to protect against 1572 * PTRACE_ATTACH or seccomp thread-sync 1449 * PTRACE_ATTACH or seccomp thread-sync 1573 */ 1450 */ 1574 static void check_unsafe_exec(struct linux_bi 1451 static void check_unsafe_exec(struct linux_binprm *bprm) 1575 { 1452 { 1576 struct task_struct *p = current, *t; 1453 struct task_struct *p = current, *t; 1577 unsigned n_fs; 1454 unsigned n_fs; 1578 1455 1579 if (p->ptrace) 1456 if (p->ptrace) 1580 bprm->unsafe |= LSM_UNSAFE_PT 1457 bprm->unsafe |= LSM_UNSAFE_PTRACE; 1581 1458 1582 /* 1459 /* 1583 * This isn't strictly necessary, but 1460 * This isn't strictly necessary, but it makes it harder for LSMs to 1584 * mess up. 1461 * mess up. 1585 */ 1462 */ 1586 if (task_no_new_privs(current)) 1463 if (task_no_new_privs(current)) 1587 bprm->unsafe |= LSM_UNSAFE_NO 1464 bprm->unsafe |= LSM_UNSAFE_NO_NEW_PRIVS; 1588 1465 1589 /* !! 1466 t = p; 1590 * If another task is sharing our fs, << 1591 * suid exec because the differently << 1592 * will be able to manipulate the cur << 1593 * It would be nice to force an unsha << 1594 */ << 1595 n_fs = 1; 1467 n_fs = 1; 1596 spin_lock(&p->fs->lock); 1468 spin_lock(&p->fs->lock); 1597 rcu_read_lock(); 1469 rcu_read_lock(); 1598 for_other_threads(p, t) { !! 1470 while_each_thread(p, t) { 1599 if (t->fs == p->fs) 1471 if (t->fs == p->fs) 1600 n_fs++; 1472 n_fs++; 1601 } 1473 } 1602 rcu_read_unlock(); 1474 rcu_read_unlock(); 1603 1475 1604 /* "users" and "in_exec" locked for c << 1605 if (p->fs->users > n_fs) 1476 if (p->fs->users > n_fs) 1606 bprm->unsafe |= LSM_UNSAFE_SH 1477 bprm->unsafe |= LSM_UNSAFE_SHARE; 1607 else 1478 else 1608 p->fs->in_exec = 1; 1479 p->fs->in_exec = 1; 1609 spin_unlock(&p->fs->lock); 1480 spin_unlock(&p->fs->lock); 1610 } 1481 } 1611 1482 1612 static void bprm_fill_uid(struct linux_binprm !! 1483 static void bprm_fill_uid(struct linux_binprm *bprm) 1613 { 1484 { 1614 /* Handle suid and sgid on files */ !! 1485 struct inode *inode; 1615 struct mnt_idmap *idmap; << 1616 struct inode *inode = file_inode(file << 1617 unsigned int mode; 1486 unsigned int mode; 1618 vfsuid_t vfsuid; !! 1487 kuid_t uid; 1619 vfsgid_t vfsgid; !! 1488 kgid_t gid; 1620 int err; << 1621 1489 1622 if (!mnt_may_suid(file->f_path.mnt)) !! 1490 /* >> 1491 * Since this can be called multiple times (via prepare_binprm), >> 1492 * we must clear any previous work done when setting set[ug]id >> 1493 * bits from any earlier bprm->file uses (for example when run >> 1494 * first for a setuid script then again for its interpreter). >> 1495 */ >> 1496 bprm->cred->euid = current_euid(); >> 1497 bprm->cred->egid = current_egid(); >> 1498 >> 1499 if (!mnt_may_suid(bprm->file->f_path.mnt)) 1623 return; 1500 return; 1624 1501 1625 if (task_no_new_privs(current)) 1502 if (task_no_new_privs(current)) 1626 return; 1503 return; 1627 1504 >> 1505 inode = bprm->file->f_path.dentry->d_inode; 1628 mode = READ_ONCE(inode->i_mode); 1506 mode = READ_ONCE(inode->i_mode); 1629 if (!(mode & (S_ISUID|S_ISGID))) 1507 if (!(mode & (S_ISUID|S_ISGID))) 1630 return; 1508 return; 1631 1509 1632 idmap = file_mnt_idmap(file); << 1633 << 1634 /* Be careful if suid/sgid is set */ 1510 /* Be careful if suid/sgid is set */ 1635 inode_lock(inode); 1511 inode_lock(inode); 1636 1512 1637 /* Atomically reload and check mode/u !! 1513 /* reload atomically mode/uid/gid now that lock held */ 1638 mode = inode->i_mode; 1514 mode = inode->i_mode; 1639 vfsuid = i_uid_into_vfsuid(idmap, ino !! 1515 uid = inode->i_uid; 1640 vfsgid = i_gid_into_vfsgid(idmap, ino !! 1516 gid = inode->i_gid; 1641 err = inode_permission(idmap, inode, << 1642 inode_unlock(inode); 1517 inode_unlock(inode); 1643 1518 1644 /* Did the exec bit vanish out from u << 1645 if (err) << 1646 return; << 1647 << 1648 /* We ignore suid/sgid if there are n 1519 /* We ignore suid/sgid if there are no mappings for them in the ns */ 1649 if (!vfsuid_has_mapping(bprm->cred->u !! 1520 if (!kuid_has_mapping(bprm->cred->user_ns, uid) || 1650 !vfsgid_has_mapping(bprm->cred->u !! 1521 !kgid_has_mapping(bprm->cred->user_ns, gid)) 1651 return; 1522 return; 1652 1523 1653 if (mode & S_ISUID) { 1524 if (mode & S_ISUID) { 1654 bprm->per_clear |= PER_CLEAR_ 1525 bprm->per_clear |= PER_CLEAR_ON_SETID; 1655 bprm->cred->euid = vfsuid_int !! 1526 bprm->cred->euid = uid; 1656 } 1527 } 1657 1528 1658 if ((mode & (S_ISGID | S_IXGRP)) == ( 1529 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) { 1659 bprm->per_clear |= PER_CLEAR_ 1530 bprm->per_clear |= PER_CLEAR_ON_SETID; 1660 bprm->cred->egid = vfsgid_int !! 1531 bprm->cred->egid = gid; 1661 } 1532 } 1662 } 1533 } 1663 1534 1664 /* 1535 /* 1665 * Compute brpm->cred based upon the final bi << 1666 */ << 1667 static int bprm_creds_from_file(struct linux_ << 1668 { << 1669 /* Compute creds based on which file? << 1670 struct file *file = bprm->execfd_cred << 1671 << 1672 bprm_fill_uid(bprm, file); << 1673 return security_bprm_creds_from_file( << 1674 } << 1675 << 1676 /* << 1677 * Fill the binprm structure from the inode. 1536 * Fill the binprm structure from the inode. 1678 * Read the first BINPRM_BUF_SIZE bytes !! 1537 * Check permissions, then read the first 128 (BINPRM_BUF_SIZE) bytes 1679 * 1538 * 1680 * This may be called multiple times for bina 1539 * This may be called multiple times for binary chains (scripts for example). 1681 */ 1540 */ 1682 static int prepare_binprm(struct linux_binprm !! 1541 int prepare_binprm(struct linux_binprm *bprm) 1683 { 1542 { 1684 loff_t pos = 0; !! 1543 int retval; >> 1544 >> 1545 bprm_fill_uid(bprm); >> 1546 >> 1547 /* fill in binprm security blob */ >> 1548 retval = security_bprm_set_creds(bprm); >> 1549 if (retval) >> 1550 return retval; >> 1551 bprm->cred_prepared = 1; 1685 1552 1686 memset(bprm->buf, 0, BINPRM_BUF_SIZE) 1553 memset(bprm->buf, 0, BINPRM_BUF_SIZE); 1687 return kernel_read(bprm->file, bprm-> !! 1554 return kernel_read(bprm->file, 0, bprm->buf, BINPRM_BUF_SIZE); 1688 } 1555 } 1689 1556 >> 1557 EXPORT_SYMBOL(prepare_binprm); >> 1558 1690 /* 1559 /* 1691 * Arguments are '\0' separated strings found 1560 * Arguments are '\0' separated strings found at the location bprm->p 1692 * points to; chop off the first by relocatin 1561 * points to; chop off the first by relocating brpm->p to right after 1693 * the first '\0' encountered. 1562 * the first '\0' encountered. 1694 */ 1563 */ 1695 int remove_arg_zero(struct linux_binprm *bprm 1564 int remove_arg_zero(struct linux_binprm *bprm) 1696 { 1565 { >> 1566 int ret = 0; 1697 unsigned long offset; 1567 unsigned long offset; 1698 char *kaddr; 1568 char *kaddr; 1699 struct page *page; 1569 struct page *page; 1700 1570 1701 if (!bprm->argc) 1571 if (!bprm->argc) 1702 return 0; 1572 return 0; 1703 1573 1704 do { 1574 do { 1705 offset = bprm->p & ~PAGE_MASK 1575 offset = bprm->p & ~PAGE_MASK; 1706 page = get_arg_page(bprm, bpr 1576 page = get_arg_page(bprm, bprm->p, 0); 1707 if (!page) !! 1577 if (!page) { 1708 return -EFAULT; !! 1578 ret = -EFAULT; 1709 kaddr = kmap_local_page(page) !! 1579 goto out; >> 1580 } >> 1581 kaddr = kmap_atomic(page); 1710 1582 1711 for (; offset < PAGE_SIZE && 1583 for (; offset < PAGE_SIZE && kaddr[offset]; 1712 offset++, bpr 1584 offset++, bprm->p++) 1713 ; 1585 ; 1714 1586 1715 kunmap_local(kaddr); !! 1587 kunmap_atomic(kaddr); 1716 put_arg_page(page); 1588 put_arg_page(page); 1717 } while (offset == PAGE_SIZE); 1589 } while (offset == PAGE_SIZE); 1718 1590 1719 bprm->p++; 1591 bprm->p++; 1720 bprm->argc--; 1592 bprm->argc--; >> 1593 ret = 0; 1721 1594 1722 return 0; !! 1595 out: >> 1596 return ret; 1723 } 1597 } 1724 EXPORT_SYMBOL(remove_arg_zero); 1598 EXPORT_SYMBOL(remove_arg_zero); 1725 1599 1726 #define printable(c) (((c)=='\t') || ((c)=='\ 1600 #define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e)) 1727 /* 1601 /* 1728 * cycle the list of binary formats handler, 1602 * cycle the list of binary formats handler, until one recognizes the image 1729 */ 1603 */ 1730 static int search_binary_handler(struct linux !! 1604 int search_binary_handler(struct linux_binprm *bprm) 1731 { 1605 { 1732 bool need_retry = IS_ENABLED(CONFIG_M 1606 bool need_retry = IS_ENABLED(CONFIG_MODULES); 1733 struct linux_binfmt *fmt; 1607 struct linux_binfmt *fmt; 1734 int retval; 1608 int retval; 1735 1609 1736 retval = prepare_binprm(bprm); !! 1610 /* This allows 4 levels of binfmt rewrites before failing hard. */ 1737 if (retval < 0) !! 1611 if (bprm->recursion_depth > 5) 1738 return retval; !! 1612 return -ELOOP; 1739 1613 1740 retval = security_bprm_check(bprm); 1614 retval = security_bprm_check(bprm); 1741 if (retval) 1615 if (retval) 1742 return retval; 1616 return retval; 1743 1617 1744 retval = -ENOENT; 1618 retval = -ENOENT; 1745 retry: 1619 retry: 1746 read_lock(&binfmt_lock); 1620 read_lock(&binfmt_lock); 1747 list_for_each_entry(fmt, &formats, lh 1621 list_for_each_entry(fmt, &formats, lh) { 1748 if (!try_module_get(fmt->modu 1622 if (!try_module_get(fmt->module)) 1749 continue; 1623 continue; 1750 read_unlock(&binfmt_lock); 1624 read_unlock(&binfmt_lock); 1751 !! 1625 bprm->recursion_depth++; 1752 retval = fmt->load_binary(bpr 1626 retval = fmt->load_binary(bprm); 1753 << 1754 read_lock(&binfmt_lock); 1627 read_lock(&binfmt_lock); 1755 put_binfmt(fmt); 1628 put_binfmt(fmt); 1756 if (bprm->point_of_no_return !! 1629 bprm->recursion_depth--; >> 1630 if (retval < 0 && !bprm->mm) { >> 1631 /* we got to flush_old_exec() and failed after it */ >> 1632 read_unlock(&binfmt_lock); >> 1633 force_sigsegv(SIGSEGV, current); >> 1634 return retval; >> 1635 } >> 1636 if (retval != -ENOEXEC || !bprm->file) { 1757 read_unlock(&binfmt_l 1637 read_unlock(&binfmt_lock); 1758 return retval; 1638 return retval; 1759 } 1639 } 1760 } 1640 } 1761 read_unlock(&binfmt_lock); 1641 read_unlock(&binfmt_lock); 1762 1642 1763 if (need_retry) { 1643 if (need_retry) { 1764 if (printable(bprm->buf[0]) & 1644 if (printable(bprm->buf[0]) && printable(bprm->buf[1]) && 1765 printable(bprm->buf[2]) & 1645 printable(bprm->buf[2]) && printable(bprm->buf[3])) 1766 return retval; 1646 return retval; 1767 if (request_module("binfmt-%0 1647 if (request_module("binfmt-%04x", *(ushort *)(bprm->buf + 2)) < 0) 1768 return retval; 1648 return retval; 1769 need_retry = false; 1649 need_retry = false; 1770 goto retry; 1650 goto retry; 1771 } 1651 } 1772 1652 1773 return retval; 1653 return retval; 1774 } 1654 } >> 1655 EXPORT_SYMBOL(search_binary_handler); 1775 1656 1776 /* binfmt handlers will call back into begin_ << 1777 static int exec_binprm(struct linux_binprm *b 1657 static int exec_binprm(struct linux_binprm *bprm) 1778 { 1658 { 1779 pid_t old_pid, old_vpid; 1659 pid_t old_pid, old_vpid; 1780 int ret, depth; !! 1660 int ret; 1781 1661 1782 /* Need to fetch pid before load_bina 1662 /* Need to fetch pid before load_binary changes it */ 1783 old_pid = current->pid; 1663 old_pid = current->pid; 1784 rcu_read_lock(); 1664 rcu_read_lock(); 1785 old_vpid = task_pid_nr_ns(current, ta 1665 old_vpid = task_pid_nr_ns(current, task_active_pid_ns(current->parent)); 1786 rcu_read_unlock(); 1666 rcu_read_unlock(); 1787 1667 1788 /* This allows 4 levels of binfmt rew !! 1668 ret = ccs_search_binary_handler(bprm); 1789 for (depth = 0;; depth++) { !! 1669 if (ret >= 0) { 1790 struct file *exec; !! 1670 audit_bprm(bprm); 1791 if (depth > 5) !! 1671 trace_sched_process_exec(current, old_pid, bprm); 1792 return -ELOOP; !! 1672 ptrace_event(PTRACE_EVENT_EXEC, old_vpid); 1793 !! 1673 proc_exec_connector(current); 1794 ret = search_binary_handler(b << 1795 if (ret < 0) << 1796 return ret; << 1797 if (!bprm->interpreter) << 1798 break; << 1799 << 1800 exec = bprm->file; << 1801 bprm->file = bprm->interprete << 1802 bprm->interpreter = NULL; << 1803 << 1804 if (unlikely(bprm->have_execf << 1805 if (bprm->executable) << 1806 fput(exec); << 1807 return -ENOEX << 1808 } << 1809 bprm->executable = ex << 1810 } else << 1811 fput(exec); << 1812 } 1674 } 1813 1675 1814 audit_bprm(bprm); !! 1676 return ret; 1815 trace_sched_process_exec(current, old << 1816 ptrace_event(PTRACE_EVENT_EXEC, old_v << 1817 proc_exec_connector(current); << 1818 return 0; << 1819 } << 1820 << 1821 static int bprm_execve(struct linux_binprm *b << 1822 { << 1823 int retval; << 1824 << 1825 retval = prepare_bprm_creds(bprm); << 1826 if (retval) << 1827 return retval; << 1828 << 1829 /* << 1830 * Check for unsafe execution states << 1831 * will call back into begin_new_exec << 1832 * where setuid-ness is evaluated. << 1833 */ << 1834 check_unsafe_exec(bprm); << 1835 current->in_execve = 1; << 1836 sched_mm_cid_before_execve(current); << 1837 << 1838 sched_exec(); << 1839 << 1840 /* Set the unchanging part of bprm->c << 1841 retval = security_bprm_creds_for_exec << 1842 if (retval) << 1843 goto out; << 1844 << 1845 retval = ccs_exec_binprm(bprm); << 1846 if (retval < 0) << 1847 goto out; << 1848 << 1849 sched_mm_cid_after_execve(current); << 1850 /* execve succeeded */ << 1851 current->fs->in_exec = 0; << 1852 current->in_execve = 0; << 1853 rseq_execve(current); << 1854 user_events_execve(current); << 1855 acct_update_integrals(current); << 1856 task_numa_free(current, false); << 1857 return retval; << 1858 << 1859 out: << 1860 /* << 1861 * If past the point of no return ens << 1862 * returns to the userspace process. << 1863 * signal if present otherwise termin << 1864 * SIGSEGV. << 1865 */ << 1866 if (bprm->point_of_no_return && !fata << 1867 force_fatal_sig(SIGSEGV); << 1868 << 1869 sched_mm_cid_after_execve(current); << 1870 current->fs->in_exec = 0; << 1871 current->in_execve = 0; << 1872 << 1873 return retval; << 1874 } 1677 } 1875 1678 >> 1679 /* >> 1680 * sys_execve() executes a new program. >> 1681 */ 1876 static int do_execveat_common(int fd, struct 1682 static int do_execveat_common(int fd, struct filename *filename, 1877 struct user_arg 1683 struct user_arg_ptr argv, 1878 struct user_arg 1684 struct user_arg_ptr envp, 1879 int flags) 1685 int flags) 1880 { 1686 { >> 1687 char *pathbuf = NULL; 1881 struct linux_binprm *bprm; 1688 struct linux_binprm *bprm; >> 1689 struct file *file; >> 1690 struct files_struct *displaced; 1882 int retval; 1691 int retval; 1883 1692 1884 if (IS_ERR(filename)) 1693 if (IS_ERR(filename)) 1885 return PTR_ERR(filename); 1694 return PTR_ERR(filename); 1886 1695 1887 /* 1696 /* 1888 * We move the actual failure in case 1697 * We move the actual failure in case of RLIMIT_NPROC excess from 1889 * set*uid() to execve() because too 1698 * set*uid() to execve() because too many poorly written programs 1890 * don't check setuid() return code. 1699 * don't check setuid() return code. Here we additionally recheck 1891 * whether NPROC limit is still excee 1700 * whether NPROC limit is still exceeded. 1892 */ 1701 */ 1893 if ((current->flags & PF_NPROC_EXCEED 1702 if ((current->flags & PF_NPROC_EXCEEDED) && 1894 is_rlimit_overlimit(current_ucoun !! 1703 atomic_read(¤t_user()->processes) > rlimit(RLIMIT_NPROC)) { 1895 retval = -EAGAIN; 1704 retval = -EAGAIN; 1896 goto out_ret; 1705 goto out_ret; 1897 } 1706 } 1898 1707 1899 /* We're below the limit (still or ag 1708 /* We're below the limit (still or again), so we don't want to make 1900 * further execve() calls fail. */ 1709 * further execve() calls fail. */ 1901 current->flags &= ~PF_NPROC_EXCEEDED; 1710 current->flags &= ~PF_NPROC_EXCEEDED; 1902 1711 1903 bprm = alloc_bprm(fd, filename, flags !! 1712 retval = unshare_files(&displaced); 1904 if (IS_ERR(bprm)) { !! 1713 if (retval) 1905 retval = PTR_ERR(bprm); << 1906 goto out_ret; 1714 goto out_ret; 1907 } << 1908 1715 1909 retval = count(argv, MAX_ARG_STRINGS) !! 1716 retval = -ENOMEM; 1910 if (retval == 0) !! 1717 bprm = kzalloc(sizeof(*bprm), GFP_KERNEL); 1911 pr_warn_once("process '%s' la !! 1718 if (!bprm) 1912 current->comm, b !! 1719 goto out_files; 1913 if (retval < 0) << 1914 goto out_free; << 1915 bprm->argc = retval; << 1916 << 1917 retval = count(envp, MAX_ARG_STRINGS) << 1918 if (retval < 0) << 1919 goto out_free; << 1920 bprm->envc = retval; << 1921 1720 1922 retval = bprm_stack_limits(bprm); !! 1721 retval = prepare_bprm_creds(bprm); 1923 if (retval < 0) !! 1722 if (retval) 1924 goto out_free; 1723 goto out_free; 1925 1724 1926 retval = copy_string_kernel(bprm->fil !! 1725 check_unsafe_exec(bprm); 1927 if (retval < 0) !! 1726 current->in_execve = 1; 1928 goto out_free; << 1929 bprm->exec = bprm->p; << 1930 1727 1931 retval = copy_strings(bprm->envc, env !! 1728 file = do_open_execat(fd, filename, flags); 1932 if (retval < 0) !! 1729 retval = PTR_ERR(file); 1933 goto out_free; !! 1730 if (IS_ERR(file)) >> 1731 goto out_unmark; 1934 1732 1935 retval = copy_strings(bprm->argc, arg !! 1733 sched_exec(); 1936 if (retval < 0) << 1937 goto out_free; << 1938 1734 1939 /* !! 1735 bprm->file = file; 1940 * When argv is empty, add an empty s !! 1736 if (fd == AT_FDCWD || filename->name[0] == '/') { 1941 * ensure confused userspace programs !! 1737 bprm->filename = filename->name; 1942 * from argv[1] won't end up walking !! 1738 } else { 1943 * bprm_stack_limits(). !! 1739 if (filename->name[0] == '\0') 1944 */ !! 1740 pathbuf = kasprintf(GFP_TEMPORARY, "/dev/fd/%d", fd); 1945 if (bprm->argc == 0) { !! 1741 else 1946 retval = copy_string_kernel(" !! 1742 pathbuf = kasprintf(GFP_TEMPORARY, "/dev/fd/%d/%s", 1947 if (retval < 0) !! 1743 fd, filename->name); 1948 goto out_free; !! 1744 if (!pathbuf) { 1949 bprm->argc = 1; !! 1745 retval = -ENOMEM; >> 1746 goto out_unmark; >> 1747 } >> 1748 /* >> 1749 * Record that a name derived from an O_CLOEXEC fd will be >> 1750 * inaccessible after exec. Relies on having exclusive access to >> 1751 * current->files (due to unshare_files above). >> 1752 */ >> 1753 if (close_on_exec(fd, rcu_dereference_raw(current->files->fdt))) >> 1754 bprm->interp_flags |= BINPRM_FLAGS_PATH_INACCESSIBLE; >> 1755 bprm->filename = pathbuf; 1950 } 1756 } >> 1757 bprm->interp = bprm->filename; 1951 1758 1952 retval = bprm_execve(bprm); !! 1759 retval = bprm_mm_init(bprm); 1953 out_free: !! 1760 if (retval) 1954 free_bprm(bprm); !! 1761 goto out_unmark; 1955 << 1956 out_ret: << 1957 putname(filename); << 1958 return retval; << 1959 } << 1960 << 1961 int kernel_execve(const char *kernel_filename << 1962 const char *const *argv, co << 1963 { << 1964 struct filename *filename; << 1965 struct linux_binprm *bprm; << 1966 int fd = AT_FDCWD; << 1967 int retval; << 1968 << 1969 /* It is non-sense for kernel threads << 1970 if (WARN_ON_ONCE(current->flags & PF_ << 1971 return -EINVAL; << 1972 1762 1973 filename = getname_kernel(kernel_file !! 1763 bprm->argc = count(argv, MAX_ARG_STRINGS); 1974 if (IS_ERR(filename)) !! 1764 if ((retval = bprm->argc) < 0) 1975 return PTR_ERR(filename); !! 1765 goto out; 1976 1766 1977 bprm = alloc_bprm(fd, filename, 0); !! 1767 bprm->envc = count(envp, MAX_ARG_STRINGS); 1978 if (IS_ERR(bprm)) { !! 1768 if ((retval = bprm->envc) < 0) 1979 retval = PTR_ERR(bprm); !! 1769 goto out; 1980 goto out_ret; << 1981 } << 1982 1770 1983 retval = count_strings_kernel(argv); !! 1771 retval = prepare_binprm(bprm); 1984 if (WARN_ON_ONCE(retval == 0)) << 1985 retval = -EINVAL; << 1986 if (retval < 0) 1772 if (retval < 0) 1987 goto out_free; !! 1773 goto out; 1988 bprm->argc = retval; << 1989 1774 1990 retval = count_strings_kernel(envp); !! 1775 retval = copy_strings_kernel(1, &bprm->filename, bprm); 1991 if (retval < 0) 1776 if (retval < 0) 1992 goto out_free; !! 1777 goto out; 1993 bprm->envc = retval; << 1994 1778 1995 retval = bprm_stack_limits(bprm); !! 1779 bprm->exec = bprm->p; >> 1780 retval = copy_strings(bprm->envc, envp, bprm); 1996 if (retval < 0) 1781 if (retval < 0) 1997 goto out_free; !! 1782 goto out; 1998 1783 1999 retval = copy_string_kernel(bprm->fil !! 1784 retval = copy_strings(bprm->argc, argv, bprm); 2000 if (retval < 0) 1785 if (retval < 0) 2001 goto out_free; !! 1786 goto out; 2002 bprm->exec = bprm->p; << 2003 1787 2004 retval = copy_strings_kernel(bprm->en !! 1788 would_dump(bprm, bprm->file); 2005 if (retval < 0) << 2006 goto out_free; << 2007 1789 2008 retval = copy_strings_kernel(bprm->ar !! 1790 retval = exec_binprm(bprm); 2009 if (retval < 0) 1791 if (retval < 0) 2010 goto out_free; !! 1792 goto out; >> 1793 >> 1794 /* execve succeeded */ >> 1795 current->fs->in_exec = 0; >> 1796 current->in_execve = 0; >> 1797 acct_update_integrals(current); >> 1798 task_numa_free(current); >> 1799 free_bprm(bprm); >> 1800 kfree(pathbuf); >> 1801 putname(filename); >> 1802 if (displaced) >> 1803 put_files_struct(displaced); >> 1804 return retval; >> 1805 >> 1806 out: >> 1807 if (bprm->mm) { >> 1808 acct_arg_size(bprm, 0); >> 1809 mmput(bprm->mm); >> 1810 } >> 1811 >> 1812 out_unmark: >> 1813 current->fs->in_exec = 0; >> 1814 current->in_execve = 0; 2011 1815 2012 retval = bprm_execve(bprm); << 2013 out_free: 1816 out_free: 2014 free_bprm(bprm); 1817 free_bprm(bprm); >> 1818 kfree(pathbuf); >> 1819 >> 1820 out_files: >> 1821 if (displaced) >> 1822 reset_files_struct(displaced); 2015 out_ret: 1823 out_ret: 2016 putname(filename); 1824 putname(filename); 2017 return retval; 1825 return retval; 2018 } 1826 } 2019 1827 2020 static int do_execve(struct filename *filenam !! 1828 int do_execve(struct filename *filename, 2021 const char __user *const __user *__ar 1829 const char __user *const __user *__argv, 2022 const char __user *const __user *__en 1830 const char __user *const __user *__envp) 2023 { 1831 { 2024 struct user_arg_ptr argv = { .ptr.nat 1832 struct user_arg_ptr argv = { .ptr.native = __argv }; 2025 struct user_arg_ptr envp = { .ptr.nat 1833 struct user_arg_ptr envp = { .ptr.native = __envp }; 2026 return do_execveat_common(AT_FDCWD, f 1834 return do_execveat_common(AT_FDCWD, filename, argv, envp, 0); 2027 } 1835 } 2028 1836 2029 static int do_execveat(int fd, struct filenam !! 1837 int do_execveat(int fd, struct filename *filename, 2030 const char __user *const __us 1838 const char __user *const __user *__argv, 2031 const char __user *const __us 1839 const char __user *const __user *__envp, 2032 int flags) 1840 int flags) 2033 { 1841 { 2034 struct user_arg_ptr argv = { .ptr.nat 1842 struct user_arg_ptr argv = { .ptr.native = __argv }; 2035 struct user_arg_ptr envp = { .ptr.nat 1843 struct user_arg_ptr envp = { .ptr.native = __envp }; 2036 1844 2037 return do_execveat_common(fd, filenam 1845 return do_execveat_common(fd, filename, argv, envp, flags); 2038 } 1846 } 2039 1847 2040 #ifdef CONFIG_COMPAT 1848 #ifdef CONFIG_COMPAT 2041 static int compat_do_execve(struct filename * 1849 static int compat_do_execve(struct filename *filename, 2042 const compat_uptr_t __user *__argv, 1850 const compat_uptr_t __user *__argv, 2043 const compat_uptr_t __user *__envp) 1851 const compat_uptr_t __user *__envp) 2044 { 1852 { 2045 struct user_arg_ptr argv = { 1853 struct user_arg_ptr argv = { 2046 .is_compat = true, 1854 .is_compat = true, 2047 .ptr.compat = __argv, 1855 .ptr.compat = __argv, 2048 }; 1856 }; 2049 struct user_arg_ptr envp = { 1857 struct user_arg_ptr envp = { 2050 .is_compat = true, 1858 .is_compat = true, 2051 .ptr.compat = __envp, 1859 .ptr.compat = __envp, 2052 }; 1860 }; 2053 return do_execveat_common(AT_FDCWD, f 1861 return do_execveat_common(AT_FDCWD, filename, argv, envp, 0); 2054 } 1862 } 2055 1863 2056 static int compat_do_execveat(int fd, struct 1864 static int compat_do_execveat(int fd, struct filename *filename, 2057 const compat_up 1865 const compat_uptr_t __user *__argv, 2058 const compat_up 1866 const compat_uptr_t __user *__envp, 2059 int flags) 1867 int flags) 2060 { 1868 { 2061 struct user_arg_ptr argv = { 1869 struct user_arg_ptr argv = { 2062 .is_compat = true, 1870 .is_compat = true, 2063 .ptr.compat = __argv, 1871 .ptr.compat = __argv, 2064 }; 1872 }; 2065 struct user_arg_ptr envp = { 1873 struct user_arg_ptr envp = { 2066 .is_compat = true, 1874 .is_compat = true, 2067 .ptr.compat = __envp, 1875 .ptr.compat = __envp, 2068 }; 1876 }; 2069 return do_execveat_common(fd, filenam 1877 return do_execveat_common(fd, filename, argv, envp, flags); 2070 } 1878 } 2071 #endif 1879 #endif 2072 1880 2073 void set_binfmt(struct linux_binfmt *new) 1881 void set_binfmt(struct linux_binfmt *new) 2074 { 1882 { 2075 struct mm_struct *mm = current->mm; 1883 struct mm_struct *mm = current->mm; 2076 1884 2077 if (mm->binfmt) 1885 if (mm->binfmt) 2078 module_put(mm->binfmt->module 1886 module_put(mm->binfmt->module); 2079 1887 2080 mm->binfmt = new; 1888 mm->binfmt = new; 2081 if (new) 1889 if (new) 2082 __module_get(new->module); 1890 __module_get(new->module); 2083 } 1891 } 2084 EXPORT_SYMBOL(set_binfmt); 1892 EXPORT_SYMBOL(set_binfmt); 2085 1893 2086 /* 1894 /* 2087 * set_dumpable stores three-value SUID_DUMP_ 1895 * set_dumpable stores three-value SUID_DUMP_* into mm->flags. 2088 */ 1896 */ 2089 void set_dumpable(struct mm_struct *mm, int v 1897 void set_dumpable(struct mm_struct *mm, int value) 2090 { 1898 { >> 1899 unsigned long old, new; >> 1900 2091 if (WARN_ON((unsigned)value > SUID_DU 1901 if (WARN_ON((unsigned)value > SUID_DUMP_ROOT)) 2092 return; 1902 return; 2093 1903 2094 set_mask_bits(&mm->flags, MMF_DUMPABL !! 1904 do { >> 1905 old = ACCESS_ONCE(mm->flags); >> 1906 new = (old & ~MMF_DUMPABLE_MASK) | value; >> 1907 } while (cmpxchg(&mm->flags, old, new) != old); 2095 } 1908 } 2096 1909 2097 SYSCALL_DEFINE3(execve, 1910 SYSCALL_DEFINE3(execve, 2098 const char __user *, filename 1911 const char __user *, filename, 2099 const char __user *const __us 1912 const char __user *const __user *, argv, 2100 const char __user *const __us 1913 const char __user *const __user *, envp) 2101 { 1914 { 2102 return do_execve(getname(filename), a 1915 return do_execve(getname(filename), argv, envp); 2103 } 1916 } 2104 1917 2105 SYSCALL_DEFINE5(execveat, 1918 SYSCALL_DEFINE5(execveat, 2106 int, fd, const char __user *, 1919 int, fd, const char __user *, filename, 2107 const char __user *const __us 1920 const char __user *const __user *, argv, 2108 const char __user *const __us 1921 const char __user *const __user *, envp, 2109 int, flags) 1922 int, flags) 2110 { 1923 { >> 1924 int lookup_flags = (flags & AT_EMPTY_PATH) ? LOOKUP_EMPTY : 0; >> 1925 2111 return do_execveat(fd, 1926 return do_execveat(fd, 2112 getname_uflags(fil !! 1927 getname_flags(filename, lookup_flags, NULL), 2113 argv, envp, flags) 1928 argv, envp, flags); 2114 } 1929 } 2115 1930 2116 #ifdef CONFIG_COMPAT 1931 #ifdef CONFIG_COMPAT 2117 COMPAT_SYSCALL_DEFINE3(execve, const char __u 1932 COMPAT_SYSCALL_DEFINE3(execve, const char __user *, filename, 2118 const compat_uptr_t __user *, argv, 1933 const compat_uptr_t __user *, argv, 2119 const compat_uptr_t __user *, envp) 1934 const compat_uptr_t __user *, envp) 2120 { 1935 { 2121 return compat_do_execve(getname(filen 1936 return compat_do_execve(getname(filename), argv, envp); 2122 } 1937 } 2123 1938 2124 COMPAT_SYSCALL_DEFINE5(execveat, int, fd, 1939 COMPAT_SYSCALL_DEFINE5(execveat, int, fd, 2125 const char __user *, f 1940 const char __user *, filename, 2126 const compat_uptr_t __ 1941 const compat_uptr_t __user *, argv, 2127 const compat_uptr_t __ 1942 const compat_uptr_t __user *, envp, 2128 int, flags) 1943 int, flags) 2129 { 1944 { >> 1945 int lookup_flags = (flags & AT_EMPTY_PATH) ? LOOKUP_EMPTY : 0; >> 1946 2130 return compat_do_execveat(fd, 1947 return compat_do_execveat(fd, 2131 getname_ufl !! 1948 getname_flags(filename, lookup_flags, NULL), 2132 argv, envp, 1949 argv, envp, flags); 2133 } 1950 } 2134 #endif << 2135 << 2136 #ifdef CONFIG_SYSCTL << 2137 << 2138 static int proc_dointvec_minmax_coredump(cons << 2139 void *buffer, size_t *lenp, l << 2140 { << 2141 int error = proc_dointvec_minmax(tabl << 2142 << 2143 if (!error) << 2144 validate_coredump_safety(); << 2145 return error; << 2146 } << 2147 << 2148 static struct ctl_table fs_exec_sysctls[] = { << 2149 { << 2150 .procname = "suid_dumpa << 2151 .data = &suid_dumpa << 2152 .maxlen = sizeof(int) << 2153 .mode = 0644, << 2154 .proc_handler = proc_dointv << 2155 .extra1 = SYSCTL_ZERO << 2156 .extra2 = SYSCTL_TWO, << 2157 }, << 2158 }; << 2159 << 2160 static int __init init_fs_exec_sysctls(void) << 2161 { << 2162 register_sysctl_init("fs", fs_exec_sy << 2163 return 0; << 2164 } << 2165 << 2166 fs_initcall(init_fs_exec_sysctls); << 2167 #endif /* CONFIG_SYSCTL */ << 2168 << 2169 #ifdef CONFIG_EXEC_KUNIT_TEST << 2170 #include "tests/exec_kunit.c" << 2171 #endif 1951 #endif 2172 1952
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.