1 // SPDX-License-Identifier: GPL-2.0-or-later !! 1 /* -*- mode: c; c-basic-offset: 8; -*- 2 /* !! 2 * vim: noexpandtab sw=8 ts=8 sts=0: >> 3 * 3 * Copyright (C) 2002, 2004 Oracle. All right 4 * Copyright (C) 2002, 2004 Oracle. All rights reserved. >> 5 * >> 6 * This program is free software; you can redistribute it and/or >> 7 * modify it under the terms of the GNU General Public >> 8 * License as published by the Free Software Foundation; either >> 9 * version 2 of the License, or (at your option) any later version. >> 10 * >> 11 * This program is distributed in the hope that it will be useful, >> 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of >> 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU >> 14 * General Public License for more details. >> 15 * >> 16 * You should have received a copy of the GNU General Public >> 17 * License along with this program; if not, write to the >> 18 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, >> 19 * Boston, MA 021110-1307, USA. 4 */ 20 */ 5 21 6 #include <linux/fs.h> 22 #include <linux/fs.h> 7 #include <linux/slab.h> 23 #include <linux/slab.h> 8 #include <linux/highmem.h> 24 #include <linux/highmem.h> 9 #include <linux/pagemap.h> 25 #include <linux/pagemap.h> 10 #include <asm/byteorder.h> 26 #include <asm/byteorder.h> 11 #include <linux/swap.h> 27 #include <linux/swap.h> >> 28 #include <linux/pipe_fs_i.h> 12 #include <linux/mpage.h> 29 #include <linux/mpage.h> 13 #include <linux/quotaops.h> 30 #include <linux/quotaops.h> 14 #include <linux/blkdev.h> 31 #include <linux/blkdev.h> 15 #include <linux/uio.h> 32 #include <linux/uio.h> 16 #include <linux/mm.h> << 17 33 18 #include <cluster/masklog.h> 34 #include <cluster/masklog.h> 19 35 20 #include "ocfs2.h" 36 #include "ocfs2.h" 21 37 22 #include "alloc.h" 38 #include "alloc.h" 23 #include "aops.h" 39 #include "aops.h" 24 #include "dlmglue.h" 40 #include "dlmglue.h" 25 #include "extent_map.h" 41 #include "extent_map.h" 26 #include "file.h" 42 #include "file.h" 27 #include "inode.h" 43 #include "inode.h" 28 #include "journal.h" 44 #include "journal.h" 29 #include "suballoc.h" 45 #include "suballoc.h" 30 #include "super.h" 46 #include "super.h" 31 #include "symlink.h" 47 #include "symlink.h" 32 #include "refcounttree.h" 48 #include "refcounttree.h" 33 #include "ocfs2_trace.h" 49 #include "ocfs2_trace.h" 34 50 35 #include "buffer_head_io.h" 51 #include "buffer_head_io.h" 36 #include "dir.h" 52 #include "dir.h" 37 #include "namei.h" 53 #include "namei.h" 38 #include "sysfile.h" 54 #include "sysfile.h" 39 55 40 static int ocfs2_symlink_get_block(struct inod 56 static int ocfs2_symlink_get_block(struct inode *inode, sector_t iblock, 41 struct buff 57 struct buffer_head *bh_result, int create) 42 { 58 { 43 int err = -EIO; 59 int err = -EIO; 44 int status; 60 int status; 45 struct ocfs2_dinode *fe = NULL; 61 struct ocfs2_dinode *fe = NULL; 46 struct buffer_head *bh = NULL; 62 struct buffer_head *bh = NULL; 47 struct buffer_head *buffer_cache_bh = 63 struct buffer_head *buffer_cache_bh = NULL; 48 struct ocfs2_super *osb = OCFS2_SB(ino 64 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 49 void *kaddr; 65 void *kaddr; 50 66 51 trace_ocfs2_symlink_get_block( 67 trace_ocfs2_symlink_get_block( 52 (unsigned long long)OC 68 (unsigned long long)OCFS2_I(inode)->ip_blkno, 53 (unsigned long long)ib 69 (unsigned long long)iblock, bh_result, create); 54 70 55 BUG_ON(ocfs2_inode_is_fast_symlink(ino 71 BUG_ON(ocfs2_inode_is_fast_symlink(inode)); 56 72 57 if ((iblock << inode->i_sb->s_blocksiz 73 if ((iblock << inode->i_sb->s_blocksize_bits) > PATH_MAX + 1) { 58 mlog(ML_ERROR, "block offset > 74 mlog(ML_ERROR, "block offset > PATH_MAX: %llu", 59 (unsigned long long)ibloc 75 (unsigned long long)iblock); 60 goto bail; 76 goto bail; 61 } 77 } 62 78 63 status = ocfs2_read_inode_block(inode, 79 status = ocfs2_read_inode_block(inode, &bh); 64 if (status < 0) { 80 if (status < 0) { 65 mlog_errno(status); 81 mlog_errno(status); 66 goto bail; 82 goto bail; 67 } 83 } 68 fe = (struct ocfs2_dinode *) bh->b_dat 84 fe = (struct ocfs2_dinode *) bh->b_data; 69 85 70 if ((u64)iblock >= ocfs2_clusters_to_b 86 if ((u64)iblock >= ocfs2_clusters_to_blocks(inode->i_sb, 71 87 le32_to_cpu(fe->i_clusters))) { 72 err = -ENOMEM; 88 err = -ENOMEM; 73 mlog(ML_ERROR, "block offset i 89 mlog(ML_ERROR, "block offset is outside the allocated size: " 74 "%llu\n", (unsigned long 90 "%llu\n", (unsigned long long)iblock); 75 goto bail; 91 goto bail; 76 } 92 } 77 93 78 /* We don't use the page cache to crea 94 /* We don't use the page cache to create symlink data, so if 79 * need be, copy it over from the buff 95 * need be, copy it over from the buffer cache. */ 80 if (!buffer_uptodate(bh_result) && ocf 96 if (!buffer_uptodate(bh_result) && ocfs2_inode_is_new(inode)) { 81 u64 blkno = le64_to_cpu(fe->id 97 u64 blkno = le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) + 82 iblock; 98 iblock; 83 buffer_cache_bh = sb_getblk(os 99 buffer_cache_bh = sb_getblk(osb->sb, blkno); 84 if (!buffer_cache_bh) { 100 if (!buffer_cache_bh) { 85 err = -ENOMEM; 101 err = -ENOMEM; 86 mlog(ML_ERROR, "couldn 102 mlog(ML_ERROR, "couldn't getblock for symlink!\n"); 87 goto bail; 103 goto bail; 88 } 104 } 89 105 90 /* we haven't locked out trans 106 /* we haven't locked out transactions, so a commit 91 * could've happened. Since we 107 * could've happened. Since we've got a reference on 92 * the bh, even if it commits 108 * the bh, even if it commits while we're doing the 93 * copy, the data is still goo 109 * copy, the data is still good. */ 94 if (buffer_jbd(buffer_cache_bh 110 if (buffer_jbd(buffer_cache_bh) 95 && ocfs2_inode_is_new(inod 111 && ocfs2_inode_is_new(inode)) { 96 kaddr = kmap_atomic(bh 112 kaddr = kmap_atomic(bh_result->b_page); 97 if (!kaddr) { 113 if (!kaddr) { 98 mlog(ML_ERROR, 114 mlog(ML_ERROR, "couldn't kmap!\n"); 99 goto bail; 115 goto bail; 100 } 116 } 101 memcpy(kaddr + (bh_res 117 memcpy(kaddr + (bh_result->b_size * iblock), 102 buffer_cache_bh 118 buffer_cache_bh->b_data, 103 bh_result->b_si 119 bh_result->b_size); 104 kunmap_atomic(kaddr); 120 kunmap_atomic(kaddr); 105 set_buffer_uptodate(bh 121 set_buffer_uptodate(bh_result); 106 } 122 } 107 brelse(buffer_cache_bh); 123 brelse(buffer_cache_bh); 108 } 124 } 109 125 110 map_bh(bh_result, inode->i_sb, 126 map_bh(bh_result, inode->i_sb, 111 le64_to_cpu(fe->id2.i_list.l_re 127 le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) + iblock); 112 128 113 err = 0; 129 err = 0; 114 130 115 bail: 131 bail: 116 brelse(bh); 132 brelse(bh); 117 133 118 return err; 134 return err; 119 } 135 } 120 136 121 static int ocfs2_lock_get_block(struct inode * << 122 struct buffer_head *bh_res << 123 { << 124 int ret = 0; << 125 struct ocfs2_inode_info *oi = OCFS2_I( << 126 << 127 down_read(&oi->ip_alloc_sem); << 128 ret = ocfs2_get_block(inode, iblock, b << 129 up_read(&oi->ip_alloc_sem); << 130 << 131 return ret; << 132 } << 133 << 134 int ocfs2_get_block(struct inode *inode, secto 137 int ocfs2_get_block(struct inode *inode, sector_t iblock, 135 struct buffer_head *bh_res 138 struct buffer_head *bh_result, int create) 136 { 139 { 137 int err = 0; 140 int err = 0; 138 unsigned int ext_flags; 141 unsigned int ext_flags; 139 u64 max_blocks = bh_result->b_size >> 142 u64 max_blocks = bh_result->b_size >> inode->i_blkbits; 140 u64 p_blkno, count, past_eof; 143 u64 p_blkno, count, past_eof; 141 struct ocfs2_super *osb = OCFS2_SB(ino 144 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 142 145 143 trace_ocfs2_get_block((unsigned long l 146 trace_ocfs2_get_block((unsigned long long)OCFS2_I(inode)->ip_blkno, 144 (unsigned long l 147 (unsigned long long)iblock, bh_result, create); 145 148 146 if (OCFS2_I(inode)->ip_flags & OCFS2_I 149 if (OCFS2_I(inode)->ip_flags & OCFS2_INODE_SYSTEM_FILE) 147 mlog(ML_NOTICE, "get_block on 150 mlog(ML_NOTICE, "get_block on system inode 0x%p (%lu)\n", 148 inode, inode->i_ino); 151 inode, inode->i_ino); 149 152 150 if (S_ISLNK(inode->i_mode)) { 153 if (S_ISLNK(inode->i_mode)) { 151 /* this always does I/O for so 154 /* this always does I/O for some reason. */ 152 err = ocfs2_symlink_get_block( 155 err = ocfs2_symlink_get_block(inode, iblock, bh_result, create); 153 goto bail; 156 goto bail; 154 } 157 } 155 158 156 err = ocfs2_extent_map_get_blocks(inod 159 err = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno, &count, 157 &ext 160 &ext_flags); 158 if (err) { 161 if (err) { 159 mlog(ML_ERROR, "get_blocks() f !! 162 mlog(ML_ERROR, "Error %d from get_blocks(0x%p, %llu, 1, " 160 "block: %llu\n", inode, ( !! 163 "%llu, NULL)\n", err, inode, (unsigned long long)iblock, >> 164 (unsigned long long)p_blkno); 161 goto bail; 165 goto bail; 162 } 166 } 163 167 164 if (max_blocks < count) 168 if (max_blocks < count) 165 count = max_blocks; 169 count = max_blocks; 166 170 167 /* 171 /* 168 * ocfs2 never allocates in this funct 172 * ocfs2 never allocates in this function - the only time we 169 * need to use BH_New is when we're ex 173 * need to use BH_New is when we're extending i_size on a file 170 * system which doesn't support holes, 174 * system which doesn't support holes, in which case BH_New 171 * allows __block_write_begin() to zer 175 * allows __block_write_begin() to zero. 172 * 176 * 173 * If we see this on a sparse file sys 177 * If we see this on a sparse file system, then a truncate has 174 * raced us and removed the cluster. I 178 * raced us and removed the cluster. In this case, we clear 175 * the buffers dirty and uptodate bits 179 * the buffers dirty and uptodate bits and let the buffer code 176 * ignore it as a hole. 180 * ignore it as a hole. 177 */ 181 */ 178 if (create && p_blkno == 0 && ocfs2_sp 182 if (create && p_blkno == 0 && ocfs2_sparse_alloc(osb)) { 179 clear_buffer_dirty(bh_result); 183 clear_buffer_dirty(bh_result); 180 clear_buffer_uptodate(bh_resul 184 clear_buffer_uptodate(bh_result); 181 goto bail; 185 goto bail; 182 } 186 } 183 187 184 /* Treat the unwritten extent as a hol 188 /* Treat the unwritten extent as a hole for zeroing purposes. */ 185 if (p_blkno && !(ext_flags & OCFS2_EXT 189 if (p_blkno && !(ext_flags & OCFS2_EXT_UNWRITTEN)) 186 map_bh(bh_result, inode->i_sb, 190 map_bh(bh_result, inode->i_sb, p_blkno); 187 191 188 bh_result->b_size = count << inode->i_ 192 bh_result->b_size = count << inode->i_blkbits; 189 193 190 if (!ocfs2_sparse_alloc(osb)) { 194 if (!ocfs2_sparse_alloc(osb)) { 191 if (p_blkno == 0) { 195 if (p_blkno == 0) { 192 err = -EIO; 196 err = -EIO; 193 mlog(ML_ERROR, 197 mlog(ML_ERROR, 194 "iblock = %llu p_ 198 "iblock = %llu p_blkno = %llu blkno=(%llu)\n", 195 (unsigned long lo 199 (unsigned long long)iblock, 196 (unsigned long lo 200 (unsigned long long)p_blkno, 197 (unsigned long lo 201 (unsigned long long)OCFS2_I(inode)->ip_blkno); 198 mlog(ML_ERROR, "Size % 202 mlog(ML_ERROR, "Size %llu, clusters %u\n", (unsigned long long)i_size_read(inode), OCFS2_I(inode)->ip_clusters); 199 dump_stack(); 203 dump_stack(); 200 goto bail; 204 goto bail; 201 } 205 } 202 } 206 } 203 207 204 past_eof = ocfs2_blocks_for_bytes(inod 208 past_eof = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode)); 205 209 206 trace_ocfs2_get_block_end((unsigned lo 210 trace_ocfs2_get_block_end((unsigned long long)OCFS2_I(inode)->ip_blkno, 207 (unsigned lo 211 (unsigned long long)past_eof); 208 if (create && (iblock >= past_eof)) 212 if (create && (iblock >= past_eof)) 209 set_buffer_new(bh_result); 213 set_buffer_new(bh_result); 210 214 211 bail: 215 bail: 212 if (err < 0) 216 if (err < 0) 213 err = -EIO; 217 err = -EIO; 214 218 215 return err; 219 return err; 216 } 220 } 217 221 218 int ocfs2_read_inline_data(struct inode *inode 222 int ocfs2_read_inline_data(struct inode *inode, struct page *page, 219 struct buffer_head 223 struct buffer_head *di_bh) 220 { 224 { 221 void *kaddr; 225 void *kaddr; 222 loff_t size; 226 loff_t size; 223 struct ocfs2_dinode *di = (struct ocfs 227 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data; 224 228 225 if (!(le16_to_cpu(di->i_dyn_features) 229 if (!(le16_to_cpu(di->i_dyn_features) & OCFS2_INLINE_DATA_FL)) { 226 ocfs2_error(inode->i_sb, "Inod 230 ocfs2_error(inode->i_sb, "Inode %llu lost inline data flag\n", 227 (unsigned long lon 231 (unsigned long long)OCFS2_I(inode)->ip_blkno); 228 return -EROFS; 232 return -EROFS; 229 } 233 } 230 234 231 size = i_size_read(inode); 235 size = i_size_read(inode); 232 236 233 if (size > PAGE_SIZE || 237 if (size > PAGE_SIZE || 234 size > ocfs2_max_inline_data_with_ 238 size > ocfs2_max_inline_data_with_xattr(inode->i_sb, di)) { 235 ocfs2_error(inode->i_sb, 239 ocfs2_error(inode->i_sb, 236 "Inode %llu has wi 240 "Inode %llu has with inline data has bad size: %Lu\n", 237 (unsigned long lon 241 (unsigned long long)OCFS2_I(inode)->ip_blkno, 238 (unsigned long lon 242 (unsigned long long)size); 239 return -EROFS; 243 return -EROFS; 240 } 244 } 241 245 242 kaddr = kmap_atomic(page); 246 kaddr = kmap_atomic(page); 243 if (size) 247 if (size) 244 memcpy(kaddr, di->id2.i_data.i 248 memcpy(kaddr, di->id2.i_data.id_data, size); 245 /* Clear the remaining part of the pag 249 /* Clear the remaining part of the page */ 246 memset(kaddr + size, 0, PAGE_SIZE - si 250 memset(kaddr + size, 0, PAGE_SIZE - size); 247 flush_dcache_page(page); 251 flush_dcache_page(page); 248 kunmap_atomic(kaddr); 252 kunmap_atomic(kaddr); 249 253 250 SetPageUptodate(page); 254 SetPageUptodate(page); 251 255 252 return 0; 256 return 0; 253 } 257 } 254 258 255 static int ocfs2_readpage_inline(struct inode 259 static int ocfs2_readpage_inline(struct inode *inode, struct page *page) 256 { 260 { 257 int ret; 261 int ret; 258 struct buffer_head *di_bh = NULL; 262 struct buffer_head *di_bh = NULL; 259 263 260 BUG_ON(!PageLocked(page)); 264 BUG_ON(!PageLocked(page)); 261 BUG_ON(!(OCFS2_I(inode)->ip_dyn_featur 265 BUG_ON(!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL)); 262 266 263 ret = ocfs2_read_inode_block(inode, &d 267 ret = ocfs2_read_inode_block(inode, &di_bh); 264 if (ret) { 268 if (ret) { 265 mlog_errno(ret); 269 mlog_errno(ret); 266 goto out; 270 goto out; 267 } 271 } 268 272 269 ret = ocfs2_read_inline_data(inode, pa 273 ret = ocfs2_read_inline_data(inode, page, di_bh); 270 out: 274 out: 271 unlock_page(page); 275 unlock_page(page); 272 276 273 brelse(di_bh); 277 brelse(di_bh); 274 return ret; 278 return ret; 275 } 279 } 276 280 277 static int ocfs2_read_folio(struct file *file, !! 281 static int ocfs2_readpage(struct file *file, struct page *page) 278 { 282 { 279 struct inode *inode = folio->mapping-> !! 283 struct inode *inode = page->mapping->host; 280 struct ocfs2_inode_info *oi = OCFS2_I( 284 struct ocfs2_inode_info *oi = OCFS2_I(inode); 281 loff_t start = folio_pos(folio); !! 285 loff_t start = (loff_t)page->index << PAGE_SHIFT; 282 int ret, unlock = 1; 286 int ret, unlock = 1; 283 287 284 trace_ocfs2_readpage((unsigned long lo !! 288 trace_ocfs2_readpage((unsigned long long)oi->ip_blkno, >> 289 (page ? page->index : 0)); 285 290 286 ret = ocfs2_inode_lock_with_page(inode !! 291 ret = ocfs2_inode_lock_with_page(inode, NULL, 0, page); 287 if (ret != 0) { 292 if (ret != 0) { 288 if (ret == AOP_TRUNCATED_PAGE) 293 if (ret == AOP_TRUNCATED_PAGE) 289 unlock = 0; 294 unlock = 0; 290 mlog_errno(ret); 295 mlog_errno(ret); 291 goto out; 296 goto out; 292 } 297 } 293 298 294 if (down_read_trylock(&oi->ip_alloc_se 299 if (down_read_trylock(&oi->ip_alloc_sem) == 0) { 295 /* 300 /* 296 * Unlock the folio and cycle !! 301 * Unlock the page and cycle ip_alloc_sem so that we don't 297 * busyloop waiting for ip_all 302 * busyloop waiting for ip_alloc_sem to unlock 298 */ 303 */ 299 ret = AOP_TRUNCATED_PAGE; 304 ret = AOP_TRUNCATED_PAGE; 300 folio_unlock(folio); !! 305 unlock_page(page); 301 unlock = 0; 306 unlock = 0; 302 down_read(&oi->ip_alloc_sem); 307 down_read(&oi->ip_alloc_sem); 303 up_read(&oi->ip_alloc_sem); 308 up_read(&oi->ip_alloc_sem); 304 goto out_inode_unlock; 309 goto out_inode_unlock; 305 } 310 } 306 311 307 /* 312 /* 308 * i_size might have just been updated 313 * i_size might have just been updated as we grabed the meta lock. We 309 * might now be discovering a truncate 314 * might now be discovering a truncate that hit on another node. 310 * block_read_full_folio->get_block fr !! 315 * block_read_full_page->get_block freaks out if it is asked to read 311 * beyond the end of a file, so we che 316 * beyond the end of a file, so we check here. Callers 312 * (generic_file_read, vm_ops->fault) 317 * (generic_file_read, vm_ops->fault) are clever enough to check i_size 313 * and notice that the folio they just !! 318 * and notice that the page they just read isn't needed. 314 * 319 * 315 * XXX sys_readahead() seems to get th 320 * XXX sys_readahead() seems to get that wrong? 316 */ 321 */ 317 if (start >= i_size_read(inode)) { 322 if (start >= i_size_read(inode)) { 318 folio_zero_segment(folio, 0, f !! 323 zero_user(page, 0, PAGE_SIZE); 319 folio_mark_uptodate(folio); !! 324 SetPageUptodate(page); 320 ret = 0; 325 ret = 0; 321 goto out_alloc; 326 goto out_alloc; 322 } 327 } 323 328 324 if (oi->ip_dyn_features & OCFS2_INLINE 329 if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL) 325 ret = ocfs2_readpage_inline(in !! 330 ret = ocfs2_readpage_inline(inode, page); 326 else 331 else 327 ret = block_read_full_folio(fo !! 332 ret = block_read_full_page(page, ocfs2_get_block); 328 unlock = 0; 333 unlock = 0; 329 334 330 out_alloc: 335 out_alloc: 331 up_read(&oi->ip_alloc_sem); !! 336 up_read(&OCFS2_I(inode)->ip_alloc_sem); 332 out_inode_unlock: 337 out_inode_unlock: 333 ocfs2_inode_unlock(inode, 0); 338 ocfs2_inode_unlock(inode, 0); 334 out: 339 out: 335 if (unlock) 340 if (unlock) 336 folio_unlock(folio); !! 341 unlock_page(page); 337 return ret; 342 return ret; 338 } 343 } 339 344 340 /* 345 /* 341 * This is used only for read-ahead. Failures 346 * This is used only for read-ahead. Failures or difficult to handle 342 * situations are safe to ignore. 347 * situations are safe to ignore. 343 * 348 * 344 * Right now, we don't bother with BH_Boundary 349 * Right now, we don't bother with BH_Boundary - in-inode extent lists 345 * are quite large (243 extents on 4k blocks), 350 * are quite large (243 extents on 4k blocks), so most inodes don't 346 * grow out to a tree. If need be, detecting b 351 * grow out to a tree. If need be, detecting boundary extents could 347 * trivially be added in a future version of o 352 * trivially be added in a future version of ocfs2_get_block(). 348 */ 353 */ 349 static void ocfs2_readahead(struct readahead_c !! 354 static int ocfs2_readpages(struct file *filp, struct address_space *mapping, >> 355 struct list_head *pages, unsigned nr_pages) 350 { 356 { 351 int ret; !! 357 int ret, err = -EIO; 352 struct inode *inode = rac->mapping->ho !! 358 struct inode *inode = mapping->host; 353 struct ocfs2_inode_info *oi = OCFS2_I( 359 struct ocfs2_inode_info *oi = OCFS2_I(inode); >> 360 loff_t start; >> 361 struct page *last; 354 362 355 /* 363 /* 356 * Use the nonblocking flag for the dl 364 * Use the nonblocking flag for the dlm code to avoid page 357 * lock inversion, but don't bother wi 365 * lock inversion, but don't bother with retrying. 358 */ 366 */ 359 ret = ocfs2_inode_lock_full(inode, NUL 367 ret = ocfs2_inode_lock_full(inode, NULL, 0, OCFS2_LOCK_NONBLOCK); 360 if (ret) 368 if (ret) 361 return; !! 369 return err; 362 370 363 if (down_read_trylock(&oi->ip_alloc_se !! 371 if (down_read_trylock(&oi->ip_alloc_sem) == 0) { 364 goto out_unlock; !! 372 ocfs2_inode_unlock(inode, 0); >> 373 return err; >> 374 } 365 375 366 /* 376 /* 367 * Don't bother with inline-data. Ther 377 * Don't bother with inline-data. There isn't anything 368 * to read-ahead in that case anyway.. 378 * to read-ahead in that case anyway... 369 */ 379 */ 370 if (oi->ip_dyn_features & OCFS2_INLINE 380 if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL) 371 goto out_up; !! 381 goto out_unlock; 372 382 373 /* 383 /* 374 * Check whether a remote node truncat 384 * Check whether a remote node truncated this file - we just 375 * drop out in that case as it's not w 385 * drop out in that case as it's not worth handling here. 376 */ 386 */ 377 if (readahead_pos(rac) >= i_size_read( !! 387 last = list_entry(pages->prev, struct page, lru); 378 goto out_up; !! 388 start = (loff_t)last->index << PAGE_SHIFT; >> 389 if (start >= i_size_read(inode)) >> 390 goto out_unlock; 379 391 380 mpage_readahead(rac, ocfs2_get_block); !! 392 err = mpage_readpages(mapping, pages, nr_pages, ocfs2_get_block); 381 393 382 out_up: << 383 up_read(&oi->ip_alloc_sem); << 384 out_unlock: 394 out_unlock: >> 395 up_read(&oi->ip_alloc_sem); 385 ocfs2_inode_unlock(inode, 0); 396 ocfs2_inode_unlock(inode, 0); >> 397 >> 398 return err; 386 } 399 } 387 400 388 /* Note: Because we don't support holes, our a 401 /* Note: Because we don't support holes, our allocation has 389 * already happened (allocation writes zeros t 402 * already happened (allocation writes zeros to the file data) 390 * so we don't have to worry about ordered wri 403 * so we don't have to worry about ordered writes in 391 * ocfs2_writepages. !! 404 * ocfs2_writepage. 392 * 405 * 393 * ->writepages is called during the process o !! 406 * ->writepage is called during the process of invalidating the page cache 394 * during blocked lock processing. It can't b 407 * during blocked lock processing. It can't block on any cluster locks 395 * to during block mapping. It's relying on t 408 * to during block mapping. It's relying on the fact that the block 396 * mapping can't have disappeared under the di 409 * mapping can't have disappeared under the dirty pages that it is 397 * being asked to write back. 410 * being asked to write back. 398 */ 411 */ 399 static int ocfs2_writepages(struct address_spa !! 412 static int ocfs2_writepage(struct page *page, struct writeback_control *wbc) 400 struct writeback_control *wbc) << 401 { 413 { 402 return mpage_writepages(mapping, wbc, !! 414 trace_ocfs2_writepage( >> 415 (unsigned long long)OCFS2_I(page->mapping->host)->ip_blkno, >> 416 page->index); >> 417 >> 418 return block_write_full_page(page, ocfs2_get_block, wbc); 403 } 419 } 404 420 405 /* Taken from ext3. We don't necessarily need 421 /* Taken from ext3. We don't necessarily need the full blown 406 * functionality yet, but IMHO it's better to 422 * functionality yet, but IMHO it's better to cut and paste the whole 407 * thing so we can avoid introducing our own b 423 * thing so we can avoid introducing our own bugs (and easily pick up 408 * their fixes when they happen) --Mark */ 424 * their fixes when they happen) --Mark */ 409 int walk_page_buffers( handle_t *handle, 425 int walk_page_buffers( handle_t *handle, 410 struct buffer_head *he 426 struct buffer_head *head, 411 unsigned from, 427 unsigned from, 412 unsigned to, 428 unsigned to, 413 int *partial, 429 int *partial, 414 int (*fn)( handle 430 int (*fn)( handle_t *handle, 415 struct 431 struct buffer_head *bh)) 416 { 432 { 417 struct buffer_head *bh; 433 struct buffer_head *bh; 418 unsigned block_start, block_end; 434 unsigned block_start, block_end; 419 unsigned blocksize = head->b_size; 435 unsigned blocksize = head->b_size; 420 int err, ret = 0; 436 int err, ret = 0; 421 struct buffer_head *next; 437 struct buffer_head *next; 422 438 423 for ( bh = head, block_start = 0; 439 for ( bh = head, block_start = 0; 424 ret == 0 && (bh != head || !bl 440 ret == 0 && (bh != head || !block_start); 425 block_start = block_end, bh = 441 block_start = block_end, bh = next) 426 { 442 { 427 next = bh->b_this_page; 443 next = bh->b_this_page; 428 block_end = block_start + bloc 444 block_end = block_start + blocksize; 429 if (block_end <= from || block 445 if (block_end <= from || block_start >= to) { 430 if (partial && !buffer 446 if (partial && !buffer_uptodate(bh)) 431 *partial = 1; 447 *partial = 1; 432 continue; 448 continue; 433 } 449 } 434 err = (*fn)(handle, bh); 450 err = (*fn)(handle, bh); 435 if (!ret) 451 if (!ret) 436 ret = err; 452 ret = err; 437 } 453 } 438 return ret; 454 return ret; 439 } 455 } 440 456 441 static sector_t ocfs2_bmap(struct address_spac 457 static sector_t ocfs2_bmap(struct address_space *mapping, sector_t block) 442 { 458 { 443 sector_t status; 459 sector_t status; 444 u64 p_blkno = 0; 460 u64 p_blkno = 0; 445 int err = 0; 461 int err = 0; 446 struct inode *inode = mapping->host; 462 struct inode *inode = mapping->host; 447 463 448 trace_ocfs2_bmap((unsigned long long)O 464 trace_ocfs2_bmap((unsigned long long)OCFS2_I(inode)->ip_blkno, 449 (unsigned long long)b 465 (unsigned long long)block); 450 466 451 /* 467 /* 452 * The swap code (ab-)uses ->bmap to g 468 * The swap code (ab-)uses ->bmap to get a block mapping and then 453 * bypasseѕ the file system for actua 469 * bypasseѕ the file system for actual I/O. We really can't allow 454 * that on refcounted inodes, so we ha 470 * that on refcounted inodes, so we have to skip out here. And yes, 455 * 0 is the magic code for a bmap erro 471 * 0 is the magic code for a bmap error.. 456 */ 472 */ 457 if (ocfs2_is_refcount_inode(inode)) 473 if (ocfs2_is_refcount_inode(inode)) 458 return 0; 474 return 0; 459 475 460 /* We don't need to lock journal syste 476 /* We don't need to lock journal system files, since they aren't 461 * accessed concurrently from multiple 477 * accessed concurrently from multiple nodes. 462 */ 478 */ 463 if (!INODE_JOURNAL(inode)) { 479 if (!INODE_JOURNAL(inode)) { 464 err = ocfs2_inode_lock(inode, 480 err = ocfs2_inode_lock(inode, NULL, 0); 465 if (err) { 481 if (err) { 466 if (err != -ENOENT) 482 if (err != -ENOENT) 467 mlog_errno(err 483 mlog_errno(err); 468 goto bail; 484 goto bail; 469 } 485 } 470 down_read(&OCFS2_I(inode)->ip_ 486 down_read(&OCFS2_I(inode)->ip_alloc_sem); 471 } 487 } 472 488 473 if (!(OCFS2_I(inode)->ip_dyn_features 489 if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL)) 474 err = ocfs2_extent_map_get_blo 490 err = ocfs2_extent_map_get_blocks(inode, block, &p_blkno, NULL, 475 491 NULL); 476 492 477 if (!INODE_JOURNAL(inode)) { 493 if (!INODE_JOURNAL(inode)) { 478 up_read(&OCFS2_I(inode)->ip_al 494 up_read(&OCFS2_I(inode)->ip_alloc_sem); 479 ocfs2_inode_unlock(inode, 0); 495 ocfs2_inode_unlock(inode, 0); 480 } 496 } 481 497 482 if (err) { 498 if (err) { 483 mlog(ML_ERROR, "get_blocks() f 499 mlog(ML_ERROR, "get_blocks() failed, block = %llu\n", 484 (unsigned long long)block 500 (unsigned long long)block); 485 mlog_errno(err); 501 mlog_errno(err); 486 goto bail; 502 goto bail; 487 } 503 } 488 504 489 bail: 505 bail: 490 status = err ? 0 : p_blkno; 506 status = err ? 0 : p_blkno; 491 507 492 return status; 508 return status; 493 } 509 } 494 510 495 static bool ocfs2_release_folio(struct folio * !! 511 static int ocfs2_releasepage(struct page *page, gfp_t wait) 496 { 512 { 497 if (!folio_buffers(folio)) !! 513 if (!page_has_buffers(page)) 498 return false; !! 514 return 0; 499 return try_to_free_buffers(folio); !! 515 return try_to_free_buffers(page); 500 } 516 } 501 517 502 static void ocfs2_figure_cluster_boundaries(st 518 static void ocfs2_figure_cluster_boundaries(struct ocfs2_super *osb, 503 u3 519 u32 cpos, 504 un 520 unsigned int *start, 505 un 521 unsigned int *end) 506 { 522 { 507 unsigned int cluster_start = 0, cluste 523 unsigned int cluster_start = 0, cluster_end = PAGE_SIZE; 508 524 509 if (unlikely(PAGE_SHIFT > osb->s_clust 525 if (unlikely(PAGE_SHIFT > osb->s_clustersize_bits)) { 510 unsigned int cpp; 526 unsigned int cpp; 511 527 512 cpp = 1 << (PAGE_SHIFT - osb-> 528 cpp = 1 << (PAGE_SHIFT - osb->s_clustersize_bits); 513 529 514 cluster_start = cpos % cpp; 530 cluster_start = cpos % cpp; 515 cluster_start = cluster_start 531 cluster_start = cluster_start << osb->s_clustersize_bits; 516 532 517 cluster_end = cluster_start + 533 cluster_end = cluster_start + osb->s_clustersize; 518 } 534 } 519 535 520 BUG_ON(cluster_start > PAGE_SIZE); 536 BUG_ON(cluster_start > PAGE_SIZE); 521 BUG_ON(cluster_end > PAGE_SIZE); 537 BUG_ON(cluster_end > PAGE_SIZE); 522 538 523 if (start) 539 if (start) 524 *start = cluster_start; 540 *start = cluster_start; 525 if (end) 541 if (end) 526 *end = cluster_end; 542 *end = cluster_end; 527 } 543 } 528 544 529 /* 545 /* 530 * 'from' and 'to' are the region in the page 546 * 'from' and 'to' are the region in the page to avoid zeroing. 531 * 547 * 532 * If pagesize > clustersize, this function wi 548 * If pagesize > clustersize, this function will avoid zeroing outside 533 * of the cluster boundary. 549 * of the cluster boundary. 534 * 550 * 535 * from == to == 0 is code for "zero the entir 551 * from == to == 0 is code for "zero the entire cluster region" 536 */ 552 */ 537 static void ocfs2_clear_page_regions(struct pa 553 static void ocfs2_clear_page_regions(struct page *page, 538 struct oc 554 struct ocfs2_super *osb, u32 cpos, 539 unsigned 555 unsigned from, unsigned to) 540 { 556 { 541 void *kaddr; 557 void *kaddr; 542 unsigned int cluster_start, cluster_en 558 unsigned int cluster_start, cluster_end; 543 559 544 ocfs2_figure_cluster_boundaries(osb, c 560 ocfs2_figure_cluster_boundaries(osb, cpos, &cluster_start, &cluster_end); 545 561 546 kaddr = kmap_atomic(page); 562 kaddr = kmap_atomic(page); 547 563 548 if (from || to) { 564 if (from || to) { 549 if (from > cluster_start) 565 if (from > cluster_start) 550 memset(kaddr + cluster 566 memset(kaddr + cluster_start, 0, from - cluster_start); 551 if (to < cluster_end) 567 if (to < cluster_end) 552 memset(kaddr + to, 0, 568 memset(kaddr + to, 0, cluster_end - to); 553 } else { 569 } else { 554 memset(kaddr + cluster_start, 570 memset(kaddr + cluster_start, 0, cluster_end - cluster_start); 555 } 571 } 556 572 557 kunmap_atomic(kaddr); 573 kunmap_atomic(kaddr); 558 } 574 } 559 575 560 /* 576 /* 561 * Nonsparse file systems fully allocate befor 577 * Nonsparse file systems fully allocate before we get to the write 562 * code. This prevents ocfs2_write() from tagg 578 * code. This prevents ocfs2_write() from tagging the write as an 563 * allocating one, which means ocfs2_map_page_ 579 * allocating one, which means ocfs2_map_page_blocks() might try to 564 * read-in the blocks at the tail of our file. 580 * read-in the blocks at the tail of our file. Avoid reading them by 565 * testing i_size against each block offset. 581 * testing i_size against each block offset. 566 */ 582 */ 567 static int ocfs2_should_read_blk(struct inode !! 583 static int ocfs2_should_read_blk(struct inode *inode, struct page *page, 568 unsigned int 584 unsigned int block_start) 569 { 585 { 570 u64 offset = folio_pos(folio) + block_ !! 586 u64 offset = page_offset(page) + block_start; 571 587 572 if (ocfs2_sparse_alloc(OCFS2_SB(inode- 588 if (ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb))) 573 return 1; 589 return 1; 574 590 575 if (i_size_read(inode) > offset) 591 if (i_size_read(inode) > offset) 576 return 1; 592 return 1; 577 593 578 return 0; 594 return 0; 579 } 595 } 580 596 581 /* 597 /* 582 * Some of this taken from __block_write_begin 598 * Some of this taken from __block_write_begin(). We already have our 583 * mapping by now though, and the entire write 599 * mapping by now though, and the entire write will be allocating or 584 * it won't, so not much need to use BH_New. 600 * it won't, so not much need to use BH_New. 585 * 601 * 586 * This will also skip zeroing, which is handl 602 * This will also skip zeroing, which is handled externally. 587 */ 603 */ 588 int ocfs2_map_page_blocks(struct page *page, u 604 int ocfs2_map_page_blocks(struct page *page, u64 *p_blkno, 589 struct inode *inode, 605 struct inode *inode, unsigned int from, 590 unsigned int to, int 606 unsigned int to, int new) 591 { 607 { 592 struct folio *folio = page_folio(page) << 593 int ret = 0; 608 int ret = 0; 594 struct buffer_head *head, *bh, *wait[2 609 struct buffer_head *head, *bh, *wait[2], **wait_bh = wait; 595 unsigned int block_end, block_start; 610 unsigned int block_end, block_start; 596 unsigned int bsize = i_blocksize(inode 611 unsigned int bsize = i_blocksize(inode); 597 612 598 head = folio_buffers(folio); !! 613 if (!page_has_buffers(page)) 599 if (!head) !! 614 create_empty_buffers(page, bsize, 0); 600 head = create_empty_buffers(fo << 601 615 >> 616 head = page_buffers(page); 602 for (bh = head, block_start = 0; bh != 617 for (bh = head, block_start = 0; bh != head || !block_start; 603 bh = bh->b_this_page, block_start 618 bh = bh->b_this_page, block_start += bsize) { 604 block_end = block_start + bsiz 619 block_end = block_start + bsize; 605 620 606 clear_buffer_new(bh); 621 clear_buffer_new(bh); 607 622 608 /* 623 /* 609 * Ignore blocks outside of ou 624 * Ignore blocks outside of our i/o range - 610 * they may belong to unalloca 625 * they may belong to unallocated clusters. 611 */ 626 */ 612 if (block_start >= to || block 627 if (block_start >= to || block_end <= from) { 613 if (folio_test_uptodat !! 628 if (PageUptodate(page)) 614 set_buffer_upt 629 set_buffer_uptodate(bh); 615 continue; 630 continue; 616 } 631 } 617 632 618 /* 633 /* 619 * For an allocating write wit 634 * For an allocating write with cluster size >= page 620 * size, we always write the e 635 * size, we always write the entire page. 621 */ 636 */ 622 if (new) 637 if (new) 623 set_buffer_new(bh); 638 set_buffer_new(bh); 624 639 625 if (!buffer_mapped(bh)) { 640 if (!buffer_mapped(bh)) { 626 map_bh(bh, inode->i_sb 641 map_bh(bh, inode->i_sb, *p_blkno); 627 clean_bdev_bh_alias(bh 642 clean_bdev_bh_alias(bh); 628 } 643 } 629 644 630 if (folio_test_uptodate(folio) !! 645 if (PageUptodate(page)) { 631 set_buffer_uptodate(bh !! 646 if (!buffer_uptodate(bh)) >> 647 set_buffer_uptodate(bh); 632 } else if (!buffer_uptodate(bh 648 } else if (!buffer_uptodate(bh) && !buffer_delay(bh) && 633 !buffer_new(bh) && 649 !buffer_new(bh) && 634 ocfs2_should_read_b !! 650 ocfs2_should_read_blk(inode, page, block_start) && 635 (block_start < from 651 (block_start < from || block_end > to)) { 636 bh_read_nowait(bh, 0); !! 652 ll_rw_block(REQ_OP_READ, 0, 1, &bh); 637 *wait_bh++=bh; 653 *wait_bh++=bh; 638 } 654 } 639 655 640 *p_blkno = *p_blkno + 1; 656 *p_blkno = *p_blkno + 1; 641 } 657 } 642 658 643 /* 659 /* 644 * If we issued read requests - let th 660 * If we issued read requests - let them complete. 645 */ 661 */ 646 while(wait_bh > wait) { 662 while(wait_bh > wait) { 647 wait_on_buffer(*--wait_bh); 663 wait_on_buffer(*--wait_bh); 648 if (!buffer_uptodate(*wait_bh) 664 if (!buffer_uptodate(*wait_bh)) 649 ret = -EIO; 665 ret = -EIO; 650 } 666 } 651 667 652 if (ret == 0 || !new) 668 if (ret == 0 || !new) 653 return ret; 669 return ret; 654 670 655 /* 671 /* 656 * If we get -EIO above, zero out any 672 * If we get -EIO above, zero out any newly allocated blocks 657 * to avoid exposing stale data. 673 * to avoid exposing stale data. 658 */ 674 */ 659 bh = head; 675 bh = head; 660 block_start = 0; 676 block_start = 0; 661 do { 677 do { 662 block_end = block_start + bsiz 678 block_end = block_start + bsize; 663 if (block_end <= from) 679 if (block_end <= from) 664 goto next_bh; 680 goto next_bh; 665 if (block_start >= to) 681 if (block_start >= to) 666 break; 682 break; 667 683 668 folio_zero_range(folio, block_ !! 684 zero_user(page, block_start, bh->b_size); 669 set_buffer_uptodate(bh); 685 set_buffer_uptodate(bh); 670 mark_buffer_dirty(bh); 686 mark_buffer_dirty(bh); 671 687 672 next_bh: 688 next_bh: 673 block_start = block_end; 689 block_start = block_end; 674 bh = bh->b_this_page; 690 bh = bh->b_this_page; 675 } while (bh != head); 691 } while (bh != head); 676 692 677 return ret; 693 return ret; 678 } 694 } 679 695 680 #if (PAGE_SIZE >= OCFS2_MAX_CLUSTERSIZE) 696 #if (PAGE_SIZE >= OCFS2_MAX_CLUSTERSIZE) 681 #define OCFS2_MAX_CTXT_PAGES 1 697 #define OCFS2_MAX_CTXT_PAGES 1 682 #else 698 #else 683 #define OCFS2_MAX_CTXT_PAGES (OCFS2_MAX_CLU 699 #define OCFS2_MAX_CTXT_PAGES (OCFS2_MAX_CLUSTERSIZE / PAGE_SIZE) 684 #endif 700 #endif 685 701 686 #define OCFS2_MAX_CLUSTERS_PER_PAGE (PAGE_ 702 #define OCFS2_MAX_CLUSTERS_PER_PAGE (PAGE_SIZE / OCFS2_MIN_CLUSTERSIZE) 687 703 688 struct ocfs2_unwritten_extent { 704 struct ocfs2_unwritten_extent { 689 struct list_head ue_node; 705 struct list_head ue_node; 690 struct list_head ue_ip_node; 706 struct list_head ue_ip_node; 691 u32 ue_cpos; 707 u32 ue_cpos; 692 u32 ue_phys; 708 u32 ue_phys; 693 }; 709 }; 694 710 695 /* 711 /* 696 * Describe the state of a single cluster to b 712 * Describe the state of a single cluster to be written to. 697 */ 713 */ 698 struct ocfs2_write_cluster_desc { 714 struct ocfs2_write_cluster_desc { 699 u32 c_cpos; 715 u32 c_cpos; 700 u32 c_phys; 716 u32 c_phys; 701 /* 717 /* 702 * Give this a unique field because c_ 718 * Give this a unique field because c_phys eventually gets 703 * filled. 719 * filled. 704 */ 720 */ 705 unsigned c_new; 721 unsigned c_new; 706 unsigned c_clear_unwritten; 722 unsigned c_clear_unwritten; 707 unsigned c_needs_zero; 723 unsigned c_needs_zero; 708 }; 724 }; 709 725 710 struct ocfs2_write_ctxt { 726 struct ocfs2_write_ctxt { 711 /* Logical cluster position / len of w 727 /* Logical cluster position / len of write */ 712 u32 w_cpos 728 u32 w_cpos; 713 u32 w_clen 729 u32 w_clen; 714 730 715 /* First cluster allocated in a nonspa 731 /* First cluster allocated in a nonsparse extend */ 716 u32 w_firs 732 u32 w_first_new_cpos; 717 733 718 /* Type of caller. Must be one of buff 734 /* Type of caller. Must be one of buffer, mmap, direct. */ 719 ocfs2_write_type_t w_type 735 ocfs2_write_type_t w_type; 720 736 721 struct ocfs2_write_cluster_desc w_desc 737 struct ocfs2_write_cluster_desc w_desc[OCFS2_MAX_CLUSTERS_PER_PAGE]; 722 738 723 /* 739 /* 724 * This is true if page_size > cluster 740 * This is true if page_size > cluster_size. 725 * 741 * 726 * It triggers a set of special cases 742 * It triggers a set of special cases during write which might 727 * have to deal with allocating writes 743 * have to deal with allocating writes to partial pages. 728 */ 744 */ 729 unsigned int w_larg 745 unsigned int w_large_pages; 730 746 731 /* 747 /* 732 * Pages involved in this write. 748 * Pages involved in this write. 733 * 749 * 734 * w_target_page is the page being wri 750 * w_target_page is the page being written to by the user. 735 * 751 * 736 * w_pages is an array of pages which 752 * w_pages is an array of pages which always contains 737 * w_target_page, and in the case of a 753 * w_target_page, and in the case of an allocating write with 738 * page_size < cluster size, it will c 754 * page_size < cluster size, it will contain zero'd and mapped 739 * pages adjacent to w_target_page whi 755 * pages adjacent to w_target_page which need to be written 740 * out in so that future reads from th 756 * out in so that future reads from that region will get 741 * zero's. 757 * zero's. 742 */ 758 */ 743 unsigned int w_num_ 759 unsigned int w_num_pages; 744 struct page *w_pag 760 struct page *w_pages[OCFS2_MAX_CTXT_PAGES]; 745 struct page *w_tar 761 struct page *w_target_page; 746 762 747 /* 763 /* 748 * w_target_locked is used for page_mk 764 * w_target_locked is used for page_mkwrite path indicating no unlocking 749 * against w_target_page in ocfs2_writ 765 * against w_target_page in ocfs2_write_end_nolock. 750 */ 766 */ 751 unsigned int w_targ 767 unsigned int w_target_locked:1; 752 768 753 /* 769 /* 754 * ocfs2_write_end() uses this to know 770 * ocfs2_write_end() uses this to know what the real range to 755 * write in the target should be. 771 * write in the target should be. 756 */ 772 */ 757 unsigned int w_targ 773 unsigned int w_target_from; 758 unsigned int w_targ 774 unsigned int w_target_to; 759 775 760 /* 776 /* 761 * We could use journal_current_handle 777 * We could use journal_current_handle() but this is cleaner, 762 * IMHO -Mark 778 * IMHO -Mark 763 */ 779 */ 764 handle_t *w_han 780 handle_t *w_handle; 765 781 766 struct buffer_head *w_di_ 782 struct buffer_head *w_di_bh; 767 783 768 struct ocfs2_cached_dealloc_ctxt w_dea 784 struct ocfs2_cached_dealloc_ctxt w_dealloc; 769 785 770 struct list_head w_unwr 786 struct list_head w_unwritten_list; 771 unsigned int w_unwr << 772 }; 787 }; 773 788 774 void ocfs2_unlock_and_free_pages(struct page * 789 void ocfs2_unlock_and_free_pages(struct page **pages, int num_pages) 775 { 790 { 776 int i; 791 int i; 777 792 778 for(i = 0; i < num_pages; i++) { 793 for(i = 0; i < num_pages; i++) { 779 if (pages[i]) { 794 if (pages[i]) { 780 unlock_page(pages[i]); 795 unlock_page(pages[i]); 781 mark_page_accessed(pag 796 mark_page_accessed(pages[i]); 782 put_page(pages[i]); 797 put_page(pages[i]); 783 } 798 } 784 } 799 } 785 } 800 } 786 801 787 static void ocfs2_unlock_pages(struct ocfs2_wr 802 static void ocfs2_unlock_pages(struct ocfs2_write_ctxt *wc) 788 { 803 { 789 int i; 804 int i; 790 805 791 /* 806 /* 792 * w_target_locked is only set to true 807 * w_target_locked is only set to true in the page_mkwrite() case. 793 * The intent is to allow us to lock t 808 * The intent is to allow us to lock the target page from write_begin() 794 * to write_end(). The caller must hol 809 * to write_end(). The caller must hold a ref on w_target_page. 795 */ 810 */ 796 if (wc->w_target_locked) { 811 if (wc->w_target_locked) { 797 BUG_ON(!wc->w_target_page); 812 BUG_ON(!wc->w_target_page); 798 for (i = 0; i < wc->w_num_page 813 for (i = 0; i < wc->w_num_pages; i++) { 799 if (wc->w_target_page 814 if (wc->w_target_page == wc->w_pages[i]) { 800 wc->w_pages[i] 815 wc->w_pages[i] = NULL; 801 break; 816 break; 802 } 817 } 803 } 818 } 804 mark_page_accessed(wc->w_targe 819 mark_page_accessed(wc->w_target_page); 805 put_page(wc->w_target_page); 820 put_page(wc->w_target_page); 806 } 821 } 807 ocfs2_unlock_and_free_pages(wc->w_page 822 ocfs2_unlock_and_free_pages(wc->w_pages, wc->w_num_pages); 808 } 823 } 809 824 810 static void ocfs2_free_unwritten_list(struct i 825 static void ocfs2_free_unwritten_list(struct inode *inode, 811 struct list_h 826 struct list_head *head) 812 { 827 { 813 struct ocfs2_inode_info *oi = OCFS2_I( 828 struct ocfs2_inode_info *oi = OCFS2_I(inode); 814 struct ocfs2_unwritten_extent *ue = NU 829 struct ocfs2_unwritten_extent *ue = NULL, *tmp = NULL; 815 830 816 list_for_each_entry_safe(ue, tmp, head 831 list_for_each_entry_safe(ue, tmp, head, ue_node) { 817 list_del(&ue->ue_node); 832 list_del(&ue->ue_node); 818 spin_lock(&oi->ip_lock); 833 spin_lock(&oi->ip_lock); 819 list_del(&ue->ue_ip_node); 834 list_del(&ue->ue_ip_node); 820 spin_unlock(&oi->ip_lock); 835 spin_unlock(&oi->ip_lock); 821 kfree(ue); 836 kfree(ue); 822 } 837 } 823 } 838 } 824 839 825 static void ocfs2_free_write_ctxt(struct inode 840 static void ocfs2_free_write_ctxt(struct inode *inode, 826 struct ocfs2 841 struct ocfs2_write_ctxt *wc) 827 { 842 { 828 ocfs2_free_unwritten_list(inode, &wc-> 843 ocfs2_free_unwritten_list(inode, &wc->w_unwritten_list); 829 ocfs2_unlock_pages(wc); 844 ocfs2_unlock_pages(wc); 830 brelse(wc->w_di_bh); 845 brelse(wc->w_di_bh); 831 kfree(wc); 846 kfree(wc); 832 } 847 } 833 848 834 static int ocfs2_alloc_write_ctxt(struct ocfs2 849 static int ocfs2_alloc_write_ctxt(struct ocfs2_write_ctxt **wcp, 835 struct ocfs2 850 struct ocfs2_super *osb, loff_t pos, 836 unsigned len 851 unsigned len, ocfs2_write_type_t type, 837 struct buffe 852 struct buffer_head *di_bh) 838 { 853 { 839 u32 cend; 854 u32 cend; 840 struct ocfs2_write_ctxt *wc; 855 struct ocfs2_write_ctxt *wc; 841 856 842 wc = kzalloc(sizeof(struct ocfs2_write 857 wc = kzalloc(sizeof(struct ocfs2_write_ctxt), GFP_NOFS); 843 if (!wc) 858 if (!wc) 844 return -ENOMEM; 859 return -ENOMEM; 845 860 846 wc->w_cpos = pos >> osb->s_clustersize 861 wc->w_cpos = pos >> osb->s_clustersize_bits; 847 wc->w_first_new_cpos = UINT_MAX; 862 wc->w_first_new_cpos = UINT_MAX; 848 cend = (pos + len - 1) >> osb->s_clust 863 cend = (pos + len - 1) >> osb->s_clustersize_bits; 849 wc->w_clen = cend - wc->w_cpos + 1; 864 wc->w_clen = cend - wc->w_cpos + 1; 850 get_bh(di_bh); 865 get_bh(di_bh); 851 wc->w_di_bh = di_bh; 866 wc->w_di_bh = di_bh; 852 wc->w_type = type; 867 wc->w_type = type; 853 868 854 if (unlikely(PAGE_SHIFT > osb->s_clust 869 if (unlikely(PAGE_SHIFT > osb->s_clustersize_bits)) 855 wc->w_large_pages = 1; 870 wc->w_large_pages = 1; 856 else 871 else 857 wc->w_large_pages = 0; 872 wc->w_large_pages = 0; 858 873 859 ocfs2_init_dealloc_ctxt(&wc->w_dealloc 874 ocfs2_init_dealloc_ctxt(&wc->w_dealloc); 860 INIT_LIST_HEAD(&wc->w_unwritten_list); 875 INIT_LIST_HEAD(&wc->w_unwritten_list); 861 876 862 *wcp = wc; 877 *wcp = wc; 863 878 864 return 0; 879 return 0; 865 } 880 } 866 881 867 /* 882 /* 868 * If a page has any new buffers, zero them ou 883 * If a page has any new buffers, zero them out here, and mark them uptodate 869 * and dirty so they'll be written out (in ord 884 * and dirty so they'll be written out (in order to prevent uninitialised 870 * block data from leaking). And clear the new 885 * block data from leaking). And clear the new bit. 871 */ 886 */ 872 static void ocfs2_zero_new_buffers(struct page 887 static void ocfs2_zero_new_buffers(struct page *page, unsigned from, unsigned to) 873 { 888 { 874 unsigned int block_start, block_end; 889 unsigned int block_start, block_end; 875 struct buffer_head *head, *bh; 890 struct buffer_head *head, *bh; 876 891 877 BUG_ON(!PageLocked(page)); 892 BUG_ON(!PageLocked(page)); 878 if (!page_has_buffers(page)) 893 if (!page_has_buffers(page)) 879 return; 894 return; 880 895 881 bh = head = page_buffers(page); 896 bh = head = page_buffers(page); 882 block_start = 0; 897 block_start = 0; 883 do { 898 do { 884 block_end = block_start + bh-> 899 block_end = block_start + bh->b_size; 885 900 886 if (buffer_new(bh)) { 901 if (buffer_new(bh)) { 887 if (block_end > from & 902 if (block_end > from && block_start < to) { 888 if (!PageUptod 903 if (!PageUptodate(page)) { 889 unsign 904 unsigned start, end; 890 905 891 start 906 start = max(from, block_start); 892 end = 907 end = min(to, block_end); 893 908 894 zero_u 909 zero_user_segment(page, start, end); 895 set_bu 910 set_buffer_uptodate(bh); 896 } 911 } 897 912 898 clear_buffer_n 913 clear_buffer_new(bh); 899 mark_buffer_di 914 mark_buffer_dirty(bh); 900 } 915 } 901 } 916 } 902 917 903 block_start = block_end; 918 block_start = block_end; 904 bh = bh->b_this_page; 919 bh = bh->b_this_page; 905 } while (bh != head); 920 } while (bh != head); 906 } 921 } 907 922 908 /* 923 /* 909 * Only called when we have a failure during a 924 * Only called when we have a failure during allocating write to write 910 * zero's to the newly allocated region. 925 * zero's to the newly allocated region. 911 */ 926 */ 912 static void ocfs2_write_failure(struct inode * 927 static void ocfs2_write_failure(struct inode *inode, 913 struct ocfs2_w 928 struct ocfs2_write_ctxt *wc, 914 loff_t user_po 929 loff_t user_pos, unsigned user_len) 915 { 930 { 916 int i; 931 int i; 917 unsigned from = user_pos & (PAGE_SIZE 932 unsigned from = user_pos & (PAGE_SIZE - 1), 918 to = user_pos + user_len; 933 to = user_pos + user_len; 919 struct page *tmppage; 934 struct page *tmppage; 920 935 921 if (wc->w_target_page) 936 if (wc->w_target_page) 922 ocfs2_zero_new_buffers(wc->w_t 937 ocfs2_zero_new_buffers(wc->w_target_page, from, to); 923 938 924 for(i = 0; i < wc->w_num_pages; i++) { 939 for(i = 0; i < wc->w_num_pages; i++) { 925 tmppage = wc->w_pages[i]; 940 tmppage = wc->w_pages[i]; 926 941 927 if (tmppage && page_has_buffer 942 if (tmppage && page_has_buffers(tmppage)) { 928 if (ocfs2_should_order 943 if (ocfs2_should_order_data(inode)) 929 ocfs2_jbd2_ino !! 944 ocfs2_jbd2_file_inode(wc->w_handle, inode); 930 << 931 945 932 block_commit_write(tmp 946 block_commit_write(tmppage, from, to); 933 } 947 } 934 } 948 } 935 } 949 } 936 950 937 static int ocfs2_prepare_page_for_write(struct 951 static int ocfs2_prepare_page_for_write(struct inode *inode, u64 *p_blkno, 938 struct 952 struct ocfs2_write_ctxt *wc, 939 struct 953 struct page *page, u32 cpos, 940 loff_t 954 loff_t user_pos, unsigned user_len, 941 int ne 955 int new) 942 { 956 { 943 int ret; 957 int ret; 944 unsigned int map_from = 0, map_to = 0; 958 unsigned int map_from = 0, map_to = 0; 945 unsigned int cluster_start, cluster_en 959 unsigned int cluster_start, cluster_end; 946 unsigned int user_data_from = 0, user_ 960 unsigned int user_data_from = 0, user_data_to = 0; 947 961 948 ocfs2_figure_cluster_boundaries(OCFS2_ 962 ocfs2_figure_cluster_boundaries(OCFS2_SB(inode->i_sb), cpos, 949 &clust 963 &cluster_start, &cluster_end); 950 964 951 /* treat the write as new if the a hol 965 /* treat the write as new if the a hole/lseek spanned across 952 * the page boundary. 966 * the page boundary. 953 */ 967 */ 954 new = new | ((i_size_read(inode) <= pa 968 new = new | ((i_size_read(inode) <= page_offset(page)) && 955 (page_offset(page) <= 969 (page_offset(page) <= user_pos)); 956 970 957 if (page == wc->w_target_page) { 971 if (page == wc->w_target_page) { 958 map_from = user_pos & (PAGE_SI 972 map_from = user_pos & (PAGE_SIZE - 1); 959 map_to = map_from + user_len; 973 map_to = map_from + user_len; 960 974 961 if (new) 975 if (new) 962 ret = ocfs2_map_page_b 976 ret = ocfs2_map_page_blocks(page, p_blkno, inode, 963 977 cluster_start, cluster_end, 964 978 new); 965 else 979 else 966 ret = ocfs2_map_page_b 980 ret = ocfs2_map_page_blocks(page, p_blkno, inode, 967 981 map_from, map_to, new); 968 if (ret) { 982 if (ret) { 969 mlog_errno(ret); 983 mlog_errno(ret); 970 goto out; 984 goto out; 971 } 985 } 972 986 973 user_data_from = map_from; 987 user_data_from = map_from; 974 user_data_to = map_to; 988 user_data_to = map_to; 975 if (new) { 989 if (new) { 976 map_from = cluster_sta 990 map_from = cluster_start; 977 map_to = cluster_end; 991 map_to = cluster_end; 978 } 992 } 979 } else { 993 } else { 980 /* 994 /* 981 * If we haven't allocated the 995 * If we haven't allocated the new page yet, we 982 * shouldn't be writing it out 996 * shouldn't be writing it out without copying user 983 * data. This is likely a math 997 * data. This is likely a math error from the caller. 984 */ 998 */ 985 BUG_ON(!new); 999 BUG_ON(!new); 986 1000 987 map_from = cluster_start; 1001 map_from = cluster_start; 988 map_to = cluster_end; 1002 map_to = cluster_end; 989 1003 990 ret = ocfs2_map_page_blocks(pa 1004 ret = ocfs2_map_page_blocks(page, p_blkno, inode, 991 cl 1005 cluster_start, cluster_end, new); 992 if (ret) { 1006 if (ret) { 993 mlog_errno(ret); 1007 mlog_errno(ret); 994 goto out; 1008 goto out; 995 } 1009 } 996 } 1010 } 997 1011 998 /* 1012 /* 999 * Parts of newly allocated pages need 1013 * Parts of newly allocated pages need to be zero'd. 1000 * 1014 * 1001 * Above, we have also rewritten 'to' 1015 * Above, we have also rewritten 'to' and 'from' - as far as 1002 * the rest of the function is concer 1016 * the rest of the function is concerned, the entire cluster 1003 * range inside of a page needs to be 1017 * range inside of a page needs to be written. 1004 * 1018 * 1005 * We can skip this if the page is up 1019 * We can skip this if the page is up to date - it's already 1006 * been zero'd from being read in as 1020 * been zero'd from being read in as a hole. 1007 */ 1021 */ 1008 if (new && !PageUptodate(page)) 1022 if (new && !PageUptodate(page)) 1009 ocfs2_clear_page_regions(page 1023 ocfs2_clear_page_regions(page, OCFS2_SB(inode->i_sb), 1010 cpos 1024 cpos, user_data_from, user_data_to); 1011 1025 1012 flush_dcache_page(page); 1026 flush_dcache_page(page); 1013 1027 1014 out: 1028 out: 1015 return ret; 1029 return ret; 1016 } 1030 } 1017 1031 1018 /* 1032 /* 1019 * This function will only grab one clusters 1033 * This function will only grab one clusters worth of pages. 1020 */ 1034 */ 1021 static int ocfs2_grab_pages_for_write(struct 1035 static int ocfs2_grab_pages_for_write(struct address_space *mapping, 1022 struct 1036 struct ocfs2_write_ctxt *wc, 1023 u32 cpo 1037 u32 cpos, loff_t user_pos, 1024 unsigne 1038 unsigned user_len, int new, 1025 struct 1039 struct page *mmap_page) 1026 { 1040 { 1027 int ret = 0, i; 1041 int ret = 0, i; 1028 unsigned long start, target_index, en 1042 unsigned long start, target_index, end_index, index; 1029 struct inode *inode = mapping->host; 1043 struct inode *inode = mapping->host; 1030 loff_t last_byte; 1044 loff_t last_byte; 1031 1045 1032 target_index = user_pos >> PAGE_SHIFT 1046 target_index = user_pos >> PAGE_SHIFT; 1033 1047 1034 /* 1048 /* 1035 * Figure out how many pages we'll be 1049 * Figure out how many pages we'll be manipulating here. For 1036 * non allocating write, we just chan 1050 * non allocating write, we just change the one 1037 * page. Otherwise, we'll need a whol 1051 * page. Otherwise, we'll need a whole clusters worth. If we're 1038 * writing past i_size, we only need 1052 * writing past i_size, we only need enough pages to cover the 1039 * last page of the write. 1053 * last page of the write. 1040 */ 1054 */ 1041 if (new) { 1055 if (new) { 1042 wc->w_num_pages = ocfs2_pages 1056 wc->w_num_pages = ocfs2_pages_per_cluster(inode->i_sb); 1043 start = ocfs2_align_clusters_ 1057 start = ocfs2_align_clusters_to_page_index(inode->i_sb, cpos); 1044 /* 1058 /* 1045 * We need the index *past* t 1059 * We need the index *past* the last page we could possibly 1046 * touch. This is the page p 1060 * touch. This is the page past the end of the write or 1047 * i_size, whichever is great 1061 * i_size, whichever is greater. 1048 */ 1062 */ 1049 last_byte = max(user_pos + us 1063 last_byte = max(user_pos + user_len, i_size_read(inode)); 1050 BUG_ON(last_byte < 1); 1064 BUG_ON(last_byte < 1); 1051 end_index = ((last_byte - 1) 1065 end_index = ((last_byte - 1) >> PAGE_SHIFT) + 1; 1052 if ((start + wc->w_num_pages) 1066 if ((start + wc->w_num_pages) > end_index) 1053 wc->w_num_pages = end 1067 wc->w_num_pages = end_index - start; 1054 } else { 1068 } else { 1055 wc->w_num_pages = 1; 1069 wc->w_num_pages = 1; 1056 start = target_index; 1070 start = target_index; 1057 } 1071 } 1058 end_index = (user_pos + user_len - 1) 1072 end_index = (user_pos + user_len - 1) >> PAGE_SHIFT; 1059 1073 1060 for(i = 0; i < wc->w_num_pages; i++) 1074 for(i = 0; i < wc->w_num_pages; i++) { 1061 index = start + i; 1075 index = start + i; 1062 1076 1063 if (index >= target_index && 1077 if (index >= target_index && index <= end_index && 1064 wc->w_type == OCFS2_WRITE 1078 wc->w_type == OCFS2_WRITE_MMAP) { 1065 /* 1079 /* 1066 * ocfs2_pagemkwrite( 1080 * ocfs2_pagemkwrite() is a little different 1067 * and wants us to di 1081 * and wants us to directly use the page 1068 * passed in. 1082 * passed in. 1069 */ 1083 */ 1070 lock_page(mmap_page); 1084 lock_page(mmap_page); 1071 1085 1072 /* Exit and let the c 1086 /* Exit and let the caller retry */ 1073 if (mmap_page->mappin 1087 if (mmap_page->mapping != mapping) { 1074 WARN_ON(mmap_ 1088 WARN_ON(mmap_page->mapping); 1075 unlock_page(m 1089 unlock_page(mmap_page); 1076 ret = -EAGAIN 1090 ret = -EAGAIN; 1077 goto out; 1091 goto out; 1078 } 1092 } 1079 1093 1080 get_page(mmap_page); 1094 get_page(mmap_page); 1081 wc->w_pages[i] = mmap 1095 wc->w_pages[i] = mmap_page; 1082 wc->w_target_locked = 1096 wc->w_target_locked = true; 1083 } else if (index >= target_in 1097 } else if (index >= target_index && index <= end_index && 1084 wc->w_type == OCFS 1098 wc->w_type == OCFS2_WRITE_DIRECT) { 1085 /* Direct write has n 1099 /* Direct write has no mapping page. */ 1086 wc->w_pages[i] = NULL 1100 wc->w_pages[i] = NULL; 1087 continue; 1101 continue; 1088 } else { 1102 } else { 1089 wc->w_pages[i] = find 1103 wc->w_pages[i] = find_or_create_page(mapping, index, 1090 1104 GFP_NOFS); 1091 if (!wc->w_pages[i]) 1105 if (!wc->w_pages[i]) { 1092 ret = -ENOMEM 1106 ret = -ENOMEM; 1093 mlog_errno(re 1107 mlog_errno(ret); 1094 goto out; 1108 goto out; 1095 } 1109 } 1096 } 1110 } 1097 wait_for_stable_page(wc->w_pa 1111 wait_for_stable_page(wc->w_pages[i]); 1098 1112 1099 if (index == target_index) 1113 if (index == target_index) 1100 wc->w_target_page = w 1114 wc->w_target_page = wc->w_pages[i]; 1101 } 1115 } 1102 out: 1116 out: 1103 if (ret) 1117 if (ret) 1104 wc->w_target_locked = false; 1118 wc->w_target_locked = false; 1105 return ret; 1119 return ret; 1106 } 1120 } 1107 1121 1108 /* 1122 /* 1109 * Prepare a single cluster for write one clu 1123 * Prepare a single cluster for write one cluster into the file. 1110 */ 1124 */ 1111 static int ocfs2_write_cluster(struct address 1125 static int ocfs2_write_cluster(struct address_space *mapping, 1112 u32 *phys, uns 1126 u32 *phys, unsigned int new, 1113 unsigned int c 1127 unsigned int clear_unwritten, 1114 unsigned int s 1128 unsigned int should_zero, 1115 struct ocfs2_a 1129 struct ocfs2_alloc_context *data_ac, 1116 struct ocfs2_a 1130 struct ocfs2_alloc_context *meta_ac, 1117 struct ocfs2_w 1131 struct ocfs2_write_ctxt *wc, u32 cpos, 1118 loff_t user_po 1132 loff_t user_pos, unsigned user_len) 1119 { 1133 { 1120 int ret, i; 1134 int ret, i; 1121 u64 p_blkno; 1135 u64 p_blkno; 1122 struct inode *inode = mapping->host; 1136 struct inode *inode = mapping->host; 1123 struct ocfs2_extent_tree et; 1137 struct ocfs2_extent_tree et; 1124 int bpc = ocfs2_clusters_to_blocks(in 1138 int bpc = ocfs2_clusters_to_blocks(inode->i_sb, 1); 1125 1139 1126 if (new) { 1140 if (new) { 1127 u32 tmp_pos; 1141 u32 tmp_pos; 1128 1142 1129 /* 1143 /* 1130 * This is safe to call with 1144 * This is safe to call with the page locks - it won't take 1131 * any additional semaphores 1145 * any additional semaphores or cluster locks. 1132 */ 1146 */ 1133 tmp_pos = cpos; 1147 tmp_pos = cpos; 1134 ret = ocfs2_add_inode_data(OC 1148 ret = ocfs2_add_inode_data(OCFS2_SB(inode->i_sb), inode, 1135 &t 1149 &tmp_pos, 1, !clear_unwritten, 1136 wc 1150 wc->w_di_bh, wc->w_handle, 1137 da 1151 data_ac, meta_ac, NULL); 1138 /* 1152 /* 1139 * This shouldn't happen beca 1153 * This shouldn't happen because we must have already 1140 * calculated the correct met 1154 * calculated the correct meta data allocation required. The 1141 * internal tree allocation c 1155 * internal tree allocation code should know how to increase 1142 * transaction credits itself 1156 * transaction credits itself. 1143 * 1157 * 1144 * If need be, we could handl 1158 * If need be, we could handle -EAGAIN for a 1145 * RESTART_TRANS here. 1159 * RESTART_TRANS here. 1146 */ 1160 */ 1147 mlog_bug_on_msg(ret == -EAGAI 1161 mlog_bug_on_msg(ret == -EAGAIN, 1148 "Inode %llu: 1162 "Inode %llu: EAGAIN return during allocation.\n", 1149 (unsigned lon 1163 (unsigned long long)OCFS2_I(inode)->ip_blkno); 1150 if (ret < 0) { 1164 if (ret < 0) { 1151 mlog_errno(ret); 1165 mlog_errno(ret); 1152 goto out; 1166 goto out; 1153 } 1167 } 1154 } else if (clear_unwritten) { 1168 } else if (clear_unwritten) { 1155 ocfs2_init_dinode_extent_tree 1169 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), 1156 1170 wc->w_di_bh); 1157 ret = ocfs2_mark_extent_writt 1171 ret = ocfs2_mark_extent_written(inode, &et, 1158 1172 wc->w_handle, cpos, 1, *phys, 1159 1173 meta_ac, &wc->w_dealloc); 1160 if (ret < 0) { 1174 if (ret < 0) { 1161 mlog_errno(ret); 1175 mlog_errno(ret); 1162 goto out; 1176 goto out; 1163 } 1177 } 1164 } 1178 } 1165 1179 1166 /* 1180 /* 1167 * The only reason this should fail i 1181 * The only reason this should fail is due to an inability to 1168 * find the extent added. 1182 * find the extent added. 1169 */ 1183 */ 1170 ret = ocfs2_get_clusters(inode, cpos, 1184 ret = ocfs2_get_clusters(inode, cpos, phys, NULL, NULL); 1171 if (ret < 0) { 1185 if (ret < 0) { 1172 mlog(ML_ERROR, "Get physical 1186 mlog(ML_ERROR, "Get physical blkno failed for inode %llu, " 1173 "at logical clust 1187 "at logical cluster %u", 1174 (unsigned long lo 1188 (unsigned long long)OCFS2_I(inode)->ip_blkno, cpos); 1175 goto out; 1189 goto out; 1176 } 1190 } 1177 1191 1178 BUG_ON(*phys == 0); 1192 BUG_ON(*phys == 0); 1179 1193 1180 p_blkno = ocfs2_clusters_to_blocks(in 1194 p_blkno = ocfs2_clusters_to_blocks(inode->i_sb, *phys); 1181 if (!should_zero) 1195 if (!should_zero) 1182 p_blkno += (user_pos >> inode 1196 p_blkno += (user_pos >> inode->i_sb->s_blocksize_bits) & (u64)(bpc - 1); 1183 1197 1184 for(i = 0; i < wc->w_num_pages; i++) 1198 for(i = 0; i < wc->w_num_pages; i++) { 1185 int tmpret; 1199 int tmpret; 1186 1200 1187 /* This is the direct io targ 1201 /* This is the direct io target page. */ 1188 if (wc->w_pages[i] == NULL) { 1202 if (wc->w_pages[i] == NULL) { 1189 p_blkno++; 1203 p_blkno++; 1190 continue; 1204 continue; 1191 } 1205 } 1192 1206 1193 tmpret = ocfs2_prepare_page_f 1207 tmpret = ocfs2_prepare_page_for_write(inode, &p_blkno, wc, 1194 1208 wc->w_pages[i], cpos, 1195 1209 user_pos, user_len, 1196 1210 should_zero); 1197 if (tmpret) { 1211 if (tmpret) { 1198 mlog_errno(tmpret); 1212 mlog_errno(tmpret); 1199 if (ret == 0) 1213 if (ret == 0) 1200 ret = tmpret; 1214 ret = tmpret; 1201 } 1215 } 1202 } 1216 } 1203 1217 1204 /* 1218 /* 1205 * We only have cleanup to do in case 1219 * We only have cleanup to do in case of allocating write. 1206 */ 1220 */ 1207 if (ret && new) 1221 if (ret && new) 1208 ocfs2_write_failure(inode, wc 1222 ocfs2_write_failure(inode, wc, user_pos, user_len); 1209 1223 1210 out: 1224 out: 1211 1225 1212 return ret; 1226 return ret; 1213 } 1227 } 1214 1228 1215 static int ocfs2_write_cluster_by_desc(struct 1229 static int ocfs2_write_cluster_by_desc(struct address_space *mapping, 1216 struct 1230 struct ocfs2_alloc_context *data_ac, 1217 struct 1231 struct ocfs2_alloc_context *meta_ac, 1218 struct 1232 struct ocfs2_write_ctxt *wc, 1219 loff_t 1233 loff_t pos, unsigned len) 1220 { 1234 { 1221 int ret, i; 1235 int ret, i; 1222 loff_t cluster_off; 1236 loff_t cluster_off; 1223 unsigned int local_len = len; 1237 unsigned int local_len = len; 1224 struct ocfs2_write_cluster_desc *desc 1238 struct ocfs2_write_cluster_desc *desc; 1225 struct ocfs2_super *osb = OCFS2_SB(ma 1239 struct ocfs2_super *osb = OCFS2_SB(mapping->host->i_sb); 1226 1240 1227 for (i = 0; i < wc->w_clen; i++) { 1241 for (i = 0; i < wc->w_clen; i++) { 1228 desc = &wc->w_desc[i]; 1242 desc = &wc->w_desc[i]; 1229 1243 1230 /* 1244 /* 1231 * We have to make sure that 1245 * We have to make sure that the total write passed in 1232 * doesn't extend past a sing 1246 * doesn't extend past a single cluster. 1233 */ 1247 */ 1234 local_len = len; 1248 local_len = len; 1235 cluster_off = pos & (osb->s_c 1249 cluster_off = pos & (osb->s_clustersize - 1); 1236 if ((cluster_off + local_len) 1250 if ((cluster_off + local_len) > osb->s_clustersize) 1237 local_len = osb->s_cl 1251 local_len = osb->s_clustersize - cluster_off; 1238 1252 1239 ret = ocfs2_write_cluster(map 1253 ret = ocfs2_write_cluster(mapping, &desc->c_phys, 1240 des 1254 desc->c_new, 1241 des 1255 desc->c_clear_unwritten, 1242 des 1256 desc->c_needs_zero, 1243 dat 1257 data_ac, meta_ac, 1244 wc, 1258 wc, desc->c_cpos, pos, local_len); 1245 if (ret) { 1259 if (ret) { 1246 mlog_errno(ret); 1260 mlog_errno(ret); 1247 goto out; 1261 goto out; 1248 } 1262 } 1249 1263 1250 len -= local_len; 1264 len -= local_len; 1251 pos += local_len; 1265 pos += local_len; 1252 } 1266 } 1253 1267 1254 ret = 0; 1268 ret = 0; 1255 out: 1269 out: 1256 return ret; 1270 return ret; 1257 } 1271 } 1258 1272 1259 /* 1273 /* 1260 * ocfs2_write_end() wants to know which part 1274 * ocfs2_write_end() wants to know which parts of the target page it 1261 * should complete the write on. It's easiest 1275 * should complete the write on. It's easiest to compute them ahead of 1262 * time when a more complete view of the writ 1276 * time when a more complete view of the write is available. 1263 */ 1277 */ 1264 static void ocfs2_set_target_boundaries(struc 1278 static void ocfs2_set_target_boundaries(struct ocfs2_super *osb, 1265 struc 1279 struct ocfs2_write_ctxt *wc, 1266 loff_ 1280 loff_t pos, unsigned len, int alloc) 1267 { 1281 { 1268 struct ocfs2_write_cluster_desc *desc 1282 struct ocfs2_write_cluster_desc *desc; 1269 1283 1270 wc->w_target_from = pos & (PAGE_SIZE 1284 wc->w_target_from = pos & (PAGE_SIZE - 1); 1271 wc->w_target_to = wc->w_target_from + 1285 wc->w_target_to = wc->w_target_from + len; 1272 1286 1273 if (alloc == 0) 1287 if (alloc == 0) 1274 return; 1288 return; 1275 1289 1276 /* 1290 /* 1277 * Allocating write - we may have dif 1291 * Allocating write - we may have different boundaries based 1278 * on page size and cluster size. 1292 * on page size and cluster size. 1279 * 1293 * 1280 * NOTE: We can no longer compute one 1294 * NOTE: We can no longer compute one value from the other as 1281 * the actual write length and user p 1295 * the actual write length and user provided length may be 1282 * different. 1296 * different. 1283 */ 1297 */ 1284 1298 1285 if (wc->w_large_pages) { 1299 if (wc->w_large_pages) { 1286 /* 1300 /* 1287 * We only care about the 1st 1301 * We only care about the 1st and last cluster within 1288 * our range and whether they 1302 * our range and whether they should be zero'd or not. Either 1289 * value may be extended out 1303 * value may be extended out to the start/end of a 1290 * newly allocated cluster. 1304 * newly allocated cluster. 1291 */ 1305 */ 1292 desc = &wc->w_desc[0]; 1306 desc = &wc->w_desc[0]; 1293 if (desc->c_needs_zero) 1307 if (desc->c_needs_zero) 1294 ocfs2_figure_cluster_ 1308 ocfs2_figure_cluster_boundaries(osb, 1295 1309 desc->c_cpos, 1296 1310 &wc->w_target_from, 1297 1311 NULL); 1298 1312 1299 desc = &wc->w_desc[wc->w_clen 1313 desc = &wc->w_desc[wc->w_clen - 1]; 1300 if (desc->c_needs_zero) 1314 if (desc->c_needs_zero) 1301 ocfs2_figure_cluster_ 1315 ocfs2_figure_cluster_boundaries(osb, 1302 1316 desc->c_cpos, 1303 1317 NULL, 1304 1318 &wc->w_target_to); 1305 } else { 1319 } else { 1306 wc->w_target_from = 0; 1320 wc->w_target_from = 0; 1307 wc->w_target_to = PAGE_SIZE; 1321 wc->w_target_to = PAGE_SIZE; 1308 } 1322 } 1309 } 1323 } 1310 1324 1311 /* 1325 /* 1312 * Check if this extent is marked UNWRITTEN b 1326 * Check if this extent is marked UNWRITTEN by direct io. If so, we need not to 1313 * do the zero work. And should not to clear 1327 * do the zero work. And should not to clear UNWRITTEN since it will be cleared 1314 * by the direct io procedure. 1328 * by the direct io procedure. 1315 * If this is a new extent that allocated by 1329 * If this is a new extent that allocated by direct io, we should mark it in 1316 * the ip_unwritten_list. 1330 * the ip_unwritten_list. 1317 */ 1331 */ 1318 static int ocfs2_unwritten_check(struct inode 1332 static int ocfs2_unwritten_check(struct inode *inode, 1319 struct ocfs2 1333 struct ocfs2_write_ctxt *wc, 1320 struct ocfs2 1334 struct ocfs2_write_cluster_desc *desc) 1321 { 1335 { 1322 struct ocfs2_inode_info *oi = OCFS2_I 1336 struct ocfs2_inode_info *oi = OCFS2_I(inode); 1323 struct ocfs2_unwritten_extent *ue = N 1337 struct ocfs2_unwritten_extent *ue = NULL, *new = NULL; 1324 int ret = 0; 1338 int ret = 0; 1325 1339 1326 if (!desc->c_needs_zero) 1340 if (!desc->c_needs_zero) 1327 return 0; 1341 return 0; 1328 1342 1329 retry: 1343 retry: 1330 spin_lock(&oi->ip_lock); 1344 spin_lock(&oi->ip_lock); 1331 /* Needs not to zero no metter buffer 1345 /* Needs not to zero no metter buffer or direct. The one who is zero 1332 * the cluster is doing zero. And he 1346 * the cluster is doing zero. And he will clear unwritten after all 1333 * cluster io finished. */ 1347 * cluster io finished. */ 1334 list_for_each_entry(ue, &oi->ip_unwri 1348 list_for_each_entry(ue, &oi->ip_unwritten_list, ue_ip_node) { 1335 if (desc->c_cpos == ue->ue_cp 1349 if (desc->c_cpos == ue->ue_cpos) { 1336 BUG_ON(desc->c_new); 1350 BUG_ON(desc->c_new); 1337 desc->c_needs_zero = 1351 desc->c_needs_zero = 0; 1338 desc->c_clear_unwritt 1352 desc->c_clear_unwritten = 0; 1339 goto unlock; 1353 goto unlock; 1340 } 1354 } 1341 } 1355 } 1342 1356 1343 if (wc->w_type != OCFS2_WRITE_DIRECT) 1357 if (wc->w_type != OCFS2_WRITE_DIRECT) 1344 goto unlock; 1358 goto unlock; 1345 1359 1346 if (new == NULL) { 1360 if (new == NULL) { 1347 spin_unlock(&oi->ip_lock); 1361 spin_unlock(&oi->ip_lock); 1348 new = kmalloc(sizeof(struct o 1362 new = kmalloc(sizeof(struct ocfs2_unwritten_extent), 1349 GFP_NOFS); 1363 GFP_NOFS); 1350 if (new == NULL) { 1364 if (new == NULL) { 1351 ret = -ENOMEM; 1365 ret = -ENOMEM; 1352 goto out; 1366 goto out; 1353 } 1367 } 1354 goto retry; 1368 goto retry; 1355 } 1369 } 1356 /* This direct write will doing zero. 1370 /* This direct write will doing zero. */ 1357 new->ue_cpos = desc->c_cpos; 1371 new->ue_cpos = desc->c_cpos; 1358 new->ue_phys = desc->c_phys; 1372 new->ue_phys = desc->c_phys; 1359 desc->c_clear_unwritten = 0; 1373 desc->c_clear_unwritten = 0; 1360 list_add_tail(&new->ue_ip_node, &oi-> 1374 list_add_tail(&new->ue_ip_node, &oi->ip_unwritten_list); 1361 list_add_tail(&new->ue_node, &wc->w_u 1375 list_add_tail(&new->ue_node, &wc->w_unwritten_list); 1362 wc->w_unwritten_count++; << 1363 new = NULL; 1376 new = NULL; 1364 unlock: 1377 unlock: 1365 spin_unlock(&oi->ip_lock); 1378 spin_unlock(&oi->ip_lock); 1366 out: 1379 out: 1367 kfree(new); !! 1380 if (new) >> 1381 kfree(new); 1368 return ret; 1382 return ret; 1369 } 1383 } 1370 1384 1371 /* 1385 /* 1372 * Populate each single-cluster write descrip 1386 * Populate each single-cluster write descriptor in the write context 1373 * with information about the i/o to be done. 1387 * with information about the i/o to be done. 1374 * 1388 * 1375 * Returns the number of clusters that will h 1389 * Returns the number of clusters that will have to be allocated, as 1376 * well as a worst case estimate of the numbe 1390 * well as a worst case estimate of the number of extent records that 1377 * would have to be created during a write to 1391 * would have to be created during a write to an unwritten region. 1378 */ 1392 */ 1379 static int ocfs2_populate_write_desc(struct i 1393 static int ocfs2_populate_write_desc(struct inode *inode, 1380 struct o 1394 struct ocfs2_write_ctxt *wc, 1381 unsigned 1395 unsigned int *clusters_to_alloc, 1382 unsigned 1396 unsigned int *extents_to_split) 1383 { 1397 { 1384 int ret; 1398 int ret; 1385 struct ocfs2_write_cluster_desc *desc 1399 struct ocfs2_write_cluster_desc *desc; 1386 unsigned int num_clusters = 0; 1400 unsigned int num_clusters = 0; 1387 unsigned int ext_flags = 0; 1401 unsigned int ext_flags = 0; 1388 u32 phys = 0; 1402 u32 phys = 0; 1389 int i; 1403 int i; 1390 1404 1391 *clusters_to_alloc = 0; 1405 *clusters_to_alloc = 0; 1392 *extents_to_split = 0; 1406 *extents_to_split = 0; 1393 1407 1394 for (i = 0; i < wc->w_clen; i++) { 1408 for (i = 0; i < wc->w_clen; i++) { 1395 desc = &wc->w_desc[i]; 1409 desc = &wc->w_desc[i]; 1396 desc->c_cpos = wc->w_cpos + i 1410 desc->c_cpos = wc->w_cpos + i; 1397 1411 1398 if (num_clusters == 0) { 1412 if (num_clusters == 0) { 1399 /* 1413 /* 1400 * Need to look up th 1414 * Need to look up the next extent record. 1401 */ 1415 */ 1402 ret = ocfs2_get_clust 1416 ret = ocfs2_get_clusters(inode, desc->c_cpos, &phys, 1403 1417 &num_clusters, &ext_flags); 1404 if (ret) { 1418 if (ret) { 1405 mlog_errno(re 1419 mlog_errno(ret); 1406 goto out; 1420 goto out; 1407 } 1421 } 1408 1422 1409 /* We should already 1423 /* We should already CoW the refcountd extent. */ 1410 BUG_ON(ext_flags & OC 1424 BUG_ON(ext_flags & OCFS2_EXT_REFCOUNTED); 1411 1425 1412 /* 1426 /* 1413 * Assume worst case 1427 * Assume worst case - that we're writing in 1414 * the middle of the 1428 * the middle of the extent. 1415 * 1429 * 1416 * We can assume that 1430 * We can assume that the write proceeds from 1417 * left to right, in 1431 * left to right, in which case the extent 1418 * insert code is sma 1432 * insert code is smart enough to coalesce the 1419 * next splits into t 1433 * next splits into the previous records created. 1420 */ 1434 */ 1421 if (ext_flags & OCFS2 1435 if (ext_flags & OCFS2_EXT_UNWRITTEN) 1422 *extents_to_s 1436 *extents_to_split = *extents_to_split + 2; 1423 } else if (phys) { 1437 } else if (phys) { 1424 /* 1438 /* 1425 * Only increment phy 1439 * Only increment phys if it doesn't describe 1426 * a hole. 1440 * a hole. 1427 */ 1441 */ 1428 phys++; 1442 phys++; 1429 } 1443 } 1430 1444 1431 /* 1445 /* 1432 * If w_first_new_cpos is < U 1446 * If w_first_new_cpos is < UINT_MAX, we have a non-sparse 1433 * file that got extended. w 1447 * file that got extended. w_first_new_cpos tells us 1434 * where the newly allocated 1448 * where the newly allocated clusters are so we can 1435 * zero them. 1449 * zero them. 1436 */ 1450 */ 1437 if (desc->c_cpos >= wc->w_fir 1451 if (desc->c_cpos >= wc->w_first_new_cpos) { 1438 BUG_ON(phys == 0); 1452 BUG_ON(phys == 0); 1439 desc->c_needs_zero = 1453 desc->c_needs_zero = 1; 1440 } 1454 } 1441 1455 1442 desc->c_phys = phys; 1456 desc->c_phys = phys; 1443 if (phys == 0) { 1457 if (phys == 0) { 1444 desc->c_new = 1; 1458 desc->c_new = 1; 1445 desc->c_needs_zero = 1459 desc->c_needs_zero = 1; 1446 desc->c_clear_unwritt 1460 desc->c_clear_unwritten = 1; 1447 *clusters_to_alloc = 1461 *clusters_to_alloc = *clusters_to_alloc + 1; 1448 } 1462 } 1449 1463 1450 if (ext_flags & OCFS2_EXT_UNW 1464 if (ext_flags & OCFS2_EXT_UNWRITTEN) { 1451 desc->c_clear_unwritt 1465 desc->c_clear_unwritten = 1; 1452 desc->c_needs_zero = 1466 desc->c_needs_zero = 1; 1453 } 1467 } 1454 1468 1455 ret = ocfs2_unwritten_check(i 1469 ret = ocfs2_unwritten_check(inode, wc, desc); 1456 if (ret) { 1470 if (ret) { 1457 mlog_errno(ret); 1471 mlog_errno(ret); 1458 goto out; 1472 goto out; 1459 } 1473 } 1460 1474 1461 num_clusters--; 1475 num_clusters--; 1462 } 1476 } 1463 1477 1464 ret = 0; 1478 ret = 0; 1465 out: 1479 out: 1466 return ret; 1480 return ret; 1467 } 1481 } 1468 1482 1469 static int ocfs2_write_begin_inline(struct ad 1483 static int ocfs2_write_begin_inline(struct address_space *mapping, 1470 struct in 1484 struct inode *inode, 1471 struct oc 1485 struct ocfs2_write_ctxt *wc) 1472 { 1486 { 1473 int ret; 1487 int ret; 1474 struct ocfs2_super *osb = OCFS2_SB(in 1488 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 1475 struct page *page; 1489 struct page *page; 1476 handle_t *handle; 1490 handle_t *handle; 1477 struct ocfs2_dinode *di = (struct ocf 1491 struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data; 1478 1492 1479 handle = ocfs2_start_trans(osb, OCFS2 1493 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS); 1480 if (IS_ERR(handle)) { 1494 if (IS_ERR(handle)) { 1481 ret = PTR_ERR(handle); 1495 ret = PTR_ERR(handle); 1482 mlog_errno(ret); 1496 mlog_errno(ret); 1483 goto out; 1497 goto out; 1484 } 1498 } 1485 1499 1486 page = find_or_create_page(mapping, 0 1500 page = find_or_create_page(mapping, 0, GFP_NOFS); 1487 if (!page) { 1501 if (!page) { 1488 ocfs2_commit_trans(osb, handl 1502 ocfs2_commit_trans(osb, handle); 1489 ret = -ENOMEM; 1503 ret = -ENOMEM; 1490 mlog_errno(ret); 1504 mlog_errno(ret); 1491 goto out; 1505 goto out; 1492 } 1506 } 1493 /* 1507 /* 1494 * If we don't set w_num_pages then t 1508 * If we don't set w_num_pages then this page won't get unlocked 1495 * and freed on cleanup of the write 1509 * and freed on cleanup of the write context. 1496 */ 1510 */ 1497 wc->w_pages[0] = wc->w_target_page = 1511 wc->w_pages[0] = wc->w_target_page = page; 1498 wc->w_num_pages = 1; 1512 wc->w_num_pages = 1; 1499 1513 1500 ret = ocfs2_journal_access_di(handle, 1514 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), wc->w_di_bh, 1501 OCFS2_J 1515 OCFS2_JOURNAL_ACCESS_WRITE); 1502 if (ret) { 1516 if (ret) { 1503 ocfs2_commit_trans(osb, handl 1517 ocfs2_commit_trans(osb, handle); 1504 1518 1505 mlog_errno(ret); 1519 mlog_errno(ret); 1506 goto out; 1520 goto out; 1507 } 1521 } 1508 1522 1509 if (!(OCFS2_I(inode)->ip_dyn_features 1523 if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL)) 1510 ocfs2_set_inode_data_inline(i 1524 ocfs2_set_inode_data_inline(inode, di); 1511 1525 1512 if (!PageUptodate(page)) { 1526 if (!PageUptodate(page)) { 1513 ret = ocfs2_read_inline_data( 1527 ret = ocfs2_read_inline_data(inode, page, wc->w_di_bh); 1514 if (ret) { 1528 if (ret) { 1515 ocfs2_commit_trans(os 1529 ocfs2_commit_trans(osb, handle); 1516 1530 1517 goto out; 1531 goto out; 1518 } 1532 } 1519 } 1533 } 1520 1534 1521 wc->w_handle = handle; 1535 wc->w_handle = handle; 1522 out: 1536 out: 1523 return ret; 1537 return ret; 1524 } 1538 } 1525 1539 1526 int ocfs2_size_fits_inline_data(struct buffer 1540 int ocfs2_size_fits_inline_data(struct buffer_head *di_bh, u64 new_size) 1527 { 1541 { 1528 struct ocfs2_dinode *di = (struct ocf 1542 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data; 1529 1543 1530 if (new_size <= le16_to_cpu(di->id2.i 1544 if (new_size <= le16_to_cpu(di->id2.i_data.id_count)) 1531 return 1; 1545 return 1; 1532 return 0; 1546 return 0; 1533 } 1547 } 1534 1548 1535 static int ocfs2_try_to_write_inline_data(str 1549 static int ocfs2_try_to_write_inline_data(struct address_space *mapping, 1536 str 1550 struct inode *inode, loff_t pos, 1537 uns 1551 unsigned len, struct page *mmap_page, 1538 str 1552 struct ocfs2_write_ctxt *wc) 1539 { 1553 { 1540 int ret, written = 0; 1554 int ret, written = 0; 1541 loff_t end = pos + len; 1555 loff_t end = pos + len; 1542 struct ocfs2_inode_info *oi = OCFS2_I 1556 struct ocfs2_inode_info *oi = OCFS2_I(inode); 1543 struct ocfs2_dinode *di = NULL; 1557 struct ocfs2_dinode *di = NULL; 1544 1558 1545 trace_ocfs2_try_to_write_inline_data( 1559 trace_ocfs2_try_to_write_inline_data((unsigned long long)oi->ip_blkno, 1546 1560 len, (unsigned long long)pos, 1547 1561 oi->ip_dyn_features); 1548 1562 1549 /* 1563 /* 1550 * Handle inodes which already have i 1564 * Handle inodes which already have inline data 1st. 1551 */ 1565 */ 1552 if (oi->ip_dyn_features & OCFS2_INLIN 1566 if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL) { 1553 if (mmap_page == NULL && 1567 if (mmap_page == NULL && 1554 ocfs2_size_fits_inline_da 1568 ocfs2_size_fits_inline_data(wc->w_di_bh, end)) 1555 goto do_inline_write; 1569 goto do_inline_write; 1556 1570 1557 /* 1571 /* 1558 * The write won't fit - we h 1572 * The write won't fit - we have to give this inode an 1559 * inline extent list now. 1573 * inline extent list now. 1560 */ 1574 */ 1561 ret = ocfs2_convert_inline_da 1575 ret = ocfs2_convert_inline_data_to_extents(inode, wc->w_di_bh); 1562 if (ret) 1576 if (ret) 1563 mlog_errno(ret); 1577 mlog_errno(ret); 1564 goto out; 1578 goto out; 1565 } 1579 } 1566 1580 1567 /* 1581 /* 1568 * Check whether the inode can accept 1582 * Check whether the inode can accept inline data. 1569 */ 1583 */ 1570 if (oi->ip_clusters != 0 || i_size_re 1584 if (oi->ip_clusters != 0 || i_size_read(inode) != 0) 1571 return 0; 1585 return 0; 1572 1586 1573 /* 1587 /* 1574 * Check whether the write can fit. 1588 * Check whether the write can fit. 1575 */ 1589 */ 1576 di = (struct ocfs2_dinode *)wc->w_di_ 1590 di = (struct ocfs2_dinode *)wc->w_di_bh->b_data; 1577 if (mmap_page || 1591 if (mmap_page || 1578 end > ocfs2_max_inline_data_with_ 1592 end > ocfs2_max_inline_data_with_xattr(inode->i_sb, di)) 1579 return 0; 1593 return 0; 1580 1594 1581 do_inline_write: 1595 do_inline_write: 1582 ret = ocfs2_write_begin_inline(mappin 1596 ret = ocfs2_write_begin_inline(mapping, inode, wc); 1583 if (ret) { 1597 if (ret) { 1584 mlog_errno(ret); 1598 mlog_errno(ret); 1585 goto out; 1599 goto out; 1586 } 1600 } 1587 1601 1588 /* 1602 /* 1589 * This signals to the caller that th 1603 * This signals to the caller that the data can be written 1590 * inline. 1604 * inline. 1591 */ 1605 */ 1592 written = 1; 1606 written = 1; 1593 out: 1607 out: 1594 return written ? written : ret; 1608 return written ? written : ret; 1595 } 1609 } 1596 1610 1597 /* 1611 /* 1598 * This function only does anything for file 1612 * This function only does anything for file systems which can't 1599 * handle sparse files. 1613 * handle sparse files. 1600 * 1614 * 1601 * What we want to do here is fill in any hol 1615 * What we want to do here is fill in any hole between the current end 1602 * of allocation and the end of our write. Th 1616 * of allocation and the end of our write. That way the rest of the 1603 * write path can treat it as an non-allocati 1617 * write path can treat it as an non-allocating write, which has no 1604 * special case code for sparse/nonsparse fil 1618 * special case code for sparse/nonsparse files. 1605 */ 1619 */ 1606 static int ocfs2_expand_nonsparse_inode(struc 1620 static int ocfs2_expand_nonsparse_inode(struct inode *inode, 1607 struc 1621 struct buffer_head *di_bh, 1608 loff_ 1622 loff_t pos, unsigned len, 1609 struc 1623 struct ocfs2_write_ctxt *wc) 1610 { 1624 { 1611 int ret; 1625 int ret; 1612 loff_t newsize = pos + len; 1626 loff_t newsize = pos + len; 1613 1627 1614 BUG_ON(ocfs2_sparse_alloc(OCFS2_SB(in 1628 BUG_ON(ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb))); 1615 1629 1616 if (newsize <= i_size_read(inode)) 1630 if (newsize <= i_size_read(inode)) 1617 return 0; 1631 return 0; 1618 1632 1619 ret = ocfs2_extend_no_holes(inode, di 1633 ret = ocfs2_extend_no_holes(inode, di_bh, newsize, pos); 1620 if (ret) 1634 if (ret) 1621 mlog_errno(ret); 1635 mlog_errno(ret); 1622 1636 1623 /* There is no wc if this is call fro 1637 /* There is no wc if this is call from direct. */ 1624 if (wc) 1638 if (wc) 1625 wc->w_first_new_cpos = 1639 wc->w_first_new_cpos = 1626 ocfs2_clusters_for_by 1640 ocfs2_clusters_for_bytes(inode->i_sb, i_size_read(inode)); 1627 1641 1628 return ret; 1642 return ret; 1629 } 1643 } 1630 1644 1631 static int ocfs2_zero_tail(struct inode *inod 1645 static int ocfs2_zero_tail(struct inode *inode, struct buffer_head *di_bh, 1632 loff_t pos) 1646 loff_t pos) 1633 { 1647 { 1634 int ret = 0; 1648 int ret = 0; 1635 1649 1636 BUG_ON(!ocfs2_sparse_alloc(OCFS2_SB(i 1650 BUG_ON(!ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb))); 1637 if (pos > i_size_read(inode)) 1651 if (pos > i_size_read(inode)) 1638 ret = ocfs2_zero_extend(inode 1652 ret = ocfs2_zero_extend(inode, di_bh, pos); 1639 1653 1640 return ret; 1654 return ret; 1641 } 1655 } 1642 1656 1643 int ocfs2_write_begin_nolock(struct address_s 1657 int ocfs2_write_begin_nolock(struct address_space *mapping, 1644 loff_t pos, unsi 1658 loff_t pos, unsigned len, ocfs2_write_type_t type, 1645 struct page **pa 1659 struct page **pagep, void **fsdata, 1646 struct buffer_he 1660 struct buffer_head *di_bh, struct page *mmap_page) 1647 { 1661 { 1648 int ret, cluster_of_pages, credits = 1662 int ret, cluster_of_pages, credits = OCFS2_INODE_UPDATE_CREDITS; 1649 unsigned int clusters_to_alloc, exten 1663 unsigned int clusters_to_alloc, extents_to_split, clusters_need = 0; 1650 struct ocfs2_write_ctxt *wc; 1664 struct ocfs2_write_ctxt *wc; 1651 struct inode *inode = mapping->host; 1665 struct inode *inode = mapping->host; 1652 struct ocfs2_super *osb = OCFS2_SB(in 1666 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 1653 struct ocfs2_dinode *di; 1667 struct ocfs2_dinode *di; 1654 struct ocfs2_alloc_context *data_ac = 1668 struct ocfs2_alloc_context *data_ac = NULL; 1655 struct ocfs2_alloc_context *meta_ac = 1669 struct ocfs2_alloc_context *meta_ac = NULL; 1656 handle_t *handle; 1670 handle_t *handle; 1657 struct ocfs2_extent_tree et; 1671 struct ocfs2_extent_tree et; 1658 int try_free = 1, ret1; 1672 int try_free = 1, ret1; 1659 1673 1660 try_again: 1674 try_again: 1661 ret = ocfs2_alloc_write_ctxt(&wc, osb 1675 ret = ocfs2_alloc_write_ctxt(&wc, osb, pos, len, type, di_bh); 1662 if (ret) { 1676 if (ret) { 1663 mlog_errno(ret); 1677 mlog_errno(ret); 1664 return ret; 1678 return ret; 1665 } 1679 } 1666 1680 1667 if (ocfs2_supports_inline_data(osb)) 1681 if (ocfs2_supports_inline_data(osb)) { 1668 ret = ocfs2_try_to_write_inli 1682 ret = ocfs2_try_to_write_inline_data(mapping, inode, pos, len, 1669 1683 mmap_page, wc); 1670 if (ret == 1) { 1684 if (ret == 1) { 1671 ret = 0; 1685 ret = 0; 1672 goto success; 1686 goto success; 1673 } 1687 } 1674 if (ret < 0) { 1688 if (ret < 0) { 1675 mlog_errno(ret); 1689 mlog_errno(ret); 1676 goto out; 1690 goto out; 1677 } 1691 } 1678 } 1692 } 1679 1693 1680 /* Direct io change i_size late, shou 1694 /* Direct io change i_size late, should not zero tail here. */ 1681 if (type != OCFS2_WRITE_DIRECT) { 1695 if (type != OCFS2_WRITE_DIRECT) { 1682 if (ocfs2_sparse_alloc(osb)) 1696 if (ocfs2_sparse_alloc(osb)) 1683 ret = ocfs2_zero_tail 1697 ret = ocfs2_zero_tail(inode, di_bh, pos); 1684 else 1698 else 1685 ret = ocfs2_expand_no 1699 ret = ocfs2_expand_nonsparse_inode(inode, di_bh, pos, 1686 1700 len, wc); 1687 if (ret) { 1701 if (ret) { 1688 mlog_errno(ret); 1702 mlog_errno(ret); 1689 goto out; 1703 goto out; 1690 } 1704 } 1691 } 1705 } 1692 1706 1693 ret = ocfs2_check_range_for_refcount( 1707 ret = ocfs2_check_range_for_refcount(inode, pos, len); 1694 if (ret < 0) { 1708 if (ret < 0) { 1695 mlog_errno(ret); 1709 mlog_errno(ret); 1696 goto out; 1710 goto out; 1697 } else if (ret == 1) { 1711 } else if (ret == 1) { 1698 clusters_need = wc->w_clen; 1712 clusters_need = wc->w_clen; 1699 ret = ocfs2_refcount_cow(inod 1713 ret = ocfs2_refcount_cow(inode, di_bh, 1700 wc-> 1714 wc->w_cpos, wc->w_clen, UINT_MAX); 1701 if (ret) { 1715 if (ret) { 1702 mlog_errno(ret); 1716 mlog_errno(ret); 1703 goto out; 1717 goto out; 1704 } 1718 } 1705 } 1719 } 1706 1720 1707 ret = ocfs2_populate_write_desc(inode 1721 ret = ocfs2_populate_write_desc(inode, wc, &clusters_to_alloc, 1708 &exte 1722 &extents_to_split); 1709 if (ret) { 1723 if (ret) { 1710 mlog_errno(ret); 1724 mlog_errno(ret); 1711 goto out; 1725 goto out; 1712 } 1726 } 1713 clusters_need += clusters_to_alloc; 1727 clusters_need += clusters_to_alloc; 1714 1728 1715 di = (struct ocfs2_dinode *)wc->w_di_ 1729 di = (struct ocfs2_dinode *)wc->w_di_bh->b_data; 1716 1730 1717 trace_ocfs2_write_begin_nolock( 1731 trace_ocfs2_write_begin_nolock( 1718 (unsigned long long)O 1732 (unsigned long long)OCFS2_I(inode)->ip_blkno, 1719 (long long)i_size_rea 1733 (long long)i_size_read(inode), 1720 le32_to_cpu(di->i_clu 1734 le32_to_cpu(di->i_clusters), 1721 pos, len, type, mmap_ 1735 pos, len, type, mmap_page, 1722 clusters_to_alloc, ex 1736 clusters_to_alloc, extents_to_split); 1723 1737 1724 /* 1738 /* 1725 * We set w_target_from, w_target_to 1739 * We set w_target_from, w_target_to here so that 1726 * ocfs2_write_end() knows which rang 1740 * ocfs2_write_end() knows which range in the target page to 1727 * write out. An allocation requires 1741 * write out. An allocation requires that we write the entire 1728 * cluster range. 1742 * cluster range. 1729 */ 1743 */ 1730 if (clusters_to_alloc || extents_to_s 1744 if (clusters_to_alloc || extents_to_split) { 1731 /* 1745 /* 1732 * XXX: We are stretching the 1746 * XXX: We are stretching the limits of 1733 * ocfs2_lock_allocators(). I 1747 * ocfs2_lock_allocators(). It greatly over-estimates 1734 * the work to be done. 1748 * the work to be done. 1735 */ 1749 */ 1736 ocfs2_init_dinode_extent_tree 1750 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), 1737 1751 wc->w_di_bh); 1738 ret = ocfs2_lock_allocators(i 1752 ret = ocfs2_lock_allocators(inode, &et, 1739 c 1753 clusters_to_alloc, extents_to_split, 1740 & 1754 &data_ac, &meta_ac); 1741 if (ret) { 1755 if (ret) { 1742 mlog_errno(ret); 1756 mlog_errno(ret); 1743 goto out; 1757 goto out; 1744 } 1758 } 1745 1759 1746 if (data_ac) 1760 if (data_ac) 1747 data_ac->ac_resv = &O 1761 data_ac->ac_resv = &OCFS2_I(inode)->ip_la_data_resv; 1748 1762 1749 credits = ocfs2_calc_extend_c 1763 credits = ocfs2_calc_extend_credits(inode->i_sb, 1750 1764 &di->id2.i_list); 1751 } else if (type == OCFS2_WRITE_DIRECT 1765 } else if (type == OCFS2_WRITE_DIRECT) 1752 /* direct write needs not to 1766 /* direct write needs not to start trans if no extents alloc. */ 1753 goto success; 1767 goto success; 1754 1768 1755 /* 1769 /* 1756 * We have to zero sparse allocated c 1770 * We have to zero sparse allocated clusters, unwritten extent clusters, 1757 * and non-sparse clusters we just ex 1771 * and non-sparse clusters we just extended. For non-sparse writes, 1758 * we know zeros will only be needed 1772 * we know zeros will only be needed in the first and/or last cluster. 1759 */ 1773 */ 1760 if (wc->w_clen && (wc->w_desc[0].c_ne 1774 if (wc->w_clen && (wc->w_desc[0].c_needs_zero || 1761 wc->w_desc[wc->w_c 1775 wc->w_desc[wc->w_clen - 1].c_needs_zero)) 1762 cluster_of_pages = 1; 1776 cluster_of_pages = 1; 1763 else 1777 else 1764 cluster_of_pages = 0; 1778 cluster_of_pages = 0; 1765 1779 1766 ocfs2_set_target_boundaries(osb, wc, 1780 ocfs2_set_target_boundaries(osb, wc, pos, len, cluster_of_pages); 1767 1781 1768 handle = ocfs2_start_trans(osb, credi 1782 handle = ocfs2_start_trans(osb, credits); 1769 if (IS_ERR(handle)) { 1783 if (IS_ERR(handle)) { 1770 ret = PTR_ERR(handle); 1784 ret = PTR_ERR(handle); 1771 mlog_errno(ret); 1785 mlog_errno(ret); 1772 goto out; 1786 goto out; 1773 } 1787 } 1774 1788 1775 wc->w_handle = handle; 1789 wc->w_handle = handle; 1776 1790 1777 if (clusters_to_alloc) { 1791 if (clusters_to_alloc) { 1778 ret = dquot_alloc_space_nodir 1792 ret = dquot_alloc_space_nodirty(inode, 1779 ocfs2_clusters_to_byt 1793 ocfs2_clusters_to_bytes(osb->sb, clusters_to_alloc)); 1780 if (ret) 1794 if (ret) 1781 goto out_commit; 1795 goto out_commit; 1782 } 1796 } 1783 1797 1784 ret = ocfs2_journal_access_di(handle, 1798 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), wc->w_di_bh, 1785 OCFS2_J 1799 OCFS2_JOURNAL_ACCESS_WRITE); 1786 if (ret) { 1800 if (ret) { 1787 mlog_errno(ret); 1801 mlog_errno(ret); 1788 goto out_quota; 1802 goto out_quota; 1789 } 1803 } 1790 1804 1791 /* 1805 /* 1792 * Fill our page array first. That wa 1806 * Fill our page array first. That way we've grabbed enough so 1793 * that we can zero and flush if we e 1807 * that we can zero and flush if we error after adding the 1794 * extent. 1808 * extent. 1795 */ 1809 */ 1796 ret = ocfs2_grab_pages_for_write(mapp 1810 ret = ocfs2_grab_pages_for_write(mapping, wc, wc->w_cpos, pos, len, 1797 clus 1811 cluster_of_pages, mmap_page); 1798 if (ret) { !! 1812 if (ret && ret != -EAGAIN) { 1799 /* << 1800 * ocfs2_grab_pages_for_write << 1801 * the target page. In this c << 1802 * page. This will trigger th << 1803 * the operation. << 1804 */ << 1805 if (type == OCFS2_WRITE_MMAP << 1806 BUG_ON(wc->w_target_p << 1807 ret = 0; << 1808 goto out_quota; << 1809 } << 1810 << 1811 mlog_errno(ret); 1813 mlog_errno(ret); 1812 goto out_quota; 1814 goto out_quota; 1813 } 1815 } 1814 1816 >> 1817 /* >> 1818 * ocfs2_grab_pages_for_write() returns -EAGAIN if it could not lock >> 1819 * the target page. In this case, we exit with no error and no target >> 1820 * page. This will trigger the caller, page_mkwrite(), to re-try >> 1821 * the operation. >> 1822 */ >> 1823 if (ret == -EAGAIN) { >> 1824 BUG_ON(wc->w_target_page); >> 1825 ret = 0; >> 1826 goto out_quota; >> 1827 } >> 1828 1815 ret = ocfs2_write_cluster_by_desc(map 1829 ret = ocfs2_write_cluster_by_desc(mapping, data_ac, meta_ac, wc, pos, 1816 len 1830 len); 1817 if (ret) { 1831 if (ret) { 1818 mlog_errno(ret); 1832 mlog_errno(ret); 1819 goto out_quota; 1833 goto out_quota; 1820 } 1834 } 1821 1835 1822 if (data_ac) 1836 if (data_ac) 1823 ocfs2_free_alloc_context(data 1837 ocfs2_free_alloc_context(data_ac); 1824 if (meta_ac) 1838 if (meta_ac) 1825 ocfs2_free_alloc_context(meta 1839 ocfs2_free_alloc_context(meta_ac); 1826 1840 1827 success: 1841 success: 1828 if (pagep) 1842 if (pagep) 1829 *pagep = wc->w_target_page; 1843 *pagep = wc->w_target_page; 1830 *fsdata = wc; 1844 *fsdata = wc; 1831 return 0; 1845 return 0; 1832 out_quota: 1846 out_quota: 1833 if (clusters_to_alloc) 1847 if (clusters_to_alloc) 1834 dquot_free_space(inode, 1848 dquot_free_space(inode, 1835 ocfs2_clusters_to_b 1849 ocfs2_clusters_to_bytes(osb->sb, clusters_to_alloc)); 1836 out_commit: 1850 out_commit: 1837 ocfs2_commit_trans(osb, handle); 1851 ocfs2_commit_trans(osb, handle); 1838 1852 1839 out: 1853 out: 1840 /* 1854 /* 1841 * The mmapped page won't be unlocked 1855 * The mmapped page won't be unlocked in ocfs2_free_write_ctxt(), 1842 * even in case of error here like EN 1856 * even in case of error here like ENOSPC and ENOMEM. So, we need 1843 * to unlock the target page manually 1857 * to unlock the target page manually to prevent deadlocks when 1844 * retrying again on ENOSPC, or when 1858 * retrying again on ENOSPC, or when returning non-VM_FAULT_LOCKED 1845 * to VM code. 1859 * to VM code. 1846 */ 1860 */ 1847 if (wc->w_target_locked) 1861 if (wc->w_target_locked) 1848 unlock_page(mmap_page); 1862 unlock_page(mmap_page); 1849 1863 1850 ocfs2_free_write_ctxt(inode, wc); 1864 ocfs2_free_write_ctxt(inode, wc); 1851 1865 1852 if (data_ac) { 1866 if (data_ac) { 1853 ocfs2_free_alloc_context(data 1867 ocfs2_free_alloc_context(data_ac); 1854 data_ac = NULL; 1868 data_ac = NULL; 1855 } 1869 } 1856 if (meta_ac) { 1870 if (meta_ac) { 1857 ocfs2_free_alloc_context(meta 1871 ocfs2_free_alloc_context(meta_ac); 1858 meta_ac = NULL; 1872 meta_ac = NULL; 1859 } 1873 } 1860 1874 1861 if (ret == -ENOSPC && try_free) { 1875 if (ret == -ENOSPC && try_free) { 1862 /* 1876 /* 1863 * Try to free some truncate 1877 * Try to free some truncate log so that we can have enough 1864 * clusters to allocate. 1878 * clusters to allocate. 1865 */ 1879 */ 1866 try_free = 0; 1880 try_free = 0; 1867 1881 1868 ret1 = ocfs2_try_to_free_trun 1882 ret1 = ocfs2_try_to_free_truncate_log(osb, clusters_need); 1869 if (ret1 == 1) 1883 if (ret1 == 1) 1870 goto try_again; 1884 goto try_again; 1871 1885 1872 if (ret1 < 0) 1886 if (ret1 < 0) 1873 mlog_errno(ret1); 1887 mlog_errno(ret1); 1874 } 1888 } 1875 1889 1876 return ret; 1890 return ret; 1877 } 1891 } 1878 1892 1879 static int ocfs2_write_begin(struct file *fil 1893 static int ocfs2_write_begin(struct file *file, struct address_space *mapping, 1880 loff_t pos, unsi !! 1894 loff_t pos, unsigned len, unsigned flags, 1881 struct page **pa 1895 struct page **pagep, void **fsdata) 1882 { 1896 { 1883 int ret; 1897 int ret; 1884 struct buffer_head *di_bh = NULL; 1898 struct buffer_head *di_bh = NULL; 1885 struct inode *inode = mapping->host; 1899 struct inode *inode = mapping->host; 1886 1900 1887 ret = ocfs2_inode_lock(inode, &di_bh, 1901 ret = ocfs2_inode_lock(inode, &di_bh, 1); 1888 if (ret) { 1902 if (ret) { 1889 mlog_errno(ret); 1903 mlog_errno(ret); 1890 return ret; 1904 return ret; 1891 } 1905 } 1892 1906 1893 /* 1907 /* 1894 * Take alloc sem here to prevent con 1908 * Take alloc sem here to prevent concurrent lookups. That way 1895 * the mapping, zeroing and tree mani 1909 * the mapping, zeroing and tree manipulation within 1896 * ocfs2_write() will be safe against !! 1910 * ocfs2_write() will be safe against ->readpage(). This 1897 * should also serve to lock out allo 1911 * should also serve to lock out allocation from a shared 1898 * writeable region. 1912 * writeable region. 1899 */ 1913 */ 1900 down_write(&OCFS2_I(inode)->ip_alloc_ 1914 down_write(&OCFS2_I(inode)->ip_alloc_sem); 1901 1915 1902 ret = ocfs2_write_begin_nolock(mappin 1916 ret = ocfs2_write_begin_nolock(mapping, pos, len, OCFS2_WRITE_BUFFER, 1903 pagep, 1917 pagep, fsdata, di_bh, NULL); 1904 if (ret) { 1918 if (ret) { 1905 mlog_errno(ret); 1919 mlog_errno(ret); 1906 goto out_fail; 1920 goto out_fail; 1907 } 1921 } 1908 1922 1909 brelse(di_bh); 1923 brelse(di_bh); 1910 1924 1911 return 0; 1925 return 0; 1912 1926 1913 out_fail: 1927 out_fail: 1914 up_write(&OCFS2_I(inode)->ip_alloc_se 1928 up_write(&OCFS2_I(inode)->ip_alloc_sem); 1915 1929 1916 brelse(di_bh); 1930 brelse(di_bh); 1917 ocfs2_inode_unlock(inode, 1); 1931 ocfs2_inode_unlock(inode, 1); 1918 1932 1919 return ret; 1933 return ret; 1920 } 1934 } 1921 1935 1922 static void ocfs2_write_end_inline(struct ino 1936 static void ocfs2_write_end_inline(struct inode *inode, loff_t pos, 1923 unsigned l 1937 unsigned len, unsigned *copied, 1924 struct ocf 1938 struct ocfs2_dinode *di, 1925 struct ocf 1939 struct ocfs2_write_ctxt *wc) 1926 { 1940 { 1927 void *kaddr; 1941 void *kaddr; 1928 1942 1929 if (unlikely(*copied < len)) { 1943 if (unlikely(*copied < len)) { 1930 if (!PageUptodate(wc->w_targe 1944 if (!PageUptodate(wc->w_target_page)) { 1931 *copied = 0; 1945 *copied = 0; 1932 return; 1946 return; 1933 } 1947 } 1934 } 1948 } 1935 1949 1936 kaddr = kmap_atomic(wc->w_target_page 1950 kaddr = kmap_atomic(wc->w_target_page); 1937 memcpy(di->id2.i_data.id_data + pos, 1951 memcpy(di->id2.i_data.id_data + pos, kaddr + pos, *copied); 1938 kunmap_atomic(kaddr); 1952 kunmap_atomic(kaddr); 1939 1953 1940 trace_ocfs2_write_end_inline( 1954 trace_ocfs2_write_end_inline( 1941 (unsigned long long)OCFS2_I(inod 1955 (unsigned long long)OCFS2_I(inode)->ip_blkno, 1942 (unsigned long long)pos, *copied 1956 (unsigned long long)pos, *copied, 1943 le16_to_cpu(di->id2.i_data.id_co 1957 le16_to_cpu(di->id2.i_data.id_count), 1944 le16_to_cpu(di->i_dyn_features)) 1958 le16_to_cpu(di->i_dyn_features)); 1945 } 1959 } 1946 1960 1947 int ocfs2_write_end_nolock(struct address_spa 1961 int ocfs2_write_end_nolock(struct address_space *mapping, 1948 loff_t pos, unsign 1962 loff_t pos, unsigned len, unsigned copied, void *fsdata) 1949 { 1963 { 1950 int i, ret; 1964 int i, ret; 1951 unsigned from, to, start = pos & (PAG 1965 unsigned from, to, start = pos & (PAGE_SIZE - 1); 1952 struct inode *inode = mapping->host; 1966 struct inode *inode = mapping->host; 1953 struct ocfs2_super *osb = OCFS2_SB(in 1967 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 1954 struct ocfs2_write_ctxt *wc = fsdata; 1968 struct ocfs2_write_ctxt *wc = fsdata; 1955 struct ocfs2_dinode *di = (struct ocf 1969 struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data; 1956 handle_t *handle = wc->w_handle; 1970 handle_t *handle = wc->w_handle; 1957 struct page *tmppage; 1971 struct page *tmppage; 1958 1972 1959 BUG_ON(!list_empty(&wc->w_unwritten_l 1973 BUG_ON(!list_empty(&wc->w_unwritten_list)); 1960 1974 1961 if (handle) { 1975 if (handle) { 1962 ret = ocfs2_journal_access_di 1976 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), 1963 wc->w_di_bh, 1977 wc->w_di_bh, OCFS2_JOURNAL_ACCESS_WRITE); 1964 if (ret) { 1978 if (ret) { 1965 copied = ret; 1979 copied = ret; 1966 mlog_errno(ret); 1980 mlog_errno(ret); 1967 goto out; 1981 goto out; 1968 } 1982 } 1969 } 1983 } 1970 1984 1971 if (OCFS2_I(inode)->ip_dyn_features & 1985 if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) { 1972 ocfs2_write_end_inline(inode, 1986 ocfs2_write_end_inline(inode, pos, len, &copied, di, wc); 1973 goto out_write_size; 1987 goto out_write_size; 1974 } 1988 } 1975 1989 1976 if (unlikely(copied < len) && wc->w_t 1990 if (unlikely(copied < len) && wc->w_target_page) { 1977 loff_t new_isize; << 1978 << 1979 if (!PageUptodate(wc->w_targe 1991 if (!PageUptodate(wc->w_target_page)) 1980 copied = 0; 1992 copied = 0; 1981 1993 1982 new_isize = max_t(loff_t, i_s !! 1994 ocfs2_zero_new_buffers(wc->w_target_page, start+copied, 1983 if (new_isize > page_offset(w !! 1995 start+len); 1984 ocfs2_zero_new_buffer << 1985 << 1986 else { << 1987 /* << 1988 * When page is fully << 1989 * failed), do not bo << 1990 * it instead so that << 1991 * put page & buffer << 1992 * state. << 1993 */ << 1994 block_invalidate_foli << 1995 << 1996 } << 1997 } 1996 } 1998 if (wc->w_target_page) 1997 if (wc->w_target_page) 1999 flush_dcache_page(wc->w_targe 1998 flush_dcache_page(wc->w_target_page); 2000 1999 2001 for(i = 0; i < wc->w_num_pages; i++) 2000 for(i = 0; i < wc->w_num_pages; i++) { 2002 tmppage = wc->w_pages[i]; 2001 tmppage = wc->w_pages[i]; 2003 2002 2004 /* This is the direct io targ 2003 /* This is the direct io target page. */ 2005 if (tmppage == NULL) 2004 if (tmppage == NULL) 2006 continue; 2005 continue; 2007 2006 2008 if (tmppage == wc->w_target_p 2007 if (tmppage == wc->w_target_page) { 2009 from = wc->w_target_f 2008 from = wc->w_target_from; 2010 to = wc->w_target_to; 2009 to = wc->w_target_to; 2011 2010 2012 BUG_ON(from > PAGE_SI 2011 BUG_ON(from > PAGE_SIZE || 2013 to > PAGE_SIZE 2012 to > PAGE_SIZE || 2014 to < from); 2013 to < from); 2015 } else { 2014 } else { 2016 /* 2015 /* 2017 * Pages adjacent to 2016 * Pages adjacent to the target (if any) imply 2018 * a hole-filling wri 2017 * a hole-filling write in which case we want 2019 * to flush their ent 2018 * to flush their entire range. 2020 */ 2019 */ 2021 from = 0; 2020 from = 0; 2022 to = PAGE_SIZE; 2021 to = PAGE_SIZE; 2023 } 2022 } 2024 2023 2025 if (page_has_buffers(tmppage) 2024 if (page_has_buffers(tmppage)) { 2026 if (handle && ocfs2_s !! 2025 if (handle && ocfs2_should_order_data(inode)) 2027 loff_t start_ !! 2026 ocfs2_jbd2_file_inode(handle, inode); 2028 ((lof << 2029 from; << 2030 loff_t length << 2031 ocfs2_jbd2_in << 2032 << 2033 } << 2034 block_commit_write(tm 2027 block_commit_write(tmppage, from, to); 2035 } 2028 } 2036 } 2029 } 2037 2030 2038 out_write_size: 2031 out_write_size: 2039 /* Direct io do not update i_size her 2032 /* Direct io do not update i_size here. */ 2040 if (wc->w_type != OCFS2_WRITE_DIRECT) 2033 if (wc->w_type != OCFS2_WRITE_DIRECT) { 2041 pos += copied; 2034 pos += copied; 2042 if (pos > i_size_read(inode)) 2035 if (pos > i_size_read(inode)) { 2043 i_size_write(inode, p 2036 i_size_write(inode, pos); 2044 mark_inode_dirty(inod 2037 mark_inode_dirty(inode); 2045 } 2038 } 2046 inode->i_blocks = ocfs2_inode 2039 inode->i_blocks = ocfs2_inode_sector_count(inode); 2047 di->i_size = cpu_to_le64((u64 2040 di->i_size = cpu_to_le64((u64)i_size_read(inode)); 2048 inode_set_mtime_to_ts(inode, !! 2041 inode->i_mtime = inode->i_ctime = current_time(inode); 2049 di->i_mtime = di->i_ctime = c !! 2042 di->i_mtime = di->i_ctime = cpu_to_le64(inode->i_mtime.tv_sec); 2050 di->i_mtime_nsec = di->i_ctim !! 2043 di->i_mtime_nsec = di->i_ctime_nsec = cpu_to_le32(inode->i_mtime.tv_nsec); 2051 if (handle) !! 2044 ocfs2_update_inode_fsync_trans(handle, inode, 1); 2052 ocfs2_update_inode_fs << 2053 } 2045 } 2054 if (handle) 2046 if (handle) 2055 ocfs2_journal_dirty(handle, w 2047 ocfs2_journal_dirty(handle, wc->w_di_bh); 2056 2048 2057 out: 2049 out: 2058 /* unlock pages before dealloc since 2050 /* unlock pages before dealloc since it needs acquiring j_trans_barrier 2059 * lock, or it will cause a deadlock 2051 * lock, or it will cause a deadlock since journal commit threads holds 2060 * this lock and will ask for the pag 2052 * this lock and will ask for the page lock when flushing the data. 2061 * put it here to preserve the unlock 2053 * put it here to preserve the unlock order. 2062 */ 2054 */ 2063 ocfs2_unlock_pages(wc); 2055 ocfs2_unlock_pages(wc); 2064 2056 2065 if (handle) 2057 if (handle) 2066 ocfs2_commit_trans(osb, handl 2058 ocfs2_commit_trans(osb, handle); 2067 2059 2068 ocfs2_run_deallocs(osb, &wc->w_deallo 2060 ocfs2_run_deallocs(osb, &wc->w_dealloc); 2069 2061 2070 brelse(wc->w_di_bh); 2062 brelse(wc->w_di_bh); 2071 kfree(wc); 2063 kfree(wc); 2072 2064 2073 return copied; 2065 return copied; 2074 } 2066 } 2075 2067 2076 static int ocfs2_write_end(struct file *file, 2068 static int ocfs2_write_end(struct file *file, struct address_space *mapping, 2077 loff_t pos, unsign 2069 loff_t pos, unsigned len, unsigned copied, 2078 struct page *page, 2070 struct page *page, void *fsdata) 2079 { 2071 { 2080 int ret; 2072 int ret; 2081 struct inode *inode = mapping->host; 2073 struct inode *inode = mapping->host; 2082 2074 2083 ret = ocfs2_write_end_nolock(mapping, 2075 ret = ocfs2_write_end_nolock(mapping, pos, len, copied, fsdata); 2084 2076 2085 up_write(&OCFS2_I(inode)->ip_alloc_se 2077 up_write(&OCFS2_I(inode)->ip_alloc_sem); 2086 ocfs2_inode_unlock(inode, 1); 2078 ocfs2_inode_unlock(inode, 1); 2087 2079 2088 return ret; 2080 return ret; 2089 } 2081 } 2090 2082 2091 struct ocfs2_dio_write_ctxt { 2083 struct ocfs2_dio_write_ctxt { 2092 struct list_head dw_zero_list; 2084 struct list_head dw_zero_list; 2093 unsigned dw_zero_count 2085 unsigned dw_zero_count; 2094 int dw_orphaned; 2086 int dw_orphaned; 2095 pid_t dw_writer_pid 2087 pid_t dw_writer_pid; 2096 }; 2088 }; 2097 2089 2098 static struct ocfs2_dio_write_ctxt * 2090 static struct ocfs2_dio_write_ctxt * 2099 ocfs2_dio_alloc_write_ctx(struct buffer_head 2091 ocfs2_dio_alloc_write_ctx(struct buffer_head *bh, int *alloc) 2100 { 2092 { 2101 struct ocfs2_dio_write_ctxt *dwc = NU 2093 struct ocfs2_dio_write_ctxt *dwc = NULL; 2102 2094 2103 if (bh->b_private) 2095 if (bh->b_private) 2104 return bh->b_private; 2096 return bh->b_private; 2105 2097 2106 dwc = kmalloc(sizeof(struct ocfs2_dio 2098 dwc = kmalloc(sizeof(struct ocfs2_dio_write_ctxt), GFP_NOFS); 2107 if (dwc == NULL) 2099 if (dwc == NULL) 2108 return NULL; 2100 return NULL; 2109 INIT_LIST_HEAD(&dwc->dw_zero_list); 2101 INIT_LIST_HEAD(&dwc->dw_zero_list); 2110 dwc->dw_zero_count = 0; 2102 dwc->dw_zero_count = 0; 2111 dwc->dw_orphaned = 0; 2103 dwc->dw_orphaned = 0; 2112 dwc->dw_writer_pid = task_pid_nr(curr 2104 dwc->dw_writer_pid = task_pid_nr(current); 2113 bh->b_private = dwc; 2105 bh->b_private = dwc; 2114 *alloc = 1; 2106 *alloc = 1; 2115 2107 2116 return dwc; 2108 return dwc; 2117 } 2109 } 2118 2110 2119 static void ocfs2_dio_free_write_ctx(struct i 2111 static void ocfs2_dio_free_write_ctx(struct inode *inode, 2120 struct o 2112 struct ocfs2_dio_write_ctxt *dwc) 2121 { 2113 { 2122 ocfs2_free_unwritten_list(inode, &dwc 2114 ocfs2_free_unwritten_list(inode, &dwc->dw_zero_list); 2123 kfree(dwc); 2115 kfree(dwc); 2124 } 2116 } 2125 2117 2126 /* 2118 /* 2127 * TODO: Make this into a generic get_blocks 2119 * TODO: Make this into a generic get_blocks function. 2128 * 2120 * 2129 * From do_direct_io in direct-io.c: 2121 * From do_direct_io in direct-io.c: 2130 * "So what we do is to permit the ->get_blo 2122 * "So what we do is to permit the ->get_blocks function to populate 2131 * bh.b_size with the size of IO which is p 2123 * bh.b_size with the size of IO which is permitted at this offset and 2132 * this i_blkbits." 2124 * this i_blkbits." 2133 * 2125 * 2134 * This function is called directly from get_ 2126 * This function is called directly from get_more_blocks in direct-io.c. 2135 * 2127 * 2136 * called like this: dio->get_blocks(dio->ino 2128 * called like this: dio->get_blocks(dio->inode, fs_startblk, 2137 * fs_co 2129 * fs_count, map_bh, dio->rw == WRITE); 2138 */ 2130 */ 2139 static int ocfs2_dio_wr_get_block(struct inod !! 2131 static int ocfs2_dio_get_block(struct inode *inode, sector_t iblock, 2140 struct buffer_ 2132 struct buffer_head *bh_result, int create) 2141 { 2133 { 2142 struct ocfs2_super *osb = OCFS2_SB(in 2134 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 2143 struct ocfs2_inode_info *oi = OCFS2_I 2135 struct ocfs2_inode_info *oi = OCFS2_I(inode); 2144 struct ocfs2_write_ctxt *wc; 2136 struct ocfs2_write_ctxt *wc; 2145 struct ocfs2_write_cluster_desc *desc 2137 struct ocfs2_write_cluster_desc *desc = NULL; 2146 struct ocfs2_dio_write_ctxt *dwc = NU 2138 struct ocfs2_dio_write_ctxt *dwc = NULL; 2147 struct buffer_head *di_bh = NULL; 2139 struct buffer_head *di_bh = NULL; 2148 u64 p_blkno; 2140 u64 p_blkno; 2149 unsigned int i_blkbits = inode->i_sb- !! 2141 loff_t pos = iblock << inode->i_sb->s_blocksize_bits; 2150 loff_t pos = iblock << i_blkbits; << 2151 sector_t endblk = (i_size_read(inode) << 2152 unsigned len, total_len = bh_result-> 2142 unsigned len, total_len = bh_result->b_size; 2153 int ret = 0, first_get_block = 0; 2143 int ret = 0, first_get_block = 0; 2154 2144 2155 len = osb->s_clustersize - (pos & (os 2145 len = osb->s_clustersize - (pos & (osb->s_clustersize - 1)); 2156 len = min(total_len, len); 2146 len = min(total_len, len); 2157 2147 2158 /* << 2159 * bh_result->b_size is count in get_ << 2160 * "pos" and "end", we need map twice << 2161 * 1. area in file size, not set NEW; << 2162 * 2. area out file size, set NEW. << 2163 * << 2164 * iblock endblk << 2165 * |--------|---------|---------|---- << 2166 * |<-------area in file------->| << 2167 */ << 2168 << 2169 if ((iblock <= endblk) && << 2170 ((iblock + ((len - 1) >> i_blkbit << 2171 len = (endblk - iblock + 1) < << 2172 << 2173 mlog(0, "get block of %lu at %llu:%u 2148 mlog(0, "get block of %lu at %llu:%u req %u\n", 2174 inode->i_ino, pos, le 2149 inode->i_ino, pos, len, total_len); 2175 2150 2176 /* 2151 /* 2177 * Because we need to change file siz 2152 * Because we need to change file size in ocfs2_dio_end_io_write(), or 2178 * we may need to add it to orphan di 2153 * we may need to add it to orphan dir. So can not fall to fast path 2179 * while file size will be changed. 2154 * while file size will be changed. 2180 */ 2155 */ 2181 if (pos + total_len <= i_size_read(in 2156 if (pos + total_len <= i_size_read(inode)) { 2182 !! 2157 down_read(&oi->ip_alloc_sem); 2183 /* This is the fast path for 2158 /* This is the fast path for re-write. */ 2184 ret = ocfs2_lock_get_block(in !! 2159 ret = ocfs2_get_block(inode, iblock, bh_result, create); >> 2160 >> 2161 up_read(&oi->ip_alloc_sem); >> 2162 2185 if (buffer_mapped(bh_result) 2163 if (buffer_mapped(bh_result) && 2186 !buffer_new(bh_result) && 2164 !buffer_new(bh_result) && 2187 ret == 0) 2165 ret == 0) 2188 goto out; 2166 goto out; 2189 2167 2190 /* Clear state set by ocfs2_g 2168 /* Clear state set by ocfs2_get_block. */ 2191 bh_result->b_state = 0; 2169 bh_result->b_state = 0; 2192 } 2170 } 2193 2171 2194 dwc = ocfs2_dio_alloc_write_ctx(bh_re 2172 dwc = ocfs2_dio_alloc_write_ctx(bh_result, &first_get_block); 2195 if (unlikely(dwc == NULL)) { 2173 if (unlikely(dwc == NULL)) { 2196 ret = -ENOMEM; 2174 ret = -ENOMEM; 2197 mlog_errno(ret); 2175 mlog_errno(ret); 2198 goto out; 2176 goto out; 2199 } 2177 } 2200 2178 2201 if (ocfs2_clusters_for_bytes(inode->i 2179 if (ocfs2_clusters_for_bytes(inode->i_sb, pos + total_len) > 2202 ocfs2_clusters_for_bytes(inode->i 2180 ocfs2_clusters_for_bytes(inode->i_sb, i_size_read(inode)) && 2203 !dwc->dw_orphaned) { 2181 !dwc->dw_orphaned) { 2204 /* 2182 /* 2205 * when we are going to alloc 2183 * when we are going to alloc extents beyond file size, add the 2206 * inode to orphan dir, so we 2184 * inode to orphan dir, so we can recall those spaces when 2207 * system crashed during writ 2185 * system crashed during write. 2208 */ 2186 */ 2209 ret = ocfs2_add_inode_to_orph 2187 ret = ocfs2_add_inode_to_orphan(osb, inode); 2210 if (ret < 0) { 2188 if (ret < 0) { 2211 mlog_errno(ret); 2189 mlog_errno(ret); 2212 goto out; 2190 goto out; 2213 } 2191 } 2214 dwc->dw_orphaned = 1; 2192 dwc->dw_orphaned = 1; 2215 } 2193 } 2216 2194 2217 ret = ocfs2_inode_lock(inode, &di_bh, 2195 ret = ocfs2_inode_lock(inode, &di_bh, 1); 2218 if (ret) { 2196 if (ret) { 2219 mlog_errno(ret); 2197 mlog_errno(ret); 2220 goto out; 2198 goto out; 2221 } 2199 } 2222 2200 2223 down_write(&oi->ip_alloc_sem); 2201 down_write(&oi->ip_alloc_sem); 2224 2202 2225 if (first_get_block) { 2203 if (first_get_block) { 2226 if (ocfs2_sparse_alloc(osb)) !! 2204 if (ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb))) 2227 ret = ocfs2_zero_tail 2205 ret = ocfs2_zero_tail(inode, di_bh, pos); 2228 else 2206 else 2229 ret = ocfs2_expand_no 2207 ret = ocfs2_expand_nonsparse_inode(inode, di_bh, pos, 2230 2208 total_len, NULL); 2231 if (ret < 0) { 2209 if (ret < 0) { 2232 mlog_errno(ret); 2210 mlog_errno(ret); 2233 goto unlock; 2211 goto unlock; 2234 } 2212 } 2235 } 2213 } 2236 2214 2237 ret = ocfs2_write_begin_nolock(inode- 2215 ret = ocfs2_write_begin_nolock(inode->i_mapping, pos, len, 2238 OCFS2_ 2216 OCFS2_WRITE_DIRECT, NULL, 2239 (void 2217 (void **)&wc, di_bh, NULL); 2240 if (ret) { 2218 if (ret) { 2241 mlog_errno(ret); 2219 mlog_errno(ret); 2242 goto unlock; 2220 goto unlock; 2243 } 2221 } 2244 2222 2245 desc = &wc->w_desc[0]; 2223 desc = &wc->w_desc[0]; 2246 2224 2247 p_blkno = ocfs2_clusters_to_blocks(in 2225 p_blkno = ocfs2_clusters_to_blocks(inode->i_sb, desc->c_phys); 2248 BUG_ON(p_blkno == 0); 2226 BUG_ON(p_blkno == 0); 2249 p_blkno += iblock & (u64)(ocfs2_clust 2227 p_blkno += iblock & (u64)(ocfs2_clusters_to_blocks(inode->i_sb, 1) - 1); 2250 2228 2251 map_bh(bh_result, inode->i_sb, p_blkn 2229 map_bh(bh_result, inode->i_sb, p_blkno); 2252 bh_result->b_size = len; 2230 bh_result->b_size = len; 2253 if (desc->c_needs_zero) 2231 if (desc->c_needs_zero) 2254 set_buffer_new(bh_result); 2232 set_buffer_new(bh_result); 2255 2233 2256 if (iblock > endblk) << 2257 set_buffer_new(bh_result); << 2258 << 2259 /* May sleep in end_io. It should not 2234 /* May sleep in end_io. It should not happen in a irq context. So defer 2260 * it to dio work queue. */ 2235 * it to dio work queue. */ 2261 set_buffer_defer_completion(bh_result 2236 set_buffer_defer_completion(bh_result); 2262 2237 2263 if (!list_empty(&wc->w_unwritten_list 2238 if (!list_empty(&wc->w_unwritten_list)) { 2264 struct ocfs2_unwritten_extent 2239 struct ocfs2_unwritten_extent *ue = NULL; 2265 2240 2266 ue = list_first_entry(&wc->w_ 2241 ue = list_first_entry(&wc->w_unwritten_list, 2267 struct 2242 struct ocfs2_unwritten_extent, 2268 ue_node 2243 ue_node); 2269 BUG_ON(ue->ue_cpos != desc->c 2244 BUG_ON(ue->ue_cpos != desc->c_cpos); 2270 /* The physical address may b 2245 /* The physical address may be 0, fill it. */ 2271 ue->ue_phys = desc->c_phys; 2246 ue->ue_phys = desc->c_phys; 2272 2247 2273 list_splice_tail_init(&wc->w_ 2248 list_splice_tail_init(&wc->w_unwritten_list, &dwc->dw_zero_list); 2274 dwc->dw_zero_count += wc->w_u !! 2249 dwc->dw_zero_count++; 2275 } 2250 } 2276 2251 2277 ret = ocfs2_write_end_nolock(inode->i 2252 ret = ocfs2_write_end_nolock(inode->i_mapping, pos, len, len, wc); 2278 BUG_ON(ret != len); 2253 BUG_ON(ret != len); 2279 ret = 0; 2254 ret = 0; 2280 unlock: 2255 unlock: 2281 up_write(&oi->ip_alloc_sem); 2256 up_write(&oi->ip_alloc_sem); 2282 ocfs2_inode_unlock(inode, 1); 2257 ocfs2_inode_unlock(inode, 1); 2283 brelse(di_bh); 2258 brelse(di_bh); 2284 out: 2259 out: >> 2260 if (ret < 0) >> 2261 ret = -EIO; 2285 return ret; 2262 return ret; 2286 } 2263 } 2287 2264 2288 static int ocfs2_dio_end_io_write(struct inod 2265 static int ocfs2_dio_end_io_write(struct inode *inode, 2289 struct ocfs 2266 struct ocfs2_dio_write_ctxt *dwc, 2290 loff_t offs 2267 loff_t offset, 2291 ssize_t byt 2268 ssize_t bytes) 2292 { 2269 { 2293 struct ocfs2_cached_dealloc_ctxt deal 2270 struct ocfs2_cached_dealloc_ctxt dealloc; 2294 struct ocfs2_extent_tree et; 2271 struct ocfs2_extent_tree et; 2295 struct ocfs2_super *osb = OCFS2_SB(in 2272 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 2296 struct ocfs2_inode_info *oi = OCFS2_I 2273 struct ocfs2_inode_info *oi = OCFS2_I(inode); 2297 struct ocfs2_unwritten_extent *ue = N 2274 struct ocfs2_unwritten_extent *ue = NULL; 2298 struct buffer_head *di_bh = NULL; 2275 struct buffer_head *di_bh = NULL; 2299 struct ocfs2_dinode *di; 2276 struct ocfs2_dinode *di; 2300 struct ocfs2_alloc_context *data_ac = 2277 struct ocfs2_alloc_context *data_ac = NULL; 2301 struct ocfs2_alloc_context *meta_ac = 2278 struct ocfs2_alloc_context *meta_ac = NULL; 2302 handle_t *handle = NULL; 2279 handle_t *handle = NULL; 2303 loff_t end = offset + bytes; 2280 loff_t end = offset + bytes; 2304 int ret = 0, credits = 0; !! 2281 int ret = 0, credits = 0, locked = 0; 2305 2282 2306 ocfs2_init_dealloc_ctxt(&dealloc); 2283 ocfs2_init_dealloc_ctxt(&dealloc); 2307 2284 2308 /* We do clear unwritten, delete orph 2285 /* We do clear unwritten, delete orphan, change i_size here. If neither 2309 * of these happen, we can skip all t 2286 * of these happen, we can skip all this. */ 2310 if (list_empty(&dwc->dw_zero_list) && 2287 if (list_empty(&dwc->dw_zero_list) && 2311 end <= i_size_read(inode) && 2288 end <= i_size_read(inode) && 2312 !dwc->dw_orphaned) 2289 !dwc->dw_orphaned) 2313 goto out; 2290 goto out; 2314 2291 >> 2292 /* ocfs2_file_write_iter will get i_mutex, so we need not lock if we >> 2293 * are in that context. */ >> 2294 if (dwc->dw_writer_pid != task_pid_nr(current)) { >> 2295 inode_lock(inode); >> 2296 locked = 1; >> 2297 } >> 2298 2315 ret = ocfs2_inode_lock(inode, &di_bh, 2299 ret = ocfs2_inode_lock(inode, &di_bh, 1); 2316 if (ret < 0) { 2300 if (ret < 0) { 2317 mlog_errno(ret); 2301 mlog_errno(ret); 2318 goto out; 2302 goto out; 2319 } 2303 } 2320 2304 2321 down_write(&oi->ip_alloc_sem); 2305 down_write(&oi->ip_alloc_sem); 2322 2306 2323 /* Delete orphan before acquire i_rws !! 2307 /* Delete orphan before acquire i_mutex. */ 2324 if (dwc->dw_orphaned) { 2308 if (dwc->dw_orphaned) { 2325 BUG_ON(dwc->dw_writer_pid != 2309 BUG_ON(dwc->dw_writer_pid != task_pid_nr(current)); 2326 2310 2327 end = end > i_size_read(inode 2311 end = end > i_size_read(inode) ? end : 0; 2328 2312 2329 ret = ocfs2_del_inode_from_or 2313 ret = ocfs2_del_inode_from_orphan(osb, inode, di_bh, 2330 !!end, end); 2314 !!end, end); 2331 if (ret < 0) 2315 if (ret < 0) 2332 mlog_errno(ret); 2316 mlog_errno(ret); 2333 } 2317 } 2334 2318 2335 di = (struct ocfs2_dinode *)di_bh->b_ 2319 di = (struct ocfs2_dinode *)di_bh->b_data; 2336 2320 2337 ocfs2_init_dinode_extent_tree(&et, IN 2321 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), di_bh); 2338 2322 2339 /* Attach dealloc with extent tree in << 2340 * which are already unlinked from cu << 2341 * rotation and merging. << 2342 */ << 2343 et.et_dealloc = &dealloc; << 2344 << 2345 ret = ocfs2_lock_allocators(inode, &e 2323 ret = ocfs2_lock_allocators(inode, &et, 0, dwc->dw_zero_count*2, 2346 &data_ac, 2324 &data_ac, &meta_ac); 2347 if (ret) { 2325 if (ret) { 2348 mlog_errno(ret); 2326 mlog_errno(ret); 2349 goto unlock; 2327 goto unlock; 2350 } 2328 } 2351 2329 2352 credits = ocfs2_calc_extend_credits(i 2330 credits = ocfs2_calc_extend_credits(inode->i_sb, &di->id2.i_list); 2353 2331 2354 handle = ocfs2_start_trans(osb, credi 2332 handle = ocfs2_start_trans(osb, credits); 2355 if (IS_ERR(handle)) { 2333 if (IS_ERR(handle)) { 2356 ret = PTR_ERR(handle); 2334 ret = PTR_ERR(handle); 2357 mlog_errno(ret); 2335 mlog_errno(ret); 2358 goto unlock; 2336 goto unlock; 2359 } 2337 } 2360 ret = ocfs2_journal_access_di(handle, 2338 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), di_bh, 2361 OCFS2_J 2339 OCFS2_JOURNAL_ACCESS_WRITE); 2362 if (ret) { 2340 if (ret) { 2363 mlog_errno(ret); 2341 mlog_errno(ret); 2364 goto commit; 2342 goto commit; 2365 } 2343 } 2366 2344 2367 list_for_each_entry(ue, &dwc->dw_zero 2345 list_for_each_entry(ue, &dwc->dw_zero_list, ue_node) { 2368 ret = ocfs2_assure_trans_cred << 2369 if (ret < 0) { << 2370 mlog_errno(ret); << 2371 break; << 2372 } << 2373 ret = ocfs2_mark_extent_writt 2346 ret = ocfs2_mark_extent_written(inode, &et, handle, 2374 2347 ue->ue_cpos, 1, 2375 2348 ue->ue_phys, 2376 2349 meta_ac, &dealloc); 2377 if (ret < 0) { 2350 if (ret < 0) { 2378 mlog_errno(ret); 2351 mlog_errno(ret); 2379 break; 2352 break; 2380 } 2353 } 2381 } 2354 } 2382 2355 2383 if (end > i_size_read(inode)) { 2356 if (end > i_size_read(inode)) { 2384 ret = ocfs2_set_inode_size(ha 2357 ret = ocfs2_set_inode_size(handle, inode, di_bh, end); 2385 if (ret < 0) 2358 if (ret < 0) 2386 mlog_errno(ret); 2359 mlog_errno(ret); 2387 } 2360 } 2388 commit: 2361 commit: 2389 ocfs2_commit_trans(osb, handle); 2362 ocfs2_commit_trans(osb, handle); 2390 unlock: 2363 unlock: 2391 up_write(&oi->ip_alloc_sem); 2364 up_write(&oi->ip_alloc_sem); 2392 ocfs2_inode_unlock(inode, 1); 2365 ocfs2_inode_unlock(inode, 1); 2393 brelse(di_bh); 2366 brelse(di_bh); 2394 out: 2367 out: 2395 if (data_ac) 2368 if (data_ac) 2396 ocfs2_free_alloc_context(data 2369 ocfs2_free_alloc_context(data_ac); 2397 if (meta_ac) 2370 if (meta_ac) 2398 ocfs2_free_alloc_context(meta 2371 ocfs2_free_alloc_context(meta_ac); 2399 ocfs2_run_deallocs(osb, &dealloc); 2372 ocfs2_run_deallocs(osb, &dealloc); >> 2373 if (locked) >> 2374 inode_unlock(inode); 2400 ocfs2_dio_free_write_ctx(inode, dwc); 2375 ocfs2_dio_free_write_ctx(inode, dwc); 2401 2376 2402 return ret; 2377 return ret; 2403 } 2378 } 2404 2379 2405 /* 2380 /* 2406 * ocfs2_dio_end_io is called by the dio core 2381 * ocfs2_dio_end_io is called by the dio core when a dio is finished. We're 2407 * particularly interested in the aio/dio cas 2382 * particularly interested in the aio/dio case. We use the rw_lock DLM lock 2408 * to protect io on one node from truncation 2383 * to protect io on one node from truncation on another. 2409 */ 2384 */ 2410 static int ocfs2_dio_end_io(struct kiocb *ioc 2385 static int ocfs2_dio_end_io(struct kiocb *iocb, 2411 loff_t offset, 2386 loff_t offset, 2412 ssize_t bytes, 2387 ssize_t bytes, 2413 void *private) 2388 void *private) 2414 { 2389 { 2415 struct inode *inode = file_inode(iocb 2390 struct inode *inode = file_inode(iocb->ki_filp); 2416 int level; 2391 int level; 2417 int ret = 0; 2392 int ret = 0; 2418 2393 2419 /* this io's submitter should not hav 2394 /* this io's submitter should not have unlocked this before we could */ 2420 BUG_ON(!ocfs2_iocb_is_rw_locked(iocb) 2395 BUG_ON(!ocfs2_iocb_is_rw_locked(iocb)); 2421 2396 2422 if (bytes <= 0) !! 2397 if (bytes > 0 && private) 2423 mlog_ratelimited(ML_ERROR, "D !! 2398 ret = ocfs2_dio_end_io_write(inode, private, offset, bytes); 2424 (long long)b << 2425 if (private) { << 2426 if (bytes > 0) << 2427 ret = ocfs2_dio_end_i << 2428 << 2429 else << 2430 ocfs2_dio_free_write_ << 2431 } << 2432 2399 2433 ocfs2_iocb_clear_rw_locked(iocb); 2400 ocfs2_iocb_clear_rw_locked(iocb); 2434 2401 2435 level = ocfs2_iocb_rw_locked_level(io 2402 level = ocfs2_iocb_rw_locked_level(iocb); 2436 ocfs2_rw_unlock(inode, level); 2403 ocfs2_rw_unlock(inode, level); 2437 return ret; 2404 return ret; 2438 } 2405 } 2439 2406 2440 static ssize_t ocfs2_direct_IO(struct kiocb * 2407 static ssize_t ocfs2_direct_IO(struct kiocb *iocb, struct iov_iter *iter) 2441 { 2408 { 2442 struct file *file = iocb->ki_filp; 2409 struct file *file = iocb->ki_filp; 2443 struct inode *inode = file->f_mapping 2410 struct inode *inode = file->f_mapping->host; 2444 struct ocfs2_super *osb = OCFS2_SB(in 2411 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 2445 get_block_t *get_block; 2412 get_block_t *get_block; 2446 2413 2447 /* 2414 /* 2448 * Fallback to buffered I/O if we see 2415 * Fallback to buffered I/O if we see an inode without 2449 * extents. 2416 * extents. 2450 */ 2417 */ 2451 if (OCFS2_I(inode)->ip_dyn_features & 2418 if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) 2452 return 0; 2419 return 0; 2453 2420 2454 /* Fallback to buffered I/O if we do 2421 /* Fallback to buffered I/O if we do not support append dio. */ 2455 if (iocb->ki_pos + iter->count > i_si 2422 if (iocb->ki_pos + iter->count > i_size_read(inode) && 2456 !ocfs2_supports_append_dio(osb)) 2423 !ocfs2_supports_append_dio(osb)) 2457 return 0; 2424 return 0; 2458 2425 2459 if (iov_iter_rw(iter) == READ) 2426 if (iov_iter_rw(iter) == READ) 2460 get_block = ocfs2_lock_get_bl !! 2427 get_block = ocfs2_get_block; 2461 else 2428 else 2462 get_block = ocfs2_dio_wr_get_ !! 2429 get_block = ocfs2_dio_get_block; 2463 2430 2464 return __blockdev_direct_IO(iocb, ino 2431 return __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev, 2465 iter, get 2432 iter, get_block, 2466 ocfs2_dio !! 2433 ocfs2_dio_end_io, NULL, 0); 2467 } 2434 } 2468 2435 2469 const struct address_space_operations ocfs2_a 2436 const struct address_space_operations ocfs2_aops = { 2470 .dirty_folio = block_dirty !! 2437 .readpage = ocfs2_readpage, 2471 .read_folio = ocfs2_read_ !! 2438 .readpages = ocfs2_readpages, 2472 .readahead = ocfs2_reada !! 2439 .writepage = ocfs2_writepage, 2473 .writepages = ocfs2_write << 2474 .write_begin = ocfs2_write 2440 .write_begin = ocfs2_write_begin, 2475 .write_end = ocfs2_write 2441 .write_end = ocfs2_write_end, 2476 .bmap = ocfs2_bmap, 2442 .bmap = ocfs2_bmap, 2477 .direct_IO = ocfs2_direc 2443 .direct_IO = ocfs2_direct_IO, 2478 .invalidate_folio = block_inval !! 2444 .invalidatepage = block_invalidatepage, 2479 .release_folio = ocfs2_relea !! 2445 .releasepage = ocfs2_releasepage, 2480 .migrate_folio = buffer_migr !! 2446 .migratepage = buffer_migrate_page, 2481 .is_partially_uptodate = block_is_pa 2447 .is_partially_uptodate = block_is_partially_uptodate, 2482 .error_remove_folio = generic_err !! 2448 .error_remove_page = generic_error_remove_page, 2483 }; 2449 }; 2484 2450
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.