1 // SPDX-License-Identifier: GPL-2.0-or-later 1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 2 /* 3 * Copyright (C) 2002, 2004 Oracle. All right 3 * Copyright (C) 2002, 2004 Oracle. All rights reserved. 4 */ 4 */ 5 5 6 #include <linux/fs.h> 6 #include <linux/fs.h> 7 #include <linux/slab.h> 7 #include <linux/slab.h> 8 #include <linux/highmem.h> 8 #include <linux/highmem.h> 9 #include <linux/pagemap.h> 9 #include <linux/pagemap.h> 10 #include <asm/byteorder.h> 10 #include <asm/byteorder.h> 11 #include <linux/swap.h> 11 #include <linux/swap.h> 12 #include <linux/mpage.h> 12 #include <linux/mpage.h> 13 #include <linux/quotaops.h> 13 #include <linux/quotaops.h> 14 #include <linux/blkdev.h> 14 #include <linux/blkdev.h> 15 #include <linux/uio.h> 15 #include <linux/uio.h> 16 #include <linux/mm.h> 16 #include <linux/mm.h> 17 17 18 #include <cluster/masklog.h> 18 #include <cluster/masklog.h> 19 19 20 #include "ocfs2.h" 20 #include "ocfs2.h" 21 21 22 #include "alloc.h" 22 #include "alloc.h" 23 #include "aops.h" 23 #include "aops.h" 24 #include "dlmglue.h" 24 #include "dlmglue.h" 25 #include "extent_map.h" 25 #include "extent_map.h" 26 #include "file.h" 26 #include "file.h" 27 #include "inode.h" 27 #include "inode.h" 28 #include "journal.h" 28 #include "journal.h" 29 #include "suballoc.h" 29 #include "suballoc.h" 30 #include "super.h" 30 #include "super.h" 31 #include "symlink.h" 31 #include "symlink.h" 32 #include "refcounttree.h" 32 #include "refcounttree.h" 33 #include "ocfs2_trace.h" 33 #include "ocfs2_trace.h" 34 34 35 #include "buffer_head_io.h" 35 #include "buffer_head_io.h" 36 #include "dir.h" 36 #include "dir.h" 37 #include "namei.h" 37 #include "namei.h" 38 #include "sysfile.h" 38 #include "sysfile.h" 39 39 40 static int ocfs2_symlink_get_block(struct inod 40 static int ocfs2_symlink_get_block(struct inode *inode, sector_t iblock, 41 struct buff 41 struct buffer_head *bh_result, int create) 42 { 42 { 43 int err = -EIO; 43 int err = -EIO; 44 int status; 44 int status; 45 struct ocfs2_dinode *fe = NULL; 45 struct ocfs2_dinode *fe = NULL; 46 struct buffer_head *bh = NULL; 46 struct buffer_head *bh = NULL; 47 struct buffer_head *buffer_cache_bh = 47 struct buffer_head *buffer_cache_bh = NULL; 48 struct ocfs2_super *osb = OCFS2_SB(ino 48 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 49 void *kaddr; 49 void *kaddr; 50 50 51 trace_ocfs2_symlink_get_block( 51 trace_ocfs2_symlink_get_block( 52 (unsigned long long)OC 52 (unsigned long long)OCFS2_I(inode)->ip_blkno, 53 (unsigned long long)ib 53 (unsigned long long)iblock, bh_result, create); 54 54 55 BUG_ON(ocfs2_inode_is_fast_symlink(ino 55 BUG_ON(ocfs2_inode_is_fast_symlink(inode)); 56 56 57 if ((iblock << inode->i_sb->s_blocksiz 57 if ((iblock << inode->i_sb->s_blocksize_bits) > PATH_MAX + 1) { 58 mlog(ML_ERROR, "block offset > 58 mlog(ML_ERROR, "block offset > PATH_MAX: %llu", 59 (unsigned long long)ibloc 59 (unsigned long long)iblock); 60 goto bail; 60 goto bail; 61 } 61 } 62 62 63 status = ocfs2_read_inode_block(inode, 63 status = ocfs2_read_inode_block(inode, &bh); 64 if (status < 0) { 64 if (status < 0) { 65 mlog_errno(status); 65 mlog_errno(status); 66 goto bail; 66 goto bail; 67 } 67 } 68 fe = (struct ocfs2_dinode *) bh->b_dat 68 fe = (struct ocfs2_dinode *) bh->b_data; 69 69 70 if ((u64)iblock >= ocfs2_clusters_to_b 70 if ((u64)iblock >= ocfs2_clusters_to_blocks(inode->i_sb, 71 71 le32_to_cpu(fe->i_clusters))) { 72 err = -ENOMEM; 72 err = -ENOMEM; 73 mlog(ML_ERROR, "block offset i 73 mlog(ML_ERROR, "block offset is outside the allocated size: " 74 "%llu\n", (unsigned long 74 "%llu\n", (unsigned long long)iblock); 75 goto bail; 75 goto bail; 76 } 76 } 77 77 78 /* We don't use the page cache to crea 78 /* We don't use the page cache to create symlink data, so if 79 * need be, copy it over from the buff 79 * need be, copy it over from the buffer cache. */ 80 if (!buffer_uptodate(bh_result) && ocf 80 if (!buffer_uptodate(bh_result) && ocfs2_inode_is_new(inode)) { 81 u64 blkno = le64_to_cpu(fe->id 81 u64 blkno = le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) + 82 iblock; 82 iblock; 83 buffer_cache_bh = sb_getblk(os 83 buffer_cache_bh = sb_getblk(osb->sb, blkno); 84 if (!buffer_cache_bh) { 84 if (!buffer_cache_bh) { 85 err = -ENOMEM; 85 err = -ENOMEM; 86 mlog(ML_ERROR, "couldn 86 mlog(ML_ERROR, "couldn't getblock for symlink!\n"); 87 goto bail; 87 goto bail; 88 } 88 } 89 89 90 /* we haven't locked out trans 90 /* we haven't locked out transactions, so a commit 91 * could've happened. Since we 91 * could've happened. Since we've got a reference on 92 * the bh, even if it commits 92 * the bh, even if it commits while we're doing the 93 * copy, the data is still goo 93 * copy, the data is still good. */ 94 if (buffer_jbd(buffer_cache_bh 94 if (buffer_jbd(buffer_cache_bh) 95 && ocfs2_inode_is_new(inod 95 && ocfs2_inode_is_new(inode)) { 96 kaddr = kmap_atomic(bh 96 kaddr = kmap_atomic(bh_result->b_page); 97 if (!kaddr) { 97 if (!kaddr) { 98 mlog(ML_ERROR, 98 mlog(ML_ERROR, "couldn't kmap!\n"); 99 goto bail; 99 goto bail; 100 } 100 } 101 memcpy(kaddr + (bh_res 101 memcpy(kaddr + (bh_result->b_size * iblock), 102 buffer_cache_bh 102 buffer_cache_bh->b_data, 103 bh_result->b_si 103 bh_result->b_size); 104 kunmap_atomic(kaddr); 104 kunmap_atomic(kaddr); 105 set_buffer_uptodate(bh 105 set_buffer_uptodate(bh_result); 106 } 106 } 107 brelse(buffer_cache_bh); 107 brelse(buffer_cache_bh); 108 } 108 } 109 109 110 map_bh(bh_result, inode->i_sb, 110 map_bh(bh_result, inode->i_sb, 111 le64_to_cpu(fe->id2.i_list.l_re 111 le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) + iblock); 112 112 113 err = 0; 113 err = 0; 114 114 115 bail: 115 bail: 116 brelse(bh); 116 brelse(bh); 117 117 118 return err; 118 return err; 119 } 119 } 120 120 121 static int ocfs2_lock_get_block(struct inode * 121 static int ocfs2_lock_get_block(struct inode *inode, sector_t iblock, 122 struct buffer_head *bh_res 122 struct buffer_head *bh_result, int create) 123 { 123 { 124 int ret = 0; 124 int ret = 0; 125 struct ocfs2_inode_info *oi = OCFS2_I( 125 struct ocfs2_inode_info *oi = OCFS2_I(inode); 126 126 127 down_read(&oi->ip_alloc_sem); 127 down_read(&oi->ip_alloc_sem); 128 ret = ocfs2_get_block(inode, iblock, b 128 ret = ocfs2_get_block(inode, iblock, bh_result, create); 129 up_read(&oi->ip_alloc_sem); 129 up_read(&oi->ip_alloc_sem); 130 130 131 return ret; 131 return ret; 132 } 132 } 133 133 134 int ocfs2_get_block(struct inode *inode, secto 134 int ocfs2_get_block(struct inode *inode, sector_t iblock, 135 struct buffer_head *bh_res 135 struct buffer_head *bh_result, int create) 136 { 136 { 137 int err = 0; 137 int err = 0; 138 unsigned int ext_flags; 138 unsigned int ext_flags; 139 u64 max_blocks = bh_result->b_size >> 139 u64 max_blocks = bh_result->b_size >> inode->i_blkbits; 140 u64 p_blkno, count, past_eof; 140 u64 p_blkno, count, past_eof; 141 struct ocfs2_super *osb = OCFS2_SB(ino 141 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 142 142 143 trace_ocfs2_get_block((unsigned long l 143 trace_ocfs2_get_block((unsigned long long)OCFS2_I(inode)->ip_blkno, 144 (unsigned long l 144 (unsigned long long)iblock, bh_result, create); 145 145 146 if (OCFS2_I(inode)->ip_flags & OCFS2_I 146 if (OCFS2_I(inode)->ip_flags & OCFS2_INODE_SYSTEM_FILE) 147 mlog(ML_NOTICE, "get_block on 147 mlog(ML_NOTICE, "get_block on system inode 0x%p (%lu)\n", 148 inode, inode->i_ino); 148 inode, inode->i_ino); 149 149 150 if (S_ISLNK(inode->i_mode)) { 150 if (S_ISLNK(inode->i_mode)) { 151 /* this always does I/O for so 151 /* this always does I/O for some reason. */ 152 err = ocfs2_symlink_get_block( 152 err = ocfs2_symlink_get_block(inode, iblock, bh_result, create); 153 goto bail; 153 goto bail; 154 } 154 } 155 155 156 err = ocfs2_extent_map_get_blocks(inod 156 err = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno, &count, 157 &ext 157 &ext_flags); 158 if (err) { 158 if (err) { 159 mlog(ML_ERROR, "get_blocks() f !! 159 mlog(ML_ERROR, "Error %d from get_blocks(0x%p, %llu, 1, " 160 "block: %llu\n", inode, ( !! 160 "%llu, NULL)\n", err, inode, (unsigned long long)iblock, >> 161 (unsigned long long)p_blkno); 161 goto bail; 162 goto bail; 162 } 163 } 163 164 164 if (max_blocks < count) 165 if (max_blocks < count) 165 count = max_blocks; 166 count = max_blocks; 166 167 167 /* 168 /* 168 * ocfs2 never allocates in this funct 169 * ocfs2 never allocates in this function - the only time we 169 * need to use BH_New is when we're ex 170 * need to use BH_New is when we're extending i_size on a file 170 * system which doesn't support holes, 171 * system which doesn't support holes, in which case BH_New 171 * allows __block_write_begin() to zer 172 * allows __block_write_begin() to zero. 172 * 173 * 173 * If we see this on a sparse file sys 174 * If we see this on a sparse file system, then a truncate has 174 * raced us and removed the cluster. I 175 * raced us and removed the cluster. In this case, we clear 175 * the buffers dirty and uptodate bits 176 * the buffers dirty and uptodate bits and let the buffer code 176 * ignore it as a hole. 177 * ignore it as a hole. 177 */ 178 */ 178 if (create && p_blkno == 0 && ocfs2_sp 179 if (create && p_blkno == 0 && ocfs2_sparse_alloc(osb)) { 179 clear_buffer_dirty(bh_result); 180 clear_buffer_dirty(bh_result); 180 clear_buffer_uptodate(bh_resul 181 clear_buffer_uptodate(bh_result); 181 goto bail; 182 goto bail; 182 } 183 } 183 184 184 /* Treat the unwritten extent as a hol 185 /* Treat the unwritten extent as a hole for zeroing purposes. */ 185 if (p_blkno && !(ext_flags & OCFS2_EXT 186 if (p_blkno && !(ext_flags & OCFS2_EXT_UNWRITTEN)) 186 map_bh(bh_result, inode->i_sb, 187 map_bh(bh_result, inode->i_sb, p_blkno); 187 188 188 bh_result->b_size = count << inode->i_ 189 bh_result->b_size = count << inode->i_blkbits; 189 190 190 if (!ocfs2_sparse_alloc(osb)) { 191 if (!ocfs2_sparse_alloc(osb)) { 191 if (p_blkno == 0) { 192 if (p_blkno == 0) { 192 err = -EIO; 193 err = -EIO; 193 mlog(ML_ERROR, 194 mlog(ML_ERROR, 194 "iblock = %llu p_ 195 "iblock = %llu p_blkno = %llu blkno=(%llu)\n", 195 (unsigned long lo 196 (unsigned long long)iblock, 196 (unsigned long lo 197 (unsigned long long)p_blkno, 197 (unsigned long lo 198 (unsigned long long)OCFS2_I(inode)->ip_blkno); 198 mlog(ML_ERROR, "Size % 199 mlog(ML_ERROR, "Size %llu, clusters %u\n", (unsigned long long)i_size_read(inode), OCFS2_I(inode)->ip_clusters); 199 dump_stack(); 200 dump_stack(); 200 goto bail; 201 goto bail; 201 } 202 } 202 } 203 } 203 204 204 past_eof = ocfs2_blocks_for_bytes(inod 205 past_eof = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode)); 205 206 206 trace_ocfs2_get_block_end((unsigned lo 207 trace_ocfs2_get_block_end((unsigned long long)OCFS2_I(inode)->ip_blkno, 207 (unsigned lo 208 (unsigned long long)past_eof); 208 if (create && (iblock >= past_eof)) 209 if (create && (iblock >= past_eof)) 209 set_buffer_new(bh_result); 210 set_buffer_new(bh_result); 210 211 211 bail: 212 bail: 212 if (err < 0) 213 if (err < 0) 213 err = -EIO; 214 err = -EIO; 214 215 215 return err; 216 return err; 216 } 217 } 217 218 218 int ocfs2_read_inline_data(struct inode *inode 219 int ocfs2_read_inline_data(struct inode *inode, struct page *page, 219 struct buffer_head 220 struct buffer_head *di_bh) 220 { 221 { 221 void *kaddr; 222 void *kaddr; 222 loff_t size; 223 loff_t size; 223 struct ocfs2_dinode *di = (struct ocfs 224 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data; 224 225 225 if (!(le16_to_cpu(di->i_dyn_features) 226 if (!(le16_to_cpu(di->i_dyn_features) & OCFS2_INLINE_DATA_FL)) { 226 ocfs2_error(inode->i_sb, "Inod 227 ocfs2_error(inode->i_sb, "Inode %llu lost inline data flag\n", 227 (unsigned long lon 228 (unsigned long long)OCFS2_I(inode)->ip_blkno); 228 return -EROFS; 229 return -EROFS; 229 } 230 } 230 231 231 size = i_size_read(inode); 232 size = i_size_read(inode); 232 233 233 if (size > PAGE_SIZE || 234 if (size > PAGE_SIZE || 234 size > ocfs2_max_inline_data_with_ 235 size > ocfs2_max_inline_data_with_xattr(inode->i_sb, di)) { 235 ocfs2_error(inode->i_sb, 236 ocfs2_error(inode->i_sb, 236 "Inode %llu has wi 237 "Inode %llu has with inline data has bad size: %Lu\n", 237 (unsigned long lon 238 (unsigned long long)OCFS2_I(inode)->ip_blkno, 238 (unsigned long lon 239 (unsigned long long)size); 239 return -EROFS; 240 return -EROFS; 240 } 241 } 241 242 242 kaddr = kmap_atomic(page); 243 kaddr = kmap_atomic(page); 243 if (size) 244 if (size) 244 memcpy(kaddr, di->id2.i_data.i 245 memcpy(kaddr, di->id2.i_data.id_data, size); 245 /* Clear the remaining part of the pag 246 /* Clear the remaining part of the page */ 246 memset(kaddr + size, 0, PAGE_SIZE - si 247 memset(kaddr + size, 0, PAGE_SIZE - size); 247 flush_dcache_page(page); 248 flush_dcache_page(page); 248 kunmap_atomic(kaddr); 249 kunmap_atomic(kaddr); 249 250 250 SetPageUptodate(page); 251 SetPageUptodate(page); 251 252 252 return 0; 253 return 0; 253 } 254 } 254 255 255 static int ocfs2_readpage_inline(struct inode 256 static int ocfs2_readpage_inline(struct inode *inode, struct page *page) 256 { 257 { 257 int ret; 258 int ret; 258 struct buffer_head *di_bh = NULL; 259 struct buffer_head *di_bh = NULL; 259 260 260 BUG_ON(!PageLocked(page)); 261 BUG_ON(!PageLocked(page)); 261 BUG_ON(!(OCFS2_I(inode)->ip_dyn_featur 262 BUG_ON(!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL)); 262 263 263 ret = ocfs2_read_inode_block(inode, &d 264 ret = ocfs2_read_inode_block(inode, &di_bh); 264 if (ret) { 265 if (ret) { 265 mlog_errno(ret); 266 mlog_errno(ret); 266 goto out; 267 goto out; 267 } 268 } 268 269 269 ret = ocfs2_read_inline_data(inode, pa 270 ret = ocfs2_read_inline_data(inode, page, di_bh); 270 out: 271 out: 271 unlock_page(page); 272 unlock_page(page); 272 273 273 brelse(di_bh); 274 brelse(di_bh); 274 return ret; 275 return ret; 275 } 276 } 276 277 277 static int ocfs2_read_folio(struct file *file, !! 278 static int ocfs2_readpage(struct file *file, struct page *page) 278 { 279 { 279 struct inode *inode = folio->mapping-> !! 280 struct inode *inode = page->mapping->host; 280 struct ocfs2_inode_info *oi = OCFS2_I( 281 struct ocfs2_inode_info *oi = OCFS2_I(inode); 281 loff_t start = folio_pos(folio); !! 282 loff_t start = (loff_t)page->index << PAGE_SHIFT; 282 int ret, unlock = 1; 283 int ret, unlock = 1; 283 284 284 trace_ocfs2_readpage((unsigned long lo !! 285 trace_ocfs2_readpage((unsigned long long)oi->ip_blkno, >> 286 (page ? page->index : 0)); 285 287 286 ret = ocfs2_inode_lock_with_page(inode !! 288 ret = ocfs2_inode_lock_with_page(inode, NULL, 0, page); 287 if (ret != 0) { 289 if (ret != 0) { 288 if (ret == AOP_TRUNCATED_PAGE) 290 if (ret == AOP_TRUNCATED_PAGE) 289 unlock = 0; 291 unlock = 0; 290 mlog_errno(ret); 292 mlog_errno(ret); 291 goto out; 293 goto out; 292 } 294 } 293 295 294 if (down_read_trylock(&oi->ip_alloc_se 296 if (down_read_trylock(&oi->ip_alloc_sem) == 0) { 295 /* 297 /* 296 * Unlock the folio and cycle !! 298 * Unlock the page and cycle ip_alloc_sem so that we don't 297 * busyloop waiting for ip_all 299 * busyloop waiting for ip_alloc_sem to unlock 298 */ 300 */ 299 ret = AOP_TRUNCATED_PAGE; 301 ret = AOP_TRUNCATED_PAGE; 300 folio_unlock(folio); !! 302 unlock_page(page); 301 unlock = 0; 303 unlock = 0; 302 down_read(&oi->ip_alloc_sem); 304 down_read(&oi->ip_alloc_sem); 303 up_read(&oi->ip_alloc_sem); 305 up_read(&oi->ip_alloc_sem); 304 goto out_inode_unlock; 306 goto out_inode_unlock; 305 } 307 } 306 308 307 /* 309 /* 308 * i_size might have just been updated 310 * i_size might have just been updated as we grabed the meta lock. We 309 * might now be discovering a truncate 311 * might now be discovering a truncate that hit on another node. 310 * block_read_full_folio->get_block fr !! 312 * block_read_full_page->get_block freaks out if it is asked to read 311 * beyond the end of a file, so we che 313 * beyond the end of a file, so we check here. Callers 312 * (generic_file_read, vm_ops->fault) 314 * (generic_file_read, vm_ops->fault) are clever enough to check i_size 313 * and notice that the folio they just !! 315 * and notice that the page they just read isn't needed. 314 * 316 * 315 * XXX sys_readahead() seems to get th 317 * XXX sys_readahead() seems to get that wrong? 316 */ 318 */ 317 if (start >= i_size_read(inode)) { 319 if (start >= i_size_read(inode)) { 318 folio_zero_segment(folio, 0, f !! 320 zero_user(page, 0, PAGE_SIZE); 319 folio_mark_uptodate(folio); !! 321 SetPageUptodate(page); 320 ret = 0; 322 ret = 0; 321 goto out_alloc; 323 goto out_alloc; 322 } 324 } 323 325 324 if (oi->ip_dyn_features & OCFS2_INLINE 326 if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL) 325 ret = ocfs2_readpage_inline(in !! 327 ret = ocfs2_readpage_inline(inode, page); 326 else 328 else 327 ret = block_read_full_folio(fo !! 329 ret = block_read_full_page(page, ocfs2_get_block); 328 unlock = 0; 330 unlock = 0; 329 331 330 out_alloc: 332 out_alloc: 331 up_read(&oi->ip_alloc_sem); 333 up_read(&oi->ip_alloc_sem); 332 out_inode_unlock: 334 out_inode_unlock: 333 ocfs2_inode_unlock(inode, 0); 335 ocfs2_inode_unlock(inode, 0); 334 out: 336 out: 335 if (unlock) 337 if (unlock) 336 folio_unlock(folio); !! 338 unlock_page(page); 337 return ret; 339 return ret; 338 } 340 } 339 341 340 /* 342 /* 341 * This is used only for read-ahead. Failures 343 * This is used only for read-ahead. Failures or difficult to handle 342 * situations are safe to ignore. 344 * situations are safe to ignore. 343 * 345 * 344 * Right now, we don't bother with BH_Boundary 346 * Right now, we don't bother with BH_Boundary - in-inode extent lists 345 * are quite large (243 extents on 4k blocks), 347 * are quite large (243 extents on 4k blocks), so most inodes don't 346 * grow out to a tree. If need be, detecting b 348 * grow out to a tree. If need be, detecting boundary extents could 347 * trivially be added in a future version of o 349 * trivially be added in a future version of ocfs2_get_block(). 348 */ 350 */ 349 static void ocfs2_readahead(struct readahead_c 351 static void ocfs2_readahead(struct readahead_control *rac) 350 { 352 { 351 int ret; 353 int ret; 352 struct inode *inode = rac->mapping->ho 354 struct inode *inode = rac->mapping->host; 353 struct ocfs2_inode_info *oi = OCFS2_I( 355 struct ocfs2_inode_info *oi = OCFS2_I(inode); 354 356 355 /* 357 /* 356 * Use the nonblocking flag for the dl 358 * Use the nonblocking flag for the dlm code to avoid page 357 * lock inversion, but don't bother wi 359 * lock inversion, but don't bother with retrying. 358 */ 360 */ 359 ret = ocfs2_inode_lock_full(inode, NUL 361 ret = ocfs2_inode_lock_full(inode, NULL, 0, OCFS2_LOCK_NONBLOCK); 360 if (ret) 362 if (ret) 361 return; 363 return; 362 364 363 if (down_read_trylock(&oi->ip_alloc_se 365 if (down_read_trylock(&oi->ip_alloc_sem) == 0) 364 goto out_unlock; 366 goto out_unlock; 365 367 366 /* 368 /* 367 * Don't bother with inline-data. Ther 369 * Don't bother with inline-data. There isn't anything 368 * to read-ahead in that case anyway.. 370 * to read-ahead in that case anyway... 369 */ 371 */ 370 if (oi->ip_dyn_features & OCFS2_INLINE 372 if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL) 371 goto out_up; 373 goto out_up; 372 374 373 /* 375 /* 374 * Check whether a remote node truncat 376 * Check whether a remote node truncated this file - we just 375 * drop out in that case as it's not w 377 * drop out in that case as it's not worth handling here. 376 */ 378 */ 377 if (readahead_pos(rac) >= i_size_read( 379 if (readahead_pos(rac) >= i_size_read(inode)) 378 goto out_up; 380 goto out_up; 379 381 380 mpage_readahead(rac, ocfs2_get_block); 382 mpage_readahead(rac, ocfs2_get_block); 381 383 382 out_up: 384 out_up: 383 up_read(&oi->ip_alloc_sem); 385 up_read(&oi->ip_alloc_sem); 384 out_unlock: 386 out_unlock: 385 ocfs2_inode_unlock(inode, 0); 387 ocfs2_inode_unlock(inode, 0); 386 } 388 } 387 389 388 /* Note: Because we don't support holes, our a 390 /* Note: Because we don't support holes, our allocation has 389 * already happened (allocation writes zeros t 391 * already happened (allocation writes zeros to the file data) 390 * so we don't have to worry about ordered wri 392 * so we don't have to worry about ordered writes in 391 * ocfs2_writepages. !! 393 * ocfs2_writepage. 392 * 394 * 393 * ->writepages is called during the process o !! 395 * ->writepage is called during the process of invalidating the page cache 394 * during blocked lock processing. It can't b 396 * during blocked lock processing. It can't block on any cluster locks 395 * to during block mapping. It's relying on t 397 * to during block mapping. It's relying on the fact that the block 396 * mapping can't have disappeared under the di 398 * mapping can't have disappeared under the dirty pages that it is 397 * being asked to write back. 399 * being asked to write back. 398 */ 400 */ 399 static int ocfs2_writepages(struct address_spa !! 401 static int ocfs2_writepage(struct page *page, struct writeback_control *wbc) 400 struct writeback_control *wbc) << 401 { 402 { 402 return mpage_writepages(mapping, wbc, !! 403 trace_ocfs2_writepage( >> 404 (unsigned long long)OCFS2_I(page->mapping->host)->ip_blkno, >> 405 page->index); >> 406 >> 407 return block_write_full_page(page, ocfs2_get_block, wbc); 403 } 408 } 404 409 405 /* Taken from ext3. We don't necessarily need 410 /* Taken from ext3. We don't necessarily need the full blown 406 * functionality yet, but IMHO it's better to 411 * functionality yet, but IMHO it's better to cut and paste the whole 407 * thing so we can avoid introducing our own b 412 * thing so we can avoid introducing our own bugs (and easily pick up 408 * their fixes when they happen) --Mark */ 413 * their fixes when they happen) --Mark */ 409 int walk_page_buffers( handle_t *handle, 414 int walk_page_buffers( handle_t *handle, 410 struct buffer_head *he 415 struct buffer_head *head, 411 unsigned from, 416 unsigned from, 412 unsigned to, 417 unsigned to, 413 int *partial, 418 int *partial, 414 int (*fn)( handle 419 int (*fn)( handle_t *handle, 415 struct 420 struct buffer_head *bh)) 416 { 421 { 417 struct buffer_head *bh; 422 struct buffer_head *bh; 418 unsigned block_start, block_end; 423 unsigned block_start, block_end; 419 unsigned blocksize = head->b_size; 424 unsigned blocksize = head->b_size; 420 int err, ret = 0; 425 int err, ret = 0; 421 struct buffer_head *next; 426 struct buffer_head *next; 422 427 423 for ( bh = head, block_start = 0; 428 for ( bh = head, block_start = 0; 424 ret == 0 && (bh != head || !bl 429 ret == 0 && (bh != head || !block_start); 425 block_start = block_end, bh = 430 block_start = block_end, bh = next) 426 { 431 { 427 next = bh->b_this_page; 432 next = bh->b_this_page; 428 block_end = block_start + bloc 433 block_end = block_start + blocksize; 429 if (block_end <= from || block 434 if (block_end <= from || block_start >= to) { 430 if (partial && !buffer 435 if (partial && !buffer_uptodate(bh)) 431 *partial = 1; 436 *partial = 1; 432 continue; 437 continue; 433 } 438 } 434 err = (*fn)(handle, bh); 439 err = (*fn)(handle, bh); 435 if (!ret) 440 if (!ret) 436 ret = err; 441 ret = err; 437 } 442 } 438 return ret; 443 return ret; 439 } 444 } 440 445 441 static sector_t ocfs2_bmap(struct address_spac 446 static sector_t ocfs2_bmap(struct address_space *mapping, sector_t block) 442 { 447 { 443 sector_t status; 448 sector_t status; 444 u64 p_blkno = 0; 449 u64 p_blkno = 0; 445 int err = 0; 450 int err = 0; 446 struct inode *inode = mapping->host; 451 struct inode *inode = mapping->host; 447 452 448 trace_ocfs2_bmap((unsigned long long)O 453 trace_ocfs2_bmap((unsigned long long)OCFS2_I(inode)->ip_blkno, 449 (unsigned long long)b 454 (unsigned long long)block); 450 455 451 /* 456 /* 452 * The swap code (ab-)uses ->bmap to g 457 * The swap code (ab-)uses ->bmap to get a block mapping and then 453 * bypasseѕ the file system for actua 458 * bypasseѕ the file system for actual I/O. We really can't allow 454 * that on refcounted inodes, so we ha 459 * that on refcounted inodes, so we have to skip out here. And yes, 455 * 0 is the magic code for a bmap erro 460 * 0 is the magic code for a bmap error.. 456 */ 461 */ 457 if (ocfs2_is_refcount_inode(inode)) 462 if (ocfs2_is_refcount_inode(inode)) 458 return 0; 463 return 0; 459 464 460 /* We don't need to lock journal syste 465 /* We don't need to lock journal system files, since they aren't 461 * accessed concurrently from multiple 466 * accessed concurrently from multiple nodes. 462 */ 467 */ 463 if (!INODE_JOURNAL(inode)) { 468 if (!INODE_JOURNAL(inode)) { 464 err = ocfs2_inode_lock(inode, 469 err = ocfs2_inode_lock(inode, NULL, 0); 465 if (err) { 470 if (err) { 466 if (err != -ENOENT) 471 if (err != -ENOENT) 467 mlog_errno(err 472 mlog_errno(err); 468 goto bail; 473 goto bail; 469 } 474 } 470 down_read(&OCFS2_I(inode)->ip_ 475 down_read(&OCFS2_I(inode)->ip_alloc_sem); 471 } 476 } 472 477 473 if (!(OCFS2_I(inode)->ip_dyn_features 478 if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL)) 474 err = ocfs2_extent_map_get_blo 479 err = ocfs2_extent_map_get_blocks(inode, block, &p_blkno, NULL, 475 480 NULL); 476 481 477 if (!INODE_JOURNAL(inode)) { 482 if (!INODE_JOURNAL(inode)) { 478 up_read(&OCFS2_I(inode)->ip_al 483 up_read(&OCFS2_I(inode)->ip_alloc_sem); 479 ocfs2_inode_unlock(inode, 0); 484 ocfs2_inode_unlock(inode, 0); 480 } 485 } 481 486 482 if (err) { 487 if (err) { 483 mlog(ML_ERROR, "get_blocks() f 488 mlog(ML_ERROR, "get_blocks() failed, block = %llu\n", 484 (unsigned long long)block 489 (unsigned long long)block); 485 mlog_errno(err); 490 mlog_errno(err); 486 goto bail; 491 goto bail; 487 } 492 } 488 493 489 bail: 494 bail: 490 status = err ? 0 : p_blkno; 495 status = err ? 0 : p_blkno; 491 496 492 return status; 497 return status; 493 } 498 } 494 499 495 static bool ocfs2_release_folio(struct folio * !! 500 static int ocfs2_releasepage(struct page *page, gfp_t wait) 496 { 501 { 497 if (!folio_buffers(folio)) !! 502 if (!page_has_buffers(page)) 498 return false; !! 503 return 0; 499 return try_to_free_buffers(folio); !! 504 return try_to_free_buffers(page); 500 } 505 } 501 506 502 static void ocfs2_figure_cluster_boundaries(st 507 static void ocfs2_figure_cluster_boundaries(struct ocfs2_super *osb, 503 u3 508 u32 cpos, 504 un 509 unsigned int *start, 505 un 510 unsigned int *end) 506 { 511 { 507 unsigned int cluster_start = 0, cluste 512 unsigned int cluster_start = 0, cluster_end = PAGE_SIZE; 508 513 509 if (unlikely(PAGE_SHIFT > osb->s_clust 514 if (unlikely(PAGE_SHIFT > osb->s_clustersize_bits)) { 510 unsigned int cpp; 515 unsigned int cpp; 511 516 512 cpp = 1 << (PAGE_SHIFT - osb-> 517 cpp = 1 << (PAGE_SHIFT - osb->s_clustersize_bits); 513 518 514 cluster_start = cpos % cpp; 519 cluster_start = cpos % cpp; 515 cluster_start = cluster_start 520 cluster_start = cluster_start << osb->s_clustersize_bits; 516 521 517 cluster_end = cluster_start + 522 cluster_end = cluster_start + osb->s_clustersize; 518 } 523 } 519 524 520 BUG_ON(cluster_start > PAGE_SIZE); 525 BUG_ON(cluster_start > PAGE_SIZE); 521 BUG_ON(cluster_end > PAGE_SIZE); 526 BUG_ON(cluster_end > PAGE_SIZE); 522 527 523 if (start) 528 if (start) 524 *start = cluster_start; 529 *start = cluster_start; 525 if (end) 530 if (end) 526 *end = cluster_end; 531 *end = cluster_end; 527 } 532 } 528 533 529 /* 534 /* 530 * 'from' and 'to' are the region in the page 535 * 'from' and 'to' are the region in the page to avoid zeroing. 531 * 536 * 532 * If pagesize > clustersize, this function wi 537 * If pagesize > clustersize, this function will avoid zeroing outside 533 * of the cluster boundary. 538 * of the cluster boundary. 534 * 539 * 535 * from == to == 0 is code for "zero the entir 540 * from == to == 0 is code for "zero the entire cluster region" 536 */ 541 */ 537 static void ocfs2_clear_page_regions(struct pa 542 static void ocfs2_clear_page_regions(struct page *page, 538 struct oc 543 struct ocfs2_super *osb, u32 cpos, 539 unsigned 544 unsigned from, unsigned to) 540 { 545 { 541 void *kaddr; 546 void *kaddr; 542 unsigned int cluster_start, cluster_en 547 unsigned int cluster_start, cluster_end; 543 548 544 ocfs2_figure_cluster_boundaries(osb, c 549 ocfs2_figure_cluster_boundaries(osb, cpos, &cluster_start, &cluster_end); 545 550 546 kaddr = kmap_atomic(page); 551 kaddr = kmap_atomic(page); 547 552 548 if (from || to) { 553 if (from || to) { 549 if (from > cluster_start) 554 if (from > cluster_start) 550 memset(kaddr + cluster 555 memset(kaddr + cluster_start, 0, from - cluster_start); 551 if (to < cluster_end) 556 if (to < cluster_end) 552 memset(kaddr + to, 0, 557 memset(kaddr + to, 0, cluster_end - to); 553 } else { 558 } else { 554 memset(kaddr + cluster_start, 559 memset(kaddr + cluster_start, 0, cluster_end - cluster_start); 555 } 560 } 556 561 557 kunmap_atomic(kaddr); 562 kunmap_atomic(kaddr); 558 } 563 } 559 564 560 /* 565 /* 561 * Nonsparse file systems fully allocate befor 566 * Nonsparse file systems fully allocate before we get to the write 562 * code. This prevents ocfs2_write() from tagg 567 * code. This prevents ocfs2_write() from tagging the write as an 563 * allocating one, which means ocfs2_map_page_ 568 * allocating one, which means ocfs2_map_page_blocks() might try to 564 * read-in the blocks at the tail of our file. 569 * read-in the blocks at the tail of our file. Avoid reading them by 565 * testing i_size against each block offset. 570 * testing i_size against each block offset. 566 */ 571 */ 567 static int ocfs2_should_read_blk(struct inode !! 572 static int ocfs2_should_read_blk(struct inode *inode, struct page *page, 568 unsigned int 573 unsigned int block_start) 569 { 574 { 570 u64 offset = folio_pos(folio) + block_ !! 575 u64 offset = page_offset(page) + block_start; 571 576 572 if (ocfs2_sparse_alloc(OCFS2_SB(inode- 577 if (ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb))) 573 return 1; 578 return 1; 574 579 575 if (i_size_read(inode) > offset) 580 if (i_size_read(inode) > offset) 576 return 1; 581 return 1; 577 582 578 return 0; 583 return 0; 579 } 584 } 580 585 581 /* 586 /* 582 * Some of this taken from __block_write_begin 587 * Some of this taken from __block_write_begin(). We already have our 583 * mapping by now though, and the entire write 588 * mapping by now though, and the entire write will be allocating or 584 * it won't, so not much need to use BH_New. 589 * it won't, so not much need to use BH_New. 585 * 590 * 586 * This will also skip zeroing, which is handl 591 * This will also skip zeroing, which is handled externally. 587 */ 592 */ 588 int ocfs2_map_page_blocks(struct page *page, u 593 int ocfs2_map_page_blocks(struct page *page, u64 *p_blkno, 589 struct inode *inode, 594 struct inode *inode, unsigned int from, 590 unsigned int to, int 595 unsigned int to, int new) 591 { 596 { 592 struct folio *folio = page_folio(page) << 593 int ret = 0; 597 int ret = 0; 594 struct buffer_head *head, *bh, *wait[2 598 struct buffer_head *head, *bh, *wait[2], **wait_bh = wait; 595 unsigned int block_end, block_start; 599 unsigned int block_end, block_start; 596 unsigned int bsize = i_blocksize(inode 600 unsigned int bsize = i_blocksize(inode); 597 601 598 head = folio_buffers(folio); !! 602 if (!page_has_buffers(page)) 599 if (!head) !! 603 create_empty_buffers(page, bsize, 0); 600 head = create_empty_buffers(fo << 601 604 >> 605 head = page_buffers(page); 602 for (bh = head, block_start = 0; bh != 606 for (bh = head, block_start = 0; bh != head || !block_start; 603 bh = bh->b_this_page, block_start 607 bh = bh->b_this_page, block_start += bsize) { 604 block_end = block_start + bsiz 608 block_end = block_start + bsize; 605 609 606 clear_buffer_new(bh); 610 clear_buffer_new(bh); 607 611 608 /* 612 /* 609 * Ignore blocks outside of ou 613 * Ignore blocks outside of our i/o range - 610 * they may belong to unalloca 614 * they may belong to unallocated clusters. 611 */ 615 */ 612 if (block_start >= to || block 616 if (block_start >= to || block_end <= from) { 613 if (folio_test_uptodat !! 617 if (PageUptodate(page)) 614 set_buffer_upt 618 set_buffer_uptodate(bh); 615 continue; 619 continue; 616 } 620 } 617 621 618 /* 622 /* 619 * For an allocating write wit 623 * For an allocating write with cluster size >= page 620 * size, we always write the e 624 * size, we always write the entire page. 621 */ 625 */ 622 if (new) 626 if (new) 623 set_buffer_new(bh); 627 set_buffer_new(bh); 624 628 625 if (!buffer_mapped(bh)) { 629 if (!buffer_mapped(bh)) { 626 map_bh(bh, inode->i_sb 630 map_bh(bh, inode->i_sb, *p_blkno); 627 clean_bdev_bh_alias(bh 631 clean_bdev_bh_alias(bh); 628 } 632 } 629 633 630 if (folio_test_uptodate(folio) !! 634 if (PageUptodate(page)) { 631 set_buffer_uptodate(bh 635 set_buffer_uptodate(bh); 632 } else if (!buffer_uptodate(bh 636 } else if (!buffer_uptodate(bh) && !buffer_delay(bh) && 633 !buffer_new(bh) && 637 !buffer_new(bh) && 634 ocfs2_should_read_b !! 638 ocfs2_should_read_blk(inode, page, block_start) && 635 (block_start < from 639 (block_start < from || block_end > to)) { 636 bh_read_nowait(bh, 0); !! 640 ll_rw_block(REQ_OP_READ, 0, 1, &bh); 637 *wait_bh++=bh; 641 *wait_bh++=bh; 638 } 642 } 639 643 640 *p_blkno = *p_blkno + 1; 644 *p_blkno = *p_blkno + 1; 641 } 645 } 642 646 643 /* 647 /* 644 * If we issued read requests - let th 648 * If we issued read requests - let them complete. 645 */ 649 */ 646 while(wait_bh > wait) { 650 while(wait_bh > wait) { 647 wait_on_buffer(*--wait_bh); 651 wait_on_buffer(*--wait_bh); 648 if (!buffer_uptodate(*wait_bh) 652 if (!buffer_uptodate(*wait_bh)) 649 ret = -EIO; 653 ret = -EIO; 650 } 654 } 651 655 652 if (ret == 0 || !new) 656 if (ret == 0 || !new) 653 return ret; 657 return ret; 654 658 655 /* 659 /* 656 * If we get -EIO above, zero out any 660 * If we get -EIO above, zero out any newly allocated blocks 657 * to avoid exposing stale data. 661 * to avoid exposing stale data. 658 */ 662 */ 659 bh = head; 663 bh = head; 660 block_start = 0; 664 block_start = 0; 661 do { 665 do { 662 block_end = block_start + bsiz 666 block_end = block_start + bsize; 663 if (block_end <= from) 667 if (block_end <= from) 664 goto next_bh; 668 goto next_bh; 665 if (block_start >= to) 669 if (block_start >= to) 666 break; 670 break; 667 671 668 folio_zero_range(folio, block_ !! 672 zero_user(page, block_start, bh->b_size); 669 set_buffer_uptodate(bh); 673 set_buffer_uptodate(bh); 670 mark_buffer_dirty(bh); 674 mark_buffer_dirty(bh); 671 675 672 next_bh: 676 next_bh: 673 block_start = block_end; 677 block_start = block_end; 674 bh = bh->b_this_page; 678 bh = bh->b_this_page; 675 } while (bh != head); 679 } while (bh != head); 676 680 677 return ret; 681 return ret; 678 } 682 } 679 683 680 #if (PAGE_SIZE >= OCFS2_MAX_CLUSTERSIZE) 684 #if (PAGE_SIZE >= OCFS2_MAX_CLUSTERSIZE) 681 #define OCFS2_MAX_CTXT_PAGES 1 685 #define OCFS2_MAX_CTXT_PAGES 1 682 #else 686 #else 683 #define OCFS2_MAX_CTXT_PAGES (OCFS2_MAX_CLU 687 #define OCFS2_MAX_CTXT_PAGES (OCFS2_MAX_CLUSTERSIZE / PAGE_SIZE) 684 #endif 688 #endif 685 689 686 #define OCFS2_MAX_CLUSTERS_PER_PAGE (PAGE_ 690 #define OCFS2_MAX_CLUSTERS_PER_PAGE (PAGE_SIZE / OCFS2_MIN_CLUSTERSIZE) 687 691 688 struct ocfs2_unwritten_extent { 692 struct ocfs2_unwritten_extent { 689 struct list_head ue_node; 693 struct list_head ue_node; 690 struct list_head ue_ip_node; 694 struct list_head ue_ip_node; 691 u32 ue_cpos; 695 u32 ue_cpos; 692 u32 ue_phys; 696 u32 ue_phys; 693 }; 697 }; 694 698 695 /* 699 /* 696 * Describe the state of a single cluster to b 700 * Describe the state of a single cluster to be written to. 697 */ 701 */ 698 struct ocfs2_write_cluster_desc { 702 struct ocfs2_write_cluster_desc { 699 u32 c_cpos; 703 u32 c_cpos; 700 u32 c_phys; 704 u32 c_phys; 701 /* 705 /* 702 * Give this a unique field because c_ 706 * Give this a unique field because c_phys eventually gets 703 * filled. 707 * filled. 704 */ 708 */ 705 unsigned c_new; 709 unsigned c_new; 706 unsigned c_clear_unwritten; 710 unsigned c_clear_unwritten; 707 unsigned c_needs_zero; 711 unsigned c_needs_zero; 708 }; 712 }; 709 713 710 struct ocfs2_write_ctxt { 714 struct ocfs2_write_ctxt { 711 /* Logical cluster position / len of w 715 /* Logical cluster position / len of write */ 712 u32 w_cpos 716 u32 w_cpos; 713 u32 w_clen 717 u32 w_clen; 714 718 715 /* First cluster allocated in a nonspa 719 /* First cluster allocated in a nonsparse extend */ 716 u32 w_firs 720 u32 w_first_new_cpos; 717 721 718 /* Type of caller. Must be one of buff 722 /* Type of caller. Must be one of buffer, mmap, direct. */ 719 ocfs2_write_type_t w_type 723 ocfs2_write_type_t w_type; 720 724 721 struct ocfs2_write_cluster_desc w_desc 725 struct ocfs2_write_cluster_desc w_desc[OCFS2_MAX_CLUSTERS_PER_PAGE]; 722 726 723 /* 727 /* 724 * This is true if page_size > cluster 728 * This is true if page_size > cluster_size. 725 * 729 * 726 * It triggers a set of special cases 730 * It triggers a set of special cases during write which might 727 * have to deal with allocating writes 731 * have to deal with allocating writes to partial pages. 728 */ 732 */ 729 unsigned int w_larg 733 unsigned int w_large_pages; 730 734 731 /* 735 /* 732 * Pages involved in this write. 736 * Pages involved in this write. 733 * 737 * 734 * w_target_page is the page being wri 738 * w_target_page is the page being written to by the user. 735 * 739 * 736 * w_pages is an array of pages which 740 * w_pages is an array of pages which always contains 737 * w_target_page, and in the case of a 741 * w_target_page, and in the case of an allocating write with 738 * page_size < cluster size, it will c 742 * page_size < cluster size, it will contain zero'd and mapped 739 * pages adjacent to w_target_page whi 743 * pages adjacent to w_target_page which need to be written 740 * out in so that future reads from th 744 * out in so that future reads from that region will get 741 * zero's. 745 * zero's. 742 */ 746 */ 743 unsigned int w_num_ 747 unsigned int w_num_pages; 744 struct page *w_pag 748 struct page *w_pages[OCFS2_MAX_CTXT_PAGES]; 745 struct page *w_tar 749 struct page *w_target_page; 746 750 747 /* 751 /* 748 * w_target_locked is used for page_mk 752 * w_target_locked is used for page_mkwrite path indicating no unlocking 749 * against w_target_page in ocfs2_writ 753 * against w_target_page in ocfs2_write_end_nolock. 750 */ 754 */ 751 unsigned int w_targ 755 unsigned int w_target_locked:1; 752 756 753 /* 757 /* 754 * ocfs2_write_end() uses this to know 758 * ocfs2_write_end() uses this to know what the real range to 755 * write in the target should be. 759 * write in the target should be. 756 */ 760 */ 757 unsigned int w_targ 761 unsigned int w_target_from; 758 unsigned int w_targ 762 unsigned int w_target_to; 759 763 760 /* 764 /* 761 * We could use journal_current_handle 765 * We could use journal_current_handle() but this is cleaner, 762 * IMHO -Mark 766 * IMHO -Mark 763 */ 767 */ 764 handle_t *w_han 768 handle_t *w_handle; 765 769 766 struct buffer_head *w_di_ 770 struct buffer_head *w_di_bh; 767 771 768 struct ocfs2_cached_dealloc_ctxt w_dea 772 struct ocfs2_cached_dealloc_ctxt w_dealloc; 769 773 770 struct list_head w_unwr 774 struct list_head w_unwritten_list; 771 unsigned int w_unwr 775 unsigned int w_unwritten_count; 772 }; 776 }; 773 777 774 void ocfs2_unlock_and_free_pages(struct page * 778 void ocfs2_unlock_and_free_pages(struct page **pages, int num_pages) 775 { 779 { 776 int i; 780 int i; 777 781 778 for(i = 0; i < num_pages; i++) { 782 for(i = 0; i < num_pages; i++) { 779 if (pages[i]) { 783 if (pages[i]) { 780 unlock_page(pages[i]); 784 unlock_page(pages[i]); 781 mark_page_accessed(pag 785 mark_page_accessed(pages[i]); 782 put_page(pages[i]); 786 put_page(pages[i]); 783 } 787 } 784 } 788 } 785 } 789 } 786 790 787 static void ocfs2_unlock_pages(struct ocfs2_wr 791 static void ocfs2_unlock_pages(struct ocfs2_write_ctxt *wc) 788 { 792 { 789 int i; 793 int i; 790 794 791 /* 795 /* 792 * w_target_locked is only set to true 796 * w_target_locked is only set to true in the page_mkwrite() case. 793 * The intent is to allow us to lock t 797 * The intent is to allow us to lock the target page from write_begin() 794 * to write_end(). The caller must hol 798 * to write_end(). The caller must hold a ref on w_target_page. 795 */ 799 */ 796 if (wc->w_target_locked) { 800 if (wc->w_target_locked) { 797 BUG_ON(!wc->w_target_page); 801 BUG_ON(!wc->w_target_page); 798 for (i = 0; i < wc->w_num_page 802 for (i = 0; i < wc->w_num_pages; i++) { 799 if (wc->w_target_page 803 if (wc->w_target_page == wc->w_pages[i]) { 800 wc->w_pages[i] 804 wc->w_pages[i] = NULL; 801 break; 805 break; 802 } 806 } 803 } 807 } 804 mark_page_accessed(wc->w_targe 808 mark_page_accessed(wc->w_target_page); 805 put_page(wc->w_target_page); 809 put_page(wc->w_target_page); 806 } 810 } 807 ocfs2_unlock_and_free_pages(wc->w_page 811 ocfs2_unlock_and_free_pages(wc->w_pages, wc->w_num_pages); 808 } 812 } 809 813 810 static void ocfs2_free_unwritten_list(struct i 814 static void ocfs2_free_unwritten_list(struct inode *inode, 811 struct list_h 815 struct list_head *head) 812 { 816 { 813 struct ocfs2_inode_info *oi = OCFS2_I( 817 struct ocfs2_inode_info *oi = OCFS2_I(inode); 814 struct ocfs2_unwritten_extent *ue = NU 818 struct ocfs2_unwritten_extent *ue = NULL, *tmp = NULL; 815 819 816 list_for_each_entry_safe(ue, tmp, head 820 list_for_each_entry_safe(ue, tmp, head, ue_node) { 817 list_del(&ue->ue_node); 821 list_del(&ue->ue_node); 818 spin_lock(&oi->ip_lock); 822 spin_lock(&oi->ip_lock); 819 list_del(&ue->ue_ip_node); 823 list_del(&ue->ue_ip_node); 820 spin_unlock(&oi->ip_lock); 824 spin_unlock(&oi->ip_lock); 821 kfree(ue); 825 kfree(ue); 822 } 826 } 823 } 827 } 824 828 825 static void ocfs2_free_write_ctxt(struct inode 829 static void ocfs2_free_write_ctxt(struct inode *inode, 826 struct ocfs2 830 struct ocfs2_write_ctxt *wc) 827 { 831 { 828 ocfs2_free_unwritten_list(inode, &wc-> 832 ocfs2_free_unwritten_list(inode, &wc->w_unwritten_list); 829 ocfs2_unlock_pages(wc); 833 ocfs2_unlock_pages(wc); 830 brelse(wc->w_di_bh); 834 brelse(wc->w_di_bh); 831 kfree(wc); 835 kfree(wc); 832 } 836 } 833 837 834 static int ocfs2_alloc_write_ctxt(struct ocfs2 838 static int ocfs2_alloc_write_ctxt(struct ocfs2_write_ctxt **wcp, 835 struct ocfs2 839 struct ocfs2_super *osb, loff_t pos, 836 unsigned len 840 unsigned len, ocfs2_write_type_t type, 837 struct buffe 841 struct buffer_head *di_bh) 838 { 842 { 839 u32 cend; 843 u32 cend; 840 struct ocfs2_write_ctxt *wc; 844 struct ocfs2_write_ctxt *wc; 841 845 842 wc = kzalloc(sizeof(struct ocfs2_write 846 wc = kzalloc(sizeof(struct ocfs2_write_ctxt), GFP_NOFS); 843 if (!wc) 847 if (!wc) 844 return -ENOMEM; 848 return -ENOMEM; 845 849 846 wc->w_cpos = pos >> osb->s_clustersize 850 wc->w_cpos = pos >> osb->s_clustersize_bits; 847 wc->w_first_new_cpos = UINT_MAX; 851 wc->w_first_new_cpos = UINT_MAX; 848 cend = (pos + len - 1) >> osb->s_clust 852 cend = (pos + len - 1) >> osb->s_clustersize_bits; 849 wc->w_clen = cend - wc->w_cpos + 1; 853 wc->w_clen = cend - wc->w_cpos + 1; 850 get_bh(di_bh); 854 get_bh(di_bh); 851 wc->w_di_bh = di_bh; 855 wc->w_di_bh = di_bh; 852 wc->w_type = type; 856 wc->w_type = type; 853 857 854 if (unlikely(PAGE_SHIFT > osb->s_clust 858 if (unlikely(PAGE_SHIFT > osb->s_clustersize_bits)) 855 wc->w_large_pages = 1; 859 wc->w_large_pages = 1; 856 else 860 else 857 wc->w_large_pages = 0; 861 wc->w_large_pages = 0; 858 862 859 ocfs2_init_dealloc_ctxt(&wc->w_dealloc 863 ocfs2_init_dealloc_ctxt(&wc->w_dealloc); 860 INIT_LIST_HEAD(&wc->w_unwritten_list); 864 INIT_LIST_HEAD(&wc->w_unwritten_list); 861 865 862 *wcp = wc; 866 *wcp = wc; 863 867 864 return 0; 868 return 0; 865 } 869 } 866 870 867 /* 871 /* 868 * If a page has any new buffers, zero them ou 872 * If a page has any new buffers, zero them out here, and mark them uptodate 869 * and dirty so they'll be written out (in ord 873 * and dirty so they'll be written out (in order to prevent uninitialised 870 * block data from leaking). And clear the new 874 * block data from leaking). And clear the new bit. 871 */ 875 */ 872 static void ocfs2_zero_new_buffers(struct page 876 static void ocfs2_zero_new_buffers(struct page *page, unsigned from, unsigned to) 873 { 877 { 874 unsigned int block_start, block_end; 878 unsigned int block_start, block_end; 875 struct buffer_head *head, *bh; 879 struct buffer_head *head, *bh; 876 880 877 BUG_ON(!PageLocked(page)); 881 BUG_ON(!PageLocked(page)); 878 if (!page_has_buffers(page)) 882 if (!page_has_buffers(page)) 879 return; 883 return; 880 884 881 bh = head = page_buffers(page); 885 bh = head = page_buffers(page); 882 block_start = 0; 886 block_start = 0; 883 do { 887 do { 884 block_end = block_start + bh-> 888 block_end = block_start + bh->b_size; 885 889 886 if (buffer_new(bh)) { 890 if (buffer_new(bh)) { 887 if (block_end > from & 891 if (block_end > from && block_start < to) { 888 if (!PageUptod 892 if (!PageUptodate(page)) { 889 unsign 893 unsigned start, end; 890 894 891 start 895 start = max(from, block_start); 892 end = 896 end = min(to, block_end); 893 897 894 zero_u 898 zero_user_segment(page, start, end); 895 set_bu 899 set_buffer_uptodate(bh); 896 } 900 } 897 901 898 clear_buffer_n 902 clear_buffer_new(bh); 899 mark_buffer_di 903 mark_buffer_dirty(bh); 900 } 904 } 901 } 905 } 902 906 903 block_start = block_end; 907 block_start = block_end; 904 bh = bh->b_this_page; 908 bh = bh->b_this_page; 905 } while (bh != head); 909 } while (bh != head); 906 } 910 } 907 911 908 /* 912 /* 909 * Only called when we have a failure during a 913 * Only called when we have a failure during allocating write to write 910 * zero's to the newly allocated region. 914 * zero's to the newly allocated region. 911 */ 915 */ 912 static void ocfs2_write_failure(struct inode * 916 static void ocfs2_write_failure(struct inode *inode, 913 struct ocfs2_w 917 struct ocfs2_write_ctxt *wc, 914 loff_t user_po 918 loff_t user_pos, unsigned user_len) 915 { 919 { 916 int i; 920 int i; 917 unsigned from = user_pos & (PAGE_SIZE 921 unsigned from = user_pos & (PAGE_SIZE - 1), 918 to = user_pos + user_len; 922 to = user_pos + user_len; 919 struct page *tmppage; 923 struct page *tmppage; 920 924 921 if (wc->w_target_page) 925 if (wc->w_target_page) 922 ocfs2_zero_new_buffers(wc->w_t 926 ocfs2_zero_new_buffers(wc->w_target_page, from, to); 923 927 924 for(i = 0; i < wc->w_num_pages; i++) { 928 for(i = 0; i < wc->w_num_pages; i++) { 925 tmppage = wc->w_pages[i]; 929 tmppage = wc->w_pages[i]; 926 930 927 if (tmppage && page_has_buffer 931 if (tmppage && page_has_buffers(tmppage)) { 928 if (ocfs2_should_order 932 if (ocfs2_should_order_data(inode)) 929 ocfs2_jbd2_ino 933 ocfs2_jbd2_inode_add_write(wc->w_handle, inode, 930 934 user_pos, user_len); 931 935 932 block_commit_write(tmp 936 block_commit_write(tmppage, from, to); 933 } 937 } 934 } 938 } 935 } 939 } 936 940 937 static int ocfs2_prepare_page_for_write(struct 941 static int ocfs2_prepare_page_for_write(struct inode *inode, u64 *p_blkno, 938 struct 942 struct ocfs2_write_ctxt *wc, 939 struct 943 struct page *page, u32 cpos, 940 loff_t 944 loff_t user_pos, unsigned user_len, 941 int ne 945 int new) 942 { 946 { 943 int ret; 947 int ret; 944 unsigned int map_from = 0, map_to = 0; 948 unsigned int map_from = 0, map_to = 0; 945 unsigned int cluster_start, cluster_en 949 unsigned int cluster_start, cluster_end; 946 unsigned int user_data_from = 0, user_ 950 unsigned int user_data_from = 0, user_data_to = 0; 947 951 948 ocfs2_figure_cluster_boundaries(OCFS2_ 952 ocfs2_figure_cluster_boundaries(OCFS2_SB(inode->i_sb), cpos, 949 &clust 953 &cluster_start, &cluster_end); 950 954 951 /* treat the write as new if the a hol 955 /* treat the write as new if the a hole/lseek spanned across 952 * the page boundary. 956 * the page boundary. 953 */ 957 */ 954 new = new | ((i_size_read(inode) <= pa 958 new = new | ((i_size_read(inode) <= page_offset(page)) && 955 (page_offset(page) <= 959 (page_offset(page) <= user_pos)); 956 960 957 if (page == wc->w_target_page) { 961 if (page == wc->w_target_page) { 958 map_from = user_pos & (PAGE_SI 962 map_from = user_pos & (PAGE_SIZE - 1); 959 map_to = map_from + user_len; 963 map_to = map_from + user_len; 960 964 961 if (new) 965 if (new) 962 ret = ocfs2_map_page_b 966 ret = ocfs2_map_page_blocks(page, p_blkno, inode, 963 967 cluster_start, cluster_end, 964 968 new); 965 else 969 else 966 ret = ocfs2_map_page_b 970 ret = ocfs2_map_page_blocks(page, p_blkno, inode, 967 971 map_from, map_to, new); 968 if (ret) { 972 if (ret) { 969 mlog_errno(ret); 973 mlog_errno(ret); 970 goto out; 974 goto out; 971 } 975 } 972 976 973 user_data_from = map_from; 977 user_data_from = map_from; 974 user_data_to = map_to; 978 user_data_to = map_to; 975 if (new) { 979 if (new) { 976 map_from = cluster_sta 980 map_from = cluster_start; 977 map_to = cluster_end; 981 map_to = cluster_end; 978 } 982 } 979 } else { 983 } else { 980 /* 984 /* 981 * If we haven't allocated the 985 * If we haven't allocated the new page yet, we 982 * shouldn't be writing it out 986 * shouldn't be writing it out without copying user 983 * data. This is likely a math 987 * data. This is likely a math error from the caller. 984 */ 988 */ 985 BUG_ON(!new); 989 BUG_ON(!new); 986 990 987 map_from = cluster_start; 991 map_from = cluster_start; 988 map_to = cluster_end; 992 map_to = cluster_end; 989 993 990 ret = ocfs2_map_page_blocks(pa 994 ret = ocfs2_map_page_blocks(page, p_blkno, inode, 991 cl 995 cluster_start, cluster_end, new); 992 if (ret) { 996 if (ret) { 993 mlog_errno(ret); 997 mlog_errno(ret); 994 goto out; 998 goto out; 995 } 999 } 996 } 1000 } 997 1001 998 /* 1002 /* 999 * Parts of newly allocated pages need 1003 * Parts of newly allocated pages need to be zero'd. 1000 * 1004 * 1001 * Above, we have also rewritten 'to' 1005 * Above, we have also rewritten 'to' and 'from' - as far as 1002 * the rest of the function is concer 1006 * the rest of the function is concerned, the entire cluster 1003 * range inside of a page needs to be 1007 * range inside of a page needs to be written. 1004 * 1008 * 1005 * We can skip this if the page is up 1009 * We can skip this if the page is up to date - it's already 1006 * been zero'd from being read in as 1010 * been zero'd from being read in as a hole. 1007 */ 1011 */ 1008 if (new && !PageUptodate(page)) 1012 if (new && !PageUptodate(page)) 1009 ocfs2_clear_page_regions(page 1013 ocfs2_clear_page_regions(page, OCFS2_SB(inode->i_sb), 1010 cpos 1014 cpos, user_data_from, user_data_to); 1011 1015 1012 flush_dcache_page(page); 1016 flush_dcache_page(page); 1013 1017 1014 out: 1018 out: 1015 return ret; 1019 return ret; 1016 } 1020 } 1017 1021 1018 /* 1022 /* 1019 * This function will only grab one clusters 1023 * This function will only grab one clusters worth of pages. 1020 */ 1024 */ 1021 static int ocfs2_grab_pages_for_write(struct 1025 static int ocfs2_grab_pages_for_write(struct address_space *mapping, 1022 struct 1026 struct ocfs2_write_ctxt *wc, 1023 u32 cpo 1027 u32 cpos, loff_t user_pos, 1024 unsigne 1028 unsigned user_len, int new, 1025 struct 1029 struct page *mmap_page) 1026 { 1030 { 1027 int ret = 0, i; 1031 int ret = 0, i; 1028 unsigned long start, target_index, en 1032 unsigned long start, target_index, end_index, index; 1029 struct inode *inode = mapping->host; 1033 struct inode *inode = mapping->host; 1030 loff_t last_byte; 1034 loff_t last_byte; 1031 1035 1032 target_index = user_pos >> PAGE_SHIFT 1036 target_index = user_pos >> PAGE_SHIFT; 1033 1037 1034 /* 1038 /* 1035 * Figure out how many pages we'll be 1039 * Figure out how many pages we'll be manipulating here. For 1036 * non allocating write, we just chan 1040 * non allocating write, we just change the one 1037 * page. Otherwise, we'll need a whol 1041 * page. Otherwise, we'll need a whole clusters worth. If we're 1038 * writing past i_size, we only need 1042 * writing past i_size, we only need enough pages to cover the 1039 * last page of the write. 1043 * last page of the write. 1040 */ 1044 */ 1041 if (new) { 1045 if (new) { 1042 wc->w_num_pages = ocfs2_pages 1046 wc->w_num_pages = ocfs2_pages_per_cluster(inode->i_sb); 1043 start = ocfs2_align_clusters_ 1047 start = ocfs2_align_clusters_to_page_index(inode->i_sb, cpos); 1044 /* 1048 /* 1045 * We need the index *past* t 1049 * We need the index *past* the last page we could possibly 1046 * touch. This is the page p 1050 * touch. This is the page past the end of the write or 1047 * i_size, whichever is great 1051 * i_size, whichever is greater. 1048 */ 1052 */ 1049 last_byte = max(user_pos + us 1053 last_byte = max(user_pos + user_len, i_size_read(inode)); 1050 BUG_ON(last_byte < 1); 1054 BUG_ON(last_byte < 1); 1051 end_index = ((last_byte - 1) 1055 end_index = ((last_byte - 1) >> PAGE_SHIFT) + 1; 1052 if ((start + wc->w_num_pages) 1056 if ((start + wc->w_num_pages) > end_index) 1053 wc->w_num_pages = end 1057 wc->w_num_pages = end_index - start; 1054 } else { 1058 } else { 1055 wc->w_num_pages = 1; 1059 wc->w_num_pages = 1; 1056 start = target_index; 1060 start = target_index; 1057 } 1061 } 1058 end_index = (user_pos + user_len - 1) 1062 end_index = (user_pos + user_len - 1) >> PAGE_SHIFT; 1059 1063 1060 for(i = 0; i < wc->w_num_pages; i++) 1064 for(i = 0; i < wc->w_num_pages; i++) { 1061 index = start + i; 1065 index = start + i; 1062 1066 1063 if (index >= target_index && 1067 if (index >= target_index && index <= end_index && 1064 wc->w_type == OCFS2_WRITE 1068 wc->w_type == OCFS2_WRITE_MMAP) { 1065 /* 1069 /* 1066 * ocfs2_pagemkwrite( 1070 * ocfs2_pagemkwrite() is a little different 1067 * and wants us to di 1071 * and wants us to directly use the page 1068 * passed in. 1072 * passed in. 1069 */ 1073 */ 1070 lock_page(mmap_page); 1074 lock_page(mmap_page); 1071 1075 1072 /* Exit and let the c 1076 /* Exit and let the caller retry */ 1073 if (mmap_page->mappin 1077 if (mmap_page->mapping != mapping) { 1074 WARN_ON(mmap_ 1078 WARN_ON(mmap_page->mapping); 1075 unlock_page(m 1079 unlock_page(mmap_page); 1076 ret = -EAGAIN 1080 ret = -EAGAIN; 1077 goto out; 1081 goto out; 1078 } 1082 } 1079 1083 1080 get_page(mmap_page); 1084 get_page(mmap_page); 1081 wc->w_pages[i] = mmap 1085 wc->w_pages[i] = mmap_page; 1082 wc->w_target_locked = 1086 wc->w_target_locked = true; 1083 } else if (index >= target_in 1087 } else if (index >= target_index && index <= end_index && 1084 wc->w_type == OCFS 1088 wc->w_type == OCFS2_WRITE_DIRECT) { 1085 /* Direct write has n 1089 /* Direct write has no mapping page. */ 1086 wc->w_pages[i] = NULL 1090 wc->w_pages[i] = NULL; 1087 continue; 1091 continue; 1088 } else { 1092 } else { 1089 wc->w_pages[i] = find 1093 wc->w_pages[i] = find_or_create_page(mapping, index, 1090 1094 GFP_NOFS); 1091 if (!wc->w_pages[i]) 1095 if (!wc->w_pages[i]) { 1092 ret = -ENOMEM 1096 ret = -ENOMEM; 1093 mlog_errno(re 1097 mlog_errno(ret); 1094 goto out; 1098 goto out; 1095 } 1099 } 1096 } 1100 } 1097 wait_for_stable_page(wc->w_pa 1101 wait_for_stable_page(wc->w_pages[i]); 1098 1102 1099 if (index == target_index) 1103 if (index == target_index) 1100 wc->w_target_page = w 1104 wc->w_target_page = wc->w_pages[i]; 1101 } 1105 } 1102 out: 1106 out: 1103 if (ret) 1107 if (ret) 1104 wc->w_target_locked = false; 1108 wc->w_target_locked = false; 1105 return ret; 1109 return ret; 1106 } 1110 } 1107 1111 1108 /* 1112 /* 1109 * Prepare a single cluster for write one clu 1113 * Prepare a single cluster for write one cluster into the file. 1110 */ 1114 */ 1111 static int ocfs2_write_cluster(struct address 1115 static int ocfs2_write_cluster(struct address_space *mapping, 1112 u32 *phys, uns 1116 u32 *phys, unsigned int new, 1113 unsigned int c 1117 unsigned int clear_unwritten, 1114 unsigned int s 1118 unsigned int should_zero, 1115 struct ocfs2_a 1119 struct ocfs2_alloc_context *data_ac, 1116 struct ocfs2_a 1120 struct ocfs2_alloc_context *meta_ac, 1117 struct ocfs2_w 1121 struct ocfs2_write_ctxt *wc, u32 cpos, 1118 loff_t user_po 1122 loff_t user_pos, unsigned user_len) 1119 { 1123 { 1120 int ret, i; 1124 int ret, i; 1121 u64 p_blkno; 1125 u64 p_blkno; 1122 struct inode *inode = mapping->host; 1126 struct inode *inode = mapping->host; 1123 struct ocfs2_extent_tree et; 1127 struct ocfs2_extent_tree et; 1124 int bpc = ocfs2_clusters_to_blocks(in 1128 int bpc = ocfs2_clusters_to_blocks(inode->i_sb, 1); 1125 1129 1126 if (new) { 1130 if (new) { 1127 u32 tmp_pos; 1131 u32 tmp_pos; 1128 1132 1129 /* 1133 /* 1130 * This is safe to call with 1134 * This is safe to call with the page locks - it won't take 1131 * any additional semaphores 1135 * any additional semaphores or cluster locks. 1132 */ 1136 */ 1133 tmp_pos = cpos; 1137 tmp_pos = cpos; 1134 ret = ocfs2_add_inode_data(OC 1138 ret = ocfs2_add_inode_data(OCFS2_SB(inode->i_sb), inode, 1135 &t 1139 &tmp_pos, 1, !clear_unwritten, 1136 wc 1140 wc->w_di_bh, wc->w_handle, 1137 da 1141 data_ac, meta_ac, NULL); 1138 /* 1142 /* 1139 * This shouldn't happen beca 1143 * This shouldn't happen because we must have already 1140 * calculated the correct met 1144 * calculated the correct meta data allocation required. The 1141 * internal tree allocation c 1145 * internal tree allocation code should know how to increase 1142 * transaction credits itself 1146 * transaction credits itself. 1143 * 1147 * 1144 * If need be, we could handl 1148 * If need be, we could handle -EAGAIN for a 1145 * RESTART_TRANS here. 1149 * RESTART_TRANS here. 1146 */ 1150 */ 1147 mlog_bug_on_msg(ret == -EAGAI 1151 mlog_bug_on_msg(ret == -EAGAIN, 1148 "Inode %llu: 1152 "Inode %llu: EAGAIN return during allocation.\n", 1149 (unsigned lon 1153 (unsigned long long)OCFS2_I(inode)->ip_blkno); 1150 if (ret < 0) { 1154 if (ret < 0) { 1151 mlog_errno(ret); 1155 mlog_errno(ret); 1152 goto out; 1156 goto out; 1153 } 1157 } 1154 } else if (clear_unwritten) { 1158 } else if (clear_unwritten) { 1155 ocfs2_init_dinode_extent_tree 1159 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), 1156 1160 wc->w_di_bh); 1157 ret = ocfs2_mark_extent_writt 1161 ret = ocfs2_mark_extent_written(inode, &et, 1158 1162 wc->w_handle, cpos, 1, *phys, 1159 1163 meta_ac, &wc->w_dealloc); 1160 if (ret < 0) { 1164 if (ret < 0) { 1161 mlog_errno(ret); 1165 mlog_errno(ret); 1162 goto out; 1166 goto out; 1163 } 1167 } 1164 } 1168 } 1165 1169 1166 /* 1170 /* 1167 * The only reason this should fail i 1171 * The only reason this should fail is due to an inability to 1168 * find the extent added. 1172 * find the extent added. 1169 */ 1173 */ 1170 ret = ocfs2_get_clusters(inode, cpos, 1174 ret = ocfs2_get_clusters(inode, cpos, phys, NULL, NULL); 1171 if (ret < 0) { 1175 if (ret < 0) { 1172 mlog(ML_ERROR, "Get physical 1176 mlog(ML_ERROR, "Get physical blkno failed for inode %llu, " 1173 "at logical clust 1177 "at logical cluster %u", 1174 (unsigned long lo 1178 (unsigned long long)OCFS2_I(inode)->ip_blkno, cpos); 1175 goto out; 1179 goto out; 1176 } 1180 } 1177 1181 1178 BUG_ON(*phys == 0); 1182 BUG_ON(*phys == 0); 1179 1183 1180 p_blkno = ocfs2_clusters_to_blocks(in 1184 p_blkno = ocfs2_clusters_to_blocks(inode->i_sb, *phys); 1181 if (!should_zero) 1185 if (!should_zero) 1182 p_blkno += (user_pos >> inode 1186 p_blkno += (user_pos >> inode->i_sb->s_blocksize_bits) & (u64)(bpc - 1); 1183 1187 1184 for(i = 0; i < wc->w_num_pages; i++) 1188 for(i = 0; i < wc->w_num_pages; i++) { 1185 int tmpret; 1189 int tmpret; 1186 1190 1187 /* This is the direct io targ 1191 /* This is the direct io target page. */ 1188 if (wc->w_pages[i] == NULL) { 1192 if (wc->w_pages[i] == NULL) { 1189 p_blkno++; 1193 p_blkno++; 1190 continue; 1194 continue; 1191 } 1195 } 1192 1196 1193 tmpret = ocfs2_prepare_page_f 1197 tmpret = ocfs2_prepare_page_for_write(inode, &p_blkno, wc, 1194 1198 wc->w_pages[i], cpos, 1195 1199 user_pos, user_len, 1196 1200 should_zero); 1197 if (tmpret) { 1201 if (tmpret) { 1198 mlog_errno(tmpret); 1202 mlog_errno(tmpret); 1199 if (ret == 0) 1203 if (ret == 0) 1200 ret = tmpret; 1204 ret = tmpret; 1201 } 1205 } 1202 } 1206 } 1203 1207 1204 /* 1208 /* 1205 * We only have cleanup to do in case 1209 * We only have cleanup to do in case of allocating write. 1206 */ 1210 */ 1207 if (ret && new) 1211 if (ret && new) 1208 ocfs2_write_failure(inode, wc 1212 ocfs2_write_failure(inode, wc, user_pos, user_len); 1209 1213 1210 out: 1214 out: 1211 1215 1212 return ret; 1216 return ret; 1213 } 1217 } 1214 1218 1215 static int ocfs2_write_cluster_by_desc(struct 1219 static int ocfs2_write_cluster_by_desc(struct address_space *mapping, 1216 struct 1220 struct ocfs2_alloc_context *data_ac, 1217 struct 1221 struct ocfs2_alloc_context *meta_ac, 1218 struct 1222 struct ocfs2_write_ctxt *wc, 1219 loff_t 1223 loff_t pos, unsigned len) 1220 { 1224 { 1221 int ret, i; 1225 int ret, i; 1222 loff_t cluster_off; 1226 loff_t cluster_off; 1223 unsigned int local_len = len; 1227 unsigned int local_len = len; 1224 struct ocfs2_write_cluster_desc *desc 1228 struct ocfs2_write_cluster_desc *desc; 1225 struct ocfs2_super *osb = OCFS2_SB(ma 1229 struct ocfs2_super *osb = OCFS2_SB(mapping->host->i_sb); 1226 1230 1227 for (i = 0; i < wc->w_clen; i++) { 1231 for (i = 0; i < wc->w_clen; i++) { 1228 desc = &wc->w_desc[i]; 1232 desc = &wc->w_desc[i]; 1229 1233 1230 /* 1234 /* 1231 * We have to make sure that 1235 * We have to make sure that the total write passed in 1232 * doesn't extend past a sing 1236 * doesn't extend past a single cluster. 1233 */ 1237 */ 1234 local_len = len; 1238 local_len = len; 1235 cluster_off = pos & (osb->s_c 1239 cluster_off = pos & (osb->s_clustersize - 1); 1236 if ((cluster_off + local_len) 1240 if ((cluster_off + local_len) > osb->s_clustersize) 1237 local_len = osb->s_cl 1241 local_len = osb->s_clustersize - cluster_off; 1238 1242 1239 ret = ocfs2_write_cluster(map 1243 ret = ocfs2_write_cluster(mapping, &desc->c_phys, 1240 des 1244 desc->c_new, 1241 des 1245 desc->c_clear_unwritten, 1242 des 1246 desc->c_needs_zero, 1243 dat 1247 data_ac, meta_ac, 1244 wc, 1248 wc, desc->c_cpos, pos, local_len); 1245 if (ret) { 1249 if (ret) { 1246 mlog_errno(ret); 1250 mlog_errno(ret); 1247 goto out; 1251 goto out; 1248 } 1252 } 1249 1253 1250 len -= local_len; 1254 len -= local_len; 1251 pos += local_len; 1255 pos += local_len; 1252 } 1256 } 1253 1257 1254 ret = 0; 1258 ret = 0; 1255 out: 1259 out: 1256 return ret; 1260 return ret; 1257 } 1261 } 1258 1262 1259 /* 1263 /* 1260 * ocfs2_write_end() wants to know which part 1264 * ocfs2_write_end() wants to know which parts of the target page it 1261 * should complete the write on. It's easiest 1265 * should complete the write on. It's easiest to compute them ahead of 1262 * time when a more complete view of the writ 1266 * time when a more complete view of the write is available. 1263 */ 1267 */ 1264 static void ocfs2_set_target_boundaries(struc 1268 static void ocfs2_set_target_boundaries(struct ocfs2_super *osb, 1265 struc 1269 struct ocfs2_write_ctxt *wc, 1266 loff_ 1270 loff_t pos, unsigned len, int alloc) 1267 { 1271 { 1268 struct ocfs2_write_cluster_desc *desc 1272 struct ocfs2_write_cluster_desc *desc; 1269 1273 1270 wc->w_target_from = pos & (PAGE_SIZE 1274 wc->w_target_from = pos & (PAGE_SIZE - 1); 1271 wc->w_target_to = wc->w_target_from + 1275 wc->w_target_to = wc->w_target_from + len; 1272 1276 1273 if (alloc == 0) 1277 if (alloc == 0) 1274 return; 1278 return; 1275 1279 1276 /* 1280 /* 1277 * Allocating write - we may have dif 1281 * Allocating write - we may have different boundaries based 1278 * on page size and cluster size. 1282 * on page size and cluster size. 1279 * 1283 * 1280 * NOTE: We can no longer compute one 1284 * NOTE: We can no longer compute one value from the other as 1281 * the actual write length and user p 1285 * the actual write length and user provided length may be 1282 * different. 1286 * different. 1283 */ 1287 */ 1284 1288 1285 if (wc->w_large_pages) { 1289 if (wc->w_large_pages) { 1286 /* 1290 /* 1287 * We only care about the 1st 1291 * We only care about the 1st and last cluster within 1288 * our range and whether they 1292 * our range and whether they should be zero'd or not. Either 1289 * value may be extended out 1293 * value may be extended out to the start/end of a 1290 * newly allocated cluster. 1294 * newly allocated cluster. 1291 */ 1295 */ 1292 desc = &wc->w_desc[0]; 1296 desc = &wc->w_desc[0]; 1293 if (desc->c_needs_zero) 1297 if (desc->c_needs_zero) 1294 ocfs2_figure_cluster_ 1298 ocfs2_figure_cluster_boundaries(osb, 1295 1299 desc->c_cpos, 1296 1300 &wc->w_target_from, 1297 1301 NULL); 1298 1302 1299 desc = &wc->w_desc[wc->w_clen 1303 desc = &wc->w_desc[wc->w_clen - 1]; 1300 if (desc->c_needs_zero) 1304 if (desc->c_needs_zero) 1301 ocfs2_figure_cluster_ 1305 ocfs2_figure_cluster_boundaries(osb, 1302 1306 desc->c_cpos, 1303 1307 NULL, 1304 1308 &wc->w_target_to); 1305 } else { 1309 } else { 1306 wc->w_target_from = 0; 1310 wc->w_target_from = 0; 1307 wc->w_target_to = PAGE_SIZE; 1311 wc->w_target_to = PAGE_SIZE; 1308 } 1312 } 1309 } 1313 } 1310 1314 1311 /* 1315 /* 1312 * Check if this extent is marked UNWRITTEN b 1316 * Check if this extent is marked UNWRITTEN by direct io. If so, we need not to 1313 * do the zero work. And should not to clear 1317 * do the zero work. And should not to clear UNWRITTEN since it will be cleared 1314 * by the direct io procedure. 1318 * by the direct io procedure. 1315 * If this is a new extent that allocated by 1319 * If this is a new extent that allocated by direct io, we should mark it in 1316 * the ip_unwritten_list. 1320 * the ip_unwritten_list. 1317 */ 1321 */ 1318 static int ocfs2_unwritten_check(struct inode 1322 static int ocfs2_unwritten_check(struct inode *inode, 1319 struct ocfs2 1323 struct ocfs2_write_ctxt *wc, 1320 struct ocfs2 1324 struct ocfs2_write_cluster_desc *desc) 1321 { 1325 { 1322 struct ocfs2_inode_info *oi = OCFS2_I 1326 struct ocfs2_inode_info *oi = OCFS2_I(inode); 1323 struct ocfs2_unwritten_extent *ue = N 1327 struct ocfs2_unwritten_extent *ue = NULL, *new = NULL; 1324 int ret = 0; 1328 int ret = 0; 1325 1329 1326 if (!desc->c_needs_zero) 1330 if (!desc->c_needs_zero) 1327 return 0; 1331 return 0; 1328 1332 1329 retry: 1333 retry: 1330 spin_lock(&oi->ip_lock); 1334 spin_lock(&oi->ip_lock); 1331 /* Needs not to zero no metter buffer 1335 /* Needs not to zero no metter buffer or direct. The one who is zero 1332 * the cluster is doing zero. And he 1336 * the cluster is doing zero. And he will clear unwritten after all 1333 * cluster io finished. */ 1337 * cluster io finished. */ 1334 list_for_each_entry(ue, &oi->ip_unwri 1338 list_for_each_entry(ue, &oi->ip_unwritten_list, ue_ip_node) { 1335 if (desc->c_cpos == ue->ue_cp 1339 if (desc->c_cpos == ue->ue_cpos) { 1336 BUG_ON(desc->c_new); 1340 BUG_ON(desc->c_new); 1337 desc->c_needs_zero = 1341 desc->c_needs_zero = 0; 1338 desc->c_clear_unwritt 1342 desc->c_clear_unwritten = 0; 1339 goto unlock; 1343 goto unlock; 1340 } 1344 } 1341 } 1345 } 1342 1346 1343 if (wc->w_type != OCFS2_WRITE_DIRECT) 1347 if (wc->w_type != OCFS2_WRITE_DIRECT) 1344 goto unlock; 1348 goto unlock; 1345 1349 1346 if (new == NULL) { 1350 if (new == NULL) { 1347 spin_unlock(&oi->ip_lock); 1351 spin_unlock(&oi->ip_lock); 1348 new = kmalloc(sizeof(struct o 1352 new = kmalloc(sizeof(struct ocfs2_unwritten_extent), 1349 GFP_NOFS); 1353 GFP_NOFS); 1350 if (new == NULL) { 1354 if (new == NULL) { 1351 ret = -ENOMEM; 1355 ret = -ENOMEM; 1352 goto out; 1356 goto out; 1353 } 1357 } 1354 goto retry; 1358 goto retry; 1355 } 1359 } 1356 /* This direct write will doing zero. 1360 /* This direct write will doing zero. */ 1357 new->ue_cpos = desc->c_cpos; 1361 new->ue_cpos = desc->c_cpos; 1358 new->ue_phys = desc->c_phys; 1362 new->ue_phys = desc->c_phys; 1359 desc->c_clear_unwritten = 0; 1363 desc->c_clear_unwritten = 0; 1360 list_add_tail(&new->ue_ip_node, &oi-> 1364 list_add_tail(&new->ue_ip_node, &oi->ip_unwritten_list); 1361 list_add_tail(&new->ue_node, &wc->w_u 1365 list_add_tail(&new->ue_node, &wc->w_unwritten_list); 1362 wc->w_unwritten_count++; 1366 wc->w_unwritten_count++; 1363 new = NULL; 1367 new = NULL; 1364 unlock: 1368 unlock: 1365 spin_unlock(&oi->ip_lock); 1369 spin_unlock(&oi->ip_lock); 1366 out: 1370 out: 1367 kfree(new); 1371 kfree(new); 1368 return ret; 1372 return ret; 1369 } 1373 } 1370 1374 1371 /* 1375 /* 1372 * Populate each single-cluster write descrip 1376 * Populate each single-cluster write descriptor in the write context 1373 * with information about the i/o to be done. 1377 * with information about the i/o to be done. 1374 * 1378 * 1375 * Returns the number of clusters that will h 1379 * Returns the number of clusters that will have to be allocated, as 1376 * well as a worst case estimate of the numbe 1380 * well as a worst case estimate of the number of extent records that 1377 * would have to be created during a write to 1381 * would have to be created during a write to an unwritten region. 1378 */ 1382 */ 1379 static int ocfs2_populate_write_desc(struct i 1383 static int ocfs2_populate_write_desc(struct inode *inode, 1380 struct o 1384 struct ocfs2_write_ctxt *wc, 1381 unsigned 1385 unsigned int *clusters_to_alloc, 1382 unsigned 1386 unsigned int *extents_to_split) 1383 { 1387 { 1384 int ret; 1388 int ret; 1385 struct ocfs2_write_cluster_desc *desc 1389 struct ocfs2_write_cluster_desc *desc; 1386 unsigned int num_clusters = 0; 1390 unsigned int num_clusters = 0; 1387 unsigned int ext_flags = 0; 1391 unsigned int ext_flags = 0; 1388 u32 phys = 0; 1392 u32 phys = 0; 1389 int i; 1393 int i; 1390 1394 1391 *clusters_to_alloc = 0; 1395 *clusters_to_alloc = 0; 1392 *extents_to_split = 0; 1396 *extents_to_split = 0; 1393 1397 1394 for (i = 0; i < wc->w_clen; i++) { 1398 for (i = 0; i < wc->w_clen; i++) { 1395 desc = &wc->w_desc[i]; 1399 desc = &wc->w_desc[i]; 1396 desc->c_cpos = wc->w_cpos + i 1400 desc->c_cpos = wc->w_cpos + i; 1397 1401 1398 if (num_clusters == 0) { 1402 if (num_clusters == 0) { 1399 /* 1403 /* 1400 * Need to look up th 1404 * Need to look up the next extent record. 1401 */ 1405 */ 1402 ret = ocfs2_get_clust 1406 ret = ocfs2_get_clusters(inode, desc->c_cpos, &phys, 1403 1407 &num_clusters, &ext_flags); 1404 if (ret) { 1408 if (ret) { 1405 mlog_errno(re 1409 mlog_errno(ret); 1406 goto out; 1410 goto out; 1407 } 1411 } 1408 1412 1409 /* We should already 1413 /* We should already CoW the refcountd extent. */ 1410 BUG_ON(ext_flags & OC 1414 BUG_ON(ext_flags & OCFS2_EXT_REFCOUNTED); 1411 1415 1412 /* 1416 /* 1413 * Assume worst case 1417 * Assume worst case - that we're writing in 1414 * the middle of the 1418 * the middle of the extent. 1415 * 1419 * 1416 * We can assume that 1420 * We can assume that the write proceeds from 1417 * left to right, in 1421 * left to right, in which case the extent 1418 * insert code is sma 1422 * insert code is smart enough to coalesce the 1419 * next splits into t 1423 * next splits into the previous records created. 1420 */ 1424 */ 1421 if (ext_flags & OCFS2 1425 if (ext_flags & OCFS2_EXT_UNWRITTEN) 1422 *extents_to_s 1426 *extents_to_split = *extents_to_split + 2; 1423 } else if (phys) { 1427 } else if (phys) { 1424 /* 1428 /* 1425 * Only increment phy 1429 * Only increment phys if it doesn't describe 1426 * a hole. 1430 * a hole. 1427 */ 1431 */ 1428 phys++; 1432 phys++; 1429 } 1433 } 1430 1434 1431 /* 1435 /* 1432 * If w_first_new_cpos is < U 1436 * If w_first_new_cpos is < UINT_MAX, we have a non-sparse 1433 * file that got extended. w 1437 * file that got extended. w_first_new_cpos tells us 1434 * where the newly allocated 1438 * where the newly allocated clusters are so we can 1435 * zero them. 1439 * zero them. 1436 */ 1440 */ 1437 if (desc->c_cpos >= wc->w_fir 1441 if (desc->c_cpos >= wc->w_first_new_cpos) { 1438 BUG_ON(phys == 0); 1442 BUG_ON(phys == 0); 1439 desc->c_needs_zero = 1443 desc->c_needs_zero = 1; 1440 } 1444 } 1441 1445 1442 desc->c_phys = phys; 1446 desc->c_phys = phys; 1443 if (phys == 0) { 1447 if (phys == 0) { 1444 desc->c_new = 1; 1448 desc->c_new = 1; 1445 desc->c_needs_zero = 1449 desc->c_needs_zero = 1; 1446 desc->c_clear_unwritt 1450 desc->c_clear_unwritten = 1; 1447 *clusters_to_alloc = 1451 *clusters_to_alloc = *clusters_to_alloc + 1; 1448 } 1452 } 1449 1453 1450 if (ext_flags & OCFS2_EXT_UNW 1454 if (ext_flags & OCFS2_EXT_UNWRITTEN) { 1451 desc->c_clear_unwritt 1455 desc->c_clear_unwritten = 1; 1452 desc->c_needs_zero = 1456 desc->c_needs_zero = 1; 1453 } 1457 } 1454 1458 1455 ret = ocfs2_unwritten_check(i 1459 ret = ocfs2_unwritten_check(inode, wc, desc); 1456 if (ret) { 1460 if (ret) { 1457 mlog_errno(ret); 1461 mlog_errno(ret); 1458 goto out; 1462 goto out; 1459 } 1463 } 1460 1464 1461 num_clusters--; 1465 num_clusters--; 1462 } 1466 } 1463 1467 1464 ret = 0; 1468 ret = 0; 1465 out: 1469 out: 1466 return ret; 1470 return ret; 1467 } 1471 } 1468 1472 1469 static int ocfs2_write_begin_inline(struct ad 1473 static int ocfs2_write_begin_inline(struct address_space *mapping, 1470 struct in 1474 struct inode *inode, 1471 struct oc 1475 struct ocfs2_write_ctxt *wc) 1472 { 1476 { 1473 int ret; 1477 int ret; 1474 struct ocfs2_super *osb = OCFS2_SB(in 1478 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 1475 struct page *page; 1479 struct page *page; 1476 handle_t *handle; 1480 handle_t *handle; 1477 struct ocfs2_dinode *di = (struct ocf 1481 struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data; 1478 1482 1479 handle = ocfs2_start_trans(osb, OCFS2 1483 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS); 1480 if (IS_ERR(handle)) { 1484 if (IS_ERR(handle)) { 1481 ret = PTR_ERR(handle); 1485 ret = PTR_ERR(handle); 1482 mlog_errno(ret); 1486 mlog_errno(ret); 1483 goto out; 1487 goto out; 1484 } 1488 } 1485 1489 1486 page = find_or_create_page(mapping, 0 1490 page = find_or_create_page(mapping, 0, GFP_NOFS); 1487 if (!page) { 1491 if (!page) { 1488 ocfs2_commit_trans(osb, handl 1492 ocfs2_commit_trans(osb, handle); 1489 ret = -ENOMEM; 1493 ret = -ENOMEM; 1490 mlog_errno(ret); 1494 mlog_errno(ret); 1491 goto out; 1495 goto out; 1492 } 1496 } 1493 /* 1497 /* 1494 * If we don't set w_num_pages then t 1498 * If we don't set w_num_pages then this page won't get unlocked 1495 * and freed on cleanup of the write 1499 * and freed on cleanup of the write context. 1496 */ 1500 */ 1497 wc->w_pages[0] = wc->w_target_page = 1501 wc->w_pages[0] = wc->w_target_page = page; 1498 wc->w_num_pages = 1; 1502 wc->w_num_pages = 1; 1499 1503 1500 ret = ocfs2_journal_access_di(handle, 1504 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), wc->w_di_bh, 1501 OCFS2_J 1505 OCFS2_JOURNAL_ACCESS_WRITE); 1502 if (ret) { 1506 if (ret) { 1503 ocfs2_commit_trans(osb, handl 1507 ocfs2_commit_trans(osb, handle); 1504 1508 1505 mlog_errno(ret); 1509 mlog_errno(ret); 1506 goto out; 1510 goto out; 1507 } 1511 } 1508 1512 1509 if (!(OCFS2_I(inode)->ip_dyn_features 1513 if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL)) 1510 ocfs2_set_inode_data_inline(i 1514 ocfs2_set_inode_data_inline(inode, di); 1511 1515 1512 if (!PageUptodate(page)) { 1516 if (!PageUptodate(page)) { 1513 ret = ocfs2_read_inline_data( 1517 ret = ocfs2_read_inline_data(inode, page, wc->w_di_bh); 1514 if (ret) { 1518 if (ret) { 1515 ocfs2_commit_trans(os 1519 ocfs2_commit_trans(osb, handle); 1516 1520 1517 goto out; 1521 goto out; 1518 } 1522 } 1519 } 1523 } 1520 1524 1521 wc->w_handle = handle; 1525 wc->w_handle = handle; 1522 out: 1526 out: 1523 return ret; 1527 return ret; 1524 } 1528 } 1525 1529 1526 int ocfs2_size_fits_inline_data(struct buffer 1530 int ocfs2_size_fits_inline_data(struct buffer_head *di_bh, u64 new_size) 1527 { 1531 { 1528 struct ocfs2_dinode *di = (struct ocf 1532 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data; 1529 1533 1530 if (new_size <= le16_to_cpu(di->id2.i 1534 if (new_size <= le16_to_cpu(di->id2.i_data.id_count)) 1531 return 1; 1535 return 1; 1532 return 0; 1536 return 0; 1533 } 1537 } 1534 1538 1535 static int ocfs2_try_to_write_inline_data(str 1539 static int ocfs2_try_to_write_inline_data(struct address_space *mapping, 1536 str 1540 struct inode *inode, loff_t pos, 1537 uns 1541 unsigned len, struct page *mmap_page, 1538 str 1542 struct ocfs2_write_ctxt *wc) 1539 { 1543 { 1540 int ret, written = 0; 1544 int ret, written = 0; 1541 loff_t end = pos + len; 1545 loff_t end = pos + len; 1542 struct ocfs2_inode_info *oi = OCFS2_I 1546 struct ocfs2_inode_info *oi = OCFS2_I(inode); 1543 struct ocfs2_dinode *di = NULL; 1547 struct ocfs2_dinode *di = NULL; 1544 1548 1545 trace_ocfs2_try_to_write_inline_data( 1549 trace_ocfs2_try_to_write_inline_data((unsigned long long)oi->ip_blkno, 1546 1550 len, (unsigned long long)pos, 1547 1551 oi->ip_dyn_features); 1548 1552 1549 /* 1553 /* 1550 * Handle inodes which already have i 1554 * Handle inodes which already have inline data 1st. 1551 */ 1555 */ 1552 if (oi->ip_dyn_features & OCFS2_INLIN 1556 if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL) { 1553 if (mmap_page == NULL && 1557 if (mmap_page == NULL && 1554 ocfs2_size_fits_inline_da 1558 ocfs2_size_fits_inline_data(wc->w_di_bh, end)) 1555 goto do_inline_write; 1559 goto do_inline_write; 1556 1560 1557 /* 1561 /* 1558 * The write won't fit - we h 1562 * The write won't fit - we have to give this inode an 1559 * inline extent list now. 1563 * inline extent list now. 1560 */ 1564 */ 1561 ret = ocfs2_convert_inline_da 1565 ret = ocfs2_convert_inline_data_to_extents(inode, wc->w_di_bh); 1562 if (ret) 1566 if (ret) 1563 mlog_errno(ret); 1567 mlog_errno(ret); 1564 goto out; 1568 goto out; 1565 } 1569 } 1566 1570 1567 /* 1571 /* 1568 * Check whether the inode can accept 1572 * Check whether the inode can accept inline data. 1569 */ 1573 */ 1570 if (oi->ip_clusters != 0 || i_size_re 1574 if (oi->ip_clusters != 0 || i_size_read(inode) != 0) 1571 return 0; 1575 return 0; 1572 1576 1573 /* 1577 /* 1574 * Check whether the write can fit. 1578 * Check whether the write can fit. 1575 */ 1579 */ 1576 di = (struct ocfs2_dinode *)wc->w_di_ 1580 di = (struct ocfs2_dinode *)wc->w_di_bh->b_data; 1577 if (mmap_page || 1581 if (mmap_page || 1578 end > ocfs2_max_inline_data_with_ 1582 end > ocfs2_max_inline_data_with_xattr(inode->i_sb, di)) 1579 return 0; 1583 return 0; 1580 1584 1581 do_inline_write: 1585 do_inline_write: 1582 ret = ocfs2_write_begin_inline(mappin 1586 ret = ocfs2_write_begin_inline(mapping, inode, wc); 1583 if (ret) { 1587 if (ret) { 1584 mlog_errno(ret); 1588 mlog_errno(ret); 1585 goto out; 1589 goto out; 1586 } 1590 } 1587 1591 1588 /* 1592 /* 1589 * This signals to the caller that th 1593 * This signals to the caller that the data can be written 1590 * inline. 1594 * inline. 1591 */ 1595 */ 1592 written = 1; 1596 written = 1; 1593 out: 1597 out: 1594 return written ? written : ret; 1598 return written ? written : ret; 1595 } 1599 } 1596 1600 1597 /* 1601 /* 1598 * This function only does anything for file 1602 * This function only does anything for file systems which can't 1599 * handle sparse files. 1603 * handle sparse files. 1600 * 1604 * 1601 * What we want to do here is fill in any hol 1605 * What we want to do here is fill in any hole between the current end 1602 * of allocation and the end of our write. Th 1606 * of allocation and the end of our write. That way the rest of the 1603 * write path can treat it as an non-allocati 1607 * write path can treat it as an non-allocating write, which has no 1604 * special case code for sparse/nonsparse fil 1608 * special case code for sparse/nonsparse files. 1605 */ 1609 */ 1606 static int ocfs2_expand_nonsparse_inode(struc 1610 static int ocfs2_expand_nonsparse_inode(struct inode *inode, 1607 struc 1611 struct buffer_head *di_bh, 1608 loff_ 1612 loff_t pos, unsigned len, 1609 struc 1613 struct ocfs2_write_ctxt *wc) 1610 { 1614 { 1611 int ret; 1615 int ret; 1612 loff_t newsize = pos + len; 1616 loff_t newsize = pos + len; 1613 1617 1614 BUG_ON(ocfs2_sparse_alloc(OCFS2_SB(in 1618 BUG_ON(ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb))); 1615 1619 1616 if (newsize <= i_size_read(inode)) 1620 if (newsize <= i_size_read(inode)) 1617 return 0; 1621 return 0; 1618 1622 1619 ret = ocfs2_extend_no_holes(inode, di 1623 ret = ocfs2_extend_no_holes(inode, di_bh, newsize, pos); 1620 if (ret) 1624 if (ret) 1621 mlog_errno(ret); 1625 mlog_errno(ret); 1622 1626 1623 /* There is no wc if this is call fro 1627 /* There is no wc if this is call from direct. */ 1624 if (wc) 1628 if (wc) 1625 wc->w_first_new_cpos = 1629 wc->w_first_new_cpos = 1626 ocfs2_clusters_for_by 1630 ocfs2_clusters_for_bytes(inode->i_sb, i_size_read(inode)); 1627 1631 1628 return ret; 1632 return ret; 1629 } 1633 } 1630 1634 1631 static int ocfs2_zero_tail(struct inode *inod 1635 static int ocfs2_zero_tail(struct inode *inode, struct buffer_head *di_bh, 1632 loff_t pos) 1636 loff_t pos) 1633 { 1637 { 1634 int ret = 0; 1638 int ret = 0; 1635 1639 1636 BUG_ON(!ocfs2_sparse_alloc(OCFS2_SB(i 1640 BUG_ON(!ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb))); 1637 if (pos > i_size_read(inode)) 1641 if (pos > i_size_read(inode)) 1638 ret = ocfs2_zero_extend(inode 1642 ret = ocfs2_zero_extend(inode, di_bh, pos); 1639 1643 1640 return ret; 1644 return ret; 1641 } 1645 } 1642 1646 1643 int ocfs2_write_begin_nolock(struct address_s 1647 int ocfs2_write_begin_nolock(struct address_space *mapping, 1644 loff_t pos, unsi 1648 loff_t pos, unsigned len, ocfs2_write_type_t type, 1645 struct page **pa 1649 struct page **pagep, void **fsdata, 1646 struct buffer_he 1650 struct buffer_head *di_bh, struct page *mmap_page) 1647 { 1651 { 1648 int ret, cluster_of_pages, credits = 1652 int ret, cluster_of_pages, credits = OCFS2_INODE_UPDATE_CREDITS; 1649 unsigned int clusters_to_alloc, exten 1653 unsigned int clusters_to_alloc, extents_to_split, clusters_need = 0; 1650 struct ocfs2_write_ctxt *wc; 1654 struct ocfs2_write_ctxt *wc; 1651 struct inode *inode = mapping->host; 1655 struct inode *inode = mapping->host; 1652 struct ocfs2_super *osb = OCFS2_SB(in 1656 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 1653 struct ocfs2_dinode *di; 1657 struct ocfs2_dinode *di; 1654 struct ocfs2_alloc_context *data_ac = 1658 struct ocfs2_alloc_context *data_ac = NULL; 1655 struct ocfs2_alloc_context *meta_ac = 1659 struct ocfs2_alloc_context *meta_ac = NULL; 1656 handle_t *handle; 1660 handle_t *handle; 1657 struct ocfs2_extent_tree et; 1661 struct ocfs2_extent_tree et; 1658 int try_free = 1, ret1; 1662 int try_free = 1, ret1; 1659 1663 1660 try_again: 1664 try_again: 1661 ret = ocfs2_alloc_write_ctxt(&wc, osb 1665 ret = ocfs2_alloc_write_ctxt(&wc, osb, pos, len, type, di_bh); 1662 if (ret) { 1666 if (ret) { 1663 mlog_errno(ret); 1667 mlog_errno(ret); 1664 return ret; 1668 return ret; 1665 } 1669 } 1666 1670 1667 if (ocfs2_supports_inline_data(osb)) 1671 if (ocfs2_supports_inline_data(osb)) { 1668 ret = ocfs2_try_to_write_inli 1672 ret = ocfs2_try_to_write_inline_data(mapping, inode, pos, len, 1669 1673 mmap_page, wc); 1670 if (ret == 1) { 1674 if (ret == 1) { 1671 ret = 0; 1675 ret = 0; 1672 goto success; 1676 goto success; 1673 } 1677 } 1674 if (ret < 0) { 1678 if (ret < 0) { 1675 mlog_errno(ret); 1679 mlog_errno(ret); 1676 goto out; 1680 goto out; 1677 } 1681 } 1678 } 1682 } 1679 1683 1680 /* Direct io change i_size late, shou 1684 /* Direct io change i_size late, should not zero tail here. */ 1681 if (type != OCFS2_WRITE_DIRECT) { 1685 if (type != OCFS2_WRITE_DIRECT) { 1682 if (ocfs2_sparse_alloc(osb)) 1686 if (ocfs2_sparse_alloc(osb)) 1683 ret = ocfs2_zero_tail 1687 ret = ocfs2_zero_tail(inode, di_bh, pos); 1684 else 1688 else 1685 ret = ocfs2_expand_no 1689 ret = ocfs2_expand_nonsparse_inode(inode, di_bh, pos, 1686 1690 len, wc); 1687 if (ret) { 1691 if (ret) { 1688 mlog_errno(ret); 1692 mlog_errno(ret); 1689 goto out; 1693 goto out; 1690 } 1694 } 1691 } 1695 } 1692 1696 1693 ret = ocfs2_check_range_for_refcount( 1697 ret = ocfs2_check_range_for_refcount(inode, pos, len); 1694 if (ret < 0) { 1698 if (ret < 0) { 1695 mlog_errno(ret); 1699 mlog_errno(ret); 1696 goto out; 1700 goto out; 1697 } else if (ret == 1) { 1701 } else if (ret == 1) { 1698 clusters_need = wc->w_clen; 1702 clusters_need = wc->w_clen; 1699 ret = ocfs2_refcount_cow(inod 1703 ret = ocfs2_refcount_cow(inode, di_bh, 1700 wc-> 1704 wc->w_cpos, wc->w_clen, UINT_MAX); 1701 if (ret) { 1705 if (ret) { 1702 mlog_errno(ret); 1706 mlog_errno(ret); 1703 goto out; 1707 goto out; 1704 } 1708 } 1705 } 1709 } 1706 1710 1707 ret = ocfs2_populate_write_desc(inode 1711 ret = ocfs2_populate_write_desc(inode, wc, &clusters_to_alloc, 1708 &exte 1712 &extents_to_split); 1709 if (ret) { 1713 if (ret) { 1710 mlog_errno(ret); 1714 mlog_errno(ret); 1711 goto out; 1715 goto out; 1712 } 1716 } 1713 clusters_need += clusters_to_alloc; 1717 clusters_need += clusters_to_alloc; 1714 1718 1715 di = (struct ocfs2_dinode *)wc->w_di_ 1719 di = (struct ocfs2_dinode *)wc->w_di_bh->b_data; 1716 1720 1717 trace_ocfs2_write_begin_nolock( 1721 trace_ocfs2_write_begin_nolock( 1718 (unsigned long long)O 1722 (unsigned long long)OCFS2_I(inode)->ip_blkno, 1719 (long long)i_size_rea 1723 (long long)i_size_read(inode), 1720 le32_to_cpu(di->i_clu 1724 le32_to_cpu(di->i_clusters), 1721 pos, len, type, mmap_ 1725 pos, len, type, mmap_page, 1722 clusters_to_alloc, ex 1726 clusters_to_alloc, extents_to_split); 1723 1727 1724 /* 1728 /* 1725 * We set w_target_from, w_target_to 1729 * We set w_target_from, w_target_to here so that 1726 * ocfs2_write_end() knows which rang 1730 * ocfs2_write_end() knows which range in the target page to 1727 * write out. An allocation requires 1731 * write out. An allocation requires that we write the entire 1728 * cluster range. 1732 * cluster range. 1729 */ 1733 */ 1730 if (clusters_to_alloc || extents_to_s 1734 if (clusters_to_alloc || extents_to_split) { 1731 /* 1735 /* 1732 * XXX: We are stretching the 1736 * XXX: We are stretching the limits of 1733 * ocfs2_lock_allocators(). I 1737 * ocfs2_lock_allocators(). It greatly over-estimates 1734 * the work to be done. 1738 * the work to be done. 1735 */ 1739 */ 1736 ocfs2_init_dinode_extent_tree 1740 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), 1737 1741 wc->w_di_bh); 1738 ret = ocfs2_lock_allocators(i 1742 ret = ocfs2_lock_allocators(inode, &et, 1739 c 1743 clusters_to_alloc, extents_to_split, 1740 & 1744 &data_ac, &meta_ac); 1741 if (ret) { 1745 if (ret) { 1742 mlog_errno(ret); 1746 mlog_errno(ret); 1743 goto out; 1747 goto out; 1744 } 1748 } 1745 1749 1746 if (data_ac) 1750 if (data_ac) 1747 data_ac->ac_resv = &O 1751 data_ac->ac_resv = &OCFS2_I(inode)->ip_la_data_resv; 1748 1752 1749 credits = ocfs2_calc_extend_c 1753 credits = ocfs2_calc_extend_credits(inode->i_sb, 1750 1754 &di->id2.i_list); 1751 } else if (type == OCFS2_WRITE_DIRECT 1755 } else if (type == OCFS2_WRITE_DIRECT) 1752 /* direct write needs not to 1756 /* direct write needs not to start trans if no extents alloc. */ 1753 goto success; 1757 goto success; 1754 1758 1755 /* 1759 /* 1756 * We have to zero sparse allocated c 1760 * We have to zero sparse allocated clusters, unwritten extent clusters, 1757 * and non-sparse clusters we just ex 1761 * and non-sparse clusters we just extended. For non-sparse writes, 1758 * we know zeros will only be needed 1762 * we know zeros will only be needed in the first and/or last cluster. 1759 */ 1763 */ 1760 if (wc->w_clen && (wc->w_desc[0].c_ne 1764 if (wc->w_clen && (wc->w_desc[0].c_needs_zero || 1761 wc->w_desc[wc->w_c 1765 wc->w_desc[wc->w_clen - 1].c_needs_zero)) 1762 cluster_of_pages = 1; 1766 cluster_of_pages = 1; 1763 else 1767 else 1764 cluster_of_pages = 0; 1768 cluster_of_pages = 0; 1765 1769 1766 ocfs2_set_target_boundaries(osb, wc, 1770 ocfs2_set_target_boundaries(osb, wc, pos, len, cluster_of_pages); 1767 1771 1768 handle = ocfs2_start_trans(osb, credi 1772 handle = ocfs2_start_trans(osb, credits); 1769 if (IS_ERR(handle)) { 1773 if (IS_ERR(handle)) { 1770 ret = PTR_ERR(handle); 1774 ret = PTR_ERR(handle); 1771 mlog_errno(ret); 1775 mlog_errno(ret); 1772 goto out; 1776 goto out; 1773 } 1777 } 1774 1778 1775 wc->w_handle = handle; 1779 wc->w_handle = handle; 1776 1780 1777 if (clusters_to_alloc) { 1781 if (clusters_to_alloc) { 1778 ret = dquot_alloc_space_nodir 1782 ret = dquot_alloc_space_nodirty(inode, 1779 ocfs2_clusters_to_byt 1783 ocfs2_clusters_to_bytes(osb->sb, clusters_to_alloc)); 1780 if (ret) 1784 if (ret) 1781 goto out_commit; 1785 goto out_commit; 1782 } 1786 } 1783 1787 1784 ret = ocfs2_journal_access_di(handle, 1788 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), wc->w_di_bh, 1785 OCFS2_J 1789 OCFS2_JOURNAL_ACCESS_WRITE); 1786 if (ret) { 1790 if (ret) { 1787 mlog_errno(ret); 1791 mlog_errno(ret); 1788 goto out_quota; 1792 goto out_quota; 1789 } 1793 } 1790 1794 1791 /* 1795 /* 1792 * Fill our page array first. That wa 1796 * Fill our page array first. That way we've grabbed enough so 1793 * that we can zero and flush if we e 1797 * that we can zero and flush if we error after adding the 1794 * extent. 1798 * extent. 1795 */ 1799 */ 1796 ret = ocfs2_grab_pages_for_write(mapp 1800 ret = ocfs2_grab_pages_for_write(mapping, wc, wc->w_cpos, pos, len, 1797 clus 1801 cluster_of_pages, mmap_page); 1798 if (ret) { !! 1802 if (ret && ret != -EAGAIN) { 1799 /* << 1800 * ocfs2_grab_pages_for_write << 1801 * the target page. In this c << 1802 * page. This will trigger th << 1803 * the operation. << 1804 */ << 1805 if (type == OCFS2_WRITE_MMAP << 1806 BUG_ON(wc->w_target_p << 1807 ret = 0; << 1808 goto out_quota; << 1809 } << 1810 << 1811 mlog_errno(ret); 1803 mlog_errno(ret); 1812 goto out_quota; 1804 goto out_quota; 1813 } 1805 } 1814 1806 >> 1807 /* >> 1808 * ocfs2_grab_pages_for_write() returns -EAGAIN if it could not lock >> 1809 * the target page. In this case, we exit with no error and no target >> 1810 * page. This will trigger the caller, page_mkwrite(), to re-try >> 1811 * the operation. >> 1812 */ >> 1813 if (ret == -EAGAIN) { >> 1814 BUG_ON(wc->w_target_page); >> 1815 ret = 0; >> 1816 goto out_quota; >> 1817 } >> 1818 1815 ret = ocfs2_write_cluster_by_desc(map 1819 ret = ocfs2_write_cluster_by_desc(mapping, data_ac, meta_ac, wc, pos, 1816 len 1820 len); 1817 if (ret) { 1821 if (ret) { 1818 mlog_errno(ret); 1822 mlog_errno(ret); 1819 goto out_quota; 1823 goto out_quota; 1820 } 1824 } 1821 1825 1822 if (data_ac) 1826 if (data_ac) 1823 ocfs2_free_alloc_context(data 1827 ocfs2_free_alloc_context(data_ac); 1824 if (meta_ac) 1828 if (meta_ac) 1825 ocfs2_free_alloc_context(meta 1829 ocfs2_free_alloc_context(meta_ac); 1826 1830 1827 success: 1831 success: 1828 if (pagep) 1832 if (pagep) 1829 *pagep = wc->w_target_page; 1833 *pagep = wc->w_target_page; 1830 *fsdata = wc; 1834 *fsdata = wc; 1831 return 0; 1835 return 0; 1832 out_quota: 1836 out_quota: 1833 if (clusters_to_alloc) 1837 if (clusters_to_alloc) 1834 dquot_free_space(inode, 1838 dquot_free_space(inode, 1835 ocfs2_clusters_to_b 1839 ocfs2_clusters_to_bytes(osb->sb, clusters_to_alloc)); 1836 out_commit: 1840 out_commit: 1837 ocfs2_commit_trans(osb, handle); 1841 ocfs2_commit_trans(osb, handle); 1838 1842 1839 out: 1843 out: 1840 /* 1844 /* 1841 * The mmapped page won't be unlocked 1845 * The mmapped page won't be unlocked in ocfs2_free_write_ctxt(), 1842 * even in case of error here like EN 1846 * even in case of error here like ENOSPC and ENOMEM. So, we need 1843 * to unlock the target page manually 1847 * to unlock the target page manually to prevent deadlocks when 1844 * retrying again on ENOSPC, or when 1848 * retrying again on ENOSPC, or when returning non-VM_FAULT_LOCKED 1845 * to VM code. 1849 * to VM code. 1846 */ 1850 */ 1847 if (wc->w_target_locked) 1851 if (wc->w_target_locked) 1848 unlock_page(mmap_page); 1852 unlock_page(mmap_page); 1849 1853 1850 ocfs2_free_write_ctxt(inode, wc); 1854 ocfs2_free_write_ctxt(inode, wc); 1851 1855 1852 if (data_ac) { 1856 if (data_ac) { 1853 ocfs2_free_alloc_context(data 1857 ocfs2_free_alloc_context(data_ac); 1854 data_ac = NULL; 1858 data_ac = NULL; 1855 } 1859 } 1856 if (meta_ac) { 1860 if (meta_ac) { 1857 ocfs2_free_alloc_context(meta 1861 ocfs2_free_alloc_context(meta_ac); 1858 meta_ac = NULL; 1862 meta_ac = NULL; 1859 } 1863 } 1860 1864 1861 if (ret == -ENOSPC && try_free) { 1865 if (ret == -ENOSPC && try_free) { 1862 /* 1866 /* 1863 * Try to free some truncate 1867 * Try to free some truncate log so that we can have enough 1864 * clusters to allocate. 1868 * clusters to allocate. 1865 */ 1869 */ 1866 try_free = 0; 1870 try_free = 0; 1867 1871 1868 ret1 = ocfs2_try_to_free_trun 1872 ret1 = ocfs2_try_to_free_truncate_log(osb, clusters_need); 1869 if (ret1 == 1) 1873 if (ret1 == 1) 1870 goto try_again; 1874 goto try_again; 1871 1875 1872 if (ret1 < 0) 1876 if (ret1 < 0) 1873 mlog_errno(ret1); 1877 mlog_errno(ret1); 1874 } 1878 } 1875 1879 1876 return ret; 1880 return ret; 1877 } 1881 } 1878 1882 1879 static int ocfs2_write_begin(struct file *fil 1883 static int ocfs2_write_begin(struct file *file, struct address_space *mapping, 1880 loff_t pos, unsi !! 1884 loff_t pos, unsigned len, unsigned flags, 1881 struct page **pa 1885 struct page **pagep, void **fsdata) 1882 { 1886 { 1883 int ret; 1887 int ret; 1884 struct buffer_head *di_bh = NULL; 1888 struct buffer_head *di_bh = NULL; 1885 struct inode *inode = mapping->host; 1889 struct inode *inode = mapping->host; 1886 1890 1887 ret = ocfs2_inode_lock(inode, &di_bh, 1891 ret = ocfs2_inode_lock(inode, &di_bh, 1); 1888 if (ret) { 1892 if (ret) { 1889 mlog_errno(ret); 1893 mlog_errno(ret); 1890 return ret; 1894 return ret; 1891 } 1895 } 1892 1896 1893 /* 1897 /* 1894 * Take alloc sem here to prevent con 1898 * Take alloc sem here to prevent concurrent lookups. That way 1895 * the mapping, zeroing and tree mani 1899 * the mapping, zeroing and tree manipulation within 1896 * ocfs2_write() will be safe against !! 1900 * ocfs2_write() will be safe against ->readpage(). This 1897 * should also serve to lock out allo 1901 * should also serve to lock out allocation from a shared 1898 * writeable region. 1902 * writeable region. 1899 */ 1903 */ 1900 down_write(&OCFS2_I(inode)->ip_alloc_ 1904 down_write(&OCFS2_I(inode)->ip_alloc_sem); 1901 1905 1902 ret = ocfs2_write_begin_nolock(mappin 1906 ret = ocfs2_write_begin_nolock(mapping, pos, len, OCFS2_WRITE_BUFFER, 1903 pagep, 1907 pagep, fsdata, di_bh, NULL); 1904 if (ret) { 1908 if (ret) { 1905 mlog_errno(ret); 1909 mlog_errno(ret); 1906 goto out_fail; 1910 goto out_fail; 1907 } 1911 } 1908 1912 1909 brelse(di_bh); 1913 brelse(di_bh); 1910 1914 1911 return 0; 1915 return 0; 1912 1916 1913 out_fail: 1917 out_fail: 1914 up_write(&OCFS2_I(inode)->ip_alloc_se 1918 up_write(&OCFS2_I(inode)->ip_alloc_sem); 1915 1919 1916 brelse(di_bh); 1920 brelse(di_bh); 1917 ocfs2_inode_unlock(inode, 1); 1921 ocfs2_inode_unlock(inode, 1); 1918 1922 1919 return ret; 1923 return ret; 1920 } 1924 } 1921 1925 1922 static void ocfs2_write_end_inline(struct ino 1926 static void ocfs2_write_end_inline(struct inode *inode, loff_t pos, 1923 unsigned l 1927 unsigned len, unsigned *copied, 1924 struct ocf 1928 struct ocfs2_dinode *di, 1925 struct ocf 1929 struct ocfs2_write_ctxt *wc) 1926 { 1930 { 1927 void *kaddr; 1931 void *kaddr; 1928 1932 1929 if (unlikely(*copied < len)) { 1933 if (unlikely(*copied < len)) { 1930 if (!PageUptodate(wc->w_targe 1934 if (!PageUptodate(wc->w_target_page)) { 1931 *copied = 0; 1935 *copied = 0; 1932 return; 1936 return; 1933 } 1937 } 1934 } 1938 } 1935 1939 1936 kaddr = kmap_atomic(wc->w_target_page 1940 kaddr = kmap_atomic(wc->w_target_page); 1937 memcpy(di->id2.i_data.id_data + pos, 1941 memcpy(di->id2.i_data.id_data + pos, kaddr + pos, *copied); 1938 kunmap_atomic(kaddr); 1942 kunmap_atomic(kaddr); 1939 1943 1940 trace_ocfs2_write_end_inline( 1944 trace_ocfs2_write_end_inline( 1941 (unsigned long long)OCFS2_I(inod 1945 (unsigned long long)OCFS2_I(inode)->ip_blkno, 1942 (unsigned long long)pos, *copied 1946 (unsigned long long)pos, *copied, 1943 le16_to_cpu(di->id2.i_data.id_co 1947 le16_to_cpu(di->id2.i_data.id_count), 1944 le16_to_cpu(di->i_dyn_features)) 1948 le16_to_cpu(di->i_dyn_features)); 1945 } 1949 } 1946 1950 1947 int ocfs2_write_end_nolock(struct address_spa 1951 int ocfs2_write_end_nolock(struct address_space *mapping, 1948 loff_t pos, unsign 1952 loff_t pos, unsigned len, unsigned copied, void *fsdata) 1949 { 1953 { 1950 int i, ret; 1954 int i, ret; 1951 unsigned from, to, start = pos & (PAG 1955 unsigned from, to, start = pos & (PAGE_SIZE - 1); 1952 struct inode *inode = mapping->host; 1956 struct inode *inode = mapping->host; 1953 struct ocfs2_super *osb = OCFS2_SB(in 1957 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 1954 struct ocfs2_write_ctxt *wc = fsdata; 1958 struct ocfs2_write_ctxt *wc = fsdata; 1955 struct ocfs2_dinode *di = (struct ocf 1959 struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data; 1956 handle_t *handle = wc->w_handle; 1960 handle_t *handle = wc->w_handle; 1957 struct page *tmppage; 1961 struct page *tmppage; 1958 1962 1959 BUG_ON(!list_empty(&wc->w_unwritten_l 1963 BUG_ON(!list_empty(&wc->w_unwritten_list)); 1960 1964 1961 if (handle) { 1965 if (handle) { 1962 ret = ocfs2_journal_access_di 1966 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), 1963 wc->w_di_bh, 1967 wc->w_di_bh, OCFS2_JOURNAL_ACCESS_WRITE); 1964 if (ret) { 1968 if (ret) { 1965 copied = ret; 1969 copied = ret; 1966 mlog_errno(ret); 1970 mlog_errno(ret); 1967 goto out; 1971 goto out; 1968 } 1972 } 1969 } 1973 } 1970 1974 1971 if (OCFS2_I(inode)->ip_dyn_features & 1975 if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) { 1972 ocfs2_write_end_inline(inode, 1976 ocfs2_write_end_inline(inode, pos, len, &copied, di, wc); 1973 goto out_write_size; 1977 goto out_write_size; 1974 } 1978 } 1975 1979 1976 if (unlikely(copied < len) && wc->w_t 1980 if (unlikely(copied < len) && wc->w_target_page) { 1977 loff_t new_isize; << 1978 << 1979 if (!PageUptodate(wc->w_targe 1981 if (!PageUptodate(wc->w_target_page)) 1980 copied = 0; 1982 copied = 0; 1981 1983 1982 new_isize = max_t(loff_t, i_s !! 1984 ocfs2_zero_new_buffers(wc->w_target_page, start+copied, 1983 if (new_isize > page_offset(w !! 1985 start+len); 1984 ocfs2_zero_new_buffer << 1985 << 1986 else { << 1987 /* << 1988 * When page is fully << 1989 * failed), do not bo << 1990 * it instead so that << 1991 * put page & buffer << 1992 * state. << 1993 */ << 1994 block_invalidate_foli << 1995 << 1996 } << 1997 } 1986 } 1998 if (wc->w_target_page) 1987 if (wc->w_target_page) 1999 flush_dcache_page(wc->w_targe 1988 flush_dcache_page(wc->w_target_page); 2000 1989 2001 for(i = 0; i < wc->w_num_pages; i++) 1990 for(i = 0; i < wc->w_num_pages; i++) { 2002 tmppage = wc->w_pages[i]; 1991 tmppage = wc->w_pages[i]; 2003 1992 2004 /* This is the direct io targ 1993 /* This is the direct io target page. */ 2005 if (tmppage == NULL) 1994 if (tmppage == NULL) 2006 continue; 1995 continue; 2007 1996 2008 if (tmppage == wc->w_target_p 1997 if (tmppage == wc->w_target_page) { 2009 from = wc->w_target_f 1998 from = wc->w_target_from; 2010 to = wc->w_target_to; 1999 to = wc->w_target_to; 2011 2000 2012 BUG_ON(from > PAGE_SI 2001 BUG_ON(from > PAGE_SIZE || 2013 to > PAGE_SIZE 2002 to > PAGE_SIZE || 2014 to < from); 2003 to < from); 2015 } else { 2004 } else { 2016 /* 2005 /* 2017 * Pages adjacent to 2006 * Pages adjacent to the target (if any) imply 2018 * a hole-filling wri 2007 * a hole-filling write in which case we want 2019 * to flush their ent 2008 * to flush their entire range. 2020 */ 2009 */ 2021 from = 0; 2010 from = 0; 2022 to = PAGE_SIZE; 2011 to = PAGE_SIZE; 2023 } 2012 } 2024 2013 2025 if (page_has_buffers(tmppage) 2014 if (page_has_buffers(tmppage)) { 2026 if (handle && ocfs2_s 2015 if (handle && ocfs2_should_order_data(inode)) { 2027 loff_t start_ 2016 loff_t start_byte = 2028 ((lof 2017 ((loff_t)tmppage->index << PAGE_SHIFT) + 2029 from; 2018 from; 2030 loff_t length 2019 loff_t length = to - from; 2031 ocfs2_jbd2_in 2020 ocfs2_jbd2_inode_add_write(handle, inode, 2032 2021 start_byte, length); 2033 } 2022 } 2034 block_commit_write(tm 2023 block_commit_write(tmppage, from, to); 2035 } 2024 } 2036 } 2025 } 2037 2026 2038 out_write_size: 2027 out_write_size: 2039 /* Direct io do not update i_size her 2028 /* Direct io do not update i_size here. */ 2040 if (wc->w_type != OCFS2_WRITE_DIRECT) 2029 if (wc->w_type != OCFS2_WRITE_DIRECT) { 2041 pos += copied; 2030 pos += copied; 2042 if (pos > i_size_read(inode)) 2031 if (pos > i_size_read(inode)) { 2043 i_size_write(inode, p 2032 i_size_write(inode, pos); 2044 mark_inode_dirty(inod 2033 mark_inode_dirty(inode); 2045 } 2034 } 2046 inode->i_blocks = ocfs2_inode 2035 inode->i_blocks = ocfs2_inode_sector_count(inode); 2047 di->i_size = cpu_to_le64((u64 2036 di->i_size = cpu_to_le64((u64)i_size_read(inode)); 2048 inode_set_mtime_to_ts(inode, !! 2037 inode->i_mtime = inode->i_ctime = current_time(inode); 2049 di->i_mtime = di->i_ctime = c !! 2038 di->i_mtime = di->i_ctime = cpu_to_le64(inode->i_mtime.tv_sec); 2050 di->i_mtime_nsec = di->i_ctim !! 2039 di->i_mtime_nsec = di->i_ctime_nsec = cpu_to_le32(inode->i_mtime.tv_nsec); 2051 if (handle) 2040 if (handle) 2052 ocfs2_update_inode_fs 2041 ocfs2_update_inode_fsync_trans(handle, inode, 1); 2053 } 2042 } 2054 if (handle) 2043 if (handle) 2055 ocfs2_journal_dirty(handle, w 2044 ocfs2_journal_dirty(handle, wc->w_di_bh); 2056 2045 2057 out: 2046 out: 2058 /* unlock pages before dealloc since 2047 /* unlock pages before dealloc since it needs acquiring j_trans_barrier 2059 * lock, or it will cause a deadlock 2048 * lock, or it will cause a deadlock since journal commit threads holds 2060 * this lock and will ask for the pag 2049 * this lock and will ask for the page lock when flushing the data. 2061 * put it here to preserve the unlock 2050 * put it here to preserve the unlock order. 2062 */ 2051 */ 2063 ocfs2_unlock_pages(wc); 2052 ocfs2_unlock_pages(wc); 2064 2053 2065 if (handle) 2054 if (handle) 2066 ocfs2_commit_trans(osb, handl 2055 ocfs2_commit_trans(osb, handle); 2067 2056 2068 ocfs2_run_deallocs(osb, &wc->w_deallo 2057 ocfs2_run_deallocs(osb, &wc->w_dealloc); 2069 2058 2070 brelse(wc->w_di_bh); 2059 brelse(wc->w_di_bh); 2071 kfree(wc); 2060 kfree(wc); 2072 2061 2073 return copied; 2062 return copied; 2074 } 2063 } 2075 2064 2076 static int ocfs2_write_end(struct file *file, 2065 static int ocfs2_write_end(struct file *file, struct address_space *mapping, 2077 loff_t pos, unsign 2066 loff_t pos, unsigned len, unsigned copied, 2078 struct page *page, 2067 struct page *page, void *fsdata) 2079 { 2068 { 2080 int ret; 2069 int ret; 2081 struct inode *inode = mapping->host; 2070 struct inode *inode = mapping->host; 2082 2071 2083 ret = ocfs2_write_end_nolock(mapping, 2072 ret = ocfs2_write_end_nolock(mapping, pos, len, copied, fsdata); 2084 2073 2085 up_write(&OCFS2_I(inode)->ip_alloc_se 2074 up_write(&OCFS2_I(inode)->ip_alloc_sem); 2086 ocfs2_inode_unlock(inode, 1); 2075 ocfs2_inode_unlock(inode, 1); 2087 2076 2088 return ret; 2077 return ret; 2089 } 2078 } 2090 2079 2091 struct ocfs2_dio_write_ctxt { 2080 struct ocfs2_dio_write_ctxt { 2092 struct list_head dw_zero_list; 2081 struct list_head dw_zero_list; 2093 unsigned dw_zero_count 2082 unsigned dw_zero_count; 2094 int dw_orphaned; 2083 int dw_orphaned; 2095 pid_t dw_writer_pid 2084 pid_t dw_writer_pid; 2096 }; 2085 }; 2097 2086 2098 static struct ocfs2_dio_write_ctxt * 2087 static struct ocfs2_dio_write_ctxt * 2099 ocfs2_dio_alloc_write_ctx(struct buffer_head 2088 ocfs2_dio_alloc_write_ctx(struct buffer_head *bh, int *alloc) 2100 { 2089 { 2101 struct ocfs2_dio_write_ctxt *dwc = NU 2090 struct ocfs2_dio_write_ctxt *dwc = NULL; 2102 2091 2103 if (bh->b_private) 2092 if (bh->b_private) 2104 return bh->b_private; 2093 return bh->b_private; 2105 2094 2106 dwc = kmalloc(sizeof(struct ocfs2_dio 2095 dwc = kmalloc(sizeof(struct ocfs2_dio_write_ctxt), GFP_NOFS); 2107 if (dwc == NULL) 2096 if (dwc == NULL) 2108 return NULL; 2097 return NULL; 2109 INIT_LIST_HEAD(&dwc->dw_zero_list); 2098 INIT_LIST_HEAD(&dwc->dw_zero_list); 2110 dwc->dw_zero_count = 0; 2099 dwc->dw_zero_count = 0; 2111 dwc->dw_orphaned = 0; 2100 dwc->dw_orphaned = 0; 2112 dwc->dw_writer_pid = task_pid_nr(curr 2101 dwc->dw_writer_pid = task_pid_nr(current); 2113 bh->b_private = dwc; 2102 bh->b_private = dwc; 2114 *alloc = 1; 2103 *alloc = 1; 2115 2104 2116 return dwc; 2105 return dwc; 2117 } 2106 } 2118 2107 2119 static void ocfs2_dio_free_write_ctx(struct i 2108 static void ocfs2_dio_free_write_ctx(struct inode *inode, 2120 struct o 2109 struct ocfs2_dio_write_ctxt *dwc) 2121 { 2110 { 2122 ocfs2_free_unwritten_list(inode, &dwc 2111 ocfs2_free_unwritten_list(inode, &dwc->dw_zero_list); 2123 kfree(dwc); 2112 kfree(dwc); 2124 } 2113 } 2125 2114 2126 /* 2115 /* 2127 * TODO: Make this into a generic get_blocks 2116 * TODO: Make this into a generic get_blocks function. 2128 * 2117 * 2129 * From do_direct_io in direct-io.c: 2118 * From do_direct_io in direct-io.c: 2130 * "So what we do is to permit the ->get_blo 2119 * "So what we do is to permit the ->get_blocks function to populate 2131 * bh.b_size with the size of IO which is p 2120 * bh.b_size with the size of IO which is permitted at this offset and 2132 * this i_blkbits." 2121 * this i_blkbits." 2133 * 2122 * 2134 * This function is called directly from get_ 2123 * This function is called directly from get_more_blocks in direct-io.c. 2135 * 2124 * 2136 * called like this: dio->get_blocks(dio->ino 2125 * called like this: dio->get_blocks(dio->inode, fs_startblk, 2137 * fs_co 2126 * fs_count, map_bh, dio->rw == WRITE); 2138 */ 2127 */ 2139 static int ocfs2_dio_wr_get_block(struct inod 2128 static int ocfs2_dio_wr_get_block(struct inode *inode, sector_t iblock, 2140 struct buffer_ 2129 struct buffer_head *bh_result, int create) 2141 { 2130 { 2142 struct ocfs2_super *osb = OCFS2_SB(in 2131 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 2143 struct ocfs2_inode_info *oi = OCFS2_I 2132 struct ocfs2_inode_info *oi = OCFS2_I(inode); 2144 struct ocfs2_write_ctxt *wc; 2133 struct ocfs2_write_ctxt *wc; 2145 struct ocfs2_write_cluster_desc *desc 2134 struct ocfs2_write_cluster_desc *desc = NULL; 2146 struct ocfs2_dio_write_ctxt *dwc = NU 2135 struct ocfs2_dio_write_ctxt *dwc = NULL; 2147 struct buffer_head *di_bh = NULL; 2136 struct buffer_head *di_bh = NULL; 2148 u64 p_blkno; 2137 u64 p_blkno; 2149 unsigned int i_blkbits = inode->i_sb- 2138 unsigned int i_blkbits = inode->i_sb->s_blocksize_bits; 2150 loff_t pos = iblock << i_blkbits; 2139 loff_t pos = iblock << i_blkbits; 2151 sector_t endblk = (i_size_read(inode) 2140 sector_t endblk = (i_size_read(inode) - 1) >> i_blkbits; 2152 unsigned len, total_len = bh_result-> 2141 unsigned len, total_len = bh_result->b_size; 2153 int ret = 0, first_get_block = 0; 2142 int ret = 0, first_get_block = 0; 2154 2143 2155 len = osb->s_clustersize - (pos & (os 2144 len = osb->s_clustersize - (pos & (osb->s_clustersize - 1)); 2156 len = min(total_len, len); 2145 len = min(total_len, len); 2157 2146 2158 /* 2147 /* 2159 * bh_result->b_size is count in get_ 2148 * bh_result->b_size is count in get_more_blocks according to write 2160 * "pos" and "end", we need map twice 2149 * "pos" and "end", we need map twice to return different buffer state: 2161 * 1. area in file size, not set NEW; 2150 * 1. area in file size, not set NEW; 2162 * 2. area out file size, set NEW. 2151 * 2. area out file size, set NEW. 2163 * 2152 * 2164 * iblock endblk 2153 * iblock endblk 2165 * |--------|---------|---------|---- 2154 * |--------|---------|---------|--------- 2166 * |<-------area in file------->| 2155 * |<-------area in file------->| 2167 */ 2156 */ 2168 2157 2169 if ((iblock <= endblk) && 2158 if ((iblock <= endblk) && 2170 ((iblock + ((len - 1) >> i_blkbit 2159 ((iblock + ((len - 1) >> i_blkbits)) > endblk)) 2171 len = (endblk - iblock + 1) < 2160 len = (endblk - iblock + 1) << i_blkbits; 2172 2161 2173 mlog(0, "get block of %lu at %llu:%u 2162 mlog(0, "get block of %lu at %llu:%u req %u\n", 2174 inode->i_ino, pos, le 2163 inode->i_ino, pos, len, total_len); 2175 2164 2176 /* 2165 /* 2177 * Because we need to change file siz 2166 * Because we need to change file size in ocfs2_dio_end_io_write(), or 2178 * we may need to add it to orphan di 2167 * we may need to add it to orphan dir. So can not fall to fast path 2179 * while file size will be changed. 2168 * while file size will be changed. 2180 */ 2169 */ 2181 if (pos + total_len <= i_size_read(in 2170 if (pos + total_len <= i_size_read(inode)) { 2182 2171 2183 /* This is the fast path for 2172 /* This is the fast path for re-write. */ 2184 ret = ocfs2_lock_get_block(in 2173 ret = ocfs2_lock_get_block(inode, iblock, bh_result, create); 2185 if (buffer_mapped(bh_result) 2174 if (buffer_mapped(bh_result) && 2186 !buffer_new(bh_result) && 2175 !buffer_new(bh_result) && 2187 ret == 0) 2176 ret == 0) 2188 goto out; 2177 goto out; 2189 2178 2190 /* Clear state set by ocfs2_g 2179 /* Clear state set by ocfs2_get_block. */ 2191 bh_result->b_state = 0; 2180 bh_result->b_state = 0; 2192 } 2181 } 2193 2182 2194 dwc = ocfs2_dio_alloc_write_ctx(bh_re 2183 dwc = ocfs2_dio_alloc_write_ctx(bh_result, &first_get_block); 2195 if (unlikely(dwc == NULL)) { 2184 if (unlikely(dwc == NULL)) { 2196 ret = -ENOMEM; 2185 ret = -ENOMEM; 2197 mlog_errno(ret); 2186 mlog_errno(ret); 2198 goto out; 2187 goto out; 2199 } 2188 } 2200 2189 2201 if (ocfs2_clusters_for_bytes(inode->i 2190 if (ocfs2_clusters_for_bytes(inode->i_sb, pos + total_len) > 2202 ocfs2_clusters_for_bytes(inode->i 2191 ocfs2_clusters_for_bytes(inode->i_sb, i_size_read(inode)) && 2203 !dwc->dw_orphaned) { 2192 !dwc->dw_orphaned) { 2204 /* 2193 /* 2205 * when we are going to alloc 2194 * when we are going to alloc extents beyond file size, add the 2206 * inode to orphan dir, so we 2195 * inode to orphan dir, so we can recall those spaces when 2207 * system crashed during writ 2196 * system crashed during write. 2208 */ 2197 */ 2209 ret = ocfs2_add_inode_to_orph 2198 ret = ocfs2_add_inode_to_orphan(osb, inode); 2210 if (ret < 0) { 2199 if (ret < 0) { 2211 mlog_errno(ret); 2200 mlog_errno(ret); 2212 goto out; 2201 goto out; 2213 } 2202 } 2214 dwc->dw_orphaned = 1; 2203 dwc->dw_orphaned = 1; 2215 } 2204 } 2216 2205 2217 ret = ocfs2_inode_lock(inode, &di_bh, 2206 ret = ocfs2_inode_lock(inode, &di_bh, 1); 2218 if (ret) { 2207 if (ret) { 2219 mlog_errno(ret); 2208 mlog_errno(ret); 2220 goto out; 2209 goto out; 2221 } 2210 } 2222 2211 2223 down_write(&oi->ip_alloc_sem); 2212 down_write(&oi->ip_alloc_sem); 2224 2213 2225 if (first_get_block) { 2214 if (first_get_block) { 2226 if (ocfs2_sparse_alloc(osb)) 2215 if (ocfs2_sparse_alloc(osb)) 2227 ret = ocfs2_zero_tail 2216 ret = ocfs2_zero_tail(inode, di_bh, pos); 2228 else 2217 else 2229 ret = ocfs2_expand_no 2218 ret = ocfs2_expand_nonsparse_inode(inode, di_bh, pos, 2230 2219 total_len, NULL); 2231 if (ret < 0) { 2220 if (ret < 0) { 2232 mlog_errno(ret); 2221 mlog_errno(ret); 2233 goto unlock; 2222 goto unlock; 2234 } 2223 } 2235 } 2224 } 2236 2225 2237 ret = ocfs2_write_begin_nolock(inode- 2226 ret = ocfs2_write_begin_nolock(inode->i_mapping, pos, len, 2238 OCFS2_ 2227 OCFS2_WRITE_DIRECT, NULL, 2239 (void 2228 (void **)&wc, di_bh, NULL); 2240 if (ret) { 2229 if (ret) { 2241 mlog_errno(ret); 2230 mlog_errno(ret); 2242 goto unlock; 2231 goto unlock; 2243 } 2232 } 2244 2233 2245 desc = &wc->w_desc[0]; 2234 desc = &wc->w_desc[0]; 2246 2235 2247 p_blkno = ocfs2_clusters_to_blocks(in 2236 p_blkno = ocfs2_clusters_to_blocks(inode->i_sb, desc->c_phys); 2248 BUG_ON(p_blkno == 0); 2237 BUG_ON(p_blkno == 0); 2249 p_blkno += iblock & (u64)(ocfs2_clust 2238 p_blkno += iblock & (u64)(ocfs2_clusters_to_blocks(inode->i_sb, 1) - 1); 2250 2239 2251 map_bh(bh_result, inode->i_sb, p_blkn 2240 map_bh(bh_result, inode->i_sb, p_blkno); 2252 bh_result->b_size = len; 2241 bh_result->b_size = len; 2253 if (desc->c_needs_zero) 2242 if (desc->c_needs_zero) 2254 set_buffer_new(bh_result); 2243 set_buffer_new(bh_result); 2255 2244 2256 if (iblock > endblk) 2245 if (iblock > endblk) 2257 set_buffer_new(bh_result); 2246 set_buffer_new(bh_result); 2258 2247 2259 /* May sleep in end_io. It should not 2248 /* May sleep in end_io. It should not happen in a irq context. So defer 2260 * it to dio work queue. */ 2249 * it to dio work queue. */ 2261 set_buffer_defer_completion(bh_result 2250 set_buffer_defer_completion(bh_result); 2262 2251 2263 if (!list_empty(&wc->w_unwritten_list 2252 if (!list_empty(&wc->w_unwritten_list)) { 2264 struct ocfs2_unwritten_extent 2253 struct ocfs2_unwritten_extent *ue = NULL; 2265 2254 2266 ue = list_first_entry(&wc->w_ 2255 ue = list_first_entry(&wc->w_unwritten_list, 2267 struct 2256 struct ocfs2_unwritten_extent, 2268 ue_node 2257 ue_node); 2269 BUG_ON(ue->ue_cpos != desc->c 2258 BUG_ON(ue->ue_cpos != desc->c_cpos); 2270 /* The physical address may b 2259 /* The physical address may be 0, fill it. */ 2271 ue->ue_phys = desc->c_phys; 2260 ue->ue_phys = desc->c_phys; 2272 2261 2273 list_splice_tail_init(&wc->w_ 2262 list_splice_tail_init(&wc->w_unwritten_list, &dwc->dw_zero_list); 2274 dwc->dw_zero_count += wc->w_u 2263 dwc->dw_zero_count += wc->w_unwritten_count; 2275 } 2264 } 2276 2265 2277 ret = ocfs2_write_end_nolock(inode->i 2266 ret = ocfs2_write_end_nolock(inode->i_mapping, pos, len, len, wc); 2278 BUG_ON(ret != len); 2267 BUG_ON(ret != len); 2279 ret = 0; 2268 ret = 0; 2280 unlock: 2269 unlock: 2281 up_write(&oi->ip_alloc_sem); 2270 up_write(&oi->ip_alloc_sem); 2282 ocfs2_inode_unlock(inode, 1); 2271 ocfs2_inode_unlock(inode, 1); 2283 brelse(di_bh); 2272 brelse(di_bh); 2284 out: 2273 out: >> 2274 if (ret < 0) >> 2275 ret = -EIO; 2285 return ret; 2276 return ret; 2286 } 2277 } 2287 2278 2288 static int ocfs2_dio_end_io_write(struct inod 2279 static int ocfs2_dio_end_io_write(struct inode *inode, 2289 struct ocfs 2280 struct ocfs2_dio_write_ctxt *dwc, 2290 loff_t offs 2281 loff_t offset, 2291 ssize_t byt 2282 ssize_t bytes) 2292 { 2283 { 2293 struct ocfs2_cached_dealloc_ctxt deal 2284 struct ocfs2_cached_dealloc_ctxt dealloc; 2294 struct ocfs2_extent_tree et; 2285 struct ocfs2_extent_tree et; 2295 struct ocfs2_super *osb = OCFS2_SB(in 2286 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 2296 struct ocfs2_inode_info *oi = OCFS2_I 2287 struct ocfs2_inode_info *oi = OCFS2_I(inode); 2297 struct ocfs2_unwritten_extent *ue = N 2288 struct ocfs2_unwritten_extent *ue = NULL; 2298 struct buffer_head *di_bh = NULL; 2289 struct buffer_head *di_bh = NULL; 2299 struct ocfs2_dinode *di; 2290 struct ocfs2_dinode *di; 2300 struct ocfs2_alloc_context *data_ac = 2291 struct ocfs2_alloc_context *data_ac = NULL; 2301 struct ocfs2_alloc_context *meta_ac = 2292 struct ocfs2_alloc_context *meta_ac = NULL; 2302 handle_t *handle = NULL; 2293 handle_t *handle = NULL; 2303 loff_t end = offset + bytes; 2294 loff_t end = offset + bytes; 2304 int ret = 0, credits = 0; 2295 int ret = 0, credits = 0; 2305 2296 2306 ocfs2_init_dealloc_ctxt(&dealloc); 2297 ocfs2_init_dealloc_ctxt(&dealloc); 2307 2298 2308 /* We do clear unwritten, delete orph 2299 /* We do clear unwritten, delete orphan, change i_size here. If neither 2309 * of these happen, we can skip all t 2300 * of these happen, we can skip all this. */ 2310 if (list_empty(&dwc->dw_zero_list) && 2301 if (list_empty(&dwc->dw_zero_list) && 2311 end <= i_size_read(inode) && 2302 end <= i_size_read(inode) && 2312 !dwc->dw_orphaned) 2303 !dwc->dw_orphaned) 2313 goto out; 2304 goto out; 2314 2305 2315 ret = ocfs2_inode_lock(inode, &di_bh, 2306 ret = ocfs2_inode_lock(inode, &di_bh, 1); 2316 if (ret < 0) { 2307 if (ret < 0) { 2317 mlog_errno(ret); 2308 mlog_errno(ret); 2318 goto out; 2309 goto out; 2319 } 2310 } 2320 2311 2321 down_write(&oi->ip_alloc_sem); 2312 down_write(&oi->ip_alloc_sem); 2322 2313 2323 /* Delete orphan before acquire i_rws !! 2314 /* Delete orphan before acquire i_mutex. */ 2324 if (dwc->dw_orphaned) { 2315 if (dwc->dw_orphaned) { 2325 BUG_ON(dwc->dw_writer_pid != 2316 BUG_ON(dwc->dw_writer_pid != task_pid_nr(current)); 2326 2317 2327 end = end > i_size_read(inode 2318 end = end > i_size_read(inode) ? end : 0; 2328 2319 2329 ret = ocfs2_del_inode_from_or 2320 ret = ocfs2_del_inode_from_orphan(osb, inode, di_bh, 2330 !!end, end); 2321 !!end, end); 2331 if (ret < 0) 2322 if (ret < 0) 2332 mlog_errno(ret); 2323 mlog_errno(ret); 2333 } 2324 } 2334 2325 2335 di = (struct ocfs2_dinode *)di_bh->b_ 2326 di = (struct ocfs2_dinode *)di_bh->b_data; 2336 2327 2337 ocfs2_init_dinode_extent_tree(&et, IN 2328 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), di_bh); 2338 2329 2339 /* Attach dealloc with extent tree in 2330 /* Attach dealloc with extent tree in case that we may reuse extents 2340 * which are already unlinked from cu 2331 * which are already unlinked from current extent tree due to extent 2341 * rotation and merging. 2332 * rotation and merging. 2342 */ 2333 */ 2343 et.et_dealloc = &dealloc; 2334 et.et_dealloc = &dealloc; 2344 2335 2345 ret = ocfs2_lock_allocators(inode, &e 2336 ret = ocfs2_lock_allocators(inode, &et, 0, dwc->dw_zero_count*2, 2346 &data_ac, 2337 &data_ac, &meta_ac); 2347 if (ret) { 2338 if (ret) { 2348 mlog_errno(ret); 2339 mlog_errno(ret); 2349 goto unlock; 2340 goto unlock; 2350 } 2341 } 2351 2342 2352 credits = ocfs2_calc_extend_credits(i 2343 credits = ocfs2_calc_extend_credits(inode->i_sb, &di->id2.i_list); 2353 2344 2354 handle = ocfs2_start_trans(osb, credi 2345 handle = ocfs2_start_trans(osb, credits); 2355 if (IS_ERR(handle)) { 2346 if (IS_ERR(handle)) { 2356 ret = PTR_ERR(handle); 2347 ret = PTR_ERR(handle); 2357 mlog_errno(ret); 2348 mlog_errno(ret); 2358 goto unlock; 2349 goto unlock; 2359 } 2350 } 2360 ret = ocfs2_journal_access_di(handle, 2351 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), di_bh, 2361 OCFS2_J 2352 OCFS2_JOURNAL_ACCESS_WRITE); 2362 if (ret) { 2353 if (ret) { 2363 mlog_errno(ret); 2354 mlog_errno(ret); 2364 goto commit; 2355 goto commit; 2365 } 2356 } 2366 2357 2367 list_for_each_entry(ue, &dwc->dw_zero 2358 list_for_each_entry(ue, &dwc->dw_zero_list, ue_node) { 2368 ret = ocfs2_assure_trans_cred << 2369 if (ret < 0) { << 2370 mlog_errno(ret); << 2371 break; << 2372 } << 2373 ret = ocfs2_mark_extent_writt 2359 ret = ocfs2_mark_extent_written(inode, &et, handle, 2374 2360 ue->ue_cpos, 1, 2375 2361 ue->ue_phys, 2376 2362 meta_ac, &dealloc); 2377 if (ret < 0) { 2363 if (ret < 0) { 2378 mlog_errno(ret); 2364 mlog_errno(ret); 2379 break; 2365 break; 2380 } 2366 } 2381 } 2367 } 2382 2368 2383 if (end > i_size_read(inode)) { 2369 if (end > i_size_read(inode)) { 2384 ret = ocfs2_set_inode_size(ha 2370 ret = ocfs2_set_inode_size(handle, inode, di_bh, end); 2385 if (ret < 0) 2371 if (ret < 0) 2386 mlog_errno(ret); 2372 mlog_errno(ret); 2387 } 2373 } 2388 commit: 2374 commit: 2389 ocfs2_commit_trans(osb, handle); 2375 ocfs2_commit_trans(osb, handle); 2390 unlock: 2376 unlock: 2391 up_write(&oi->ip_alloc_sem); 2377 up_write(&oi->ip_alloc_sem); 2392 ocfs2_inode_unlock(inode, 1); 2378 ocfs2_inode_unlock(inode, 1); 2393 brelse(di_bh); 2379 brelse(di_bh); 2394 out: 2380 out: 2395 if (data_ac) 2381 if (data_ac) 2396 ocfs2_free_alloc_context(data 2382 ocfs2_free_alloc_context(data_ac); 2397 if (meta_ac) 2383 if (meta_ac) 2398 ocfs2_free_alloc_context(meta 2384 ocfs2_free_alloc_context(meta_ac); 2399 ocfs2_run_deallocs(osb, &dealloc); 2385 ocfs2_run_deallocs(osb, &dealloc); 2400 ocfs2_dio_free_write_ctx(inode, dwc); 2386 ocfs2_dio_free_write_ctx(inode, dwc); 2401 2387 2402 return ret; 2388 return ret; 2403 } 2389 } 2404 2390 2405 /* 2391 /* 2406 * ocfs2_dio_end_io is called by the dio core 2392 * ocfs2_dio_end_io is called by the dio core when a dio is finished. We're 2407 * particularly interested in the aio/dio cas 2393 * particularly interested in the aio/dio case. We use the rw_lock DLM lock 2408 * to protect io on one node from truncation 2394 * to protect io on one node from truncation on another. 2409 */ 2395 */ 2410 static int ocfs2_dio_end_io(struct kiocb *ioc 2396 static int ocfs2_dio_end_io(struct kiocb *iocb, 2411 loff_t offset, 2397 loff_t offset, 2412 ssize_t bytes, 2398 ssize_t bytes, 2413 void *private) 2399 void *private) 2414 { 2400 { 2415 struct inode *inode = file_inode(iocb 2401 struct inode *inode = file_inode(iocb->ki_filp); 2416 int level; 2402 int level; 2417 int ret = 0; 2403 int ret = 0; 2418 2404 2419 /* this io's submitter should not hav 2405 /* this io's submitter should not have unlocked this before we could */ 2420 BUG_ON(!ocfs2_iocb_is_rw_locked(iocb) 2406 BUG_ON(!ocfs2_iocb_is_rw_locked(iocb)); 2421 2407 2422 if (bytes <= 0) 2408 if (bytes <= 0) 2423 mlog_ratelimited(ML_ERROR, "D 2409 mlog_ratelimited(ML_ERROR, "Direct IO failed, bytes = %lld", 2424 (long long)b 2410 (long long)bytes); 2425 if (private) { 2411 if (private) { 2426 if (bytes > 0) 2412 if (bytes > 0) 2427 ret = ocfs2_dio_end_i 2413 ret = ocfs2_dio_end_io_write(inode, private, offset, 2428 2414 bytes); 2429 else 2415 else 2430 ocfs2_dio_free_write_ 2416 ocfs2_dio_free_write_ctx(inode, private); 2431 } 2417 } 2432 2418 2433 ocfs2_iocb_clear_rw_locked(iocb); 2419 ocfs2_iocb_clear_rw_locked(iocb); 2434 2420 2435 level = ocfs2_iocb_rw_locked_level(io 2421 level = ocfs2_iocb_rw_locked_level(iocb); 2436 ocfs2_rw_unlock(inode, level); 2422 ocfs2_rw_unlock(inode, level); 2437 return ret; 2423 return ret; 2438 } 2424 } 2439 2425 2440 static ssize_t ocfs2_direct_IO(struct kiocb * 2426 static ssize_t ocfs2_direct_IO(struct kiocb *iocb, struct iov_iter *iter) 2441 { 2427 { 2442 struct file *file = iocb->ki_filp; 2428 struct file *file = iocb->ki_filp; 2443 struct inode *inode = file->f_mapping 2429 struct inode *inode = file->f_mapping->host; 2444 struct ocfs2_super *osb = OCFS2_SB(in 2430 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 2445 get_block_t *get_block; 2431 get_block_t *get_block; 2446 2432 2447 /* 2433 /* 2448 * Fallback to buffered I/O if we see 2434 * Fallback to buffered I/O if we see an inode without 2449 * extents. 2435 * extents. 2450 */ 2436 */ 2451 if (OCFS2_I(inode)->ip_dyn_features & 2437 if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) 2452 return 0; 2438 return 0; 2453 2439 2454 /* Fallback to buffered I/O if we do 2440 /* Fallback to buffered I/O if we do not support append dio. */ 2455 if (iocb->ki_pos + iter->count > i_si 2441 if (iocb->ki_pos + iter->count > i_size_read(inode) && 2456 !ocfs2_supports_append_dio(osb)) 2442 !ocfs2_supports_append_dio(osb)) 2457 return 0; 2443 return 0; 2458 2444 2459 if (iov_iter_rw(iter) == READ) 2445 if (iov_iter_rw(iter) == READ) 2460 get_block = ocfs2_lock_get_bl 2446 get_block = ocfs2_lock_get_block; 2461 else 2447 else 2462 get_block = ocfs2_dio_wr_get_ 2448 get_block = ocfs2_dio_wr_get_block; 2463 2449 2464 return __blockdev_direct_IO(iocb, ino 2450 return __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev, 2465 iter, get 2451 iter, get_block, 2466 ocfs2_dio !! 2452 ocfs2_dio_end_io, NULL, 0); 2467 } 2453 } 2468 2454 2469 const struct address_space_operations ocfs2_a 2455 const struct address_space_operations ocfs2_aops = { 2470 .dirty_folio = block_dirty !! 2456 .set_page_dirty = __set_page_dirty_buffers, 2471 .read_folio = ocfs2_read_ !! 2457 .readpage = ocfs2_readpage, 2472 .readahead = ocfs2_reada 2458 .readahead = ocfs2_readahead, 2473 .writepages = ocfs2_write !! 2459 .writepage = ocfs2_writepage, 2474 .write_begin = ocfs2_write 2460 .write_begin = ocfs2_write_begin, 2475 .write_end = ocfs2_write 2461 .write_end = ocfs2_write_end, 2476 .bmap = ocfs2_bmap, 2462 .bmap = ocfs2_bmap, 2477 .direct_IO = ocfs2_direc 2463 .direct_IO = ocfs2_direct_IO, 2478 .invalidate_folio = block_inval !! 2464 .invalidatepage = block_invalidatepage, 2479 .release_folio = ocfs2_relea !! 2465 .releasepage = ocfs2_releasepage, 2480 .migrate_folio = buffer_migr !! 2466 .migratepage = buffer_migrate_page, 2481 .is_partially_uptodate = block_is_pa 2467 .is_partially_uptodate = block_is_partially_uptodate, 2482 .error_remove_folio = generic_err !! 2468 .error_remove_page = generic_error_remove_page, 2483 }; 2469 }; 2484 2470
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.