1 // SPDX-License-Identifier: GPL-2.0 1 // SPDX-License-Identifier: GPL-2.0 2 /* 2 /* 3 * linux/fs/pipe.c 3 * linux/fs/pipe.c 4 * 4 * 5 * Copyright (C) 1991, 1992, 1999 Linus Torv 5 * Copyright (C) 1991, 1992, 1999 Linus Torvalds 6 */ 6 */ 7 7 8 #include <linux/mm.h> 8 #include <linux/mm.h> 9 #include <linux/file.h> 9 #include <linux/file.h> 10 #include <linux/poll.h> 10 #include <linux/poll.h> 11 #include <linux/slab.h> 11 #include <linux/slab.h> 12 #include <linux/module.h> 12 #include <linux/module.h> 13 #include <linux/init.h> 13 #include <linux/init.h> 14 #include <linux/fs.h> 14 #include <linux/fs.h> 15 #include <linux/log2.h> 15 #include <linux/log2.h> 16 #include <linux/mount.h> 16 #include <linux/mount.h> 17 #include <linux/pseudo_fs.h> 17 #include <linux/pseudo_fs.h> 18 #include <linux/magic.h> 18 #include <linux/magic.h> 19 #include <linux/pipe_fs_i.h> 19 #include <linux/pipe_fs_i.h> 20 #include <linux/uio.h> 20 #include <linux/uio.h> 21 #include <linux/highmem.h> 21 #include <linux/highmem.h> 22 #include <linux/pagemap.h> 22 #include <linux/pagemap.h> 23 #include <linux/audit.h> 23 #include <linux/audit.h> 24 #include <linux/syscalls.h> 24 #include <linux/syscalls.h> 25 #include <linux/fcntl.h> 25 #include <linux/fcntl.h> 26 #include <linux/memcontrol.h> 26 #include <linux/memcontrol.h> 27 #include <linux/watch_queue.h> << 28 #include <linux/sysctl.h> << 29 27 30 #include <linux/uaccess.h> 28 #include <linux/uaccess.h> 31 #include <asm/ioctls.h> 29 #include <asm/ioctls.h> 32 30 33 #include "internal.h" 31 #include "internal.h" 34 32 35 /* 33 /* 36 * New pipe buffers will be restricted to this << 37 * their pipe buffer quota. The general pipe u << 38 * buffers: one for data yet to be read, and o << 39 * than two, then a write to a non-empty pipe << 40 * full. This can occur with GNU make jobserve << 41 * semaphores: multiple processes may be waiti << 42 * pipe before reading tokens: https://lore.ke << 43 * << 44 * Users can reduce their pipe buffers with F_ << 45 * own risk, namely: pipe writes to non-full p << 46 * emptied. << 47 */ << 48 #define PIPE_MIN_DEF_BUFFERS 2 << 49 << 50 /* << 51 * The max size that a non-root user is allowe 34 * The max size that a non-root user is allowed to grow the pipe. Can 52 * be set by root in /proc/sys/fs/pipe-max-siz 35 * be set by root in /proc/sys/fs/pipe-max-size 53 */ 36 */ 54 static unsigned int pipe_max_size = 1048576; !! 37 unsigned int pipe_max_size = 1048576; 55 38 56 /* Maximum allocatable pages per user. Hard li 39 /* Maximum allocatable pages per user. Hard limit is unset by default, soft 57 * matches default values. 40 * matches default values. 58 */ 41 */ 59 static unsigned long pipe_user_pages_hard; !! 42 unsigned long pipe_user_pages_hard; 60 static unsigned long pipe_user_pages_soft = PI !! 43 unsigned long pipe_user_pages_soft = PIPE_DEF_BUFFERS * INR_OPEN_CUR; 61 44 62 /* 45 /* 63 * We use head and tail indices that aren't ma 46 * We use head and tail indices that aren't masked off, except at the point of 64 * dereference, but rather they're allowed to 47 * dereference, but rather they're allowed to wrap naturally. This means there 65 * isn't a dead spot in the buffer, but the ri 48 * isn't a dead spot in the buffer, but the ring has to be a power of two and 66 * <= 2^31. 49 * <= 2^31. 67 * -- David Howells 2019-09-23. 50 * -- David Howells 2019-09-23. 68 * 51 * 69 * Reads with count = 0 should always return 0 52 * Reads with count = 0 should always return 0. 70 * -- Julian Bradfield 1999-06-07. 53 * -- Julian Bradfield 1999-06-07. 71 * 54 * 72 * FIFOs and Pipes now generate SIGIO for both 55 * FIFOs and Pipes now generate SIGIO for both readers and writers. 73 * -- Jeremy Elson <jelson@circlemud.org> 2001 56 * -- Jeremy Elson <jelson@circlemud.org> 2001-08-16 74 * 57 * 75 * pipe_read & write cleanup 58 * pipe_read & write cleanup 76 * -- Manfred Spraul <manfred@colorfullife.com 59 * -- Manfred Spraul <manfred@colorfullife.com> 2002-05-09 77 */ 60 */ 78 61 79 #define cmp_int(l, r) ((l > r) - (l !! 62 static void pipe_lock_nested(struct pipe_inode_info *pipe, int subclass) 80 << 81 #ifdef CONFIG_PROVE_LOCKING << 82 static int pipe_lock_cmp_fn(const struct lockd << 83 const struct lockd << 84 { 63 { 85 return cmp_int((unsigned long) a, (uns !! 64 if (pipe->files) >> 65 mutex_lock_nested(&pipe->mutex, subclass); 86 } 66 } 87 #endif << 88 67 89 void pipe_lock(struct pipe_inode_info *pipe) 68 void pipe_lock(struct pipe_inode_info *pipe) 90 { 69 { 91 if (pipe->files) !! 70 /* 92 mutex_lock(&pipe->mutex); !! 71 * pipe_lock() nests non-pipe inode locks (for writing to a file) >> 72 */ >> 73 pipe_lock_nested(pipe, I_MUTEX_PARENT); 93 } 74 } 94 EXPORT_SYMBOL(pipe_lock); 75 EXPORT_SYMBOL(pipe_lock); 95 76 96 void pipe_unlock(struct pipe_inode_info *pipe) 77 void pipe_unlock(struct pipe_inode_info *pipe) 97 { 78 { 98 if (pipe->files) 79 if (pipe->files) 99 mutex_unlock(&pipe->mutex); 80 mutex_unlock(&pipe->mutex); 100 } 81 } 101 EXPORT_SYMBOL(pipe_unlock); 82 EXPORT_SYMBOL(pipe_unlock); 102 83 >> 84 static inline void __pipe_lock(struct pipe_inode_info *pipe) >> 85 { >> 86 mutex_lock_nested(&pipe->mutex, I_MUTEX_PARENT); >> 87 } >> 88 >> 89 static inline void __pipe_unlock(struct pipe_inode_info *pipe) >> 90 { >> 91 mutex_unlock(&pipe->mutex); >> 92 } >> 93 103 void pipe_double_lock(struct pipe_inode_info * 94 void pipe_double_lock(struct pipe_inode_info *pipe1, 104 struct pipe_inode_info * 95 struct pipe_inode_info *pipe2) 105 { 96 { 106 BUG_ON(pipe1 == pipe2); 97 BUG_ON(pipe1 == pipe2); 107 98 108 if (pipe1 > pipe2) !! 99 if (pipe1 < pipe2) { 109 swap(pipe1, pipe2); !! 100 pipe_lock_nested(pipe1, I_MUTEX_PARENT); >> 101 pipe_lock_nested(pipe2, I_MUTEX_CHILD); >> 102 } else { >> 103 pipe_lock_nested(pipe2, I_MUTEX_PARENT); >> 104 pipe_lock_nested(pipe1, I_MUTEX_CHILD); >> 105 } >> 106 } >> 107 >> 108 /* Drop the inode semaphore and wait for a pipe event, atomically */ >> 109 void pipe_wait(struct pipe_inode_info *pipe) >> 110 { >> 111 DEFINE_WAIT(rdwait); >> 112 DEFINE_WAIT(wrwait); 110 113 111 pipe_lock(pipe1); !! 114 /* 112 pipe_lock(pipe2); !! 115 * Pipes are system-local resources, so sleeping on them >> 116 * is considered a noninteractive wait: >> 117 */ >> 118 prepare_to_wait(&pipe->rd_wait, &rdwait, TASK_INTERRUPTIBLE); >> 119 prepare_to_wait(&pipe->wr_wait, &wrwait, TASK_INTERRUPTIBLE); >> 120 pipe_unlock(pipe); >> 121 schedule(); >> 122 finish_wait(&pipe->rd_wait, &rdwait); >> 123 finish_wait(&pipe->wr_wait, &wrwait); >> 124 pipe_lock(pipe); 113 } 125 } 114 126 115 static void anon_pipe_buf_release(struct pipe_ 127 static void anon_pipe_buf_release(struct pipe_inode_info *pipe, 116 struct pipe_ 128 struct pipe_buffer *buf) 117 { 129 { 118 struct page *page = buf->page; 130 struct page *page = buf->page; 119 131 120 /* 132 /* 121 * If nobody else uses this page, and 133 * If nobody else uses this page, and we don't already have a 122 * temporary page, let's keep track of 134 * temporary page, let's keep track of it as a one-deep 123 * allocation cache. (Otherwise just r 135 * allocation cache. (Otherwise just release our reference to it) 124 */ 136 */ 125 if (page_count(page) == 1 && !pipe->tm 137 if (page_count(page) == 1 && !pipe->tmp_page) 126 pipe->tmp_page = page; 138 pipe->tmp_page = page; 127 else 139 else 128 put_page(page); 140 put_page(page); 129 } 141 } 130 142 131 static bool anon_pipe_buf_try_steal(struct pip !! 143 static int anon_pipe_buf_steal(struct pipe_inode_info *pipe, 132 struct pipe_buffer *buf) !! 144 struct pipe_buffer *buf) 133 { 145 { 134 struct page *page = buf->page; 146 struct page *page = buf->page; 135 147 136 if (page_count(page) != 1) !! 148 if (page_count(page) == 1) { 137 return false; !! 149 memcg_kmem_uncharge(page, 0); 138 memcg_kmem_uncharge_page(page, 0); !! 150 __SetPageLocked(page); 139 __SetPageLocked(page); !! 151 return 0; 140 return true; !! 152 } >> 153 return 1; 141 } 154 } 142 155 143 /** 156 /** 144 * generic_pipe_buf_try_steal - attempt to tak !! 157 * generic_pipe_buf_steal - attempt to take ownership of a &pipe_buffer 145 * @pipe: the pipe that the buffer belon 158 * @pipe: the pipe that the buffer belongs to 146 * @buf: the buffer to attempt to steal 159 * @buf: the buffer to attempt to steal 147 * 160 * 148 * Description: 161 * Description: 149 * This function attempts to steal the &s 162 * This function attempts to steal the &struct page attached to 150 * @buf. If successful, this function ret 163 * @buf. If successful, this function returns 0 and returns with 151 * the page locked. The caller may then r 164 * the page locked. The caller may then reuse the page for whatever 152 * he wishes; the typical use is insertio 165 * he wishes; the typical use is insertion into a different file 153 * page cache. 166 * page cache. 154 */ 167 */ 155 bool generic_pipe_buf_try_steal(struct pipe_in !! 168 int generic_pipe_buf_steal(struct pipe_inode_info *pipe, 156 struct pipe_buffer *buf) !! 169 struct pipe_buffer *buf) 157 { 170 { 158 struct page *page = buf->page; 171 struct page *page = buf->page; 159 172 160 /* 173 /* 161 * A reference of one is golden, that 174 * A reference of one is golden, that means that the owner of this 162 * page is the only one holding a refe 175 * page is the only one holding a reference to it. lock the page 163 * and return OK. 176 * and return OK. 164 */ 177 */ 165 if (page_count(page) == 1) { 178 if (page_count(page) == 1) { 166 lock_page(page); 179 lock_page(page); 167 return true; !! 180 return 0; 168 } 181 } 169 return false; !! 182 >> 183 return 1; 170 } 184 } 171 EXPORT_SYMBOL(generic_pipe_buf_try_steal); !! 185 EXPORT_SYMBOL(generic_pipe_buf_steal); 172 186 173 /** 187 /** 174 * generic_pipe_buf_get - get a reference to a 188 * generic_pipe_buf_get - get a reference to a &struct pipe_buffer 175 * @pipe: the pipe that the buffer belon 189 * @pipe: the pipe that the buffer belongs to 176 * @buf: the buffer to get a reference 190 * @buf: the buffer to get a reference to 177 * 191 * 178 * Description: 192 * Description: 179 * This function grabs an extra reference 193 * This function grabs an extra reference to @buf. It's used in 180 * the tee() system call, when we duplica !! 194 * in the tee() system call, when we duplicate the buffers in one 181 * pipe into another. 195 * pipe into another. 182 */ 196 */ 183 bool generic_pipe_buf_get(struct pipe_inode_in 197 bool generic_pipe_buf_get(struct pipe_inode_info *pipe, struct pipe_buffer *buf) 184 { 198 { 185 return try_get_page(buf->page); 199 return try_get_page(buf->page); 186 } 200 } 187 EXPORT_SYMBOL(generic_pipe_buf_get); 201 EXPORT_SYMBOL(generic_pipe_buf_get); 188 202 189 /** 203 /** >> 204 * generic_pipe_buf_confirm - verify contents of the pipe buffer >> 205 * @info: the pipe that the buffer belongs to >> 206 * @buf: the buffer to confirm >> 207 * >> 208 * Description: >> 209 * This function does nothing, because the generic pipe code uses >> 210 * pages that are always good when inserted into the pipe. >> 211 */ >> 212 int generic_pipe_buf_confirm(struct pipe_inode_info *info, >> 213 struct pipe_buffer *buf) >> 214 { >> 215 return 0; >> 216 } >> 217 EXPORT_SYMBOL(generic_pipe_buf_confirm); >> 218 >> 219 /** 190 * generic_pipe_buf_release - put a reference 220 * generic_pipe_buf_release - put a reference to a &struct pipe_buffer 191 * @pipe: the pipe that the buffer belon 221 * @pipe: the pipe that the buffer belongs to 192 * @buf: the buffer to put a reference 222 * @buf: the buffer to put a reference to 193 * 223 * 194 * Description: 224 * Description: 195 * This function releases a reference to 225 * This function releases a reference to @buf. 196 */ 226 */ 197 void generic_pipe_buf_release(struct pipe_inod 227 void generic_pipe_buf_release(struct pipe_inode_info *pipe, 198 struct pipe_buff 228 struct pipe_buffer *buf) 199 { 229 { 200 put_page(buf->page); 230 put_page(buf->page); 201 } 231 } 202 EXPORT_SYMBOL(generic_pipe_buf_release); 232 EXPORT_SYMBOL(generic_pipe_buf_release); 203 233 >> 234 /* New data written to a pipe may be appended to a buffer with this type. */ 204 static const struct pipe_buf_operations anon_p 235 static const struct pipe_buf_operations anon_pipe_buf_ops = { 205 .release = anon_pipe_buf_releas !! 236 .confirm = generic_pipe_buf_confirm, 206 .try_steal = anon_pipe_buf_try_st !! 237 .release = anon_pipe_buf_release, 207 .get = generic_pipe_buf_get !! 238 .steal = anon_pipe_buf_steal, >> 239 .get = generic_pipe_buf_get, >> 240 }; >> 241 >> 242 static const struct pipe_buf_operations anon_pipe_buf_nomerge_ops = { >> 243 .confirm = generic_pipe_buf_confirm, >> 244 .release = anon_pipe_buf_release, >> 245 .steal = anon_pipe_buf_steal, >> 246 .get = generic_pipe_buf_get, 208 }; 247 }; 209 248 >> 249 static const struct pipe_buf_operations packet_pipe_buf_ops = { >> 250 .confirm = generic_pipe_buf_confirm, >> 251 .release = anon_pipe_buf_release, >> 252 .steal = anon_pipe_buf_steal, >> 253 .get = generic_pipe_buf_get, >> 254 }; >> 255 >> 256 /** >> 257 * pipe_buf_mark_unmergeable - mark a &struct pipe_buffer as unmergeable >> 258 * @buf: the buffer to mark >> 259 * >> 260 * Description: >> 261 * This function ensures that no future writes will be merged into the >> 262 * given &struct pipe_buffer. This is necessary when multiple pipe buffers >> 263 * share the same backing page. >> 264 */ >> 265 void pipe_buf_mark_unmergeable(struct pipe_buffer *buf) >> 266 { >> 267 if (buf->ops == &anon_pipe_buf_ops) >> 268 buf->ops = &anon_pipe_buf_nomerge_ops; >> 269 } >> 270 >> 271 static bool pipe_buf_can_merge(struct pipe_buffer *buf) >> 272 { >> 273 return buf->ops == &anon_pipe_buf_ops; >> 274 } >> 275 210 /* Done while waiting without holding the pipe 276 /* Done while waiting without holding the pipe lock - thus the READ_ONCE() */ 211 static inline bool pipe_readable(const struct 277 static inline bool pipe_readable(const struct pipe_inode_info *pipe) 212 { 278 { 213 unsigned int head = READ_ONCE(pipe->he 279 unsigned int head = READ_ONCE(pipe->head); 214 unsigned int tail = READ_ONCE(pipe->ta 280 unsigned int tail = READ_ONCE(pipe->tail); 215 unsigned int writers = READ_ONCE(pipe- 281 unsigned int writers = READ_ONCE(pipe->writers); 216 282 217 return !pipe_empty(head, tail) || !wri 283 return !pipe_empty(head, tail) || !writers; 218 } 284 } 219 285 220 static inline unsigned int pipe_update_tail(st << 221 st << 222 un << 223 { << 224 pipe_buf_release(pipe, buf); << 225 << 226 /* << 227 * If the pipe has a watch_queue, we n << 228 * by the spinlock because notificatio << 229 * this spinlock, no mutex << 230 */ << 231 if (pipe_has_watch_queue(pipe)) { << 232 spin_lock_irq(&pipe->rd_wait.l << 233 #ifdef CONFIG_WATCH_QUEUE << 234 if (buf->flags & PIPE_BUF_FLAG << 235 pipe->note_loss = true << 236 #endif << 237 pipe->tail = ++tail; << 238 spin_unlock_irq(&pipe->rd_wait << 239 return tail; << 240 } << 241 << 242 /* << 243 * Without a watch_queue, we can simpl << 244 * without the spinlock - the mutex is << 245 */ << 246 pipe->tail = ++tail; << 247 return tail; << 248 } << 249 << 250 static ssize_t 286 static ssize_t 251 pipe_read(struct kiocb *iocb, struct iov_iter 287 pipe_read(struct kiocb *iocb, struct iov_iter *to) 252 { 288 { 253 size_t total_len = iov_iter_count(to); 289 size_t total_len = iov_iter_count(to); 254 struct file *filp = iocb->ki_filp; 290 struct file *filp = iocb->ki_filp; 255 struct pipe_inode_info *pipe = filp->p 291 struct pipe_inode_info *pipe = filp->private_data; 256 bool was_full, wake_next_reader = fals 292 bool was_full, wake_next_reader = false; 257 ssize_t ret; 293 ssize_t ret; 258 294 259 /* Null read succeeds. */ 295 /* Null read succeeds. */ 260 if (unlikely(total_len == 0)) 296 if (unlikely(total_len == 0)) 261 return 0; 297 return 0; 262 298 263 ret = 0; 299 ret = 0; 264 mutex_lock(&pipe->mutex); !! 300 __pipe_lock(pipe); 265 301 266 /* 302 /* 267 * We only wake up writers if the pipe 303 * We only wake up writers if the pipe was full when we started 268 * reading in order to avoid unnecessa 304 * reading in order to avoid unnecessary wakeups. 269 * 305 * 270 * But when we do wake up writers, we 306 * But when we do wake up writers, we do so using a sync wakeup 271 * (WF_SYNC), because we want them to 307 * (WF_SYNC), because we want them to get going and generate more 272 * data for us. 308 * data for us. 273 */ 309 */ 274 was_full = pipe_full(pipe->head, pipe- 310 was_full = pipe_full(pipe->head, pipe->tail, pipe->max_usage); 275 for (;;) { 311 for (;;) { 276 /* Read ->head with a barrier !! 312 unsigned int head = pipe->head; 277 unsigned int head = smp_load_a << 278 unsigned int tail = pipe->tail 313 unsigned int tail = pipe->tail; 279 unsigned int mask = pipe->ring 314 unsigned int mask = pipe->ring_size - 1; 280 315 281 #ifdef CONFIG_WATCH_QUEUE << 282 if (pipe->note_loss) { << 283 struct watch_notificat << 284 << 285 if (total_len < 8) { << 286 if (ret == 0) << 287 ret = << 288 break; << 289 } << 290 << 291 n.type = WATCH_TYPE_ME << 292 n.subtype = WATCH_META << 293 n.info = watch_sizeof( << 294 if (copy_to_iter(&n, s << 295 if (ret == 0) << 296 ret = << 297 break; << 298 } << 299 ret += sizeof(n); << 300 total_len -= sizeof(n) << 301 pipe->note_loss = fals << 302 } << 303 #endif << 304 << 305 if (!pipe_empty(head, tail)) { 316 if (!pipe_empty(head, tail)) { 306 struct pipe_buffer *bu 317 struct pipe_buffer *buf = &pipe->bufs[tail & mask]; 307 size_t chars = buf->le 318 size_t chars = buf->len; 308 size_t written; 319 size_t written; 309 int error; 320 int error; 310 321 311 if (chars > total_len) !! 322 if (chars > total_len) 312 if (buf->flags << 313 if (re << 314 << 315 break; << 316 } << 317 chars = total_ 323 chars = total_len; 318 } << 319 324 320 error = pipe_buf_confi 325 error = pipe_buf_confirm(pipe, buf); 321 if (error) { 326 if (error) { 322 if (!ret) 327 if (!ret) 323 ret = 328 ret = error; 324 break; 329 break; 325 } 330 } 326 331 327 written = copy_page_to 332 written = copy_page_to_iter(buf->page, buf->offset, chars, to); 328 if (unlikely(written < 333 if (unlikely(written < chars)) { 329 if (!ret) 334 if (!ret) 330 ret = 335 ret = -EFAULT; 331 break; 336 break; 332 } 337 } 333 ret += chars; 338 ret += chars; 334 buf->offset += chars; 339 buf->offset += chars; 335 buf->len -= chars; 340 buf->len -= chars; 336 341 337 /* Was it a packet buf 342 /* Was it a packet buffer? Clean up and exit */ 338 if (buf->flags & PIPE_ 343 if (buf->flags & PIPE_BUF_FLAG_PACKET) { 339 total_len = ch 344 total_len = chars; 340 buf->len = 0; 345 buf->len = 0; 341 } 346 } 342 347 343 if (!buf->len) !! 348 if (!buf->len) { 344 tail = pipe_up !! 349 pipe_buf_release(pipe, buf); >> 350 spin_lock_irq(&pipe->rd_wait.lock); >> 351 tail++; >> 352 pipe->tail = tail; >> 353 spin_unlock_irq(&pipe->rd_wait.lock); >> 354 } 345 total_len -= chars; 355 total_len -= chars; 346 if (!total_len) 356 if (!total_len) 347 break; /* com 357 break; /* common path: read succeeded */ 348 if (!pipe_empty(head, 358 if (!pipe_empty(head, tail)) /* More to do? */ 349 continue; 359 continue; 350 } 360 } 351 361 352 if (!pipe->writers) 362 if (!pipe->writers) 353 break; 363 break; 354 if (ret) 364 if (ret) 355 break; 365 break; 356 if ((filp->f_flags & O_NONBLOC !! 366 if (filp->f_flags & O_NONBLOCK) { 357 (iocb->ki_flags & IOCB_NOW << 358 ret = -EAGAIN; 367 ret = -EAGAIN; 359 break; 368 break; 360 } 369 } 361 mutex_unlock(&pipe->mutex); !! 370 __pipe_unlock(pipe); 362 371 363 /* 372 /* 364 * We only get here if we didn 373 * We only get here if we didn't actually read anything. 365 * 374 * 366 * However, we could have seen 375 * However, we could have seen (and removed) a zero-sized 367 * pipe buffer, and might have 376 * pipe buffer, and might have made space in the buffers 368 * that way. 377 * that way. 369 * 378 * 370 * You can't make zero-sized p 379 * You can't make zero-sized pipe buffers by doing an empty 371 * write (not even in packet m 380 * write (not even in packet mode), but they can happen if 372 * the writer gets an EFAULT w 381 * the writer gets an EFAULT when trying to fill a buffer 373 * that already got allocated 382 * that already got allocated and inserted in the buffer 374 * array. 383 * array. 375 * 384 * 376 * So we still need to wake up 385 * So we still need to wake up any pending writers in the 377 * _very_ unlikely case that t 386 * _very_ unlikely case that the pipe was full, but we got 378 * no data. 387 * no data. 379 */ 388 */ 380 if (unlikely(was_full)) !! 389 if (unlikely(was_full)) { 381 wake_up_interruptible_ 390 wake_up_interruptible_sync_poll(&pipe->wr_wait, EPOLLOUT | EPOLLWRNORM); 382 kill_fasync(&pipe->fasync_writ !! 391 kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT); >> 392 } 383 393 384 /* 394 /* 385 * But because we didn't read 395 * But because we didn't read anything, at this point we can 386 * just return directly with - 396 * just return directly with -ERESTARTSYS if we're interrupted, 387 * since we've done any requir 397 * since we've done any required wakeups and there's no need 388 * to mark anything accessed. 398 * to mark anything accessed. And we've dropped the lock. 389 */ 399 */ 390 if (wait_event_interruptible_e 400 if (wait_event_interruptible_exclusive(pipe->rd_wait, pipe_readable(pipe)) < 0) 391 return -ERESTARTSYS; 401 return -ERESTARTSYS; 392 402 393 mutex_lock(&pipe->mutex); !! 403 __pipe_lock(pipe); 394 was_full = pipe_full(pipe->hea 404 was_full = pipe_full(pipe->head, pipe->tail, pipe->max_usage); 395 wake_next_reader = true; 405 wake_next_reader = true; 396 } 406 } 397 if (pipe_empty(pipe->head, pipe->tail) 407 if (pipe_empty(pipe->head, pipe->tail)) 398 wake_next_reader = false; 408 wake_next_reader = false; 399 mutex_unlock(&pipe->mutex); !! 409 __pipe_unlock(pipe); 400 410 401 if (was_full) !! 411 if (was_full) { 402 wake_up_interruptible_sync_pol 412 wake_up_interruptible_sync_poll(&pipe->wr_wait, EPOLLOUT | EPOLLWRNORM); >> 413 kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT); >> 414 } 403 if (wake_next_reader) 415 if (wake_next_reader) 404 wake_up_interruptible_sync_pol 416 wake_up_interruptible_sync_poll(&pipe->rd_wait, EPOLLIN | EPOLLRDNORM); 405 kill_fasync(&pipe->fasync_writers, SIG << 406 if (ret > 0) 417 if (ret > 0) 407 file_accessed(filp); 418 file_accessed(filp); 408 return ret; 419 return ret; 409 } 420 } 410 421 411 static inline int is_packetized(struct file *f 422 static inline int is_packetized(struct file *file) 412 { 423 { 413 return (file->f_flags & O_DIRECT) != 0 424 return (file->f_flags & O_DIRECT) != 0; 414 } 425 } 415 426 416 /* Done while waiting without holding the pipe 427 /* Done while waiting without holding the pipe lock - thus the READ_ONCE() */ 417 static inline bool pipe_writable(const struct 428 static inline bool pipe_writable(const struct pipe_inode_info *pipe) 418 { 429 { 419 unsigned int head = READ_ONCE(pipe->he 430 unsigned int head = READ_ONCE(pipe->head); 420 unsigned int tail = READ_ONCE(pipe->ta 431 unsigned int tail = READ_ONCE(pipe->tail); 421 unsigned int max_usage = READ_ONCE(pip 432 unsigned int max_usage = READ_ONCE(pipe->max_usage); 422 433 423 return !pipe_full(head, tail, max_usag 434 return !pipe_full(head, tail, max_usage) || 424 !READ_ONCE(pipe->readers); 435 !READ_ONCE(pipe->readers); 425 } 436 } 426 437 427 static ssize_t 438 static ssize_t 428 pipe_write(struct kiocb *iocb, struct iov_iter 439 pipe_write(struct kiocb *iocb, struct iov_iter *from) 429 { 440 { 430 struct file *filp = iocb->ki_filp; 441 struct file *filp = iocb->ki_filp; 431 struct pipe_inode_info *pipe = filp->p 442 struct pipe_inode_info *pipe = filp->private_data; 432 unsigned int head; 443 unsigned int head; 433 ssize_t ret = 0; 444 ssize_t ret = 0; 434 size_t total_len = iov_iter_count(from 445 size_t total_len = iov_iter_count(from); 435 ssize_t chars; 446 ssize_t chars; 436 bool was_empty = false; 447 bool was_empty = false; 437 bool wake_next_writer = false; 448 bool wake_next_writer = false; 438 449 439 /* << 440 * Reject writing to watch queue pipes << 441 * the pipe. << 442 * Otherwise, lockdep would be unhappy << 443 * pipe locked. << 444 * If we had to support locking a norm << 445 * the same time, we could set up lock << 446 * since we don't actually need that, << 447 */ << 448 if (pipe_has_watch_queue(pipe)) << 449 return -EXDEV; << 450 << 451 /* Null write succeeds. */ 450 /* Null write succeeds. */ 452 if (unlikely(total_len == 0)) 451 if (unlikely(total_len == 0)) 453 return 0; 452 return 0; 454 453 455 mutex_lock(&pipe->mutex); !! 454 __pipe_lock(pipe); 456 455 457 if (!pipe->readers) { 456 if (!pipe->readers) { 458 send_sig(SIGPIPE, current, 0); 457 send_sig(SIGPIPE, current, 0); 459 ret = -EPIPE; 458 ret = -EPIPE; 460 goto out; 459 goto out; 461 } 460 } 462 461 463 /* 462 /* >> 463 * Only wake up if the pipe started out empty, since >> 464 * otherwise there should be no readers waiting. >> 465 * 464 * If it wasn't empty we try to merge 466 * If it wasn't empty we try to merge new data into 465 * the last buffer. 467 * the last buffer. 466 * 468 * 467 * That naturally merges small writes, 469 * That naturally merges small writes, but it also 468 * page-aligns the rest of the writes !! 470 * page-aligs the rest of the writes for large writes 469 * spanning multiple pages. 471 * spanning multiple pages. 470 */ 472 */ 471 head = pipe->head; 473 head = pipe->head; 472 was_empty = pipe_empty(head, pipe->tai 474 was_empty = pipe_empty(head, pipe->tail); 473 chars = total_len & (PAGE_SIZE-1); 475 chars = total_len & (PAGE_SIZE-1); 474 if (chars && !was_empty) { 476 if (chars && !was_empty) { 475 unsigned int mask = pipe->ring 477 unsigned int mask = pipe->ring_size - 1; 476 struct pipe_buffer *buf = &pip 478 struct pipe_buffer *buf = &pipe->bufs[(head - 1) & mask]; 477 int offset = buf->offset + buf 479 int offset = buf->offset + buf->len; 478 480 479 if ((buf->flags & PIPE_BUF_FLA !! 481 if (pipe_buf_can_merge(buf) && offset + chars <= PAGE_SIZE) { 480 offset + chars <= PAGE_SIZ << 481 ret = pipe_buf_confirm 482 ret = pipe_buf_confirm(pipe, buf); 482 if (ret) 483 if (ret) 483 goto out; 484 goto out; 484 485 485 ret = copy_page_from_i 486 ret = copy_page_from_iter(buf->page, offset, chars, from); 486 if (unlikely(ret < cha 487 if (unlikely(ret < chars)) { 487 ret = -EFAULT; 488 ret = -EFAULT; 488 goto out; 489 goto out; 489 } 490 } 490 491 491 buf->len += ret; 492 buf->len += ret; 492 if (!iov_iter_count(fr 493 if (!iov_iter_count(from)) 493 goto out; 494 goto out; 494 } 495 } 495 } 496 } 496 497 497 for (;;) { 498 for (;;) { 498 if (!pipe->readers) { 499 if (!pipe->readers) { 499 send_sig(SIGPIPE, curr 500 send_sig(SIGPIPE, current, 0); 500 if (!ret) 501 if (!ret) 501 ret = -EPIPE; 502 ret = -EPIPE; 502 break; 503 break; 503 } 504 } 504 505 505 head = pipe->head; 506 head = pipe->head; 506 if (!pipe_full(head, pipe->tai 507 if (!pipe_full(head, pipe->tail, pipe->max_usage)) { 507 unsigned int mask = pi 508 unsigned int mask = pipe->ring_size - 1; 508 struct pipe_buffer *bu !! 509 struct pipe_buffer *buf = &pipe->bufs[head & mask]; 509 struct page *page = pi 510 struct page *page = pipe->tmp_page; 510 int copied; 511 int copied; 511 512 512 if (!page) { 513 if (!page) { 513 page = alloc_p 514 page = alloc_page(GFP_HIGHUSER | __GFP_ACCOUNT); 514 if (unlikely(! 515 if (unlikely(!page)) { 515 ret = 516 ret = ret ? : -ENOMEM; 516 break; 517 break; 517 } 518 } 518 pipe->tmp_page 519 pipe->tmp_page = page; 519 } 520 } 520 521 521 /* Allocate a slot in 522 /* Allocate a slot in the ring in advance and attach an 522 * empty buffer. If w 523 * empty buffer. If we fault or otherwise fail to use 523 * it, either the read 524 * it, either the reader will consume it or it'll still 524 * be there for the ne 525 * be there for the next write. 525 */ 526 */ >> 527 spin_lock_irq(&pipe->rd_wait.lock); >> 528 >> 529 head = pipe->head; >> 530 if (pipe_full(head, pipe->tail, pipe->max_usage)) { >> 531 spin_unlock_irq(&pipe->rd_wait.lock); >> 532 continue; >> 533 } >> 534 526 pipe->head = head + 1; 535 pipe->head = head + 1; >> 536 spin_unlock_irq(&pipe->rd_wait.lock); 527 537 528 /* Insert it into the 538 /* Insert it into the buffer array */ 529 buf = &pipe->bufs[head 539 buf = &pipe->bufs[head & mask]; 530 buf->page = page; 540 buf->page = page; 531 buf->ops = &anon_pipe_ 541 buf->ops = &anon_pipe_buf_ops; 532 buf->offset = 0; 542 buf->offset = 0; 533 buf->len = 0; 543 buf->len = 0; 534 if (is_packetized(filp !! 544 buf->flags = 0; >> 545 if (is_packetized(filp)) { >> 546 buf->ops = &packet_pipe_buf_ops; 535 buf->flags = P 547 buf->flags = PIPE_BUF_FLAG_PACKET; 536 else !! 548 } 537 buf->flags = P << 538 pipe->tmp_page = NULL; 549 pipe->tmp_page = NULL; 539 550 540 copied = copy_page_fro 551 copied = copy_page_from_iter(page, 0, PAGE_SIZE, from); 541 if (unlikely(copied < 552 if (unlikely(copied < PAGE_SIZE && iov_iter_count(from))) { 542 if (!ret) 553 if (!ret) 543 ret = 554 ret = -EFAULT; 544 break; 555 break; 545 } 556 } 546 ret += copied; 557 ret += copied; >> 558 buf->offset = 0; 547 buf->len = copied; 559 buf->len = copied; 548 560 549 if (!iov_iter_count(fr 561 if (!iov_iter_count(from)) 550 break; 562 break; 551 } 563 } 552 564 553 if (!pipe_full(head, pipe->tai 565 if (!pipe_full(head, pipe->tail, pipe->max_usage)) 554 continue; 566 continue; 555 567 556 /* Wait for buffer space to be 568 /* Wait for buffer space to become available. */ 557 if ((filp->f_flags & O_NONBLOC !! 569 if (filp->f_flags & O_NONBLOCK) { 558 (iocb->ki_flags & IOCB_NOW << 559 if (!ret) 570 if (!ret) 560 ret = -EAGAIN; 571 ret = -EAGAIN; 561 break; 572 break; 562 } 573 } 563 if (signal_pending(current)) { 574 if (signal_pending(current)) { 564 if (!ret) 575 if (!ret) 565 ret = -ERESTAR 576 ret = -ERESTARTSYS; 566 break; 577 break; 567 } 578 } 568 579 569 /* 580 /* 570 * We're going to release the 581 * We're going to release the pipe lock and wait for more 571 * space. We wake up any reade 582 * space. We wake up any readers if necessary, and then 572 * after waiting we need to re 583 * after waiting we need to re-check whether the pipe 573 * become empty while we dropp 584 * become empty while we dropped the lock. 574 */ 585 */ 575 mutex_unlock(&pipe->mutex); !! 586 __pipe_unlock(pipe); 576 if (was_empty) !! 587 if (was_empty) { 577 wake_up_interruptible_ 588 wake_up_interruptible_sync_poll(&pipe->rd_wait, EPOLLIN | EPOLLRDNORM); 578 kill_fasync(&pipe->fasync_read !! 589 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN); >> 590 } 579 wait_event_interruptible_exclu 591 wait_event_interruptible_exclusive(pipe->wr_wait, pipe_writable(pipe)); 580 mutex_lock(&pipe->mutex); !! 592 __pipe_lock(pipe); 581 was_empty = pipe_empty(pipe->h 593 was_empty = pipe_empty(pipe->head, pipe->tail); 582 wake_next_writer = true; 594 wake_next_writer = true; 583 } 595 } 584 out: 596 out: 585 if (pipe_full(pipe->head, pipe->tail, 597 if (pipe_full(pipe->head, pipe->tail, pipe->max_usage)) 586 wake_next_writer = false; 598 wake_next_writer = false; 587 mutex_unlock(&pipe->mutex); !! 599 __pipe_unlock(pipe); 588 600 589 /* 601 /* 590 * If we do do a wakeup event, we do a 602 * If we do do a wakeup event, we do a 'sync' wakeup, because we 591 * want the reader to start processing 603 * want the reader to start processing things asap, rather than 592 * leave the data pending. 604 * leave the data pending. 593 * 605 * 594 * This is particularly important for 606 * This is particularly important for small writes, because of 595 * how (for example) the GNU make jobs 607 * how (for example) the GNU make jobserver uses small writes to 596 * wake up pending jobs 608 * wake up pending jobs 597 * << 598 * Epoll nonsensically wants a wakeup << 599 * was already empty or not. << 600 */ 609 */ 601 if (was_empty || pipe->poll_usage) !! 610 if (was_empty) { 602 wake_up_interruptible_sync_pol 611 wake_up_interruptible_sync_poll(&pipe->rd_wait, EPOLLIN | EPOLLRDNORM); 603 kill_fasync(&pipe->fasync_readers, SIG !! 612 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN); >> 613 } 604 if (wake_next_writer) 614 if (wake_next_writer) 605 wake_up_interruptible_sync_pol 615 wake_up_interruptible_sync_poll(&pipe->wr_wait, EPOLLOUT | EPOLLWRNORM); 606 if (ret > 0 && sb_start_write_trylock( 616 if (ret > 0 && sb_start_write_trylock(file_inode(filp)->i_sb)) { 607 int err = file_update_time(fil 617 int err = file_update_time(filp); 608 if (err) 618 if (err) 609 ret = err; 619 ret = err; 610 sb_end_write(file_inode(filp)- 620 sb_end_write(file_inode(filp)->i_sb); 611 } 621 } 612 return ret; 622 return ret; 613 } 623 } 614 624 615 static long pipe_ioctl(struct file *filp, unsi 625 static long pipe_ioctl(struct file *filp, unsigned int cmd, unsigned long arg) 616 { 626 { 617 struct pipe_inode_info *pipe = filp->p 627 struct pipe_inode_info *pipe = filp->private_data; 618 unsigned int count, head, tail, mask; !! 628 int count, head, tail, mask; 619 629 620 switch (cmd) { 630 switch (cmd) { 621 case FIONREAD: !! 631 case FIONREAD: 622 mutex_lock(&pipe->mutex); !! 632 __pipe_lock(pipe); 623 count = 0; !! 633 count = 0; 624 head = pipe->head; !! 634 head = pipe->head; 625 tail = pipe->tail; !! 635 tail = pipe->tail; 626 mask = pipe->ring_size - 1; !! 636 mask = pipe->ring_size - 1; 627 !! 637 628 while (tail != head) { !! 638 while (tail != head) { 629 count += pipe->bufs[ta !! 639 count += pipe->bufs[tail & mask].len; 630 tail++; !! 640 tail++; 631 } !! 641 } 632 mutex_unlock(&pipe->mutex); !! 642 __pipe_unlock(pipe); 633 << 634 return put_user(count, (int __ << 635 << 636 #ifdef CONFIG_WATCH_QUEUE << 637 case IOC_WATCH_QUEUE_SET_SIZE: { << 638 int ret; << 639 mutex_lock(&pipe->mutex); << 640 ret = watch_queue_set_size(pip << 641 mutex_unlock(&pipe->mutex); << 642 return ret; << 643 } << 644 << 645 case IOC_WATCH_QUEUE_SET_FILTER: << 646 return watch_queue_set_filter( << 647 pipe, (struct watch_no << 648 #endif << 649 643 650 default: !! 644 return put_user(count, (int __user *)arg); 651 return -ENOIOCTLCMD; !! 645 default: >> 646 return -ENOIOCTLCMD; 652 } 647 } 653 } 648 } 654 649 655 /* No kernel lock held - fine */ 650 /* No kernel lock held - fine */ 656 static __poll_t 651 static __poll_t 657 pipe_poll(struct file *filp, poll_table *wait) 652 pipe_poll(struct file *filp, poll_table *wait) 658 { 653 { 659 __poll_t mask; 654 __poll_t mask; 660 struct pipe_inode_info *pipe = filp->p 655 struct pipe_inode_info *pipe = filp->private_data; 661 unsigned int head, tail; 656 unsigned int head, tail; 662 657 663 /* Epoll has some historical nasty sem << 664 WRITE_ONCE(pipe->poll_usage, true); << 665 << 666 /* 658 /* 667 * Reading pipe state only -- no need 659 * Reading pipe state only -- no need for acquiring the semaphore. 668 * 660 * 669 * But because this is racy, the code 661 * But because this is racy, the code has to add the 670 * entry to the poll table _first_ .. 662 * entry to the poll table _first_ .. 671 */ 663 */ 672 if (filp->f_mode & FMODE_READ) 664 if (filp->f_mode & FMODE_READ) 673 poll_wait(filp, &pipe->rd_wait 665 poll_wait(filp, &pipe->rd_wait, wait); 674 if (filp->f_mode & FMODE_WRITE) 666 if (filp->f_mode & FMODE_WRITE) 675 poll_wait(filp, &pipe->wr_wait 667 poll_wait(filp, &pipe->wr_wait, wait); 676 668 677 /* 669 /* 678 * .. and only then can you do the rac 670 * .. and only then can you do the racy tests. That way, 679 * if something changes and you got it 671 * if something changes and you got it wrong, the poll 680 * table entry will wake you up and fi 672 * table entry will wake you up and fix it. 681 */ 673 */ 682 head = READ_ONCE(pipe->head); 674 head = READ_ONCE(pipe->head); 683 tail = READ_ONCE(pipe->tail); 675 tail = READ_ONCE(pipe->tail); 684 676 685 mask = 0; 677 mask = 0; 686 if (filp->f_mode & FMODE_READ) { 678 if (filp->f_mode & FMODE_READ) { 687 if (!pipe_empty(head, tail)) 679 if (!pipe_empty(head, tail)) 688 mask |= EPOLLIN | EPOL 680 mask |= EPOLLIN | EPOLLRDNORM; 689 if (!pipe->writers && filp->f_ !! 681 if (!pipe->writers && filp->f_version != pipe->w_counter) 690 mask |= EPOLLHUP; 682 mask |= EPOLLHUP; 691 } 683 } 692 684 693 if (filp->f_mode & FMODE_WRITE) { 685 if (filp->f_mode & FMODE_WRITE) { 694 if (!pipe_full(head, tail, pip 686 if (!pipe_full(head, tail, pipe->max_usage)) 695 mask |= EPOLLOUT | EPO 687 mask |= EPOLLOUT | EPOLLWRNORM; 696 /* 688 /* 697 * Most Unices do not set EPOL 689 * Most Unices do not set EPOLLERR for FIFOs but on Linux they 698 * behave exactly like pipes f 690 * behave exactly like pipes for poll(). 699 */ 691 */ 700 if (!pipe->readers) 692 if (!pipe->readers) 701 mask |= EPOLLERR; 693 mask |= EPOLLERR; 702 } 694 } 703 695 704 return mask; 696 return mask; 705 } 697 } 706 698 707 static void put_pipe_info(struct inode *inode, 699 static void put_pipe_info(struct inode *inode, struct pipe_inode_info *pipe) 708 { 700 { 709 int kill = 0; 701 int kill = 0; 710 702 711 spin_lock(&inode->i_lock); 703 spin_lock(&inode->i_lock); 712 if (!--pipe->files) { 704 if (!--pipe->files) { 713 inode->i_pipe = NULL; 705 inode->i_pipe = NULL; 714 kill = 1; 706 kill = 1; 715 } 707 } 716 spin_unlock(&inode->i_lock); 708 spin_unlock(&inode->i_lock); 717 709 718 if (kill) 710 if (kill) 719 free_pipe_info(pipe); 711 free_pipe_info(pipe); 720 } 712 } 721 713 722 static int 714 static int 723 pipe_release(struct inode *inode, struct file 715 pipe_release(struct inode *inode, struct file *file) 724 { 716 { 725 struct pipe_inode_info *pipe = file->p 717 struct pipe_inode_info *pipe = file->private_data; 726 718 727 mutex_lock(&pipe->mutex); !! 719 __pipe_lock(pipe); 728 if (file->f_mode & FMODE_READ) 720 if (file->f_mode & FMODE_READ) 729 pipe->readers--; 721 pipe->readers--; 730 if (file->f_mode & FMODE_WRITE) 722 if (file->f_mode & FMODE_WRITE) 731 pipe->writers--; 723 pipe->writers--; 732 724 733 /* Was that the last reader or writer, 725 /* Was that the last reader or writer, but not the other side? */ 734 if (!pipe->readers != !pipe->writers) 726 if (!pipe->readers != !pipe->writers) { 735 wake_up_interruptible_all(&pip 727 wake_up_interruptible_all(&pipe->rd_wait); 736 wake_up_interruptible_all(&pip 728 wake_up_interruptible_all(&pipe->wr_wait); 737 kill_fasync(&pipe->fasync_read 729 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN); 738 kill_fasync(&pipe->fasync_writ 730 kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT); 739 } 731 } 740 mutex_unlock(&pipe->mutex); !! 732 __pipe_unlock(pipe); 741 733 742 put_pipe_info(inode, pipe); 734 put_pipe_info(inode, pipe); 743 return 0; 735 return 0; 744 } 736 } 745 737 746 static int 738 static int 747 pipe_fasync(int fd, struct file *filp, int on) 739 pipe_fasync(int fd, struct file *filp, int on) 748 { 740 { 749 struct pipe_inode_info *pipe = filp->p 741 struct pipe_inode_info *pipe = filp->private_data; 750 int retval = 0; 742 int retval = 0; 751 743 752 mutex_lock(&pipe->mutex); !! 744 __pipe_lock(pipe); 753 if (filp->f_mode & FMODE_READ) 745 if (filp->f_mode & FMODE_READ) 754 retval = fasync_helper(fd, fil 746 retval = fasync_helper(fd, filp, on, &pipe->fasync_readers); 755 if ((filp->f_mode & FMODE_WRITE) && re 747 if ((filp->f_mode & FMODE_WRITE) && retval >= 0) { 756 retval = fasync_helper(fd, fil 748 retval = fasync_helper(fd, filp, on, &pipe->fasync_writers); 757 if (retval < 0 && (filp->f_mod 749 if (retval < 0 && (filp->f_mode & FMODE_READ)) 758 /* this can happen onl 750 /* this can happen only if on == T */ 759 fasync_helper(-1, filp 751 fasync_helper(-1, filp, 0, &pipe->fasync_readers); 760 } 752 } 761 mutex_unlock(&pipe->mutex); !! 753 __pipe_unlock(pipe); 762 return retval; 754 return retval; 763 } 755 } 764 756 765 unsigned long account_pipe_buffers(struct user !! 757 static unsigned long account_pipe_buffers(struct user_struct *user, 766 unsigned lo !! 758 unsigned long old, unsigned long new) 767 { 759 { 768 return atomic_long_add_return(new - ol 760 return atomic_long_add_return(new - old, &user->pipe_bufs); 769 } 761 } 770 762 771 bool too_many_pipe_buffers_soft(unsigned long !! 763 static bool too_many_pipe_buffers_soft(unsigned long user_bufs) 772 { 764 { 773 unsigned long soft_limit = READ_ONCE(p 765 unsigned long soft_limit = READ_ONCE(pipe_user_pages_soft); 774 766 775 return soft_limit && user_bufs > soft_ 767 return soft_limit && user_bufs > soft_limit; 776 } 768 } 777 769 778 bool too_many_pipe_buffers_hard(unsigned long !! 770 static bool too_many_pipe_buffers_hard(unsigned long user_bufs) 779 { 771 { 780 unsigned long hard_limit = READ_ONCE(p 772 unsigned long hard_limit = READ_ONCE(pipe_user_pages_hard); 781 773 782 return hard_limit && user_bufs > hard_ 774 return hard_limit && user_bufs > hard_limit; 783 } 775 } 784 776 785 bool pipe_is_unprivileged_user(void) !! 777 static bool is_unprivileged_user(void) 786 { 778 { 787 return !capable(CAP_SYS_RESOURCE) && ! 779 return !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN); 788 } 780 } 789 781 790 struct pipe_inode_info *alloc_pipe_info(void) 782 struct pipe_inode_info *alloc_pipe_info(void) 791 { 783 { 792 struct pipe_inode_info *pipe; 784 struct pipe_inode_info *pipe; 793 unsigned long pipe_bufs = PIPE_DEF_BUF 785 unsigned long pipe_bufs = PIPE_DEF_BUFFERS; 794 struct user_struct *user = get_current 786 struct user_struct *user = get_current_user(); 795 unsigned long user_bufs; 787 unsigned long user_bufs; 796 unsigned int max_size = READ_ONCE(pipe 788 unsigned int max_size = READ_ONCE(pipe_max_size); 797 789 798 pipe = kzalloc(sizeof(struct pipe_inod 790 pipe = kzalloc(sizeof(struct pipe_inode_info), GFP_KERNEL_ACCOUNT); 799 if (pipe == NULL) 791 if (pipe == NULL) 800 goto out_free_uid; 792 goto out_free_uid; 801 793 802 if (pipe_bufs * PAGE_SIZE > max_size & 794 if (pipe_bufs * PAGE_SIZE > max_size && !capable(CAP_SYS_RESOURCE)) 803 pipe_bufs = max_size >> PAGE_S 795 pipe_bufs = max_size >> PAGE_SHIFT; 804 796 805 user_bufs = account_pipe_buffers(user, 797 user_bufs = account_pipe_buffers(user, 0, pipe_bufs); 806 798 807 if (too_many_pipe_buffers_soft(user_bu !! 799 if (too_many_pipe_buffers_soft(user_bufs) && is_unprivileged_user()) { 808 user_bufs = account_pipe_buffe !! 800 user_bufs = account_pipe_buffers(user, pipe_bufs, 1); 809 pipe_bufs = PIPE_MIN_DEF_BUFFE !! 801 pipe_bufs = 1; 810 } 802 } 811 803 812 if (too_many_pipe_buffers_hard(user_bu !! 804 if (too_many_pipe_buffers_hard(user_bufs) && is_unprivileged_user()) 813 goto out_revert_acct; 805 goto out_revert_acct; 814 806 815 pipe->bufs = kcalloc(pipe_bufs, sizeof 807 pipe->bufs = kcalloc(pipe_bufs, sizeof(struct pipe_buffer), 816 GFP_KERNEL_ACCOUN 808 GFP_KERNEL_ACCOUNT); 817 809 818 if (pipe->bufs) { 810 if (pipe->bufs) { 819 init_waitqueue_head(&pipe->rd_ 811 init_waitqueue_head(&pipe->rd_wait); 820 init_waitqueue_head(&pipe->wr_ 812 init_waitqueue_head(&pipe->wr_wait); 821 pipe->r_counter = pipe->w_coun 813 pipe->r_counter = pipe->w_counter = 1; 822 pipe->max_usage = pipe_bufs; 814 pipe->max_usage = pipe_bufs; 823 pipe->ring_size = pipe_bufs; 815 pipe->ring_size = pipe_bufs; 824 pipe->nr_accounted = pipe_bufs << 825 pipe->user = user; 816 pipe->user = user; 826 mutex_init(&pipe->mutex); 817 mutex_init(&pipe->mutex); 827 lock_set_cmp_fn(&pipe->mutex, << 828 return pipe; 818 return pipe; 829 } 819 } 830 820 831 out_revert_acct: 821 out_revert_acct: 832 (void) account_pipe_buffers(user, pipe 822 (void) account_pipe_buffers(user, pipe_bufs, 0); 833 kfree(pipe); 823 kfree(pipe); 834 out_free_uid: 824 out_free_uid: 835 free_uid(user); 825 free_uid(user); 836 return NULL; 826 return NULL; 837 } 827 } 838 828 839 void free_pipe_info(struct pipe_inode_info *pi 829 void free_pipe_info(struct pipe_inode_info *pipe) 840 { 830 { 841 unsigned int i; !! 831 int i; 842 << 843 #ifdef CONFIG_WATCH_QUEUE << 844 if (pipe->watch_queue) << 845 watch_queue_clear(pipe->watch_ << 846 #endif << 847 832 848 (void) account_pipe_buffers(pipe->user !! 833 (void) account_pipe_buffers(pipe->user, pipe->ring_size, 0); 849 free_uid(pipe->user); 834 free_uid(pipe->user); 850 for (i = 0; i < pipe->ring_size; i++) 835 for (i = 0; i < pipe->ring_size; i++) { 851 struct pipe_buffer *buf = pipe 836 struct pipe_buffer *buf = pipe->bufs + i; 852 if (buf->ops) 837 if (buf->ops) 853 pipe_buf_release(pipe, 838 pipe_buf_release(pipe, buf); 854 } 839 } 855 #ifdef CONFIG_WATCH_QUEUE << 856 if (pipe->watch_queue) << 857 put_watch_queue(pipe->watch_qu << 858 #endif << 859 if (pipe->tmp_page) 840 if (pipe->tmp_page) 860 __free_page(pipe->tmp_page); 841 __free_page(pipe->tmp_page); 861 kfree(pipe->bufs); 842 kfree(pipe->bufs); 862 kfree(pipe); 843 kfree(pipe); 863 } 844 } 864 845 865 static struct vfsmount *pipe_mnt __ro_after_in !! 846 static struct vfsmount *pipe_mnt __read_mostly; 866 847 867 /* 848 /* 868 * pipefs_dname() is called from d_path(). 849 * pipefs_dname() is called from d_path(). 869 */ 850 */ 870 static char *pipefs_dname(struct dentry *dentr 851 static char *pipefs_dname(struct dentry *dentry, char *buffer, int buflen) 871 { 852 { 872 return dynamic_dname(buffer, buflen, " !! 853 return dynamic_dname(dentry, buffer, buflen, "pipe:[%lu]", 873 d_inode(dentry 854 d_inode(dentry)->i_ino); 874 } 855 } 875 856 876 static const struct dentry_operations pipefs_d 857 static const struct dentry_operations pipefs_dentry_operations = { 877 .d_dname = pipefs_dname, 858 .d_dname = pipefs_dname, 878 }; 859 }; 879 860 880 static struct inode * get_pipe_inode(void) 861 static struct inode * get_pipe_inode(void) 881 { 862 { 882 struct inode *inode = new_inode_pseudo 863 struct inode *inode = new_inode_pseudo(pipe_mnt->mnt_sb); 883 struct pipe_inode_info *pipe; 864 struct pipe_inode_info *pipe; 884 865 885 if (!inode) 866 if (!inode) 886 goto fail_inode; 867 goto fail_inode; 887 868 888 inode->i_ino = get_next_ino(); 869 inode->i_ino = get_next_ino(); 889 870 890 pipe = alloc_pipe_info(); 871 pipe = alloc_pipe_info(); 891 if (!pipe) 872 if (!pipe) 892 goto fail_iput; 873 goto fail_iput; 893 874 894 inode->i_pipe = pipe; 875 inode->i_pipe = pipe; 895 pipe->files = 2; 876 pipe->files = 2; 896 pipe->readers = pipe->writers = 1; 877 pipe->readers = pipe->writers = 1; 897 inode->i_fop = &pipefifo_fops; 878 inode->i_fop = &pipefifo_fops; 898 879 899 /* 880 /* 900 * Mark the inode dirty from the very 881 * Mark the inode dirty from the very beginning, 901 * that way it will never be moved to 882 * that way it will never be moved to the dirty 902 * list because "mark_inode_dirty()" w 883 * list because "mark_inode_dirty()" will think 903 * that it already _is_ on the dirty l 884 * that it already _is_ on the dirty list. 904 */ 885 */ 905 inode->i_state = I_DIRTY; 886 inode->i_state = I_DIRTY; 906 inode->i_mode = S_IFIFO | S_IRUSR | S_ 887 inode->i_mode = S_IFIFO | S_IRUSR | S_IWUSR; 907 inode->i_uid = current_fsuid(); 888 inode->i_uid = current_fsuid(); 908 inode->i_gid = current_fsgid(); 889 inode->i_gid = current_fsgid(); 909 simple_inode_init_ts(inode); !! 890 inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode); 910 891 911 return inode; 892 return inode; 912 893 913 fail_iput: 894 fail_iput: 914 iput(inode); 895 iput(inode); 915 896 916 fail_inode: 897 fail_inode: 917 return NULL; 898 return NULL; 918 } 899 } 919 900 920 int create_pipe_files(struct file **res, int f 901 int create_pipe_files(struct file **res, int flags) 921 { 902 { 922 struct inode *inode = get_pipe_inode() 903 struct inode *inode = get_pipe_inode(); 923 struct file *f; 904 struct file *f; 924 int error; << 925 905 926 if (!inode) 906 if (!inode) 927 return -ENFILE; 907 return -ENFILE; 928 908 929 if (flags & O_NOTIFICATION_PIPE) { << 930 error = watch_queue_init(inode << 931 if (error) { << 932 free_pipe_info(inode-> << 933 iput(inode); << 934 return error; << 935 } << 936 } << 937 << 938 f = alloc_file_pseudo(inode, pipe_mnt, 909 f = alloc_file_pseudo(inode, pipe_mnt, "", 939 O_WRONLY | (fl 910 O_WRONLY | (flags & (O_NONBLOCK | O_DIRECT)), 940 &pipefifo_fops 911 &pipefifo_fops); 941 if (IS_ERR(f)) { 912 if (IS_ERR(f)) { 942 free_pipe_info(inode->i_pipe); 913 free_pipe_info(inode->i_pipe); 943 iput(inode); 914 iput(inode); 944 return PTR_ERR(f); 915 return PTR_ERR(f); 945 } 916 } 946 917 947 f->private_data = inode->i_pipe; 918 f->private_data = inode->i_pipe; 948 f->f_pipe = 0; << 949 919 950 res[0] = alloc_file_clone(f, O_RDONLY 920 res[0] = alloc_file_clone(f, O_RDONLY | (flags & O_NONBLOCK), 951 &pipefifo_fo 921 &pipefifo_fops); 952 if (IS_ERR(res[0])) { 922 if (IS_ERR(res[0])) { 953 put_pipe_info(inode, inode->i_ 923 put_pipe_info(inode, inode->i_pipe); 954 fput(f); 924 fput(f); 955 return PTR_ERR(res[0]); 925 return PTR_ERR(res[0]); 956 } 926 } 957 res[0]->private_data = inode->i_pipe; 927 res[0]->private_data = inode->i_pipe; 958 res[0]->f_pipe = 0; << 959 res[1] = f; 928 res[1] = f; 960 stream_open(inode, res[0]); 929 stream_open(inode, res[0]); 961 stream_open(inode, res[1]); 930 stream_open(inode, res[1]); 962 return 0; 931 return 0; 963 } 932 } 964 933 965 static int __do_pipe_flags(int *fd, struct fil 934 static int __do_pipe_flags(int *fd, struct file **files, int flags) 966 { 935 { 967 int error; 936 int error; 968 int fdw, fdr; 937 int fdw, fdr; 969 938 970 if (flags & ~(O_CLOEXEC | O_NONBLOCK | !! 939 if (flags & ~(O_CLOEXEC | O_NONBLOCK | O_DIRECT)) 971 return -EINVAL; 940 return -EINVAL; 972 941 973 error = create_pipe_files(files, flags 942 error = create_pipe_files(files, flags); 974 if (error) 943 if (error) 975 return error; 944 return error; 976 945 977 error = get_unused_fd_flags(flags); 946 error = get_unused_fd_flags(flags); 978 if (error < 0) 947 if (error < 0) 979 goto err_read_pipe; 948 goto err_read_pipe; 980 fdr = error; 949 fdr = error; 981 950 982 error = get_unused_fd_flags(flags); 951 error = get_unused_fd_flags(flags); 983 if (error < 0) 952 if (error < 0) 984 goto err_fdr; 953 goto err_fdr; 985 fdw = error; 954 fdw = error; 986 955 987 audit_fd_pair(fdr, fdw); 956 audit_fd_pair(fdr, fdw); 988 fd[0] = fdr; 957 fd[0] = fdr; 989 fd[1] = fdw; 958 fd[1] = fdw; 990 /* pipe groks IOCB_NOWAIT */ << 991 files[0]->f_mode |= FMODE_NOWAIT; << 992 files[1]->f_mode |= FMODE_NOWAIT; << 993 return 0; 959 return 0; 994 960 995 err_fdr: 961 err_fdr: 996 put_unused_fd(fdr); 962 put_unused_fd(fdr); 997 err_read_pipe: 963 err_read_pipe: 998 fput(files[0]); 964 fput(files[0]); 999 fput(files[1]); 965 fput(files[1]); 1000 return error; 966 return error; 1001 } 967 } 1002 968 1003 int do_pipe_flags(int *fd, int flags) 969 int do_pipe_flags(int *fd, int flags) 1004 { 970 { 1005 struct file *files[2]; 971 struct file *files[2]; 1006 int error = __do_pipe_flags(fd, files 972 int error = __do_pipe_flags(fd, files, flags); 1007 if (!error) { 973 if (!error) { 1008 fd_install(fd[0], files[0]); 974 fd_install(fd[0], files[0]); 1009 fd_install(fd[1], files[1]); 975 fd_install(fd[1], files[1]); 1010 } 976 } 1011 return error; 977 return error; 1012 } 978 } 1013 979 1014 /* 980 /* 1015 * sys_pipe() is the normal C calling standar 981 * sys_pipe() is the normal C calling standard for creating 1016 * a pipe. It's not the way Unix traditionall 982 * a pipe. It's not the way Unix traditionally does this, though. 1017 */ 983 */ 1018 static int do_pipe2(int __user *fildes, int f 984 static int do_pipe2(int __user *fildes, int flags) 1019 { 985 { 1020 struct file *files[2]; 986 struct file *files[2]; 1021 int fd[2]; 987 int fd[2]; 1022 int error; 988 int error; 1023 989 1024 error = __do_pipe_flags(fd, files, fl 990 error = __do_pipe_flags(fd, files, flags); 1025 if (!error) { 991 if (!error) { 1026 if (unlikely(copy_to_user(fil 992 if (unlikely(copy_to_user(fildes, fd, sizeof(fd)))) { 1027 fput(files[0]); 993 fput(files[0]); 1028 fput(files[1]); 994 fput(files[1]); 1029 put_unused_fd(fd[0]); 995 put_unused_fd(fd[0]); 1030 put_unused_fd(fd[1]); 996 put_unused_fd(fd[1]); 1031 error = -EFAULT; 997 error = -EFAULT; 1032 } else { 998 } else { 1033 fd_install(fd[0], fil 999 fd_install(fd[0], files[0]); 1034 fd_install(fd[1], fil 1000 fd_install(fd[1], files[1]); 1035 } 1001 } 1036 } 1002 } 1037 return error; 1003 return error; 1038 } 1004 } 1039 1005 1040 SYSCALL_DEFINE2(pipe2, int __user *, fildes, 1006 SYSCALL_DEFINE2(pipe2, int __user *, fildes, int, flags) 1041 { 1007 { 1042 return do_pipe2(fildes, flags); 1008 return do_pipe2(fildes, flags); 1043 } 1009 } 1044 1010 1045 SYSCALL_DEFINE1(pipe, int __user *, fildes) 1011 SYSCALL_DEFINE1(pipe, int __user *, fildes) 1046 { 1012 { 1047 return do_pipe2(fildes, 0); 1013 return do_pipe2(fildes, 0); 1048 } 1014 } 1049 1015 1050 /* << 1051 * This is the stupid "wait for pipe to be re << 1052 * model. << 1053 * << 1054 * See pipe_read/write() for the proper kind << 1055 * but that requires that we wake up any othe << 1056 * if we then do not end up reading everythin << 1057 * "wake_next_reader/writer" logic in pipe_re << 1058 */ << 1059 void pipe_wait_readable(struct pipe_inode_inf << 1060 { << 1061 pipe_unlock(pipe); << 1062 wait_event_interruptible(pipe->rd_wai << 1063 pipe_lock(pipe); << 1064 } << 1065 << 1066 void pipe_wait_writable(struct pipe_inode_inf << 1067 { << 1068 pipe_unlock(pipe); << 1069 wait_event_interruptible(pipe->wr_wai << 1070 pipe_lock(pipe); << 1071 } << 1072 << 1073 /* << 1074 * This depends on both the wait (here) and t << 1075 * holding the pipe lock, so "*cnt" is stable << 1076 * race with the count check and waitqueue pr << 1077 * << 1078 * Normally in order to avoid races, you'd do << 1079 * then check the condition you're waiting fo << 1080 * because of the pipe lock, we can check the << 1081 * the wait queue. << 1082 * << 1083 * We use the 'rd_wait' waitqueue for pipe pa << 1084 */ << 1085 static int wait_for_partner(struct pipe_inode 1016 static int wait_for_partner(struct pipe_inode_info *pipe, unsigned int *cnt) 1086 { 1017 { 1087 DEFINE_WAIT(rdwait); << 1088 int cur = *cnt; 1018 int cur = *cnt; 1089 1019 1090 while (cur == *cnt) { 1020 while (cur == *cnt) { 1091 prepare_to_wait(&pipe->rd_wai !! 1021 pipe_wait(pipe); 1092 pipe_unlock(pipe); << 1093 schedule(); << 1094 finish_wait(&pipe->rd_wait, & << 1095 pipe_lock(pipe); << 1096 if (signal_pending(current)) 1022 if (signal_pending(current)) 1097 break; 1023 break; 1098 } 1024 } 1099 return cur == *cnt ? -ERESTARTSYS : 0 1025 return cur == *cnt ? -ERESTARTSYS : 0; 1100 } 1026 } 1101 1027 1102 static void wake_up_partner(struct pipe_inode 1028 static void wake_up_partner(struct pipe_inode_info *pipe) 1103 { 1029 { 1104 wake_up_interruptible_all(&pipe->rd_w 1030 wake_up_interruptible_all(&pipe->rd_wait); >> 1031 wake_up_interruptible_all(&pipe->wr_wait); 1105 } 1032 } 1106 1033 1107 static int fifo_open(struct inode *inode, str 1034 static int fifo_open(struct inode *inode, struct file *filp) 1108 { 1035 { 1109 struct pipe_inode_info *pipe; 1036 struct pipe_inode_info *pipe; 1110 bool is_pipe = inode->i_sb->s_magic = 1037 bool is_pipe = inode->i_sb->s_magic == PIPEFS_MAGIC; 1111 int ret; 1038 int ret; 1112 1039 1113 filp->f_pipe = 0; !! 1040 filp->f_version = 0; 1114 1041 1115 spin_lock(&inode->i_lock); 1042 spin_lock(&inode->i_lock); 1116 if (inode->i_pipe) { 1043 if (inode->i_pipe) { 1117 pipe = inode->i_pipe; 1044 pipe = inode->i_pipe; 1118 pipe->files++; 1045 pipe->files++; 1119 spin_unlock(&inode->i_lock); 1046 spin_unlock(&inode->i_lock); 1120 } else { 1047 } else { 1121 spin_unlock(&inode->i_lock); 1048 spin_unlock(&inode->i_lock); 1122 pipe = alloc_pipe_info(); 1049 pipe = alloc_pipe_info(); 1123 if (!pipe) 1050 if (!pipe) 1124 return -ENOMEM; 1051 return -ENOMEM; 1125 pipe->files = 1; 1052 pipe->files = 1; 1126 spin_lock(&inode->i_lock); 1053 spin_lock(&inode->i_lock); 1127 if (unlikely(inode->i_pipe)) 1054 if (unlikely(inode->i_pipe)) { 1128 inode->i_pipe->files+ 1055 inode->i_pipe->files++; 1129 spin_unlock(&inode->i 1056 spin_unlock(&inode->i_lock); 1130 free_pipe_info(pipe); 1057 free_pipe_info(pipe); 1131 pipe = inode->i_pipe; 1058 pipe = inode->i_pipe; 1132 } else { 1059 } else { 1133 inode->i_pipe = pipe; 1060 inode->i_pipe = pipe; 1134 spin_unlock(&inode->i 1061 spin_unlock(&inode->i_lock); 1135 } 1062 } 1136 } 1063 } 1137 filp->private_data = pipe; 1064 filp->private_data = pipe; 1138 /* OK, we have a pipe and it's pinned 1065 /* OK, we have a pipe and it's pinned down */ 1139 1066 1140 mutex_lock(&pipe->mutex); !! 1067 __pipe_lock(pipe); 1141 1068 1142 /* We can only do regular read/write 1069 /* We can only do regular read/write on fifos */ 1143 stream_open(inode, filp); 1070 stream_open(inode, filp); 1144 1071 1145 switch (filp->f_mode & (FMODE_READ | 1072 switch (filp->f_mode & (FMODE_READ | FMODE_WRITE)) { 1146 case FMODE_READ: 1073 case FMODE_READ: 1147 /* 1074 /* 1148 * O_RDONLY 1075 * O_RDONLY 1149 * POSIX.1 says that O_NONBLOCK mean 1076 * POSIX.1 says that O_NONBLOCK means return with the FIFO 1150 * opened, even when there is no pro 1077 * opened, even when there is no process writing the FIFO. 1151 */ 1078 */ 1152 pipe->r_counter++; 1079 pipe->r_counter++; 1153 if (pipe->readers++ == 0) 1080 if (pipe->readers++ == 0) 1154 wake_up_partner(pipe) 1081 wake_up_partner(pipe); 1155 1082 1156 if (!is_pipe && !pipe->writer 1083 if (!is_pipe && !pipe->writers) { 1157 if ((filp->f_flags & 1084 if ((filp->f_flags & O_NONBLOCK)) { 1158 /* suppress E 1085 /* suppress EPOLLHUP until we have 1159 * seen a wri 1086 * seen a writer */ 1160 filp->f_pipe !! 1087 filp->f_version = pipe->w_counter; 1161 } else { 1088 } else { 1162 if (wait_for_ 1089 if (wait_for_partner(pipe, &pipe->w_counter)) 1163 goto 1090 goto err_rd; 1164 } 1091 } 1165 } 1092 } 1166 break; 1093 break; 1167 1094 1168 case FMODE_WRITE: 1095 case FMODE_WRITE: 1169 /* 1096 /* 1170 * O_WRONLY 1097 * O_WRONLY 1171 * POSIX.1 says that O_NONBLOCK mean 1098 * POSIX.1 says that O_NONBLOCK means return -1 with 1172 * errno=ENXIO when there is no proc 1099 * errno=ENXIO when there is no process reading the FIFO. 1173 */ 1100 */ 1174 ret = -ENXIO; 1101 ret = -ENXIO; 1175 if (!is_pipe && (filp->f_flag 1102 if (!is_pipe && (filp->f_flags & O_NONBLOCK) && !pipe->readers) 1176 goto err; 1103 goto err; 1177 1104 1178 pipe->w_counter++; 1105 pipe->w_counter++; 1179 if (!pipe->writers++) 1106 if (!pipe->writers++) 1180 wake_up_partner(pipe) 1107 wake_up_partner(pipe); 1181 1108 1182 if (!is_pipe && !pipe->reader 1109 if (!is_pipe && !pipe->readers) { 1183 if (wait_for_partner( 1110 if (wait_for_partner(pipe, &pipe->r_counter)) 1184 goto err_wr; 1111 goto err_wr; 1185 } 1112 } 1186 break; 1113 break; 1187 1114 1188 case FMODE_READ | FMODE_WRITE: 1115 case FMODE_READ | FMODE_WRITE: 1189 /* 1116 /* 1190 * O_RDWR 1117 * O_RDWR 1191 * POSIX.1 leaves this case "undefin 1118 * POSIX.1 leaves this case "undefined" when O_NONBLOCK is set. 1192 * This implementation will NEVER bl 1119 * This implementation will NEVER block on a O_RDWR open, since 1193 * the process can at least talk to 1120 * the process can at least talk to itself. 1194 */ 1121 */ 1195 1122 1196 pipe->readers++; 1123 pipe->readers++; 1197 pipe->writers++; 1124 pipe->writers++; 1198 pipe->r_counter++; 1125 pipe->r_counter++; 1199 pipe->w_counter++; 1126 pipe->w_counter++; 1200 if (pipe->readers == 1 || pip 1127 if (pipe->readers == 1 || pipe->writers == 1) 1201 wake_up_partner(pipe) 1128 wake_up_partner(pipe); 1202 break; 1129 break; 1203 1130 1204 default: 1131 default: 1205 ret = -EINVAL; 1132 ret = -EINVAL; 1206 goto err; 1133 goto err; 1207 } 1134 } 1208 1135 1209 /* Ok! */ 1136 /* Ok! */ 1210 mutex_unlock(&pipe->mutex); !! 1137 __pipe_unlock(pipe); 1211 return 0; 1138 return 0; 1212 1139 1213 err_rd: 1140 err_rd: 1214 if (!--pipe->readers) 1141 if (!--pipe->readers) 1215 wake_up_interruptible(&pipe-> 1142 wake_up_interruptible(&pipe->wr_wait); 1216 ret = -ERESTARTSYS; 1143 ret = -ERESTARTSYS; 1217 goto err; 1144 goto err; 1218 1145 1219 err_wr: 1146 err_wr: 1220 if (!--pipe->writers) 1147 if (!--pipe->writers) 1221 wake_up_interruptible_all(&pi 1148 wake_up_interruptible_all(&pipe->rd_wait); 1222 ret = -ERESTARTSYS; 1149 ret = -ERESTARTSYS; 1223 goto err; 1150 goto err; 1224 1151 1225 err: 1152 err: 1226 mutex_unlock(&pipe->mutex); !! 1153 __pipe_unlock(pipe); 1227 1154 1228 put_pipe_info(inode, pipe); 1155 put_pipe_info(inode, pipe); 1229 return ret; 1156 return ret; 1230 } 1157 } 1231 1158 1232 const struct file_operations pipefifo_fops = 1159 const struct file_operations pipefifo_fops = { 1233 .open = fifo_open, 1160 .open = fifo_open, >> 1161 .llseek = no_llseek, 1234 .read_iter = pipe_read, 1162 .read_iter = pipe_read, 1235 .write_iter = pipe_write, 1163 .write_iter = pipe_write, 1236 .poll = pipe_poll, 1164 .poll = pipe_poll, 1237 .unlocked_ioctl = pipe_ioctl, 1165 .unlocked_ioctl = pipe_ioctl, 1238 .release = pipe_release, 1166 .release = pipe_release, 1239 .fasync = pipe_fasync, 1167 .fasync = pipe_fasync, 1240 .splice_write = iter_file_splice_wr << 1241 }; 1168 }; 1242 1169 1243 /* 1170 /* 1244 * Currently we rely on the pipe array holdin 1171 * Currently we rely on the pipe array holding a power-of-2 number 1245 * of pages. Returns 0 on error. 1172 * of pages. Returns 0 on error. 1246 */ 1173 */ 1247 unsigned int round_pipe_size(unsigned int siz !! 1174 unsigned int round_pipe_size(unsigned long size) 1248 { 1175 { 1249 if (size > (1U << 31)) 1176 if (size > (1U << 31)) 1250 return 0; 1177 return 0; 1251 1178 1252 /* Minimum pipe size, as required by 1179 /* Minimum pipe size, as required by POSIX */ 1253 if (size < PAGE_SIZE) 1180 if (size < PAGE_SIZE) 1254 return PAGE_SIZE; 1181 return PAGE_SIZE; 1255 1182 1256 return roundup_pow_of_two(size); 1183 return roundup_pow_of_two(size); 1257 } 1184 } 1258 1185 1259 /* 1186 /* 1260 * Resize the pipe ring to a number of slots. !! 1187 * Allocate a new array of pipe buffers and copy the info over. Returns the 1261 * !! 1188 * pipe size if successful, or return -ERROR on error. 1262 * Note the pipe can be reduced in capacity, << 1263 * occupancy doesn't exceed nr_slots; if it d << 1264 * returned instead. << 1265 */ 1189 */ 1266 int pipe_resize_ring(struct pipe_inode_info * !! 1190 static long pipe_set_size(struct pipe_inode_info *pipe, unsigned long arg) 1267 { 1191 { 1268 struct pipe_buffer *bufs; 1192 struct pipe_buffer *bufs; 1269 unsigned int head, tail, mask, n; !! 1193 unsigned int size, nr_slots, head, tail, mask, n; >> 1194 unsigned long user_bufs; >> 1195 long ret = 0; 1270 1196 1271 bufs = kcalloc(nr_slots, sizeof(*bufs !! 1197 size = round_pipe_size(arg); 1272 GFP_KERNEL_ACCOUNT | _ !! 1198 nr_slots = size >> PAGE_SHIFT; 1273 if (unlikely(!bufs)) !! 1199 1274 return -ENOMEM; !! 1200 if (!nr_slots) >> 1201 return -EINVAL; >> 1202 >> 1203 /* >> 1204 * If trying to increase the pipe capacity, check that an >> 1205 * unprivileged user is not trying to exceed various limits >> 1206 * (soft limit check here, hard limit check just below). >> 1207 * Decreasing the pipe capacity is always permitted, even >> 1208 * if the user is currently over a limit. >> 1209 */ >> 1210 if (nr_slots > pipe->ring_size && >> 1211 size > pipe_max_size && !capable(CAP_SYS_RESOURCE)) >> 1212 return -EPERM; 1275 1213 1276 spin_lock_irq(&pipe->rd_wait.lock); !! 1214 user_bufs = account_pipe_buffers(pipe->user, pipe->ring_size, nr_slots); >> 1215 >> 1216 if (nr_slots > pipe->ring_size && >> 1217 (too_many_pipe_buffers_hard(user_bufs) || >> 1218 too_many_pipe_buffers_soft(user_bufs)) && >> 1219 is_unprivileged_user()) { >> 1220 ret = -EPERM; >> 1221 goto out_revert_acct; >> 1222 } >> 1223 >> 1224 /* >> 1225 * We can shrink the pipe, if arg is greater than the ring occupancy. >> 1226 * Since we don't expect a lot of shrink+grow operations, just free and >> 1227 * allocate again like we would do for growing. If the pipe currently >> 1228 * contains more buffers than arg, then return busy. >> 1229 */ 1277 mask = pipe->ring_size - 1; 1230 mask = pipe->ring_size - 1; 1278 head = pipe->head; 1231 head = pipe->head; 1279 tail = pipe->tail; 1232 tail = pipe->tail; 1280 !! 1233 n = pipe_occupancy(pipe->head, pipe->tail); 1281 n = pipe_occupancy(head, tail); << 1282 if (nr_slots < n) { 1234 if (nr_slots < n) { 1283 spin_unlock_irq(&pipe->rd_wai !! 1235 ret = -EBUSY; 1284 kfree(bufs); !! 1236 goto out_revert_acct; 1285 return -EBUSY; !! 1237 } >> 1238 >> 1239 bufs = kcalloc(nr_slots, sizeof(*bufs), >> 1240 GFP_KERNEL_ACCOUNT | __GFP_NOWARN); >> 1241 if (unlikely(!bufs)) { >> 1242 ret = -ENOMEM; >> 1243 goto out_revert_acct; 1286 } 1244 } 1287 1245 1288 /* 1246 /* 1289 * The pipe array wraps around, so ju 1247 * The pipe array wraps around, so just start the new one at zero 1290 * and adjust the indices. 1248 * and adjust the indices. 1291 */ 1249 */ 1292 if (n > 0) { 1250 if (n > 0) { 1293 unsigned int h = head & mask; 1251 unsigned int h = head & mask; 1294 unsigned int t = tail & mask; 1252 unsigned int t = tail & mask; 1295 if (h > t) { 1253 if (h > t) { 1296 memcpy(bufs, pipe->bu 1254 memcpy(bufs, pipe->bufs + t, 1297 n * sizeof(str 1255 n * sizeof(struct pipe_buffer)); 1298 } else { 1256 } else { 1299 unsigned int tsize = 1257 unsigned int tsize = pipe->ring_size - t; 1300 if (h > 0) 1258 if (h > 0) 1301 memcpy(bufs + 1259 memcpy(bufs + tsize, pipe->bufs, 1302 h * si 1260 h * sizeof(struct pipe_buffer)); 1303 memcpy(bufs, pipe->bu 1261 memcpy(bufs, pipe->bufs + t, 1304 tsize * sizeof 1262 tsize * sizeof(struct pipe_buffer)); 1305 } 1263 } 1306 } 1264 } 1307 1265 1308 head = n; 1266 head = n; 1309 tail = 0; 1267 tail = 0; 1310 1268 1311 kfree(pipe->bufs); 1269 kfree(pipe->bufs); 1312 pipe->bufs = bufs; 1270 pipe->bufs = bufs; 1313 pipe->ring_size = nr_slots; 1271 pipe->ring_size = nr_slots; 1314 if (pipe->max_usage > nr_slots) !! 1272 pipe->max_usage = nr_slots; 1315 pipe->max_usage = nr_slots; << 1316 pipe->tail = tail; 1273 pipe->tail = tail; 1317 pipe->head = head; 1274 pipe->head = head; 1318 1275 1319 if (!pipe_has_watch_queue(pipe)) { << 1320 pipe->max_usage = nr_slots; << 1321 pipe->nr_accounted = nr_slots << 1322 } << 1323 << 1324 spin_unlock_irq(&pipe->rd_wait.lock); << 1325 << 1326 /* This might have made more room for 1276 /* This might have made more room for writers */ 1327 wake_up_interruptible(&pipe->wr_wait) 1277 wake_up_interruptible(&pipe->wr_wait); 1328 return 0; << 1329 } << 1330 << 1331 /* << 1332 * Allocate a new array of pipe buffers and c << 1333 * pipe size if successful, or return -ERROR << 1334 */ << 1335 static long pipe_set_size(struct pipe_inode_i << 1336 { << 1337 unsigned long user_bufs; << 1338 unsigned int nr_slots, size; << 1339 long ret = 0; << 1340 << 1341 if (pipe_has_watch_queue(pipe)) << 1342 return -EBUSY; << 1343 << 1344 size = round_pipe_size(arg); << 1345 nr_slots = size >> PAGE_SHIFT; << 1346 << 1347 if (!nr_slots) << 1348 return -EINVAL; << 1349 << 1350 /* << 1351 * If trying to increase the pipe cap << 1352 * unprivileged user is not trying to << 1353 * (soft limit check here, hard limit << 1354 * Decreasing the pipe capacity is al << 1355 * if the user is currently over a li << 1356 */ << 1357 if (nr_slots > pipe->max_usage && << 1358 size > pipe_max_size << 1359 return -EPERM; << 1360 << 1361 user_bufs = account_pipe_buffers(pipe << 1362 << 1363 if (nr_slots > pipe->max_usage && << 1364 (too_many_pipe_buffer << 1365 too_many_pipe_buffer << 1366 pipe_is_unprivileged_ << 1367 ret = -EPERM; << 1368 goto out_revert_acct; << 1369 } << 1370 << 1371 ret = pipe_resize_ring(pipe, nr_slots << 1372 if (ret < 0) << 1373 goto out_revert_acct; << 1374 << 1375 return pipe->max_usage * PAGE_SIZE; 1278 return pipe->max_usage * PAGE_SIZE; 1376 1279 1377 out_revert_acct: 1280 out_revert_acct: 1378 (void) account_pipe_buffers(pipe->use !! 1281 (void) account_pipe_buffers(pipe->user, nr_slots, pipe->ring_size); 1379 return ret; 1282 return ret; 1380 } 1283 } 1381 1284 1382 /* 1285 /* 1383 * Note that i_pipe and i_cdev share the same !! 1286 * After the inode slimming patch, i_pipe/i_bdev/i_cdev share the same 1384 * not enough to verify that this is a pipe. !! 1287 * location, so checking ->i_pipe is not enough to verify that this is a >> 1288 * pipe. 1385 */ 1289 */ 1386 struct pipe_inode_info *get_pipe_info(struct !! 1290 struct pipe_inode_info *get_pipe_info(struct file *file) 1387 { 1291 { 1388 struct pipe_inode_info *pipe = file-> !! 1292 return file->f_op == &pipefifo_fops ? file->private_data : NULL; 1389 << 1390 if (file->f_op != &pipefifo_fops || ! << 1391 return NULL; << 1392 if (for_splice && pipe_has_watch_queu << 1393 return NULL; << 1394 return pipe; << 1395 } 1293 } 1396 1294 1397 long pipe_fcntl(struct file *file, unsigned i !! 1295 long pipe_fcntl(struct file *file, unsigned int cmd, unsigned long arg) 1398 { 1296 { 1399 struct pipe_inode_info *pipe; 1297 struct pipe_inode_info *pipe; 1400 long ret; 1298 long ret; 1401 1299 1402 pipe = get_pipe_info(file, false); !! 1300 pipe = get_pipe_info(file); 1403 if (!pipe) 1301 if (!pipe) 1404 return -EBADF; 1302 return -EBADF; 1405 1303 1406 mutex_lock(&pipe->mutex); !! 1304 __pipe_lock(pipe); 1407 1305 1408 switch (cmd) { 1306 switch (cmd) { 1409 case F_SETPIPE_SZ: 1307 case F_SETPIPE_SZ: 1410 ret = pipe_set_size(pipe, arg 1308 ret = pipe_set_size(pipe, arg); 1411 break; 1309 break; 1412 case F_GETPIPE_SZ: 1310 case F_GETPIPE_SZ: 1413 ret = pipe->max_usage * PAGE_ 1311 ret = pipe->max_usage * PAGE_SIZE; 1414 break; 1312 break; 1415 default: 1313 default: 1416 ret = -EINVAL; 1314 ret = -EINVAL; 1417 break; 1315 break; 1418 } 1316 } 1419 1317 1420 mutex_unlock(&pipe->mutex); !! 1318 __pipe_unlock(pipe); 1421 return ret; 1319 return ret; 1422 } 1320 } 1423 1321 1424 static const struct super_operations pipefs_o 1322 static const struct super_operations pipefs_ops = { 1425 .destroy_inode = free_inode_nonrcu, 1323 .destroy_inode = free_inode_nonrcu, 1426 .statfs = simple_statfs, 1324 .statfs = simple_statfs, 1427 }; 1325 }; 1428 1326 1429 /* 1327 /* 1430 * pipefs should _never_ be mounted by userla 1328 * pipefs should _never_ be mounted by userland - too much of security hassle, 1431 * no real gain from having the whole file sy !! 1329 * no real gain from having the whole whorehouse mounted. So we don't need 1432 * any operations on the root directory. Howe 1330 * any operations on the root directory. However, we need a non-trivial 1433 * d_name - pipe: will go nicely and kill the 1331 * d_name - pipe: will go nicely and kill the special-casing in procfs. 1434 */ 1332 */ 1435 1333 1436 static int pipefs_init_fs_context(struct fs_c 1334 static int pipefs_init_fs_context(struct fs_context *fc) 1437 { 1335 { 1438 struct pseudo_fs_context *ctx = init_ 1336 struct pseudo_fs_context *ctx = init_pseudo(fc, PIPEFS_MAGIC); 1439 if (!ctx) 1337 if (!ctx) 1440 return -ENOMEM; 1338 return -ENOMEM; 1441 ctx->ops = &pipefs_ops; 1339 ctx->ops = &pipefs_ops; 1442 ctx->dops = &pipefs_dentry_operations 1340 ctx->dops = &pipefs_dentry_operations; 1443 return 0; 1341 return 0; 1444 } 1342 } 1445 1343 1446 static struct file_system_type pipe_fs_type = 1344 static struct file_system_type pipe_fs_type = { 1447 .name = "pipefs", 1345 .name = "pipefs", 1448 .init_fs_context = pipefs_init_fs_con 1346 .init_fs_context = pipefs_init_fs_context, 1449 .kill_sb = kill_anon_super, 1347 .kill_sb = kill_anon_super, 1450 }; 1348 }; 1451 1349 1452 #ifdef CONFIG_SYSCTL << 1453 static int do_proc_dopipe_max_size_conv(unsig << 1454 unsig << 1455 int w << 1456 { << 1457 if (write) { << 1458 unsigned int val; << 1459 << 1460 val = round_pipe_size(*lvalp) << 1461 if (val == 0) << 1462 return -EINVAL; << 1463 << 1464 *valp = val; << 1465 } else { << 1466 unsigned int val = *valp; << 1467 *lvalp = (unsigned long) val; << 1468 } << 1469 << 1470 return 0; << 1471 } << 1472 << 1473 static int proc_dopipe_max_size(const struct << 1474 void *buffer, << 1475 { << 1476 return do_proc_douintvec(table, write << 1477 do_proc_dopi << 1478 } << 1479 << 1480 static struct ctl_table fs_pipe_sysctls[] = { << 1481 { << 1482 .procname = "pipe-max-s << 1483 .data = &pipe_max_s << 1484 .maxlen = sizeof(pipe << 1485 .mode = 0644, << 1486 .proc_handler = proc_dopipe << 1487 }, << 1488 { << 1489 .procname = "pipe-user- << 1490 .data = &pipe_user_ << 1491 .maxlen = sizeof(pipe << 1492 .mode = 0644, << 1493 .proc_handler = proc_doulon << 1494 }, << 1495 { << 1496 .procname = "pipe-user- << 1497 .data = &pipe_user_ << 1498 .maxlen = sizeof(pipe << 1499 .mode = 0644, << 1500 .proc_handler = proc_doulon << 1501 }, << 1502 }; << 1503 #endif << 1504 << 1505 static int __init init_pipe_fs(void) 1350 static int __init init_pipe_fs(void) 1506 { 1351 { 1507 int err = register_filesystem(&pipe_f 1352 int err = register_filesystem(&pipe_fs_type); 1508 1353 1509 if (!err) { 1354 if (!err) { 1510 pipe_mnt = kern_mount(&pipe_f 1355 pipe_mnt = kern_mount(&pipe_fs_type); 1511 if (IS_ERR(pipe_mnt)) { 1356 if (IS_ERR(pipe_mnt)) { 1512 err = PTR_ERR(pipe_mn 1357 err = PTR_ERR(pipe_mnt); 1513 unregister_filesystem 1358 unregister_filesystem(&pipe_fs_type); 1514 } 1359 } 1515 } 1360 } 1516 #ifdef CONFIG_SYSCTL << 1517 register_sysctl_init("fs", fs_pipe_sy << 1518 #endif << 1519 return err; 1361 return err; 1520 } 1362 } 1521 1363 1522 fs_initcall(init_pipe_fs); 1364 fs_initcall(init_pipe_fs); 1523 1365
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.