1 // SPDX-License-Identifier: GPL-2.0-only << 2 /* 1 /* 3 * fs/proc/vmcore.c Interface for accessi 2 * fs/proc/vmcore.c Interface for accessing the crash 4 * dump from the 3 * dump from the system's previous life. 5 * Heavily borrowed from fs/proc/kcore.c 4 * Heavily borrowed from fs/proc/kcore.c 6 * Created by: Hariprasad Nellitheertha ( 5 * Created by: Hariprasad Nellitheertha (hari@in.ibm.com) 7 * Copyright (C) IBM Corporation, 2004. A 6 * Copyright (C) IBM Corporation, 2004. All rights reserved 8 * 7 * 9 */ 8 */ 10 9 11 #include <linux/mm.h> 10 #include <linux/mm.h> 12 #include <linux/kcore.h> 11 #include <linux/kcore.h> 13 #include <linux/user.h> 12 #include <linux/user.h> 14 #include <linux/elf.h> 13 #include <linux/elf.h> 15 #include <linux/elfcore.h> 14 #include <linux/elfcore.h> 16 #include <linux/export.h> 15 #include <linux/export.h> 17 #include <linux/slab.h> 16 #include <linux/slab.h> 18 #include <linux/highmem.h> 17 #include <linux/highmem.h> 19 #include <linux/printk.h> 18 #include <linux/printk.h> 20 #include <linux/memblock.h> 19 #include <linux/memblock.h> 21 #include <linux/init.h> 20 #include <linux/init.h> 22 #include <linux/crash_dump.h> 21 #include <linux/crash_dump.h> 23 #include <linux/list.h> 22 #include <linux/list.h> 24 #include <linux/moduleparam.h> << 25 #include <linux/mutex.h> 23 #include <linux/mutex.h> 26 #include <linux/vmalloc.h> 24 #include <linux/vmalloc.h> 27 #include <linux/pagemap.h> 25 #include <linux/pagemap.h> 28 #include <linux/uio.h> !! 26 #include <linux/uaccess.h> 29 #include <linux/cc_platform.h> !! 27 #include <linux/mem_encrypt.h> >> 28 #include <asm/pgtable.h> 30 #include <asm/io.h> 29 #include <asm/io.h> 31 #include "internal.h" 30 #include "internal.h" 32 31 33 /* List representing chunks of contiguous memo 32 /* List representing chunks of contiguous memory areas and their offsets in 34 * vmcore file. 33 * vmcore file. 35 */ 34 */ 36 static LIST_HEAD(vmcore_list); 35 static LIST_HEAD(vmcore_list); 37 36 38 /* Stores the pointer to the buffer containing 37 /* Stores the pointer to the buffer containing kernel elf core headers. */ 39 static char *elfcorebuf; 38 static char *elfcorebuf; 40 static size_t elfcorebuf_sz; 39 static size_t elfcorebuf_sz; 41 static size_t elfcorebuf_sz_orig; 40 static size_t elfcorebuf_sz_orig; 42 41 43 static char *elfnotes_buf; 42 static char *elfnotes_buf; 44 static size_t elfnotes_sz; 43 static size_t elfnotes_sz; 45 /* Size of all notes minus the device dump not 44 /* Size of all notes minus the device dump notes */ 46 static size_t elfnotes_orig_sz; 45 static size_t elfnotes_orig_sz; 47 46 48 /* Total size of vmcore file. */ 47 /* Total size of vmcore file. */ 49 static u64 vmcore_size; 48 static u64 vmcore_size; 50 49 51 static struct proc_dir_entry *proc_vmcore; 50 static struct proc_dir_entry *proc_vmcore; 52 51 53 #ifdef CONFIG_PROC_VMCORE_DEVICE_DUMP 52 #ifdef CONFIG_PROC_VMCORE_DEVICE_DUMP 54 /* Device Dump list and mutex to synchronize a 53 /* Device Dump list and mutex to synchronize access to list */ 55 static LIST_HEAD(vmcoredd_list); 54 static LIST_HEAD(vmcoredd_list); 56 static DEFINE_MUTEX(vmcoredd_mutex); 55 static DEFINE_MUTEX(vmcoredd_mutex); 57 << 58 static bool vmcoredd_disabled; << 59 core_param(novmcoredd, vmcoredd_disabled, bool << 60 #endif /* CONFIG_PROC_VMCORE_DEVICE_DUMP */ 56 #endif /* CONFIG_PROC_VMCORE_DEVICE_DUMP */ 61 57 62 /* Device Dump Size */ 58 /* Device Dump Size */ 63 static size_t vmcoredd_orig_sz; 59 static size_t vmcoredd_orig_sz; 64 60 65 static DEFINE_SPINLOCK(vmcore_cb_lock); !! 61 /* 66 DEFINE_STATIC_SRCU(vmcore_cb_srcu); !! 62 * Returns > 0 for RAM pages, 0 for non-RAM pages, < 0 on error 67 /* List of registered vmcore callbacks. */ !! 63 * The called function has to take care of module refcounting. 68 static LIST_HEAD(vmcore_cb_list); !! 64 */ 69 /* Whether the vmcore has been opened once. */ !! 65 static int (*oldmem_pfn_is_ram)(unsigned long pfn); 70 static bool vmcore_opened; << 71 << 72 void register_vmcore_cb(struct vmcore_cb *cb) << 73 { << 74 INIT_LIST_HEAD(&cb->next); << 75 spin_lock(&vmcore_cb_lock); << 76 list_add_tail(&cb->next, &vmcore_cb_li << 77 /* << 78 * Registering a vmcore callback after << 79 * very unusual (e.g., manual driver l << 80 */ << 81 if (vmcore_opened) << 82 pr_warn_once("Unexpected vmcor << 83 spin_unlock(&vmcore_cb_lock); << 84 } << 85 EXPORT_SYMBOL_GPL(register_vmcore_cb); << 86 66 87 void unregister_vmcore_cb(struct vmcore_cb *cb !! 67 int register_oldmem_pfn_is_ram(int (*fn)(unsigned long pfn)) 88 { 68 { 89 spin_lock(&vmcore_cb_lock); !! 69 if (oldmem_pfn_is_ram) 90 list_del_rcu(&cb->next); !! 70 return -EBUSY; 91 /* !! 71 oldmem_pfn_is_ram = fn; 92 * Unregistering a vmcore callback aft !! 72 return 0; 93 * very unusual (e.g., forced driver r << 94 * unregistering. << 95 */ << 96 if (vmcore_opened) << 97 pr_warn_once("Unexpected vmcor << 98 spin_unlock(&vmcore_cb_lock); << 99 << 100 synchronize_srcu(&vmcore_cb_srcu); << 101 } 73 } 102 EXPORT_SYMBOL_GPL(unregister_vmcore_cb); !! 74 EXPORT_SYMBOL_GPL(register_oldmem_pfn_is_ram); 103 75 104 static bool pfn_is_ram(unsigned long pfn) !! 76 void unregister_oldmem_pfn_is_ram(void) 105 { 77 { 106 struct vmcore_cb *cb; !! 78 oldmem_pfn_is_ram = NULL; 107 bool ret = true; !! 79 wmb(); 108 << 109 list_for_each_entry_srcu(cb, &vmcore_c << 110 srcu_read_loc << 111 if (unlikely(!cb->pfn_is_ram)) << 112 continue; << 113 ret = cb->pfn_is_ram(cb, pfn); << 114 if (!ret) << 115 break; << 116 } << 117 << 118 return ret; << 119 } 80 } >> 81 EXPORT_SYMBOL_GPL(unregister_oldmem_pfn_is_ram); 120 82 121 static int open_vmcore(struct inode *inode, st !! 83 static int pfn_is_ram(unsigned long pfn) 122 { 84 { 123 spin_lock(&vmcore_cb_lock); !! 85 int (*fn)(unsigned long pfn); 124 vmcore_opened = true; !! 86 /* pfn is ram unless fn() checks pagetype */ 125 spin_unlock(&vmcore_cb_lock); !! 87 int ret = 1; 126 88 127 return 0; !! 89 /* >> 90 * Ask hypervisor if the pfn is really ram. >> 91 * A ballooned page contains no data and reading from such a page >> 92 * will cause high load in the hypervisor. >> 93 */ >> 94 fn = oldmem_pfn_is_ram; >> 95 if (fn) >> 96 ret = fn(pfn); >> 97 >> 98 return ret; 128 } 99 } 129 100 130 /* Reads a page from the oldmem device from gi 101 /* Reads a page from the oldmem device from given offset. */ 131 ssize_t read_from_oldmem(struct iov_iter *iter !! 102 static ssize_t read_from_oldmem(char *buf, size_t count, 132 u64 *ppos, bool encry !! 103 u64 *ppos, int userbuf, >> 104 bool encrypted) 133 { 105 { 134 unsigned long pfn, offset; 106 unsigned long pfn, offset; 135 ssize_t nr_bytes; !! 107 size_t nr_bytes; 136 ssize_t read = 0, tmp; 108 ssize_t read = 0, tmp; 137 int idx; << 138 109 139 if (!count) 110 if (!count) 140 return 0; 111 return 0; 141 112 142 offset = (unsigned long)(*ppos % PAGE_ 113 offset = (unsigned long)(*ppos % PAGE_SIZE); 143 pfn = (unsigned long)(*ppos / PAGE_SIZ 114 pfn = (unsigned long)(*ppos / PAGE_SIZE); 144 115 145 idx = srcu_read_lock(&vmcore_cb_srcu); << 146 do { 116 do { 147 if (count > (PAGE_SIZE - offse 117 if (count > (PAGE_SIZE - offset)) 148 nr_bytes = PAGE_SIZE - 118 nr_bytes = PAGE_SIZE - offset; 149 else 119 else 150 nr_bytes = count; 120 nr_bytes = count; 151 121 152 /* If pfn is not ram, return z 122 /* If pfn is not ram, return zeros for sparse dump files */ 153 if (!pfn_is_ram(pfn)) { !! 123 if (pfn_is_ram(pfn) == 0) 154 tmp = iov_iter_zero(nr !! 124 memset(buf, 0, nr_bytes); 155 } else { !! 125 else { 156 if (encrypted) 126 if (encrypted) 157 tmp = copy_old !! 127 tmp = copy_oldmem_page_encrypted(pfn, buf, 158 128 nr_bytes, 159 !! 129 offset, >> 130 userbuf); 160 else 131 else 161 tmp = copy_old !! 132 tmp = copy_oldmem_page(pfn, buf, nr_bytes, 162 !! 133 offset, userbuf); 163 } << 164 if (tmp < nr_bytes) { << 165 srcu_read_unlock(&vmco << 166 return -EFAULT; << 167 } << 168 134 >> 135 if (tmp < 0) >> 136 return tmp; >> 137 } 169 *ppos += nr_bytes; 138 *ppos += nr_bytes; 170 count -= nr_bytes; 139 count -= nr_bytes; >> 140 buf += nr_bytes; 171 read += nr_bytes; 141 read += nr_bytes; 172 ++pfn; 142 ++pfn; 173 offset = 0; 143 offset = 0; 174 } while (count); 144 } while (count); 175 srcu_read_unlock(&vmcore_cb_srcu, idx) << 176 145 177 return read; 146 return read; 178 } 147 } 179 148 180 /* 149 /* 181 * Architectures may override this function to 150 * Architectures may override this function to allocate ELF header in 2nd kernel 182 */ 151 */ 183 int __weak elfcorehdr_alloc(unsigned long long 152 int __weak elfcorehdr_alloc(unsigned long long *addr, unsigned long long *size) 184 { 153 { 185 return 0; 154 return 0; 186 } 155 } 187 156 188 /* 157 /* 189 * Architectures may override this function to 158 * Architectures may override this function to free header 190 */ 159 */ 191 void __weak elfcorehdr_free(unsigned long long 160 void __weak elfcorehdr_free(unsigned long long addr) 192 {} 161 {} 193 162 194 /* 163 /* 195 * Architectures may override this function to 164 * Architectures may override this function to read from ELF header 196 */ 165 */ 197 ssize_t __weak elfcorehdr_read(char *buf, size 166 ssize_t __weak elfcorehdr_read(char *buf, size_t count, u64 *ppos) 198 { 167 { 199 struct kvec kvec = { .iov_base = buf, !! 168 return read_from_oldmem(buf, count, ppos, 0, false); 200 struct iov_iter iter; << 201 << 202 iov_iter_kvec(&iter, ITER_DEST, &kvec, << 203 << 204 return read_from_oldmem(&iter, count, << 205 } 169 } 206 170 207 /* 171 /* 208 * Architectures may override this function to 172 * Architectures may override this function to read from notes sections 209 */ 173 */ 210 ssize_t __weak elfcorehdr_read_notes(char *buf 174 ssize_t __weak elfcorehdr_read_notes(char *buf, size_t count, u64 *ppos) 211 { 175 { 212 struct kvec kvec = { .iov_base = buf, !! 176 return read_from_oldmem(buf, count, ppos, 0, sme_active()); 213 struct iov_iter iter; << 214 << 215 iov_iter_kvec(&iter, ITER_DEST, &kvec, << 216 << 217 return read_from_oldmem(&iter, count, << 218 cc_platform_has(CC_ATT << 219 } 177 } 220 178 221 /* 179 /* 222 * Architectures may override this function to 180 * Architectures may override this function to map oldmem 223 */ 181 */ 224 int __weak remap_oldmem_pfn_range(struct vm_ar 182 int __weak remap_oldmem_pfn_range(struct vm_area_struct *vma, 225 unsigned lon 183 unsigned long from, unsigned long pfn, 226 unsigned lon 184 unsigned long size, pgprot_t prot) 227 { 185 { 228 prot = pgprot_encrypted(prot); 186 prot = pgprot_encrypted(prot); 229 return remap_pfn_range(vma, from, pfn, 187 return remap_pfn_range(vma, from, pfn, size, prot); 230 } 188 } 231 189 232 /* 190 /* 233 * Architectures which support memory encrypti 191 * Architectures which support memory encryption override this. 234 */ 192 */ 235 ssize_t __weak copy_oldmem_page_encrypted(stru !! 193 ssize_t __weak 236 unsigned long pfn, size_t csiz !! 194 copy_oldmem_page_encrypted(unsigned long pfn, char *buf, size_t csize, >> 195 unsigned long offset, int userbuf) 237 { 196 { 238 return copy_oldmem_page(iter, pfn, csi !! 197 return copy_oldmem_page(pfn, buf, csize, offset, userbuf); >> 198 } >> 199 >> 200 /* >> 201 * Copy to either kernel or user space >> 202 */ >> 203 static int copy_to(void *target, void *src, size_t size, int userbuf) >> 204 { >> 205 if (userbuf) { >> 206 if (copy_to_user((char __user *) target, src, size)) >> 207 return -EFAULT; >> 208 } else { >> 209 memcpy(target, src, size); >> 210 } >> 211 return 0; 239 } 212 } 240 213 241 #ifdef CONFIG_PROC_VMCORE_DEVICE_DUMP 214 #ifdef CONFIG_PROC_VMCORE_DEVICE_DUMP 242 static int vmcoredd_copy_dumps(struct iov_iter !! 215 static int vmcoredd_copy_dumps(void *dst, u64 start, size_t size, int userbuf) 243 { 216 { 244 struct vmcoredd_node *dump; 217 struct vmcoredd_node *dump; 245 u64 offset = 0; 218 u64 offset = 0; 246 int ret = 0; 219 int ret = 0; 247 size_t tsz; 220 size_t tsz; 248 char *buf; 221 char *buf; 249 222 250 mutex_lock(&vmcoredd_mutex); 223 mutex_lock(&vmcoredd_mutex); 251 list_for_each_entry(dump, &vmcoredd_li 224 list_for_each_entry(dump, &vmcoredd_list, list) { 252 if (start < offset + dump->siz 225 if (start < offset + dump->size) { 253 tsz = min(offset + (u6 226 tsz = min(offset + (u64)dump->size - start, (u64)size); 254 buf = dump->buf + star 227 buf = dump->buf + start - offset; 255 if (copy_to_iter(buf, !! 228 if (copy_to(dst, buf, tsz, userbuf)) { 256 ret = -EFAULT; 229 ret = -EFAULT; 257 goto out_unloc 230 goto out_unlock; 258 } 231 } 259 232 260 size -= tsz; 233 size -= tsz; 261 start += tsz; 234 start += tsz; >> 235 dst += tsz; 262 236 263 /* Leave now if buffer 237 /* Leave now if buffer filled already */ 264 if (!size) 238 if (!size) 265 goto out_unloc 239 goto out_unlock; 266 } 240 } 267 offset += dump->size; 241 offset += dump->size; 268 } 242 } 269 243 270 out_unlock: 244 out_unlock: 271 mutex_unlock(&vmcoredd_mutex); 245 mutex_unlock(&vmcoredd_mutex); 272 return ret; 246 return ret; 273 } 247 } 274 248 275 #ifdef CONFIG_MMU 249 #ifdef CONFIG_MMU 276 static int vmcoredd_mmap_dumps(struct vm_area_ 250 static int vmcoredd_mmap_dumps(struct vm_area_struct *vma, unsigned long dst, 277 u64 start, size 251 u64 start, size_t size) 278 { 252 { 279 struct vmcoredd_node *dump; 253 struct vmcoredd_node *dump; 280 u64 offset = 0; 254 u64 offset = 0; 281 int ret = 0; 255 int ret = 0; 282 size_t tsz; 256 size_t tsz; 283 char *buf; 257 char *buf; 284 258 285 mutex_lock(&vmcoredd_mutex); 259 mutex_lock(&vmcoredd_mutex); 286 list_for_each_entry(dump, &vmcoredd_li 260 list_for_each_entry(dump, &vmcoredd_list, list) { 287 if (start < offset + dump->siz 261 if (start < offset + dump->size) { 288 tsz = min(offset + (u6 262 tsz = min(offset + (u64)dump->size - start, (u64)size); 289 buf = dump->buf + star 263 buf = dump->buf + start - offset; 290 if (remap_vmalloc_rang !! 264 if (remap_vmalloc_range_partial(vma, dst, buf, tsz)) { 291 << 292 ret = -EFAULT; 265 ret = -EFAULT; 293 goto out_unloc 266 goto out_unlock; 294 } 267 } 295 268 296 size -= tsz; 269 size -= tsz; 297 start += tsz; 270 start += tsz; 298 dst += tsz; 271 dst += tsz; 299 272 300 /* Leave now if buffer 273 /* Leave now if buffer filled already */ 301 if (!size) 274 if (!size) 302 goto out_unloc 275 goto out_unlock; 303 } 276 } 304 offset += dump->size; 277 offset += dump->size; 305 } 278 } 306 279 307 out_unlock: 280 out_unlock: 308 mutex_unlock(&vmcoredd_mutex); 281 mutex_unlock(&vmcoredd_mutex); 309 return ret; 282 return ret; 310 } 283 } 311 #endif /* CONFIG_MMU */ 284 #endif /* CONFIG_MMU */ 312 #endif /* CONFIG_PROC_VMCORE_DEVICE_DUMP */ 285 #endif /* CONFIG_PROC_VMCORE_DEVICE_DUMP */ 313 286 314 /* Read from the ELF header and then the crash 287 /* Read from the ELF header and then the crash dump. On error, negative value is 315 * returned otherwise number of bytes read are 288 * returned otherwise number of bytes read are returned. 316 */ 289 */ 317 static ssize_t __read_vmcore(struct iov_iter * !! 290 static ssize_t __read_vmcore(char *buffer, size_t buflen, loff_t *fpos, >> 291 int userbuf) 318 { 292 { 319 ssize_t acc = 0, tmp; 293 ssize_t acc = 0, tmp; 320 size_t tsz; 294 size_t tsz; 321 u64 start; 295 u64 start; 322 struct vmcore *m = NULL; 296 struct vmcore *m = NULL; 323 297 324 if (!iov_iter_count(iter) || *fpos >= !! 298 if (buflen == 0 || *fpos >= vmcore_size) 325 return 0; 299 return 0; 326 300 327 iov_iter_truncate(iter, vmcore_size - !! 301 /* trim buflen to not go beyond EOF */ >> 302 if (buflen > vmcore_size - *fpos) >> 303 buflen = vmcore_size - *fpos; 328 304 329 /* Read ELF core header */ 305 /* Read ELF core header */ 330 if (*fpos < elfcorebuf_sz) { 306 if (*fpos < elfcorebuf_sz) { 331 tsz = min(elfcorebuf_sz - (siz !! 307 tsz = min(elfcorebuf_sz - (size_t)*fpos, buflen); 332 if (copy_to_iter(elfcorebuf + !! 308 if (copy_to(buffer, elfcorebuf + *fpos, tsz, userbuf)) 333 return -EFAULT; 309 return -EFAULT; >> 310 buflen -= tsz; 334 *fpos += tsz; 311 *fpos += tsz; >> 312 buffer += tsz; 335 acc += tsz; 313 acc += tsz; 336 314 337 /* leave now if filled buffer 315 /* leave now if filled buffer already */ 338 if (!iov_iter_count(iter)) !! 316 if (buflen == 0) 339 return acc; 317 return acc; 340 } 318 } 341 319 342 /* Read ELF note segment */ !! 320 /* Read Elf note segment */ 343 if (*fpos < elfcorebuf_sz + elfnotes_s 321 if (*fpos < elfcorebuf_sz + elfnotes_sz) { 344 void *kaddr; 322 void *kaddr; 345 323 346 /* We add device dumps before 324 /* We add device dumps before other elf notes because the 347 * other elf notes may not fil 325 * other elf notes may not fill the elf notes buffer 348 * completely and we will end 326 * completely and we will end up with zero-filled data 349 * between the elf notes and t 327 * between the elf notes and the device dumps. Tools will 350 * then try to decode this zer 328 * then try to decode this zero-filled data as valid notes 351 * and we don't want that. Hen 329 * and we don't want that. Hence, adding device dumps before 352 * the other elf notes ensure 330 * the other elf notes ensure that zero-filled data can be 353 * avoided. 331 * avoided. 354 */ 332 */ 355 #ifdef CONFIG_PROC_VMCORE_DEVICE_DUMP 333 #ifdef CONFIG_PROC_VMCORE_DEVICE_DUMP 356 /* Read device dumps */ 334 /* Read device dumps */ 357 if (*fpos < elfcorebuf_sz + vm 335 if (*fpos < elfcorebuf_sz + vmcoredd_orig_sz) { 358 tsz = min(elfcorebuf_s 336 tsz = min(elfcorebuf_sz + vmcoredd_orig_sz - 359 (size_t)*fpo !! 337 (size_t)*fpos, buflen); 360 start = *fpos - elfcor 338 start = *fpos - elfcorebuf_sz; 361 if (vmcoredd_copy_dump !! 339 if (vmcoredd_copy_dumps(buffer, start, tsz, userbuf)) 362 return -EFAULT 340 return -EFAULT; 363 341 >> 342 buflen -= tsz; 364 *fpos += tsz; 343 *fpos += tsz; >> 344 buffer += tsz; 365 acc += tsz; 345 acc += tsz; 366 346 367 /* leave now if filled 347 /* leave now if filled buffer already */ 368 if (!iov_iter_count(it !! 348 if (!buflen) 369 return acc; 349 return acc; 370 } 350 } 371 #endif /* CONFIG_PROC_VMCORE_DEVICE_DUMP */ 351 #endif /* CONFIG_PROC_VMCORE_DEVICE_DUMP */ 372 352 373 /* Read remaining elf notes */ 353 /* Read remaining elf notes */ 374 tsz = min(elfcorebuf_sz + elfn !! 354 tsz = min(elfcorebuf_sz + elfnotes_sz - (size_t)*fpos, buflen); 375 iov_iter_count(iter) << 376 kaddr = elfnotes_buf + *fpos - 355 kaddr = elfnotes_buf + *fpos - elfcorebuf_sz - vmcoredd_orig_sz; 377 if (copy_to_iter(kaddr, tsz, i !! 356 if (copy_to(buffer, kaddr, tsz, userbuf)) 378 return -EFAULT; 357 return -EFAULT; 379 358 >> 359 buflen -= tsz; 380 *fpos += tsz; 360 *fpos += tsz; >> 361 buffer += tsz; 381 acc += tsz; 362 acc += tsz; 382 363 383 /* leave now if filled buffer 364 /* leave now if filled buffer already */ 384 if (!iov_iter_count(iter)) !! 365 if (buflen == 0) 385 return acc; 366 return acc; 386 << 387 cond_resched(); << 388 } 367 } 389 368 390 list_for_each_entry(m, &vmcore_list, l 369 list_for_each_entry(m, &vmcore_list, list) { 391 if (*fpos < m->offset + m->siz 370 if (*fpos < m->offset + m->size) { 392 tsz = (size_t)min_t(un 371 tsz = (size_t)min_t(unsigned long long, 393 m- 372 m->offset + m->size - *fpos, 394 io !! 373 buflen); 395 start = m->paddr + *fp 374 start = m->paddr + *fpos - m->offset; 396 tmp = read_from_oldmem !! 375 tmp = read_from_oldmem(buffer, tsz, &start, 397 cc_pla !! 376 userbuf, sme_active()); 398 if (tmp < 0) 377 if (tmp < 0) 399 return tmp; 378 return tmp; >> 379 buflen -= tsz; 400 *fpos += tsz; 380 *fpos += tsz; >> 381 buffer += tsz; 401 acc += tsz; 382 acc += tsz; 402 383 403 /* leave now if filled 384 /* leave now if filled buffer already */ 404 if (!iov_iter_count(it !! 385 if (buflen == 0) 405 return acc; 386 return acc; 406 } 387 } 407 } 388 } 408 389 409 return acc; 390 return acc; 410 } 391 } 411 392 412 static ssize_t read_vmcore(struct kiocb *iocb, !! 393 static ssize_t read_vmcore(struct file *file, char __user *buffer, >> 394 size_t buflen, loff_t *fpos) 413 { 395 { 414 return __read_vmcore(iter, &iocb->ki_p !! 396 return __read_vmcore((__force char *) buffer, buflen, fpos, 1); 415 } 397 } 416 398 417 /* 399 /* 418 * The vmcore fault handler uses the page cach 400 * The vmcore fault handler uses the page cache and fills data using the 419 * standard __read_vmcore() function. !! 401 * standard __vmcore_read() function. 420 * 402 * 421 * On s390 the fault handler is used for memor 403 * On s390 the fault handler is used for memory regions that can't be mapped 422 * directly with remap_pfn_range(). 404 * directly with remap_pfn_range(). 423 */ 405 */ 424 static vm_fault_t mmap_vmcore_fault(struct vm_ 406 static vm_fault_t mmap_vmcore_fault(struct vm_fault *vmf) 425 { 407 { 426 #ifdef CONFIG_S390 408 #ifdef CONFIG_S390 427 struct address_space *mapping = vmf->v 409 struct address_space *mapping = vmf->vma->vm_file->f_mapping; 428 pgoff_t index = vmf->pgoff; 410 pgoff_t index = vmf->pgoff; 429 struct iov_iter iter; << 430 struct kvec kvec; << 431 struct page *page; 411 struct page *page; 432 loff_t offset; 412 loff_t offset; >> 413 char *buf; 433 int rc; 414 int rc; 434 415 435 page = find_or_create_page(mapping, in 416 page = find_or_create_page(mapping, index, GFP_KERNEL); 436 if (!page) 417 if (!page) 437 return VM_FAULT_OOM; 418 return VM_FAULT_OOM; 438 if (!PageUptodate(page)) { 419 if (!PageUptodate(page)) { 439 offset = (loff_t) index << PAG 420 offset = (loff_t) index << PAGE_SHIFT; 440 kvec.iov_base = page_address(p !! 421 buf = __va((page_to_pfn(page) << PAGE_SHIFT)); 441 kvec.iov_len = PAGE_SIZE; !! 422 rc = __read_vmcore(buf, PAGE_SIZE, &offset, 0); 442 iov_iter_kvec(&iter, ITER_DEST << 443 << 444 rc = __read_vmcore(&iter, &off << 445 if (rc < 0) { 423 if (rc < 0) { 446 unlock_page(page); 424 unlock_page(page); 447 put_page(page); 425 put_page(page); 448 return vmf_error(rc); 426 return vmf_error(rc); 449 } 427 } 450 SetPageUptodate(page); 428 SetPageUptodate(page); 451 } 429 } 452 unlock_page(page); 430 unlock_page(page); 453 vmf->page = page; 431 vmf->page = page; 454 return 0; 432 return 0; 455 #else 433 #else 456 return VM_FAULT_SIGBUS; 434 return VM_FAULT_SIGBUS; 457 #endif 435 #endif 458 } 436 } 459 437 >> 438 static const struct vm_operations_struct vmcore_mmap_ops = { >> 439 .fault = mmap_vmcore_fault, >> 440 }; >> 441 460 /** 442 /** 461 * vmcore_alloc_buf - allocate buffer in vmall 443 * vmcore_alloc_buf - allocate buffer in vmalloc memory 462 * @size: size of buffer !! 444 * @sizez: size of buffer 463 * 445 * 464 * If CONFIG_MMU is defined, use vmalloc_user( 446 * If CONFIG_MMU is defined, use vmalloc_user() to allow users to mmap 465 * the buffer to user-space by means of remap_ 447 * the buffer to user-space by means of remap_vmalloc_range(). 466 * 448 * 467 * If CONFIG_MMU is not defined, use vzalloc() 449 * If CONFIG_MMU is not defined, use vzalloc() since mmap_vmcore() is 468 * disabled and there's no need to allow users 450 * disabled and there's no need to allow users to mmap the buffer. 469 */ 451 */ 470 static inline char *vmcore_alloc_buf(size_t si 452 static inline char *vmcore_alloc_buf(size_t size) 471 { 453 { 472 #ifdef CONFIG_MMU 454 #ifdef CONFIG_MMU 473 return vmalloc_user(size); 455 return vmalloc_user(size); 474 #else 456 #else 475 return vzalloc(size); 457 return vzalloc(size); 476 #endif 458 #endif 477 } 459 } 478 460 479 /* 461 /* 480 * Disable mmap_vmcore() if CONFIG_MMU is not 462 * Disable mmap_vmcore() if CONFIG_MMU is not defined. MMU is 481 * essential for mmap_vmcore() in order to map 463 * essential for mmap_vmcore() in order to map physically 482 * non-contiguous objects (ELF header, ELF not 464 * non-contiguous objects (ELF header, ELF note segment and memory 483 * regions in the 1st kernel pointed to by PT_ 465 * regions in the 1st kernel pointed to by PT_LOAD entries) into 484 * virtually contiguous user-space in ELF layo 466 * virtually contiguous user-space in ELF layout. 485 */ 467 */ 486 #ifdef CONFIG_MMU 468 #ifdef CONFIG_MMU 487 << 488 static const struct vm_operations_struct vmcor << 489 .fault = mmap_vmcore_fault, << 490 }; << 491 << 492 /* 469 /* 493 * remap_oldmem_pfn_checked - do remap_oldmem_ 470 * remap_oldmem_pfn_checked - do remap_oldmem_pfn_range replacing all pages 494 * reported as not being ram with the zero pag 471 * reported as not being ram with the zero page. 495 * 472 * 496 * @vma: vm_area_struct describing requested m 473 * @vma: vm_area_struct describing requested mapping 497 * @from: start remapping from 474 * @from: start remapping from 498 * @pfn: page frame number to start remapping 475 * @pfn: page frame number to start remapping to 499 * @size: remapping size 476 * @size: remapping size 500 * @prot: protection bits 477 * @prot: protection bits 501 * 478 * 502 * Returns zero on success, -EAGAIN on failure 479 * Returns zero on success, -EAGAIN on failure. 503 */ 480 */ 504 static int remap_oldmem_pfn_checked(struct vm_ 481 static int remap_oldmem_pfn_checked(struct vm_area_struct *vma, 505 unsigned l 482 unsigned long from, unsigned long pfn, 506 unsigned l 483 unsigned long size, pgprot_t prot) 507 { 484 { 508 unsigned long map_size; 485 unsigned long map_size; 509 unsigned long pos_start, pos_end, pos; 486 unsigned long pos_start, pos_end, pos; 510 unsigned long zeropage_pfn = my_zero_p 487 unsigned long zeropage_pfn = my_zero_pfn(0); 511 size_t len = 0; 488 size_t len = 0; 512 489 513 pos_start = pfn; 490 pos_start = pfn; 514 pos_end = pfn + (size >> PAGE_SHIFT); 491 pos_end = pfn + (size >> PAGE_SHIFT); 515 492 516 for (pos = pos_start; pos < pos_end; + 493 for (pos = pos_start; pos < pos_end; ++pos) { 517 if (!pfn_is_ram(pos)) { 494 if (!pfn_is_ram(pos)) { 518 /* 495 /* 519 * We hit a page which 496 * We hit a page which is not ram. Remap the continuous 520 * region between pos_ 497 * region between pos_start and pos-1 and replace 521 * the non-ram page at 498 * the non-ram page at pos with the zero page. 522 */ 499 */ 523 if (pos > pos_start) { 500 if (pos > pos_start) { 524 /* Remap conti 501 /* Remap continuous region */ 525 map_size = (po 502 map_size = (pos - pos_start) << PAGE_SHIFT; 526 if (remap_oldm 503 if (remap_oldmem_pfn_range(vma, from + len, 527 504 pos_start, map_size, 528 505 prot)) 529 goto f 506 goto fail; 530 len += map_siz 507 len += map_size; 531 } 508 } 532 /* Remap the zero page 509 /* Remap the zero page */ 533 if (remap_oldmem_pfn_r 510 if (remap_oldmem_pfn_range(vma, from + len, 534 511 zeropage_pfn, 535 512 PAGE_SIZE, prot)) 536 goto fail; 513 goto fail; 537 len += PAGE_SIZE; 514 len += PAGE_SIZE; 538 pos_start = pos + 1; 515 pos_start = pos + 1; 539 } 516 } 540 } 517 } 541 if (pos > pos_start) { 518 if (pos > pos_start) { 542 /* Remap the rest */ 519 /* Remap the rest */ 543 map_size = (pos - pos_start) < 520 map_size = (pos - pos_start) << PAGE_SHIFT; 544 if (remap_oldmem_pfn_range(vma 521 if (remap_oldmem_pfn_range(vma, from + len, pos_start, 545 map 522 map_size, prot)) 546 goto fail; 523 goto fail; 547 } 524 } 548 return 0; 525 return 0; 549 fail: 526 fail: 550 do_munmap(vma->vm_mm, from, len, NULL) 527 do_munmap(vma->vm_mm, from, len, NULL); 551 return -EAGAIN; 528 return -EAGAIN; 552 } 529 } 553 530 554 static int vmcore_remap_oldmem_pfn(struct vm_a 531 static int vmcore_remap_oldmem_pfn(struct vm_area_struct *vma, 555 unsigned long from 532 unsigned long from, unsigned long pfn, 556 unsigned long size 533 unsigned long size, pgprot_t prot) 557 { 534 { 558 int ret, idx; << 559 << 560 /* 535 /* 561 * Check if a callback was registered !! 536 * Check if oldmem_pfn_is_ram was registered to avoid 562 * pages without a reason. !! 537 * looping over all pages without a reason. 563 */ 538 */ 564 idx = srcu_read_lock(&vmcore_cb_srcu); !! 539 if (oldmem_pfn_is_ram) 565 if (!list_empty(&vmcore_cb_list)) !! 540 return remap_oldmem_pfn_checked(vma, from, pfn, size, prot); 566 ret = remap_oldmem_pfn_checked << 567 else 541 else 568 ret = remap_oldmem_pfn_range(v !! 542 return remap_oldmem_pfn_range(vma, from, pfn, size, prot); 569 srcu_read_unlock(&vmcore_cb_srcu, idx) << 570 return ret; << 571 } 543 } 572 544 573 static int mmap_vmcore(struct file *file, stru 545 static int mmap_vmcore(struct file *file, struct vm_area_struct *vma) 574 { 546 { 575 size_t size = vma->vm_end - vma->vm_st 547 size_t size = vma->vm_end - vma->vm_start; 576 u64 start, end, len, tsz; 548 u64 start, end, len, tsz; 577 struct vmcore *m; 549 struct vmcore *m; 578 550 579 start = (u64)vma->vm_pgoff << PAGE_SHI 551 start = (u64)vma->vm_pgoff << PAGE_SHIFT; 580 end = start + size; 552 end = start + size; 581 553 582 if (size > vmcore_size || end > vmcore 554 if (size > vmcore_size || end > vmcore_size) 583 return -EINVAL; 555 return -EINVAL; 584 556 585 if (vma->vm_flags & (VM_WRITE | VM_EXE 557 if (vma->vm_flags & (VM_WRITE | VM_EXEC)) 586 return -EPERM; 558 return -EPERM; 587 559 588 vm_flags_mod(vma, VM_MIXEDMAP, VM_MAYW !! 560 vma->vm_flags &= ~(VM_MAYWRITE | VM_MAYEXEC); >> 561 vma->vm_flags |= VM_MIXEDMAP; 589 vma->vm_ops = &vmcore_mmap_ops; 562 vma->vm_ops = &vmcore_mmap_ops; 590 563 591 len = 0; 564 len = 0; 592 565 593 if (start < elfcorebuf_sz) { 566 if (start < elfcorebuf_sz) { 594 u64 pfn; 567 u64 pfn; 595 568 596 tsz = min(elfcorebuf_sz - (siz 569 tsz = min(elfcorebuf_sz - (size_t)start, size); 597 pfn = __pa(elfcorebuf + start) 570 pfn = __pa(elfcorebuf + start) >> PAGE_SHIFT; 598 if (remap_pfn_range(vma, vma-> 571 if (remap_pfn_range(vma, vma->vm_start, pfn, tsz, 599 vma->vm_pa 572 vma->vm_page_prot)) 600 return -EAGAIN; 573 return -EAGAIN; 601 size -= tsz; 574 size -= tsz; 602 start += tsz; 575 start += tsz; 603 len += tsz; 576 len += tsz; 604 577 605 if (size == 0) 578 if (size == 0) 606 return 0; 579 return 0; 607 } 580 } 608 581 609 if (start < elfcorebuf_sz + elfnotes_s 582 if (start < elfcorebuf_sz + elfnotes_sz) { 610 void *kaddr; 583 void *kaddr; 611 584 612 /* We add device dumps before 585 /* We add device dumps before other elf notes because the 613 * other elf notes may not fil 586 * other elf notes may not fill the elf notes buffer 614 * completely and we will end 587 * completely and we will end up with zero-filled data 615 * between the elf notes and t 588 * between the elf notes and the device dumps. Tools will 616 * then try to decode this zer 589 * then try to decode this zero-filled data as valid notes 617 * and we don't want that. Hen 590 * and we don't want that. Hence, adding device dumps before 618 * the other elf notes ensure 591 * the other elf notes ensure that zero-filled data can be 619 * avoided. This also ensures 592 * avoided. This also ensures that the device dumps and 620 * other elf notes can be prop 593 * other elf notes can be properly mmaped at page aligned 621 * address. 594 * address. 622 */ 595 */ 623 #ifdef CONFIG_PROC_VMCORE_DEVICE_DUMP 596 #ifdef CONFIG_PROC_VMCORE_DEVICE_DUMP 624 /* Read device dumps */ 597 /* Read device dumps */ 625 if (start < elfcorebuf_sz + vm 598 if (start < elfcorebuf_sz + vmcoredd_orig_sz) { 626 u64 start_off; 599 u64 start_off; 627 600 628 tsz = min(elfcorebuf_s 601 tsz = min(elfcorebuf_sz + vmcoredd_orig_sz - 629 (size_t)star 602 (size_t)start, size); 630 start_off = start - el 603 start_off = start - elfcorebuf_sz; 631 if (vmcoredd_mmap_dump 604 if (vmcoredd_mmap_dumps(vma, vma->vm_start + len, 632 605 start_off, tsz)) 633 goto fail; 606 goto fail; 634 607 635 size -= tsz; 608 size -= tsz; 636 start += tsz; 609 start += tsz; 637 len += tsz; 610 len += tsz; 638 611 639 /* leave now if filled 612 /* leave now if filled buffer already */ 640 if (!size) 613 if (!size) 641 return 0; 614 return 0; 642 } 615 } 643 #endif /* CONFIG_PROC_VMCORE_DEVICE_DUMP */ 616 #endif /* CONFIG_PROC_VMCORE_DEVICE_DUMP */ 644 617 645 /* Read remaining elf notes */ 618 /* Read remaining elf notes */ 646 tsz = min(elfcorebuf_sz + elfn 619 tsz = min(elfcorebuf_sz + elfnotes_sz - (size_t)start, size); 647 kaddr = elfnotes_buf + start - 620 kaddr = elfnotes_buf + start - elfcorebuf_sz - vmcoredd_orig_sz; 648 if (remap_vmalloc_range_partia 621 if (remap_vmalloc_range_partial(vma, vma->vm_start + len, 649 !! 622 kaddr, tsz)) 650 goto fail; 623 goto fail; 651 624 652 size -= tsz; 625 size -= tsz; 653 start += tsz; 626 start += tsz; 654 len += tsz; 627 len += tsz; 655 628 656 if (size == 0) 629 if (size == 0) 657 return 0; 630 return 0; 658 } 631 } 659 632 660 list_for_each_entry(m, &vmcore_list, l 633 list_for_each_entry(m, &vmcore_list, list) { 661 if (start < m->offset + m->siz 634 if (start < m->offset + m->size) { 662 u64 paddr = 0; 635 u64 paddr = 0; 663 636 664 tsz = (size_t)min_t(un 637 tsz = (size_t)min_t(unsigned long long, 665 m- 638 m->offset + m->size - start, size); 666 paddr = m->paddr + sta 639 paddr = m->paddr + start - m->offset; 667 if (vmcore_remap_oldme 640 if (vmcore_remap_oldmem_pfn(vma, vma->vm_start + len, 668 641 paddr >> PAGE_SHIFT, tsz, 669 642 vma->vm_page_prot)) 670 goto fail; 643 goto fail; 671 size -= tsz; 644 size -= tsz; 672 start += tsz; 645 start += tsz; 673 len += tsz; 646 len += tsz; 674 647 675 if (size == 0) 648 if (size == 0) 676 return 0; 649 return 0; 677 } 650 } 678 } 651 } 679 652 680 return 0; 653 return 0; 681 fail: 654 fail: 682 do_munmap(vma->vm_mm, vma->vm_start, l 655 do_munmap(vma->vm_mm, vma->vm_start, len, NULL); 683 return -EAGAIN; 656 return -EAGAIN; 684 } 657 } 685 #else 658 #else 686 static int mmap_vmcore(struct file *file, stru 659 static int mmap_vmcore(struct file *file, struct vm_area_struct *vma) 687 { 660 { 688 return -ENOSYS; 661 return -ENOSYS; 689 } 662 } 690 #endif 663 #endif 691 664 692 static const struct proc_ops vmcore_proc_ops = !! 665 static const struct file_operations proc_vmcore_operations = { 693 .proc_open = open_vmcore, !! 666 .read = read_vmcore, 694 .proc_read_iter = read_vmcore, !! 667 .llseek = default_llseek, 695 .proc_lseek = default_llseek, !! 668 .mmap = mmap_vmcore, 696 .proc_mmap = mmap_vmcore, << 697 }; 669 }; 698 670 699 static struct vmcore* __init get_new_element(v 671 static struct vmcore* __init get_new_element(void) 700 { 672 { 701 return kzalloc(sizeof(struct vmcore), 673 return kzalloc(sizeof(struct vmcore), GFP_KERNEL); 702 } 674 } 703 675 704 static u64 get_vmcore_size(size_t elfsz, size_ 676 static u64 get_vmcore_size(size_t elfsz, size_t elfnotesegsz, 705 struct list_head *v 677 struct list_head *vc_list) 706 { 678 { 707 u64 size; 679 u64 size; 708 struct vmcore *m; 680 struct vmcore *m; 709 681 710 size = elfsz + elfnotesegsz; 682 size = elfsz + elfnotesegsz; 711 list_for_each_entry(m, vc_list, list) 683 list_for_each_entry(m, vc_list, list) { 712 size += m->size; 684 size += m->size; 713 } 685 } 714 return size; 686 return size; 715 } 687 } 716 688 717 /** 689 /** 718 * update_note_header_size_elf64 - update p_me 690 * update_note_header_size_elf64 - update p_memsz member of each PT_NOTE entry 719 * 691 * 720 * @ehdr_ptr: ELF header 692 * @ehdr_ptr: ELF header 721 * 693 * 722 * This function updates p_memsz member of eac 694 * This function updates p_memsz member of each PT_NOTE entry in the 723 * program header table pointed to by @ehdr_pt 695 * program header table pointed to by @ehdr_ptr to real size of ELF 724 * note segment. 696 * note segment. 725 */ 697 */ 726 static int __init update_note_header_size_elf6 698 static int __init update_note_header_size_elf64(const Elf64_Ehdr *ehdr_ptr) 727 { 699 { 728 int i, rc=0; 700 int i, rc=0; 729 Elf64_Phdr *phdr_ptr; 701 Elf64_Phdr *phdr_ptr; 730 Elf64_Nhdr *nhdr_ptr; 702 Elf64_Nhdr *nhdr_ptr; 731 703 732 phdr_ptr = (Elf64_Phdr *)(ehdr_ptr + 1 704 phdr_ptr = (Elf64_Phdr *)(ehdr_ptr + 1); 733 for (i = 0; i < ehdr_ptr->e_phnum; i++ 705 for (i = 0; i < ehdr_ptr->e_phnum; i++, phdr_ptr++) { 734 void *notes_section; 706 void *notes_section; 735 u64 offset, max_sz, sz, real_s 707 u64 offset, max_sz, sz, real_sz = 0; 736 if (phdr_ptr->p_type != PT_NOT 708 if (phdr_ptr->p_type != PT_NOTE) 737 continue; 709 continue; 738 max_sz = phdr_ptr->p_memsz; 710 max_sz = phdr_ptr->p_memsz; 739 offset = phdr_ptr->p_offset; 711 offset = phdr_ptr->p_offset; 740 notes_section = kmalloc(max_sz 712 notes_section = kmalloc(max_sz, GFP_KERNEL); 741 if (!notes_section) 713 if (!notes_section) 742 return -ENOMEM; 714 return -ENOMEM; 743 rc = elfcorehdr_read_notes(not 715 rc = elfcorehdr_read_notes(notes_section, max_sz, &offset); 744 if (rc < 0) { 716 if (rc < 0) { 745 kfree(notes_section); 717 kfree(notes_section); 746 return rc; 718 return rc; 747 } 719 } 748 nhdr_ptr = notes_section; 720 nhdr_ptr = notes_section; 749 while (nhdr_ptr->n_namesz != 0 721 while (nhdr_ptr->n_namesz != 0) { 750 sz = sizeof(Elf64_Nhdr 722 sz = sizeof(Elf64_Nhdr) + 751 (((u64)nhdr_pt 723 (((u64)nhdr_ptr->n_namesz + 3) & ~3) + 752 (((u64)nhdr_pt 724 (((u64)nhdr_ptr->n_descsz + 3) & ~3); 753 if ((real_sz + sz) > m 725 if ((real_sz + sz) > max_sz) { 754 pr_warn("Warni 726 pr_warn("Warning: Exceeded p_memsz, dropping PT_NOTE entry n_namesz=0x%x, n_descsz=0x%x\n", 755 nhdr_p 727 nhdr_ptr->n_namesz, nhdr_ptr->n_descsz); 756 break; 728 break; 757 } 729 } 758 real_sz += sz; 730 real_sz += sz; 759 nhdr_ptr = (Elf64_Nhdr 731 nhdr_ptr = (Elf64_Nhdr*)((char*)nhdr_ptr + sz); 760 } 732 } 761 kfree(notes_section); 733 kfree(notes_section); 762 phdr_ptr->p_memsz = real_sz; 734 phdr_ptr->p_memsz = real_sz; 763 if (real_sz == 0) { 735 if (real_sz == 0) { 764 pr_warn("Warning: Zero 736 pr_warn("Warning: Zero PT_NOTE entries found\n"); 765 } 737 } 766 } 738 } 767 739 768 return 0; 740 return 0; 769 } 741 } 770 742 771 /** 743 /** 772 * get_note_number_and_size_elf64 - get the nu 744 * get_note_number_and_size_elf64 - get the number of PT_NOTE program 773 * headers and sum of real size of their ELF n 745 * headers and sum of real size of their ELF note segment headers and 774 * data. 746 * data. 775 * 747 * 776 * @ehdr_ptr: ELF header 748 * @ehdr_ptr: ELF header 777 * @nr_ptnote: buffer for the number of PT_NOT 749 * @nr_ptnote: buffer for the number of PT_NOTE program headers 778 * @sz_ptnote: buffer for size of unique PT_NO 750 * @sz_ptnote: buffer for size of unique PT_NOTE program header 779 * 751 * 780 * This function is used to merge multiple PT_ 752 * This function is used to merge multiple PT_NOTE program headers 781 * into a unique single one. The resulting uni 753 * into a unique single one. The resulting unique entry will have 782 * @sz_ptnote in its phdr->p_mem. 754 * @sz_ptnote in its phdr->p_mem. 783 * 755 * 784 * It is assumed that program headers with PT_ 756 * It is assumed that program headers with PT_NOTE type pointed to by 785 * @ehdr_ptr has already been updated by updat 757 * @ehdr_ptr has already been updated by update_note_header_size_elf64 786 * and each of PT_NOTE program headers has act 758 * and each of PT_NOTE program headers has actual ELF note segment 787 * size in its p_memsz member. 759 * size in its p_memsz member. 788 */ 760 */ 789 static int __init get_note_number_and_size_elf 761 static int __init get_note_number_and_size_elf64(const Elf64_Ehdr *ehdr_ptr, 790 762 int *nr_ptnote, u64 *sz_ptnote) 791 { 763 { 792 int i; 764 int i; 793 Elf64_Phdr *phdr_ptr; 765 Elf64_Phdr *phdr_ptr; 794 766 795 *nr_ptnote = *sz_ptnote = 0; 767 *nr_ptnote = *sz_ptnote = 0; 796 768 797 phdr_ptr = (Elf64_Phdr *)(ehdr_ptr + 1 769 phdr_ptr = (Elf64_Phdr *)(ehdr_ptr + 1); 798 for (i = 0; i < ehdr_ptr->e_phnum; i++ 770 for (i = 0; i < ehdr_ptr->e_phnum; i++, phdr_ptr++) { 799 if (phdr_ptr->p_type != PT_NOT 771 if (phdr_ptr->p_type != PT_NOTE) 800 continue; 772 continue; 801 *nr_ptnote += 1; 773 *nr_ptnote += 1; 802 *sz_ptnote += phdr_ptr->p_mems 774 *sz_ptnote += phdr_ptr->p_memsz; 803 } 775 } 804 776 805 return 0; 777 return 0; 806 } 778 } 807 779 808 /** 780 /** 809 * copy_notes_elf64 - copy ELF note segments i 781 * copy_notes_elf64 - copy ELF note segments in a given buffer 810 * 782 * 811 * @ehdr_ptr: ELF header 783 * @ehdr_ptr: ELF header 812 * @notes_buf: buffer into which ELF note segm 784 * @notes_buf: buffer into which ELF note segments are copied 813 * 785 * 814 * This function is used to copy ELF note segm 786 * This function is used to copy ELF note segment in the 1st kernel 815 * into the buffer @notes_buf in the 2nd kerne 787 * into the buffer @notes_buf in the 2nd kernel. It is assumed that 816 * size of the buffer @notes_buf is equal to o 788 * size of the buffer @notes_buf is equal to or larger than sum of the 817 * real ELF note segment headers and data. 789 * real ELF note segment headers and data. 818 * 790 * 819 * It is assumed that program headers with PT_ 791 * It is assumed that program headers with PT_NOTE type pointed to by 820 * @ehdr_ptr has already been updated by updat 792 * @ehdr_ptr has already been updated by update_note_header_size_elf64 821 * and each of PT_NOTE program headers has act 793 * and each of PT_NOTE program headers has actual ELF note segment 822 * size in its p_memsz member. 794 * size in its p_memsz member. 823 */ 795 */ 824 static int __init copy_notes_elf64(const Elf64 796 static int __init copy_notes_elf64(const Elf64_Ehdr *ehdr_ptr, char *notes_buf) 825 { 797 { 826 int i, rc=0; 798 int i, rc=0; 827 Elf64_Phdr *phdr_ptr; 799 Elf64_Phdr *phdr_ptr; 828 800 829 phdr_ptr = (Elf64_Phdr*)(ehdr_ptr + 1) 801 phdr_ptr = (Elf64_Phdr*)(ehdr_ptr + 1); 830 802 831 for (i = 0; i < ehdr_ptr->e_phnum; i++ 803 for (i = 0; i < ehdr_ptr->e_phnum; i++, phdr_ptr++) { 832 u64 offset; 804 u64 offset; 833 if (phdr_ptr->p_type != PT_NOT 805 if (phdr_ptr->p_type != PT_NOTE) 834 continue; 806 continue; 835 offset = phdr_ptr->p_offset; 807 offset = phdr_ptr->p_offset; 836 rc = elfcorehdr_read_notes(not 808 rc = elfcorehdr_read_notes(notes_buf, phdr_ptr->p_memsz, 837 &of 809 &offset); 838 if (rc < 0) 810 if (rc < 0) 839 return rc; 811 return rc; 840 notes_buf += phdr_ptr->p_memsz 812 notes_buf += phdr_ptr->p_memsz; 841 } 813 } 842 814 843 return 0; 815 return 0; 844 } 816 } 845 817 846 /* Merges all the PT_NOTE headers into one. */ 818 /* Merges all the PT_NOTE headers into one. */ 847 static int __init merge_note_headers_elf64(cha 819 static int __init merge_note_headers_elf64(char *elfptr, size_t *elfsz, 848 cha 820 char **notes_buf, size_t *notes_sz) 849 { 821 { 850 int i, nr_ptnote=0, rc=0; 822 int i, nr_ptnote=0, rc=0; 851 char *tmp; 823 char *tmp; 852 Elf64_Ehdr *ehdr_ptr; 824 Elf64_Ehdr *ehdr_ptr; 853 Elf64_Phdr phdr; 825 Elf64_Phdr phdr; 854 u64 phdr_sz = 0, note_off; 826 u64 phdr_sz = 0, note_off; 855 827 856 ehdr_ptr = (Elf64_Ehdr *)elfptr; 828 ehdr_ptr = (Elf64_Ehdr *)elfptr; 857 829 858 rc = update_note_header_size_elf64(ehd 830 rc = update_note_header_size_elf64(ehdr_ptr); 859 if (rc < 0) 831 if (rc < 0) 860 return rc; 832 return rc; 861 833 862 rc = get_note_number_and_size_elf64(eh 834 rc = get_note_number_and_size_elf64(ehdr_ptr, &nr_ptnote, &phdr_sz); 863 if (rc < 0) 835 if (rc < 0) 864 return rc; 836 return rc; 865 837 866 *notes_sz = roundup(phdr_sz, PAGE_SIZE 838 *notes_sz = roundup(phdr_sz, PAGE_SIZE); 867 *notes_buf = vmcore_alloc_buf(*notes_s 839 *notes_buf = vmcore_alloc_buf(*notes_sz); 868 if (!*notes_buf) 840 if (!*notes_buf) 869 return -ENOMEM; 841 return -ENOMEM; 870 842 871 rc = copy_notes_elf64(ehdr_ptr, *notes 843 rc = copy_notes_elf64(ehdr_ptr, *notes_buf); 872 if (rc < 0) 844 if (rc < 0) 873 return rc; 845 return rc; 874 846 875 /* Prepare merged PT_NOTE program head 847 /* Prepare merged PT_NOTE program header. */ 876 phdr.p_type = PT_NOTE; 848 phdr.p_type = PT_NOTE; 877 phdr.p_flags = 0; 849 phdr.p_flags = 0; 878 note_off = sizeof(Elf64_Ehdr) + 850 note_off = sizeof(Elf64_Ehdr) + 879 (ehdr_ptr->e_phnum - n 851 (ehdr_ptr->e_phnum - nr_ptnote +1) * sizeof(Elf64_Phdr); 880 phdr.p_offset = roundup(note_off, PAG 852 phdr.p_offset = roundup(note_off, PAGE_SIZE); 881 phdr.p_vaddr = phdr.p_paddr = 0; 853 phdr.p_vaddr = phdr.p_paddr = 0; 882 phdr.p_filesz = phdr.p_memsz = phdr_s 854 phdr.p_filesz = phdr.p_memsz = phdr_sz; 883 phdr.p_align = 4; !! 855 phdr.p_align = 0; 884 856 885 /* Add merged PT_NOTE program header*/ 857 /* Add merged PT_NOTE program header*/ 886 tmp = elfptr + sizeof(Elf64_Ehdr); 858 tmp = elfptr + sizeof(Elf64_Ehdr); 887 memcpy(tmp, &phdr, sizeof(phdr)); 859 memcpy(tmp, &phdr, sizeof(phdr)); 888 tmp += sizeof(phdr); 860 tmp += sizeof(phdr); 889 861 890 /* Remove unwanted PT_NOTE program hea 862 /* Remove unwanted PT_NOTE program headers. */ 891 i = (nr_ptnote - 1) * sizeof(Elf64_Phd 863 i = (nr_ptnote - 1) * sizeof(Elf64_Phdr); 892 *elfsz = *elfsz - i; 864 *elfsz = *elfsz - i; 893 memmove(tmp, tmp+i, ((*elfsz)-sizeof(E 865 memmove(tmp, tmp+i, ((*elfsz)-sizeof(Elf64_Ehdr)-sizeof(Elf64_Phdr))); 894 memset(elfptr + *elfsz, 0, i); 866 memset(elfptr + *elfsz, 0, i); 895 *elfsz = roundup(*elfsz, PAGE_SIZE); 867 *elfsz = roundup(*elfsz, PAGE_SIZE); 896 868 897 /* Modify e_phnum to reflect merged he 869 /* Modify e_phnum to reflect merged headers. */ 898 ehdr_ptr->e_phnum = ehdr_ptr->e_phnum 870 ehdr_ptr->e_phnum = ehdr_ptr->e_phnum - nr_ptnote + 1; 899 871 900 /* Store the size of all notes. We ne 872 /* Store the size of all notes. We need this to update the note 901 * header when the device dumps will b 873 * header when the device dumps will be added. 902 */ 874 */ 903 elfnotes_orig_sz = phdr.p_memsz; 875 elfnotes_orig_sz = phdr.p_memsz; 904 876 905 return 0; 877 return 0; 906 } 878 } 907 879 908 /** 880 /** 909 * update_note_header_size_elf32 - update p_me 881 * update_note_header_size_elf32 - update p_memsz member of each PT_NOTE entry 910 * 882 * 911 * @ehdr_ptr: ELF header 883 * @ehdr_ptr: ELF header 912 * 884 * 913 * This function updates p_memsz member of eac 885 * This function updates p_memsz member of each PT_NOTE entry in the 914 * program header table pointed to by @ehdr_pt 886 * program header table pointed to by @ehdr_ptr to real size of ELF 915 * note segment. 887 * note segment. 916 */ 888 */ 917 static int __init update_note_header_size_elf3 889 static int __init update_note_header_size_elf32(const Elf32_Ehdr *ehdr_ptr) 918 { 890 { 919 int i, rc=0; 891 int i, rc=0; 920 Elf32_Phdr *phdr_ptr; 892 Elf32_Phdr *phdr_ptr; 921 Elf32_Nhdr *nhdr_ptr; 893 Elf32_Nhdr *nhdr_ptr; 922 894 923 phdr_ptr = (Elf32_Phdr *)(ehdr_ptr + 1 895 phdr_ptr = (Elf32_Phdr *)(ehdr_ptr + 1); 924 for (i = 0; i < ehdr_ptr->e_phnum; i++ 896 for (i = 0; i < ehdr_ptr->e_phnum; i++, phdr_ptr++) { 925 void *notes_section; 897 void *notes_section; 926 u64 offset, max_sz, sz, real_s 898 u64 offset, max_sz, sz, real_sz = 0; 927 if (phdr_ptr->p_type != PT_NOT 899 if (phdr_ptr->p_type != PT_NOTE) 928 continue; 900 continue; 929 max_sz = phdr_ptr->p_memsz; 901 max_sz = phdr_ptr->p_memsz; 930 offset = phdr_ptr->p_offset; 902 offset = phdr_ptr->p_offset; 931 notes_section = kmalloc(max_sz 903 notes_section = kmalloc(max_sz, GFP_KERNEL); 932 if (!notes_section) 904 if (!notes_section) 933 return -ENOMEM; 905 return -ENOMEM; 934 rc = elfcorehdr_read_notes(not 906 rc = elfcorehdr_read_notes(notes_section, max_sz, &offset); 935 if (rc < 0) { 907 if (rc < 0) { 936 kfree(notes_section); 908 kfree(notes_section); 937 return rc; 909 return rc; 938 } 910 } 939 nhdr_ptr = notes_section; 911 nhdr_ptr = notes_section; 940 while (nhdr_ptr->n_namesz != 0 912 while (nhdr_ptr->n_namesz != 0) { 941 sz = sizeof(Elf32_Nhdr 913 sz = sizeof(Elf32_Nhdr) + 942 (((u64)nhdr_pt 914 (((u64)nhdr_ptr->n_namesz + 3) & ~3) + 943 (((u64)nhdr_pt 915 (((u64)nhdr_ptr->n_descsz + 3) & ~3); 944 if ((real_sz + sz) > m 916 if ((real_sz + sz) > max_sz) { 945 pr_warn("Warni 917 pr_warn("Warning: Exceeded p_memsz, dropping PT_NOTE entry n_namesz=0x%x, n_descsz=0x%x\n", 946 nhdr_p 918 nhdr_ptr->n_namesz, nhdr_ptr->n_descsz); 947 break; 919 break; 948 } 920 } 949 real_sz += sz; 921 real_sz += sz; 950 nhdr_ptr = (Elf32_Nhdr 922 nhdr_ptr = (Elf32_Nhdr*)((char*)nhdr_ptr + sz); 951 } 923 } 952 kfree(notes_section); 924 kfree(notes_section); 953 phdr_ptr->p_memsz = real_sz; 925 phdr_ptr->p_memsz = real_sz; 954 if (real_sz == 0) { 926 if (real_sz == 0) { 955 pr_warn("Warning: Zero 927 pr_warn("Warning: Zero PT_NOTE entries found\n"); 956 } 928 } 957 } 929 } 958 930 959 return 0; 931 return 0; 960 } 932 } 961 933 962 /** 934 /** 963 * get_note_number_and_size_elf32 - get the nu 935 * get_note_number_and_size_elf32 - get the number of PT_NOTE program 964 * headers and sum of real size of their ELF n 936 * headers and sum of real size of their ELF note segment headers and 965 * data. 937 * data. 966 * 938 * 967 * @ehdr_ptr: ELF header 939 * @ehdr_ptr: ELF header 968 * @nr_ptnote: buffer for the number of PT_NOT 940 * @nr_ptnote: buffer for the number of PT_NOTE program headers 969 * @sz_ptnote: buffer for size of unique PT_NO 941 * @sz_ptnote: buffer for size of unique PT_NOTE program header 970 * 942 * 971 * This function is used to merge multiple PT_ 943 * This function is used to merge multiple PT_NOTE program headers 972 * into a unique single one. The resulting uni 944 * into a unique single one. The resulting unique entry will have 973 * @sz_ptnote in its phdr->p_mem. 945 * @sz_ptnote in its phdr->p_mem. 974 * 946 * 975 * It is assumed that program headers with PT_ 947 * It is assumed that program headers with PT_NOTE type pointed to by 976 * @ehdr_ptr has already been updated by updat 948 * @ehdr_ptr has already been updated by update_note_header_size_elf32 977 * and each of PT_NOTE program headers has act 949 * and each of PT_NOTE program headers has actual ELF note segment 978 * size in its p_memsz member. 950 * size in its p_memsz member. 979 */ 951 */ 980 static int __init get_note_number_and_size_elf 952 static int __init get_note_number_and_size_elf32(const Elf32_Ehdr *ehdr_ptr, 981 953 int *nr_ptnote, u64 *sz_ptnote) 982 { 954 { 983 int i; 955 int i; 984 Elf32_Phdr *phdr_ptr; 956 Elf32_Phdr *phdr_ptr; 985 957 986 *nr_ptnote = *sz_ptnote = 0; 958 *nr_ptnote = *sz_ptnote = 0; 987 959 988 phdr_ptr = (Elf32_Phdr *)(ehdr_ptr + 1 960 phdr_ptr = (Elf32_Phdr *)(ehdr_ptr + 1); 989 for (i = 0; i < ehdr_ptr->e_phnum; i++ 961 for (i = 0; i < ehdr_ptr->e_phnum; i++, phdr_ptr++) { 990 if (phdr_ptr->p_type != PT_NOT 962 if (phdr_ptr->p_type != PT_NOTE) 991 continue; 963 continue; 992 *nr_ptnote += 1; 964 *nr_ptnote += 1; 993 *sz_ptnote += phdr_ptr->p_mems 965 *sz_ptnote += phdr_ptr->p_memsz; 994 } 966 } 995 967 996 return 0; 968 return 0; 997 } 969 } 998 970 999 /** 971 /** 1000 * copy_notes_elf32 - copy ELF note segments 972 * copy_notes_elf32 - copy ELF note segments in a given buffer 1001 * 973 * 1002 * @ehdr_ptr: ELF header 974 * @ehdr_ptr: ELF header 1003 * @notes_buf: buffer into which ELF note seg 975 * @notes_buf: buffer into which ELF note segments are copied 1004 * 976 * 1005 * This function is used to copy ELF note seg 977 * This function is used to copy ELF note segment in the 1st kernel 1006 * into the buffer @notes_buf in the 2nd kern 978 * into the buffer @notes_buf in the 2nd kernel. It is assumed that 1007 * size of the buffer @notes_buf is equal to 979 * size of the buffer @notes_buf is equal to or larger than sum of the 1008 * real ELF note segment headers and data. 980 * real ELF note segment headers and data. 1009 * 981 * 1010 * It is assumed that program headers with PT 982 * It is assumed that program headers with PT_NOTE type pointed to by 1011 * @ehdr_ptr has already been updated by upda 983 * @ehdr_ptr has already been updated by update_note_header_size_elf32 1012 * and each of PT_NOTE program headers has ac 984 * and each of PT_NOTE program headers has actual ELF note segment 1013 * size in its p_memsz member. 985 * size in its p_memsz member. 1014 */ 986 */ 1015 static int __init copy_notes_elf32(const Elf3 987 static int __init copy_notes_elf32(const Elf32_Ehdr *ehdr_ptr, char *notes_buf) 1016 { 988 { 1017 int i, rc=0; 989 int i, rc=0; 1018 Elf32_Phdr *phdr_ptr; 990 Elf32_Phdr *phdr_ptr; 1019 991 1020 phdr_ptr = (Elf32_Phdr*)(ehdr_ptr + 1 992 phdr_ptr = (Elf32_Phdr*)(ehdr_ptr + 1); 1021 993 1022 for (i = 0; i < ehdr_ptr->e_phnum; i+ 994 for (i = 0; i < ehdr_ptr->e_phnum; i++, phdr_ptr++) { 1023 u64 offset; 995 u64 offset; 1024 if (phdr_ptr->p_type != PT_NO 996 if (phdr_ptr->p_type != PT_NOTE) 1025 continue; 997 continue; 1026 offset = phdr_ptr->p_offset; 998 offset = phdr_ptr->p_offset; 1027 rc = elfcorehdr_read_notes(no 999 rc = elfcorehdr_read_notes(notes_buf, phdr_ptr->p_memsz, 1028 &o 1000 &offset); 1029 if (rc < 0) 1001 if (rc < 0) 1030 return rc; 1002 return rc; 1031 notes_buf += phdr_ptr->p_mems 1003 notes_buf += phdr_ptr->p_memsz; 1032 } 1004 } 1033 1005 1034 return 0; 1006 return 0; 1035 } 1007 } 1036 1008 1037 /* Merges all the PT_NOTE headers into one. * 1009 /* Merges all the PT_NOTE headers into one. */ 1038 static int __init merge_note_headers_elf32(ch 1010 static int __init merge_note_headers_elf32(char *elfptr, size_t *elfsz, 1039 ch 1011 char **notes_buf, size_t *notes_sz) 1040 { 1012 { 1041 int i, nr_ptnote=0, rc=0; 1013 int i, nr_ptnote=0, rc=0; 1042 char *tmp; 1014 char *tmp; 1043 Elf32_Ehdr *ehdr_ptr; 1015 Elf32_Ehdr *ehdr_ptr; 1044 Elf32_Phdr phdr; 1016 Elf32_Phdr phdr; 1045 u64 phdr_sz = 0, note_off; 1017 u64 phdr_sz = 0, note_off; 1046 1018 1047 ehdr_ptr = (Elf32_Ehdr *)elfptr; 1019 ehdr_ptr = (Elf32_Ehdr *)elfptr; 1048 1020 1049 rc = update_note_header_size_elf32(eh 1021 rc = update_note_header_size_elf32(ehdr_ptr); 1050 if (rc < 0) 1022 if (rc < 0) 1051 return rc; 1023 return rc; 1052 1024 1053 rc = get_note_number_and_size_elf32(e 1025 rc = get_note_number_and_size_elf32(ehdr_ptr, &nr_ptnote, &phdr_sz); 1054 if (rc < 0) 1026 if (rc < 0) 1055 return rc; 1027 return rc; 1056 1028 1057 *notes_sz = roundup(phdr_sz, PAGE_SIZ 1029 *notes_sz = roundup(phdr_sz, PAGE_SIZE); 1058 *notes_buf = vmcore_alloc_buf(*notes_ 1030 *notes_buf = vmcore_alloc_buf(*notes_sz); 1059 if (!*notes_buf) 1031 if (!*notes_buf) 1060 return -ENOMEM; 1032 return -ENOMEM; 1061 1033 1062 rc = copy_notes_elf32(ehdr_ptr, *note 1034 rc = copy_notes_elf32(ehdr_ptr, *notes_buf); 1063 if (rc < 0) 1035 if (rc < 0) 1064 return rc; 1036 return rc; 1065 1037 1066 /* Prepare merged PT_NOTE program hea 1038 /* Prepare merged PT_NOTE program header. */ 1067 phdr.p_type = PT_NOTE; 1039 phdr.p_type = PT_NOTE; 1068 phdr.p_flags = 0; 1040 phdr.p_flags = 0; 1069 note_off = sizeof(Elf32_Ehdr) + 1041 note_off = sizeof(Elf32_Ehdr) + 1070 (ehdr_ptr->e_phnum - 1042 (ehdr_ptr->e_phnum - nr_ptnote +1) * sizeof(Elf32_Phdr); 1071 phdr.p_offset = roundup(note_off, PA 1043 phdr.p_offset = roundup(note_off, PAGE_SIZE); 1072 phdr.p_vaddr = phdr.p_paddr = 0; 1044 phdr.p_vaddr = phdr.p_paddr = 0; 1073 phdr.p_filesz = phdr.p_memsz = phdr_ 1045 phdr.p_filesz = phdr.p_memsz = phdr_sz; 1074 phdr.p_align = 4; !! 1046 phdr.p_align = 0; 1075 1047 1076 /* Add merged PT_NOTE program header* 1048 /* Add merged PT_NOTE program header*/ 1077 tmp = elfptr + sizeof(Elf32_Ehdr); 1049 tmp = elfptr + sizeof(Elf32_Ehdr); 1078 memcpy(tmp, &phdr, sizeof(phdr)); 1050 memcpy(tmp, &phdr, sizeof(phdr)); 1079 tmp += sizeof(phdr); 1051 tmp += sizeof(phdr); 1080 1052 1081 /* Remove unwanted PT_NOTE program he 1053 /* Remove unwanted PT_NOTE program headers. */ 1082 i = (nr_ptnote - 1) * sizeof(Elf32_Ph 1054 i = (nr_ptnote - 1) * sizeof(Elf32_Phdr); 1083 *elfsz = *elfsz - i; 1055 *elfsz = *elfsz - i; 1084 memmove(tmp, tmp+i, ((*elfsz)-sizeof( 1056 memmove(tmp, tmp+i, ((*elfsz)-sizeof(Elf32_Ehdr)-sizeof(Elf32_Phdr))); 1085 memset(elfptr + *elfsz, 0, i); 1057 memset(elfptr + *elfsz, 0, i); 1086 *elfsz = roundup(*elfsz, PAGE_SIZE); 1058 *elfsz = roundup(*elfsz, PAGE_SIZE); 1087 1059 1088 /* Modify e_phnum to reflect merged h 1060 /* Modify e_phnum to reflect merged headers. */ 1089 ehdr_ptr->e_phnum = ehdr_ptr->e_phnum 1061 ehdr_ptr->e_phnum = ehdr_ptr->e_phnum - nr_ptnote + 1; 1090 1062 1091 /* Store the size of all notes. We n 1063 /* Store the size of all notes. We need this to update the note 1092 * header when the device dumps will 1064 * header when the device dumps will be added. 1093 */ 1065 */ 1094 elfnotes_orig_sz = phdr.p_memsz; 1066 elfnotes_orig_sz = phdr.p_memsz; 1095 1067 1096 return 0; 1068 return 0; 1097 } 1069 } 1098 1070 1099 /* Add memory chunks represented by program h 1071 /* Add memory chunks represented by program headers to vmcore list. Also update 1100 * the new offset fields of exported program 1072 * the new offset fields of exported program headers. */ 1101 static int __init process_ptload_program_head 1073 static int __init process_ptload_program_headers_elf64(char *elfptr, 1102 1074 size_t elfsz, 1103 1075 size_t elfnotes_sz, 1104 1076 struct list_head *vc_list) 1105 { 1077 { 1106 int i; 1078 int i; 1107 Elf64_Ehdr *ehdr_ptr; 1079 Elf64_Ehdr *ehdr_ptr; 1108 Elf64_Phdr *phdr_ptr; 1080 Elf64_Phdr *phdr_ptr; 1109 loff_t vmcore_off; 1081 loff_t vmcore_off; 1110 struct vmcore *new; 1082 struct vmcore *new; 1111 1083 1112 ehdr_ptr = (Elf64_Ehdr *)elfptr; 1084 ehdr_ptr = (Elf64_Ehdr *)elfptr; 1113 phdr_ptr = (Elf64_Phdr*)(elfptr + siz 1085 phdr_ptr = (Elf64_Phdr*)(elfptr + sizeof(Elf64_Ehdr)); /* PT_NOTE hdr */ 1114 1086 1115 /* Skip ELF header, program headers a !! 1087 /* Skip Elf header, program headers and Elf note segment. */ 1116 vmcore_off = elfsz + elfnotes_sz; 1088 vmcore_off = elfsz + elfnotes_sz; 1117 1089 1118 for (i = 0; i < ehdr_ptr->e_phnum; i+ 1090 for (i = 0; i < ehdr_ptr->e_phnum; i++, phdr_ptr++) { 1119 u64 paddr, start, end, size; 1091 u64 paddr, start, end, size; 1120 1092 1121 if (phdr_ptr->p_type != PT_LO 1093 if (phdr_ptr->p_type != PT_LOAD) 1122 continue; 1094 continue; 1123 1095 1124 paddr = phdr_ptr->p_offset; 1096 paddr = phdr_ptr->p_offset; 1125 start = rounddown(paddr, PAGE 1097 start = rounddown(paddr, PAGE_SIZE); 1126 end = roundup(paddr + phdr_pt 1098 end = roundup(paddr + phdr_ptr->p_memsz, PAGE_SIZE); 1127 size = end - start; 1099 size = end - start; 1128 1100 1129 /* Add this contiguous chunk 1101 /* Add this contiguous chunk of memory to vmcore list.*/ 1130 new = get_new_element(); 1102 new = get_new_element(); 1131 if (!new) 1103 if (!new) 1132 return -ENOMEM; 1104 return -ENOMEM; 1133 new->paddr = start; 1105 new->paddr = start; 1134 new->size = size; 1106 new->size = size; 1135 list_add_tail(&new->list, vc_ 1107 list_add_tail(&new->list, vc_list); 1136 1108 1137 /* Update the program header 1109 /* Update the program header offset. */ 1138 phdr_ptr->p_offset = vmcore_o 1110 phdr_ptr->p_offset = vmcore_off + (paddr - start); 1139 vmcore_off = vmcore_off + siz 1111 vmcore_off = vmcore_off + size; 1140 } 1112 } 1141 return 0; 1113 return 0; 1142 } 1114 } 1143 1115 1144 static int __init process_ptload_program_head 1116 static int __init process_ptload_program_headers_elf32(char *elfptr, 1145 1117 size_t elfsz, 1146 1118 size_t elfnotes_sz, 1147 1119 struct list_head *vc_list) 1148 { 1120 { 1149 int i; 1121 int i; 1150 Elf32_Ehdr *ehdr_ptr; 1122 Elf32_Ehdr *ehdr_ptr; 1151 Elf32_Phdr *phdr_ptr; 1123 Elf32_Phdr *phdr_ptr; 1152 loff_t vmcore_off; 1124 loff_t vmcore_off; 1153 struct vmcore *new; 1125 struct vmcore *new; 1154 1126 1155 ehdr_ptr = (Elf32_Ehdr *)elfptr; 1127 ehdr_ptr = (Elf32_Ehdr *)elfptr; 1156 phdr_ptr = (Elf32_Phdr*)(elfptr + siz 1128 phdr_ptr = (Elf32_Phdr*)(elfptr + sizeof(Elf32_Ehdr)); /* PT_NOTE hdr */ 1157 1129 1158 /* Skip ELF header, program headers a !! 1130 /* Skip Elf header, program headers and Elf note segment. */ 1159 vmcore_off = elfsz + elfnotes_sz; 1131 vmcore_off = elfsz + elfnotes_sz; 1160 1132 1161 for (i = 0; i < ehdr_ptr->e_phnum; i+ 1133 for (i = 0; i < ehdr_ptr->e_phnum; i++, phdr_ptr++) { 1162 u64 paddr, start, end, size; 1134 u64 paddr, start, end, size; 1163 1135 1164 if (phdr_ptr->p_type != PT_LO 1136 if (phdr_ptr->p_type != PT_LOAD) 1165 continue; 1137 continue; 1166 1138 1167 paddr = phdr_ptr->p_offset; 1139 paddr = phdr_ptr->p_offset; 1168 start = rounddown(paddr, PAGE 1140 start = rounddown(paddr, PAGE_SIZE); 1169 end = roundup(paddr + phdr_pt 1141 end = roundup(paddr + phdr_ptr->p_memsz, PAGE_SIZE); 1170 size = end - start; 1142 size = end - start; 1171 1143 1172 /* Add this contiguous chunk 1144 /* Add this contiguous chunk of memory to vmcore list.*/ 1173 new = get_new_element(); 1145 new = get_new_element(); 1174 if (!new) 1146 if (!new) 1175 return -ENOMEM; 1147 return -ENOMEM; 1176 new->paddr = start; 1148 new->paddr = start; 1177 new->size = size; 1149 new->size = size; 1178 list_add_tail(&new->list, vc_ 1150 list_add_tail(&new->list, vc_list); 1179 1151 1180 /* Update the program header 1152 /* Update the program header offset */ 1181 phdr_ptr->p_offset = vmcore_o 1153 phdr_ptr->p_offset = vmcore_off + (paddr - start); 1182 vmcore_off = vmcore_off + siz 1154 vmcore_off = vmcore_off + size; 1183 } 1155 } 1184 return 0; 1156 return 0; 1185 } 1157 } 1186 1158 1187 /* Sets offset fields of vmcore elements. */ 1159 /* Sets offset fields of vmcore elements. */ 1188 static void set_vmcore_list_offsets(size_t el 1160 static void set_vmcore_list_offsets(size_t elfsz, size_t elfnotes_sz, 1189 struct li 1161 struct list_head *vc_list) 1190 { 1162 { 1191 loff_t vmcore_off; 1163 loff_t vmcore_off; 1192 struct vmcore *m; 1164 struct vmcore *m; 1193 1165 1194 /* Skip ELF header, program headers a !! 1166 /* Skip Elf header, program headers and Elf note segment. */ 1195 vmcore_off = elfsz + elfnotes_sz; 1167 vmcore_off = elfsz + elfnotes_sz; 1196 1168 1197 list_for_each_entry(m, vc_list, list) 1169 list_for_each_entry(m, vc_list, list) { 1198 m->offset = vmcore_off; 1170 m->offset = vmcore_off; 1199 vmcore_off += m->size; 1171 vmcore_off += m->size; 1200 } 1172 } 1201 } 1173 } 1202 1174 1203 static void free_elfcorebuf(void) 1175 static void free_elfcorebuf(void) 1204 { 1176 { 1205 free_pages((unsigned long)elfcorebuf, 1177 free_pages((unsigned long)elfcorebuf, get_order(elfcorebuf_sz_orig)); 1206 elfcorebuf = NULL; 1178 elfcorebuf = NULL; 1207 vfree(elfnotes_buf); 1179 vfree(elfnotes_buf); 1208 elfnotes_buf = NULL; 1180 elfnotes_buf = NULL; 1209 } 1181 } 1210 1182 1211 static int __init parse_crash_elf64_headers(v 1183 static int __init parse_crash_elf64_headers(void) 1212 { 1184 { 1213 int rc=0; 1185 int rc=0; 1214 Elf64_Ehdr ehdr; 1186 Elf64_Ehdr ehdr; 1215 u64 addr; 1187 u64 addr; 1216 1188 1217 addr = elfcorehdr_addr; 1189 addr = elfcorehdr_addr; 1218 1190 1219 /* Read ELF header */ !! 1191 /* Read Elf header */ 1220 rc = elfcorehdr_read((char *)&ehdr, s 1192 rc = elfcorehdr_read((char *)&ehdr, sizeof(Elf64_Ehdr), &addr); 1221 if (rc < 0) 1193 if (rc < 0) 1222 return rc; 1194 return rc; 1223 1195 1224 /* Do some basic Verification. */ 1196 /* Do some basic Verification. */ 1225 if (memcmp(ehdr.e_ident, ELFMAG, SELF 1197 if (memcmp(ehdr.e_ident, ELFMAG, SELFMAG) != 0 || 1226 (ehdr.e_type != ET_CORE) || 1198 (ehdr.e_type != ET_CORE) || 1227 !vmcore_elf64_check_arch(&ehd 1199 !vmcore_elf64_check_arch(&ehdr) || 1228 ehdr.e_ident[EI_CLASS] != ELF 1200 ehdr.e_ident[EI_CLASS] != ELFCLASS64 || 1229 ehdr.e_ident[EI_VERSION] != E 1201 ehdr.e_ident[EI_VERSION] != EV_CURRENT || 1230 ehdr.e_version != EV_CURRENT 1202 ehdr.e_version != EV_CURRENT || 1231 ehdr.e_ehsize != sizeof(Elf64 1203 ehdr.e_ehsize != sizeof(Elf64_Ehdr) || 1232 ehdr.e_phentsize != sizeof(El 1204 ehdr.e_phentsize != sizeof(Elf64_Phdr) || 1233 ehdr.e_phnum == 0) { 1205 ehdr.e_phnum == 0) { 1234 pr_warn("Warning: Core image 1206 pr_warn("Warning: Core image elf header is not sane\n"); 1235 return -EINVAL; 1207 return -EINVAL; 1236 } 1208 } 1237 1209 1238 /* Read in all elf headers. */ 1210 /* Read in all elf headers. */ 1239 elfcorebuf_sz_orig = sizeof(Elf64_Ehd 1211 elfcorebuf_sz_orig = sizeof(Elf64_Ehdr) + 1240 ehdr.e_phnum 1212 ehdr.e_phnum * sizeof(Elf64_Phdr); 1241 elfcorebuf_sz = elfcorebuf_sz_orig; 1213 elfcorebuf_sz = elfcorebuf_sz_orig; 1242 elfcorebuf = (void *)__get_free_pages 1214 elfcorebuf = (void *)__get_free_pages(GFP_KERNEL | __GFP_ZERO, 1243 1215 get_order(elfcorebuf_sz_orig)); 1244 if (!elfcorebuf) 1216 if (!elfcorebuf) 1245 return -ENOMEM; 1217 return -ENOMEM; 1246 addr = elfcorehdr_addr; 1218 addr = elfcorehdr_addr; 1247 rc = elfcorehdr_read(elfcorebuf, elfc 1219 rc = elfcorehdr_read(elfcorebuf, elfcorebuf_sz_orig, &addr); 1248 if (rc < 0) 1220 if (rc < 0) 1249 goto fail; 1221 goto fail; 1250 1222 1251 /* Merge all PT_NOTE headers into one 1223 /* Merge all PT_NOTE headers into one. */ 1252 rc = merge_note_headers_elf64(elfcore 1224 rc = merge_note_headers_elf64(elfcorebuf, &elfcorebuf_sz, 1253 &elfnot 1225 &elfnotes_buf, &elfnotes_sz); 1254 if (rc) 1226 if (rc) 1255 goto fail; 1227 goto fail; 1256 rc = process_ptload_program_headers_e 1228 rc = process_ptload_program_headers_elf64(elfcorebuf, elfcorebuf_sz, 1257 1229 elfnotes_sz, &vmcore_list); 1258 if (rc) 1230 if (rc) 1259 goto fail; 1231 goto fail; 1260 set_vmcore_list_offsets(elfcorebuf_sz 1232 set_vmcore_list_offsets(elfcorebuf_sz, elfnotes_sz, &vmcore_list); 1261 return 0; 1233 return 0; 1262 fail: 1234 fail: 1263 free_elfcorebuf(); 1235 free_elfcorebuf(); 1264 return rc; 1236 return rc; 1265 } 1237 } 1266 1238 1267 static int __init parse_crash_elf32_headers(v 1239 static int __init parse_crash_elf32_headers(void) 1268 { 1240 { 1269 int rc=0; 1241 int rc=0; 1270 Elf32_Ehdr ehdr; 1242 Elf32_Ehdr ehdr; 1271 u64 addr; 1243 u64 addr; 1272 1244 1273 addr = elfcorehdr_addr; 1245 addr = elfcorehdr_addr; 1274 1246 1275 /* Read ELF header */ !! 1247 /* Read Elf header */ 1276 rc = elfcorehdr_read((char *)&ehdr, s 1248 rc = elfcorehdr_read((char *)&ehdr, sizeof(Elf32_Ehdr), &addr); 1277 if (rc < 0) 1249 if (rc < 0) 1278 return rc; 1250 return rc; 1279 1251 1280 /* Do some basic Verification. */ 1252 /* Do some basic Verification. */ 1281 if (memcmp(ehdr.e_ident, ELFMAG, SELF 1253 if (memcmp(ehdr.e_ident, ELFMAG, SELFMAG) != 0 || 1282 (ehdr.e_type != ET_CORE) || 1254 (ehdr.e_type != ET_CORE) || 1283 !vmcore_elf32_check_arch(&ehd 1255 !vmcore_elf32_check_arch(&ehdr) || 1284 ehdr.e_ident[EI_CLASS] != ELF 1256 ehdr.e_ident[EI_CLASS] != ELFCLASS32|| 1285 ehdr.e_ident[EI_VERSION] != E 1257 ehdr.e_ident[EI_VERSION] != EV_CURRENT || 1286 ehdr.e_version != EV_CURRENT 1258 ehdr.e_version != EV_CURRENT || 1287 ehdr.e_ehsize != sizeof(Elf32 1259 ehdr.e_ehsize != sizeof(Elf32_Ehdr) || 1288 ehdr.e_phentsize != sizeof(El 1260 ehdr.e_phentsize != sizeof(Elf32_Phdr) || 1289 ehdr.e_phnum == 0) { 1261 ehdr.e_phnum == 0) { 1290 pr_warn("Warning: Core image 1262 pr_warn("Warning: Core image elf header is not sane\n"); 1291 return -EINVAL; 1263 return -EINVAL; 1292 } 1264 } 1293 1265 1294 /* Read in all elf headers. */ 1266 /* Read in all elf headers. */ 1295 elfcorebuf_sz_orig = sizeof(Elf32_Ehd 1267 elfcorebuf_sz_orig = sizeof(Elf32_Ehdr) + ehdr.e_phnum * sizeof(Elf32_Phdr); 1296 elfcorebuf_sz = elfcorebuf_sz_orig; 1268 elfcorebuf_sz = elfcorebuf_sz_orig; 1297 elfcorebuf = (void *)__get_free_pages 1269 elfcorebuf = (void *)__get_free_pages(GFP_KERNEL | __GFP_ZERO, 1298 1270 get_order(elfcorebuf_sz_orig)); 1299 if (!elfcorebuf) 1271 if (!elfcorebuf) 1300 return -ENOMEM; 1272 return -ENOMEM; 1301 addr = elfcorehdr_addr; 1273 addr = elfcorehdr_addr; 1302 rc = elfcorehdr_read(elfcorebuf, elfc 1274 rc = elfcorehdr_read(elfcorebuf, elfcorebuf_sz_orig, &addr); 1303 if (rc < 0) 1275 if (rc < 0) 1304 goto fail; 1276 goto fail; 1305 1277 1306 /* Merge all PT_NOTE headers into one 1278 /* Merge all PT_NOTE headers into one. */ 1307 rc = merge_note_headers_elf32(elfcore 1279 rc = merge_note_headers_elf32(elfcorebuf, &elfcorebuf_sz, 1308 &elfnot 1280 &elfnotes_buf, &elfnotes_sz); 1309 if (rc) 1281 if (rc) 1310 goto fail; 1282 goto fail; 1311 rc = process_ptload_program_headers_e 1283 rc = process_ptload_program_headers_elf32(elfcorebuf, elfcorebuf_sz, 1312 1284 elfnotes_sz, &vmcore_list); 1313 if (rc) 1285 if (rc) 1314 goto fail; 1286 goto fail; 1315 set_vmcore_list_offsets(elfcorebuf_sz 1287 set_vmcore_list_offsets(elfcorebuf_sz, elfnotes_sz, &vmcore_list); 1316 return 0; 1288 return 0; 1317 fail: 1289 fail: 1318 free_elfcorebuf(); 1290 free_elfcorebuf(); 1319 return rc; 1291 return rc; 1320 } 1292 } 1321 1293 1322 static int __init parse_crash_elf_headers(voi 1294 static int __init parse_crash_elf_headers(void) 1323 { 1295 { 1324 unsigned char e_ident[EI_NIDENT]; 1296 unsigned char e_ident[EI_NIDENT]; 1325 u64 addr; 1297 u64 addr; 1326 int rc=0; 1298 int rc=0; 1327 1299 1328 addr = elfcorehdr_addr; 1300 addr = elfcorehdr_addr; 1329 rc = elfcorehdr_read(e_ident, EI_NIDE 1301 rc = elfcorehdr_read(e_ident, EI_NIDENT, &addr); 1330 if (rc < 0) 1302 if (rc < 0) 1331 return rc; 1303 return rc; 1332 if (memcmp(e_ident, ELFMAG, SELFMAG) 1304 if (memcmp(e_ident, ELFMAG, SELFMAG) != 0) { 1333 pr_warn("Warning: Core image 1305 pr_warn("Warning: Core image elf header not found\n"); 1334 return -EINVAL; 1306 return -EINVAL; 1335 } 1307 } 1336 1308 1337 if (e_ident[EI_CLASS] == ELFCLASS64) 1309 if (e_ident[EI_CLASS] == ELFCLASS64) { 1338 rc = parse_crash_elf64_header 1310 rc = parse_crash_elf64_headers(); 1339 if (rc) 1311 if (rc) 1340 return rc; 1312 return rc; 1341 } else if (e_ident[EI_CLASS] == ELFCL 1313 } else if (e_ident[EI_CLASS] == ELFCLASS32) { 1342 rc = parse_crash_elf32_header 1314 rc = parse_crash_elf32_headers(); 1343 if (rc) 1315 if (rc) 1344 return rc; 1316 return rc; 1345 } else { 1317 } else { 1346 pr_warn("Warning: Core image 1318 pr_warn("Warning: Core image elf header is not sane\n"); 1347 return -EINVAL; 1319 return -EINVAL; 1348 } 1320 } 1349 1321 1350 /* Determine vmcore size. */ 1322 /* Determine vmcore size. */ 1351 vmcore_size = get_vmcore_size(elfcore 1323 vmcore_size = get_vmcore_size(elfcorebuf_sz, elfnotes_sz, 1352 &vmcore 1324 &vmcore_list); 1353 1325 1354 return 0; 1326 return 0; 1355 } 1327 } 1356 1328 1357 #ifdef CONFIG_PROC_VMCORE_DEVICE_DUMP 1329 #ifdef CONFIG_PROC_VMCORE_DEVICE_DUMP 1358 /** 1330 /** 1359 * vmcoredd_write_header - Write vmcore devic 1331 * vmcoredd_write_header - Write vmcore device dump header at the 1360 * beginning of the dump's buffer. 1332 * beginning of the dump's buffer. 1361 * @buf: Output buffer where the note is writ 1333 * @buf: Output buffer where the note is written 1362 * @data: Dump info 1334 * @data: Dump info 1363 * @size: Size of the dump 1335 * @size: Size of the dump 1364 * 1336 * 1365 * Fills beginning of the dump's buffer with 1337 * Fills beginning of the dump's buffer with vmcore device dump header. 1366 */ 1338 */ 1367 static void vmcoredd_write_header(void *buf, 1339 static void vmcoredd_write_header(void *buf, struct vmcoredd_data *data, 1368 u32 size) 1340 u32 size) 1369 { 1341 { 1370 struct vmcoredd_header *vdd_hdr = (st 1342 struct vmcoredd_header *vdd_hdr = (struct vmcoredd_header *)buf; 1371 1343 1372 vdd_hdr->n_namesz = sizeof(vdd_hdr->n 1344 vdd_hdr->n_namesz = sizeof(vdd_hdr->name); 1373 vdd_hdr->n_descsz = size + sizeof(vdd 1345 vdd_hdr->n_descsz = size + sizeof(vdd_hdr->dump_name); 1374 vdd_hdr->n_type = NT_VMCOREDD; 1346 vdd_hdr->n_type = NT_VMCOREDD; 1375 1347 1376 strscpy_pad(vdd_hdr->name, VMCOREDD_N !! 1348 strncpy((char *)vdd_hdr->name, VMCOREDD_NOTE_NAME, 1377 strscpy_pad(vdd_hdr->dump_name, data- !! 1349 sizeof(vdd_hdr->name)); >> 1350 memcpy(vdd_hdr->dump_name, data->dump_name, sizeof(vdd_hdr->dump_name)); 1378 } 1351 } 1379 1352 1380 /** 1353 /** 1381 * vmcoredd_update_program_headers - Update a !! 1354 * vmcoredd_update_program_headers - Update all Elf program headers 1382 * @elfptr: Pointer to elf header 1355 * @elfptr: Pointer to elf header 1383 * @elfnotesz: Size of elf notes aligned to p 1356 * @elfnotesz: Size of elf notes aligned to page size 1384 * @vmcoreddsz: Size of device dumps to be ad 1357 * @vmcoreddsz: Size of device dumps to be added to elf note header 1385 * 1358 * 1386 * Determine type of ELF header (Elf64 or Elf !! 1359 * Determine type of Elf header (Elf64 or Elf32) and update the elf note size. 1387 * Also update the offsets of all the program 1360 * Also update the offsets of all the program headers after the elf note header. 1388 */ 1361 */ 1389 static void vmcoredd_update_program_headers(c 1362 static void vmcoredd_update_program_headers(char *elfptr, size_t elfnotesz, 1390 s 1363 size_t vmcoreddsz) 1391 { 1364 { 1392 unsigned char *e_ident = (unsigned ch 1365 unsigned char *e_ident = (unsigned char *)elfptr; 1393 u64 start, end, size; 1366 u64 start, end, size; 1394 loff_t vmcore_off; 1367 loff_t vmcore_off; 1395 u32 i; 1368 u32 i; 1396 1369 1397 vmcore_off = elfcorebuf_sz + elfnotes 1370 vmcore_off = elfcorebuf_sz + elfnotesz; 1398 1371 1399 if (e_ident[EI_CLASS] == ELFCLASS64) 1372 if (e_ident[EI_CLASS] == ELFCLASS64) { 1400 Elf64_Ehdr *ehdr = (Elf64_Ehd 1373 Elf64_Ehdr *ehdr = (Elf64_Ehdr *)elfptr; 1401 Elf64_Phdr *phdr = (Elf64_Phd 1374 Elf64_Phdr *phdr = (Elf64_Phdr *)(elfptr + sizeof(Elf64_Ehdr)); 1402 1375 1403 /* Update all program headers 1376 /* Update all program headers */ 1404 for (i = 0; i < ehdr->e_phnum 1377 for (i = 0; i < ehdr->e_phnum; i++, phdr++) { 1405 if (phdr->p_type == P 1378 if (phdr->p_type == PT_NOTE) { 1406 /* Update not 1379 /* Update note size */ 1407 phdr->p_memsz 1380 phdr->p_memsz = elfnotes_orig_sz + vmcoreddsz; 1408 phdr->p_files 1381 phdr->p_filesz = phdr->p_memsz; 1409 continue; 1382 continue; 1410 } 1383 } 1411 1384 1412 start = rounddown(phd 1385 start = rounddown(phdr->p_offset, PAGE_SIZE); 1413 end = roundup(phdr->p 1386 end = roundup(phdr->p_offset + phdr->p_memsz, 1414 PAGE_SI 1387 PAGE_SIZE); 1415 size = end - start; 1388 size = end - start; 1416 phdr->p_offset = vmco 1389 phdr->p_offset = vmcore_off + (phdr->p_offset - start); 1417 vmcore_off += size; 1390 vmcore_off += size; 1418 } 1391 } 1419 } else { 1392 } else { 1420 Elf32_Ehdr *ehdr = (Elf32_Ehd 1393 Elf32_Ehdr *ehdr = (Elf32_Ehdr *)elfptr; 1421 Elf32_Phdr *phdr = (Elf32_Phd 1394 Elf32_Phdr *phdr = (Elf32_Phdr *)(elfptr + sizeof(Elf32_Ehdr)); 1422 1395 1423 /* Update all program headers 1396 /* Update all program headers */ 1424 for (i = 0; i < ehdr->e_phnum 1397 for (i = 0; i < ehdr->e_phnum; i++, phdr++) { 1425 if (phdr->p_type == P 1398 if (phdr->p_type == PT_NOTE) { 1426 /* Update not 1399 /* Update note size */ 1427 phdr->p_memsz 1400 phdr->p_memsz = elfnotes_orig_sz + vmcoreddsz; 1428 phdr->p_files 1401 phdr->p_filesz = phdr->p_memsz; 1429 continue; 1402 continue; 1430 } 1403 } 1431 1404 1432 start = rounddown(phd 1405 start = rounddown(phdr->p_offset, PAGE_SIZE); 1433 end = roundup(phdr->p 1406 end = roundup(phdr->p_offset + phdr->p_memsz, 1434 PAGE_SI 1407 PAGE_SIZE); 1435 size = end - start; 1408 size = end - start; 1436 phdr->p_offset = vmco 1409 phdr->p_offset = vmcore_off + (phdr->p_offset - start); 1437 vmcore_off += size; 1410 vmcore_off += size; 1438 } 1411 } 1439 } 1412 } 1440 } 1413 } 1441 1414 1442 /** 1415 /** 1443 * vmcoredd_update_size - Update the total si 1416 * vmcoredd_update_size - Update the total size of the device dumps and update 1444 * ELF header !! 1417 * Elf header 1445 * @dump_size: Size of the current device dum 1418 * @dump_size: Size of the current device dump to be added to total size 1446 * 1419 * 1447 * Update the total size of all the device du !! 1420 * Update the total size of all the device dumps and update the Elf program 1448 * headers. Calculate the new offsets for the 1421 * headers. Calculate the new offsets for the vmcore list and update the 1449 * total vmcore size. 1422 * total vmcore size. 1450 */ 1423 */ 1451 static void vmcoredd_update_size(size_t dump_ 1424 static void vmcoredd_update_size(size_t dump_size) 1452 { 1425 { 1453 vmcoredd_orig_sz += dump_size; 1426 vmcoredd_orig_sz += dump_size; 1454 elfnotes_sz = roundup(elfnotes_orig_s 1427 elfnotes_sz = roundup(elfnotes_orig_sz, PAGE_SIZE) + vmcoredd_orig_sz; 1455 vmcoredd_update_program_headers(elfco 1428 vmcoredd_update_program_headers(elfcorebuf, elfnotes_sz, 1456 vmcor 1429 vmcoredd_orig_sz); 1457 1430 1458 /* Update vmcore list offsets */ 1431 /* Update vmcore list offsets */ 1459 set_vmcore_list_offsets(elfcorebuf_sz 1432 set_vmcore_list_offsets(elfcorebuf_sz, elfnotes_sz, &vmcore_list); 1460 1433 1461 vmcore_size = get_vmcore_size(elfcore 1434 vmcore_size = get_vmcore_size(elfcorebuf_sz, elfnotes_sz, 1462 &vmcore 1435 &vmcore_list); 1463 proc_vmcore->size = vmcore_size; 1436 proc_vmcore->size = vmcore_size; 1464 } 1437 } 1465 1438 1466 /** 1439 /** 1467 * vmcore_add_device_dump - Add a buffer cont 1440 * vmcore_add_device_dump - Add a buffer containing device dump to vmcore 1468 * @data: dump info. 1441 * @data: dump info. 1469 * 1442 * 1470 * Allocate a buffer and invoke the calling d 1443 * Allocate a buffer and invoke the calling driver's dump collect routine. 1471 * Write ELF note at the beginning of the buf !! 1444 * Write Elf note at the beginning of the buffer to indicate vmcore device 1472 * dump and add the dump to global list. 1445 * dump and add the dump to global list. 1473 */ 1446 */ 1474 int vmcore_add_device_dump(struct vmcoredd_da 1447 int vmcore_add_device_dump(struct vmcoredd_data *data) 1475 { 1448 { 1476 struct vmcoredd_node *dump; 1449 struct vmcoredd_node *dump; 1477 void *buf = NULL; 1450 void *buf = NULL; 1478 size_t data_size; 1451 size_t data_size; 1479 int ret; 1452 int ret; 1480 1453 1481 if (vmcoredd_disabled) { << 1482 pr_err_once("Device dump is d << 1483 return -EINVAL; << 1484 } << 1485 << 1486 if (!data || !strlen(data->dump_name) 1454 if (!data || !strlen(data->dump_name) || 1487 !data->vmcoredd_callback || !data 1455 !data->vmcoredd_callback || !data->size) 1488 return -EINVAL; 1456 return -EINVAL; 1489 1457 1490 dump = vzalloc(sizeof(*dump)); 1458 dump = vzalloc(sizeof(*dump)); 1491 if (!dump) { 1459 if (!dump) { 1492 ret = -ENOMEM; 1460 ret = -ENOMEM; 1493 goto out_err; 1461 goto out_err; 1494 } 1462 } 1495 1463 1496 /* Keep size of the buffer page align 1464 /* Keep size of the buffer page aligned so that it can be mmaped */ 1497 data_size = roundup(sizeof(struct vmc 1465 data_size = roundup(sizeof(struct vmcoredd_header) + data->size, 1498 PAGE_SIZE); 1466 PAGE_SIZE); 1499 1467 1500 /* Allocate buffer for driver's to wr 1468 /* Allocate buffer for driver's to write their dumps */ 1501 buf = vmcore_alloc_buf(data_size); 1469 buf = vmcore_alloc_buf(data_size); 1502 if (!buf) { 1470 if (!buf) { 1503 ret = -ENOMEM; 1471 ret = -ENOMEM; 1504 goto out_err; 1472 goto out_err; 1505 } 1473 } 1506 1474 1507 vmcoredd_write_header(buf, data, data 1475 vmcoredd_write_header(buf, data, data_size - 1508 sizeof(struct v 1476 sizeof(struct vmcoredd_header)); 1509 1477 1510 /* Invoke the driver's dump collectio 1478 /* Invoke the driver's dump collection routing */ 1511 ret = data->vmcoredd_callback(data, b 1479 ret = data->vmcoredd_callback(data, buf + 1512 sizeof( 1480 sizeof(struct vmcoredd_header)); 1513 if (ret) 1481 if (ret) 1514 goto out_err; 1482 goto out_err; 1515 1483 1516 dump->buf = buf; 1484 dump->buf = buf; 1517 dump->size = data_size; 1485 dump->size = data_size; 1518 1486 1519 /* Add the dump to driver sysfs list 1487 /* Add the dump to driver sysfs list */ 1520 mutex_lock(&vmcoredd_mutex); 1488 mutex_lock(&vmcoredd_mutex); 1521 list_add_tail(&dump->list, &vmcoredd_ 1489 list_add_tail(&dump->list, &vmcoredd_list); 1522 mutex_unlock(&vmcoredd_mutex); 1490 mutex_unlock(&vmcoredd_mutex); 1523 1491 1524 vmcoredd_update_size(data_size); 1492 vmcoredd_update_size(data_size); 1525 return 0; 1493 return 0; 1526 1494 1527 out_err: 1495 out_err: 1528 vfree(buf); !! 1496 if (buf) 1529 vfree(dump); !! 1497 vfree(buf); >> 1498 >> 1499 if (dump) >> 1500 vfree(dump); 1530 1501 1531 return ret; 1502 return ret; 1532 } 1503 } 1533 EXPORT_SYMBOL(vmcore_add_device_dump); 1504 EXPORT_SYMBOL(vmcore_add_device_dump); 1534 #endif /* CONFIG_PROC_VMCORE_DEVICE_DUMP */ 1505 #endif /* CONFIG_PROC_VMCORE_DEVICE_DUMP */ 1535 1506 1536 /* Free all dumps in vmcore device dump list 1507 /* Free all dumps in vmcore device dump list */ 1537 static void vmcore_free_device_dumps(void) 1508 static void vmcore_free_device_dumps(void) 1538 { 1509 { 1539 #ifdef CONFIG_PROC_VMCORE_DEVICE_DUMP 1510 #ifdef CONFIG_PROC_VMCORE_DEVICE_DUMP 1540 mutex_lock(&vmcoredd_mutex); 1511 mutex_lock(&vmcoredd_mutex); 1541 while (!list_empty(&vmcoredd_list)) { 1512 while (!list_empty(&vmcoredd_list)) { 1542 struct vmcoredd_node *dump; 1513 struct vmcoredd_node *dump; 1543 1514 1544 dump = list_first_entry(&vmco 1515 dump = list_first_entry(&vmcoredd_list, struct vmcoredd_node, 1545 list) 1516 list); 1546 list_del(&dump->list); 1517 list_del(&dump->list); 1547 vfree(dump->buf); 1518 vfree(dump->buf); 1548 vfree(dump); 1519 vfree(dump); 1549 } 1520 } 1550 mutex_unlock(&vmcoredd_mutex); 1521 mutex_unlock(&vmcoredd_mutex); 1551 #endif /* CONFIG_PROC_VMCORE_DEVICE_DUMP */ 1522 #endif /* CONFIG_PROC_VMCORE_DEVICE_DUMP */ 1552 } 1523 } 1553 1524 1554 /* Init function for vmcore module. */ 1525 /* Init function for vmcore module. */ 1555 static int __init vmcore_init(void) 1526 static int __init vmcore_init(void) 1556 { 1527 { 1557 int rc = 0; 1528 int rc = 0; 1558 1529 1559 /* Allow architectures to allocate EL 1530 /* Allow architectures to allocate ELF header in 2nd kernel */ 1560 rc = elfcorehdr_alloc(&elfcorehdr_add 1531 rc = elfcorehdr_alloc(&elfcorehdr_addr, &elfcorehdr_size); 1561 if (rc) 1532 if (rc) 1562 return rc; 1533 return rc; 1563 /* 1534 /* 1564 * If elfcorehdr= has been passed in 1535 * If elfcorehdr= has been passed in cmdline or created in 2nd kernel, 1565 * then capture the dump. 1536 * then capture the dump. 1566 */ 1537 */ 1567 if (!(is_vmcore_usable())) 1538 if (!(is_vmcore_usable())) 1568 return rc; 1539 return rc; 1569 rc = parse_crash_elf_headers(); 1540 rc = parse_crash_elf_headers(); 1570 if (rc) { 1541 if (rc) { 1571 elfcorehdr_free(elfcorehdr_ad << 1572 pr_warn("Kdump: vmcore not in 1542 pr_warn("Kdump: vmcore not initialized\n"); 1573 return rc; 1543 return rc; 1574 } 1544 } 1575 elfcorehdr_free(elfcorehdr_addr); 1545 elfcorehdr_free(elfcorehdr_addr); 1576 elfcorehdr_addr = ELFCORE_ADDR_ERR; 1546 elfcorehdr_addr = ELFCORE_ADDR_ERR; 1577 1547 1578 proc_vmcore = proc_create("vmcore", S !! 1548 proc_vmcore = proc_create("vmcore", S_IRUSR, NULL, &proc_vmcore_operations); 1579 if (proc_vmcore) 1549 if (proc_vmcore) 1580 proc_vmcore->size = vmcore_si 1550 proc_vmcore->size = vmcore_size; 1581 return 0; 1551 return 0; 1582 } 1552 } 1583 fs_initcall(vmcore_init); 1553 fs_initcall(vmcore_init); 1584 1554 1585 /* Cleanup function for vmcore module. */ 1555 /* Cleanup function for vmcore module. */ 1586 void vmcore_cleanup(void) 1556 void vmcore_cleanup(void) 1587 { 1557 { 1588 if (proc_vmcore) { 1558 if (proc_vmcore) { 1589 proc_remove(proc_vmcore); 1559 proc_remove(proc_vmcore); 1590 proc_vmcore = NULL; 1560 proc_vmcore = NULL; 1591 } 1561 } 1592 1562 1593 /* clear the vmcore list. */ 1563 /* clear the vmcore list. */ 1594 while (!list_empty(&vmcore_list)) { 1564 while (!list_empty(&vmcore_list)) { 1595 struct vmcore *m; 1565 struct vmcore *m; 1596 1566 1597 m = list_first_entry(&vmcore_ 1567 m = list_first_entry(&vmcore_list, struct vmcore, list); 1598 list_del(&m->list); 1568 list_del(&m->list); 1599 kfree(m); 1569 kfree(m); 1600 } 1570 } 1601 free_elfcorebuf(); 1571 free_elfcorebuf(); 1602 1572 1603 /* clear vmcore device dump list */ 1573 /* clear vmcore device dump list */ 1604 vmcore_free_device_dumps(); 1574 vmcore_free_device_dumps(); 1605 } 1575 } 1606 1576
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.