1 // SPDX-License-Identifier: GPL-2.0-only << 2 /* 1 /* 3 * This file is part of UBIFS. 2 * This file is part of UBIFS. 4 * 3 * 5 * Copyright (C) 2006-2008 Nokia Corporation. 4 * Copyright (C) 2006-2008 Nokia Corporation. 6 * 5 * >> 6 * This program is free software; you can redistribute it and/or modify it >> 7 * under the terms of the GNU General Public License version 2 as published by >> 8 * the Free Software Foundation. >> 9 * >> 10 * This program is distributed in the hope that it will be useful, but WITHOUT >> 11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or >> 12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for >> 13 * more details. >> 14 * >> 15 * You should have received a copy of the GNU General Public License along with >> 16 * this program; if not, write to the Free Software Foundation, Inc., 51 >> 17 * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA >> 18 * 7 * Authors: Adrian Hunter 19 * Authors: Adrian Hunter 8 * Artem Bityutskiy (Битюцкий 20 * Artem Bityutskiy (Битюцкий Артём) 9 */ 21 */ 10 22 11 /* 23 /* 12 * This file contains miscelanious TNC-related 24 * This file contains miscelanious TNC-related functions shared betweend 13 * different files. This file does not form an 25 * different files. This file does not form any logically separate TNC 14 * sub-system. The file was created because th 26 * sub-system. The file was created because there is a lot of TNC code and 15 * putting it all in one file would make that 27 * putting it all in one file would make that file too big and unreadable. 16 */ 28 */ 17 29 18 #include "ubifs.h" 30 #include "ubifs.h" 19 31 20 /** 32 /** 21 * ubifs_tnc_levelorder_next - next TNC tree e 33 * ubifs_tnc_levelorder_next - next TNC tree element in levelorder traversal. 22 * @c: UBIFS file-system description object << 23 * @zr: root of the subtree to traverse 34 * @zr: root of the subtree to traverse 24 * @znode: previous znode 35 * @znode: previous znode 25 * 36 * 26 * This function implements levelorder TNC tra 37 * This function implements levelorder TNC traversal. The LNC is ignored. 27 * Returns the next element or %NULL if @znode 38 * Returns the next element or %NULL if @znode is already the last one. 28 */ 39 */ 29 struct ubifs_znode *ubifs_tnc_levelorder_next( !! 40 struct ubifs_znode *ubifs_tnc_levelorder_next(struct ubifs_znode *zr, 30 << 31 41 struct ubifs_znode *znode) 32 { 42 { 33 int level, iip, level_search = 0; 43 int level, iip, level_search = 0; 34 struct ubifs_znode *zn; 44 struct ubifs_znode *zn; 35 45 36 ubifs_assert(c, zr); !! 46 ubifs_assert(zr); 37 47 38 if (unlikely(!znode)) 48 if (unlikely(!znode)) 39 return zr; 49 return zr; 40 50 41 if (unlikely(znode == zr)) { 51 if (unlikely(znode == zr)) { 42 if (znode->level == 0) 52 if (znode->level == 0) 43 return NULL; 53 return NULL; 44 return ubifs_tnc_find_child(zr 54 return ubifs_tnc_find_child(zr, 0); 45 } 55 } 46 56 47 level = znode->level; 57 level = znode->level; 48 58 49 iip = znode->iip; 59 iip = znode->iip; 50 while (1) { 60 while (1) { 51 ubifs_assert(c, znode->level < !! 61 ubifs_assert(znode->level <= zr->level); 52 62 53 /* 63 /* 54 * First walk up until there i 64 * First walk up until there is a znode with next branch to 55 * look at. 65 * look at. 56 */ 66 */ 57 while (znode->parent != zr && 67 while (znode->parent != zr && iip >= znode->parent->child_cnt) { 58 znode = znode->parent; 68 znode = znode->parent; 59 iip = znode->iip; 69 iip = znode->iip; 60 } 70 } 61 71 62 if (unlikely(znode->parent == 72 if (unlikely(znode->parent == zr && 63 iip >= znode->par 73 iip >= znode->parent->child_cnt)) { 64 /* This level is done, 74 /* This level is done, switch to the lower one */ 65 level -= 1; 75 level -= 1; 66 if (level_search || le 76 if (level_search || level < 0) 67 /* 77 /* 68 * We were alr 78 * We were already looking for znode at lower 69 * level ('lev 79 * level ('level_search'). As we are here 70 * again, it j 80 * again, it just does not exist. Or all levels 71 * were finish 81 * were finished ('level < 0'). 72 */ 82 */ 73 return NULL; 83 return NULL; 74 84 75 level_search = 1; 85 level_search = 1; 76 iip = -1; 86 iip = -1; 77 znode = ubifs_tnc_find 87 znode = ubifs_tnc_find_child(zr, 0); 78 ubifs_assert(c, znode) !! 88 ubifs_assert(znode); 79 } 89 } 80 90 81 /* Switch to the next index */ 91 /* Switch to the next index */ 82 zn = ubifs_tnc_find_child(znod 92 zn = ubifs_tnc_find_child(znode->parent, iip + 1); 83 if (!zn) { 93 if (!zn) { 84 /* No more children to 94 /* No more children to look at, we have walk up */ 85 iip = znode->parent->c 95 iip = znode->parent->child_cnt; 86 continue; 96 continue; 87 } 97 } 88 98 89 /* Walk back down to the level 99 /* Walk back down to the level we came from ('level') */ 90 while (zn->level != level) { 100 while (zn->level != level) { 91 znode = zn; 101 znode = zn; 92 zn = ubifs_tnc_find_ch 102 zn = ubifs_tnc_find_child(zn, 0); 93 if (!zn) { 103 if (!zn) { 94 /* 104 /* 95 * This path i 105 * This path is not too deep so it does not 96 * reach 'leve 106 * reach 'level'. Try next path. 97 */ 107 */ 98 iip = znode->i 108 iip = znode->iip; 99 break; 109 break; 100 } 110 } 101 } 111 } 102 112 103 if (zn) { 113 if (zn) { 104 ubifs_assert(c, zn->le !! 114 ubifs_assert(zn->level >= 0); 105 return zn; 115 return zn; 106 } 116 } 107 } 117 } 108 } 118 } 109 119 110 /** 120 /** 111 * ubifs_search_zbranch - search znode branch. 121 * ubifs_search_zbranch - search znode branch. 112 * @c: UBIFS file-system description object 122 * @c: UBIFS file-system description object 113 * @znode: znode to search in 123 * @znode: znode to search in 114 * @key: key to search for 124 * @key: key to search for 115 * @n: znode branch slot number is returned he 125 * @n: znode branch slot number is returned here 116 * 126 * 117 * This is a helper function which search bran 127 * This is a helper function which search branch with key @key in @znode using 118 * binary search. The result of the search may 128 * binary search. The result of the search may be: 119 * o exact match, then %1 is returned, and t 129 * o exact match, then %1 is returned, and the slot number of the branch is 120 * stored in @n; 130 * stored in @n; 121 * o no exact match, then %0 is returned and 131 * o no exact match, then %0 is returned and the slot number of the left 122 * closest branch is returned in @n; the s 132 * closest branch is returned in @n; the slot if all keys in this znode are 123 * greater than @key, then %-1 is returned 133 * greater than @key, then %-1 is returned in @n. 124 */ 134 */ 125 int ubifs_search_zbranch(const struct ubifs_in 135 int ubifs_search_zbranch(const struct ubifs_info *c, 126 const struct ubifs_zn 136 const struct ubifs_znode *znode, 127 const union ubifs_key 137 const union ubifs_key *key, int *n) 128 { 138 { 129 int beg = 0, end = znode->child_cnt, m !! 139 int beg = 0, end = znode->child_cnt, uninitialized_var(mid); 130 int cmp; !! 140 int uninitialized_var(cmp); 131 const struct ubifs_zbranch *zbr = &zno 141 const struct ubifs_zbranch *zbr = &znode->zbranch[0]; 132 142 133 ubifs_assert(c, end > beg); !! 143 ubifs_assert(end > beg); 134 144 135 while (end > beg) { 145 while (end > beg) { 136 mid = (beg + end) >> 1; 146 mid = (beg + end) >> 1; 137 cmp = keys_cmp(c, key, &zbr[mi 147 cmp = keys_cmp(c, key, &zbr[mid].key); 138 if (cmp > 0) 148 if (cmp > 0) 139 beg = mid + 1; 149 beg = mid + 1; 140 else if (cmp < 0) 150 else if (cmp < 0) 141 end = mid; 151 end = mid; 142 else { 152 else { 143 *n = mid; 153 *n = mid; 144 return 1; 154 return 1; 145 } 155 } 146 } 156 } 147 157 148 *n = end - 1; 158 *n = end - 1; 149 159 150 /* The insert point is after *n */ 160 /* The insert point is after *n */ 151 ubifs_assert(c, *n >= -1 && *n < znode !! 161 ubifs_assert(*n >= -1 && *n < znode->child_cnt); 152 if (*n == -1) 162 if (*n == -1) 153 ubifs_assert(c, keys_cmp(c, ke !! 163 ubifs_assert(keys_cmp(c, key, &zbr[0].key) < 0); 154 else 164 else 155 ubifs_assert(c, keys_cmp(c, ke !! 165 ubifs_assert(keys_cmp(c, key, &zbr[*n].key) > 0); 156 if (*n + 1 < znode->child_cnt) 166 if (*n + 1 < znode->child_cnt) 157 ubifs_assert(c, keys_cmp(c, ke !! 167 ubifs_assert(keys_cmp(c, key, &zbr[*n + 1].key) < 0); 158 168 159 return 0; 169 return 0; 160 } 170 } 161 171 162 /** 172 /** 163 * ubifs_tnc_postorder_first - find first znod 173 * ubifs_tnc_postorder_first - find first znode to do postorder tree traversal. 164 * @znode: znode to start at (root of the sub- 174 * @znode: znode to start at (root of the sub-tree to traverse) 165 * 175 * 166 * Find the lowest leftmost znode in a subtree 176 * Find the lowest leftmost znode in a subtree of the TNC tree. The LNC is 167 * ignored. 177 * ignored. 168 */ 178 */ 169 struct ubifs_znode *ubifs_tnc_postorder_first( 179 struct ubifs_znode *ubifs_tnc_postorder_first(struct ubifs_znode *znode) 170 { 180 { 171 if (unlikely(!znode)) 181 if (unlikely(!znode)) 172 return NULL; 182 return NULL; 173 183 174 while (znode->level > 0) { 184 while (znode->level > 0) { 175 struct ubifs_znode *child; 185 struct ubifs_znode *child; 176 186 177 child = ubifs_tnc_find_child(z 187 child = ubifs_tnc_find_child(znode, 0); 178 if (!child) 188 if (!child) 179 return znode; 189 return znode; 180 znode = child; 190 znode = child; 181 } 191 } 182 192 183 return znode; 193 return znode; 184 } 194 } 185 195 186 /** 196 /** 187 * ubifs_tnc_postorder_next - next TNC tree el 197 * ubifs_tnc_postorder_next - next TNC tree element in postorder traversal. 188 * @c: UBIFS file-system description object << 189 * @znode: previous znode 198 * @znode: previous znode 190 * 199 * 191 * This function implements postorder TNC trav 200 * This function implements postorder TNC traversal. The LNC is ignored. 192 * Returns the next element or %NULL if @znode 201 * Returns the next element or %NULL if @znode is already the last one. 193 */ 202 */ 194 struct ubifs_znode *ubifs_tnc_postorder_next(c !! 203 struct ubifs_znode *ubifs_tnc_postorder_next(struct ubifs_znode *znode) 195 s << 196 { 204 { 197 struct ubifs_znode *zn; 205 struct ubifs_znode *zn; 198 206 199 ubifs_assert(c, znode); !! 207 ubifs_assert(znode); 200 if (unlikely(!znode->parent)) 208 if (unlikely(!znode->parent)) 201 return NULL; 209 return NULL; 202 210 203 /* Switch to the next index in the par 211 /* Switch to the next index in the parent */ 204 zn = ubifs_tnc_find_child(znode->paren 212 zn = ubifs_tnc_find_child(znode->parent, znode->iip + 1); 205 if (!zn) 213 if (!zn) 206 /* This is in fact the last ch 214 /* This is in fact the last child, return parent */ 207 return znode->parent; 215 return znode->parent; 208 216 209 /* Go to the first znode in this new s 217 /* Go to the first znode in this new subtree */ 210 return ubifs_tnc_postorder_first(zn); 218 return ubifs_tnc_postorder_first(zn); 211 } 219 } 212 220 213 /** 221 /** 214 * ubifs_destroy_tnc_subtree - destroy all zno 222 * ubifs_destroy_tnc_subtree - destroy all znodes connected to a subtree. 215 * @c: UBIFS file-system description object << 216 * @znode: znode defining subtree to destroy 223 * @znode: znode defining subtree to destroy 217 * 224 * 218 * This function destroys subtree of the TNC t 225 * This function destroys subtree of the TNC tree. Returns number of clean 219 * znodes in the subtree. 226 * znodes in the subtree. 220 */ 227 */ 221 long ubifs_destroy_tnc_subtree(const struct ub !! 228 long ubifs_destroy_tnc_subtree(struct ubifs_znode *znode) 222 struct ubifs_zn << 223 { 229 { 224 struct ubifs_znode *zn = ubifs_tnc_pos 230 struct ubifs_znode *zn = ubifs_tnc_postorder_first(znode); 225 long clean_freed = 0; 231 long clean_freed = 0; 226 int n; 232 int n; 227 233 228 ubifs_assert(c, zn); !! 234 ubifs_assert(zn); 229 while (1) { 235 while (1) { 230 for (n = 0; n < zn->child_cnt; 236 for (n = 0; n < zn->child_cnt; n++) { 231 if (!zn->zbranch[n].zn 237 if (!zn->zbranch[n].znode) 232 continue; 238 continue; 233 239 234 if (zn->level > 0 && 240 if (zn->level > 0 && 235 !ubifs_zn_dirty(zn 241 !ubifs_zn_dirty(zn->zbranch[n].znode)) 236 clean_freed += 242 clean_freed += 1; 237 243 238 cond_resched(); 244 cond_resched(); 239 kfree(zn->zbranch[n].z 245 kfree(zn->zbranch[n].znode); 240 } 246 } 241 247 242 if (zn == znode) { 248 if (zn == znode) { 243 if (!ubifs_zn_dirty(zn 249 if (!ubifs_zn_dirty(zn)) 244 clean_freed += 250 clean_freed += 1; 245 kfree(zn); 251 kfree(zn); 246 return clean_freed; 252 return clean_freed; 247 } 253 } 248 254 249 zn = ubifs_tnc_postorder_next( !! 255 zn = ubifs_tnc_postorder_next(zn); 250 } 256 } 251 } 257 } 252 258 253 /** 259 /** 254 * ubifs_destroy_tnc_tree - destroy all znodes << 255 * @c: UBIFS file-system description object << 256 * << 257 * This function destroys the whole TNC tree a << 258 * count. << 259 */ << 260 void ubifs_destroy_tnc_tree(struct ubifs_info << 261 { << 262 long n, freed; << 263 << 264 if (!c->zroot.znode) << 265 return; << 266 << 267 n = atomic_long_read(&c->clean_zn_cnt) << 268 freed = ubifs_destroy_tnc_subtree(c, c << 269 ubifs_assert(c, freed == n); << 270 atomic_long_sub(n, &ubifs_clean_zn_cnt << 271 << 272 c->zroot.znode = NULL; << 273 } << 274 << 275 /** << 276 * read_znode - read an indexing node from fla 260 * read_znode - read an indexing node from flash and fill znode. 277 * @c: UBIFS file-system description object 261 * @c: UBIFS file-system description object 278 * @zzbr: the zbranch describing the node to r !! 262 * @lnum: LEB of the indexing node to read >> 263 * @offs: node offset >> 264 * @len: node length 279 * @znode: znode to read to 265 * @znode: znode to read to 280 * 266 * 281 * This function reads an indexing node from t 267 * This function reads an indexing node from the flash media and fills znode 282 * with the read data. Returns zero in case of 268 * with the read data. Returns zero in case of success and a negative error 283 * code in case of failure. The read indexing 269 * code in case of failure. The read indexing node is validated and if anything 284 * is wrong with it, this function prints comp 270 * is wrong with it, this function prints complaint messages and returns 285 * %-EINVAL. 271 * %-EINVAL. 286 */ 272 */ 287 static int read_znode(struct ubifs_info *c, st !! 273 static int read_znode(struct ubifs_info *c, int lnum, int offs, int len, 288 struct ubifs_znode *znod 274 struct ubifs_znode *znode) 289 { 275 { 290 int lnum = zzbr->lnum; << 291 int offs = zzbr->offs; << 292 int len = zzbr->len; << 293 int i, err, type, cmp; 276 int i, err, type, cmp; 294 struct ubifs_idx_node *idx; 277 struct ubifs_idx_node *idx; 295 278 296 idx = kmalloc(c->max_idx_node_sz, GFP_ 279 idx = kmalloc(c->max_idx_node_sz, GFP_NOFS); 297 if (!idx) 280 if (!idx) 298 return -ENOMEM; 281 return -ENOMEM; 299 282 300 err = ubifs_read_node(c, idx, UBIFS_ID 283 err = ubifs_read_node(c, idx, UBIFS_IDX_NODE, len, lnum, offs); 301 if (err < 0) { 284 if (err < 0) { 302 kfree(idx); 285 kfree(idx); 303 return err; 286 return err; 304 } 287 } 305 288 306 err = ubifs_node_check_hash(c, idx, zz << 307 if (err) { << 308 ubifs_bad_hash(c, idx, zzbr->h << 309 kfree(idx); << 310 return err; << 311 } << 312 << 313 znode->child_cnt = le16_to_cpu(idx->ch 289 znode->child_cnt = le16_to_cpu(idx->child_cnt); 314 znode->level = le16_to_cpu(idx->level) 290 znode->level = le16_to_cpu(idx->level); 315 291 316 dbg_tnc("LEB %d:%d, level %d, %d branc 292 dbg_tnc("LEB %d:%d, level %d, %d branch", 317 lnum, offs, znode->level, znod 293 lnum, offs, znode->level, znode->child_cnt); 318 294 319 if (znode->child_cnt > c->fanout || zn 295 if (znode->child_cnt > c->fanout || znode->level > UBIFS_MAX_LEVELS) { 320 ubifs_err(c, "current fanout % 296 ubifs_err(c, "current fanout %d, branch count %d", 321 c->fanout, znode->ch 297 c->fanout, znode->child_cnt); 322 ubifs_err(c, "max levels %d, z 298 ubifs_err(c, "max levels %d, znode level %d", 323 UBIFS_MAX_LEVELS, zn 299 UBIFS_MAX_LEVELS, znode->level); 324 err = 1; 300 err = 1; 325 goto out_dump; 301 goto out_dump; 326 } 302 } 327 303 328 for (i = 0; i < znode->child_cnt; i++) 304 for (i = 0; i < znode->child_cnt; i++) { 329 struct ubifs_branch *br = ubif !! 305 const struct ubifs_branch *br = ubifs_idx_branch(c, idx, i); 330 struct ubifs_zbranch *zbr = &z 306 struct ubifs_zbranch *zbr = &znode->zbranch[i]; 331 307 332 key_read(c, &br->key, &zbr->ke 308 key_read(c, &br->key, &zbr->key); 333 zbr->lnum = le32_to_cpu(br->ln 309 zbr->lnum = le32_to_cpu(br->lnum); 334 zbr->offs = le32_to_cpu(br->of 310 zbr->offs = le32_to_cpu(br->offs); 335 zbr->len = le32_to_cpu(br->le 311 zbr->len = le32_to_cpu(br->len); 336 ubifs_copy_hash(c, ubifs_branc << 337 zbr->znode = NULL; 312 zbr->znode = NULL; 338 313 339 /* Validate branch */ 314 /* Validate branch */ 340 315 341 if (zbr->lnum < c->main_first 316 if (zbr->lnum < c->main_first || 342 zbr->lnum >= c->leb_cnt || 317 zbr->lnum >= c->leb_cnt || zbr->offs < 0 || 343 zbr->offs + zbr->len > c-> 318 zbr->offs + zbr->len > c->leb_size || zbr->offs & 7) { 344 ubifs_err(c, "bad bran 319 ubifs_err(c, "bad branch %d", i); 345 err = 2; 320 err = 2; 346 goto out_dump; 321 goto out_dump; 347 } 322 } 348 323 349 switch (key_type(c, &zbr->key) 324 switch (key_type(c, &zbr->key)) { 350 case UBIFS_INO_KEY: 325 case UBIFS_INO_KEY: 351 case UBIFS_DATA_KEY: 326 case UBIFS_DATA_KEY: 352 case UBIFS_DENT_KEY: 327 case UBIFS_DENT_KEY: 353 case UBIFS_XENT_KEY: 328 case UBIFS_XENT_KEY: 354 break; 329 break; 355 default: 330 default: 356 ubifs_err(c, "bad key 331 ubifs_err(c, "bad key type at slot %d: %d", 357 i, key_type( 332 i, key_type(c, &zbr->key)); 358 err = 3; 333 err = 3; 359 goto out_dump; 334 goto out_dump; 360 } 335 } 361 336 362 if (znode->level) 337 if (znode->level) 363 continue; 338 continue; 364 339 365 type = key_type(c, &zbr->key); 340 type = key_type(c, &zbr->key); 366 if (c->ranges[type].max_len == 341 if (c->ranges[type].max_len == 0) { 367 if (zbr->len != c->ran 342 if (zbr->len != c->ranges[type].len) { 368 ubifs_err(c, " 343 ubifs_err(c, "bad target node (type %d) length (%d)", 369 type 344 type, zbr->len); 370 ubifs_err(c, " 345 ubifs_err(c, "have to be %d", c->ranges[type].len); 371 err = 4; 346 err = 4; 372 goto out_dump; 347 goto out_dump; 373 } 348 } 374 } else if (zbr->len < c->range 349 } else if (zbr->len < c->ranges[type].min_len || 375 zbr->len > c->range 350 zbr->len > c->ranges[type].max_len) { 376 ubifs_err(c, "bad targ 351 ubifs_err(c, "bad target node (type %d) length (%d)", 377 type, zbr->l 352 type, zbr->len); 378 ubifs_err(c, "have to 353 ubifs_err(c, "have to be in range of %d-%d", 379 c->ranges[ty 354 c->ranges[type].min_len, 380 c->ranges[ty 355 c->ranges[type].max_len); 381 err = 5; 356 err = 5; 382 goto out_dump; 357 goto out_dump; 383 } 358 } 384 } 359 } 385 360 386 /* 361 /* 387 * Ensure that the next key is greater 362 * Ensure that the next key is greater or equivalent to the 388 * previous one. 363 * previous one. 389 */ 364 */ 390 for (i = 0; i < znode->child_cnt - 1; 365 for (i = 0; i < znode->child_cnt - 1; i++) { 391 const union ubifs_key *key1, * 366 const union ubifs_key *key1, *key2; 392 367 393 key1 = &znode->zbranch[i].key; 368 key1 = &znode->zbranch[i].key; 394 key2 = &znode->zbranch[i + 1]. 369 key2 = &znode->zbranch[i + 1].key; 395 370 396 cmp = keys_cmp(c, key1, key2); 371 cmp = keys_cmp(c, key1, key2); 397 if (cmp > 0) { 372 if (cmp > 0) { 398 ubifs_err(c, "bad key 373 ubifs_err(c, "bad key order (keys %d and %d)", i, i + 1); 399 err = 6; 374 err = 6; 400 goto out_dump; 375 goto out_dump; 401 } else if (cmp == 0 && !is_has 376 } else if (cmp == 0 && !is_hash_key(c, key1)) { 402 /* These can only be k 377 /* These can only be keys with colliding hash */ 403 ubifs_err(c, "keys %d 378 ubifs_err(c, "keys %d and %d are not hashed but equivalent", 404 i, i + 1); 379 i, i + 1); 405 err = 7; 380 err = 7; 406 goto out_dump; 381 goto out_dump; 407 } 382 } 408 } 383 } 409 384 410 kfree(idx); 385 kfree(idx); 411 return 0; 386 return 0; 412 387 413 out_dump: 388 out_dump: 414 ubifs_err(c, "bad indexing node at LEB 389 ubifs_err(c, "bad indexing node at LEB %d:%d, error %d", lnum, offs, err); 415 ubifs_dump_node(c, idx, c->max_idx_nod !! 390 ubifs_dump_node(c, idx); 416 kfree(idx); 391 kfree(idx); 417 return -EINVAL; 392 return -EINVAL; 418 } 393 } 419 394 420 /** 395 /** 421 * ubifs_load_znode - load znode to TNC cache. 396 * ubifs_load_znode - load znode to TNC cache. 422 * @c: UBIFS file-system description object 397 * @c: UBIFS file-system description object 423 * @zbr: znode branch 398 * @zbr: znode branch 424 * @parent: znode's parent 399 * @parent: znode's parent 425 * @iip: index in parent 400 * @iip: index in parent 426 * 401 * 427 * This function loads znode pointed to by @zb 402 * This function loads znode pointed to by @zbr into the TNC cache and 428 * returns pointer to it in case of success an 403 * returns pointer to it in case of success and a negative error code in case 429 * of failure. 404 * of failure. 430 */ 405 */ 431 struct ubifs_znode *ubifs_load_znode(struct ub 406 struct ubifs_znode *ubifs_load_znode(struct ubifs_info *c, 432 struct ub 407 struct ubifs_zbranch *zbr, 433 struct ub 408 struct ubifs_znode *parent, int iip) 434 { 409 { 435 int err; 410 int err; 436 struct ubifs_znode *znode; 411 struct ubifs_znode *znode; 437 412 438 ubifs_assert(c, !zbr->znode); !! 413 ubifs_assert(!zbr->znode); 439 /* 414 /* 440 * A slab cache is not presently used 415 * A slab cache is not presently used for znodes because the znode size 441 * depends on the fanout which is stor 416 * depends on the fanout which is stored in the superblock. 442 */ 417 */ 443 znode = kzalloc(c->max_znode_sz, GFP_N 418 znode = kzalloc(c->max_znode_sz, GFP_NOFS); 444 if (!znode) 419 if (!znode) 445 return ERR_PTR(-ENOMEM); 420 return ERR_PTR(-ENOMEM); 446 421 447 err = read_znode(c, zbr, znode); !! 422 err = read_znode(c, zbr->lnum, zbr->offs, zbr->len, znode); 448 if (err) 423 if (err) 449 goto out; 424 goto out; 450 425 451 atomic_long_inc(&c->clean_zn_cnt); 426 atomic_long_inc(&c->clean_zn_cnt); 452 427 453 /* 428 /* 454 * Increment the global clean znode co 429 * Increment the global clean znode counter as well. It is OK that 455 * global and per-FS clean znode count 430 * global and per-FS clean znode counters may be inconsistent for some 456 * short time (because we might be pre 431 * short time (because we might be preempted at this point), the global 457 * one is only used in shrinker. 432 * one is only used in shrinker. 458 */ 433 */ 459 atomic_long_inc(&ubifs_clean_zn_cnt); 434 atomic_long_inc(&ubifs_clean_zn_cnt); 460 435 461 zbr->znode = znode; 436 zbr->znode = znode; 462 znode->parent = parent; 437 znode->parent = parent; 463 znode->time = ktime_get_seconds(); !! 438 znode->time = get_seconds(); 464 znode->iip = iip; 439 znode->iip = iip; 465 440 466 return znode; 441 return znode; 467 442 468 out: 443 out: 469 kfree(znode); 444 kfree(znode); 470 return ERR_PTR(err); 445 return ERR_PTR(err); 471 } 446 } 472 447 473 /** 448 /** 474 * ubifs_tnc_read_node - read a leaf node from 449 * ubifs_tnc_read_node - read a leaf node from the flash media. 475 * @c: UBIFS file-system description object 450 * @c: UBIFS file-system description object 476 * @zbr: key and position of the node 451 * @zbr: key and position of the node 477 * @node: node is returned here 452 * @node: node is returned here 478 * 453 * 479 * This function reads a node defined by @zbr 454 * This function reads a node defined by @zbr from the flash media. Returns 480 * zero in case of success or a negative error !! 455 * zero in case of success or a negative negative error code in case of >> 456 * failure. 481 */ 457 */ 482 int ubifs_tnc_read_node(struct ubifs_info *c, 458 int ubifs_tnc_read_node(struct ubifs_info *c, struct ubifs_zbranch *zbr, 483 void *node) 459 void *node) 484 { 460 { 485 union ubifs_key key1, *key = &zbr->key 461 union ubifs_key key1, *key = &zbr->key; 486 int err, type = key_type(c, key); 462 int err, type = key_type(c, key); 487 struct ubifs_wbuf *wbuf; 463 struct ubifs_wbuf *wbuf; 488 464 489 /* 465 /* 490 * 'zbr' has to point to on-flash node 466 * 'zbr' has to point to on-flash node. The node may sit in a bud and 491 * may even be in a write buffer, so w 467 * may even be in a write buffer, so we have to take care about this. 492 */ 468 */ 493 wbuf = ubifs_get_wbuf(c, zbr->lnum); 469 wbuf = ubifs_get_wbuf(c, zbr->lnum); 494 if (wbuf) 470 if (wbuf) 495 err = ubifs_read_node_wbuf(wbu 471 err = ubifs_read_node_wbuf(wbuf, node, type, zbr->len, 496 zbr 472 zbr->lnum, zbr->offs); 497 else 473 else 498 err = ubifs_read_node(c, node, 474 err = ubifs_read_node(c, node, type, zbr->len, zbr->lnum, 499 zbr->off 475 zbr->offs); 500 476 501 if (err) { 477 if (err) { 502 dbg_tnck(key, "key "); 478 dbg_tnck(key, "key "); 503 return err; 479 return err; 504 } 480 } 505 481 506 /* Make sure the key of the read node 482 /* Make sure the key of the read node is correct */ 507 key_read(c, node + UBIFS_KEY_OFFSET, & 483 key_read(c, node + UBIFS_KEY_OFFSET, &key1); 508 if (!keys_eq(c, key, &key1)) { 484 if (!keys_eq(c, key, &key1)) { 509 ubifs_err(c, "bad key in node 485 ubifs_err(c, "bad key in node at LEB %d:%d", 510 zbr->lnum, zbr->offs 486 zbr->lnum, zbr->offs); 511 dbg_tnck(key, "looked for key 487 dbg_tnck(key, "looked for key "); 512 dbg_tnck(&key1, "but found nod 488 dbg_tnck(&key1, "but found node's key "); 513 ubifs_dump_node(c, node, zbr-> !! 489 ubifs_dump_node(c, node); 514 return -EINVAL; 490 return -EINVAL; 515 } << 516 << 517 err = ubifs_node_check_hash(c, node, z << 518 if (err) { << 519 ubifs_bad_hash(c, node, zbr->h << 520 return err; << 521 } 491 } 522 492 523 return 0; 493 return 0; 524 } 494 } 525 495
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.