1 // SPDX-License-Identifier: GPL-2.0-only 1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 2 /* 3 * This file is part of UBIFS. 3 * This file is part of UBIFS. 4 * 4 * 5 * Copyright (C) 2006-2008 Nokia Corporation. 5 * Copyright (C) 2006-2008 Nokia Corporation. 6 * 6 * 7 * Authors: Adrian Hunter 7 * Authors: Adrian Hunter 8 * Artem Bityutskiy (Битюцкий 8 * Artem Bityutskiy (Битюцкий Артём) 9 */ 9 */ 10 10 11 /* 11 /* 12 * This file contains miscelanious TNC-related 12 * This file contains miscelanious TNC-related functions shared betweend 13 * different files. This file does not form an 13 * different files. This file does not form any logically separate TNC 14 * sub-system. The file was created because th 14 * sub-system. The file was created because there is a lot of TNC code and 15 * putting it all in one file would make that 15 * putting it all in one file would make that file too big and unreadable. 16 */ 16 */ 17 17 18 #include "ubifs.h" 18 #include "ubifs.h" 19 19 20 /** 20 /** 21 * ubifs_tnc_levelorder_next - next TNC tree e 21 * ubifs_tnc_levelorder_next - next TNC tree element in levelorder traversal. 22 * @c: UBIFS file-system description object 22 * @c: UBIFS file-system description object 23 * @zr: root of the subtree to traverse 23 * @zr: root of the subtree to traverse 24 * @znode: previous znode 24 * @znode: previous znode 25 * 25 * 26 * This function implements levelorder TNC tra 26 * This function implements levelorder TNC traversal. The LNC is ignored. 27 * Returns the next element or %NULL if @znode 27 * Returns the next element or %NULL if @znode is already the last one. 28 */ 28 */ 29 struct ubifs_znode *ubifs_tnc_levelorder_next( 29 struct ubifs_znode *ubifs_tnc_levelorder_next(const struct ubifs_info *c, 30 30 struct ubifs_znode *zr, 31 31 struct ubifs_znode *znode) 32 { 32 { 33 int level, iip, level_search = 0; 33 int level, iip, level_search = 0; 34 struct ubifs_znode *zn; 34 struct ubifs_znode *zn; 35 35 36 ubifs_assert(c, zr); 36 ubifs_assert(c, zr); 37 37 38 if (unlikely(!znode)) 38 if (unlikely(!znode)) 39 return zr; 39 return zr; 40 40 41 if (unlikely(znode == zr)) { 41 if (unlikely(znode == zr)) { 42 if (znode->level == 0) 42 if (znode->level == 0) 43 return NULL; 43 return NULL; 44 return ubifs_tnc_find_child(zr 44 return ubifs_tnc_find_child(zr, 0); 45 } 45 } 46 46 47 level = znode->level; 47 level = znode->level; 48 48 49 iip = znode->iip; 49 iip = znode->iip; 50 while (1) { 50 while (1) { 51 ubifs_assert(c, znode->level < 51 ubifs_assert(c, znode->level <= zr->level); 52 52 53 /* 53 /* 54 * First walk up until there i 54 * First walk up until there is a znode with next branch to 55 * look at. 55 * look at. 56 */ 56 */ 57 while (znode->parent != zr && 57 while (znode->parent != zr && iip >= znode->parent->child_cnt) { 58 znode = znode->parent; 58 znode = znode->parent; 59 iip = znode->iip; 59 iip = znode->iip; 60 } 60 } 61 61 62 if (unlikely(znode->parent == 62 if (unlikely(znode->parent == zr && 63 iip >= znode->par 63 iip >= znode->parent->child_cnt)) { 64 /* This level is done, 64 /* This level is done, switch to the lower one */ 65 level -= 1; 65 level -= 1; 66 if (level_search || le 66 if (level_search || level < 0) 67 /* 67 /* 68 * We were alr 68 * We were already looking for znode at lower 69 * level ('lev 69 * level ('level_search'). As we are here 70 * again, it j 70 * again, it just does not exist. Or all levels 71 * were finish 71 * were finished ('level < 0'). 72 */ 72 */ 73 return NULL; 73 return NULL; 74 74 75 level_search = 1; 75 level_search = 1; 76 iip = -1; 76 iip = -1; 77 znode = ubifs_tnc_find 77 znode = ubifs_tnc_find_child(zr, 0); 78 ubifs_assert(c, znode) 78 ubifs_assert(c, znode); 79 } 79 } 80 80 81 /* Switch to the next index */ 81 /* Switch to the next index */ 82 zn = ubifs_tnc_find_child(znod 82 zn = ubifs_tnc_find_child(znode->parent, iip + 1); 83 if (!zn) { 83 if (!zn) { 84 /* No more children to 84 /* No more children to look at, we have walk up */ 85 iip = znode->parent->c 85 iip = znode->parent->child_cnt; 86 continue; 86 continue; 87 } 87 } 88 88 89 /* Walk back down to the level 89 /* Walk back down to the level we came from ('level') */ 90 while (zn->level != level) { 90 while (zn->level != level) { 91 znode = zn; 91 znode = zn; 92 zn = ubifs_tnc_find_ch 92 zn = ubifs_tnc_find_child(zn, 0); 93 if (!zn) { 93 if (!zn) { 94 /* 94 /* 95 * This path i 95 * This path is not too deep so it does not 96 * reach 'leve 96 * reach 'level'. Try next path. 97 */ 97 */ 98 iip = znode->i 98 iip = znode->iip; 99 break; 99 break; 100 } 100 } 101 } 101 } 102 102 103 if (zn) { 103 if (zn) { 104 ubifs_assert(c, zn->le 104 ubifs_assert(c, zn->level >= 0); 105 return zn; 105 return zn; 106 } 106 } 107 } 107 } 108 } 108 } 109 109 110 /** 110 /** 111 * ubifs_search_zbranch - search znode branch. 111 * ubifs_search_zbranch - search znode branch. 112 * @c: UBIFS file-system description object 112 * @c: UBIFS file-system description object 113 * @znode: znode to search in 113 * @znode: znode to search in 114 * @key: key to search for 114 * @key: key to search for 115 * @n: znode branch slot number is returned he 115 * @n: znode branch slot number is returned here 116 * 116 * 117 * This is a helper function which search bran 117 * This is a helper function which search branch with key @key in @znode using 118 * binary search. The result of the search may 118 * binary search. The result of the search may be: 119 * o exact match, then %1 is returned, and t 119 * o exact match, then %1 is returned, and the slot number of the branch is 120 * stored in @n; 120 * stored in @n; 121 * o no exact match, then %0 is returned and 121 * o no exact match, then %0 is returned and the slot number of the left 122 * closest branch is returned in @n; the s 122 * closest branch is returned in @n; the slot if all keys in this znode are 123 * greater than @key, then %-1 is returned 123 * greater than @key, then %-1 is returned in @n. 124 */ 124 */ 125 int ubifs_search_zbranch(const struct ubifs_in 125 int ubifs_search_zbranch(const struct ubifs_info *c, 126 const struct ubifs_zn 126 const struct ubifs_znode *znode, 127 const union ubifs_key 127 const union ubifs_key *key, int *n) 128 { 128 { 129 int beg = 0, end = znode->child_cnt, m 129 int beg = 0, end = znode->child_cnt, mid; 130 int cmp; 130 int cmp; 131 const struct ubifs_zbranch *zbr = &zno 131 const struct ubifs_zbranch *zbr = &znode->zbranch[0]; 132 132 133 ubifs_assert(c, end > beg); 133 ubifs_assert(c, end > beg); 134 134 135 while (end > beg) { 135 while (end > beg) { 136 mid = (beg + end) >> 1; 136 mid = (beg + end) >> 1; 137 cmp = keys_cmp(c, key, &zbr[mi 137 cmp = keys_cmp(c, key, &zbr[mid].key); 138 if (cmp > 0) 138 if (cmp > 0) 139 beg = mid + 1; 139 beg = mid + 1; 140 else if (cmp < 0) 140 else if (cmp < 0) 141 end = mid; 141 end = mid; 142 else { 142 else { 143 *n = mid; 143 *n = mid; 144 return 1; 144 return 1; 145 } 145 } 146 } 146 } 147 147 148 *n = end - 1; 148 *n = end - 1; 149 149 150 /* The insert point is after *n */ 150 /* The insert point is after *n */ 151 ubifs_assert(c, *n >= -1 && *n < znode 151 ubifs_assert(c, *n >= -1 && *n < znode->child_cnt); 152 if (*n == -1) 152 if (*n == -1) 153 ubifs_assert(c, keys_cmp(c, ke 153 ubifs_assert(c, keys_cmp(c, key, &zbr[0].key) < 0); 154 else 154 else 155 ubifs_assert(c, keys_cmp(c, ke 155 ubifs_assert(c, keys_cmp(c, key, &zbr[*n].key) > 0); 156 if (*n + 1 < znode->child_cnt) 156 if (*n + 1 < znode->child_cnt) 157 ubifs_assert(c, keys_cmp(c, ke 157 ubifs_assert(c, keys_cmp(c, key, &zbr[*n + 1].key) < 0); 158 158 159 return 0; 159 return 0; 160 } 160 } 161 161 162 /** 162 /** 163 * ubifs_tnc_postorder_first - find first znod 163 * ubifs_tnc_postorder_first - find first znode to do postorder tree traversal. 164 * @znode: znode to start at (root of the sub- 164 * @znode: znode to start at (root of the sub-tree to traverse) 165 * 165 * 166 * Find the lowest leftmost znode in a subtree 166 * Find the lowest leftmost znode in a subtree of the TNC tree. The LNC is 167 * ignored. 167 * ignored. 168 */ 168 */ 169 struct ubifs_znode *ubifs_tnc_postorder_first( 169 struct ubifs_znode *ubifs_tnc_postorder_first(struct ubifs_znode *znode) 170 { 170 { 171 if (unlikely(!znode)) 171 if (unlikely(!znode)) 172 return NULL; 172 return NULL; 173 173 174 while (znode->level > 0) { 174 while (znode->level > 0) { 175 struct ubifs_znode *child; 175 struct ubifs_znode *child; 176 176 177 child = ubifs_tnc_find_child(z 177 child = ubifs_tnc_find_child(znode, 0); 178 if (!child) 178 if (!child) 179 return znode; 179 return znode; 180 znode = child; 180 znode = child; 181 } 181 } 182 182 183 return znode; 183 return znode; 184 } 184 } 185 185 186 /** 186 /** 187 * ubifs_tnc_postorder_next - next TNC tree el 187 * ubifs_tnc_postorder_next - next TNC tree element in postorder traversal. 188 * @c: UBIFS file-system description object 188 * @c: UBIFS file-system description object 189 * @znode: previous znode 189 * @znode: previous znode 190 * 190 * 191 * This function implements postorder TNC trav 191 * This function implements postorder TNC traversal. The LNC is ignored. 192 * Returns the next element or %NULL if @znode 192 * Returns the next element or %NULL if @znode is already the last one. 193 */ 193 */ 194 struct ubifs_znode *ubifs_tnc_postorder_next(c 194 struct ubifs_znode *ubifs_tnc_postorder_next(const struct ubifs_info *c, 195 s 195 struct ubifs_znode *znode) 196 { 196 { 197 struct ubifs_znode *zn; 197 struct ubifs_znode *zn; 198 198 199 ubifs_assert(c, znode); 199 ubifs_assert(c, znode); 200 if (unlikely(!znode->parent)) 200 if (unlikely(!znode->parent)) 201 return NULL; 201 return NULL; 202 202 203 /* Switch to the next index in the par 203 /* Switch to the next index in the parent */ 204 zn = ubifs_tnc_find_child(znode->paren 204 zn = ubifs_tnc_find_child(znode->parent, znode->iip + 1); 205 if (!zn) 205 if (!zn) 206 /* This is in fact the last ch 206 /* This is in fact the last child, return parent */ 207 return znode->parent; 207 return znode->parent; 208 208 209 /* Go to the first znode in this new s 209 /* Go to the first znode in this new subtree */ 210 return ubifs_tnc_postorder_first(zn); 210 return ubifs_tnc_postorder_first(zn); 211 } 211 } 212 212 213 /** 213 /** 214 * ubifs_destroy_tnc_subtree - destroy all zno 214 * ubifs_destroy_tnc_subtree - destroy all znodes connected to a subtree. 215 * @c: UBIFS file-system description object 215 * @c: UBIFS file-system description object 216 * @znode: znode defining subtree to destroy 216 * @znode: znode defining subtree to destroy 217 * 217 * 218 * This function destroys subtree of the TNC t 218 * This function destroys subtree of the TNC tree. Returns number of clean 219 * znodes in the subtree. 219 * znodes in the subtree. 220 */ 220 */ 221 long ubifs_destroy_tnc_subtree(const struct ub 221 long ubifs_destroy_tnc_subtree(const struct ubifs_info *c, 222 struct ubifs_zn 222 struct ubifs_znode *znode) 223 { 223 { 224 struct ubifs_znode *zn = ubifs_tnc_pos 224 struct ubifs_znode *zn = ubifs_tnc_postorder_first(znode); 225 long clean_freed = 0; 225 long clean_freed = 0; 226 int n; 226 int n; 227 227 228 ubifs_assert(c, zn); 228 ubifs_assert(c, zn); 229 while (1) { 229 while (1) { 230 for (n = 0; n < zn->child_cnt; 230 for (n = 0; n < zn->child_cnt; n++) { 231 if (!zn->zbranch[n].zn 231 if (!zn->zbranch[n].znode) 232 continue; 232 continue; 233 233 234 if (zn->level > 0 && 234 if (zn->level > 0 && 235 !ubifs_zn_dirty(zn 235 !ubifs_zn_dirty(zn->zbranch[n].znode)) 236 clean_freed += 236 clean_freed += 1; 237 237 238 cond_resched(); 238 cond_resched(); 239 kfree(zn->zbranch[n].z 239 kfree(zn->zbranch[n].znode); 240 } 240 } 241 241 242 if (zn == znode) { 242 if (zn == znode) { 243 if (!ubifs_zn_dirty(zn 243 if (!ubifs_zn_dirty(zn)) 244 clean_freed += 244 clean_freed += 1; 245 kfree(zn); 245 kfree(zn); 246 return clean_freed; 246 return clean_freed; 247 } 247 } 248 248 249 zn = ubifs_tnc_postorder_next( 249 zn = ubifs_tnc_postorder_next(c, zn); 250 } 250 } 251 } 251 } 252 252 253 /** 253 /** 254 * ubifs_destroy_tnc_tree - destroy all znodes 254 * ubifs_destroy_tnc_tree - destroy all znodes connected to the TNC tree. 255 * @c: UBIFS file-system description object 255 * @c: UBIFS file-system description object 256 * 256 * 257 * This function destroys the whole TNC tree a 257 * This function destroys the whole TNC tree and updates clean global znode 258 * count. 258 * count. 259 */ 259 */ 260 void ubifs_destroy_tnc_tree(struct ubifs_info 260 void ubifs_destroy_tnc_tree(struct ubifs_info *c) 261 { 261 { 262 long n, freed; 262 long n, freed; 263 263 264 if (!c->zroot.znode) 264 if (!c->zroot.znode) 265 return; 265 return; 266 266 267 n = atomic_long_read(&c->clean_zn_cnt) 267 n = atomic_long_read(&c->clean_zn_cnt); 268 freed = ubifs_destroy_tnc_subtree(c, c 268 freed = ubifs_destroy_tnc_subtree(c, c->zroot.znode); 269 ubifs_assert(c, freed == n); 269 ubifs_assert(c, freed == n); 270 atomic_long_sub(n, &ubifs_clean_zn_cnt 270 atomic_long_sub(n, &ubifs_clean_zn_cnt); 271 271 272 c->zroot.znode = NULL; 272 c->zroot.znode = NULL; 273 } 273 } 274 274 275 /** 275 /** 276 * read_znode - read an indexing node from fla 276 * read_znode - read an indexing node from flash and fill znode. 277 * @c: UBIFS file-system description object 277 * @c: UBIFS file-system description object 278 * @zzbr: the zbranch describing the node to r 278 * @zzbr: the zbranch describing the node to read 279 * @znode: znode to read to 279 * @znode: znode to read to 280 * 280 * 281 * This function reads an indexing node from t 281 * This function reads an indexing node from the flash media and fills znode 282 * with the read data. Returns zero in case of 282 * with the read data. Returns zero in case of success and a negative error 283 * code in case of failure. The read indexing 283 * code in case of failure. The read indexing node is validated and if anything 284 * is wrong with it, this function prints comp 284 * is wrong with it, this function prints complaint messages and returns 285 * %-EINVAL. 285 * %-EINVAL. 286 */ 286 */ 287 static int read_znode(struct ubifs_info *c, st 287 static int read_znode(struct ubifs_info *c, struct ubifs_zbranch *zzbr, 288 struct ubifs_znode *znod 288 struct ubifs_znode *znode) 289 { 289 { 290 int lnum = zzbr->lnum; 290 int lnum = zzbr->lnum; 291 int offs = zzbr->offs; 291 int offs = zzbr->offs; 292 int len = zzbr->len; 292 int len = zzbr->len; 293 int i, err, type, cmp; 293 int i, err, type, cmp; 294 struct ubifs_idx_node *idx; 294 struct ubifs_idx_node *idx; 295 295 296 idx = kmalloc(c->max_idx_node_sz, GFP_ 296 idx = kmalloc(c->max_idx_node_sz, GFP_NOFS); 297 if (!idx) 297 if (!idx) 298 return -ENOMEM; 298 return -ENOMEM; 299 299 300 err = ubifs_read_node(c, idx, UBIFS_ID 300 err = ubifs_read_node(c, idx, UBIFS_IDX_NODE, len, lnum, offs); 301 if (err < 0) { 301 if (err < 0) { 302 kfree(idx); 302 kfree(idx); 303 return err; 303 return err; 304 } 304 } 305 305 306 err = ubifs_node_check_hash(c, idx, zz 306 err = ubifs_node_check_hash(c, idx, zzbr->hash); 307 if (err) { 307 if (err) { 308 ubifs_bad_hash(c, idx, zzbr->h 308 ubifs_bad_hash(c, idx, zzbr->hash, lnum, offs); 309 kfree(idx); 309 kfree(idx); 310 return err; 310 return err; 311 } 311 } 312 312 313 znode->child_cnt = le16_to_cpu(idx->ch 313 znode->child_cnt = le16_to_cpu(idx->child_cnt); 314 znode->level = le16_to_cpu(idx->level) 314 znode->level = le16_to_cpu(idx->level); 315 315 316 dbg_tnc("LEB %d:%d, level %d, %d branc 316 dbg_tnc("LEB %d:%d, level %d, %d branch", 317 lnum, offs, znode->level, znod 317 lnum, offs, znode->level, znode->child_cnt); 318 318 319 if (znode->child_cnt > c->fanout || zn 319 if (znode->child_cnt > c->fanout || znode->level > UBIFS_MAX_LEVELS) { 320 ubifs_err(c, "current fanout % 320 ubifs_err(c, "current fanout %d, branch count %d", 321 c->fanout, znode->ch 321 c->fanout, znode->child_cnt); 322 ubifs_err(c, "max levels %d, z 322 ubifs_err(c, "max levels %d, znode level %d", 323 UBIFS_MAX_LEVELS, zn 323 UBIFS_MAX_LEVELS, znode->level); 324 err = 1; 324 err = 1; 325 goto out_dump; 325 goto out_dump; 326 } 326 } 327 327 328 for (i = 0; i < znode->child_cnt; i++) 328 for (i = 0; i < znode->child_cnt; i++) { 329 struct ubifs_branch *br = ubif 329 struct ubifs_branch *br = ubifs_idx_branch(c, idx, i); 330 struct ubifs_zbranch *zbr = &z 330 struct ubifs_zbranch *zbr = &znode->zbranch[i]; 331 331 332 key_read(c, &br->key, &zbr->ke 332 key_read(c, &br->key, &zbr->key); 333 zbr->lnum = le32_to_cpu(br->ln 333 zbr->lnum = le32_to_cpu(br->lnum); 334 zbr->offs = le32_to_cpu(br->of 334 zbr->offs = le32_to_cpu(br->offs); 335 zbr->len = le32_to_cpu(br->le 335 zbr->len = le32_to_cpu(br->len); 336 ubifs_copy_hash(c, ubifs_branc 336 ubifs_copy_hash(c, ubifs_branch_hash(c, br), zbr->hash); 337 zbr->znode = NULL; 337 zbr->znode = NULL; 338 338 339 /* Validate branch */ 339 /* Validate branch */ 340 340 341 if (zbr->lnum < c->main_first 341 if (zbr->lnum < c->main_first || 342 zbr->lnum >= c->leb_cnt || 342 zbr->lnum >= c->leb_cnt || zbr->offs < 0 || 343 zbr->offs + zbr->len > c-> 343 zbr->offs + zbr->len > c->leb_size || zbr->offs & 7) { 344 ubifs_err(c, "bad bran 344 ubifs_err(c, "bad branch %d", i); 345 err = 2; 345 err = 2; 346 goto out_dump; 346 goto out_dump; 347 } 347 } 348 348 349 switch (key_type(c, &zbr->key) 349 switch (key_type(c, &zbr->key)) { 350 case UBIFS_INO_KEY: 350 case UBIFS_INO_KEY: 351 case UBIFS_DATA_KEY: 351 case UBIFS_DATA_KEY: 352 case UBIFS_DENT_KEY: 352 case UBIFS_DENT_KEY: 353 case UBIFS_XENT_KEY: 353 case UBIFS_XENT_KEY: 354 break; 354 break; 355 default: 355 default: 356 ubifs_err(c, "bad key 356 ubifs_err(c, "bad key type at slot %d: %d", 357 i, key_type( 357 i, key_type(c, &zbr->key)); 358 err = 3; 358 err = 3; 359 goto out_dump; 359 goto out_dump; 360 } 360 } 361 361 362 if (znode->level) 362 if (znode->level) 363 continue; 363 continue; 364 364 365 type = key_type(c, &zbr->key); 365 type = key_type(c, &zbr->key); 366 if (c->ranges[type].max_len == 366 if (c->ranges[type].max_len == 0) { 367 if (zbr->len != c->ran 367 if (zbr->len != c->ranges[type].len) { 368 ubifs_err(c, " 368 ubifs_err(c, "bad target node (type %d) length (%d)", 369 type 369 type, zbr->len); 370 ubifs_err(c, " 370 ubifs_err(c, "have to be %d", c->ranges[type].len); 371 err = 4; 371 err = 4; 372 goto out_dump; 372 goto out_dump; 373 } 373 } 374 } else if (zbr->len < c->range 374 } else if (zbr->len < c->ranges[type].min_len || 375 zbr->len > c->range 375 zbr->len > c->ranges[type].max_len) { 376 ubifs_err(c, "bad targ 376 ubifs_err(c, "bad target node (type %d) length (%d)", 377 type, zbr->l 377 type, zbr->len); 378 ubifs_err(c, "have to 378 ubifs_err(c, "have to be in range of %d-%d", 379 c->ranges[ty 379 c->ranges[type].min_len, 380 c->ranges[ty 380 c->ranges[type].max_len); 381 err = 5; 381 err = 5; 382 goto out_dump; 382 goto out_dump; 383 } 383 } 384 } 384 } 385 385 386 /* 386 /* 387 * Ensure that the next key is greater 387 * Ensure that the next key is greater or equivalent to the 388 * previous one. 388 * previous one. 389 */ 389 */ 390 for (i = 0; i < znode->child_cnt - 1; 390 for (i = 0; i < znode->child_cnt - 1; i++) { 391 const union ubifs_key *key1, * 391 const union ubifs_key *key1, *key2; 392 392 393 key1 = &znode->zbranch[i].key; 393 key1 = &znode->zbranch[i].key; 394 key2 = &znode->zbranch[i + 1]. 394 key2 = &znode->zbranch[i + 1].key; 395 395 396 cmp = keys_cmp(c, key1, key2); 396 cmp = keys_cmp(c, key1, key2); 397 if (cmp > 0) { 397 if (cmp > 0) { 398 ubifs_err(c, "bad key 398 ubifs_err(c, "bad key order (keys %d and %d)", i, i + 1); 399 err = 6; 399 err = 6; 400 goto out_dump; 400 goto out_dump; 401 } else if (cmp == 0 && !is_has 401 } else if (cmp == 0 && !is_hash_key(c, key1)) { 402 /* These can only be k 402 /* These can only be keys with colliding hash */ 403 ubifs_err(c, "keys %d 403 ubifs_err(c, "keys %d and %d are not hashed but equivalent", 404 i, i + 1); 404 i, i + 1); 405 err = 7; 405 err = 7; 406 goto out_dump; 406 goto out_dump; 407 } 407 } 408 } 408 } 409 409 410 kfree(idx); 410 kfree(idx); 411 return 0; 411 return 0; 412 412 413 out_dump: 413 out_dump: 414 ubifs_err(c, "bad indexing node at LEB 414 ubifs_err(c, "bad indexing node at LEB %d:%d, error %d", lnum, offs, err); 415 ubifs_dump_node(c, idx, c->max_idx_nod 415 ubifs_dump_node(c, idx, c->max_idx_node_sz); 416 kfree(idx); 416 kfree(idx); 417 return -EINVAL; 417 return -EINVAL; 418 } 418 } 419 419 420 /** 420 /** 421 * ubifs_load_znode - load znode to TNC cache. 421 * ubifs_load_znode - load znode to TNC cache. 422 * @c: UBIFS file-system description object 422 * @c: UBIFS file-system description object 423 * @zbr: znode branch 423 * @zbr: znode branch 424 * @parent: znode's parent 424 * @parent: znode's parent 425 * @iip: index in parent 425 * @iip: index in parent 426 * 426 * 427 * This function loads znode pointed to by @zb 427 * This function loads znode pointed to by @zbr into the TNC cache and 428 * returns pointer to it in case of success an 428 * returns pointer to it in case of success and a negative error code in case 429 * of failure. 429 * of failure. 430 */ 430 */ 431 struct ubifs_znode *ubifs_load_znode(struct ub 431 struct ubifs_znode *ubifs_load_znode(struct ubifs_info *c, 432 struct ub 432 struct ubifs_zbranch *zbr, 433 struct ub 433 struct ubifs_znode *parent, int iip) 434 { 434 { 435 int err; 435 int err; 436 struct ubifs_znode *znode; 436 struct ubifs_znode *znode; 437 437 438 ubifs_assert(c, !zbr->znode); 438 ubifs_assert(c, !zbr->znode); 439 /* 439 /* 440 * A slab cache is not presently used 440 * A slab cache is not presently used for znodes because the znode size 441 * depends on the fanout which is stor 441 * depends on the fanout which is stored in the superblock. 442 */ 442 */ 443 znode = kzalloc(c->max_znode_sz, GFP_N 443 znode = kzalloc(c->max_znode_sz, GFP_NOFS); 444 if (!znode) 444 if (!znode) 445 return ERR_PTR(-ENOMEM); 445 return ERR_PTR(-ENOMEM); 446 446 447 err = read_znode(c, zbr, znode); 447 err = read_znode(c, zbr, znode); 448 if (err) 448 if (err) 449 goto out; 449 goto out; 450 450 451 atomic_long_inc(&c->clean_zn_cnt); 451 atomic_long_inc(&c->clean_zn_cnt); 452 452 453 /* 453 /* 454 * Increment the global clean znode co 454 * Increment the global clean znode counter as well. It is OK that 455 * global and per-FS clean znode count 455 * global and per-FS clean znode counters may be inconsistent for some 456 * short time (because we might be pre 456 * short time (because we might be preempted at this point), the global 457 * one is only used in shrinker. 457 * one is only used in shrinker. 458 */ 458 */ 459 atomic_long_inc(&ubifs_clean_zn_cnt); 459 atomic_long_inc(&ubifs_clean_zn_cnt); 460 460 461 zbr->znode = znode; 461 zbr->znode = znode; 462 znode->parent = parent; 462 znode->parent = parent; 463 znode->time = ktime_get_seconds(); 463 znode->time = ktime_get_seconds(); 464 znode->iip = iip; 464 znode->iip = iip; 465 465 466 return znode; 466 return znode; 467 467 468 out: 468 out: 469 kfree(znode); 469 kfree(znode); 470 return ERR_PTR(err); 470 return ERR_PTR(err); 471 } 471 } 472 472 473 /** 473 /** 474 * ubifs_tnc_read_node - read a leaf node from 474 * ubifs_tnc_read_node - read a leaf node from the flash media. 475 * @c: UBIFS file-system description object 475 * @c: UBIFS file-system description object 476 * @zbr: key and position of the node 476 * @zbr: key and position of the node 477 * @node: node is returned here 477 * @node: node is returned here 478 * 478 * 479 * This function reads a node defined by @zbr 479 * This function reads a node defined by @zbr from the flash media. Returns 480 * zero in case of success or a negative error 480 * zero in case of success or a negative error code in case of failure. 481 */ 481 */ 482 int ubifs_tnc_read_node(struct ubifs_info *c, 482 int ubifs_tnc_read_node(struct ubifs_info *c, struct ubifs_zbranch *zbr, 483 void *node) 483 void *node) 484 { 484 { 485 union ubifs_key key1, *key = &zbr->key 485 union ubifs_key key1, *key = &zbr->key; 486 int err, type = key_type(c, key); 486 int err, type = key_type(c, key); 487 struct ubifs_wbuf *wbuf; 487 struct ubifs_wbuf *wbuf; 488 488 489 /* 489 /* 490 * 'zbr' has to point to on-flash node 490 * 'zbr' has to point to on-flash node. The node may sit in a bud and 491 * may even be in a write buffer, so w 491 * may even be in a write buffer, so we have to take care about this. 492 */ 492 */ 493 wbuf = ubifs_get_wbuf(c, zbr->lnum); 493 wbuf = ubifs_get_wbuf(c, zbr->lnum); 494 if (wbuf) 494 if (wbuf) 495 err = ubifs_read_node_wbuf(wbu 495 err = ubifs_read_node_wbuf(wbuf, node, type, zbr->len, 496 zbr 496 zbr->lnum, zbr->offs); 497 else 497 else 498 err = ubifs_read_node(c, node, 498 err = ubifs_read_node(c, node, type, zbr->len, zbr->lnum, 499 zbr->off 499 zbr->offs); 500 500 501 if (err) { 501 if (err) { 502 dbg_tnck(key, "key "); 502 dbg_tnck(key, "key "); 503 return err; 503 return err; 504 } 504 } 505 505 506 /* Make sure the key of the read node 506 /* Make sure the key of the read node is correct */ 507 key_read(c, node + UBIFS_KEY_OFFSET, & 507 key_read(c, node + UBIFS_KEY_OFFSET, &key1); 508 if (!keys_eq(c, key, &key1)) { 508 if (!keys_eq(c, key, &key1)) { 509 ubifs_err(c, "bad key in node 509 ubifs_err(c, "bad key in node at LEB %d:%d", 510 zbr->lnum, zbr->offs 510 zbr->lnum, zbr->offs); 511 dbg_tnck(key, "looked for key 511 dbg_tnck(key, "looked for key "); 512 dbg_tnck(&key1, "but found nod 512 dbg_tnck(&key1, "but found node's key "); 513 ubifs_dump_node(c, node, zbr-> 513 ubifs_dump_node(c, node, zbr->len); 514 return -EINVAL; 514 return -EINVAL; 515 } 515 } 516 516 517 err = ubifs_node_check_hash(c, node, z 517 err = ubifs_node_check_hash(c, node, zbr->hash); 518 if (err) { 518 if (err) { 519 ubifs_bad_hash(c, node, zbr->h 519 ubifs_bad_hash(c, node, zbr->hash, zbr->lnum, zbr->offs); 520 return err; 520 return err; 521 } 521 } 522 522 523 return 0; 523 return 0; 524 } 524 } 525 525
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.