1 // SPDX-License-Identifier: GPL-2.0-only << 2 /* 1 /* 3 * fs/userfaultfd.c 2 * fs/userfaultfd.c 4 * 3 * 5 * Copyright (C) 2007 Davide Libenzi <davide 4 * Copyright (C) 2007 Davide Libenzi <davidel@xmailserver.org> 6 * Copyright (C) 2008-2009 Red Hat, Inc. 5 * Copyright (C) 2008-2009 Red Hat, Inc. 7 * Copyright (C) 2015 Red Hat, Inc. 6 * Copyright (C) 2015 Red Hat, Inc. 8 * 7 * >> 8 * This work is licensed under the terms of the GNU GPL, version 2. See >> 9 * the COPYING file in the top-level directory. >> 10 * 9 * Some part derived from fs/eventfd.c (anon 11 * Some part derived from fs/eventfd.c (anon inode setup) and 10 * mm/ksm.c (mm hashing). 12 * mm/ksm.c (mm hashing). 11 */ 13 */ 12 14 13 #include <linux/list.h> 15 #include <linux/list.h> 14 #include <linux/hashtable.h> 16 #include <linux/hashtable.h> 15 #include <linux/sched/signal.h> 17 #include <linux/sched/signal.h> 16 #include <linux/sched/mm.h> 18 #include <linux/sched/mm.h> 17 #include <linux/mm.h> 19 #include <linux/mm.h> 18 #include <linux/mm_inline.h> << 19 #include <linux/mmu_notifier.h> << 20 #include <linux/poll.h> 20 #include <linux/poll.h> 21 #include <linux/slab.h> 21 #include <linux/slab.h> 22 #include <linux/seq_file.h> 22 #include <linux/seq_file.h> 23 #include <linux/file.h> 23 #include <linux/file.h> 24 #include <linux/bug.h> 24 #include <linux/bug.h> 25 #include <linux/anon_inodes.h> 25 #include <linux/anon_inodes.h> 26 #include <linux/syscalls.h> 26 #include <linux/syscalls.h> 27 #include <linux/userfaultfd_k.h> 27 #include <linux/userfaultfd_k.h> 28 #include <linux/mempolicy.h> 28 #include <linux/mempolicy.h> 29 #include <linux/ioctl.h> 29 #include <linux/ioctl.h> 30 #include <linux/security.h> 30 #include <linux/security.h> 31 #include <linux/hugetlb.h> 31 #include <linux/hugetlb.h> 32 #include <linux/swapops.h> !! 32 33 #include <linux/miscdevice.h> !! 33 static struct kmem_cache *userfaultfd_ctx_cachep __read_mostly; 34 #include <linux/uio.h> !! 34 35 !! 35 enum userfaultfd_state { 36 static int sysctl_unprivileged_userfaultfd __r !! 36 UFFD_STATE_WAIT_API, 37 !! 37 UFFD_STATE_RUNNING, 38 #ifdef CONFIG_SYSCTL << 39 static struct ctl_table vm_userfaultfd_table[] << 40 { << 41 .procname = "unprivilege << 42 .data = &sysctl_unpr << 43 .maxlen = sizeof(sysct << 44 .mode = 0644, << 45 .proc_handler = proc_dointve << 46 .extra1 = SYSCTL_ZERO, << 47 .extra2 = SYSCTL_ONE, << 48 }, << 49 }; 38 }; 50 #endif << 51 39 52 static struct kmem_cache *userfaultfd_ctx_cach !! 40 /* >> 41 * Start with fault_pending_wqh and fault_wqh so they're more likely >> 42 * to be in the same cacheline. >> 43 */ >> 44 struct userfaultfd_ctx { >> 45 /* waitqueue head for the pending (i.e. not read) userfaults */ >> 46 wait_queue_head_t fault_pending_wqh; >> 47 /* waitqueue head for the userfaults */ >> 48 wait_queue_head_t fault_wqh; >> 49 /* waitqueue head for the pseudo fd to wakeup poll/read */ >> 50 wait_queue_head_t fd_wqh; >> 51 /* waitqueue head for events */ >> 52 wait_queue_head_t event_wqh; >> 53 /* a refile sequence protected by fault_pending_wqh lock */ >> 54 struct seqcount refile_seq; >> 55 /* pseudo fd refcounting */ >> 56 atomic_t refcount; >> 57 /* userfaultfd syscall flags */ >> 58 unsigned int flags; >> 59 /* features requested from the userspace */ >> 60 unsigned int features; >> 61 /* state machine */ >> 62 enum userfaultfd_state state; >> 63 /* released */ >> 64 bool released; >> 65 /* mm with one ore more vmas attached to this userfaultfd_ctx */ >> 66 struct mm_struct *mm; >> 67 }; 53 68 54 struct userfaultfd_fork_ctx { 69 struct userfaultfd_fork_ctx { 55 struct userfaultfd_ctx *orig; 70 struct userfaultfd_ctx *orig; 56 struct userfaultfd_ctx *new; 71 struct userfaultfd_ctx *new; 57 struct list_head list; 72 struct list_head list; 58 }; 73 }; 59 74 60 struct userfaultfd_unmap_ctx { 75 struct userfaultfd_unmap_ctx { 61 struct userfaultfd_ctx *ctx; 76 struct userfaultfd_ctx *ctx; 62 unsigned long start; 77 unsigned long start; 63 unsigned long end; 78 unsigned long end; 64 struct list_head list; 79 struct list_head list; 65 }; 80 }; 66 81 67 struct userfaultfd_wait_queue { 82 struct userfaultfd_wait_queue { 68 struct uffd_msg msg; 83 struct uffd_msg msg; 69 wait_queue_entry_t wq; !! 84 wait_queue_t wq; 70 struct userfaultfd_ctx *ctx; 85 struct userfaultfd_ctx *ctx; 71 bool waken; 86 bool waken; 72 }; 87 }; 73 88 74 struct userfaultfd_wake_range { 89 struct userfaultfd_wake_range { 75 unsigned long start; 90 unsigned long start; 76 unsigned long len; 91 unsigned long len; 77 }; 92 }; 78 93 79 /* internal indication that UFFD_API ioctl was !! 94 static int userfaultfd_wake_function(wait_queue_t *wq, unsigned mode, 80 #define UFFD_FEATURE_INITIALIZED << 81 << 82 static bool userfaultfd_is_initialized(struct << 83 { << 84 return ctx->features & UFFD_FEATURE_IN << 85 } << 86 << 87 static bool userfaultfd_wp_async_ctx(struct us << 88 { << 89 return ctx && (ctx->features & UFFD_FE << 90 } << 91 << 92 /* << 93 * Whether WP_UNPOPULATED is enabled on the uf << 94 * meaningful when userfaultfd_wp()==true on t << 95 * anonymous. << 96 */ << 97 bool userfaultfd_wp_unpopulated(struct vm_area << 98 { << 99 struct userfaultfd_ctx *ctx = vma->vm_ << 100 << 101 if (!ctx) << 102 return false; << 103 << 104 return ctx->features & UFFD_FEATURE_WP << 105 } << 106 << 107 static void userfaultfd_set_vm_flags(struct vm << 108 vm_flags_ << 109 { << 110 const bool uffd_wp_changed = (vma->vm_ << 111 << 112 vm_flags_reset(vma, flags); << 113 /* << 114 * For shared mappings, we want to ena << 115 * userfaultfd-wp is enabled (see vma_ << 116 * recalculate vma->vm_page_prot whene << 117 */ << 118 if ((vma->vm_flags & VM_SHARED) && uff << 119 vma_set_page_prot(vma); << 120 } << 121 << 122 static int userfaultfd_wake_function(wait_queu << 123 int wake_ 95 int wake_flags, void *key) 124 { 96 { 125 struct userfaultfd_wake_range *range = 97 struct userfaultfd_wake_range *range = key; 126 int ret; 98 int ret; 127 struct userfaultfd_wait_queue *uwq; 99 struct userfaultfd_wait_queue *uwq; 128 unsigned long start, len; 100 unsigned long start, len; 129 101 130 uwq = container_of(wq, struct userfaul 102 uwq = container_of(wq, struct userfaultfd_wait_queue, wq); 131 ret = 0; 103 ret = 0; 132 /* len == 0 means wake all */ 104 /* len == 0 means wake all */ 133 start = range->start; 105 start = range->start; 134 len = range->len; 106 len = range->len; 135 if (len && (start > uwq->msg.arg.pagef 107 if (len && (start > uwq->msg.arg.pagefault.address || 136 start + len <= uwq->msg.ar 108 start + len <= uwq->msg.arg.pagefault.address)) 137 goto out; 109 goto out; 138 WRITE_ONCE(uwq->waken, true); 110 WRITE_ONCE(uwq->waken, true); 139 /* 111 /* 140 * The Program-Order guarantees provid !! 112 * The implicit smp_mb__before_spinlock in try_to_wake_up() 141 * ensure uwq->waken is visible before !! 113 * renders uwq->waken visible to other CPUs before the task is >> 114 * waken. 142 */ 115 */ 143 ret = wake_up_state(wq->private, mode) 116 ret = wake_up_state(wq->private, mode); 144 if (ret) { !! 117 if (ret) 145 /* 118 /* 146 * Wake only once, autoremove 119 * Wake only once, autoremove behavior. 147 * 120 * 148 * After the effect of list_de !! 121 * After the effect of list_del_init is visible to the 149 * CPUs, the waitqueue may dis !! 122 * other CPUs, the waitqueue may disappear from under 150 * !list_empty_careful() in ha !! 123 * us, see the !list_empty_careful() in 151 * !! 124 * handle_userfault(). try_to_wake_up() has an 152 * try_to_wake_up() has an imp !! 125 * implicit smp_mb__before_spinlock, and the 153 * wq->private is read before !! 126 * wq->private is read before calling the extern 154 * "wake_up_state" (which in t !! 127 * function "wake_up_state" (which in turns calls >> 128 * try_to_wake_up). While the spin_lock;spin_unlock; >> 129 * wouldn't be enough, the smp_mb__before_spinlock is >> 130 * enough to avoid an explicit smp_mb() here. 155 */ 131 */ 156 list_del_init(&wq->entry); !! 132 list_del_init(&wq->task_list); 157 } << 158 out: 133 out: 159 return ret; 134 return ret; 160 } 135 } 161 136 162 /** 137 /** 163 * userfaultfd_ctx_get - Acquires a reference 138 * userfaultfd_ctx_get - Acquires a reference to the internal userfaultfd 164 * context. 139 * context. 165 * @ctx: [in] Pointer to the userfaultfd conte 140 * @ctx: [in] Pointer to the userfaultfd context. 166 */ 141 */ 167 static void userfaultfd_ctx_get(struct userfau 142 static void userfaultfd_ctx_get(struct userfaultfd_ctx *ctx) 168 { 143 { 169 refcount_inc(&ctx->refcount); !! 144 if (!atomic_inc_not_zero(&ctx->refcount)) >> 145 BUG(); 170 } 146 } 171 147 172 /** 148 /** 173 * userfaultfd_ctx_put - Releases a reference 149 * userfaultfd_ctx_put - Releases a reference to the internal userfaultfd 174 * context. 150 * context. 175 * @ctx: [in] Pointer to userfaultfd context. 151 * @ctx: [in] Pointer to userfaultfd context. 176 * 152 * 177 * The userfaultfd context reference must have 153 * The userfaultfd context reference must have been previously acquired either 178 * with userfaultfd_ctx_get() or userfaultfd_c 154 * with userfaultfd_ctx_get() or userfaultfd_ctx_fdget(). 179 */ 155 */ 180 static void userfaultfd_ctx_put(struct userfau 156 static void userfaultfd_ctx_put(struct userfaultfd_ctx *ctx) 181 { 157 { 182 if (refcount_dec_and_test(&ctx->refcou !! 158 if (atomic_dec_and_test(&ctx->refcount)) { 183 VM_BUG_ON(spin_is_locked(&ctx- 159 VM_BUG_ON(spin_is_locked(&ctx->fault_pending_wqh.lock)); 184 VM_BUG_ON(waitqueue_active(&ct 160 VM_BUG_ON(waitqueue_active(&ctx->fault_pending_wqh)); 185 VM_BUG_ON(spin_is_locked(&ctx- 161 VM_BUG_ON(spin_is_locked(&ctx->fault_wqh.lock)); 186 VM_BUG_ON(waitqueue_active(&ct 162 VM_BUG_ON(waitqueue_active(&ctx->fault_wqh)); 187 VM_BUG_ON(spin_is_locked(&ctx- 163 VM_BUG_ON(spin_is_locked(&ctx->event_wqh.lock)); 188 VM_BUG_ON(waitqueue_active(&ct 164 VM_BUG_ON(waitqueue_active(&ctx->event_wqh)); 189 VM_BUG_ON(spin_is_locked(&ctx- 165 VM_BUG_ON(spin_is_locked(&ctx->fd_wqh.lock)); 190 VM_BUG_ON(waitqueue_active(&ct 166 VM_BUG_ON(waitqueue_active(&ctx->fd_wqh)); 191 mmdrop(ctx->mm); 167 mmdrop(ctx->mm); 192 kmem_cache_free(userfaultfd_ct 168 kmem_cache_free(userfaultfd_ctx_cachep, ctx); 193 } 169 } 194 } 170 } 195 171 196 static inline void msg_init(struct uffd_msg *m 172 static inline void msg_init(struct uffd_msg *msg) 197 { 173 { 198 BUILD_BUG_ON(sizeof(struct uffd_msg) ! 174 BUILD_BUG_ON(sizeof(struct uffd_msg) != 32); 199 /* 175 /* 200 * Must use memset to zero out the pad 176 * Must use memset to zero out the paddings or kernel data is 201 * leaked to userland. 177 * leaked to userland. 202 */ 178 */ 203 memset(msg, 0, sizeof(struct uffd_msg) 179 memset(msg, 0, sizeof(struct uffd_msg)); 204 } 180 } 205 181 206 static inline struct uffd_msg userfault_msg(un 182 static inline struct uffd_msg userfault_msg(unsigned long address, 207 un << 208 un 183 unsigned int flags, 209 un !! 184 unsigned long reason) 210 un << 211 { 185 { 212 struct uffd_msg msg; 186 struct uffd_msg msg; 213 << 214 msg_init(&msg); 187 msg_init(&msg); 215 msg.event = UFFD_EVENT_PAGEFAULT; 188 msg.event = UFFD_EVENT_PAGEFAULT; 216 !! 189 msg.arg.pagefault.address = address; 217 msg.arg.pagefault.address = (features << 218 real_addre << 219 << 220 /* << 221 * These flags indicate why the userfa << 222 * - UFFD_PAGEFAULT_FLAG_WP indicates << 223 * - UFFD_PAGEFAULT_FLAG_MINOR indicat << 224 * - Neither of these flags being set << 225 * << 226 * Separately, UFFD_PAGEFAULT_FLAG_WRI << 227 * fault. Otherwise, it was a read fau << 228 */ << 229 if (flags & FAULT_FLAG_WRITE) 190 if (flags & FAULT_FLAG_WRITE) >> 191 /* >> 192 * If UFFD_FEATURE_PAGEFAULT_FLAG_WP was set in the >> 193 * uffdio_api.features and UFFD_PAGEFAULT_FLAG_WRITE >> 194 * was not set in a UFFD_EVENT_PAGEFAULT, it means it >> 195 * was a read fault, otherwise if set it means it's >> 196 * a write fault. >> 197 */ 230 msg.arg.pagefault.flags |= UFF 198 msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_WRITE; 231 if (reason & VM_UFFD_WP) 199 if (reason & VM_UFFD_WP) >> 200 /* >> 201 * If UFFD_FEATURE_PAGEFAULT_FLAG_WP was set in the >> 202 * uffdio_api.features and UFFD_PAGEFAULT_FLAG_WP was >> 203 * not set in a UFFD_EVENT_PAGEFAULT, it means it was >> 204 * a missing fault, otherwise if set it means it's a >> 205 * write protect fault. >> 206 */ 232 msg.arg.pagefault.flags |= UFF 207 msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_WP; 233 if (reason & VM_UFFD_MINOR) << 234 msg.arg.pagefault.flags |= UFF << 235 if (features & UFFD_FEATURE_THREAD_ID) << 236 msg.arg.pagefault.feat.ptid = << 237 return msg; 208 return msg; 238 } 209 } 239 210 240 #ifdef CONFIG_HUGETLB_PAGE 211 #ifdef CONFIG_HUGETLB_PAGE 241 /* 212 /* 242 * Same functionality as userfaultfd_must_wait 213 * Same functionality as userfaultfd_must_wait below with modifications for 243 * hugepmd ranges. 214 * hugepmd ranges. 244 */ 215 */ 245 static inline bool userfaultfd_huge_must_wait( 216 static inline bool userfaultfd_huge_must_wait(struct userfaultfd_ctx *ctx, 246 !! 217 unsigned long address, 247 !! 218 unsigned long flags, >> 219 unsigned long reason) 248 { 220 { 249 struct vm_area_struct *vma = vmf->vma; !! 221 struct mm_struct *mm = ctx->mm; 250 pte_t *ptep, pte; !! 222 pte_t *pte; 251 bool ret = true; 223 bool ret = true; 252 224 253 assert_fault_locked(vmf); !! 225 VM_BUG_ON(!rwsem_is_locked(&mm->mmap_sem)); 254 226 255 ptep = hugetlb_walk(vma, vmf->address, !! 227 pte = huge_pte_offset(mm, address); 256 if (!ptep) !! 228 if (!pte) 257 goto out; 229 goto out; 258 230 259 ret = false; 231 ret = false; 260 pte = huge_ptep_get(vma->vm_mm, vmf->a << 261 232 262 /* 233 /* 263 * Lockless access: we're in a wait_ev 234 * Lockless access: we're in a wait_event so it's ok if it 264 * changes under us. PTE markers shou !! 235 * changes under us. 265 * ptes here. << 266 */ 236 */ 267 if (huge_pte_none_mostly(pte)) !! 237 if (huge_pte_none(*pte)) 268 ret = true; 238 ret = true; 269 if (!huge_pte_write(pte) && (reason & !! 239 if (!huge_pte_write(*pte) && (reason & VM_UFFD_WP)) 270 ret = true; 240 ret = true; 271 out: 241 out: 272 return ret; 242 return ret; 273 } 243 } 274 #else 244 #else 275 static inline bool userfaultfd_huge_must_wait( 245 static inline bool userfaultfd_huge_must_wait(struct userfaultfd_ctx *ctx, 276 !! 246 unsigned long address, 277 !! 247 unsigned long flags, >> 248 unsigned long reason) 278 { 249 { 279 return false; /* should never get he 250 return false; /* should never get here */ 280 } 251 } 281 #endif /* CONFIG_HUGETLB_PAGE */ 252 #endif /* CONFIG_HUGETLB_PAGE */ 282 253 283 /* 254 /* 284 * Verify the pagetables are still not ok afte 255 * Verify the pagetables are still not ok after having reigstered into 285 * the fault_pending_wqh to avoid userland hav 256 * the fault_pending_wqh to avoid userland having to UFFDIO_WAKE any 286 * userfault that has already been resolved, i !! 257 * userfault that has already been resolved, if userfaultfd_read and 287 * UFFDIO_COPY|ZEROPAGE are being run simultan 258 * UFFDIO_COPY|ZEROPAGE are being run simultaneously on two different 288 * threads. 259 * threads. 289 */ 260 */ 290 static inline bool userfaultfd_must_wait(struc 261 static inline bool userfaultfd_must_wait(struct userfaultfd_ctx *ctx, 291 struc !! 262 unsigned long address, >> 263 unsigned long flags, 292 unsig 264 unsigned long reason) 293 { 265 { 294 struct mm_struct *mm = ctx->mm; 266 struct mm_struct *mm = ctx->mm; 295 unsigned long address = vmf->address; << 296 pgd_t *pgd; 267 pgd_t *pgd; 297 p4d_t *p4d; 268 p4d_t *p4d; 298 pud_t *pud; 269 pud_t *pud; 299 pmd_t *pmd, _pmd; 270 pmd_t *pmd, _pmd; 300 pte_t *pte; 271 pte_t *pte; 301 pte_t ptent; << 302 bool ret = true; 272 bool ret = true; 303 273 304 assert_fault_locked(vmf); !! 274 VM_BUG_ON(!rwsem_is_locked(&mm->mmap_sem)); 305 275 306 pgd = pgd_offset(mm, address); 276 pgd = pgd_offset(mm, address); 307 if (!pgd_present(*pgd)) 277 if (!pgd_present(*pgd)) 308 goto out; 278 goto out; 309 p4d = p4d_offset(pgd, address); 279 p4d = p4d_offset(pgd, address); 310 if (!p4d_present(*p4d)) 280 if (!p4d_present(*p4d)) 311 goto out; 281 goto out; 312 pud = pud_offset(p4d, address); 282 pud = pud_offset(p4d, address); 313 if (!pud_present(*pud)) 283 if (!pud_present(*pud)) 314 goto out; 284 goto out; 315 pmd = pmd_offset(pud, address); 285 pmd = pmd_offset(pud, address); 316 again: !! 286 /* 317 _pmd = pmdp_get_lockless(pmd); !! 287 * READ_ONCE must function as a barrier with narrower scope 318 if (pmd_none(_pmd)) !! 288 * and it must be equivalent to: >> 289 * _pmd = *pmd; barrier(); >> 290 * >> 291 * This is to deal with the instability (as in >> 292 * pmd_trans_unstable) of the pmd. >> 293 */ >> 294 _pmd = READ_ONCE(*pmd); >> 295 if (!pmd_present(_pmd)) 319 goto out; 296 goto out; 320 297 321 ret = false; 298 ret = false; 322 if (!pmd_present(_pmd) || pmd_devmap(_ !! 299 if (pmd_trans_huge(_pmd)) 323 goto out; << 324 << 325 if (pmd_trans_huge(_pmd)) { << 326 if (!pmd_write(_pmd) && (reaso << 327 ret = true; << 328 goto out; 300 goto out; 329 } << 330 301 >> 302 /* >> 303 * the pmd is stable (as in !pmd_trans_unstable) so we can re-read it >> 304 * and use the standard pte_offset_map() instead of parsing _pmd. >> 305 */ 331 pte = pte_offset_map(pmd, address); 306 pte = pte_offset_map(pmd, address); 332 if (!pte) { << 333 ret = true; << 334 goto again; << 335 } << 336 /* 307 /* 337 * Lockless access: we're in a wait_ev 308 * Lockless access: we're in a wait_event so it's ok if it 338 * changes under us. PTE markers shou !! 309 * changes under us. 339 * ptes here. << 340 */ 310 */ 341 ptent = ptep_get(pte); !! 311 if (pte_none(*pte)) 342 if (pte_none_mostly(ptent)) << 343 ret = true; << 344 if (!pte_write(ptent) && (reason & VM_ << 345 ret = true; 312 ret = true; 346 pte_unmap(pte); 313 pte_unmap(pte); 347 314 348 out: 315 out: 349 return ret; 316 return ret; 350 } 317 } 351 318 352 static inline unsigned int userfaultfd_get_blo << 353 { << 354 if (flags & FAULT_FLAG_INTERRUPTIBLE) << 355 return TASK_INTERRUPTIBLE; << 356 << 357 if (flags & FAULT_FLAG_KILLABLE) << 358 return TASK_KILLABLE; << 359 << 360 return TASK_UNINTERRUPTIBLE; << 361 } << 362 << 363 /* 319 /* 364 * The locking rules involved in returning VM_ 320 * The locking rules involved in returning VM_FAULT_RETRY depending on 365 * FAULT_FLAG_ALLOW_RETRY, FAULT_FLAG_RETRY_NO 321 * FAULT_FLAG_ALLOW_RETRY, FAULT_FLAG_RETRY_NOWAIT and 366 * FAULT_FLAG_KILLABLE are not straightforward 322 * FAULT_FLAG_KILLABLE are not straightforward. The "Caution" 367 * recommendation in __lock_page_or_retry is n 323 * recommendation in __lock_page_or_retry is not an understatement. 368 * 324 * 369 * If FAULT_FLAG_ALLOW_RETRY is set, the mmap_ !! 325 * If FAULT_FLAG_ALLOW_RETRY is set, the mmap_sem must be released 370 * before returning VM_FAULT_RETRY only if FAU 326 * before returning VM_FAULT_RETRY only if FAULT_FLAG_RETRY_NOWAIT is 371 * not set. 327 * not set. 372 * 328 * 373 * If FAULT_FLAG_ALLOW_RETRY is set but FAULT_ 329 * If FAULT_FLAG_ALLOW_RETRY is set but FAULT_FLAG_KILLABLE is not 374 * set, VM_FAULT_RETRY can still be returned i 330 * set, VM_FAULT_RETRY can still be returned if and only if there are 375 * fatal_signal_pending()s, and the mmap_lock !! 331 * fatal_signal_pending()s, and the mmap_sem must be released before 376 * returning it. 332 * returning it. 377 */ 333 */ 378 vm_fault_t handle_userfault(struct vm_fault *v !! 334 int handle_userfault(struct vm_fault *vmf, unsigned long reason) 379 { 335 { 380 struct vm_area_struct *vma = vmf->vma; !! 336 struct mm_struct *mm = vmf->vma->vm_mm; 381 struct mm_struct *mm = vma->vm_mm; << 382 struct userfaultfd_ctx *ctx; 337 struct userfaultfd_ctx *ctx; 383 struct userfaultfd_wait_queue uwq; 338 struct userfaultfd_wait_queue uwq; 384 vm_fault_t ret = VM_FAULT_SIGBUS; !! 339 int ret; 385 bool must_wait; !! 340 bool must_wait, return_to_userland; 386 unsigned int blocking_state; !! 341 long blocking_state; >> 342 >> 343 ret = VM_FAULT_SIGBUS; 387 344 388 /* 345 /* 389 * We don't do userfault handling for 346 * We don't do userfault handling for the final child pid update. 390 * 347 * 391 * We also don't do userfault handling 348 * We also don't do userfault handling during 392 * coredumping. hugetlbfs has the spec 349 * coredumping. hugetlbfs has the special 393 * hugetlb_follow_page_mask() to skip !! 350 * follow_hugetlb_page() to skip missing pages in the 394 * FOLL_DUMP case, anon memory also ch 351 * FOLL_DUMP case, anon memory also checks for FOLL_DUMP with 395 * the no_page_table() helper in follo 352 * the no_page_table() helper in follow_page_mask(), but the 396 * shmem_vm_ops->fault method is invok 353 * shmem_vm_ops->fault method is invoked even during 397 * coredumping and it ends up here. !! 354 * coredumping without mmap_sem and it ends up here. 398 */ 355 */ 399 if (current->flags & (PF_EXITING|PF_DU 356 if (current->flags & (PF_EXITING|PF_DUMPCORE)) 400 goto out; 357 goto out; 401 358 402 assert_fault_locked(vmf); !! 359 /* >> 360 * Coredumping runs without mmap_sem so we can only check that >> 361 * the mmap_sem is held, if PF_DUMPCORE was not set. >> 362 */ >> 363 WARN_ON_ONCE(!rwsem_is_locked(&mm->mmap_sem)); 403 364 404 ctx = vma->vm_userfaultfd_ctx.ctx; !! 365 ctx = vmf->vma->vm_userfaultfd_ctx.ctx; 405 if (!ctx) 366 if (!ctx) 406 goto out; 367 goto out; 407 368 408 BUG_ON(ctx->mm != mm); 369 BUG_ON(ctx->mm != mm); 409 370 410 /* Any unrecognized flag is a bug. */ !! 371 VM_BUG_ON(reason & ~(VM_UFFD_MISSING|VM_UFFD_WP)); 411 VM_BUG_ON(reason & ~__VM_UFFD_FLAGS); !! 372 VM_BUG_ON(!(reason & VM_UFFD_MISSING) ^ !!(reason & VM_UFFD_WP)); 412 /* 0 or > 1 flags set is a bug; we exp << 413 VM_BUG_ON(!reason || (reason & (reason << 414 << 415 if (ctx->features & UFFD_FEATURE_SIGBU << 416 goto out; << 417 if (!(vmf->flags & FAULT_FLAG_USER) && << 418 goto out; << 419 373 420 /* 374 /* 421 * If it's already released don't get 375 * If it's already released don't get it. This avoids to loop 422 * in __get_user_pages if userfaultfd_ 376 * in __get_user_pages if userfaultfd_release waits on the 423 * caller of handle_userfault to relea !! 377 * caller of handle_userfault to release the mmap_sem. 424 */ 378 */ 425 if (unlikely(READ_ONCE(ctx->released)) !! 379 if (unlikely(ACCESS_ONCE(ctx->released))) 426 /* << 427 * Don't return VM_FAULT_SIGBU << 428 * cooperative manager can clo << 429 * last UFFDIO_COPY, without r << 430 * involuntary SIGBUS if the p << 431 * userfaultfd while the userf << 432 * (but after the last UFFDIO_ << 433 * wasn't already closed when << 434 * this point, that would norm << 435 * userfaultfd_must_wait retur << 436 * << 437 * If we were to return VM_FAU << 438 * cooperative manager would b << 439 * always call UFFDIO_UNREGIST << 440 * close the uffd. << 441 */ << 442 ret = VM_FAULT_NOPAGE; << 443 goto out; 380 goto out; 444 } << 445 381 446 /* 382 /* 447 * Check that we can return VM_FAULT_R 383 * Check that we can return VM_FAULT_RETRY. 448 * 384 * 449 * NOTE: it should become possible to 385 * NOTE: it should become possible to return VM_FAULT_RETRY 450 * even if FAULT_FLAG_TRIED is set wit 386 * even if FAULT_FLAG_TRIED is set without leading to gup() 451 * -EBUSY failures, if the userfaultfd 387 * -EBUSY failures, if the userfaultfd is to be extended for 452 * VM_UFFD_WP tracking and we intend t 388 * VM_UFFD_WP tracking and we intend to arm the userfault 453 * without first stopping userland acc 389 * without first stopping userland access to the memory. For 454 * VM_UFFD_MISSING userfaults this is 390 * VM_UFFD_MISSING userfaults this is enough for now. 455 */ 391 */ 456 if (unlikely(!(vmf->flags & FAULT_FLAG 392 if (unlikely(!(vmf->flags & FAULT_FLAG_ALLOW_RETRY))) { 457 /* 393 /* 458 * Validate the invariant that 394 * Validate the invariant that nowait must allow retry 459 * to be sure not to return SI 395 * to be sure not to return SIGBUS erroneously on 460 * nowait invocations. 396 * nowait invocations. 461 */ 397 */ 462 BUG_ON(vmf->flags & FAULT_FLAG 398 BUG_ON(vmf->flags & FAULT_FLAG_RETRY_NOWAIT); 463 #ifdef CONFIG_DEBUG_VM 399 #ifdef CONFIG_DEBUG_VM 464 if (printk_ratelimit()) { 400 if (printk_ratelimit()) { 465 printk(KERN_WARNING 401 printk(KERN_WARNING 466 "FAULT_FLAG_ALL 402 "FAULT_FLAG_ALLOW_RETRY missing %x\n", 467 vmf->flags); 403 vmf->flags); 468 dump_stack(); 404 dump_stack(); 469 } 405 } 470 #endif 406 #endif 471 goto out; 407 goto out; 472 } 408 } 473 409 474 /* 410 /* 475 * Handle nowait, not much to do other 411 * Handle nowait, not much to do other than tell it to retry 476 * and wait. 412 * and wait. 477 */ 413 */ 478 ret = VM_FAULT_RETRY; 414 ret = VM_FAULT_RETRY; 479 if (vmf->flags & FAULT_FLAG_RETRY_NOWA 415 if (vmf->flags & FAULT_FLAG_RETRY_NOWAIT) 480 goto out; 416 goto out; 481 417 482 /* take the reference before dropping !! 418 /* take the reference before dropping the mmap_sem */ 483 userfaultfd_ctx_get(ctx); 419 userfaultfd_ctx_get(ctx); 484 420 485 init_waitqueue_func_entry(&uwq.wq, use 421 init_waitqueue_func_entry(&uwq.wq, userfaultfd_wake_function); 486 uwq.wq.private = current; 422 uwq.wq.private = current; 487 uwq.msg = userfault_msg(vmf->address, !! 423 uwq.msg = userfault_msg(vmf->address, vmf->flags, reason); 488 reason, ctx->f << 489 uwq.ctx = ctx; 424 uwq.ctx = ctx; 490 uwq.waken = false; 425 uwq.waken = false; 491 426 492 blocking_state = userfaultfd_get_block !! 427 return_to_userland = >> 428 (vmf->flags & (FAULT_FLAG_USER|FAULT_FLAG_KILLABLE)) == >> 429 (FAULT_FLAG_USER|FAULT_FLAG_KILLABLE); >> 430 blocking_state = return_to_userland ? TASK_INTERRUPTIBLE : >> 431 TASK_KILLABLE; 493 432 494 /* !! 433 spin_lock(&ctx->fault_pending_wqh.lock); 495 * Take the vma lock now, in order to << 496 * userfaultfd_huge_must_wait() later. << 497 * (sleepable) vma lock can modify the << 498 * must be before explicitly calling s << 499 */ << 500 if (is_vm_hugetlb_page(vma)) << 501 hugetlb_vma_lock_read(vma); << 502 << 503 spin_lock_irq(&ctx->fault_pending_wqh. << 504 /* 434 /* 505 * After the __add_wait_queue the uwq 435 * After the __add_wait_queue the uwq is visible to userland 506 * through poll/read(). 436 * through poll/read(). 507 */ 437 */ 508 __add_wait_queue(&ctx->fault_pending_w 438 __add_wait_queue(&ctx->fault_pending_wqh, &uwq.wq); 509 /* 439 /* 510 * The smp_mb() after __set_current_st 440 * The smp_mb() after __set_current_state prevents the reads 511 * following the spin_unlock to happen 441 * following the spin_unlock to happen before the list_add in 512 * __add_wait_queue. 442 * __add_wait_queue. 513 */ 443 */ 514 set_current_state(blocking_state); 444 set_current_state(blocking_state); 515 spin_unlock_irq(&ctx->fault_pending_wq !! 445 spin_unlock(&ctx->fault_pending_wqh.lock); 516 446 517 if (!is_vm_hugetlb_page(vma)) !! 447 if (!is_vm_hugetlb_page(vmf->vma)) 518 must_wait = userfaultfd_must_w !! 448 must_wait = userfaultfd_must_wait(ctx, vmf->address, vmf->flags, >> 449 reason); 519 else 450 else 520 must_wait = userfaultfd_huge_m !! 451 must_wait = userfaultfd_huge_must_wait(ctx, vmf->address, 521 if (is_vm_hugetlb_page(vma)) !! 452 vmf->flags, reason); 522 hugetlb_vma_unlock_read(vma); !! 453 up_read(&mm->mmap_sem); 523 release_fault_lock(vmf); !! 454 524 !! 455 if (likely(must_wait && !ACCESS_ONCE(ctx->released) && 525 if (likely(must_wait && !READ_ONCE(ctx !! 456 (return_to_userland ? !signal_pending(current) : 526 wake_up_poll(&ctx->fd_wqh, EPO !! 457 !fatal_signal_pending(current)))) { >> 458 wake_up_poll(&ctx->fd_wqh, POLLIN); 527 schedule(); 459 schedule(); >> 460 ret |= VM_FAULT_MAJOR; >> 461 >> 462 /* >> 463 * False wakeups can orginate even from rwsem before >> 464 * up_read() however userfaults will wait either for a >> 465 * targeted wakeup on the specific uwq waitqueue from >> 466 * wake_userfault() or for signals or for uffd >> 467 * release. >> 468 */ >> 469 while (!READ_ONCE(uwq.waken)) { >> 470 /* >> 471 * This needs the full smp_store_mb() >> 472 * guarantee as the state write must be >> 473 * visible to other CPUs before reading >> 474 * uwq.waken from other CPUs. >> 475 */ >> 476 set_current_state(blocking_state); >> 477 if (READ_ONCE(uwq.waken) || >> 478 READ_ONCE(ctx->released) || >> 479 (return_to_userland ? signal_pending(current) : >> 480 fatal_signal_pending(current))) >> 481 break; >> 482 schedule(); >> 483 } 528 } 484 } 529 485 530 __set_current_state(TASK_RUNNING); 486 __set_current_state(TASK_RUNNING); 531 487 >> 488 if (return_to_userland) { >> 489 if (signal_pending(current) && >> 490 !fatal_signal_pending(current)) { >> 491 /* >> 492 * If we got a SIGSTOP or SIGCONT and this is >> 493 * a normal userland page fault, just let >> 494 * userland return so the signal will be >> 495 * handled and gdb debugging works. The page >> 496 * fault code immediately after we return from >> 497 * this function is going to release the >> 498 * mmap_sem and it's not depending on it >> 499 * (unlike gup would if we were not to return >> 500 * VM_FAULT_RETRY). >> 501 * >> 502 * If a fatal signal is pending we still take >> 503 * the streamlined VM_FAULT_RETRY failure path >> 504 * and there's no need to retake the mmap_sem >> 505 * in such case. >> 506 */ >> 507 down_read(&mm->mmap_sem); >> 508 ret = VM_FAULT_NOPAGE; >> 509 } >> 510 } >> 511 532 /* 512 /* 533 * Here we race with the list_del; lis 513 * Here we race with the list_del; list_add in 534 * userfaultfd_ctx_read(), however bec 514 * userfaultfd_ctx_read(), however because we don't ever run 535 * list_del_init() to refile across th 515 * list_del_init() to refile across the two lists, the prev 536 * and next pointers will never point 516 * and next pointers will never point to self. list_add also 537 * would never let any of the two poin 517 * would never let any of the two pointers to point to 538 * self. So list_empty_careful won't r 518 * self. So list_empty_careful won't risk to see both pointers 539 * pointing to self at any time during 519 * pointing to self at any time during the list refile. The 540 * only case where list_del_init() is 520 * only case where list_del_init() is called is the full 541 * removal in the wake function and th 521 * removal in the wake function and there we don't re-list_add 542 * and it's fine not to block on the s 522 * and it's fine not to block on the spinlock. The uwq on this 543 * kernel stack can be released after 523 * kernel stack can be released after the list_del_init. 544 */ 524 */ 545 if (!list_empty_careful(&uwq.wq.entry) !! 525 if (!list_empty_careful(&uwq.wq.task_list)) { 546 spin_lock_irq(&ctx->fault_pend !! 526 spin_lock(&ctx->fault_pending_wqh.lock); 547 /* 527 /* 548 * No need of list_del_init(), 528 * No need of list_del_init(), the uwq on the stack 549 * will be freed shortly anywa 529 * will be freed shortly anyway. 550 */ 530 */ 551 list_del(&uwq.wq.entry); !! 531 list_del(&uwq.wq.task_list); 552 spin_unlock_irq(&ctx->fault_pe !! 532 spin_unlock(&ctx->fault_pending_wqh.lock); 553 } 533 } 554 534 555 /* 535 /* 556 * ctx may go away after this if the u 536 * ctx may go away after this if the userfault pseudo fd is 557 * already released. 537 * already released. 558 */ 538 */ 559 userfaultfd_ctx_put(ctx); 539 userfaultfd_ctx_put(ctx); 560 540 561 out: 541 out: 562 return ret; 542 return ret; 563 } 543 } 564 544 565 static void userfaultfd_event_wait_completion( 545 static void userfaultfd_event_wait_completion(struct userfaultfd_ctx *ctx, 566 546 struct userfaultfd_wait_queue *ewq) 567 { 547 { 568 struct userfaultfd_ctx *release_new_ct << 569 << 570 if (WARN_ON_ONCE(current->flags & PF_E 548 if (WARN_ON_ONCE(current->flags & PF_EXITING)) 571 goto out; 549 goto out; 572 550 573 ewq->ctx = ctx; 551 ewq->ctx = ctx; 574 init_waitqueue_entry(&ewq->wq, current 552 init_waitqueue_entry(&ewq->wq, current); 575 release_new_ctx = NULL; << 576 553 577 spin_lock_irq(&ctx->event_wqh.lock); !! 554 spin_lock(&ctx->event_wqh.lock); 578 /* 555 /* 579 * After the __add_wait_queue the uwq 556 * After the __add_wait_queue the uwq is visible to userland 580 * through poll/read(). 557 * through poll/read(). 581 */ 558 */ 582 __add_wait_queue(&ctx->event_wqh, &ewq 559 __add_wait_queue(&ctx->event_wqh, &ewq->wq); 583 for (;;) { 560 for (;;) { 584 set_current_state(TASK_KILLABL 561 set_current_state(TASK_KILLABLE); 585 if (ewq->msg.event == 0) 562 if (ewq->msg.event == 0) 586 break; 563 break; 587 if (READ_ONCE(ctx->released) | !! 564 if (ACCESS_ONCE(ctx->released) || 588 fatal_signal_pending(curre 565 fatal_signal_pending(current)) { 589 /* << 590 * &ewq->wq may be que << 591 * __remove_wait_queue << 592 * parameter. It would << 593 * didn't. << 594 */ << 595 __remove_wait_queue(&c 566 __remove_wait_queue(&ctx->event_wqh, &ewq->wq); 596 if (ewq->msg.event == 567 if (ewq->msg.event == UFFD_EVENT_FORK) { 597 struct userfau 568 struct userfaultfd_ctx *new; 598 569 599 new = (struct 570 new = (struct userfaultfd_ctx *) 600 (unsig 571 (unsigned long) 601 ewq->m 572 ewq->msg.arg.reserved.reserved1; 602 release_new_ct !! 573 >> 574 userfaultfd_ctx_put(new); 603 } 575 } 604 break; 576 break; 605 } 577 } 606 578 607 spin_unlock_irq(&ctx->event_wq !! 579 spin_unlock(&ctx->event_wqh.lock); 608 580 609 wake_up_poll(&ctx->fd_wqh, EPO !! 581 wake_up_poll(&ctx->fd_wqh, POLLIN); 610 schedule(); 582 schedule(); 611 583 612 spin_lock_irq(&ctx->event_wqh. !! 584 spin_lock(&ctx->event_wqh.lock); 613 } 585 } 614 __set_current_state(TASK_RUNNING); 586 __set_current_state(TASK_RUNNING); 615 spin_unlock_irq(&ctx->event_wqh.lock); !! 587 spin_unlock(&ctx->event_wqh.lock); 616 << 617 if (release_new_ctx) { << 618 struct vm_area_struct *vma; << 619 struct mm_struct *mm = release << 620 VMA_ITERATOR(vmi, mm, 0); << 621 << 622 /* the various vma->vm_userfau << 623 mmap_write_lock(mm); << 624 for_each_vma(vmi, vma) { << 625 if (vma->vm_userfaultf << 626 vma_start_writ << 627 vma->vm_userfa << 628 userfaultfd_se << 629 << 630 } << 631 } << 632 mmap_write_unlock(mm); << 633 << 634 userfaultfd_ctx_put(release_ne << 635 } << 636 588 637 /* 589 /* 638 * ctx may go away after this if the u 590 * ctx may go away after this if the userfault pseudo fd is 639 * already released. 591 * already released. 640 */ 592 */ 641 out: 593 out: 642 atomic_dec(&ctx->mmap_changing); << 643 VM_BUG_ON(atomic_read(&ctx->mmap_chang << 644 userfaultfd_ctx_put(ctx); 594 userfaultfd_ctx_put(ctx); 645 } 595 } 646 596 647 static void userfaultfd_event_complete(struct 597 static void userfaultfd_event_complete(struct userfaultfd_ctx *ctx, 648 struct 598 struct userfaultfd_wait_queue *ewq) 649 { 599 { 650 ewq->msg.event = 0; 600 ewq->msg.event = 0; 651 wake_up_locked(&ctx->event_wqh); 601 wake_up_locked(&ctx->event_wqh); 652 __remove_wait_queue(&ctx->event_wqh, & 602 __remove_wait_queue(&ctx->event_wqh, &ewq->wq); 653 } 603 } 654 604 655 int dup_userfaultfd(struct vm_area_struct *vma 605 int dup_userfaultfd(struct vm_area_struct *vma, struct list_head *fcs) 656 { 606 { 657 struct userfaultfd_ctx *ctx = NULL, *o 607 struct userfaultfd_ctx *ctx = NULL, *octx; 658 struct userfaultfd_fork_ctx *fctx; 608 struct userfaultfd_fork_ctx *fctx; 659 609 660 octx = vma->vm_userfaultfd_ctx.ctx; 610 octx = vma->vm_userfaultfd_ctx.ctx; 661 if (!octx) !! 611 if (!octx || !(octx->features & UFFD_FEATURE_EVENT_FORK)) { 662 return 0; << 663 << 664 if (!(octx->features & UFFD_FEATURE_EV << 665 vma_start_write(vma); << 666 vma->vm_userfaultfd_ctx = NULL 612 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX; 667 userfaultfd_set_vm_flags(vma, !! 613 vma->vm_flags &= ~(VM_UFFD_WP | VM_UFFD_MISSING); 668 return 0; 614 return 0; 669 } 615 } 670 616 671 list_for_each_entry(fctx, fcs, list) 617 list_for_each_entry(fctx, fcs, list) 672 if (fctx->orig == octx) { 618 if (fctx->orig == octx) { 673 ctx = fctx->new; 619 ctx = fctx->new; 674 break; 620 break; 675 } 621 } 676 622 677 if (!ctx) { 623 if (!ctx) { 678 fctx = kmalloc(sizeof(*fctx), 624 fctx = kmalloc(sizeof(*fctx), GFP_KERNEL); 679 if (!fctx) 625 if (!fctx) 680 return -ENOMEM; 626 return -ENOMEM; 681 627 682 ctx = kmem_cache_alloc(userfau 628 ctx = kmem_cache_alloc(userfaultfd_ctx_cachep, GFP_KERNEL); 683 if (!ctx) { 629 if (!ctx) { 684 kfree(fctx); 630 kfree(fctx); 685 return -ENOMEM; 631 return -ENOMEM; 686 } 632 } 687 633 688 refcount_set(&ctx->refcount, 1 !! 634 atomic_set(&ctx->refcount, 1); 689 ctx->flags = octx->flags; 635 ctx->flags = octx->flags; >> 636 ctx->state = UFFD_STATE_RUNNING; 690 ctx->features = octx->features 637 ctx->features = octx->features; 691 ctx->released = false; 638 ctx->released = false; 692 init_rwsem(&ctx->map_changing_ << 693 atomic_set(&ctx->mmap_changing << 694 ctx->mm = vma->vm_mm; 639 ctx->mm = vma->vm_mm; 695 mmgrab(ctx->mm); !! 640 atomic_inc(&ctx->mm->mm_count); 696 641 697 userfaultfd_ctx_get(octx); 642 userfaultfd_ctx_get(octx); 698 down_write(&octx->map_changing << 699 atomic_inc(&octx->mmap_changin << 700 up_write(&octx->map_changing_l << 701 fctx->orig = octx; 643 fctx->orig = octx; 702 fctx->new = ctx; 644 fctx->new = ctx; 703 list_add_tail(&fctx->list, fcs 645 list_add_tail(&fctx->list, fcs); 704 } 646 } 705 647 706 vma->vm_userfaultfd_ctx.ctx = ctx; 648 vma->vm_userfaultfd_ctx.ctx = ctx; 707 return 0; 649 return 0; 708 } 650 } 709 651 710 static void dup_fctx(struct userfaultfd_fork_c 652 static void dup_fctx(struct userfaultfd_fork_ctx *fctx) 711 { 653 { 712 struct userfaultfd_ctx *ctx = fctx->or 654 struct userfaultfd_ctx *ctx = fctx->orig; 713 struct userfaultfd_wait_queue ewq; 655 struct userfaultfd_wait_queue ewq; 714 656 715 msg_init(&ewq.msg); 657 msg_init(&ewq.msg); 716 658 717 ewq.msg.event = UFFD_EVENT_FORK; 659 ewq.msg.event = UFFD_EVENT_FORK; 718 ewq.msg.arg.reserved.reserved1 = (unsi 660 ewq.msg.arg.reserved.reserved1 = (unsigned long)fctx->new; 719 661 720 userfaultfd_event_wait_completion(ctx, 662 userfaultfd_event_wait_completion(ctx, &ewq); 721 } 663 } 722 664 723 void dup_userfaultfd_complete(struct list_head 665 void dup_userfaultfd_complete(struct list_head *fcs) 724 { 666 { 725 struct userfaultfd_fork_ctx *fctx, *n; 667 struct userfaultfd_fork_ctx *fctx, *n; 726 668 727 list_for_each_entry_safe(fctx, n, fcs, 669 list_for_each_entry_safe(fctx, n, fcs, list) { 728 dup_fctx(fctx); 670 dup_fctx(fctx); 729 list_del(&fctx->list); 671 list_del(&fctx->list); 730 kfree(fctx); 672 kfree(fctx); 731 } 673 } 732 } 674 } 733 675 734 void mremap_userfaultfd_prep(struct vm_area_st 676 void mremap_userfaultfd_prep(struct vm_area_struct *vma, 735 struct vm_userfau 677 struct vm_userfaultfd_ctx *vm_ctx) 736 { 678 { 737 struct userfaultfd_ctx *ctx; 679 struct userfaultfd_ctx *ctx; 738 680 739 ctx = vma->vm_userfaultfd_ctx.ctx; 681 ctx = vma->vm_userfaultfd_ctx.ctx; 740 !! 682 if (ctx && (ctx->features & UFFD_FEATURE_EVENT_REMAP)) { 741 if (!ctx) << 742 return; << 743 << 744 if (ctx->features & UFFD_FEATURE_EVENT << 745 vm_ctx->ctx = ctx; 683 vm_ctx->ctx = ctx; 746 userfaultfd_ctx_get(ctx); 684 userfaultfd_ctx_get(ctx); 747 down_write(&ctx->map_changing_ << 748 atomic_inc(&ctx->mmap_changing << 749 up_write(&ctx->map_changing_lo << 750 } else { << 751 /* Drop uffd context if remap << 752 vma_start_write(vma); << 753 vma->vm_userfaultfd_ctx = NULL << 754 userfaultfd_set_vm_flags(vma, << 755 } 685 } 756 } 686 } 757 687 758 void mremap_userfaultfd_complete(struct vm_use 688 void mremap_userfaultfd_complete(struct vm_userfaultfd_ctx *vm_ctx, 759 unsigned long 689 unsigned long from, unsigned long to, 760 unsigned long 690 unsigned long len) 761 { 691 { 762 struct userfaultfd_ctx *ctx = vm_ctx-> 692 struct userfaultfd_ctx *ctx = vm_ctx->ctx; 763 struct userfaultfd_wait_queue ewq; 693 struct userfaultfd_wait_queue ewq; 764 694 765 if (!ctx) 695 if (!ctx) 766 return; 696 return; 767 697 768 if (to & ~PAGE_MASK) { 698 if (to & ~PAGE_MASK) { 769 userfaultfd_ctx_put(ctx); 699 userfaultfd_ctx_put(ctx); 770 return; 700 return; 771 } 701 } 772 702 773 msg_init(&ewq.msg); 703 msg_init(&ewq.msg); 774 704 775 ewq.msg.event = UFFD_EVENT_REMAP; 705 ewq.msg.event = UFFD_EVENT_REMAP; 776 ewq.msg.arg.remap.from = from; 706 ewq.msg.arg.remap.from = from; 777 ewq.msg.arg.remap.to = to; 707 ewq.msg.arg.remap.to = to; 778 ewq.msg.arg.remap.len = len; 708 ewq.msg.arg.remap.len = len; 779 709 780 userfaultfd_event_wait_completion(ctx, 710 userfaultfd_event_wait_completion(ctx, &ewq); 781 } 711 } 782 712 783 bool userfaultfd_remove(struct vm_area_struct 713 bool userfaultfd_remove(struct vm_area_struct *vma, 784 unsigned long start, u 714 unsigned long start, unsigned long end) 785 { 715 { 786 struct mm_struct *mm = vma->vm_mm; 716 struct mm_struct *mm = vma->vm_mm; 787 struct userfaultfd_ctx *ctx; 717 struct userfaultfd_ctx *ctx; 788 struct userfaultfd_wait_queue ewq; 718 struct userfaultfd_wait_queue ewq; 789 719 790 ctx = vma->vm_userfaultfd_ctx.ctx; 720 ctx = vma->vm_userfaultfd_ctx.ctx; 791 if (!ctx || !(ctx->features & UFFD_FEA 721 if (!ctx || !(ctx->features & UFFD_FEATURE_EVENT_REMOVE)) 792 return true; 722 return true; 793 723 794 userfaultfd_ctx_get(ctx); 724 userfaultfd_ctx_get(ctx); 795 down_write(&ctx->map_changing_lock); !! 725 up_read(&mm->mmap_sem); 796 atomic_inc(&ctx->mmap_changing); << 797 up_write(&ctx->map_changing_lock); << 798 mmap_read_unlock(mm); << 799 726 800 msg_init(&ewq.msg); 727 msg_init(&ewq.msg); 801 728 802 ewq.msg.event = UFFD_EVENT_REMOVE; 729 ewq.msg.event = UFFD_EVENT_REMOVE; 803 ewq.msg.arg.remove.start = start; 730 ewq.msg.arg.remove.start = start; 804 ewq.msg.arg.remove.end = end; 731 ewq.msg.arg.remove.end = end; 805 732 806 userfaultfd_event_wait_completion(ctx, 733 userfaultfd_event_wait_completion(ctx, &ewq); 807 734 808 return false; 735 return false; 809 } 736 } 810 737 811 static bool has_unmap_ctx(struct userfaultfd_c 738 static bool has_unmap_ctx(struct userfaultfd_ctx *ctx, struct list_head *unmaps, 812 unsigned long start, 739 unsigned long start, unsigned long end) 813 { 740 { 814 struct userfaultfd_unmap_ctx *unmap_ct 741 struct userfaultfd_unmap_ctx *unmap_ctx; 815 742 816 list_for_each_entry(unmap_ctx, unmaps, 743 list_for_each_entry(unmap_ctx, unmaps, list) 817 if (unmap_ctx->ctx == ctx && u 744 if (unmap_ctx->ctx == ctx && unmap_ctx->start == start && 818 unmap_ctx->end == end) 745 unmap_ctx->end == end) 819 return true; 746 return true; 820 747 821 return false; 748 return false; 822 } 749 } 823 750 824 int userfaultfd_unmap_prep(struct vm_area_stru !! 751 int userfaultfd_unmap_prep(struct vm_area_struct *vma, 825 unsigned long end, !! 752 unsigned long start, unsigned long end, 826 { !! 753 struct list_head *unmaps) 827 struct userfaultfd_unmap_ctx *unmap_ct !! 754 { 828 struct userfaultfd_ctx *ctx = vma->vm_ !! 755 for ( ; vma && vma->vm_start < end; vma = vma->vm_next) { >> 756 struct userfaultfd_unmap_ctx *unmap_ctx; >> 757 struct userfaultfd_ctx *ctx = vma->vm_userfaultfd_ctx.ctx; 829 758 830 if (!ctx || !(ctx->features & UFFD_FEA !! 759 if (!ctx || !(ctx->features & UFFD_FEATURE_EVENT_UNMAP) || 831 has_unmap_ctx(ctx, unmaps, start, !! 760 has_unmap_ctx(ctx, unmaps, start, end)) 832 return 0; !! 761 continue; 833 762 834 unmap_ctx = kzalloc(sizeof(*unmap_ctx) !! 763 unmap_ctx = kzalloc(sizeof(*unmap_ctx), GFP_KERNEL); 835 if (!unmap_ctx) !! 764 if (!unmap_ctx) 836 return -ENOMEM; !! 765 return -ENOMEM; 837 766 838 userfaultfd_ctx_get(ctx); !! 767 userfaultfd_ctx_get(ctx); 839 down_write(&ctx->map_changing_lock); !! 768 unmap_ctx->ctx = ctx; 840 atomic_inc(&ctx->mmap_changing); !! 769 unmap_ctx->start = start; 841 up_write(&ctx->map_changing_lock); !! 770 unmap_ctx->end = end; 842 unmap_ctx->ctx = ctx; !! 771 list_add_tail(&unmap_ctx->list, unmaps); 843 unmap_ctx->start = start; !! 772 } 844 unmap_ctx->end = end; << 845 list_add_tail(&unmap_ctx->list, unmaps << 846 773 847 return 0; 774 return 0; 848 } 775 } 849 776 850 void userfaultfd_unmap_complete(struct mm_stru 777 void userfaultfd_unmap_complete(struct mm_struct *mm, struct list_head *uf) 851 { 778 { 852 struct userfaultfd_unmap_ctx *ctx, *n; 779 struct userfaultfd_unmap_ctx *ctx, *n; 853 struct userfaultfd_wait_queue ewq; 780 struct userfaultfd_wait_queue ewq; 854 781 855 list_for_each_entry_safe(ctx, n, uf, l 782 list_for_each_entry_safe(ctx, n, uf, list) { 856 msg_init(&ewq.msg); 783 msg_init(&ewq.msg); 857 784 858 ewq.msg.event = UFFD_EVENT_UNM 785 ewq.msg.event = UFFD_EVENT_UNMAP; 859 ewq.msg.arg.remove.start = ctx 786 ewq.msg.arg.remove.start = ctx->start; 860 ewq.msg.arg.remove.end = ctx-> 787 ewq.msg.arg.remove.end = ctx->end; 861 788 862 userfaultfd_event_wait_complet 789 userfaultfd_event_wait_completion(ctx->ctx, &ewq); 863 790 864 list_del(&ctx->list); 791 list_del(&ctx->list); 865 kfree(ctx); 792 kfree(ctx); 866 } 793 } 867 } 794 } 868 795 869 static int userfaultfd_release(struct inode *i 796 static int userfaultfd_release(struct inode *inode, struct file *file) 870 { 797 { 871 struct userfaultfd_ctx *ctx = file->pr 798 struct userfaultfd_ctx *ctx = file->private_data; 872 struct mm_struct *mm = ctx->mm; 799 struct mm_struct *mm = ctx->mm; 873 struct vm_area_struct *vma, *prev; 800 struct vm_area_struct *vma, *prev; 874 /* len == 0 means wake all */ 801 /* len == 0 means wake all */ 875 struct userfaultfd_wake_range range = 802 struct userfaultfd_wake_range range = { .len = 0, }; 876 unsigned long new_flags; 803 unsigned long new_flags; 877 VMA_ITERATOR(vmi, mm, 0); << 878 804 879 WRITE_ONCE(ctx->released, true); !! 805 ACCESS_ONCE(ctx->released) = true; 880 806 881 if (!mmget_not_zero(mm)) 807 if (!mmget_not_zero(mm)) 882 goto wakeup; 808 goto wakeup; 883 809 884 /* 810 /* 885 * Flush page faults out of all CPUs. 811 * Flush page faults out of all CPUs. NOTE: all page faults 886 * must be retried without returning V 812 * must be retried without returning VM_FAULT_SIGBUS if 887 * userfaultfd_ctx_get() succeeds but 813 * userfaultfd_ctx_get() succeeds but vma->vma_userfault_ctx 888 * changes while handle_userfault rele !! 814 * changes while handle_userfault released the mmap_sem. So 889 * it's critical that released is set 815 * it's critical that released is set to true (above), before 890 * taking the mmap_lock for writing. !! 816 * taking the mmap_sem for writing. 891 */ 817 */ 892 mmap_write_lock(mm); !! 818 down_write(&mm->mmap_sem); 893 prev = NULL; 819 prev = NULL; 894 for_each_vma(vmi, vma) { !! 820 for (vma = mm->mmap; vma; vma = vma->vm_next) { 895 cond_resched(); 821 cond_resched(); 896 BUG_ON(!!vma->vm_userfaultfd_c 822 BUG_ON(!!vma->vm_userfaultfd_ctx.ctx ^ 897 !!(vma->vm_flags & __VM !! 823 !!(vma->vm_flags & (VM_UFFD_MISSING | VM_UFFD_WP))); 898 if (vma->vm_userfaultfd_ctx.ct 824 if (vma->vm_userfaultfd_ctx.ctx != ctx) { 899 prev = vma; 825 prev = vma; 900 continue; 826 continue; 901 } 827 } 902 /* Reset ptes for the whole vm !! 828 new_flags = vma->vm_flags & ~(VM_UFFD_MISSING | VM_UFFD_WP); 903 if (userfaultfd_wp(vma)) !! 829 prev = vma_merge(mm, prev, vma->vm_start, vma->vm_end, 904 uffd_wp_range(vma, vma !! 830 new_flags, vma->anon_vma, 905 vma->vm_ !! 831 vma->vm_file, vma->vm_pgoff, 906 new_flags = vma->vm_flags & ~_ !! 832 vma_policy(vma), 907 vma = vma_modify_flags_uffd(&v !! 833 NULL_VM_UFFD_CTX); 908 vm !! 834 if (prev) 909 NU !! 835 vma = prev; 910 !! 836 else 911 vma_start_write(vma); !! 837 prev = vma; 912 userfaultfd_set_vm_flags(vma, !! 838 vma->vm_flags = new_flags; 913 vma->vm_userfaultfd_ctx = NULL 839 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX; 914 << 915 prev = vma; << 916 } 840 } 917 mmap_write_unlock(mm); !! 841 up_write(&mm->mmap_sem); 918 mmput(mm); 842 mmput(mm); 919 wakeup: 843 wakeup: 920 /* 844 /* 921 * After no new page faults can wait o 845 * After no new page faults can wait on this fault_*wqh, flush 922 * the last page faults that may have 846 * the last page faults that may have been already waiting on 923 * the fault_*wqh. 847 * the fault_*wqh. 924 */ 848 */ 925 spin_lock_irq(&ctx->fault_pending_wqh. !! 849 spin_lock(&ctx->fault_pending_wqh.lock); 926 __wake_up_locked_key(&ctx->fault_pendi 850 __wake_up_locked_key(&ctx->fault_pending_wqh, TASK_NORMAL, &range); 927 __wake_up(&ctx->fault_wqh, TASK_NORMAL !! 851 __wake_up_locked_key(&ctx->fault_wqh, TASK_NORMAL, &range); 928 spin_unlock_irq(&ctx->fault_pending_wq !! 852 spin_unlock(&ctx->fault_pending_wqh.lock); 929 853 930 /* Flush pending events that may still 854 /* Flush pending events that may still wait on event_wqh */ 931 wake_up_all(&ctx->event_wqh); 855 wake_up_all(&ctx->event_wqh); 932 856 933 wake_up_poll(&ctx->fd_wqh, EPOLLHUP); !! 857 wake_up_poll(&ctx->fd_wqh, POLLHUP); 934 userfaultfd_ctx_put(ctx); 858 userfaultfd_ctx_put(ctx); 935 return 0; 859 return 0; 936 } 860 } 937 861 938 /* fault_pending_wqh.lock must be hold by the 862 /* fault_pending_wqh.lock must be hold by the caller */ 939 static inline struct userfaultfd_wait_queue *f 863 static inline struct userfaultfd_wait_queue *find_userfault_in( 940 wait_queue_head_t *wqh) 864 wait_queue_head_t *wqh) 941 { 865 { 942 wait_queue_entry_t *wq; !! 866 wait_queue_t *wq; 943 struct userfaultfd_wait_queue *uwq; 867 struct userfaultfd_wait_queue *uwq; 944 868 945 lockdep_assert_held(&wqh->lock); !! 869 VM_BUG_ON(!spin_is_locked(&wqh->lock)); 946 870 947 uwq = NULL; 871 uwq = NULL; 948 if (!waitqueue_active(wqh)) 872 if (!waitqueue_active(wqh)) 949 goto out; 873 goto out; 950 /* walk in reverse to provide FIFO beh 874 /* walk in reverse to provide FIFO behavior to read userfaults */ 951 wq = list_last_entry(&wqh->head, typeo !! 875 wq = list_last_entry(&wqh->task_list, typeof(*wq), task_list); 952 uwq = container_of(wq, struct userfaul 876 uwq = container_of(wq, struct userfaultfd_wait_queue, wq); 953 out: 877 out: 954 return uwq; 878 return uwq; 955 } 879 } 956 880 957 static inline struct userfaultfd_wait_queue *f 881 static inline struct userfaultfd_wait_queue *find_userfault( 958 struct userfaultfd_ctx *ctx) 882 struct userfaultfd_ctx *ctx) 959 { 883 { 960 return find_userfault_in(&ctx->fault_p 884 return find_userfault_in(&ctx->fault_pending_wqh); 961 } 885 } 962 886 963 static inline struct userfaultfd_wait_queue *f 887 static inline struct userfaultfd_wait_queue *find_userfault_evt( 964 struct userfaultfd_ctx *ctx) 888 struct userfaultfd_ctx *ctx) 965 { 889 { 966 return find_userfault_in(&ctx->event_w 890 return find_userfault_in(&ctx->event_wqh); 967 } 891 } 968 892 969 static __poll_t userfaultfd_poll(struct file * !! 893 static unsigned int userfaultfd_poll(struct file *file, poll_table *wait) 970 { 894 { 971 struct userfaultfd_ctx *ctx = file->pr 895 struct userfaultfd_ctx *ctx = file->private_data; 972 __poll_t ret; !! 896 unsigned int ret; 973 897 974 poll_wait(file, &ctx->fd_wqh, wait); 898 poll_wait(file, &ctx->fd_wqh, wait); 975 899 976 if (!userfaultfd_is_initialized(ctx)) !! 900 switch (ctx->state) { 977 return EPOLLERR; !! 901 case UFFD_STATE_WAIT_API: 978 !! 902 return POLLERR; 979 /* !! 903 case UFFD_STATE_RUNNING: 980 * poll() never guarantees that read w !! 904 /* 981 * userfaults can be waken before they !! 905 * poll() never guarantees that read won't block. 982 */ !! 906 * userfaults can be waken before they're read(). 983 if (unlikely(!(file->f_flags & O_NONBL !! 907 */ 984 return EPOLLERR; !! 908 if (unlikely(!(file->f_flags & O_NONBLOCK))) 985 /* !! 909 return POLLERR; 986 * lockless access to see if there are !! 910 /* 987 * __pollwait last action is the add_w !! 911 * lockless access to see if there are pending faults 988 * the spin_unlock would allow the wai !! 912 * __pollwait last action is the add_wait_queue but 989 * pass above the actual list_add insi !! 913 * the spin_unlock would allow the waitqueue_active to 990 * add_wait_queue critical section. So !! 914 * pass above the actual list_add inside 991 * memory barrier to serialize the lis !! 915 * add_wait_queue critical section. So use a full 992 * add_wait_queue() with the waitqueue !! 916 * memory barrier to serialize the list_add write of 993 * below. !! 917 * add_wait_queue() with the waitqueue_active read 994 */ !! 918 * below. 995 ret = 0; !! 919 */ 996 smp_mb(); !! 920 ret = 0; 997 if (waitqueue_active(&ctx->fault_pendi !! 921 smp_mb(); 998 ret = EPOLLIN; !! 922 if (waitqueue_active(&ctx->fault_pending_wqh)) 999 else if (waitqueue_active(&ctx->event_ !! 923 ret = POLLIN; 1000 ret = EPOLLIN; !! 924 else if (waitqueue_active(&ctx->event_wqh)) >> 925 ret = POLLIN; 1001 926 1002 return ret; !! 927 return ret; >> 928 default: >> 929 WARN_ON_ONCE(1); >> 930 return POLLERR; >> 931 } 1003 } 932 } 1004 933 1005 static const struct file_operations userfault 934 static const struct file_operations userfaultfd_fops; 1006 935 1007 static int resolve_userfault_fork(struct user !! 936 static int resolve_userfault_fork(struct userfaultfd_ctx *ctx, 1008 struct inod !! 937 struct userfaultfd_ctx *new, 1009 struct uffd 938 struct uffd_msg *msg) 1010 { 939 { 1011 int fd; 940 int fd; >> 941 struct file *file; >> 942 unsigned int flags = new->flags & UFFD_SHARED_FCNTL_FLAGS; 1012 943 1013 fd = anon_inode_create_getfd("[userfa !! 944 fd = get_unused_fd_flags(flags); 1014 O_RDONLY | (new->flag << 1015 if (fd < 0) 945 if (fd < 0) 1016 return fd; 946 return fd; 1017 947 >> 948 file = anon_inode_getfile("[userfaultfd]", &userfaultfd_fops, new, >> 949 O_RDWR | flags); >> 950 if (IS_ERR(file)) { >> 951 put_unused_fd(fd); >> 952 return PTR_ERR(file); >> 953 } >> 954 >> 955 fd_install(fd, file); 1018 msg->arg.reserved.reserved1 = 0; 956 msg->arg.reserved.reserved1 = 0; 1019 msg->arg.fork.ufd = fd; 957 msg->arg.fork.ufd = fd; >> 958 1020 return 0; 959 return 0; 1021 } 960 } 1022 961 1023 static ssize_t userfaultfd_ctx_read(struct us 962 static ssize_t userfaultfd_ctx_read(struct userfaultfd_ctx *ctx, int no_wait, 1024 struct uf !! 963 struct uffd_msg *msg) 1025 { 964 { 1026 ssize_t ret; 965 ssize_t ret; 1027 DECLARE_WAITQUEUE(wait, current); 966 DECLARE_WAITQUEUE(wait, current); 1028 struct userfaultfd_wait_queue *uwq; 967 struct userfaultfd_wait_queue *uwq; 1029 /* 968 /* 1030 * Handling fork event requires sleep 969 * Handling fork event requires sleeping operations, so 1031 * we drop the event_wqh lock, then d 970 * we drop the event_wqh lock, then do these ops, then 1032 * lock it back and wake up the waite 971 * lock it back and wake up the waiter. While the lock is 1033 * dropped the ewq may go away so we 972 * dropped the ewq may go away so we keep track of it 1034 * carefully. 973 * carefully. 1035 */ 974 */ 1036 LIST_HEAD(fork_event); 975 LIST_HEAD(fork_event); 1037 struct userfaultfd_ctx *fork_nctx = N 976 struct userfaultfd_ctx *fork_nctx = NULL; 1038 977 1039 /* always take the fd_wqh lock before 978 /* always take the fd_wqh lock before the fault_pending_wqh lock */ 1040 spin_lock_irq(&ctx->fd_wqh.lock); !! 979 spin_lock(&ctx->fd_wqh.lock); 1041 __add_wait_queue(&ctx->fd_wqh, &wait) 980 __add_wait_queue(&ctx->fd_wqh, &wait); 1042 for (;;) { 981 for (;;) { 1043 set_current_state(TASK_INTERR 982 set_current_state(TASK_INTERRUPTIBLE); 1044 spin_lock(&ctx->fault_pending 983 spin_lock(&ctx->fault_pending_wqh.lock); 1045 uwq = find_userfault(ctx); 984 uwq = find_userfault(ctx); 1046 if (uwq) { 985 if (uwq) { 1047 /* 986 /* 1048 * Use a seqcount to 987 * Use a seqcount to repeat the lockless check 1049 * in wake_userfault( 988 * in wake_userfault() to avoid missing 1050 * wakeups because du 989 * wakeups because during the refile both 1051 * waitqueue could be 990 * waitqueue could become empty if this is the 1052 * only userfault. 991 * only userfault. 1053 */ 992 */ 1054 write_seqcount_begin( 993 write_seqcount_begin(&ctx->refile_seq); 1055 994 1056 /* 995 /* 1057 * The fault_pending_ 996 * The fault_pending_wqh.lock prevents the uwq 1058 * to disappear from 997 * to disappear from under us. 1059 * 998 * 1060 * Refile this userfa 999 * Refile this userfault from 1061 * fault_pending_wqh 1000 * fault_pending_wqh to fault_wqh, it's not 1062 * pending anymore af 1001 * pending anymore after we read it. 1063 * 1002 * 1064 * Use list_del() by 1003 * Use list_del() by hand (as 1065 * userfaultfd_wake_f 1004 * userfaultfd_wake_function also uses 1066 * list_del_init() by 1005 * list_del_init() by hand) to be sure nobody 1067 * changes __remove_w 1006 * changes __remove_wait_queue() to use 1068 * list_del_init() in 1007 * list_del_init() in turn breaking the 1069 * !list_empty_carefu 1008 * !list_empty_careful() check in 1070 * handle_userfault() !! 1009 * handle_userfault(). The uwq->wq.task_list 1071 * must never be empt 1010 * must never be empty at any time during the 1072 * refile, or the wai 1011 * refile, or the waitqueue could disappear 1073 * from under us. The 1012 * from under us. The "wait_queue_head_t" 1074 * parameter of __rem 1013 * parameter of __remove_wait_queue() is unused 1075 * anyway. 1014 * anyway. 1076 */ 1015 */ 1077 list_del(&uwq->wq.ent !! 1016 list_del(&uwq->wq.task_list); 1078 add_wait_queue(&ctx-> !! 1017 __add_wait_queue(&ctx->fault_wqh, &uwq->wq); 1079 1018 1080 write_seqcount_end(&c 1019 write_seqcount_end(&ctx->refile_seq); 1081 1020 1082 /* careful to always 1021 /* careful to always initialize msg if ret == 0 */ 1083 *msg = uwq->msg; 1022 *msg = uwq->msg; 1084 spin_unlock(&ctx->fau 1023 spin_unlock(&ctx->fault_pending_wqh.lock); 1085 ret = 0; 1024 ret = 0; 1086 break; 1025 break; 1087 } 1026 } 1088 spin_unlock(&ctx->fault_pendi 1027 spin_unlock(&ctx->fault_pending_wqh.lock); 1089 1028 1090 spin_lock(&ctx->event_wqh.loc 1029 spin_lock(&ctx->event_wqh.lock); 1091 uwq = find_userfault_evt(ctx) 1030 uwq = find_userfault_evt(ctx); 1092 if (uwq) { 1031 if (uwq) { 1093 *msg = uwq->msg; 1032 *msg = uwq->msg; 1094 1033 1095 if (uwq->msg.event == 1034 if (uwq->msg.event == UFFD_EVENT_FORK) { 1096 fork_nctx = ( 1035 fork_nctx = (struct userfaultfd_ctx *) 1097 (unsi 1036 (unsigned long) 1098 uwq-> 1037 uwq->msg.arg.reserved.reserved1; 1099 list_move(&uw !! 1038 list_move(&uwq->wq.task_list, &fork_event); 1100 /* << 1101 * fork_nctx << 1102 * we drop th << 1103 * reference << 1104 */ << 1105 userfaultfd_c << 1106 spin_unlock(& 1039 spin_unlock(&ctx->event_wqh.lock); 1107 ret = 0; 1040 ret = 0; 1108 break; 1041 break; 1109 } 1042 } 1110 1043 1111 userfaultfd_event_com 1044 userfaultfd_event_complete(ctx, uwq); 1112 spin_unlock(&ctx->eve 1045 spin_unlock(&ctx->event_wqh.lock); 1113 ret = 0; 1046 ret = 0; 1114 break; 1047 break; 1115 } 1048 } 1116 spin_unlock(&ctx->event_wqh.l 1049 spin_unlock(&ctx->event_wqh.lock); 1117 1050 1118 if (signal_pending(current)) 1051 if (signal_pending(current)) { 1119 ret = -ERESTARTSYS; 1052 ret = -ERESTARTSYS; 1120 break; 1053 break; 1121 } 1054 } 1122 if (no_wait) { 1055 if (no_wait) { 1123 ret = -EAGAIN; 1056 ret = -EAGAIN; 1124 break; 1057 break; 1125 } 1058 } 1126 spin_unlock_irq(&ctx->fd_wqh. !! 1059 spin_unlock(&ctx->fd_wqh.lock); 1127 schedule(); 1060 schedule(); 1128 spin_lock_irq(&ctx->fd_wqh.lo !! 1061 spin_lock(&ctx->fd_wqh.lock); 1129 } 1062 } 1130 __remove_wait_queue(&ctx->fd_wqh, &wa 1063 __remove_wait_queue(&ctx->fd_wqh, &wait); 1131 __set_current_state(TASK_RUNNING); 1064 __set_current_state(TASK_RUNNING); 1132 spin_unlock_irq(&ctx->fd_wqh.lock); !! 1065 spin_unlock(&ctx->fd_wqh.lock); 1133 1066 1134 if (!ret && msg->event == UFFD_EVENT_ 1067 if (!ret && msg->event == UFFD_EVENT_FORK) { 1135 ret = resolve_userfault_fork( !! 1068 ret = resolve_userfault_fork(ctx, fork_nctx, msg); 1136 spin_lock_irq(&ctx->event_wqh << 1137 if (!list_empty(&fork_event)) << 1138 /* << 1139 * The fork thread di << 1140 * drop the temporary << 1141 */ << 1142 userfaultfd_ctx_put(f << 1143 << 1144 uwq = list_first_entr << 1145 << 1146 << 1147 /* << 1148 * If fork_event list << 1149 * the event wasn't a << 1150 * (the event is allo << 1151 * stack), put the ev << 1152 * the event_wq. fork << 1153 * as soon as we retu << 1154 * stay queued there << 1155 * "ret" value. << 1156 */ << 1157 list_del(&uwq->wq.ent << 1158 __add_wait_queue(&ctx << 1159 1069 1160 /* !! 1070 if (!ret) { 1161 * Leave the event in !! 1071 spin_lock(&ctx->event_wqh.lock); 1162 * error to userland !! 1072 if (!list_empty(&fork_event)) { 1163 * the userfault fork !! 1073 uwq = list_first_entry(&fork_event, 1164 */ !! 1074 typeof(*uwq), 1165 if (likely(!ret)) !! 1075 wq.task_list); >> 1076 list_del(&uwq->wq.task_list); >> 1077 __add_wait_queue(&ctx->event_wqh, &uwq->wq); 1166 userfaultfd_e 1078 userfaultfd_event_complete(ctx, uwq); 1167 } else { !! 1079 } 1168 /* !! 1080 spin_unlock(&ctx->event_wqh.lock); 1169 * Here the fork thre << 1170 * refcount from the << 1171 * has already been r << 1172 * the reference we t << 1173 * lock above. If res << 1174 * failed we've to dr << 1175 * fork_nctx has to b << 1176 * it succeeded we'll << 1177 * uffd references it << 1178 */ << 1179 if (ret) << 1180 userfaultfd_c << 1181 } 1081 } 1182 spin_unlock_irq(&ctx->event_w << 1183 } 1082 } 1184 1083 1185 return ret; 1084 return ret; 1186 } 1085 } 1187 1086 1188 static ssize_t userfaultfd_read_iter(struct k !! 1087 static ssize_t userfaultfd_read(struct file *file, char __user *buf, >> 1088 size_t count, loff_t *ppos) 1189 { 1089 { 1190 struct file *file = iocb->ki_filp; << 1191 struct userfaultfd_ctx *ctx = file->p 1090 struct userfaultfd_ctx *ctx = file->private_data; 1192 ssize_t _ret, ret = 0; 1091 ssize_t _ret, ret = 0; 1193 struct uffd_msg msg; 1092 struct uffd_msg msg; 1194 struct inode *inode = file_inode(file !! 1093 int no_wait = file->f_flags & O_NONBLOCK; 1195 bool no_wait; << 1196 1094 1197 if (!userfaultfd_is_initialized(ctx)) !! 1095 if (ctx->state == UFFD_STATE_WAIT_API) 1198 return -EINVAL; 1096 return -EINVAL; 1199 1097 1200 no_wait = file->f_flags & O_NONBLOCK << 1201 for (;;) { 1098 for (;;) { 1202 if (iov_iter_count(to) < size !! 1099 if (count < sizeof(msg)) 1203 return ret ? ret : -E 1100 return ret ? ret : -EINVAL; 1204 _ret = userfaultfd_ctx_read(c !! 1101 _ret = userfaultfd_ctx_read(ctx, no_wait, &msg); 1205 if (_ret < 0) 1102 if (_ret < 0) 1206 return ret ? ret : _r 1103 return ret ? ret : _ret; 1207 _ret = !copy_to_iter_full(&ms !! 1104 if (copy_to_user((__u64 __user *) buf, &msg, sizeof(msg))) 1208 if (_ret) << 1209 return ret ? ret : -E 1105 return ret ? ret : -EFAULT; 1210 ret += sizeof(msg); 1106 ret += sizeof(msg); >> 1107 buf += sizeof(msg); >> 1108 count -= sizeof(msg); 1211 /* 1109 /* 1212 * Allow to read more than on 1110 * Allow to read more than one fault at time but only 1213 * block if waiting for the v 1111 * block if waiting for the very first one. 1214 */ 1112 */ 1215 no_wait = true; !! 1113 no_wait = O_NONBLOCK; 1216 } 1114 } 1217 } 1115 } 1218 1116 1219 static void __wake_userfault(struct userfault 1117 static void __wake_userfault(struct userfaultfd_ctx *ctx, 1220 struct userfault 1118 struct userfaultfd_wake_range *range) 1221 { 1119 { 1222 spin_lock_irq(&ctx->fault_pending_wqh !! 1120 unsigned long start, end; >> 1121 >> 1122 start = range->start; >> 1123 end = range->start + range->len; >> 1124 >> 1125 spin_lock(&ctx->fault_pending_wqh.lock); 1223 /* wake all in the range and autoremo 1126 /* wake all in the range and autoremove */ 1224 if (waitqueue_active(&ctx->fault_pend 1127 if (waitqueue_active(&ctx->fault_pending_wqh)) 1225 __wake_up_locked_key(&ctx->fa 1128 __wake_up_locked_key(&ctx->fault_pending_wqh, TASK_NORMAL, 1226 range); 1129 range); 1227 if (waitqueue_active(&ctx->fault_wqh) 1130 if (waitqueue_active(&ctx->fault_wqh)) 1228 __wake_up(&ctx->fault_wqh, TA !! 1131 __wake_up_locked_key(&ctx->fault_wqh, TASK_NORMAL, range); 1229 spin_unlock_irq(&ctx->fault_pending_w !! 1132 spin_unlock(&ctx->fault_pending_wqh.lock); 1230 } 1133 } 1231 1134 1232 static __always_inline void wake_userfault(st 1135 static __always_inline void wake_userfault(struct userfaultfd_ctx *ctx, 1233 st 1136 struct userfaultfd_wake_range *range) 1234 { 1137 { 1235 unsigned seq; 1138 unsigned seq; 1236 bool need_wakeup; 1139 bool need_wakeup; 1237 1140 1238 /* 1141 /* 1239 * To be sure waitqueue_active() is n 1142 * To be sure waitqueue_active() is not reordered by the CPU 1240 * before the pagetable update, use a 1143 * before the pagetable update, use an explicit SMP memory 1241 * barrier here. PT lock release or m !! 1144 * barrier here. PT lock release or up_read(mmap_sem) still 1242 * have release semantics that can al 1145 * have release semantics that can allow the 1243 * waitqueue_active() to be reordered 1146 * waitqueue_active() to be reordered before the pte update. 1244 */ 1147 */ 1245 smp_mb(); 1148 smp_mb(); 1246 1149 1247 /* 1150 /* 1248 * Use waitqueue_active because it's 1151 * Use waitqueue_active because it's very frequent to 1249 * change the address space atomicall 1152 * change the address space atomically even if there are no 1250 * userfaults yet. So we take the spi 1153 * userfaults yet. So we take the spinlock only when we're 1251 * sure we've userfaults to wake. 1154 * sure we've userfaults to wake. 1252 */ 1155 */ 1253 do { 1156 do { 1254 seq = read_seqcount_begin(&ct 1157 seq = read_seqcount_begin(&ctx->refile_seq); 1255 need_wakeup = waitqueue_activ 1158 need_wakeup = waitqueue_active(&ctx->fault_pending_wqh) || 1256 waitqueue_active(&ctx 1159 waitqueue_active(&ctx->fault_wqh); 1257 cond_resched(); 1160 cond_resched(); 1258 } while (read_seqcount_retry(&ctx->re 1161 } while (read_seqcount_retry(&ctx->refile_seq, seq)); 1259 if (need_wakeup) 1162 if (need_wakeup) 1260 __wake_userfault(ctx, range); 1163 __wake_userfault(ctx, range); 1261 } 1164 } 1262 1165 1263 static __always_inline int validate_unaligned !! 1166 static __always_inline int validate_range(struct mm_struct *mm, 1264 struct mm_struct *mm, __u64 start, __ !! 1167 __u64 start, __u64 len) 1265 { 1168 { 1266 __u64 task_size = mm->task_size; 1169 __u64 task_size = mm->task_size; 1267 1170 >> 1171 if (start & ~PAGE_MASK) >> 1172 return -EINVAL; 1268 if (len & ~PAGE_MASK) 1173 if (len & ~PAGE_MASK) 1269 return -EINVAL; 1174 return -EINVAL; 1270 if (!len) 1175 if (!len) 1271 return -EINVAL; 1176 return -EINVAL; 1272 if (start < mmap_min_addr) 1177 if (start < mmap_min_addr) 1273 return -EINVAL; 1178 return -EINVAL; 1274 if (start >= task_size) 1179 if (start >= task_size) 1275 return -EINVAL; 1180 return -EINVAL; 1276 if (len > task_size - start) 1181 if (len > task_size - start) 1277 return -EINVAL; 1182 return -EINVAL; 1278 if (start + len <= start) << 1279 return -EINVAL; << 1280 return 0; 1183 return 0; 1281 } 1184 } 1282 1185 1283 static __always_inline int validate_range(str !! 1186 static inline bool vma_can_userfault(struct vm_area_struct *vma) 1284 __u << 1285 { 1187 { 1286 if (start & ~PAGE_MASK) !! 1188 return vma_is_anonymous(vma) || is_vm_hugetlb_page(vma) || 1287 return -EINVAL; !! 1189 vma_is_shmem(vma); 1288 << 1289 return validate_unaligned_range(mm, s << 1290 } 1190 } 1291 1191 1292 static int userfaultfd_register(struct userfa 1192 static int userfaultfd_register(struct userfaultfd_ctx *ctx, 1293 unsigned long 1193 unsigned long arg) 1294 { 1194 { 1295 struct mm_struct *mm = ctx->mm; 1195 struct mm_struct *mm = ctx->mm; 1296 struct vm_area_struct *vma, *prev, *c 1196 struct vm_area_struct *vma, *prev, *cur; 1297 int ret; 1197 int ret; 1298 struct uffdio_register uffdio_registe 1198 struct uffdio_register uffdio_register; 1299 struct uffdio_register __user *user_u 1199 struct uffdio_register __user *user_uffdio_register; 1300 unsigned long vm_flags, new_flags; 1200 unsigned long vm_flags, new_flags; 1301 bool found; 1201 bool found; 1302 bool basic_ioctls; !! 1202 bool non_anon_pages; 1303 unsigned long start, end, vma_end; 1203 unsigned long start, end, vma_end; 1304 struct vma_iterator vmi; << 1305 bool wp_async = userfaultfd_wp_async_ << 1306 1204 1307 user_uffdio_register = (struct uffdio 1205 user_uffdio_register = (struct uffdio_register __user *) arg; 1308 1206 1309 ret = -EFAULT; 1207 ret = -EFAULT; 1310 if (copy_from_user(&uffdio_register, 1208 if (copy_from_user(&uffdio_register, user_uffdio_register, 1311 sizeof(uffdio_regi 1209 sizeof(uffdio_register)-sizeof(__u64))) 1312 goto out; 1210 goto out; 1313 1211 1314 ret = -EINVAL; 1212 ret = -EINVAL; 1315 if (!uffdio_register.mode) 1213 if (!uffdio_register.mode) 1316 goto out; 1214 goto out; 1317 if (uffdio_register.mode & ~UFFD_API_ !! 1215 if (uffdio_register.mode & ~(UFFDIO_REGISTER_MODE_MISSING| >> 1216 UFFDIO_REGISTER_MODE_WP)) 1318 goto out; 1217 goto out; 1319 vm_flags = 0; 1218 vm_flags = 0; 1320 if (uffdio_register.mode & UFFDIO_REG 1219 if (uffdio_register.mode & UFFDIO_REGISTER_MODE_MISSING) 1321 vm_flags |= VM_UFFD_MISSING; 1220 vm_flags |= VM_UFFD_MISSING; 1322 if (uffdio_register.mode & UFFDIO_REG 1221 if (uffdio_register.mode & UFFDIO_REGISTER_MODE_WP) { 1323 #ifndef CONFIG_HAVE_ARCH_USERFAULTFD_WP << 1324 goto out; << 1325 #endif << 1326 vm_flags |= VM_UFFD_WP; 1222 vm_flags |= VM_UFFD_WP; 1327 } !! 1223 /* 1328 if (uffdio_register.mode & UFFDIO_REG !! 1224 * FIXME: remove the below error constraint by 1329 #ifndef CONFIG_HAVE_ARCH_USERFAULTFD_MINOR !! 1225 * implementing the wprotect tracking mode. >> 1226 */ >> 1227 ret = -EINVAL; 1330 goto out; 1228 goto out; 1331 #endif << 1332 vm_flags |= VM_UFFD_MINOR; << 1333 } 1229 } 1334 1230 1335 ret = validate_range(mm, uffdio_regis 1231 ret = validate_range(mm, uffdio_register.range.start, 1336 uffdio_register. 1232 uffdio_register.range.len); 1337 if (ret) 1233 if (ret) 1338 goto out; 1234 goto out; 1339 1235 1340 start = uffdio_register.range.start; 1236 start = uffdio_register.range.start; 1341 end = start + uffdio_register.range.l 1237 end = start + uffdio_register.range.len; 1342 1238 1343 ret = -ENOMEM; 1239 ret = -ENOMEM; 1344 if (!mmget_not_zero(mm)) 1240 if (!mmget_not_zero(mm)) 1345 goto out; 1241 goto out; 1346 1242 1347 ret = -EINVAL; !! 1243 down_write(&mm->mmap_sem); 1348 mmap_write_lock(mm); !! 1244 vma = find_vma_prev(mm, start, &prev); 1349 vma_iter_init(&vmi, mm, start); << 1350 vma = vma_find(&vmi, end); << 1351 if (!vma) 1245 if (!vma) 1352 goto out_unlock; 1246 goto out_unlock; 1353 1247 >> 1248 /* check that there's at least one vma in the range */ >> 1249 ret = -EINVAL; >> 1250 if (vma->vm_start >= end) >> 1251 goto out_unlock; >> 1252 1354 /* 1253 /* 1355 * If the first vma contains huge pag 1254 * If the first vma contains huge pages, make sure start address 1356 * is aligned to huge page size. 1255 * is aligned to huge page size. 1357 */ 1256 */ 1358 if (is_vm_hugetlb_page(vma)) { 1257 if (is_vm_hugetlb_page(vma)) { 1359 unsigned long vma_hpagesize = 1258 unsigned long vma_hpagesize = vma_kernel_pagesize(vma); 1360 1259 1361 if (start & (vma_hpagesize - 1260 if (start & (vma_hpagesize - 1)) 1362 goto out_unlock; 1261 goto out_unlock; 1363 } 1262 } 1364 1263 1365 /* 1264 /* 1366 * Search for not compatible vmas. 1265 * Search for not compatible vmas. 1367 */ 1266 */ 1368 found = false; 1267 found = false; 1369 basic_ioctls = false; !! 1268 non_anon_pages = false; 1370 cur = vma; !! 1269 for (cur = vma; cur && cur->vm_start < end; cur = cur->vm_next) { 1371 do { << 1372 cond_resched(); 1270 cond_resched(); 1373 1271 1374 BUG_ON(!!cur->vm_userfaultfd_ 1272 BUG_ON(!!cur->vm_userfaultfd_ctx.ctx ^ 1375 !!(cur->vm_flags & __V !! 1273 !!(cur->vm_flags & (VM_UFFD_MISSING | VM_UFFD_WP))); 1376 1274 1377 /* check not compatible vmas 1275 /* check not compatible vmas */ 1378 ret = -EINVAL; 1276 ret = -EINVAL; 1379 if (!vma_can_userfault(cur, v !! 1277 if (!vma_can_userfault(cur)) 1380 goto out_unlock; << 1381 << 1382 /* << 1383 * UFFDIO_COPY will fill file << 1384 * PROT_WRITE. This check enf << 1385 * MAP_SHARED, the process ha << 1386 * file. If VM_MAYWRITE is se << 1387 * MAP_SHARED vma: there is n << 1388 * F_WRITE_SEAL can be taken << 1389 */ << 1390 ret = -EPERM; << 1391 if (unlikely(!(cur->vm_flags << 1392 goto out_unlock; 1278 goto out_unlock; 1393 << 1394 /* 1279 /* 1395 * If this vma contains endin 1280 * If this vma contains ending address, and huge pages 1396 * check alignment. 1281 * check alignment. 1397 */ 1282 */ 1398 if (is_vm_hugetlb_page(cur) & 1283 if (is_vm_hugetlb_page(cur) && end <= cur->vm_end && 1399 end > cur->vm_start) { 1284 end > cur->vm_start) { 1400 unsigned long vma_hpa 1285 unsigned long vma_hpagesize = vma_kernel_pagesize(cur); 1401 1286 1402 ret = -EINVAL; 1287 ret = -EINVAL; 1403 1288 1404 if (end & (vma_hpages 1289 if (end & (vma_hpagesize - 1)) 1405 goto out_unlo 1290 goto out_unlock; 1406 } 1291 } 1407 if ((vm_flags & VM_UFFD_WP) & << 1408 goto out_unlock; << 1409 1292 1410 /* 1293 /* 1411 * Check that this vma isn't 1294 * Check that this vma isn't already owned by a 1412 * different userfaultfd. We 1295 * different userfaultfd. We can't allow more than one 1413 * userfaultfd to own a singl 1296 * userfaultfd to own a single vma simultaneously or we 1414 * wouldn't know which one to 1297 * wouldn't know which one to deliver the userfaults to. 1415 */ 1298 */ 1416 ret = -EBUSY; 1299 ret = -EBUSY; 1417 if (cur->vm_userfaultfd_ctx.c 1300 if (cur->vm_userfaultfd_ctx.ctx && 1418 cur->vm_userfaultfd_ctx.c 1301 cur->vm_userfaultfd_ctx.ctx != ctx) 1419 goto out_unlock; 1302 goto out_unlock; 1420 1303 1421 /* 1304 /* 1422 * Note vmas containing huge 1305 * Note vmas containing huge pages 1423 */ 1306 */ 1424 if (is_vm_hugetlb_page(cur)) !! 1307 if (is_vm_hugetlb_page(cur) || vma_is_shmem(cur)) 1425 basic_ioctls = true; !! 1308 non_anon_pages = true; 1426 1309 1427 found = true; 1310 found = true; 1428 } for_each_vma_range(vmi, cur, end); !! 1311 } 1429 BUG_ON(!found); 1312 BUG_ON(!found); 1430 1313 1431 vma_iter_set(&vmi, start); << 1432 prev = vma_prev(&vmi); << 1433 if (vma->vm_start < start) 1314 if (vma->vm_start < start) 1434 prev = vma; 1315 prev = vma; 1435 1316 1436 ret = 0; 1317 ret = 0; 1437 for_each_vma_range(vmi, vma, end) { !! 1318 do { 1438 cond_resched(); 1319 cond_resched(); 1439 1320 1440 BUG_ON(!vma_can_userfault(vma !! 1321 BUG_ON(!vma_can_userfault(vma)); 1441 BUG_ON(vma->vm_userfaultfd_ct 1322 BUG_ON(vma->vm_userfaultfd_ctx.ctx && 1442 vma->vm_userfaultfd_ct 1323 vma->vm_userfaultfd_ctx.ctx != ctx); 1443 WARN_ON(!(vma->vm_flags & VM_ << 1444 1324 1445 /* 1325 /* 1446 * Nothing to do: this vma is 1326 * Nothing to do: this vma is already registered into this 1447 * userfaultfd and with the r 1327 * userfaultfd and with the right tracking mode too. 1448 */ 1328 */ 1449 if (vma->vm_userfaultfd_ctx.c 1329 if (vma->vm_userfaultfd_ctx.ctx == ctx && 1450 (vma->vm_flags & vm_flags 1330 (vma->vm_flags & vm_flags) == vm_flags) 1451 goto skip; 1331 goto skip; 1452 1332 1453 if (vma->vm_start > start) 1333 if (vma->vm_start > start) 1454 start = vma->vm_start 1334 start = vma->vm_start; 1455 vma_end = min(end, vma->vm_en 1335 vma_end = min(end, vma->vm_end); 1456 1336 1457 new_flags = (vma->vm_flags & !! 1337 new_flags = (vma->vm_flags & ~vm_flags) | vm_flags; 1458 vma = vma_modify_flags_uffd(& !! 1338 prev = vma_merge(mm, prev, start, vma_end, new_flags, 1459 n !! 1339 vma->anon_vma, vma->vm_file, vma->vm_pgoff, 1460 ( !! 1340 vma_policy(vma), 1461 if (IS_ERR(vma)) { !! 1341 ((struct vm_userfaultfd_ctx){ ctx })); 1462 ret = PTR_ERR(vma); !! 1342 if (prev) { 1463 break; !! 1343 vma = prev; >> 1344 goto next; 1464 } 1345 } 1465 !! 1346 if (vma->vm_start < start) { >> 1347 ret = split_vma(mm, vma, start, 1); >> 1348 if (ret) >> 1349 break; >> 1350 } >> 1351 if (vma->vm_end > end) { >> 1352 ret = split_vma(mm, vma, end, 0); >> 1353 if (ret) >> 1354 break; >> 1355 } >> 1356 next: 1466 /* 1357 /* 1467 * In the vma_merge() success 1358 * In the vma_merge() successful mprotect-like case 8: 1468 * the next vma was merged in 1359 * the next vma was merged into the current one and 1469 * the current one has not be 1360 * the current one has not been updated yet. 1470 */ 1361 */ 1471 vma_start_write(vma); !! 1362 vma->vm_flags = new_flags; 1472 userfaultfd_set_vm_flags(vma, << 1473 vma->vm_userfaultfd_ctx.ctx = 1363 vma->vm_userfaultfd_ctx.ctx = ctx; 1474 1364 1475 if (is_vm_hugetlb_page(vma) & << 1476 hugetlb_unshare_all_p << 1477 << 1478 skip: 1365 skip: 1479 prev = vma; 1366 prev = vma; 1480 start = vma->vm_end; 1367 start = vma->vm_end; 1481 } !! 1368 vma = vma->vm_next; 1482 !! 1369 } while (vma && vma->vm_start < end); 1483 out_unlock: 1370 out_unlock: 1484 mmap_write_unlock(mm); !! 1371 up_write(&mm->mmap_sem); 1485 mmput(mm); 1372 mmput(mm); 1486 if (!ret) { 1373 if (!ret) { 1487 __u64 ioctls_out; << 1488 << 1489 ioctls_out = basic_ioctls ? U << 1490 UFFD_API_RANGE_IOCTLS; << 1491 << 1492 /* << 1493 * Declare the WP ioctl only << 1494 * specified and all checks p << 1495 */ << 1496 if (!(uffdio_register.mode & << 1497 ioctls_out &= ~((__u6 << 1498 << 1499 /* CONTINUE ioctl is only sup << 1500 if (!(uffdio_register.mode & << 1501 ioctls_out &= ~((__u6 << 1502 << 1503 /* 1374 /* 1504 * Now that we scanned all vm 1375 * Now that we scanned all vmas we can already tell 1505 * userland which ioctls meth 1376 * userland which ioctls methods are guaranteed to 1506 * succeed on this range. 1377 * succeed on this range. 1507 */ 1378 */ 1508 if (put_user(ioctls_out, &use !! 1379 if (put_user(non_anon_pages ? UFFD_API_RANGE_IOCTLS_BASIC : >> 1380 UFFD_API_RANGE_IOCTLS, >> 1381 &user_uffdio_register->ioctls)) 1509 ret = -EFAULT; 1382 ret = -EFAULT; 1510 } 1383 } 1511 out: 1384 out: 1512 return ret; 1385 return ret; 1513 } 1386 } 1514 1387 1515 static int userfaultfd_unregister(struct user 1388 static int userfaultfd_unregister(struct userfaultfd_ctx *ctx, 1516 unsigned lo 1389 unsigned long arg) 1517 { 1390 { 1518 struct mm_struct *mm = ctx->mm; 1391 struct mm_struct *mm = ctx->mm; 1519 struct vm_area_struct *vma, *prev, *c 1392 struct vm_area_struct *vma, *prev, *cur; 1520 int ret; 1393 int ret; 1521 struct uffdio_range uffdio_unregister 1394 struct uffdio_range uffdio_unregister; 1522 unsigned long new_flags; 1395 unsigned long new_flags; 1523 bool found; 1396 bool found; 1524 unsigned long start, end, vma_end; 1397 unsigned long start, end, vma_end; 1525 const void __user *buf = (void __user 1398 const void __user *buf = (void __user *)arg; 1526 struct vma_iterator vmi; << 1527 bool wp_async = userfaultfd_wp_async_ << 1528 1399 1529 ret = -EFAULT; 1400 ret = -EFAULT; 1530 if (copy_from_user(&uffdio_unregister 1401 if (copy_from_user(&uffdio_unregister, buf, sizeof(uffdio_unregister))) 1531 goto out; 1402 goto out; 1532 1403 1533 ret = validate_range(mm, uffdio_unreg 1404 ret = validate_range(mm, uffdio_unregister.start, 1534 uffdio_unregiste 1405 uffdio_unregister.len); 1535 if (ret) 1406 if (ret) 1536 goto out; 1407 goto out; 1537 1408 1538 start = uffdio_unregister.start; 1409 start = uffdio_unregister.start; 1539 end = start + uffdio_unregister.len; 1410 end = start + uffdio_unregister.len; 1540 1411 1541 ret = -ENOMEM; 1412 ret = -ENOMEM; 1542 if (!mmget_not_zero(mm)) 1413 if (!mmget_not_zero(mm)) 1543 goto out; 1414 goto out; 1544 1415 1545 mmap_write_lock(mm); !! 1416 down_write(&mm->mmap_sem); 1546 ret = -EINVAL; !! 1417 vma = find_vma_prev(mm, start, &prev); 1547 vma_iter_init(&vmi, mm, start); << 1548 vma = vma_find(&vmi, end); << 1549 if (!vma) 1418 if (!vma) 1550 goto out_unlock; 1419 goto out_unlock; 1551 1420 >> 1421 /* check that there's at least one vma in the range */ >> 1422 ret = -EINVAL; >> 1423 if (vma->vm_start >= end) >> 1424 goto out_unlock; >> 1425 1552 /* 1426 /* 1553 * If the first vma contains huge pag 1427 * If the first vma contains huge pages, make sure start address 1554 * is aligned to huge page size. 1428 * is aligned to huge page size. 1555 */ 1429 */ 1556 if (is_vm_hugetlb_page(vma)) { 1430 if (is_vm_hugetlb_page(vma)) { 1557 unsigned long vma_hpagesize = 1431 unsigned long vma_hpagesize = vma_kernel_pagesize(vma); 1558 1432 1559 if (start & (vma_hpagesize - 1433 if (start & (vma_hpagesize - 1)) 1560 goto out_unlock; 1434 goto out_unlock; 1561 } 1435 } 1562 1436 1563 /* 1437 /* 1564 * Search for not compatible vmas. 1438 * Search for not compatible vmas. 1565 */ 1439 */ 1566 found = false; 1440 found = false; 1567 cur = vma; !! 1441 ret = -EINVAL; 1568 do { !! 1442 for (cur = vma; cur && cur->vm_start < end; cur = cur->vm_next) { 1569 cond_resched(); 1443 cond_resched(); 1570 1444 1571 BUG_ON(!!cur->vm_userfaultfd_ 1445 BUG_ON(!!cur->vm_userfaultfd_ctx.ctx ^ 1572 !!(cur->vm_flags & __V !! 1446 !!(cur->vm_flags & (VM_UFFD_MISSING | VM_UFFD_WP))); 1573 1447 1574 /* 1448 /* 1575 * Check not compatible vmas, 1449 * Check not compatible vmas, not strictly required 1576 * here as not compatible vma 1450 * here as not compatible vmas cannot have an 1577 * userfaultfd_ctx registered 1451 * userfaultfd_ctx registered on them, but this 1578 * provides for more strict b 1452 * provides for more strict behavior to notice 1579 * unregistration errors. 1453 * unregistration errors. 1580 */ 1454 */ 1581 if (!vma_can_userfault(cur, c !! 1455 if (!vma_can_userfault(cur)) 1582 goto out_unlock; 1456 goto out_unlock; 1583 1457 1584 found = true; 1458 found = true; 1585 } for_each_vma_range(vmi, cur, end); !! 1459 } 1586 BUG_ON(!found); 1460 BUG_ON(!found); 1587 1461 1588 vma_iter_set(&vmi, start); << 1589 prev = vma_prev(&vmi); << 1590 if (vma->vm_start < start) 1462 if (vma->vm_start < start) 1591 prev = vma; 1463 prev = vma; 1592 1464 1593 ret = 0; 1465 ret = 0; 1594 for_each_vma_range(vmi, vma, end) { !! 1466 do { 1595 cond_resched(); 1467 cond_resched(); 1596 1468 1597 BUG_ON(!vma_can_userfault(vma !! 1469 BUG_ON(!vma_can_userfault(vma)); 1598 1470 1599 /* 1471 /* 1600 * Nothing to do: this vma is 1472 * Nothing to do: this vma is already registered into this 1601 * userfaultfd and with the r 1473 * userfaultfd and with the right tracking mode too. 1602 */ 1474 */ 1603 if (!vma->vm_userfaultfd_ctx. 1475 if (!vma->vm_userfaultfd_ctx.ctx) 1604 goto skip; 1476 goto skip; 1605 1477 1606 WARN_ON(!(vma->vm_flags & VM_ << 1607 << 1608 if (vma->vm_start > start) 1478 if (vma->vm_start > start) 1609 start = vma->vm_start 1479 start = vma->vm_start; 1610 vma_end = min(end, vma->vm_en 1480 vma_end = min(end, vma->vm_end); 1611 1481 1612 if (userfaultfd_missing(vma)) 1482 if (userfaultfd_missing(vma)) { 1613 /* 1483 /* 1614 * Wake any concurren 1484 * Wake any concurrent pending userfault while 1615 * we unregister, so 1485 * we unregister, so they will not hang 1616 * permanently and it 1486 * permanently and it avoids userland to call 1617 * UFFDIO_WAKE explic 1487 * UFFDIO_WAKE explicitly. 1618 */ 1488 */ 1619 struct userfaultfd_wa 1489 struct userfaultfd_wake_range range; 1620 range.start = start; 1490 range.start = start; 1621 range.len = vma_end - 1491 range.len = vma_end - start; 1622 wake_userfault(vma->v 1492 wake_userfault(vma->vm_userfaultfd_ctx.ctx, &range); 1623 } 1493 } 1624 1494 1625 /* Reset ptes for the whole v !! 1495 new_flags = vma->vm_flags & ~(VM_UFFD_MISSING | VM_UFFD_WP); 1626 if (userfaultfd_wp(vma)) !! 1496 prev = vma_merge(mm, prev, start, vma_end, new_flags, 1627 uffd_wp_range(vma, st !! 1497 vma->anon_vma, vma->vm_file, vma->vm_pgoff, 1628 !! 1498 vma_policy(vma), 1629 new_flags = vma->vm_flags & ~ !! 1499 NULL_VM_UFFD_CTX); 1630 vma = vma_modify_flags_uffd(& !! 1500 if (prev) { 1631 n !! 1501 vma = prev; 1632 if (IS_ERR(vma)) { !! 1502 goto next; 1633 ret = PTR_ERR(vma); << 1634 break; << 1635 } 1503 } 1636 !! 1504 if (vma->vm_start < start) { >> 1505 ret = split_vma(mm, vma, start, 1); >> 1506 if (ret) >> 1507 break; >> 1508 } >> 1509 if (vma->vm_end > end) { >> 1510 ret = split_vma(mm, vma, end, 0); >> 1511 if (ret) >> 1512 break; >> 1513 } >> 1514 next: 1637 /* 1515 /* 1638 * In the vma_merge() success 1516 * In the vma_merge() successful mprotect-like case 8: 1639 * the next vma was merged in 1517 * the next vma was merged into the current one and 1640 * the current one has not be 1518 * the current one has not been updated yet. 1641 */ 1519 */ 1642 vma_start_write(vma); !! 1520 vma->vm_flags = new_flags; 1643 userfaultfd_set_vm_flags(vma, << 1644 vma->vm_userfaultfd_ctx = NUL 1521 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX; 1645 1522 1646 skip: 1523 skip: 1647 prev = vma; 1524 prev = vma; 1648 start = vma->vm_end; 1525 start = vma->vm_end; 1649 } !! 1526 vma = vma->vm_next; 1650 !! 1527 } while (vma && vma->vm_start < end); 1651 out_unlock: 1528 out_unlock: 1652 mmap_write_unlock(mm); !! 1529 up_write(&mm->mmap_sem); 1653 mmput(mm); 1530 mmput(mm); 1654 out: 1531 out: 1655 return ret; 1532 return ret; 1656 } 1533 } 1657 1534 1658 /* 1535 /* 1659 * userfaultfd_wake may be used in combinatio 1536 * userfaultfd_wake may be used in combination with the 1660 * UFFDIO_*_MODE_DONTWAKE to wakeup userfault 1537 * UFFDIO_*_MODE_DONTWAKE to wakeup userfaults in batches. 1661 */ 1538 */ 1662 static int userfaultfd_wake(struct userfaultf 1539 static int userfaultfd_wake(struct userfaultfd_ctx *ctx, 1663 unsigned long arg 1540 unsigned long arg) 1664 { 1541 { 1665 int ret; 1542 int ret; 1666 struct uffdio_range uffdio_wake; 1543 struct uffdio_range uffdio_wake; 1667 struct userfaultfd_wake_range range; 1544 struct userfaultfd_wake_range range; 1668 const void __user *buf = (void __user 1545 const void __user *buf = (void __user *)arg; 1669 1546 1670 ret = -EFAULT; 1547 ret = -EFAULT; 1671 if (copy_from_user(&uffdio_wake, buf, 1548 if (copy_from_user(&uffdio_wake, buf, sizeof(uffdio_wake))) 1672 goto out; 1549 goto out; 1673 1550 1674 ret = validate_range(ctx->mm, uffdio_ 1551 ret = validate_range(ctx->mm, uffdio_wake.start, uffdio_wake.len); 1675 if (ret) 1552 if (ret) 1676 goto out; 1553 goto out; 1677 1554 1678 range.start = uffdio_wake.start; 1555 range.start = uffdio_wake.start; 1679 range.len = uffdio_wake.len; 1556 range.len = uffdio_wake.len; 1680 1557 1681 /* 1558 /* 1682 * len == 0 means wake all and we don 1559 * len == 0 means wake all and we don't want to wake all here, 1683 * so check it again to be sure. 1560 * so check it again to be sure. 1684 */ 1561 */ 1685 VM_BUG_ON(!range.len); 1562 VM_BUG_ON(!range.len); 1686 1563 1687 wake_userfault(ctx, &range); 1564 wake_userfault(ctx, &range); 1688 ret = 0; 1565 ret = 0; 1689 1566 1690 out: 1567 out: 1691 return ret; 1568 return ret; 1692 } 1569 } 1693 1570 1694 static int userfaultfd_copy(struct userfaultf 1571 static int userfaultfd_copy(struct userfaultfd_ctx *ctx, 1695 unsigned long arg 1572 unsigned long arg) 1696 { 1573 { 1697 __s64 ret; 1574 __s64 ret; 1698 struct uffdio_copy uffdio_copy; 1575 struct uffdio_copy uffdio_copy; 1699 struct uffdio_copy __user *user_uffdi 1576 struct uffdio_copy __user *user_uffdio_copy; 1700 struct userfaultfd_wake_range range; 1577 struct userfaultfd_wake_range range; 1701 uffd_flags_t flags = 0; << 1702 1578 1703 user_uffdio_copy = (struct uffdio_cop 1579 user_uffdio_copy = (struct uffdio_copy __user *) arg; 1704 1580 1705 ret = -EAGAIN; << 1706 if (atomic_read(&ctx->mmap_changing)) << 1707 goto out; << 1708 << 1709 ret = -EFAULT; 1581 ret = -EFAULT; 1710 if (copy_from_user(&uffdio_copy, user 1582 if (copy_from_user(&uffdio_copy, user_uffdio_copy, 1711 /* don't copy "cop 1583 /* don't copy "copy" last field */ 1712 sizeof(uffdio_copy 1584 sizeof(uffdio_copy)-sizeof(__s64))) 1713 goto out; 1585 goto out; 1714 1586 1715 ret = validate_unaligned_range(ctx->m << 1716 uffdio << 1717 if (ret) << 1718 goto out; << 1719 ret = validate_range(ctx->mm, uffdio_ 1587 ret = validate_range(ctx->mm, uffdio_copy.dst, uffdio_copy.len); 1720 if (ret) 1588 if (ret) 1721 goto out; 1589 goto out; 1722 !! 1590 /* >> 1591 * double check for wraparound just in case. copy_from_user() >> 1592 * will later check uffdio_copy.src + uffdio_copy.len to fit >> 1593 * in the userland range. >> 1594 */ 1723 ret = -EINVAL; 1595 ret = -EINVAL; 1724 if (uffdio_copy.mode & ~(UFFDIO_COPY_ !! 1596 if (uffdio_copy.src + uffdio_copy.len <= uffdio_copy.src) >> 1597 goto out; >> 1598 if (uffdio_copy.mode & ~UFFDIO_COPY_MODE_DONTWAKE) 1725 goto out; 1599 goto out; 1726 if (uffdio_copy.mode & UFFDIO_COPY_MO << 1727 flags |= MFILL_ATOMIC_WP; << 1728 if (mmget_not_zero(ctx->mm)) { 1600 if (mmget_not_zero(ctx->mm)) { 1729 ret = mfill_atomic_copy(ctx, !! 1601 ret = mcopy_atomic(ctx->mm, uffdio_copy.dst, uffdio_copy.src, 1730 uffdi !! 1602 uffdio_copy.len); 1731 mmput(ctx->mm); 1603 mmput(ctx->mm); 1732 } else { 1604 } else { 1733 return -ESRCH; !! 1605 return -ENOSPC; 1734 } 1606 } 1735 if (unlikely(put_user(ret, &user_uffd 1607 if (unlikely(put_user(ret, &user_uffdio_copy->copy))) 1736 return -EFAULT; 1608 return -EFAULT; 1737 if (ret < 0) 1609 if (ret < 0) 1738 goto out; 1610 goto out; 1739 BUG_ON(!ret); 1611 BUG_ON(!ret); 1740 /* len == 0 would wake all */ 1612 /* len == 0 would wake all */ 1741 range.len = ret; 1613 range.len = ret; 1742 if (!(uffdio_copy.mode & UFFDIO_COPY_ 1614 if (!(uffdio_copy.mode & UFFDIO_COPY_MODE_DONTWAKE)) { 1743 range.start = uffdio_copy.dst 1615 range.start = uffdio_copy.dst; 1744 wake_userfault(ctx, &range); 1616 wake_userfault(ctx, &range); 1745 } 1617 } 1746 ret = range.len == uffdio_copy.len ? 1618 ret = range.len == uffdio_copy.len ? 0 : -EAGAIN; 1747 out: 1619 out: 1748 return ret; 1620 return ret; 1749 } 1621 } 1750 1622 1751 static int userfaultfd_zeropage(struct userfa 1623 static int userfaultfd_zeropage(struct userfaultfd_ctx *ctx, 1752 unsigned long 1624 unsigned long arg) 1753 { 1625 { 1754 __s64 ret; 1626 __s64 ret; 1755 struct uffdio_zeropage uffdio_zeropag 1627 struct uffdio_zeropage uffdio_zeropage; 1756 struct uffdio_zeropage __user *user_u 1628 struct uffdio_zeropage __user *user_uffdio_zeropage; 1757 struct userfaultfd_wake_range range; 1629 struct userfaultfd_wake_range range; 1758 1630 1759 user_uffdio_zeropage = (struct uffdio 1631 user_uffdio_zeropage = (struct uffdio_zeropage __user *) arg; 1760 1632 1761 ret = -EAGAIN; << 1762 if (atomic_read(&ctx->mmap_changing)) << 1763 goto out; << 1764 << 1765 ret = -EFAULT; 1633 ret = -EFAULT; 1766 if (copy_from_user(&uffdio_zeropage, 1634 if (copy_from_user(&uffdio_zeropage, user_uffdio_zeropage, 1767 /* don't copy "zer 1635 /* don't copy "zeropage" last field */ 1768 sizeof(uffdio_zero 1636 sizeof(uffdio_zeropage)-sizeof(__s64))) 1769 goto out; 1637 goto out; 1770 1638 1771 ret = validate_range(ctx->mm, uffdio_ 1639 ret = validate_range(ctx->mm, uffdio_zeropage.range.start, 1772 uffdio_zeropage. 1640 uffdio_zeropage.range.len); 1773 if (ret) 1641 if (ret) 1774 goto out; 1642 goto out; 1775 ret = -EINVAL; 1643 ret = -EINVAL; 1776 if (uffdio_zeropage.mode & ~UFFDIO_ZE 1644 if (uffdio_zeropage.mode & ~UFFDIO_ZEROPAGE_MODE_DONTWAKE) 1777 goto out; 1645 goto out; 1778 1646 1779 if (mmget_not_zero(ctx->mm)) { 1647 if (mmget_not_zero(ctx->mm)) { 1780 ret = mfill_atomic_zeropage(c !! 1648 ret = mfill_zeropage(ctx->mm, uffdio_zeropage.range.start, 1781 uf !! 1649 uffdio_zeropage.range.len); 1782 mmput(ctx->mm); 1650 mmput(ctx->mm); 1783 } else { 1651 } else { 1784 return -ESRCH; !! 1652 return -ENOSPC; 1785 } 1653 } 1786 if (unlikely(put_user(ret, &user_uffd 1654 if (unlikely(put_user(ret, &user_uffdio_zeropage->zeropage))) 1787 return -EFAULT; 1655 return -EFAULT; 1788 if (ret < 0) 1656 if (ret < 0) 1789 goto out; 1657 goto out; 1790 /* len == 0 would wake all */ 1658 /* len == 0 would wake all */ 1791 BUG_ON(!ret); 1659 BUG_ON(!ret); 1792 range.len = ret; 1660 range.len = ret; 1793 if (!(uffdio_zeropage.mode & UFFDIO_Z 1661 if (!(uffdio_zeropage.mode & UFFDIO_ZEROPAGE_MODE_DONTWAKE)) { 1794 range.start = uffdio_zeropage 1662 range.start = uffdio_zeropage.range.start; 1795 wake_userfault(ctx, &range); 1663 wake_userfault(ctx, &range); 1796 } 1664 } 1797 ret = range.len == uffdio_zeropage.ra 1665 ret = range.len == uffdio_zeropage.range.len ? 0 : -EAGAIN; 1798 out: 1666 out: 1799 return ret; 1667 return ret; 1800 } 1668 } 1801 1669 1802 static int userfaultfd_writeprotect(struct us << 1803 unsigned << 1804 { << 1805 int ret; << 1806 struct uffdio_writeprotect uffdio_wp; << 1807 struct uffdio_writeprotect __user *us << 1808 struct userfaultfd_wake_range range; << 1809 bool mode_wp, mode_dontwake; << 1810 << 1811 if (atomic_read(&ctx->mmap_changing)) << 1812 return -EAGAIN; << 1813 << 1814 user_uffdio_wp = (struct uffdio_write << 1815 << 1816 if (copy_from_user(&uffdio_wp, user_u << 1817 sizeof(struct uffd << 1818 return -EFAULT; << 1819 << 1820 ret = validate_range(ctx->mm, uffdio_ << 1821 uffdio_wp.range. << 1822 if (ret) << 1823 return ret; << 1824 << 1825 if (uffdio_wp.mode & ~(UFFDIO_WRITEPR << 1826 UFFDIO_WRITEPR << 1827 return -EINVAL; << 1828 << 1829 mode_wp = uffdio_wp.mode & UFFDIO_WRI << 1830 mode_dontwake = uffdio_wp.mode & UFFD << 1831 << 1832 if (mode_wp && mode_dontwake) << 1833 return -EINVAL; << 1834 << 1835 if (mmget_not_zero(ctx->mm)) { << 1836 ret = mwriteprotect_range(ctx << 1837 uff << 1838 mmput(ctx->mm); << 1839 } else { << 1840 return -ESRCH; << 1841 } << 1842 << 1843 if (ret) << 1844 return ret; << 1845 << 1846 if (!mode_wp && !mode_dontwake) { << 1847 range.start = uffdio_wp.range << 1848 range.len = uffdio_wp.range.l << 1849 wake_userfault(ctx, &range); << 1850 } << 1851 return ret; << 1852 } << 1853 << 1854 static int userfaultfd_continue(struct userfa << 1855 { << 1856 __s64 ret; << 1857 struct uffdio_continue uffdio_continu << 1858 struct uffdio_continue __user *user_u << 1859 struct userfaultfd_wake_range range; << 1860 uffd_flags_t flags = 0; << 1861 << 1862 user_uffdio_continue = (struct uffdio << 1863 << 1864 ret = -EAGAIN; << 1865 if (atomic_read(&ctx->mmap_changing)) << 1866 goto out; << 1867 << 1868 ret = -EFAULT; << 1869 if (copy_from_user(&uffdio_continue, << 1870 /* don't copy the << 1871 sizeof(uffdio_cont << 1872 goto out; << 1873 << 1874 ret = validate_range(ctx->mm, uffdio_ << 1875 uffdio_continue. << 1876 if (ret) << 1877 goto out; << 1878 << 1879 ret = -EINVAL; << 1880 if (uffdio_continue.mode & ~(UFFDIO_C << 1881 UFFDIO_C << 1882 goto out; << 1883 if (uffdio_continue.mode & UFFDIO_CON << 1884 flags |= MFILL_ATOMIC_WP; << 1885 << 1886 if (mmget_not_zero(ctx->mm)) { << 1887 ret = mfill_atomic_continue(c << 1888 u << 1889 mmput(ctx->mm); << 1890 } else { << 1891 return -ESRCH; << 1892 } << 1893 << 1894 if (unlikely(put_user(ret, &user_uffd << 1895 return -EFAULT; << 1896 if (ret < 0) << 1897 goto out; << 1898 << 1899 /* len == 0 would wake all */ << 1900 BUG_ON(!ret); << 1901 range.len = ret; << 1902 if (!(uffdio_continue.mode & UFFDIO_C << 1903 range.start = uffdio_continue << 1904 wake_userfault(ctx, &range); << 1905 } << 1906 ret = range.len == uffdio_continue.ra << 1907 << 1908 out: << 1909 return ret; << 1910 } << 1911 << 1912 static inline int userfaultfd_poison(struct u << 1913 { << 1914 __s64 ret; << 1915 struct uffdio_poison uffdio_poison; << 1916 struct uffdio_poison __user *user_uff << 1917 struct userfaultfd_wake_range range; << 1918 << 1919 user_uffdio_poison = (struct uffdio_p << 1920 << 1921 ret = -EAGAIN; << 1922 if (atomic_read(&ctx->mmap_changing)) << 1923 goto out; << 1924 << 1925 ret = -EFAULT; << 1926 if (copy_from_user(&uffdio_poison, us << 1927 /* don't copy the << 1928 sizeof(uffdio_pois << 1929 goto out; << 1930 << 1931 ret = validate_range(ctx->mm, uffdio_ << 1932 uffdio_poison.ra << 1933 if (ret) << 1934 goto out; << 1935 << 1936 ret = -EINVAL; << 1937 if (uffdio_poison.mode & ~UFFDIO_POIS << 1938 goto out; << 1939 << 1940 if (mmget_not_zero(ctx->mm)) { << 1941 ret = mfill_atomic_poison(ctx << 1942 uff << 1943 mmput(ctx->mm); << 1944 } else { << 1945 return -ESRCH; << 1946 } << 1947 << 1948 if (unlikely(put_user(ret, &user_uffd << 1949 return -EFAULT; << 1950 if (ret < 0) << 1951 goto out; << 1952 << 1953 /* len == 0 would wake all */ << 1954 BUG_ON(!ret); << 1955 range.len = ret; << 1956 if (!(uffdio_poison.mode & UFFDIO_POI << 1957 range.start = uffdio_poison.r << 1958 wake_userfault(ctx, &range); << 1959 } << 1960 ret = range.len == uffdio_poison.rang << 1961 << 1962 out: << 1963 return ret; << 1964 } << 1965 << 1966 bool userfaultfd_wp_async(struct vm_area_stru << 1967 { << 1968 return userfaultfd_wp_async_ctx(vma-> << 1969 } << 1970 << 1971 static inline unsigned int uffd_ctx_features( 1670 static inline unsigned int uffd_ctx_features(__u64 user_features) 1972 { 1671 { 1973 /* 1672 /* 1974 * For the current set of features th !! 1673 * For the current set of features the bits just coincide 1975 * UFFD_FEATURE_INITIALIZED to mark t << 1976 */ 1674 */ 1977 return (unsigned int)user_features | !! 1675 return (unsigned int)user_features; 1978 } << 1979 << 1980 static int userfaultfd_move(struct userfaultf << 1981 unsigned long arg << 1982 { << 1983 __s64 ret; << 1984 struct uffdio_move uffdio_move; << 1985 struct uffdio_move __user *user_uffdi << 1986 struct userfaultfd_wake_range range; << 1987 struct mm_struct *mm = ctx->mm; << 1988 << 1989 user_uffdio_move = (struct uffdio_mov << 1990 << 1991 if (atomic_read(&ctx->mmap_changing)) << 1992 return -EAGAIN; << 1993 << 1994 if (copy_from_user(&uffdio_move, user << 1995 /* don't copy "mov << 1996 sizeof(uffdio_move << 1997 return -EFAULT; << 1998 << 1999 /* Do not allow cross-mm moves. */ << 2000 if (mm != current->mm) << 2001 return -EINVAL; << 2002 << 2003 ret = validate_range(mm, uffdio_move. << 2004 if (ret) << 2005 return ret; << 2006 << 2007 ret = validate_range(mm, uffdio_move. << 2008 if (ret) << 2009 return ret; << 2010 << 2011 if (uffdio_move.mode & ~(UFFDIO_MOVE_ << 2012 UFFDIO_MOVE << 2013 return -EINVAL; << 2014 << 2015 if (mmget_not_zero(mm)) { << 2016 ret = move_pages(ctx, uffdio_ << 2017 uffdio_move. << 2018 mmput(mm); << 2019 } else { << 2020 return -ESRCH; << 2021 } << 2022 << 2023 if (unlikely(put_user(ret, &user_uffd << 2024 return -EFAULT; << 2025 if (ret < 0) << 2026 goto out; << 2027 << 2028 /* len == 0 would wake all */ << 2029 VM_WARN_ON(!ret); << 2030 range.len = ret; << 2031 if (!(uffdio_move.mode & UFFDIO_MOVE_ << 2032 range.start = uffdio_move.dst << 2033 wake_userfault(ctx, &range); << 2034 } << 2035 ret = range.len == uffdio_move.len ? << 2036 << 2037 out: << 2038 return ret; << 2039 } 1676 } 2040 1677 2041 /* 1678 /* 2042 * userland asks for a certain API version an 1679 * userland asks for a certain API version and we return which bits 2043 * and ioctl commands are implemented in this 1680 * and ioctl commands are implemented in this kernel for such API 2044 * version or -EINVAL if unknown. 1681 * version or -EINVAL if unknown. 2045 */ 1682 */ 2046 static int userfaultfd_api(struct userfaultfd 1683 static int userfaultfd_api(struct userfaultfd_ctx *ctx, 2047 unsigned long arg) 1684 unsigned long arg) 2048 { 1685 { 2049 struct uffdio_api uffdio_api; 1686 struct uffdio_api uffdio_api; 2050 void __user *buf = (void __user *)arg 1687 void __user *buf = (void __user *)arg; 2051 unsigned int ctx_features; << 2052 int ret; 1688 int ret; 2053 __u64 features; 1689 __u64 features; 2054 1690 >> 1691 ret = -EINVAL; >> 1692 if (ctx->state != UFFD_STATE_WAIT_API) >> 1693 goto out; 2055 ret = -EFAULT; 1694 ret = -EFAULT; 2056 if (copy_from_user(&uffdio_api, buf, 1695 if (copy_from_user(&uffdio_api, buf, sizeof(uffdio_api))) 2057 goto out; 1696 goto out; 2058 features = uffdio_api.features; 1697 features = uffdio_api.features; 2059 ret = -EINVAL; !! 1698 if (uffdio_api.api != UFFD_API || (features & ~UFFD_API_FEATURES)) { 2060 if (uffdio_api.api != UFFD_API) !! 1699 memset(&uffdio_api, 0, sizeof(uffdio_api)); 2061 goto err_out; !! 1700 if (copy_to_user(buf, &uffdio_api, sizeof(uffdio_api))) 2062 ret = -EPERM; !! 1701 goto out; 2063 if ((features & UFFD_FEATURE_EVENT_FO !! 1702 ret = -EINVAL; 2064 goto err_out; !! 1703 goto out; 2065 !! 1704 } 2066 /* WP_ASYNC relies on WP_UNPOPULATED, << 2067 if (features & UFFD_FEATURE_WP_ASYNC) << 2068 features |= UFFD_FEATURE_WP_U << 2069 << 2070 /* report all available features and 1705 /* report all available features and ioctls to userland */ 2071 uffdio_api.features = UFFD_API_FEATUR 1706 uffdio_api.features = UFFD_API_FEATURES; 2072 #ifndef CONFIG_HAVE_ARCH_USERFAULTFD_MINOR << 2073 uffdio_api.features &= << 2074 ~(UFFD_FEATURE_MINOR_HUGETLBF << 2075 #endif << 2076 #ifndef CONFIG_HAVE_ARCH_USERFAULTFD_WP << 2077 uffdio_api.features &= ~UFFD_FEATURE_ << 2078 #endif << 2079 #ifndef CONFIG_PTE_MARKER_UFFD_WP << 2080 uffdio_api.features &= ~UFFD_FEATURE_ << 2081 uffdio_api.features &= ~UFFD_FEATURE_ << 2082 uffdio_api.features &= ~UFFD_FEATURE_ << 2083 #endif << 2084 << 2085 ret = -EINVAL; << 2086 if (features & ~uffdio_api.features) << 2087 goto err_out; << 2088 << 2089 uffdio_api.ioctls = UFFD_API_IOCTLS; 1707 uffdio_api.ioctls = UFFD_API_IOCTLS; 2090 ret = -EFAULT; 1708 ret = -EFAULT; 2091 if (copy_to_user(buf, &uffdio_api, si 1709 if (copy_to_user(buf, &uffdio_api, sizeof(uffdio_api))) 2092 goto out; 1710 goto out; 2093 !! 1711 ctx->state = UFFD_STATE_RUNNING; 2094 /* only enable the requested features 1712 /* only enable the requested features for this uffd context */ 2095 ctx_features = uffd_ctx_features(feat !! 1713 ctx->features = uffd_ctx_features(features); 2096 ret = -EINVAL; << 2097 if (cmpxchg(&ctx->features, 0, ctx_fe << 2098 goto err_out; << 2099 << 2100 ret = 0; 1714 ret = 0; 2101 out: 1715 out: 2102 return ret; 1716 return ret; 2103 err_out: << 2104 memset(&uffdio_api, 0, sizeof(uffdio_ << 2105 if (copy_to_user(buf, &uffdio_api, si << 2106 ret = -EFAULT; << 2107 goto out; << 2108 } 1717 } 2109 1718 2110 static long userfaultfd_ioctl(struct file *fi 1719 static long userfaultfd_ioctl(struct file *file, unsigned cmd, 2111 unsigned long a 1720 unsigned long arg) 2112 { 1721 { 2113 int ret = -EINVAL; 1722 int ret = -EINVAL; 2114 struct userfaultfd_ctx *ctx = file->p 1723 struct userfaultfd_ctx *ctx = file->private_data; 2115 1724 2116 if (cmd != UFFDIO_API && !userfaultfd !! 1725 if (cmd != UFFDIO_API && ctx->state == UFFD_STATE_WAIT_API) 2117 return -EINVAL; 1726 return -EINVAL; 2118 1727 2119 switch(cmd) { 1728 switch(cmd) { 2120 case UFFDIO_API: 1729 case UFFDIO_API: 2121 ret = userfaultfd_api(ctx, ar 1730 ret = userfaultfd_api(ctx, arg); 2122 break; 1731 break; 2123 case UFFDIO_REGISTER: 1732 case UFFDIO_REGISTER: 2124 ret = userfaultfd_register(ct 1733 ret = userfaultfd_register(ctx, arg); 2125 break; 1734 break; 2126 case UFFDIO_UNREGISTER: 1735 case UFFDIO_UNREGISTER: 2127 ret = userfaultfd_unregister( 1736 ret = userfaultfd_unregister(ctx, arg); 2128 break; 1737 break; 2129 case UFFDIO_WAKE: 1738 case UFFDIO_WAKE: 2130 ret = userfaultfd_wake(ctx, a 1739 ret = userfaultfd_wake(ctx, arg); 2131 break; 1740 break; 2132 case UFFDIO_COPY: 1741 case UFFDIO_COPY: 2133 ret = userfaultfd_copy(ctx, a 1742 ret = userfaultfd_copy(ctx, arg); 2134 break; 1743 break; 2135 case UFFDIO_ZEROPAGE: 1744 case UFFDIO_ZEROPAGE: 2136 ret = userfaultfd_zeropage(ct 1745 ret = userfaultfd_zeropage(ctx, arg); 2137 break; 1746 break; 2138 case UFFDIO_MOVE: << 2139 ret = userfaultfd_move(ctx, a << 2140 break; << 2141 case UFFDIO_WRITEPROTECT: << 2142 ret = userfaultfd_writeprotec << 2143 break; << 2144 case UFFDIO_CONTINUE: << 2145 ret = userfaultfd_continue(ct << 2146 break; << 2147 case UFFDIO_POISON: << 2148 ret = userfaultfd_poison(ctx, << 2149 break; << 2150 } 1747 } 2151 return ret; 1748 return ret; 2152 } 1749 } 2153 1750 2154 #ifdef CONFIG_PROC_FS 1751 #ifdef CONFIG_PROC_FS 2155 static void userfaultfd_show_fdinfo(struct se 1752 static void userfaultfd_show_fdinfo(struct seq_file *m, struct file *f) 2156 { 1753 { 2157 struct userfaultfd_ctx *ctx = f->priv 1754 struct userfaultfd_ctx *ctx = f->private_data; 2158 wait_queue_entry_t *wq; !! 1755 wait_queue_t *wq; >> 1756 struct userfaultfd_wait_queue *uwq; 2159 unsigned long pending = 0, total = 0; 1757 unsigned long pending = 0, total = 0; 2160 1758 2161 spin_lock_irq(&ctx->fault_pending_wqh !! 1759 spin_lock(&ctx->fault_pending_wqh.lock); 2162 list_for_each_entry(wq, &ctx->fault_p !! 1760 list_for_each_entry(wq, &ctx->fault_pending_wqh.task_list, task_list) { >> 1761 uwq = container_of(wq, struct userfaultfd_wait_queue, wq); 2163 pending++; 1762 pending++; 2164 total++; 1763 total++; 2165 } 1764 } 2166 list_for_each_entry(wq, &ctx->fault_w !! 1765 list_for_each_entry(wq, &ctx->fault_wqh.task_list, task_list) { >> 1766 uwq = container_of(wq, struct userfaultfd_wait_queue, wq); 2167 total++; 1767 total++; 2168 } 1768 } 2169 spin_unlock_irq(&ctx->fault_pending_w !! 1769 spin_unlock(&ctx->fault_pending_wqh.lock); 2170 1770 2171 /* 1771 /* 2172 * If more protocols will be added, t 1772 * If more protocols will be added, there will be all shown 2173 * separated by a space. Like this: 1773 * separated by a space. Like this: 2174 * protocols: aa:... bb:... 1774 * protocols: aa:... bb:... 2175 */ 1775 */ 2176 seq_printf(m, "pending:\t%lu\ntotal:\ 1776 seq_printf(m, "pending:\t%lu\ntotal:\t%lu\nAPI:\t%Lx:%x:%Lx\n", 2177 pending, total, UFFD_API, 1777 pending, total, UFFD_API, ctx->features, 2178 UFFD_API_IOCTLS|UFFD_API_R 1778 UFFD_API_IOCTLS|UFFD_API_RANGE_IOCTLS); 2179 } 1779 } 2180 #endif 1780 #endif 2181 1781 2182 static const struct file_operations userfault 1782 static const struct file_operations userfaultfd_fops = { 2183 #ifdef CONFIG_PROC_FS 1783 #ifdef CONFIG_PROC_FS 2184 .show_fdinfo = userfaultfd_show_fd 1784 .show_fdinfo = userfaultfd_show_fdinfo, 2185 #endif 1785 #endif 2186 .release = userfaultfd_release 1786 .release = userfaultfd_release, 2187 .poll = userfaultfd_poll, 1787 .poll = userfaultfd_poll, 2188 .read_iter = userfaultfd_read_it !! 1788 .read = userfaultfd_read, 2189 .unlocked_ioctl = userfaultfd_ioctl, 1789 .unlocked_ioctl = userfaultfd_ioctl, 2190 .compat_ioctl = compat_ptr_ioctl, !! 1790 .compat_ioctl = userfaultfd_ioctl, 2191 .llseek = noop_llseek, 1791 .llseek = noop_llseek, 2192 }; 1792 }; 2193 1793 2194 static void init_once_userfaultfd_ctx(void *m 1794 static void init_once_userfaultfd_ctx(void *mem) 2195 { 1795 { 2196 struct userfaultfd_ctx *ctx = (struct 1796 struct userfaultfd_ctx *ctx = (struct userfaultfd_ctx *) mem; 2197 1797 2198 init_waitqueue_head(&ctx->fault_pendi 1798 init_waitqueue_head(&ctx->fault_pending_wqh); 2199 init_waitqueue_head(&ctx->fault_wqh); 1799 init_waitqueue_head(&ctx->fault_wqh); 2200 init_waitqueue_head(&ctx->event_wqh); 1800 init_waitqueue_head(&ctx->event_wqh); 2201 init_waitqueue_head(&ctx->fd_wqh); 1801 init_waitqueue_head(&ctx->fd_wqh); 2202 seqcount_spinlock_init(&ctx->refile_s !! 1802 seqcount_init(&ctx->refile_seq); 2203 } 1803 } 2204 1804 2205 static int new_userfaultfd(int flags) !! 1805 /** >> 1806 * userfaultfd_file_create - Creates a userfaultfd file pointer. >> 1807 * @flags: Flags for the userfaultfd file. >> 1808 * >> 1809 * This function creates a userfaultfd file pointer, w/out installing >> 1810 * it into the fd table. This is useful when the userfaultfd file is >> 1811 * used during the initialization of data structures that require >> 1812 * extra setup after the userfaultfd creation. So the userfaultfd >> 1813 * creation is split into the file pointer creation phase, and the >> 1814 * file descriptor installation phase. In this way races with >> 1815 * userspace closing the newly installed file descriptor can be >> 1816 * avoided. Returns a userfaultfd file pointer, or a proper error >> 1817 * pointer. >> 1818 */ >> 1819 static struct file *userfaultfd_file_create(int flags) 2206 { 1820 { 2207 struct userfaultfd_ctx *ctx; << 2208 struct file *file; 1821 struct file *file; 2209 int fd; !! 1822 struct userfaultfd_ctx *ctx; 2210 1823 2211 BUG_ON(!current->mm); 1824 BUG_ON(!current->mm); 2212 1825 2213 /* Check the UFFD_* constants for con 1826 /* Check the UFFD_* constants for consistency. */ 2214 BUILD_BUG_ON(UFFD_USER_MODE_ONLY & UF << 2215 BUILD_BUG_ON(UFFD_CLOEXEC != O_CLOEXE 1827 BUILD_BUG_ON(UFFD_CLOEXEC != O_CLOEXEC); 2216 BUILD_BUG_ON(UFFD_NONBLOCK != O_NONBL 1828 BUILD_BUG_ON(UFFD_NONBLOCK != O_NONBLOCK); 2217 1829 2218 if (flags & ~(UFFD_SHARED_FCNTL_FLAGS !! 1830 file = ERR_PTR(-EINVAL); 2219 return -EINVAL; !! 1831 if (flags & ~UFFD_SHARED_FCNTL_FLAGS) >> 1832 goto out; 2220 1833 >> 1834 file = ERR_PTR(-ENOMEM); 2221 ctx = kmem_cache_alloc(userfaultfd_ct 1835 ctx = kmem_cache_alloc(userfaultfd_ctx_cachep, GFP_KERNEL); 2222 if (!ctx) 1836 if (!ctx) 2223 return -ENOMEM; !! 1837 goto out; 2224 1838 2225 refcount_set(&ctx->refcount, 1); !! 1839 atomic_set(&ctx->refcount, 1); 2226 ctx->flags = flags; 1840 ctx->flags = flags; 2227 ctx->features = 0; 1841 ctx->features = 0; >> 1842 ctx->state = UFFD_STATE_WAIT_API; 2228 ctx->released = false; 1843 ctx->released = false; 2229 init_rwsem(&ctx->map_changing_lock); << 2230 atomic_set(&ctx->mmap_changing, 0); << 2231 ctx->mm = current->mm; 1844 ctx->mm = current->mm; 2232 << 2233 fd = get_unused_fd_flags(flags & UFFD << 2234 if (fd < 0) << 2235 goto err_out; << 2236 << 2237 /* Create a new inode so that the LSM << 2238 file = anon_inode_create_getfile("[us << 2239 O_RDONLY | (flags & U << 2240 if (IS_ERR(file)) { << 2241 put_unused_fd(fd); << 2242 fd = PTR_ERR(file); << 2243 goto err_out; << 2244 } << 2245 /* prevent the mm struct to be freed 1845 /* prevent the mm struct to be freed */ 2246 mmgrab(ctx->mm); 1846 mmgrab(ctx->mm); 2247 file->f_mode |= FMODE_NOWAIT; << 2248 fd_install(fd, file); << 2249 return fd; << 2250 err_out: << 2251 kmem_cache_free(userfaultfd_ctx_cache << 2252 return fd; << 2253 } << 2254 << 2255 static inline bool userfaultfd_syscall_allowe << 2256 { << 2257 /* Userspace-only page faults are alw << 2258 if (flags & UFFD_USER_MODE_ONLY) << 2259 return true; << 2260 1847 2261 /* !! 1848 file = anon_inode_getfile("[userfaultfd]", &userfaultfd_fops, ctx, 2262 * The user is requesting a userfault !! 1849 O_RDWR | (flags & UFFD_SHARED_FCNTL_FLAGS)); 2263 * Privileged users are always allowe !! 1850 if (IS_ERR(file)) { 2264 */ !! 1851 mmdrop(ctx->mm); 2265 if (capable(CAP_SYS_PTRACE)) !! 1852 kmem_cache_free(userfaultfd_ctx_cachep, ctx); 2266 return true; !! 1853 } 2267 !! 1854 out: 2268 /* Otherwise, access to kernel fault !! 1855 return file; 2269 return sysctl_unprivileged_userfaultf << 2270 } 1856 } 2271 1857 2272 SYSCALL_DEFINE1(userfaultfd, int, flags) 1858 SYSCALL_DEFINE1(userfaultfd, int, flags) 2273 { 1859 { 2274 if (!userfaultfd_syscall_allowed(flag !! 1860 int fd, error; 2275 return -EPERM; !! 1861 struct file *file; 2276 1862 2277 return new_userfaultfd(flags); !! 1863 error = get_unused_fd_flags(flags & UFFD_SHARED_FCNTL_FLAGS); 2278 } !! 1864 if (error < 0) >> 1865 return error; >> 1866 fd = error; 2279 1867 2280 static long userfaultfd_dev_ioctl(struct file !! 1868 file = userfaultfd_file_create(flags); 2281 { !! 1869 if (IS_ERR(file)) { 2282 if (cmd != USERFAULTFD_IOC_NEW) !! 1870 error = PTR_ERR(file); 2283 return -EINVAL; !! 1871 goto err_put_unused_fd; >> 1872 } >> 1873 fd_install(fd, file); 2284 1874 2285 return new_userfaultfd(flags); !! 1875 return fd; 2286 } << 2287 1876 2288 static const struct file_operations userfault !! 1877 err_put_unused_fd: 2289 .unlocked_ioctl = userfaultfd_dev_ioc !! 1878 put_unused_fd(fd); 2290 .compat_ioctl = userfaultfd_dev_ioctl << 2291 .owner = THIS_MODULE, << 2292 .llseek = noop_llseek, << 2293 }; << 2294 1879 2295 static struct miscdevice userfaultfd_misc = { !! 1880 return error; 2296 .minor = MISC_DYNAMIC_MINOR, !! 1881 } 2297 .name = "userfaultfd", << 2298 .fops = &userfaultfd_dev_fops << 2299 }; << 2300 1882 2301 static int __init userfaultfd_init(void) 1883 static int __init userfaultfd_init(void) 2302 { 1884 { 2303 int ret; << 2304 << 2305 ret = misc_register(&userfaultfd_misc << 2306 if (ret) << 2307 return ret; << 2308 << 2309 userfaultfd_ctx_cachep = kmem_cache_c 1885 userfaultfd_ctx_cachep = kmem_cache_create("userfaultfd_ctx_cache", 2310 1886 sizeof(struct userfaultfd_ctx), 2311 1887 0, 2312 1888 SLAB_HWCACHE_ALIGN|SLAB_PANIC, 2313 1889 init_once_userfaultfd_ctx); 2314 #ifdef CONFIG_SYSCTL << 2315 register_sysctl_init("vm", vm_userfau << 2316 #endif << 2317 return 0; 1890 return 0; 2318 } 1891 } 2319 __initcall(userfaultfd_init); 1892 __initcall(userfaultfd_init); 2320 1893
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.