1 // SPDX-License-Identifier: GPL-2.0-only << 2 /* 1 /* 3 * fs/userfaultfd.c 2 * fs/userfaultfd.c 4 * 3 * 5 * Copyright (C) 2007 Davide Libenzi <davide 4 * Copyright (C) 2007 Davide Libenzi <davidel@xmailserver.org> 6 * Copyright (C) 2008-2009 Red Hat, Inc. 5 * Copyright (C) 2008-2009 Red Hat, Inc. 7 * Copyright (C) 2015 Red Hat, Inc. 6 * Copyright (C) 2015 Red Hat, Inc. 8 * 7 * >> 8 * This work is licensed under the terms of the GNU GPL, version 2. See >> 9 * the COPYING file in the top-level directory. >> 10 * 9 * Some part derived from fs/eventfd.c (anon 11 * Some part derived from fs/eventfd.c (anon inode setup) and 10 * mm/ksm.c (mm hashing). 12 * mm/ksm.c (mm hashing). 11 */ 13 */ 12 14 13 #include <linux/list.h> << 14 #include <linux/hashtable.h> 15 #include <linux/hashtable.h> 15 #include <linux/sched/signal.h> !! 16 #include <linux/sched.h> 16 #include <linux/sched/mm.h> << 17 #include <linux/mm.h> 17 #include <linux/mm.h> 18 #include <linux/mm_inline.h> << 19 #include <linux/mmu_notifier.h> << 20 #include <linux/poll.h> 18 #include <linux/poll.h> 21 #include <linux/slab.h> 19 #include <linux/slab.h> 22 #include <linux/seq_file.h> 20 #include <linux/seq_file.h> 23 #include <linux/file.h> 21 #include <linux/file.h> 24 #include <linux/bug.h> 22 #include <linux/bug.h> 25 #include <linux/anon_inodes.h> 23 #include <linux/anon_inodes.h> 26 #include <linux/syscalls.h> 24 #include <linux/syscalls.h> 27 #include <linux/userfaultfd_k.h> 25 #include <linux/userfaultfd_k.h> 28 #include <linux/mempolicy.h> 26 #include <linux/mempolicy.h> 29 #include <linux/ioctl.h> 27 #include <linux/ioctl.h> 30 #include <linux/security.h> 28 #include <linux/security.h> 31 #include <linux/hugetlb.h> << 32 #include <linux/swapops.h> << 33 #include <linux/miscdevice.h> << 34 #include <linux/uio.h> << 35 << 36 static int sysctl_unprivileged_userfaultfd __r << 37 << 38 #ifdef CONFIG_SYSCTL << 39 static struct ctl_table vm_userfaultfd_table[] << 40 { << 41 .procname = "unprivilege << 42 .data = &sysctl_unpr << 43 .maxlen = sizeof(sysct << 44 .mode = 0644, << 45 .proc_handler = proc_dointve << 46 .extra1 = SYSCTL_ZERO, << 47 .extra2 = SYSCTL_ONE, << 48 }, << 49 }; << 50 #endif << 51 29 52 static struct kmem_cache *userfaultfd_ctx_cach !! 30 static struct kmem_cache *userfaultfd_ctx_cachep __read_mostly; 53 31 54 struct userfaultfd_fork_ctx { !! 32 enum userfaultfd_state { 55 struct userfaultfd_ctx *orig; !! 33 UFFD_STATE_WAIT_API, 56 struct userfaultfd_ctx *new; !! 34 UFFD_STATE_RUNNING, 57 struct list_head list; << 58 }; 35 }; 59 36 60 struct userfaultfd_unmap_ctx { !! 37 /* 61 struct userfaultfd_ctx *ctx; !! 38 * Start with fault_pending_wqh and fault_wqh so they're more likely 62 unsigned long start; !! 39 * to be in the same cacheline. 63 unsigned long end; !! 40 */ 64 struct list_head list; !! 41 struct userfaultfd_ctx { >> 42 /* waitqueue head for the pending (i.e. not read) userfaults */ >> 43 wait_queue_head_t fault_pending_wqh; >> 44 /* waitqueue head for the userfaults */ >> 45 wait_queue_head_t fault_wqh; >> 46 /* waitqueue head for the pseudo fd to wakeup poll/read */ >> 47 wait_queue_head_t fd_wqh; >> 48 /* a refile sequence protected by fault_pending_wqh lock */ >> 49 struct seqcount refile_seq; >> 50 /* pseudo fd refcounting */ >> 51 atomic_t refcount; >> 52 /* userfaultfd syscall flags */ >> 53 unsigned int flags; >> 54 /* state machine */ >> 55 enum userfaultfd_state state; >> 56 /* released */ >> 57 bool released; >> 58 /* mm with one ore more vmas attached to this userfaultfd_ctx */ >> 59 struct mm_struct *mm; 65 }; 60 }; 66 61 67 struct userfaultfd_wait_queue { 62 struct userfaultfd_wait_queue { 68 struct uffd_msg msg; 63 struct uffd_msg msg; 69 wait_queue_entry_t wq; !! 64 wait_queue_t wq; 70 struct userfaultfd_ctx *ctx; 65 struct userfaultfd_ctx *ctx; 71 bool waken; 66 bool waken; 72 }; 67 }; 73 68 74 struct userfaultfd_wake_range { 69 struct userfaultfd_wake_range { 75 unsigned long start; 70 unsigned long start; 76 unsigned long len; 71 unsigned long len; 77 }; 72 }; 78 73 79 /* internal indication that UFFD_API ioctl was !! 74 static int userfaultfd_wake_function(wait_queue_t *wq, unsigned mode, 80 #define UFFD_FEATURE_INITIALIZED << 81 << 82 static bool userfaultfd_is_initialized(struct << 83 { << 84 return ctx->features & UFFD_FEATURE_IN << 85 } << 86 << 87 static bool userfaultfd_wp_async_ctx(struct us << 88 { << 89 return ctx && (ctx->features & UFFD_FE << 90 } << 91 << 92 /* << 93 * Whether WP_UNPOPULATED is enabled on the uf << 94 * meaningful when userfaultfd_wp()==true on t << 95 * anonymous. << 96 */ << 97 bool userfaultfd_wp_unpopulated(struct vm_area << 98 { << 99 struct userfaultfd_ctx *ctx = vma->vm_ << 100 << 101 if (!ctx) << 102 return false; << 103 << 104 return ctx->features & UFFD_FEATURE_WP << 105 } << 106 << 107 static void userfaultfd_set_vm_flags(struct vm << 108 vm_flags_ << 109 { << 110 const bool uffd_wp_changed = (vma->vm_ << 111 << 112 vm_flags_reset(vma, flags); << 113 /* << 114 * For shared mappings, we want to ena << 115 * userfaultfd-wp is enabled (see vma_ << 116 * recalculate vma->vm_page_prot whene << 117 */ << 118 if ((vma->vm_flags & VM_SHARED) && uff << 119 vma_set_page_prot(vma); << 120 } << 121 << 122 static int userfaultfd_wake_function(wait_queu << 123 int wake_ 75 int wake_flags, void *key) 124 { 76 { 125 struct userfaultfd_wake_range *range = 77 struct userfaultfd_wake_range *range = key; 126 int ret; 78 int ret; 127 struct userfaultfd_wait_queue *uwq; 79 struct userfaultfd_wait_queue *uwq; 128 unsigned long start, len; 80 unsigned long start, len; 129 81 130 uwq = container_of(wq, struct userfaul 82 uwq = container_of(wq, struct userfaultfd_wait_queue, wq); 131 ret = 0; 83 ret = 0; 132 /* len == 0 means wake all */ 84 /* len == 0 means wake all */ 133 start = range->start; 85 start = range->start; 134 len = range->len; 86 len = range->len; 135 if (len && (start > uwq->msg.arg.pagef 87 if (len && (start > uwq->msg.arg.pagefault.address || 136 start + len <= uwq->msg.ar 88 start + len <= uwq->msg.arg.pagefault.address)) 137 goto out; 89 goto out; 138 WRITE_ONCE(uwq->waken, true); 90 WRITE_ONCE(uwq->waken, true); 139 /* 91 /* 140 * The Program-Order guarantees provid !! 92 * The implicit smp_mb__before_spinlock in try_to_wake_up() 141 * ensure uwq->waken is visible before !! 93 * renders uwq->waken visible to other CPUs before the task is >> 94 * waken. 142 */ 95 */ 143 ret = wake_up_state(wq->private, mode) 96 ret = wake_up_state(wq->private, mode); 144 if (ret) { !! 97 if (ret) 145 /* 98 /* 146 * Wake only once, autoremove 99 * Wake only once, autoremove behavior. 147 * 100 * 148 * After the effect of list_de !! 101 * After the effect of list_del_init is visible to the 149 * CPUs, the waitqueue may dis !! 102 * other CPUs, the waitqueue may disappear from under 150 * !list_empty_careful() in ha !! 103 * us, see the !list_empty_careful() in 151 * !! 104 * handle_userfault(). try_to_wake_up() has an 152 * try_to_wake_up() has an imp !! 105 * implicit smp_mb__before_spinlock, and the 153 * wq->private is read before !! 106 * wq->private is read before calling the extern 154 * "wake_up_state" (which in t !! 107 * function "wake_up_state" (which in turns calls >> 108 * try_to_wake_up). While the spin_lock;spin_unlock; >> 109 * wouldn't be enough, the smp_mb__before_spinlock is >> 110 * enough to avoid an explicit smp_mb() here. 155 */ 111 */ 156 list_del_init(&wq->entry); !! 112 list_del_init(&wq->task_list); 157 } << 158 out: 113 out: 159 return ret; 114 return ret; 160 } 115 } 161 116 162 /** 117 /** 163 * userfaultfd_ctx_get - Acquires a reference 118 * userfaultfd_ctx_get - Acquires a reference to the internal userfaultfd 164 * context. 119 * context. 165 * @ctx: [in] Pointer to the userfaultfd conte 120 * @ctx: [in] Pointer to the userfaultfd context. >> 121 * >> 122 * Returns: In case of success, returns not zero. 166 */ 123 */ 167 static void userfaultfd_ctx_get(struct userfau 124 static void userfaultfd_ctx_get(struct userfaultfd_ctx *ctx) 168 { 125 { 169 refcount_inc(&ctx->refcount); !! 126 if (!atomic_inc_not_zero(&ctx->refcount)) >> 127 BUG(); 170 } 128 } 171 129 172 /** 130 /** 173 * userfaultfd_ctx_put - Releases a reference 131 * userfaultfd_ctx_put - Releases a reference to the internal userfaultfd 174 * context. 132 * context. 175 * @ctx: [in] Pointer to userfaultfd context. 133 * @ctx: [in] Pointer to userfaultfd context. 176 * 134 * 177 * The userfaultfd context reference must have 135 * The userfaultfd context reference must have been previously acquired either 178 * with userfaultfd_ctx_get() or userfaultfd_c 136 * with userfaultfd_ctx_get() or userfaultfd_ctx_fdget(). 179 */ 137 */ 180 static void userfaultfd_ctx_put(struct userfau 138 static void userfaultfd_ctx_put(struct userfaultfd_ctx *ctx) 181 { 139 { 182 if (refcount_dec_and_test(&ctx->refcou !! 140 if (atomic_dec_and_test(&ctx->refcount)) { 183 VM_BUG_ON(spin_is_locked(&ctx- 141 VM_BUG_ON(spin_is_locked(&ctx->fault_pending_wqh.lock)); 184 VM_BUG_ON(waitqueue_active(&ct 142 VM_BUG_ON(waitqueue_active(&ctx->fault_pending_wqh)); 185 VM_BUG_ON(spin_is_locked(&ctx- 143 VM_BUG_ON(spin_is_locked(&ctx->fault_wqh.lock)); 186 VM_BUG_ON(waitqueue_active(&ct 144 VM_BUG_ON(waitqueue_active(&ctx->fault_wqh)); 187 VM_BUG_ON(spin_is_locked(&ctx- << 188 VM_BUG_ON(waitqueue_active(&ct << 189 VM_BUG_ON(spin_is_locked(&ctx- 145 VM_BUG_ON(spin_is_locked(&ctx->fd_wqh.lock)); 190 VM_BUG_ON(waitqueue_active(&ct 146 VM_BUG_ON(waitqueue_active(&ctx->fd_wqh)); 191 mmdrop(ctx->mm); 147 mmdrop(ctx->mm); 192 kmem_cache_free(userfaultfd_ct 148 kmem_cache_free(userfaultfd_ctx_cachep, ctx); 193 } 149 } 194 } 150 } 195 151 196 static inline void msg_init(struct uffd_msg *m 152 static inline void msg_init(struct uffd_msg *msg) 197 { 153 { 198 BUILD_BUG_ON(sizeof(struct uffd_msg) ! 154 BUILD_BUG_ON(sizeof(struct uffd_msg) != 32); 199 /* 155 /* 200 * Must use memset to zero out the pad 156 * Must use memset to zero out the paddings or kernel data is 201 * leaked to userland. 157 * leaked to userland. 202 */ 158 */ 203 memset(msg, 0, sizeof(struct uffd_msg) 159 memset(msg, 0, sizeof(struct uffd_msg)); 204 } 160 } 205 161 206 static inline struct uffd_msg userfault_msg(un 162 static inline struct uffd_msg userfault_msg(unsigned long address, 207 un << 208 un 163 unsigned int flags, 209 un !! 164 unsigned long reason) 210 un << 211 { 165 { 212 struct uffd_msg msg; 166 struct uffd_msg msg; 213 << 214 msg_init(&msg); 167 msg_init(&msg); 215 msg.event = UFFD_EVENT_PAGEFAULT; 168 msg.event = UFFD_EVENT_PAGEFAULT; 216 !! 169 msg.arg.pagefault.address = address; 217 msg.arg.pagefault.address = (features << 218 real_addre << 219 << 220 /* << 221 * These flags indicate why the userfa << 222 * - UFFD_PAGEFAULT_FLAG_WP indicates << 223 * - UFFD_PAGEFAULT_FLAG_MINOR indicat << 224 * - Neither of these flags being set << 225 * << 226 * Separately, UFFD_PAGEFAULT_FLAG_WRI << 227 * fault. Otherwise, it was a read fau << 228 */ << 229 if (flags & FAULT_FLAG_WRITE) 170 if (flags & FAULT_FLAG_WRITE) >> 171 /* >> 172 * If UFFD_FEATURE_PAGEFAULT_FLAG_WRITE was set in the >> 173 * uffdio_api.features and UFFD_PAGEFAULT_FLAG_WRITE >> 174 * was not set in a UFFD_EVENT_PAGEFAULT, it means it >> 175 * was a read fault, otherwise if set it means it's >> 176 * a write fault. >> 177 */ 230 msg.arg.pagefault.flags |= UFF 178 msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_WRITE; 231 if (reason & VM_UFFD_WP) 179 if (reason & VM_UFFD_WP) >> 180 /* >> 181 * If UFFD_FEATURE_PAGEFAULT_FLAG_WP was set in the >> 182 * uffdio_api.features and UFFD_PAGEFAULT_FLAG_WP was >> 183 * not set in a UFFD_EVENT_PAGEFAULT, it means it was >> 184 * a missing fault, otherwise if set it means it's a >> 185 * write protect fault. >> 186 */ 232 msg.arg.pagefault.flags |= UFF 187 msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_WP; 233 if (reason & VM_UFFD_MINOR) << 234 msg.arg.pagefault.flags |= UFF << 235 if (features & UFFD_FEATURE_THREAD_ID) << 236 msg.arg.pagefault.feat.ptid = << 237 return msg; 188 return msg; 238 } 189 } 239 190 240 #ifdef CONFIG_HUGETLB_PAGE << 241 /* << 242 * Same functionality as userfaultfd_must_wait << 243 * hugepmd ranges. << 244 */ << 245 static inline bool userfaultfd_huge_must_wait( << 246 << 247 << 248 { << 249 struct vm_area_struct *vma = vmf->vma; << 250 pte_t *ptep, pte; << 251 bool ret = true; << 252 << 253 assert_fault_locked(vmf); << 254 << 255 ptep = hugetlb_walk(vma, vmf->address, << 256 if (!ptep) << 257 goto out; << 258 << 259 ret = false; << 260 pte = huge_ptep_get(vma->vm_mm, vmf->a << 261 << 262 /* << 263 * Lockless access: we're in a wait_ev << 264 * changes under us. PTE markers shou << 265 * ptes here. << 266 */ << 267 if (huge_pte_none_mostly(pte)) << 268 ret = true; << 269 if (!huge_pte_write(pte) && (reason & << 270 ret = true; << 271 out: << 272 return ret; << 273 } << 274 #else << 275 static inline bool userfaultfd_huge_must_wait( << 276 << 277 << 278 { << 279 return false; /* should never get he << 280 } << 281 #endif /* CONFIG_HUGETLB_PAGE */ << 282 << 283 /* 191 /* 284 * Verify the pagetables are still not ok afte 192 * Verify the pagetables are still not ok after having reigstered into 285 * the fault_pending_wqh to avoid userland hav 193 * the fault_pending_wqh to avoid userland having to UFFDIO_WAKE any 286 * userfault that has already been resolved, i !! 194 * userfault that has already been resolved, if userfaultfd_read and 287 * UFFDIO_COPY|ZEROPAGE are being run simultan 195 * UFFDIO_COPY|ZEROPAGE are being run simultaneously on two different 288 * threads. 196 * threads. 289 */ 197 */ 290 static inline bool userfaultfd_must_wait(struc 198 static inline bool userfaultfd_must_wait(struct userfaultfd_ctx *ctx, 291 struc !! 199 unsigned long address, >> 200 unsigned long flags, 292 unsig 201 unsigned long reason) 293 { 202 { 294 struct mm_struct *mm = ctx->mm; 203 struct mm_struct *mm = ctx->mm; 295 unsigned long address = vmf->address; << 296 pgd_t *pgd; 204 pgd_t *pgd; 297 p4d_t *p4d; << 298 pud_t *pud; 205 pud_t *pud; 299 pmd_t *pmd, _pmd; 206 pmd_t *pmd, _pmd; 300 pte_t *pte; 207 pte_t *pte; 301 pte_t ptent; << 302 bool ret = true; 208 bool ret = true; 303 209 304 assert_fault_locked(vmf); !! 210 VM_BUG_ON(!rwsem_is_locked(&mm->mmap_sem)); 305 211 306 pgd = pgd_offset(mm, address); 212 pgd = pgd_offset(mm, address); 307 if (!pgd_present(*pgd)) 213 if (!pgd_present(*pgd)) 308 goto out; 214 goto out; 309 p4d = p4d_offset(pgd, address); !! 215 pud = pud_offset(pgd, address); 310 if (!p4d_present(*p4d)) << 311 goto out; << 312 pud = pud_offset(p4d, address); << 313 if (!pud_present(*pud)) 216 if (!pud_present(*pud)) 314 goto out; 217 goto out; 315 pmd = pmd_offset(pud, address); 218 pmd = pmd_offset(pud, address); 316 again: !! 219 /* 317 _pmd = pmdp_get_lockless(pmd); !! 220 * READ_ONCE must function as a barrier with narrower scope 318 if (pmd_none(_pmd)) !! 221 * and it must be equivalent to: >> 222 * _pmd = *pmd; barrier(); >> 223 * >> 224 * This is to deal with the instability (as in >> 225 * pmd_trans_unstable) of the pmd. >> 226 */ >> 227 _pmd = READ_ONCE(*pmd); >> 228 if (!pmd_present(_pmd)) 319 goto out; 229 goto out; 320 230 321 ret = false; 231 ret = false; 322 if (!pmd_present(_pmd) || pmd_devmap(_ !! 232 if (pmd_trans_huge(_pmd)) 323 goto out; 233 goto out; 324 234 325 if (pmd_trans_huge(_pmd)) { !! 235 /* 326 if (!pmd_write(_pmd) && (reaso !! 236 * the pmd is stable (as in !pmd_trans_unstable) so we can re-read it 327 ret = true; !! 237 * and use the standard pte_offset_map() instead of parsing _pmd. 328 goto out; !! 238 */ 329 } << 330 << 331 pte = pte_offset_map(pmd, address); 239 pte = pte_offset_map(pmd, address); 332 if (!pte) { << 333 ret = true; << 334 goto again; << 335 } << 336 /* 240 /* 337 * Lockless access: we're in a wait_ev 241 * Lockless access: we're in a wait_event so it's ok if it 338 * changes under us. PTE markers shou !! 242 * changes under us. 339 * ptes here. << 340 */ 243 */ 341 ptent = ptep_get(pte); !! 244 if (pte_none(*pte)) 342 if (pte_none_mostly(ptent)) << 343 ret = true; << 344 if (!pte_write(ptent) && (reason & VM_ << 345 ret = true; 245 ret = true; 346 pte_unmap(pte); 246 pte_unmap(pte); 347 247 348 out: 248 out: 349 return ret; 249 return ret; 350 } 250 } 351 251 352 static inline unsigned int userfaultfd_get_blo << 353 { << 354 if (flags & FAULT_FLAG_INTERRUPTIBLE) << 355 return TASK_INTERRUPTIBLE; << 356 << 357 if (flags & FAULT_FLAG_KILLABLE) << 358 return TASK_KILLABLE; << 359 << 360 return TASK_UNINTERRUPTIBLE; << 361 } << 362 << 363 /* 252 /* 364 * The locking rules involved in returning VM_ 253 * The locking rules involved in returning VM_FAULT_RETRY depending on 365 * FAULT_FLAG_ALLOW_RETRY, FAULT_FLAG_RETRY_NO 254 * FAULT_FLAG_ALLOW_RETRY, FAULT_FLAG_RETRY_NOWAIT and 366 * FAULT_FLAG_KILLABLE are not straightforward 255 * FAULT_FLAG_KILLABLE are not straightforward. The "Caution" 367 * recommendation in __lock_page_or_retry is n 256 * recommendation in __lock_page_or_retry is not an understatement. 368 * 257 * 369 * If FAULT_FLAG_ALLOW_RETRY is set, the mmap_ !! 258 * If FAULT_FLAG_ALLOW_RETRY is set, the mmap_sem must be released 370 * before returning VM_FAULT_RETRY only if FAU 259 * before returning VM_FAULT_RETRY only if FAULT_FLAG_RETRY_NOWAIT is 371 * not set. 260 * not set. 372 * 261 * 373 * If FAULT_FLAG_ALLOW_RETRY is set but FAULT_ 262 * If FAULT_FLAG_ALLOW_RETRY is set but FAULT_FLAG_KILLABLE is not 374 * set, VM_FAULT_RETRY can still be returned i 263 * set, VM_FAULT_RETRY can still be returned if and only if there are 375 * fatal_signal_pending()s, and the mmap_lock !! 264 * fatal_signal_pending()s, and the mmap_sem must be released before 376 * returning it. 265 * returning it. 377 */ 266 */ 378 vm_fault_t handle_userfault(struct vm_fault *v !! 267 int handle_userfault(struct fault_env *fe, unsigned long reason) 379 { 268 { 380 struct vm_area_struct *vma = vmf->vma; !! 269 struct mm_struct *mm = fe->vma->vm_mm; 381 struct mm_struct *mm = vma->vm_mm; << 382 struct userfaultfd_ctx *ctx; 270 struct userfaultfd_ctx *ctx; 383 struct userfaultfd_wait_queue uwq; 271 struct userfaultfd_wait_queue uwq; 384 vm_fault_t ret = VM_FAULT_SIGBUS; !! 272 int ret; 385 bool must_wait; !! 273 bool must_wait, return_to_userland; 386 unsigned int blocking_state; !! 274 long blocking_state; 387 << 388 /* << 389 * We don't do userfault handling for << 390 * << 391 * We also don't do userfault handling << 392 * coredumping. hugetlbfs has the spec << 393 * hugetlb_follow_page_mask() to skip << 394 * FOLL_DUMP case, anon memory also ch << 395 * the no_page_table() helper in follo << 396 * shmem_vm_ops->fault method is invok << 397 * coredumping and it ends up here. << 398 */ << 399 if (current->flags & (PF_EXITING|PF_DU << 400 goto out; << 401 275 402 assert_fault_locked(vmf); !! 276 BUG_ON(!rwsem_is_locked(&mm->mmap_sem)); 403 277 404 ctx = vma->vm_userfaultfd_ctx.ctx; !! 278 ret = VM_FAULT_SIGBUS; >> 279 ctx = fe->vma->vm_userfaultfd_ctx.ctx; 405 if (!ctx) 280 if (!ctx) 406 goto out; 281 goto out; 407 282 408 BUG_ON(ctx->mm != mm); 283 BUG_ON(ctx->mm != mm); 409 284 410 /* Any unrecognized flag is a bug. */ !! 285 VM_BUG_ON(reason & ~(VM_UFFD_MISSING|VM_UFFD_WP)); 411 VM_BUG_ON(reason & ~__VM_UFFD_FLAGS); !! 286 VM_BUG_ON(!(reason & VM_UFFD_MISSING) ^ !!(reason & VM_UFFD_WP)); 412 /* 0 or > 1 flags set is a bug; we exp << 413 VM_BUG_ON(!reason || (reason & (reason << 414 << 415 if (ctx->features & UFFD_FEATURE_SIGBU << 416 goto out; << 417 if (!(vmf->flags & FAULT_FLAG_USER) && << 418 goto out; << 419 287 420 /* 288 /* 421 * If it's already released don't get 289 * If it's already released don't get it. This avoids to loop 422 * in __get_user_pages if userfaultfd_ 290 * in __get_user_pages if userfaultfd_release waits on the 423 * caller of handle_userfault to relea !! 291 * caller of handle_userfault to release the mmap_sem. 424 */ 292 */ 425 if (unlikely(READ_ONCE(ctx->released)) !! 293 if (unlikely(ACCESS_ONCE(ctx->released))) 426 /* !! 294 goto out; 427 * Don't return VM_FAULT_SIGBU !! 295 428 * cooperative manager can clo !! 296 /* 429 * last UFFDIO_COPY, without r !! 297 * We don't do userfault handling for the final child pid update. 430 * involuntary SIGBUS if the p !! 298 */ 431 * userfaultfd while the userf !! 299 if (current->flags & PF_EXITING) 432 * (but after the last UFFDIO_ << 433 * wasn't already closed when << 434 * this point, that would norm << 435 * userfaultfd_must_wait retur << 436 * << 437 * If we were to return VM_FAU << 438 * cooperative manager would b << 439 * always call UFFDIO_UNREGIST << 440 * close the uffd. << 441 */ << 442 ret = VM_FAULT_NOPAGE; << 443 goto out; 300 goto out; 444 } << 445 301 446 /* 302 /* 447 * Check that we can return VM_FAULT_R 303 * Check that we can return VM_FAULT_RETRY. 448 * 304 * 449 * NOTE: it should become possible to 305 * NOTE: it should become possible to return VM_FAULT_RETRY 450 * even if FAULT_FLAG_TRIED is set wit 306 * even if FAULT_FLAG_TRIED is set without leading to gup() 451 * -EBUSY failures, if the userfaultfd 307 * -EBUSY failures, if the userfaultfd is to be extended for 452 * VM_UFFD_WP tracking and we intend t 308 * VM_UFFD_WP tracking and we intend to arm the userfault 453 * without first stopping userland acc 309 * without first stopping userland access to the memory. For 454 * VM_UFFD_MISSING userfaults this is 310 * VM_UFFD_MISSING userfaults this is enough for now. 455 */ 311 */ 456 if (unlikely(!(vmf->flags & FAULT_FLAG !! 312 if (unlikely(!(fe->flags & FAULT_FLAG_ALLOW_RETRY))) { 457 /* 313 /* 458 * Validate the invariant that 314 * Validate the invariant that nowait must allow retry 459 * to be sure not to return SI 315 * to be sure not to return SIGBUS erroneously on 460 * nowait invocations. 316 * nowait invocations. 461 */ 317 */ 462 BUG_ON(vmf->flags & FAULT_FLAG !! 318 BUG_ON(fe->flags & FAULT_FLAG_RETRY_NOWAIT); 463 #ifdef CONFIG_DEBUG_VM 319 #ifdef CONFIG_DEBUG_VM 464 if (printk_ratelimit()) { 320 if (printk_ratelimit()) { 465 printk(KERN_WARNING 321 printk(KERN_WARNING 466 "FAULT_FLAG_ALL !! 322 "FAULT_FLAG_ALLOW_RETRY missing %x\n", fe->flags); 467 vmf->flags); << 468 dump_stack(); 323 dump_stack(); 469 } 324 } 470 #endif 325 #endif 471 goto out; 326 goto out; 472 } 327 } 473 328 474 /* 329 /* 475 * Handle nowait, not much to do other 330 * Handle nowait, not much to do other than tell it to retry 476 * and wait. 331 * and wait. 477 */ 332 */ 478 ret = VM_FAULT_RETRY; 333 ret = VM_FAULT_RETRY; 479 if (vmf->flags & FAULT_FLAG_RETRY_NOWA !! 334 if (fe->flags & FAULT_FLAG_RETRY_NOWAIT) 480 goto out; 335 goto out; 481 336 482 /* take the reference before dropping !! 337 /* take the reference before dropping the mmap_sem */ 483 userfaultfd_ctx_get(ctx); 338 userfaultfd_ctx_get(ctx); 484 339 485 init_waitqueue_func_entry(&uwq.wq, use 340 init_waitqueue_func_entry(&uwq.wq, userfaultfd_wake_function); 486 uwq.wq.private = current; 341 uwq.wq.private = current; 487 uwq.msg = userfault_msg(vmf->address, !! 342 uwq.msg = userfault_msg(fe->address, fe->flags, reason); 488 reason, ctx->f << 489 uwq.ctx = ctx; 343 uwq.ctx = ctx; 490 uwq.waken = false; 344 uwq.waken = false; 491 345 492 blocking_state = userfaultfd_get_block !! 346 return_to_userland = 493 !! 347 (fe->flags & (FAULT_FLAG_USER|FAULT_FLAG_KILLABLE)) == 494 /* !! 348 (FAULT_FLAG_USER|FAULT_FLAG_KILLABLE); 495 * Take the vma lock now, in order to !! 349 blocking_state = return_to_userland ? TASK_INTERRUPTIBLE : 496 * userfaultfd_huge_must_wait() later. !! 350 TASK_KILLABLE; 497 * (sleepable) vma lock can modify the << 498 * must be before explicitly calling s << 499 */ << 500 if (is_vm_hugetlb_page(vma)) << 501 hugetlb_vma_lock_read(vma); << 502 351 503 spin_lock_irq(&ctx->fault_pending_wqh. !! 352 spin_lock(&ctx->fault_pending_wqh.lock); 504 /* 353 /* 505 * After the __add_wait_queue the uwq 354 * After the __add_wait_queue the uwq is visible to userland 506 * through poll/read(). 355 * through poll/read(). 507 */ 356 */ 508 __add_wait_queue(&ctx->fault_pending_w 357 __add_wait_queue(&ctx->fault_pending_wqh, &uwq.wq); 509 /* 358 /* 510 * The smp_mb() after __set_current_st 359 * The smp_mb() after __set_current_state prevents the reads 511 * following the spin_unlock to happen 360 * following the spin_unlock to happen before the list_add in 512 * __add_wait_queue. 361 * __add_wait_queue. 513 */ 362 */ 514 set_current_state(blocking_state); 363 set_current_state(blocking_state); 515 spin_unlock_irq(&ctx->fault_pending_wq !! 364 spin_unlock(&ctx->fault_pending_wqh.lock); 516 365 517 if (!is_vm_hugetlb_page(vma)) !! 366 must_wait = userfaultfd_must_wait(ctx, fe->address, fe->flags, reason); 518 must_wait = userfaultfd_must_w !! 367 up_read(&mm->mmap_sem); 519 else << 520 must_wait = userfaultfd_huge_m << 521 if (is_vm_hugetlb_page(vma)) << 522 hugetlb_vma_unlock_read(vma); << 523 release_fault_lock(vmf); << 524 368 525 if (likely(must_wait && !READ_ONCE(ctx !! 369 if (likely(must_wait && !ACCESS_ONCE(ctx->released) && 526 wake_up_poll(&ctx->fd_wqh, EPO !! 370 (return_to_userland ? !signal_pending(current) : >> 371 !fatal_signal_pending(current)))) { >> 372 wake_up_poll(&ctx->fd_wqh, POLLIN); 527 schedule(); 373 schedule(); >> 374 ret |= VM_FAULT_MAJOR; >> 375 >> 376 /* >> 377 * False wakeups can orginate even from rwsem before >> 378 * up_read() however userfaults will wait either for a >> 379 * targeted wakeup on the specific uwq waitqueue from >> 380 * wake_userfault() or for signals or for uffd >> 381 * release. >> 382 */ >> 383 while (!READ_ONCE(uwq.waken)) { >> 384 /* >> 385 * This needs the full smp_store_mb() >> 386 * guarantee as the state write must be >> 387 * visible to other CPUs before reading >> 388 * uwq.waken from other CPUs. >> 389 */ >> 390 set_current_state(blocking_state); >> 391 if (READ_ONCE(uwq.waken) || >> 392 READ_ONCE(ctx->released) || >> 393 (return_to_userland ? signal_pending(current) : >> 394 fatal_signal_pending(current))) >> 395 break; >> 396 schedule(); >> 397 } 528 } 398 } 529 399 530 __set_current_state(TASK_RUNNING); 400 __set_current_state(TASK_RUNNING); 531 401 >> 402 if (return_to_userland) { >> 403 if (signal_pending(current) && >> 404 !fatal_signal_pending(current)) { >> 405 /* >> 406 * If we got a SIGSTOP or SIGCONT and this is >> 407 * a normal userland page fault, just let >> 408 * userland return so the signal will be >> 409 * handled and gdb debugging works. The page >> 410 * fault code immediately after we return from >> 411 * this function is going to release the >> 412 * mmap_sem and it's not depending on it >> 413 * (unlike gup would if we were not to return >> 414 * VM_FAULT_RETRY). >> 415 * >> 416 * If a fatal signal is pending we still take >> 417 * the streamlined VM_FAULT_RETRY failure path >> 418 * and there's no need to retake the mmap_sem >> 419 * in such case. >> 420 */ >> 421 down_read(&mm->mmap_sem); >> 422 ret = VM_FAULT_NOPAGE; >> 423 } >> 424 } >> 425 532 /* 426 /* 533 * Here we race with the list_del; lis 427 * Here we race with the list_del; list_add in 534 * userfaultfd_ctx_read(), however bec 428 * userfaultfd_ctx_read(), however because we don't ever run 535 * list_del_init() to refile across th 429 * list_del_init() to refile across the two lists, the prev 536 * and next pointers will never point 430 * and next pointers will never point to self. list_add also 537 * would never let any of the two poin 431 * would never let any of the two pointers to point to 538 * self. So list_empty_careful won't r 432 * self. So list_empty_careful won't risk to see both pointers 539 * pointing to self at any time during 433 * pointing to self at any time during the list refile. The 540 * only case where list_del_init() is 434 * only case where list_del_init() is called is the full 541 * removal in the wake function and th 435 * removal in the wake function and there we don't re-list_add 542 * and it's fine not to block on the s 436 * and it's fine not to block on the spinlock. The uwq on this 543 * kernel stack can be released after 437 * kernel stack can be released after the list_del_init. 544 */ 438 */ 545 if (!list_empty_careful(&uwq.wq.entry) !! 439 if (!list_empty_careful(&uwq.wq.task_list)) { 546 spin_lock_irq(&ctx->fault_pend !! 440 spin_lock(&ctx->fault_pending_wqh.lock); 547 /* 441 /* 548 * No need of list_del_init(), 442 * No need of list_del_init(), the uwq on the stack 549 * will be freed shortly anywa 443 * will be freed shortly anyway. 550 */ 444 */ 551 list_del(&uwq.wq.entry); !! 445 list_del(&uwq.wq.task_list); 552 spin_unlock_irq(&ctx->fault_pe !! 446 spin_unlock(&ctx->fault_pending_wqh.lock); 553 } 447 } 554 448 555 /* 449 /* 556 * ctx may go away after this if the u 450 * ctx may go away after this if the userfault pseudo fd is 557 * already released. 451 * already released. 558 */ 452 */ 559 userfaultfd_ctx_put(ctx); 453 userfaultfd_ctx_put(ctx); 560 454 561 out: 455 out: 562 return ret; 456 return ret; 563 } 457 } 564 458 565 static void userfaultfd_event_wait_completion( << 566 << 567 { << 568 struct userfaultfd_ctx *release_new_ct << 569 << 570 if (WARN_ON_ONCE(current->flags & PF_E << 571 goto out; << 572 << 573 ewq->ctx = ctx; << 574 init_waitqueue_entry(&ewq->wq, current << 575 release_new_ctx = NULL; << 576 << 577 spin_lock_irq(&ctx->event_wqh.lock); << 578 /* << 579 * After the __add_wait_queue the uwq << 580 * through poll/read(). << 581 */ << 582 __add_wait_queue(&ctx->event_wqh, &ewq << 583 for (;;) { << 584 set_current_state(TASK_KILLABL << 585 if (ewq->msg.event == 0) << 586 break; << 587 if (READ_ONCE(ctx->released) | << 588 fatal_signal_pending(curre << 589 /* << 590 * &ewq->wq may be que << 591 * __remove_wait_queue << 592 * parameter. It would << 593 * didn't. << 594 */ << 595 __remove_wait_queue(&c << 596 if (ewq->msg.event == << 597 struct userfau << 598 << 599 new = (struct << 600 (unsig << 601 ewq->m << 602 release_new_ct << 603 } << 604 break; << 605 } << 606 << 607 spin_unlock_irq(&ctx->event_wq << 608 << 609 wake_up_poll(&ctx->fd_wqh, EPO << 610 schedule(); << 611 << 612 spin_lock_irq(&ctx->event_wqh. << 613 } << 614 __set_current_state(TASK_RUNNING); << 615 spin_unlock_irq(&ctx->event_wqh.lock); << 616 << 617 if (release_new_ctx) { << 618 struct vm_area_struct *vma; << 619 struct mm_struct *mm = release << 620 VMA_ITERATOR(vmi, mm, 0); << 621 << 622 /* the various vma->vm_userfau << 623 mmap_write_lock(mm); << 624 for_each_vma(vmi, vma) { << 625 if (vma->vm_userfaultf << 626 vma_start_writ << 627 vma->vm_userfa << 628 userfaultfd_se << 629 << 630 } << 631 } << 632 mmap_write_unlock(mm); << 633 << 634 userfaultfd_ctx_put(release_ne << 635 } << 636 << 637 /* << 638 * ctx may go away after this if the u << 639 * already released. << 640 */ << 641 out: << 642 atomic_dec(&ctx->mmap_changing); << 643 VM_BUG_ON(atomic_read(&ctx->mmap_chang << 644 userfaultfd_ctx_put(ctx); << 645 } << 646 << 647 static void userfaultfd_event_complete(struct << 648 struct << 649 { << 650 ewq->msg.event = 0; << 651 wake_up_locked(&ctx->event_wqh); << 652 __remove_wait_queue(&ctx->event_wqh, & << 653 } << 654 << 655 int dup_userfaultfd(struct vm_area_struct *vma << 656 { << 657 struct userfaultfd_ctx *ctx = NULL, *o << 658 struct userfaultfd_fork_ctx *fctx; << 659 << 660 octx = vma->vm_userfaultfd_ctx.ctx; << 661 if (!octx) << 662 return 0; << 663 << 664 if (!(octx->features & UFFD_FEATURE_EV << 665 vma_start_write(vma); << 666 vma->vm_userfaultfd_ctx = NULL << 667 userfaultfd_set_vm_flags(vma, << 668 return 0; << 669 } << 670 << 671 list_for_each_entry(fctx, fcs, list) << 672 if (fctx->orig == octx) { << 673 ctx = fctx->new; << 674 break; << 675 } << 676 << 677 if (!ctx) { << 678 fctx = kmalloc(sizeof(*fctx), << 679 if (!fctx) << 680 return -ENOMEM; << 681 << 682 ctx = kmem_cache_alloc(userfau << 683 if (!ctx) { << 684 kfree(fctx); << 685 return -ENOMEM; << 686 } << 687 << 688 refcount_set(&ctx->refcount, 1 << 689 ctx->flags = octx->flags; << 690 ctx->features = octx->features << 691 ctx->released = false; << 692 init_rwsem(&ctx->map_changing_ << 693 atomic_set(&ctx->mmap_changing << 694 ctx->mm = vma->vm_mm; << 695 mmgrab(ctx->mm); << 696 << 697 userfaultfd_ctx_get(octx); << 698 down_write(&octx->map_changing << 699 atomic_inc(&octx->mmap_changin << 700 up_write(&octx->map_changing_l << 701 fctx->orig = octx; << 702 fctx->new = ctx; << 703 list_add_tail(&fctx->list, fcs << 704 } << 705 << 706 vma->vm_userfaultfd_ctx.ctx = ctx; << 707 return 0; << 708 } << 709 << 710 static void dup_fctx(struct userfaultfd_fork_c << 711 { << 712 struct userfaultfd_ctx *ctx = fctx->or << 713 struct userfaultfd_wait_queue ewq; << 714 << 715 msg_init(&ewq.msg); << 716 << 717 ewq.msg.event = UFFD_EVENT_FORK; << 718 ewq.msg.arg.reserved.reserved1 = (unsi << 719 << 720 userfaultfd_event_wait_completion(ctx, << 721 } << 722 << 723 void dup_userfaultfd_complete(struct list_head << 724 { << 725 struct userfaultfd_fork_ctx *fctx, *n; << 726 << 727 list_for_each_entry_safe(fctx, n, fcs, << 728 dup_fctx(fctx); << 729 list_del(&fctx->list); << 730 kfree(fctx); << 731 } << 732 } << 733 << 734 void mremap_userfaultfd_prep(struct vm_area_st << 735 struct vm_userfau << 736 { << 737 struct userfaultfd_ctx *ctx; << 738 << 739 ctx = vma->vm_userfaultfd_ctx.ctx; << 740 << 741 if (!ctx) << 742 return; << 743 << 744 if (ctx->features & UFFD_FEATURE_EVENT << 745 vm_ctx->ctx = ctx; << 746 userfaultfd_ctx_get(ctx); << 747 down_write(&ctx->map_changing_ << 748 atomic_inc(&ctx->mmap_changing << 749 up_write(&ctx->map_changing_lo << 750 } else { << 751 /* Drop uffd context if remap << 752 vma_start_write(vma); << 753 vma->vm_userfaultfd_ctx = NULL << 754 userfaultfd_set_vm_flags(vma, << 755 } << 756 } << 757 << 758 void mremap_userfaultfd_complete(struct vm_use << 759 unsigned long << 760 unsigned long << 761 { << 762 struct userfaultfd_ctx *ctx = vm_ctx-> << 763 struct userfaultfd_wait_queue ewq; << 764 << 765 if (!ctx) << 766 return; << 767 << 768 if (to & ~PAGE_MASK) { << 769 userfaultfd_ctx_put(ctx); << 770 return; << 771 } << 772 << 773 msg_init(&ewq.msg); << 774 << 775 ewq.msg.event = UFFD_EVENT_REMAP; << 776 ewq.msg.arg.remap.from = from; << 777 ewq.msg.arg.remap.to = to; << 778 ewq.msg.arg.remap.len = len; << 779 << 780 userfaultfd_event_wait_completion(ctx, << 781 } << 782 << 783 bool userfaultfd_remove(struct vm_area_struct << 784 unsigned long start, u << 785 { << 786 struct mm_struct *mm = vma->vm_mm; << 787 struct userfaultfd_ctx *ctx; << 788 struct userfaultfd_wait_queue ewq; << 789 << 790 ctx = vma->vm_userfaultfd_ctx.ctx; << 791 if (!ctx || !(ctx->features & UFFD_FEA << 792 return true; << 793 << 794 userfaultfd_ctx_get(ctx); << 795 down_write(&ctx->map_changing_lock); << 796 atomic_inc(&ctx->mmap_changing); << 797 up_write(&ctx->map_changing_lock); << 798 mmap_read_unlock(mm); << 799 << 800 msg_init(&ewq.msg); << 801 << 802 ewq.msg.event = UFFD_EVENT_REMOVE; << 803 ewq.msg.arg.remove.start = start; << 804 ewq.msg.arg.remove.end = end; << 805 << 806 userfaultfd_event_wait_completion(ctx, << 807 << 808 return false; << 809 } << 810 << 811 static bool has_unmap_ctx(struct userfaultfd_c << 812 unsigned long start, << 813 { << 814 struct userfaultfd_unmap_ctx *unmap_ct << 815 << 816 list_for_each_entry(unmap_ctx, unmaps, << 817 if (unmap_ctx->ctx == ctx && u << 818 unmap_ctx->end == end) << 819 return true; << 820 << 821 return false; << 822 } << 823 << 824 int userfaultfd_unmap_prep(struct vm_area_stru << 825 unsigned long end, << 826 { << 827 struct userfaultfd_unmap_ctx *unmap_ct << 828 struct userfaultfd_ctx *ctx = vma->vm_ << 829 << 830 if (!ctx || !(ctx->features & UFFD_FEA << 831 has_unmap_ctx(ctx, unmaps, start, << 832 return 0; << 833 << 834 unmap_ctx = kzalloc(sizeof(*unmap_ctx) << 835 if (!unmap_ctx) << 836 return -ENOMEM; << 837 << 838 userfaultfd_ctx_get(ctx); << 839 down_write(&ctx->map_changing_lock); << 840 atomic_inc(&ctx->mmap_changing); << 841 up_write(&ctx->map_changing_lock); << 842 unmap_ctx->ctx = ctx; << 843 unmap_ctx->start = start; << 844 unmap_ctx->end = end; << 845 list_add_tail(&unmap_ctx->list, unmaps << 846 << 847 return 0; << 848 } << 849 << 850 void userfaultfd_unmap_complete(struct mm_stru << 851 { << 852 struct userfaultfd_unmap_ctx *ctx, *n; << 853 struct userfaultfd_wait_queue ewq; << 854 << 855 list_for_each_entry_safe(ctx, n, uf, l << 856 msg_init(&ewq.msg); << 857 << 858 ewq.msg.event = UFFD_EVENT_UNM << 859 ewq.msg.arg.remove.start = ctx << 860 ewq.msg.arg.remove.end = ctx-> << 861 << 862 userfaultfd_event_wait_complet << 863 << 864 list_del(&ctx->list); << 865 kfree(ctx); << 866 } << 867 } << 868 << 869 static int userfaultfd_release(struct inode *i 459 static int userfaultfd_release(struct inode *inode, struct file *file) 870 { 460 { 871 struct userfaultfd_ctx *ctx = file->pr 461 struct userfaultfd_ctx *ctx = file->private_data; 872 struct mm_struct *mm = ctx->mm; 462 struct mm_struct *mm = ctx->mm; 873 struct vm_area_struct *vma, *prev; 463 struct vm_area_struct *vma, *prev; 874 /* len == 0 means wake all */ 464 /* len == 0 means wake all */ 875 struct userfaultfd_wake_range range = 465 struct userfaultfd_wake_range range = { .len = 0, }; 876 unsigned long new_flags; 466 unsigned long new_flags; 877 VMA_ITERATOR(vmi, mm, 0); !! 467 bool still_valid; 878 468 879 WRITE_ONCE(ctx->released, true); !! 469 ACCESS_ONCE(ctx->released) = true; 880 470 881 if (!mmget_not_zero(mm)) 471 if (!mmget_not_zero(mm)) 882 goto wakeup; 472 goto wakeup; 883 473 884 /* 474 /* 885 * Flush page faults out of all CPUs. 475 * Flush page faults out of all CPUs. NOTE: all page faults 886 * must be retried without returning V 476 * must be retried without returning VM_FAULT_SIGBUS if 887 * userfaultfd_ctx_get() succeeds but 477 * userfaultfd_ctx_get() succeeds but vma->vma_userfault_ctx 888 * changes while handle_userfault rele !! 478 * changes while handle_userfault released the mmap_sem. So 889 * it's critical that released is set 479 * it's critical that released is set to true (above), before 890 * taking the mmap_lock for writing. !! 480 * taking the mmap_sem for writing. 891 */ 481 */ 892 mmap_write_lock(mm); !! 482 down_write(&mm->mmap_sem); >> 483 still_valid = mmget_still_valid(mm); 893 prev = NULL; 484 prev = NULL; 894 for_each_vma(vmi, vma) { !! 485 for (vma = mm->mmap; vma; vma = vma->vm_next) { 895 cond_resched(); 486 cond_resched(); 896 BUG_ON(!!vma->vm_userfaultfd_c 487 BUG_ON(!!vma->vm_userfaultfd_ctx.ctx ^ 897 !!(vma->vm_flags & __VM !! 488 !!(vma->vm_flags & (VM_UFFD_MISSING | VM_UFFD_WP))); 898 if (vma->vm_userfaultfd_ctx.ct 489 if (vma->vm_userfaultfd_ctx.ctx != ctx) { 899 prev = vma; 490 prev = vma; 900 continue; 491 continue; 901 } 492 } 902 /* Reset ptes for the whole vm !! 493 new_flags = vma->vm_flags & ~(VM_UFFD_MISSING | VM_UFFD_WP); 903 if (userfaultfd_wp(vma)) !! 494 if (still_valid) { 904 uffd_wp_range(vma, vma !! 495 prev = vma_merge(mm, prev, vma->vm_start, vma->vm_end, 905 vma->vm_ !! 496 new_flags, vma->anon_vma, 906 new_flags = vma->vm_flags & ~_ !! 497 vma->vm_file, vma->vm_pgoff, 907 vma = vma_modify_flags_uffd(&v !! 498 vma_policy(vma), 908 vm !! 499 NULL_VM_UFFD_CTX); 909 NU !! 500 if (prev) 910 !! 501 vma = prev; 911 vma_start_write(vma); !! 502 else 912 userfaultfd_set_vm_flags(vma, !! 503 prev = vma; >> 504 } >> 505 vma->vm_flags = new_flags; 913 vma->vm_userfaultfd_ctx = NULL 506 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX; 914 << 915 prev = vma; << 916 } 507 } 917 mmap_write_unlock(mm); !! 508 up_write(&mm->mmap_sem); 918 mmput(mm); 509 mmput(mm); 919 wakeup: 510 wakeup: 920 /* 511 /* 921 * After no new page faults can wait o 512 * After no new page faults can wait on this fault_*wqh, flush 922 * the last page faults that may have 513 * the last page faults that may have been already waiting on 923 * the fault_*wqh. 514 * the fault_*wqh. 924 */ 515 */ 925 spin_lock_irq(&ctx->fault_pending_wqh. !! 516 spin_lock(&ctx->fault_pending_wqh.lock); 926 __wake_up_locked_key(&ctx->fault_pendi 517 __wake_up_locked_key(&ctx->fault_pending_wqh, TASK_NORMAL, &range); 927 __wake_up(&ctx->fault_wqh, TASK_NORMAL !! 518 __wake_up_locked_key(&ctx->fault_wqh, TASK_NORMAL, &range); 928 spin_unlock_irq(&ctx->fault_pending_wq !! 519 spin_unlock(&ctx->fault_pending_wqh.lock); 929 520 930 /* Flush pending events that may still !! 521 wake_up_poll(&ctx->fd_wqh, POLLHUP); 931 wake_up_all(&ctx->event_wqh); << 932 << 933 wake_up_poll(&ctx->fd_wqh, EPOLLHUP); << 934 userfaultfd_ctx_put(ctx); 522 userfaultfd_ctx_put(ctx); 935 return 0; 523 return 0; 936 } 524 } 937 525 938 /* fault_pending_wqh.lock must be hold by the 526 /* fault_pending_wqh.lock must be hold by the caller */ 939 static inline struct userfaultfd_wait_queue *f !! 527 static inline struct userfaultfd_wait_queue *find_userfault( 940 wait_queue_head_t *wqh) !! 528 struct userfaultfd_ctx *ctx) 941 { 529 { 942 wait_queue_entry_t *wq; !! 530 wait_queue_t *wq; 943 struct userfaultfd_wait_queue *uwq; 531 struct userfaultfd_wait_queue *uwq; 944 532 945 lockdep_assert_held(&wqh->lock); !! 533 VM_BUG_ON(!spin_is_locked(&ctx->fault_pending_wqh.lock)); 946 534 947 uwq = NULL; 535 uwq = NULL; 948 if (!waitqueue_active(wqh)) !! 536 if (!waitqueue_active(&ctx->fault_pending_wqh)) 949 goto out; 537 goto out; 950 /* walk in reverse to provide FIFO beh 538 /* walk in reverse to provide FIFO behavior to read userfaults */ 951 wq = list_last_entry(&wqh->head, typeo !! 539 wq = list_last_entry(&ctx->fault_pending_wqh.task_list, >> 540 typeof(*wq), task_list); 952 uwq = container_of(wq, struct userfaul 541 uwq = container_of(wq, struct userfaultfd_wait_queue, wq); 953 out: 542 out: 954 return uwq; 543 return uwq; 955 } 544 } 956 545 957 static inline struct userfaultfd_wait_queue *f !! 546 static unsigned int userfaultfd_poll(struct file *file, poll_table *wait) 958 struct userfaultfd_ctx *ctx) << 959 { << 960 return find_userfault_in(&ctx->fault_p << 961 } << 962 << 963 static inline struct userfaultfd_wait_queue *f << 964 struct userfaultfd_ctx *ctx) << 965 { << 966 return find_userfault_in(&ctx->event_w << 967 } << 968 << 969 static __poll_t userfaultfd_poll(struct file * << 970 { 547 { 971 struct userfaultfd_ctx *ctx = file->pr 548 struct userfaultfd_ctx *ctx = file->private_data; 972 __poll_t ret; !! 549 unsigned int ret; 973 550 974 poll_wait(file, &ctx->fd_wqh, wait); 551 poll_wait(file, &ctx->fd_wqh, wait); 975 552 976 if (!userfaultfd_is_initialized(ctx)) !! 553 switch (ctx->state) { 977 return EPOLLERR; !! 554 case UFFD_STATE_WAIT_API: 978 !! 555 return POLLERR; 979 /* !! 556 case UFFD_STATE_RUNNING: 980 * poll() never guarantees that read w !! 557 /* 981 * userfaults can be waken before they !! 558 * poll() never guarantees that read won't block. 982 */ !! 559 * userfaults can be waken before they're read(). 983 if (unlikely(!(file->f_flags & O_NONBL !! 560 */ 984 return EPOLLERR; !! 561 if (unlikely(!(file->f_flags & O_NONBLOCK))) 985 /* !! 562 return POLLERR; 986 * lockless access to see if there are !! 563 /* 987 * __pollwait last action is the add_w !! 564 * lockless access to see if there are pending faults 988 * the spin_unlock would allow the wai !! 565 * __pollwait last action is the add_wait_queue but 989 * pass above the actual list_add insi !! 566 * the spin_unlock would allow the waitqueue_active to 990 * add_wait_queue critical section. So !! 567 * pass above the actual list_add inside 991 * memory barrier to serialize the lis !! 568 * add_wait_queue critical section. So use a full 992 * add_wait_queue() with the waitqueue !! 569 * memory barrier to serialize the list_add write of 993 * below. !! 570 * add_wait_queue() with the waitqueue_active read 994 */ !! 571 * below. 995 ret = 0; !! 572 */ 996 smp_mb(); !! 573 ret = 0; 997 if (waitqueue_active(&ctx->fault_pendi !! 574 smp_mb(); 998 ret = EPOLLIN; !! 575 if (waitqueue_active(&ctx->fault_pending_wqh)) 999 else if (waitqueue_active(&ctx->event_ !! 576 ret = POLLIN; 1000 ret = EPOLLIN; !! 577 return ret; 1001 !! 578 default: 1002 return ret; !! 579 BUG(); 1003 } !! 580 } 1004 << 1005 static const struct file_operations userfault << 1006 << 1007 static int resolve_userfault_fork(struct user << 1008 struct inod << 1009 struct uffd << 1010 { << 1011 int fd; << 1012 << 1013 fd = anon_inode_create_getfd("[userfa << 1014 O_RDONLY | (new->flag << 1015 if (fd < 0) << 1016 return fd; << 1017 << 1018 msg->arg.reserved.reserved1 = 0; << 1019 msg->arg.fork.ufd = fd; << 1020 return 0; << 1021 } 581 } 1022 582 1023 static ssize_t userfaultfd_ctx_read(struct us 583 static ssize_t userfaultfd_ctx_read(struct userfaultfd_ctx *ctx, int no_wait, 1024 struct uf !! 584 struct uffd_msg *msg) 1025 { 585 { 1026 ssize_t ret; 586 ssize_t ret; 1027 DECLARE_WAITQUEUE(wait, current); 587 DECLARE_WAITQUEUE(wait, current); 1028 struct userfaultfd_wait_queue *uwq; 588 struct userfaultfd_wait_queue *uwq; 1029 /* << 1030 * Handling fork event requires sleep << 1031 * we drop the event_wqh lock, then d << 1032 * lock it back and wake up the waite << 1033 * dropped the ewq may go away so we << 1034 * carefully. << 1035 */ << 1036 LIST_HEAD(fork_event); << 1037 struct userfaultfd_ctx *fork_nctx = N << 1038 589 1039 /* always take the fd_wqh lock before 590 /* always take the fd_wqh lock before the fault_pending_wqh lock */ 1040 spin_lock_irq(&ctx->fd_wqh.lock); !! 591 spin_lock(&ctx->fd_wqh.lock); 1041 __add_wait_queue(&ctx->fd_wqh, &wait) 592 __add_wait_queue(&ctx->fd_wqh, &wait); 1042 for (;;) { 593 for (;;) { 1043 set_current_state(TASK_INTERR 594 set_current_state(TASK_INTERRUPTIBLE); 1044 spin_lock(&ctx->fault_pending 595 spin_lock(&ctx->fault_pending_wqh.lock); 1045 uwq = find_userfault(ctx); 596 uwq = find_userfault(ctx); 1046 if (uwq) { 597 if (uwq) { 1047 /* 598 /* 1048 * Use a seqcount to 599 * Use a seqcount to repeat the lockless check 1049 * in wake_userfault( 600 * in wake_userfault() to avoid missing 1050 * wakeups because du 601 * wakeups because during the refile both 1051 * waitqueue could be 602 * waitqueue could become empty if this is the 1052 * only userfault. 603 * only userfault. 1053 */ 604 */ 1054 write_seqcount_begin( 605 write_seqcount_begin(&ctx->refile_seq); 1055 606 1056 /* 607 /* 1057 * The fault_pending_ 608 * The fault_pending_wqh.lock prevents the uwq 1058 * to disappear from 609 * to disappear from under us. 1059 * 610 * 1060 * Refile this userfa 611 * Refile this userfault from 1061 * fault_pending_wqh 612 * fault_pending_wqh to fault_wqh, it's not 1062 * pending anymore af 613 * pending anymore after we read it. 1063 * 614 * 1064 * Use list_del() by 615 * Use list_del() by hand (as 1065 * userfaultfd_wake_f 616 * userfaultfd_wake_function also uses 1066 * list_del_init() by 617 * list_del_init() by hand) to be sure nobody 1067 * changes __remove_w 618 * changes __remove_wait_queue() to use 1068 * list_del_init() in 619 * list_del_init() in turn breaking the 1069 * !list_empty_carefu 620 * !list_empty_careful() check in 1070 * handle_userfault() !! 621 * handle_userfault(). The uwq->wq.task_list 1071 * must never be empt 622 * must never be empty at any time during the 1072 * refile, or the wai 623 * refile, or the waitqueue could disappear 1073 * from under us. The 624 * from under us. The "wait_queue_head_t" 1074 * parameter of __rem 625 * parameter of __remove_wait_queue() is unused 1075 * anyway. 626 * anyway. 1076 */ 627 */ 1077 list_del(&uwq->wq.ent !! 628 list_del(&uwq->wq.task_list); 1078 add_wait_queue(&ctx-> !! 629 __add_wait_queue(&ctx->fault_wqh, &uwq->wq); 1079 630 1080 write_seqcount_end(&c 631 write_seqcount_end(&ctx->refile_seq); 1081 632 1082 /* careful to always 633 /* careful to always initialize msg if ret == 0 */ 1083 *msg = uwq->msg; 634 *msg = uwq->msg; 1084 spin_unlock(&ctx->fau 635 spin_unlock(&ctx->fault_pending_wqh.lock); 1085 ret = 0; 636 ret = 0; 1086 break; 637 break; 1087 } 638 } 1088 spin_unlock(&ctx->fault_pendi 639 spin_unlock(&ctx->fault_pending_wqh.lock); 1089 << 1090 spin_lock(&ctx->event_wqh.loc << 1091 uwq = find_userfault_evt(ctx) << 1092 if (uwq) { << 1093 *msg = uwq->msg; << 1094 << 1095 if (uwq->msg.event == << 1096 fork_nctx = ( << 1097 (unsi << 1098 uwq-> << 1099 list_move(&uw << 1100 /* << 1101 * fork_nctx << 1102 * we drop th << 1103 * reference << 1104 */ << 1105 userfaultfd_c << 1106 spin_unlock(& << 1107 ret = 0; << 1108 break; << 1109 } << 1110 << 1111 userfaultfd_event_com << 1112 spin_unlock(&ctx->eve << 1113 ret = 0; << 1114 break; << 1115 } << 1116 spin_unlock(&ctx->event_wqh.l << 1117 << 1118 if (signal_pending(current)) 640 if (signal_pending(current)) { 1119 ret = -ERESTARTSYS; 641 ret = -ERESTARTSYS; 1120 break; 642 break; 1121 } 643 } 1122 if (no_wait) { 644 if (no_wait) { 1123 ret = -EAGAIN; 645 ret = -EAGAIN; 1124 break; 646 break; 1125 } 647 } 1126 spin_unlock_irq(&ctx->fd_wqh. !! 648 spin_unlock(&ctx->fd_wqh.lock); 1127 schedule(); 649 schedule(); 1128 spin_lock_irq(&ctx->fd_wqh.lo !! 650 spin_lock(&ctx->fd_wqh.lock); 1129 } 651 } 1130 __remove_wait_queue(&ctx->fd_wqh, &wa 652 __remove_wait_queue(&ctx->fd_wqh, &wait); 1131 __set_current_state(TASK_RUNNING); 653 __set_current_state(TASK_RUNNING); 1132 spin_unlock_irq(&ctx->fd_wqh.lock); !! 654 spin_unlock(&ctx->fd_wqh.lock); 1133 << 1134 if (!ret && msg->event == UFFD_EVENT_ << 1135 ret = resolve_userfault_fork( << 1136 spin_lock_irq(&ctx->event_wqh << 1137 if (!list_empty(&fork_event)) << 1138 /* << 1139 * The fork thread di << 1140 * drop the temporary << 1141 */ << 1142 userfaultfd_ctx_put(f << 1143 << 1144 uwq = list_first_entr << 1145 << 1146 << 1147 /* << 1148 * If fork_event list << 1149 * the event wasn't a << 1150 * (the event is allo << 1151 * stack), put the ev << 1152 * the event_wq. fork << 1153 * as soon as we retu << 1154 * stay queued there << 1155 * "ret" value. << 1156 */ << 1157 list_del(&uwq->wq.ent << 1158 __add_wait_queue(&ctx << 1159 << 1160 /* << 1161 * Leave the event in << 1162 * error to userland << 1163 * the userfault fork << 1164 */ << 1165 if (likely(!ret)) << 1166 userfaultfd_e << 1167 } else { << 1168 /* << 1169 * Here the fork thre << 1170 * refcount from the << 1171 * has already been r << 1172 * the reference we t << 1173 * lock above. If res << 1174 * failed we've to dr << 1175 * fork_nctx has to b << 1176 * it succeeded we'll << 1177 * uffd references it << 1178 */ << 1179 if (ret) << 1180 userfaultfd_c << 1181 } << 1182 spin_unlock_irq(&ctx->event_w << 1183 } << 1184 655 1185 return ret; 656 return ret; 1186 } 657 } 1187 658 1188 static ssize_t userfaultfd_read_iter(struct k !! 659 static ssize_t userfaultfd_read(struct file *file, char __user *buf, >> 660 size_t count, loff_t *ppos) 1189 { 661 { 1190 struct file *file = iocb->ki_filp; << 1191 struct userfaultfd_ctx *ctx = file->p 662 struct userfaultfd_ctx *ctx = file->private_data; 1192 ssize_t _ret, ret = 0; 663 ssize_t _ret, ret = 0; 1193 struct uffd_msg msg; 664 struct uffd_msg msg; 1194 struct inode *inode = file_inode(file !! 665 int no_wait = file->f_flags & O_NONBLOCK; 1195 bool no_wait; << 1196 666 1197 if (!userfaultfd_is_initialized(ctx)) !! 667 if (ctx->state == UFFD_STATE_WAIT_API) 1198 return -EINVAL; 668 return -EINVAL; 1199 669 1200 no_wait = file->f_flags & O_NONBLOCK << 1201 for (;;) { 670 for (;;) { 1202 if (iov_iter_count(to) < size !! 671 if (count < sizeof(msg)) 1203 return ret ? ret : -E 672 return ret ? ret : -EINVAL; 1204 _ret = userfaultfd_ctx_read(c !! 673 _ret = userfaultfd_ctx_read(ctx, no_wait, &msg); 1205 if (_ret < 0) 674 if (_ret < 0) 1206 return ret ? ret : _r 675 return ret ? ret : _ret; 1207 _ret = !copy_to_iter_full(&ms !! 676 if (copy_to_user((__u64 __user *) buf, &msg, sizeof(msg))) 1208 if (_ret) << 1209 return ret ? ret : -E 677 return ret ? ret : -EFAULT; 1210 ret += sizeof(msg); 678 ret += sizeof(msg); >> 679 buf += sizeof(msg); >> 680 count -= sizeof(msg); 1211 /* 681 /* 1212 * Allow to read more than on 682 * Allow to read more than one fault at time but only 1213 * block if waiting for the v 683 * block if waiting for the very first one. 1214 */ 684 */ 1215 no_wait = true; !! 685 no_wait = O_NONBLOCK; 1216 } 686 } 1217 } 687 } 1218 688 1219 static void __wake_userfault(struct userfault 689 static void __wake_userfault(struct userfaultfd_ctx *ctx, 1220 struct userfault 690 struct userfaultfd_wake_range *range) 1221 { 691 { 1222 spin_lock_irq(&ctx->fault_pending_wqh !! 692 unsigned long start, end; >> 693 >> 694 start = range->start; >> 695 end = range->start + range->len; >> 696 >> 697 spin_lock(&ctx->fault_pending_wqh.lock); 1223 /* wake all in the range and autoremo 698 /* wake all in the range and autoremove */ 1224 if (waitqueue_active(&ctx->fault_pend 699 if (waitqueue_active(&ctx->fault_pending_wqh)) 1225 __wake_up_locked_key(&ctx->fa 700 __wake_up_locked_key(&ctx->fault_pending_wqh, TASK_NORMAL, 1226 range); 701 range); 1227 if (waitqueue_active(&ctx->fault_wqh) 702 if (waitqueue_active(&ctx->fault_wqh)) 1228 __wake_up(&ctx->fault_wqh, TA !! 703 __wake_up_locked_key(&ctx->fault_wqh, TASK_NORMAL, range); 1229 spin_unlock_irq(&ctx->fault_pending_w !! 704 spin_unlock(&ctx->fault_pending_wqh.lock); 1230 } 705 } 1231 706 1232 static __always_inline void wake_userfault(st 707 static __always_inline void wake_userfault(struct userfaultfd_ctx *ctx, 1233 st 708 struct userfaultfd_wake_range *range) 1234 { 709 { 1235 unsigned seq; 710 unsigned seq; 1236 bool need_wakeup; 711 bool need_wakeup; 1237 712 1238 /* 713 /* 1239 * To be sure waitqueue_active() is n 714 * To be sure waitqueue_active() is not reordered by the CPU 1240 * before the pagetable update, use a 715 * before the pagetable update, use an explicit SMP memory 1241 * barrier here. PT lock release or m !! 716 * barrier here. PT lock release or up_read(mmap_sem) still 1242 * have release semantics that can al 717 * have release semantics that can allow the 1243 * waitqueue_active() to be reordered 718 * waitqueue_active() to be reordered before the pte update. 1244 */ 719 */ 1245 smp_mb(); 720 smp_mb(); 1246 721 1247 /* 722 /* 1248 * Use waitqueue_active because it's 723 * Use waitqueue_active because it's very frequent to 1249 * change the address space atomicall 724 * change the address space atomically even if there are no 1250 * userfaults yet. So we take the spi 725 * userfaults yet. So we take the spinlock only when we're 1251 * sure we've userfaults to wake. 726 * sure we've userfaults to wake. 1252 */ 727 */ 1253 do { 728 do { 1254 seq = read_seqcount_begin(&ct 729 seq = read_seqcount_begin(&ctx->refile_seq); 1255 need_wakeup = waitqueue_activ 730 need_wakeup = waitqueue_active(&ctx->fault_pending_wqh) || 1256 waitqueue_active(&ctx 731 waitqueue_active(&ctx->fault_wqh); 1257 cond_resched(); 732 cond_resched(); 1258 } while (read_seqcount_retry(&ctx->re 733 } while (read_seqcount_retry(&ctx->refile_seq, seq)); 1259 if (need_wakeup) 734 if (need_wakeup) 1260 __wake_userfault(ctx, range); 735 __wake_userfault(ctx, range); 1261 } 736 } 1262 737 1263 static __always_inline int validate_unaligned !! 738 static __always_inline int validate_range(struct mm_struct *mm, 1264 struct mm_struct *mm, __u64 start, __ !! 739 __u64 start, __u64 len) 1265 { 740 { 1266 __u64 task_size = mm->task_size; 741 __u64 task_size = mm->task_size; 1267 742 >> 743 if (start & ~PAGE_MASK) >> 744 return -EINVAL; 1268 if (len & ~PAGE_MASK) 745 if (len & ~PAGE_MASK) 1269 return -EINVAL; 746 return -EINVAL; 1270 if (!len) 747 if (!len) 1271 return -EINVAL; 748 return -EINVAL; 1272 if (start < mmap_min_addr) 749 if (start < mmap_min_addr) 1273 return -EINVAL; 750 return -EINVAL; 1274 if (start >= task_size) 751 if (start >= task_size) 1275 return -EINVAL; 752 return -EINVAL; 1276 if (len > task_size - start) 753 if (len > task_size - start) 1277 return -EINVAL; 754 return -EINVAL; 1278 if (start + len <= start) << 1279 return -EINVAL; << 1280 return 0; 755 return 0; 1281 } 756 } 1282 757 1283 static __always_inline int validate_range(str << 1284 __u << 1285 { << 1286 if (start & ~PAGE_MASK) << 1287 return -EINVAL; << 1288 << 1289 return validate_unaligned_range(mm, s << 1290 } << 1291 << 1292 static int userfaultfd_register(struct userfa 758 static int userfaultfd_register(struct userfaultfd_ctx *ctx, 1293 unsigned long 759 unsigned long arg) 1294 { 760 { 1295 struct mm_struct *mm = ctx->mm; 761 struct mm_struct *mm = ctx->mm; 1296 struct vm_area_struct *vma, *prev, *c 762 struct vm_area_struct *vma, *prev, *cur; 1297 int ret; 763 int ret; 1298 struct uffdio_register uffdio_registe 764 struct uffdio_register uffdio_register; 1299 struct uffdio_register __user *user_u 765 struct uffdio_register __user *user_uffdio_register; 1300 unsigned long vm_flags, new_flags; 766 unsigned long vm_flags, new_flags; 1301 bool found; 767 bool found; 1302 bool basic_ioctls; << 1303 unsigned long start, end, vma_end; 768 unsigned long start, end, vma_end; 1304 struct vma_iterator vmi; << 1305 bool wp_async = userfaultfd_wp_async_ << 1306 769 1307 user_uffdio_register = (struct uffdio 770 user_uffdio_register = (struct uffdio_register __user *) arg; 1308 771 1309 ret = -EFAULT; 772 ret = -EFAULT; 1310 if (copy_from_user(&uffdio_register, 773 if (copy_from_user(&uffdio_register, user_uffdio_register, 1311 sizeof(uffdio_regi 774 sizeof(uffdio_register)-sizeof(__u64))) 1312 goto out; 775 goto out; 1313 776 1314 ret = -EINVAL; 777 ret = -EINVAL; 1315 if (!uffdio_register.mode) 778 if (!uffdio_register.mode) 1316 goto out; 779 goto out; 1317 if (uffdio_register.mode & ~UFFD_API_ !! 780 if (uffdio_register.mode & ~(UFFDIO_REGISTER_MODE_MISSING| >> 781 UFFDIO_REGISTER_MODE_WP)) 1318 goto out; 782 goto out; 1319 vm_flags = 0; 783 vm_flags = 0; 1320 if (uffdio_register.mode & UFFDIO_REG 784 if (uffdio_register.mode & UFFDIO_REGISTER_MODE_MISSING) 1321 vm_flags |= VM_UFFD_MISSING; 785 vm_flags |= VM_UFFD_MISSING; 1322 if (uffdio_register.mode & UFFDIO_REG 786 if (uffdio_register.mode & UFFDIO_REGISTER_MODE_WP) { 1323 #ifndef CONFIG_HAVE_ARCH_USERFAULTFD_WP << 1324 goto out; << 1325 #endif << 1326 vm_flags |= VM_UFFD_WP; 787 vm_flags |= VM_UFFD_WP; 1327 } !! 788 /* 1328 if (uffdio_register.mode & UFFDIO_REG !! 789 * FIXME: remove the below error constraint by 1329 #ifndef CONFIG_HAVE_ARCH_USERFAULTFD_MINOR !! 790 * implementing the wprotect tracking mode. >> 791 */ >> 792 ret = -EINVAL; 1330 goto out; 793 goto out; 1331 #endif << 1332 vm_flags |= VM_UFFD_MINOR; << 1333 } 794 } 1334 795 1335 ret = validate_range(mm, uffdio_regis 796 ret = validate_range(mm, uffdio_register.range.start, 1336 uffdio_register. 797 uffdio_register.range.len); 1337 if (ret) 798 if (ret) 1338 goto out; 799 goto out; 1339 800 1340 start = uffdio_register.range.start; 801 start = uffdio_register.range.start; 1341 end = start + uffdio_register.range.l 802 end = start + uffdio_register.range.len; 1342 803 1343 ret = -ENOMEM; 804 ret = -ENOMEM; 1344 if (!mmget_not_zero(mm)) 805 if (!mmget_not_zero(mm)) 1345 goto out; 806 goto out; 1346 807 1347 ret = -EINVAL; !! 808 down_write(&mm->mmap_sem); 1348 mmap_write_lock(mm); !! 809 if (!mmget_still_valid(mm)) 1349 vma_iter_init(&vmi, mm, start); << 1350 vma = vma_find(&vmi, end); << 1351 if (!vma) << 1352 goto out_unlock; 810 goto out_unlock; 1353 811 1354 /* !! 812 vma = find_vma_prev(mm, start, &prev); 1355 * If the first vma contains huge pag !! 813 if (!vma) 1356 * is aligned to huge page size. !! 814 goto out_unlock; 1357 */ << 1358 if (is_vm_hugetlb_page(vma)) { << 1359 unsigned long vma_hpagesize = << 1360 815 1361 if (start & (vma_hpagesize - !! 816 /* check that there's at least one vma in the range */ 1362 goto out_unlock; !! 817 ret = -EINVAL; 1363 } !! 818 if (vma->vm_start >= end) >> 819 goto out_unlock; 1364 820 1365 /* 821 /* 1366 * Search for not compatible vmas. 822 * Search for not compatible vmas. >> 823 * >> 824 * FIXME: this shall be relaxed later so that it doesn't fail >> 825 * on tmpfs backed vmas (in addition to the current allowance >> 826 * on anonymous vmas). 1367 */ 827 */ 1368 found = false; 828 found = false; 1369 basic_ioctls = false; !! 829 for (cur = vma; cur && cur->vm_start < end; cur = cur->vm_next) { 1370 cur = vma; << 1371 do { << 1372 cond_resched(); 830 cond_resched(); 1373 831 1374 BUG_ON(!!cur->vm_userfaultfd_ 832 BUG_ON(!!cur->vm_userfaultfd_ctx.ctx ^ 1375 !!(cur->vm_flags & __V !! 833 !!(cur->vm_flags & (VM_UFFD_MISSING | VM_UFFD_WP))); 1376 834 1377 /* check not compatible vmas 835 /* check not compatible vmas */ 1378 ret = -EINVAL; 836 ret = -EINVAL; 1379 if (!vma_can_userfault(cur, v !! 837 if (cur->vm_ops) 1380 goto out_unlock; << 1381 << 1382 /* << 1383 * UFFDIO_COPY will fill file << 1384 * PROT_WRITE. This check enf << 1385 * MAP_SHARED, the process ha << 1386 * file. If VM_MAYWRITE is se << 1387 * MAP_SHARED vma: there is n << 1388 * F_WRITE_SEAL can be taken << 1389 */ << 1390 ret = -EPERM; << 1391 if (unlikely(!(cur->vm_flags << 1392 goto out_unlock; << 1393 << 1394 /* << 1395 * If this vma contains endin << 1396 * check alignment. << 1397 */ << 1398 if (is_vm_hugetlb_page(cur) & << 1399 end > cur->vm_start) { << 1400 unsigned long vma_hpa << 1401 << 1402 ret = -EINVAL; << 1403 << 1404 if (end & (vma_hpages << 1405 goto out_unlo << 1406 } << 1407 if ((vm_flags & VM_UFFD_WP) & << 1408 goto out_unlock; 838 goto out_unlock; 1409 839 1410 /* 840 /* 1411 * Check that this vma isn't 841 * Check that this vma isn't already owned by a 1412 * different userfaultfd. We 842 * different userfaultfd. We can't allow more than one 1413 * userfaultfd to own a singl 843 * userfaultfd to own a single vma simultaneously or we 1414 * wouldn't know which one to 844 * wouldn't know which one to deliver the userfaults to. 1415 */ 845 */ 1416 ret = -EBUSY; 846 ret = -EBUSY; 1417 if (cur->vm_userfaultfd_ctx.c 847 if (cur->vm_userfaultfd_ctx.ctx && 1418 cur->vm_userfaultfd_ctx.c 848 cur->vm_userfaultfd_ctx.ctx != ctx) 1419 goto out_unlock; 849 goto out_unlock; 1420 850 1421 /* << 1422 * Note vmas containing huge << 1423 */ << 1424 if (is_vm_hugetlb_page(cur)) << 1425 basic_ioctls = true; << 1426 << 1427 found = true; 851 found = true; 1428 } for_each_vma_range(vmi, cur, end); !! 852 } 1429 BUG_ON(!found); 853 BUG_ON(!found); 1430 854 1431 vma_iter_set(&vmi, start); << 1432 prev = vma_prev(&vmi); << 1433 if (vma->vm_start < start) 855 if (vma->vm_start < start) 1434 prev = vma; 856 prev = vma; 1435 857 1436 ret = 0; 858 ret = 0; 1437 for_each_vma_range(vmi, vma, end) { !! 859 do { 1438 cond_resched(); 860 cond_resched(); 1439 861 1440 BUG_ON(!vma_can_userfault(vma !! 862 BUG_ON(vma->vm_ops); 1441 BUG_ON(vma->vm_userfaultfd_ct 863 BUG_ON(vma->vm_userfaultfd_ctx.ctx && 1442 vma->vm_userfaultfd_ct 864 vma->vm_userfaultfd_ctx.ctx != ctx); 1443 WARN_ON(!(vma->vm_flags & VM_ << 1444 865 1445 /* 866 /* 1446 * Nothing to do: this vma is 867 * Nothing to do: this vma is already registered into this 1447 * userfaultfd and with the r 868 * userfaultfd and with the right tracking mode too. 1448 */ 869 */ 1449 if (vma->vm_userfaultfd_ctx.c 870 if (vma->vm_userfaultfd_ctx.ctx == ctx && 1450 (vma->vm_flags & vm_flags 871 (vma->vm_flags & vm_flags) == vm_flags) 1451 goto skip; 872 goto skip; 1452 873 1453 if (vma->vm_start > start) 874 if (vma->vm_start > start) 1454 start = vma->vm_start 875 start = vma->vm_start; 1455 vma_end = min(end, vma->vm_en 876 vma_end = min(end, vma->vm_end); 1456 877 1457 new_flags = (vma->vm_flags & !! 878 new_flags = (vma->vm_flags & ~vm_flags) | vm_flags; 1458 vma = vma_modify_flags_uffd(& !! 879 prev = vma_merge(mm, prev, start, vma_end, new_flags, 1459 n !! 880 vma->anon_vma, vma->vm_file, vma->vm_pgoff, 1460 ( !! 881 vma_policy(vma), 1461 if (IS_ERR(vma)) { !! 882 ((struct vm_userfaultfd_ctx){ ctx })); 1462 ret = PTR_ERR(vma); !! 883 if (prev) { 1463 break; !! 884 vma = prev; >> 885 goto next; 1464 } 886 } 1465 !! 887 if (vma->vm_start < start) { >> 888 ret = split_vma(mm, vma, start, 1); >> 889 if (ret) >> 890 break; >> 891 } >> 892 if (vma->vm_end > end) { >> 893 ret = split_vma(mm, vma, end, 0); >> 894 if (ret) >> 895 break; >> 896 } >> 897 next: 1466 /* 898 /* 1467 * In the vma_merge() success 899 * In the vma_merge() successful mprotect-like case 8: 1468 * the next vma was merged in 900 * the next vma was merged into the current one and 1469 * the current one has not be 901 * the current one has not been updated yet. 1470 */ 902 */ 1471 vma_start_write(vma); !! 903 vma->vm_flags = new_flags; 1472 userfaultfd_set_vm_flags(vma, << 1473 vma->vm_userfaultfd_ctx.ctx = 904 vma->vm_userfaultfd_ctx.ctx = ctx; 1474 905 1475 if (is_vm_hugetlb_page(vma) & << 1476 hugetlb_unshare_all_p << 1477 << 1478 skip: 906 skip: 1479 prev = vma; 907 prev = vma; 1480 start = vma->vm_end; 908 start = vma->vm_end; 1481 } !! 909 vma = vma->vm_next; 1482 !! 910 } while (vma && vma->vm_start < end); 1483 out_unlock: 911 out_unlock: 1484 mmap_write_unlock(mm); !! 912 up_write(&mm->mmap_sem); 1485 mmput(mm); 913 mmput(mm); 1486 if (!ret) { 914 if (!ret) { 1487 __u64 ioctls_out; << 1488 << 1489 ioctls_out = basic_ioctls ? U << 1490 UFFD_API_RANGE_IOCTLS; << 1491 << 1492 /* << 1493 * Declare the WP ioctl only << 1494 * specified and all checks p << 1495 */ << 1496 if (!(uffdio_register.mode & << 1497 ioctls_out &= ~((__u6 << 1498 << 1499 /* CONTINUE ioctl is only sup << 1500 if (!(uffdio_register.mode & << 1501 ioctls_out &= ~((__u6 << 1502 << 1503 /* 915 /* 1504 * Now that we scanned all vm 916 * Now that we scanned all vmas we can already tell 1505 * userland which ioctls meth 917 * userland which ioctls methods are guaranteed to 1506 * succeed on this range. 918 * succeed on this range. 1507 */ 919 */ 1508 if (put_user(ioctls_out, &use !! 920 if (put_user(UFFD_API_RANGE_IOCTLS, >> 921 &user_uffdio_register->ioctls)) 1509 ret = -EFAULT; 922 ret = -EFAULT; 1510 } 923 } 1511 out: 924 out: 1512 return ret; 925 return ret; 1513 } 926 } 1514 927 1515 static int userfaultfd_unregister(struct user 928 static int userfaultfd_unregister(struct userfaultfd_ctx *ctx, 1516 unsigned lo 929 unsigned long arg) 1517 { 930 { 1518 struct mm_struct *mm = ctx->mm; 931 struct mm_struct *mm = ctx->mm; 1519 struct vm_area_struct *vma, *prev, *c 932 struct vm_area_struct *vma, *prev, *cur; 1520 int ret; 933 int ret; 1521 struct uffdio_range uffdio_unregister 934 struct uffdio_range uffdio_unregister; 1522 unsigned long new_flags; 935 unsigned long new_flags; 1523 bool found; 936 bool found; 1524 unsigned long start, end, vma_end; 937 unsigned long start, end, vma_end; 1525 const void __user *buf = (void __user 938 const void __user *buf = (void __user *)arg; 1526 struct vma_iterator vmi; << 1527 bool wp_async = userfaultfd_wp_async_ << 1528 939 1529 ret = -EFAULT; 940 ret = -EFAULT; 1530 if (copy_from_user(&uffdio_unregister 941 if (copy_from_user(&uffdio_unregister, buf, sizeof(uffdio_unregister))) 1531 goto out; 942 goto out; 1532 943 1533 ret = validate_range(mm, uffdio_unreg 944 ret = validate_range(mm, uffdio_unregister.start, 1534 uffdio_unregiste 945 uffdio_unregister.len); 1535 if (ret) 946 if (ret) 1536 goto out; 947 goto out; 1537 948 1538 start = uffdio_unregister.start; 949 start = uffdio_unregister.start; 1539 end = start + uffdio_unregister.len; 950 end = start + uffdio_unregister.len; 1540 951 1541 ret = -ENOMEM; 952 ret = -ENOMEM; 1542 if (!mmget_not_zero(mm)) 953 if (!mmget_not_zero(mm)) 1543 goto out; 954 goto out; 1544 955 1545 mmap_write_lock(mm); !! 956 down_write(&mm->mmap_sem); 1546 ret = -EINVAL; !! 957 if (!mmget_still_valid(mm)) 1547 vma_iter_init(&vmi, mm, start); << 1548 vma = vma_find(&vmi, end); << 1549 if (!vma) << 1550 goto out_unlock; 958 goto out_unlock; 1551 959 1552 /* !! 960 vma = find_vma_prev(mm, start, &prev); 1553 * If the first vma contains huge pag !! 961 if (!vma) 1554 * is aligned to huge page size. !! 962 goto out_unlock; 1555 */ << 1556 if (is_vm_hugetlb_page(vma)) { << 1557 unsigned long vma_hpagesize = << 1558 963 1559 if (start & (vma_hpagesize - !! 964 /* check that there's at least one vma in the range */ 1560 goto out_unlock; !! 965 ret = -EINVAL; 1561 } !! 966 if (vma->vm_start >= end) >> 967 goto out_unlock; 1562 968 1563 /* 969 /* 1564 * Search for not compatible vmas. 970 * Search for not compatible vmas. >> 971 * >> 972 * FIXME: this shall be relaxed later so that it doesn't fail >> 973 * on tmpfs backed vmas (in addition to the current allowance >> 974 * on anonymous vmas). 1565 */ 975 */ 1566 found = false; 976 found = false; 1567 cur = vma; !! 977 ret = -EINVAL; 1568 do { !! 978 for (cur = vma; cur && cur->vm_start < end; cur = cur->vm_next) { 1569 cond_resched(); 979 cond_resched(); 1570 980 1571 BUG_ON(!!cur->vm_userfaultfd_ 981 BUG_ON(!!cur->vm_userfaultfd_ctx.ctx ^ 1572 !!(cur->vm_flags & __V !! 982 !!(cur->vm_flags & (VM_UFFD_MISSING | VM_UFFD_WP))); 1573 983 1574 /* 984 /* 1575 * Check not compatible vmas, 985 * Check not compatible vmas, not strictly required 1576 * here as not compatible vma 986 * here as not compatible vmas cannot have an 1577 * userfaultfd_ctx registered 987 * userfaultfd_ctx registered on them, but this 1578 * provides for more strict b 988 * provides for more strict behavior to notice 1579 * unregistration errors. 989 * unregistration errors. 1580 */ 990 */ 1581 if (!vma_can_userfault(cur, c !! 991 if (cur->vm_ops) 1582 goto out_unlock; 992 goto out_unlock; 1583 993 1584 found = true; 994 found = true; 1585 } for_each_vma_range(vmi, cur, end); !! 995 } 1586 BUG_ON(!found); 996 BUG_ON(!found); 1587 997 1588 vma_iter_set(&vmi, start); << 1589 prev = vma_prev(&vmi); << 1590 if (vma->vm_start < start) 998 if (vma->vm_start < start) 1591 prev = vma; 999 prev = vma; 1592 1000 1593 ret = 0; 1001 ret = 0; 1594 for_each_vma_range(vmi, vma, end) { !! 1002 do { 1595 cond_resched(); 1003 cond_resched(); 1596 1004 1597 BUG_ON(!vma_can_userfault(vma !! 1005 BUG_ON(vma->vm_ops); 1598 1006 1599 /* 1007 /* 1600 * Nothing to do: this vma is 1008 * Nothing to do: this vma is already registered into this 1601 * userfaultfd and with the r 1009 * userfaultfd and with the right tracking mode too. 1602 */ 1010 */ 1603 if (!vma->vm_userfaultfd_ctx. 1011 if (!vma->vm_userfaultfd_ctx.ctx) 1604 goto skip; 1012 goto skip; 1605 1013 1606 WARN_ON(!(vma->vm_flags & VM_ << 1607 << 1608 if (vma->vm_start > start) 1014 if (vma->vm_start > start) 1609 start = vma->vm_start 1015 start = vma->vm_start; 1610 vma_end = min(end, vma->vm_en 1016 vma_end = min(end, vma->vm_end); 1611 1017 1612 if (userfaultfd_missing(vma)) !! 1018 new_flags = vma->vm_flags & ~(VM_UFFD_MISSING | VM_UFFD_WP); 1613 /* !! 1019 prev = vma_merge(mm, prev, start, vma_end, new_flags, 1614 * Wake any concurren !! 1020 vma->anon_vma, vma->vm_file, vma->vm_pgoff, 1615 * we unregister, so !! 1021 vma_policy(vma), 1616 * permanently and it !! 1022 NULL_VM_UFFD_CTX); 1617 * UFFDIO_WAKE explic !! 1023 if (prev) { 1618 */ !! 1024 vma = prev; 1619 struct userfaultfd_wa !! 1025 goto next; 1620 range.start = start; << 1621 range.len = vma_end - << 1622 wake_userfault(vma->v << 1623 } 1026 } 1624 !! 1027 if (vma->vm_start < start) { 1625 /* Reset ptes for the whole v !! 1028 ret = split_vma(mm, vma, start, 1); 1626 if (userfaultfd_wp(vma)) !! 1029 if (ret) 1627 uffd_wp_range(vma, st !! 1030 break; 1628 << 1629 new_flags = vma->vm_flags & ~ << 1630 vma = vma_modify_flags_uffd(& << 1631 n << 1632 if (IS_ERR(vma)) { << 1633 ret = PTR_ERR(vma); << 1634 break; << 1635 } 1031 } 1636 !! 1032 if (vma->vm_end > end) { >> 1033 ret = split_vma(mm, vma, end, 0); >> 1034 if (ret) >> 1035 break; >> 1036 } >> 1037 next: 1637 /* 1038 /* 1638 * In the vma_merge() success 1039 * In the vma_merge() successful mprotect-like case 8: 1639 * the next vma was merged in 1040 * the next vma was merged into the current one and 1640 * the current one has not be 1041 * the current one has not been updated yet. 1641 */ 1042 */ 1642 vma_start_write(vma); !! 1043 vma->vm_flags = new_flags; 1643 userfaultfd_set_vm_flags(vma, << 1644 vma->vm_userfaultfd_ctx = NUL 1044 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX; 1645 1045 1646 skip: 1046 skip: 1647 prev = vma; 1047 prev = vma; 1648 start = vma->vm_end; 1048 start = vma->vm_end; 1649 } !! 1049 vma = vma->vm_next; 1650 !! 1050 } while (vma && vma->vm_start < end); 1651 out_unlock: 1051 out_unlock: 1652 mmap_write_unlock(mm); !! 1052 up_write(&mm->mmap_sem); 1653 mmput(mm); 1053 mmput(mm); 1654 out: 1054 out: 1655 return ret; 1055 return ret; 1656 } 1056 } 1657 1057 1658 /* 1058 /* 1659 * userfaultfd_wake may be used in combinatio 1059 * userfaultfd_wake may be used in combination with the 1660 * UFFDIO_*_MODE_DONTWAKE to wakeup userfault 1060 * UFFDIO_*_MODE_DONTWAKE to wakeup userfaults in batches. 1661 */ 1061 */ 1662 static int userfaultfd_wake(struct userfaultf 1062 static int userfaultfd_wake(struct userfaultfd_ctx *ctx, 1663 unsigned long arg 1063 unsigned long arg) 1664 { 1064 { 1665 int ret; 1065 int ret; 1666 struct uffdio_range uffdio_wake; 1066 struct uffdio_range uffdio_wake; 1667 struct userfaultfd_wake_range range; 1067 struct userfaultfd_wake_range range; 1668 const void __user *buf = (void __user 1068 const void __user *buf = (void __user *)arg; 1669 1069 1670 ret = -EFAULT; 1070 ret = -EFAULT; 1671 if (copy_from_user(&uffdio_wake, buf, 1071 if (copy_from_user(&uffdio_wake, buf, sizeof(uffdio_wake))) 1672 goto out; 1072 goto out; 1673 1073 1674 ret = validate_range(ctx->mm, uffdio_ 1074 ret = validate_range(ctx->mm, uffdio_wake.start, uffdio_wake.len); 1675 if (ret) 1075 if (ret) 1676 goto out; 1076 goto out; 1677 1077 1678 range.start = uffdio_wake.start; 1078 range.start = uffdio_wake.start; 1679 range.len = uffdio_wake.len; 1079 range.len = uffdio_wake.len; 1680 1080 1681 /* 1081 /* 1682 * len == 0 means wake all and we don 1082 * len == 0 means wake all and we don't want to wake all here, 1683 * so check it again to be sure. 1083 * so check it again to be sure. 1684 */ 1084 */ 1685 VM_BUG_ON(!range.len); 1085 VM_BUG_ON(!range.len); 1686 1086 1687 wake_userfault(ctx, &range); 1087 wake_userfault(ctx, &range); 1688 ret = 0; 1088 ret = 0; 1689 1089 1690 out: 1090 out: 1691 return ret; 1091 return ret; 1692 } 1092 } 1693 1093 1694 static int userfaultfd_copy(struct userfaultf 1094 static int userfaultfd_copy(struct userfaultfd_ctx *ctx, 1695 unsigned long arg 1095 unsigned long arg) 1696 { 1096 { 1697 __s64 ret; 1097 __s64 ret; 1698 struct uffdio_copy uffdio_copy; 1098 struct uffdio_copy uffdio_copy; 1699 struct uffdio_copy __user *user_uffdi 1099 struct uffdio_copy __user *user_uffdio_copy; 1700 struct userfaultfd_wake_range range; 1100 struct userfaultfd_wake_range range; 1701 uffd_flags_t flags = 0; << 1702 1101 1703 user_uffdio_copy = (struct uffdio_cop 1102 user_uffdio_copy = (struct uffdio_copy __user *) arg; 1704 1103 1705 ret = -EAGAIN; << 1706 if (atomic_read(&ctx->mmap_changing)) << 1707 goto out; << 1708 << 1709 ret = -EFAULT; 1104 ret = -EFAULT; 1710 if (copy_from_user(&uffdio_copy, user 1105 if (copy_from_user(&uffdio_copy, user_uffdio_copy, 1711 /* don't copy "cop 1106 /* don't copy "copy" last field */ 1712 sizeof(uffdio_copy 1107 sizeof(uffdio_copy)-sizeof(__s64))) 1713 goto out; 1108 goto out; 1714 1109 1715 ret = validate_unaligned_range(ctx->m << 1716 uffdio << 1717 if (ret) << 1718 goto out; << 1719 ret = validate_range(ctx->mm, uffdio_ 1110 ret = validate_range(ctx->mm, uffdio_copy.dst, uffdio_copy.len); 1720 if (ret) 1111 if (ret) 1721 goto out; 1112 goto out; 1722 !! 1113 /* >> 1114 * double check for wraparound just in case. copy_from_user() >> 1115 * will later check uffdio_copy.src + uffdio_copy.len to fit >> 1116 * in the userland range. >> 1117 */ 1723 ret = -EINVAL; 1118 ret = -EINVAL; 1724 if (uffdio_copy.mode & ~(UFFDIO_COPY_ !! 1119 if (uffdio_copy.src + uffdio_copy.len <= uffdio_copy.src) >> 1120 goto out; >> 1121 if (uffdio_copy.mode & ~UFFDIO_COPY_MODE_DONTWAKE) 1725 goto out; 1122 goto out; 1726 if (uffdio_copy.mode & UFFDIO_COPY_MO << 1727 flags |= MFILL_ATOMIC_WP; << 1728 if (mmget_not_zero(ctx->mm)) { 1123 if (mmget_not_zero(ctx->mm)) { 1729 ret = mfill_atomic_copy(ctx, !! 1124 ret = mcopy_atomic(ctx->mm, uffdio_copy.dst, uffdio_copy.src, 1730 uffdi !! 1125 uffdio_copy.len); 1731 mmput(ctx->mm); 1126 mmput(ctx->mm); 1732 } else { << 1733 return -ESRCH; << 1734 } 1127 } 1735 if (unlikely(put_user(ret, &user_uffd 1128 if (unlikely(put_user(ret, &user_uffdio_copy->copy))) 1736 return -EFAULT; 1129 return -EFAULT; 1737 if (ret < 0) 1130 if (ret < 0) 1738 goto out; 1131 goto out; 1739 BUG_ON(!ret); 1132 BUG_ON(!ret); 1740 /* len == 0 would wake all */ 1133 /* len == 0 would wake all */ 1741 range.len = ret; 1134 range.len = ret; 1742 if (!(uffdio_copy.mode & UFFDIO_COPY_ 1135 if (!(uffdio_copy.mode & UFFDIO_COPY_MODE_DONTWAKE)) { 1743 range.start = uffdio_copy.dst 1136 range.start = uffdio_copy.dst; 1744 wake_userfault(ctx, &range); 1137 wake_userfault(ctx, &range); 1745 } 1138 } 1746 ret = range.len == uffdio_copy.len ? 1139 ret = range.len == uffdio_copy.len ? 0 : -EAGAIN; 1747 out: 1140 out: 1748 return ret; 1141 return ret; 1749 } 1142 } 1750 1143 1751 static int userfaultfd_zeropage(struct userfa 1144 static int userfaultfd_zeropage(struct userfaultfd_ctx *ctx, 1752 unsigned long 1145 unsigned long arg) 1753 { 1146 { 1754 __s64 ret; 1147 __s64 ret; 1755 struct uffdio_zeropage uffdio_zeropag 1148 struct uffdio_zeropage uffdio_zeropage; 1756 struct uffdio_zeropage __user *user_u 1149 struct uffdio_zeropage __user *user_uffdio_zeropage; 1757 struct userfaultfd_wake_range range; 1150 struct userfaultfd_wake_range range; 1758 1151 1759 user_uffdio_zeropage = (struct uffdio 1152 user_uffdio_zeropage = (struct uffdio_zeropage __user *) arg; 1760 1153 1761 ret = -EAGAIN; << 1762 if (atomic_read(&ctx->mmap_changing)) << 1763 goto out; << 1764 << 1765 ret = -EFAULT; 1154 ret = -EFAULT; 1766 if (copy_from_user(&uffdio_zeropage, 1155 if (copy_from_user(&uffdio_zeropage, user_uffdio_zeropage, 1767 /* don't copy "zer 1156 /* don't copy "zeropage" last field */ 1768 sizeof(uffdio_zero 1157 sizeof(uffdio_zeropage)-sizeof(__s64))) 1769 goto out; 1158 goto out; 1770 1159 1771 ret = validate_range(ctx->mm, uffdio_ 1160 ret = validate_range(ctx->mm, uffdio_zeropage.range.start, 1772 uffdio_zeropage. 1161 uffdio_zeropage.range.len); 1773 if (ret) 1162 if (ret) 1774 goto out; 1163 goto out; 1775 ret = -EINVAL; 1164 ret = -EINVAL; 1776 if (uffdio_zeropage.mode & ~UFFDIO_ZE 1165 if (uffdio_zeropage.mode & ~UFFDIO_ZEROPAGE_MODE_DONTWAKE) 1777 goto out; 1166 goto out; 1778 1167 1779 if (mmget_not_zero(ctx->mm)) { 1168 if (mmget_not_zero(ctx->mm)) { 1780 ret = mfill_atomic_zeropage(c !! 1169 ret = mfill_zeropage(ctx->mm, uffdio_zeropage.range.start, 1781 uf !! 1170 uffdio_zeropage.range.len); 1782 mmput(ctx->mm); 1171 mmput(ctx->mm); 1783 } else { << 1784 return -ESRCH; << 1785 } 1172 } 1786 if (unlikely(put_user(ret, &user_uffd 1173 if (unlikely(put_user(ret, &user_uffdio_zeropage->zeropage))) 1787 return -EFAULT; 1174 return -EFAULT; 1788 if (ret < 0) 1175 if (ret < 0) 1789 goto out; 1176 goto out; 1790 /* len == 0 would wake all */ 1177 /* len == 0 would wake all */ 1791 BUG_ON(!ret); 1178 BUG_ON(!ret); 1792 range.len = ret; 1179 range.len = ret; 1793 if (!(uffdio_zeropage.mode & UFFDIO_Z 1180 if (!(uffdio_zeropage.mode & UFFDIO_ZEROPAGE_MODE_DONTWAKE)) { 1794 range.start = uffdio_zeropage 1181 range.start = uffdio_zeropage.range.start; 1795 wake_userfault(ctx, &range); 1182 wake_userfault(ctx, &range); 1796 } 1183 } 1797 ret = range.len == uffdio_zeropage.ra 1184 ret = range.len == uffdio_zeropage.range.len ? 0 : -EAGAIN; 1798 out: 1185 out: 1799 return ret; 1186 return ret; 1800 } 1187 } 1801 1188 1802 static int userfaultfd_writeprotect(struct us << 1803 unsigned << 1804 { << 1805 int ret; << 1806 struct uffdio_writeprotect uffdio_wp; << 1807 struct uffdio_writeprotect __user *us << 1808 struct userfaultfd_wake_range range; << 1809 bool mode_wp, mode_dontwake; << 1810 << 1811 if (atomic_read(&ctx->mmap_changing)) << 1812 return -EAGAIN; << 1813 << 1814 user_uffdio_wp = (struct uffdio_write << 1815 << 1816 if (copy_from_user(&uffdio_wp, user_u << 1817 sizeof(struct uffd << 1818 return -EFAULT; << 1819 << 1820 ret = validate_range(ctx->mm, uffdio_ << 1821 uffdio_wp.range. << 1822 if (ret) << 1823 return ret; << 1824 << 1825 if (uffdio_wp.mode & ~(UFFDIO_WRITEPR << 1826 UFFDIO_WRITEPR << 1827 return -EINVAL; << 1828 << 1829 mode_wp = uffdio_wp.mode & UFFDIO_WRI << 1830 mode_dontwake = uffdio_wp.mode & UFFD << 1831 << 1832 if (mode_wp && mode_dontwake) << 1833 return -EINVAL; << 1834 << 1835 if (mmget_not_zero(ctx->mm)) { << 1836 ret = mwriteprotect_range(ctx << 1837 uff << 1838 mmput(ctx->mm); << 1839 } else { << 1840 return -ESRCH; << 1841 } << 1842 << 1843 if (ret) << 1844 return ret; << 1845 << 1846 if (!mode_wp && !mode_dontwake) { << 1847 range.start = uffdio_wp.range << 1848 range.len = uffdio_wp.range.l << 1849 wake_userfault(ctx, &range); << 1850 } << 1851 return ret; << 1852 } << 1853 << 1854 static int userfaultfd_continue(struct userfa << 1855 { << 1856 __s64 ret; << 1857 struct uffdio_continue uffdio_continu << 1858 struct uffdio_continue __user *user_u << 1859 struct userfaultfd_wake_range range; << 1860 uffd_flags_t flags = 0; << 1861 << 1862 user_uffdio_continue = (struct uffdio << 1863 << 1864 ret = -EAGAIN; << 1865 if (atomic_read(&ctx->mmap_changing)) << 1866 goto out; << 1867 << 1868 ret = -EFAULT; << 1869 if (copy_from_user(&uffdio_continue, << 1870 /* don't copy the << 1871 sizeof(uffdio_cont << 1872 goto out; << 1873 << 1874 ret = validate_range(ctx->mm, uffdio_ << 1875 uffdio_continue. << 1876 if (ret) << 1877 goto out; << 1878 << 1879 ret = -EINVAL; << 1880 if (uffdio_continue.mode & ~(UFFDIO_C << 1881 UFFDIO_C << 1882 goto out; << 1883 if (uffdio_continue.mode & UFFDIO_CON << 1884 flags |= MFILL_ATOMIC_WP; << 1885 << 1886 if (mmget_not_zero(ctx->mm)) { << 1887 ret = mfill_atomic_continue(c << 1888 u << 1889 mmput(ctx->mm); << 1890 } else { << 1891 return -ESRCH; << 1892 } << 1893 << 1894 if (unlikely(put_user(ret, &user_uffd << 1895 return -EFAULT; << 1896 if (ret < 0) << 1897 goto out; << 1898 << 1899 /* len == 0 would wake all */ << 1900 BUG_ON(!ret); << 1901 range.len = ret; << 1902 if (!(uffdio_continue.mode & UFFDIO_C << 1903 range.start = uffdio_continue << 1904 wake_userfault(ctx, &range); << 1905 } << 1906 ret = range.len == uffdio_continue.ra << 1907 << 1908 out: << 1909 return ret; << 1910 } << 1911 << 1912 static inline int userfaultfd_poison(struct u << 1913 { << 1914 __s64 ret; << 1915 struct uffdio_poison uffdio_poison; << 1916 struct uffdio_poison __user *user_uff << 1917 struct userfaultfd_wake_range range; << 1918 << 1919 user_uffdio_poison = (struct uffdio_p << 1920 << 1921 ret = -EAGAIN; << 1922 if (atomic_read(&ctx->mmap_changing)) << 1923 goto out; << 1924 << 1925 ret = -EFAULT; << 1926 if (copy_from_user(&uffdio_poison, us << 1927 /* don't copy the << 1928 sizeof(uffdio_pois << 1929 goto out; << 1930 << 1931 ret = validate_range(ctx->mm, uffdio_ << 1932 uffdio_poison.ra << 1933 if (ret) << 1934 goto out; << 1935 << 1936 ret = -EINVAL; << 1937 if (uffdio_poison.mode & ~UFFDIO_POIS << 1938 goto out; << 1939 << 1940 if (mmget_not_zero(ctx->mm)) { << 1941 ret = mfill_atomic_poison(ctx << 1942 uff << 1943 mmput(ctx->mm); << 1944 } else { << 1945 return -ESRCH; << 1946 } << 1947 << 1948 if (unlikely(put_user(ret, &user_uffd << 1949 return -EFAULT; << 1950 if (ret < 0) << 1951 goto out; << 1952 << 1953 /* len == 0 would wake all */ << 1954 BUG_ON(!ret); << 1955 range.len = ret; << 1956 if (!(uffdio_poison.mode & UFFDIO_POI << 1957 range.start = uffdio_poison.r << 1958 wake_userfault(ctx, &range); << 1959 } << 1960 ret = range.len == uffdio_poison.rang << 1961 << 1962 out: << 1963 return ret; << 1964 } << 1965 << 1966 bool userfaultfd_wp_async(struct vm_area_stru << 1967 { << 1968 return userfaultfd_wp_async_ctx(vma-> << 1969 } << 1970 << 1971 static inline unsigned int uffd_ctx_features( << 1972 { << 1973 /* << 1974 * For the current set of features th << 1975 * UFFD_FEATURE_INITIALIZED to mark t << 1976 */ << 1977 return (unsigned int)user_features | << 1978 } << 1979 << 1980 static int userfaultfd_move(struct userfaultf << 1981 unsigned long arg << 1982 { << 1983 __s64 ret; << 1984 struct uffdio_move uffdio_move; << 1985 struct uffdio_move __user *user_uffdi << 1986 struct userfaultfd_wake_range range; << 1987 struct mm_struct *mm = ctx->mm; << 1988 << 1989 user_uffdio_move = (struct uffdio_mov << 1990 << 1991 if (atomic_read(&ctx->mmap_changing)) << 1992 return -EAGAIN; << 1993 << 1994 if (copy_from_user(&uffdio_move, user << 1995 /* don't copy "mov << 1996 sizeof(uffdio_move << 1997 return -EFAULT; << 1998 << 1999 /* Do not allow cross-mm moves. */ << 2000 if (mm != current->mm) << 2001 return -EINVAL; << 2002 << 2003 ret = validate_range(mm, uffdio_move. << 2004 if (ret) << 2005 return ret; << 2006 << 2007 ret = validate_range(mm, uffdio_move. << 2008 if (ret) << 2009 return ret; << 2010 << 2011 if (uffdio_move.mode & ~(UFFDIO_MOVE_ << 2012 UFFDIO_MOVE << 2013 return -EINVAL; << 2014 << 2015 if (mmget_not_zero(mm)) { << 2016 ret = move_pages(ctx, uffdio_ << 2017 uffdio_move. << 2018 mmput(mm); << 2019 } else { << 2020 return -ESRCH; << 2021 } << 2022 << 2023 if (unlikely(put_user(ret, &user_uffd << 2024 return -EFAULT; << 2025 if (ret < 0) << 2026 goto out; << 2027 << 2028 /* len == 0 would wake all */ << 2029 VM_WARN_ON(!ret); << 2030 range.len = ret; << 2031 if (!(uffdio_move.mode & UFFDIO_MOVE_ << 2032 range.start = uffdio_move.dst << 2033 wake_userfault(ctx, &range); << 2034 } << 2035 ret = range.len == uffdio_move.len ? << 2036 << 2037 out: << 2038 return ret; << 2039 } << 2040 << 2041 /* 1189 /* 2042 * userland asks for a certain API version an 1190 * userland asks for a certain API version and we return which bits 2043 * and ioctl commands are implemented in this 1191 * and ioctl commands are implemented in this kernel for such API 2044 * version or -EINVAL if unknown. 1192 * version or -EINVAL if unknown. 2045 */ 1193 */ 2046 static int userfaultfd_api(struct userfaultfd 1194 static int userfaultfd_api(struct userfaultfd_ctx *ctx, 2047 unsigned long arg) 1195 unsigned long arg) 2048 { 1196 { 2049 struct uffdio_api uffdio_api; 1197 struct uffdio_api uffdio_api; 2050 void __user *buf = (void __user *)arg 1198 void __user *buf = (void __user *)arg; 2051 unsigned int ctx_features; << 2052 int ret; 1199 int ret; 2053 __u64 features; << 2054 1200 >> 1201 ret = -EINVAL; >> 1202 if (ctx->state != UFFD_STATE_WAIT_API) >> 1203 goto out; 2055 ret = -EFAULT; 1204 ret = -EFAULT; 2056 if (copy_from_user(&uffdio_api, buf, 1205 if (copy_from_user(&uffdio_api, buf, sizeof(uffdio_api))) 2057 goto out; 1206 goto out; 2058 features = uffdio_api.features; !! 1207 if (uffdio_api.api != UFFD_API || uffdio_api.features) { 2059 ret = -EINVAL; !! 1208 memset(&uffdio_api, 0, sizeof(uffdio_api)); 2060 if (uffdio_api.api != UFFD_API) !! 1209 if (copy_to_user(buf, &uffdio_api, sizeof(uffdio_api))) 2061 goto err_out; !! 1210 goto out; 2062 ret = -EPERM; !! 1211 ret = -EINVAL; 2063 if ((features & UFFD_FEATURE_EVENT_FO !! 1212 goto out; 2064 goto err_out; !! 1213 } 2065 << 2066 /* WP_ASYNC relies on WP_UNPOPULATED, << 2067 if (features & UFFD_FEATURE_WP_ASYNC) << 2068 features |= UFFD_FEATURE_WP_U << 2069 << 2070 /* report all available features and << 2071 uffdio_api.features = UFFD_API_FEATUR 1214 uffdio_api.features = UFFD_API_FEATURES; 2072 #ifndef CONFIG_HAVE_ARCH_USERFAULTFD_MINOR << 2073 uffdio_api.features &= << 2074 ~(UFFD_FEATURE_MINOR_HUGETLBF << 2075 #endif << 2076 #ifndef CONFIG_HAVE_ARCH_USERFAULTFD_WP << 2077 uffdio_api.features &= ~UFFD_FEATURE_ << 2078 #endif << 2079 #ifndef CONFIG_PTE_MARKER_UFFD_WP << 2080 uffdio_api.features &= ~UFFD_FEATURE_ << 2081 uffdio_api.features &= ~UFFD_FEATURE_ << 2082 uffdio_api.features &= ~UFFD_FEATURE_ << 2083 #endif << 2084 << 2085 ret = -EINVAL; << 2086 if (features & ~uffdio_api.features) << 2087 goto err_out; << 2088 << 2089 uffdio_api.ioctls = UFFD_API_IOCTLS; 1215 uffdio_api.ioctls = UFFD_API_IOCTLS; 2090 ret = -EFAULT; 1216 ret = -EFAULT; 2091 if (copy_to_user(buf, &uffdio_api, si 1217 if (copy_to_user(buf, &uffdio_api, sizeof(uffdio_api))) 2092 goto out; 1218 goto out; 2093 !! 1219 ctx->state = UFFD_STATE_RUNNING; 2094 /* only enable the requested features << 2095 ctx_features = uffd_ctx_features(feat << 2096 ret = -EINVAL; << 2097 if (cmpxchg(&ctx->features, 0, ctx_fe << 2098 goto err_out; << 2099 << 2100 ret = 0; 1220 ret = 0; 2101 out: 1221 out: 2102 return ret; 1222 return ret; 2103 err_out: << 2104 memset(&uffdio_api, 0, sizeof(uffdio_ << 2105 if (copy_to_user(buf, &uffdio_api, si << 2106 ret = -EFAULT; << 2107 goto out; << 2108 } 1223 } 2109 1224 2110 static long userfaultfd_ioctl(struct file *fi 1225 static long userfaultfd_ioctl(struct file *file, unsigned cmd, 2111 unsigned long a 1226 unsigned long arg) 2112 { 1227 { 2113 int ret = -EINVAL; 1228 int ret = -EINVAL; 2114 struct userfaultfd_ctx *ctx = file->p 1229 struct userfaultfd_ctx *ctx = file->private_data; 2115 1230 2116 if (cmd != UFFDIO_API && !userfaultfd !! 1231 if (cmd != UFFDIO_API && ctx->state == UFFD_STATE_WAIT_API) 2117 return -EINVAL; 1232 return -EINVAL; 2118 1233 2119 switch(cmd) { 1234 switch(cmd) { 2120 case UFFDIO_API: 1235 case UFFDIO_API: 2121 ret = userfaultfd_api(ctx, ar 1236 ret = userfaultfd_api(ctx, arg); 2122 break; 1237 break; 2123 case UFFDIO_REGISTER: 1238 case UFFDIO_REGISTER: 2124 ret = userfaultfd_register(ct 1239 ret = userfaultfd_register(ctx, arg); 2125 break; 1240 break; 2126 case UFFDIO_UNREGISTER: 1241 case UFFDIO_UNREGISTER: 2127 ret = userfaultfd_unregister( 1242 ret = userfaultfd_unregister(ctx, arg); 2128 break; 1243 break; 2129 case UFFDIO_WAKE: 1244 case UFFDIO_WAKE: 2130 ret = userfaultfd_wake(ctx, a 1245 ret = userfaultfd_wake(ctx, arg); 2131 break; 1246 break; 2132 case UFFDIO_COPY: 1247 case UFFDIO_COPY: 2133 ret = userfaultfd_copy(ctx, a 1248 ret = userfaultfd_copy(ctx, arg); 2134 break; 1249 break; 2135 case UFFDIO_ZEROPAGE: 1250 case UFFDIO_ZEROPAGE: 2136 ret = userfaultfd_zeropage(ct 1251 ret = userfaultfd_zeropage(ctx, arg); 2137 break; 1252 break; 2138 case UFFDIO_MOVE: << 2139 ret = userfaultfd_move(ctx, a << 2140 break; << 2141 case UFFDIO_WRITEPROTECT: << 2142 ret = userfaultfd_writeprotec << 2143 break; << 2144 case UFFDIO_CONTINUE: << 2145 ret = userfaultfd_continue(ct << 2146 break; << 2147 case UFFDIO_POISON: << 2148 ret = userfaultfd_poison(ctx, << 2149 break; << 2150 } 1253 } 2151 return ret; 1254 return ret; 2152 } 1255 } 2153 1256 2154 #ifdef CONFIG_PROC_FS 1257 #ifdef CONFIG_PROC_FS 2155 static void userfaultfd_show_fdinfo(struct se 1258 static void userfaultfd_show_fdinfo(struct seq_file *m, struct file *f) 2156 { 1259 { 2157 struct userfaultfd_ctx *ctx = f->priv 1260 struct userfaultfd_ctx *ctx = f->private_data; 2158 wait_queue_entry_t *wq; !! 1261 wait_queue_t *wq; >> 1262 struct userfaultfd_wait_queue *uwq; 2159 unsigned long pending = 0, total = 0; 1263 unsigned long pending = 0, total = 0; 2160 1264 2161 spin_lock_irq(&ctx->fault_pending_wqh !! 1265 spin_lock(&ctx->fault_pending_wqh.lock); 2162 list_for_each_entry(wq, &ctx->fault_p !! 1266 list_for_each_entry(wq, &ctx->fault_pending_wqh.task_list, task_list) { >> 1267 uwq = container_of(wq, struct userfaultfd_wait_queue, wq); 2163 pending++; 1268 pending++; 2164 total++; 1269 total++; 2165 } 1270 } 2166 list_for_each_entry(wq, &ctx->fault_w !! 1271 list_for_each_entry(wq, &ctx->fault_wqh.task_list, task_list) { >> 1272 uwq = container_of(wq, struct userfaultfd_wait_queue, wq); 2167 total++; 1273 total++; 2168 } 1274 } 2169 spin_unlock_irq(&ctx->fault_pending_w !! 1275 spin_unlock(&ctx->fault_pending_wqh.lock); 2170 1276 2171 /* 1277 /* 2172 * If more protocols will be added, t 1278 * If more protocols will be added, there will be all shown 2173 * separated by a space. Like this: 1279 * separated by a space. Like this: 2174 * protocols: aa:... bb:... 1280 * protocols: aa:... bb:... 2175 */ 1281 */ 2176 seq_printf(m, "pending:\t%lu\ntotal:\ 1282 seq_printf(m, "pending:\t%lu\ntotal:\t%lu\nAPI:\t%Lx:%x:%Lx\n", 2177 pending, total, UFFD_API, !! 1283 pending, total, UFFD_API, UFFD_API_FEATURES, 2178 UFFD_API_IOCTLS|UFFD_API_R 1284 UFFD_API_IOCTLS|UFFD_API_RANGE_IOCTLS); 2179 } 1285 } 2180 #endif 1286 #endif 2181 1287 2182 static const struct file_operations userfault 1288 static const struct file_operations userfaultfd_fops = { 2183 #ifdef CONFIG_PROC_FS 1289 #ifdef CONFIG_PROC_FS 2184 .show_fdinfo = userfaultfd_show_fd 1290 .show_fdinfo = userfaultfd_show_fdinfo, 2185 #endif 1291 #endif 2186 .release = userfaultfd_release 1292 .release = userfaultfd_release, 2187 .poll = userfaultfd_poll, 1293 .poll = userfaultfd_poll, 2188 .read_iter = userfaultfd_read_it !! 1294 .read = userfaultfd_read, 2189 .unlocked_ioctl = userfaultfd_ioctl, 1295 .unlocked_ioctl = userfaultfd_ioctl, 2190 .compat_ioctl = compat_ptr_ioctl, !! 1296 .compat_ioctl = userfaultfd_ioctl, 2191 .llseek = noop_llseek, 1297 .llseek = noop_llseek, 2192 }; 1298 }; 2193 1299 2194 static void init_once_userfaultfd_ctx(void *m 1300 static void init_once_userfaultfd_ctx(void *mem) 2195 { 1301 { 2196 struct userfaultfd_ctx *ctx = (struct 1302 struct userfaultfd_ctx *ctx = (struct userfaultfd_ctx *) mem; 2197 1303 2198 init_waitqueue_head(&ctx->fault_pendi 1304 init_waitqueue_head(&ctx->fault_pending_wqh); 2199 init_waitqueue_head(&ctx->fault_wqh); 1305 init_waitqueue_head(&ctx->fault_wqh); 2200 init_waitqueue_head(&ctx->event_wqh); << 2201 init_waitqueue_head(&ctx->fd_wqh); 1306 init_waitqueue_head(&ctx->fd_wqh); 2202 seqcount_spinlock_init(&ctx->refile_s !! 1307 seqcount_init(&ctx->refile_seq); 2203 } 1308 } 2204 1309 2205 static int new_userfaultfd(int flags) !! 1310 /** >> 1311 * userfaultfd_file_create - Creates an userfaultfd file pointer. >> 1312 * @flags: Flags for the userfaultfd file. >> 1313 * >> 1314 * This function creates an userfaultfd file pointer, w/out installing >> 1315 * it into the fd table. This is useful when the userfaultfd file is >> 1316 * used during the initialization of data structures that require >> 1317 * extra setup after the userfaultfd creation. So the userfaultfd >> 1318 * creation is split into the file pointer creation phase, and the >> 1319 * file descriptor installation phase. In this way races with >> 1320 * userspace closing the newly installed file descriptor can be >> 1321 * avoided. Returns an userfaultfd file pointer, or a proper error >> 1322 * pointer. >> 1323 */ >> 1324 static struct file *userfaultfd_file_create(int flags) 2206 { 1325 { 2207 struct userfaultfd_ctx *ctx; << 2208 struct file *file; 1326 struct file *file; 2209 int fd; !! 1327 struct userfaultfd_ctx *ctx; 2210 1328 2211 BUG_ON(!current->mm); 1329 BUG_ON(!current->mm); 2212 1330 2213 /* Check the UFFD_* constants for con 1331 /* Check the UFFD_* constants for consistency. */ 2214 BUILD_BUG_ON(UFFD_USER_MODE_ONLY & UF << 2215 BUILD_BUG_ON(UFFD_CLOEXEC != O_CLOEXE 1332 BUILD_BUG_ON(UFFD_CLOEXEC != O_CLOEXEC); 2216 BUILD_BUG_ON(UFFD_NONBLOCK != O_NONBL 1333 BUILD_BUG_ON(UFFD_NONBLOCK != O_NONBLOCK); 2217 1334 2218 if (flags & ~(UFFD_SHARED_FCNTL_FLAGS !! 1335 file = ERR_PTR(-EINVAL); 2219 return -EINVAL; !! 1336 if (flags & ~UFFD_SHARED_FCNTL_FLAGS) >> 1337 goto out; 2220 1338 >> 1339 file = ERR_PTR(-ENOMEM); 2221 ctx = kmem_cache_alloc(userfaultfd_ct 1340 ctx = kmem_cache_alloc(userfaultfd_ctx_cachep, GFP_KERNEL); 2222 if (!ctx) 1341 if (!ctx) 2223 return -ENOMEM; !! 1342 goto out; 2224 1343 2225 refcount_set(&ctx->refcount, 1); !! 1344 atomic_set(&ctx->refcount, 1); 2226 ctx->flags = flags; 1345 ctx->flags = flags; 2227 ctx->features = 0; !! 1346 ctx->state = UFFD_STATE_WAIT_API; 2228 ctx->released = false; 1347 ctx->released = false; 2229 init_rwsem(&ctx->map_changing_lock); << 2230 atomic_set(&ctx->mmap_changing, 0); << 2231 ctx->mm = current->mm; 1348 ctx->mm = current->mm; >> 1349 /* prevent the mm struct to be freed */ >> 1350 atomic_inc(&ctx->mm->mm_count); 2232 1351 2233 fd = get_unused_fd_flags(flags & UFFD !! 1352 file = anon_inode_getfile("[userfaultfd]", &userfaultfd_fops, ctx, 2234 if (fd < 0) !! 1353 O_RDWR | (flags & UFFD_SHARED_FCNTL_FLAGS)); 2235 goto err_out; << 2236 << 2237 /* Create a new inode so that the LSM << 2238 file = anon_inode_create_getfile("[us << 2239 O_RDONLY | (flags & U << 2240 if (IS_ERR(file)) { 1354 if (IS_ERR(file)) { 2241 put_unused_fd(fd); !! 1355 mmdrop(ctx->mm); 2242 fd = PTR_ERR(file); !! 1356 kmem_cache_free(userfaultfd_ctx_cachep, ctx); 2243 goto err_out; << 2244 } 1357 } 2245 /* prevent the mm struct to be freed !! 1358 out: 2246 mmgrab(ctx->mm); !! 1359 return file; 2247 file->f_mode |= FMODE_NOWAIT; << 2248 fd_install(fd, file); << 2249 return fd; << 2250 err_out: << 2251 kmem_cache_free(userfaultfd_ctx_cache << 2252 return fd; << 2253 } << 2254 << 2255 static inline bool userfaultfd_syscall_allowe << 2256 { << 2257 /* Userspace-only page faults are alw << 2258 if (flags & UFFD_USER_MODE_ONLY) << 2259 return true; << 2260 << 2261 /* << 2262 * The user is requesting a userfault << 2263 * Privileged users are always allowe << 2264 */ << 2265 if (capable(CAP_SYS_PTRACE)) << 2266 return true; << 2267 << 2268 /* Otherwise, access to kernel fault << 2269 return sysctl_unprivileged_userfaultf << 2270 } 1360 } 2271 1361 2272 SYSCALL_DEFINE1(userfaultfd, int, flags) 1362 SYSCALL_DEFINE1(userfaultfd, int, flags) 2273 { 1363 { 2274 if (!userfaultfd_syscall_allowed(flag !! 1364 int fd, error; 2275 return -EPERM; !! 1365 struct file *file; 2276 1366 2277 return new_userfaultfd(flags); !! 1367 error = get_unused_fd_flags(flags & UFFD_SHARED_FCNTL_FLAGS); 2278 } !! 1368 if (error < 0) >> 1369 return error; >> 1370 fd = error; 2279 1371 2280 static long userfaultfd_dev_ioctl(struct file !! 1372 file = userfaultfd_file_create(flags); 2281 { !! 1373 if (IS_ERR(file)) { 2282 if (cmd != USERFAULTFD_IOC_NEW) !! 1374 error = PTR_ERR(file); 2283 return -EINVAL; !! 1375 goto err_put_unused_fd; >> 1376 } >> 1377 fd_install(fd, file); 2284 1378 2285 return new_userfaultfd(flags); !! 1379 return fd; 2286 } << 2287 1380 2288 static const struct file_operations userfault !! 1381 err_put_unused_fd: 2289 .unlocked_ioctl = userfaultfd_dev_ioc !! 1382 put_unused_fd(fd); 2290 .compat_ioctl = userfaultfd_dev_ioctl << 2291 .owner = THIS_MODULE, << 2292 .llseek = noop_llseek, << 2293 }; << 2294 1383 2295 static struct miscdevice userfaultfd_misc = { !! 1384 return error; 2296 .minor = MISC_DYNAMIC_MINOR, !! 1385 } 2297 .name = "userfaultfd", << 2298 .fops = &userfaultfd_dev_fops << 2299 }; << 2300 1386 2301 static int __init userfaultfd_init(void) 1387 static int __init userfaultfd_init(void) 2302 { 1388 { 2303 int ret; << 2304 << 2305 ret = misc_register(&userfaultfd_misc << 2306 if (ret) << 2307 return ret; << 2308 << 2309 userfaultfd_ctx_cachep = kmem_cache_c 1389 userfaultfd_ctx_cachep = kmem_cache_create("userfaultfd_ctx_cache", 2310 1390 sizeof(struct userfaultfd_ctx), 2311 1391 0, 2312 1392 SLAB_HWCACHE_ALIGN|SLAB_PANIC, 2313 1393 init_once_userfaultfd_ctx); 2314 #ifdef CONFIG_SYSCTL << 2315 register_sysctl_init("vm", vm_userfau << 2316 #endif << 2317 return 0; 1394 return 0; 2318 } 1395 } 2319 __initcall(userfaultfd_init); 1396 __initcall(userfaultfd_init); 2320 1397
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.