1 // SPDX-License-Identifier: GPL-2.0-only 1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 2 /* 3 * fs/userfaultfd.c 3 * fs/userfaultfd.c 4 * 4 * 5 * Copyright (C) 2007 Davide Libenzi <davide 5 * Copyright (C) 2007 Davide Libenzi <davidel@xmailserver.org> 6 * Copyright (C) 2008-2009 Red Hat, Inc. 6 * Copyright (C) 2008-2009 Red Hat, Inc. 7 * Copyright (C) 2015 Red Hat, Inc. 7 * Copyright (C) 2015 Red Hat, Inc. 8 * 8 * 9 * Some part derived from fs/eventfd.c (anon 9 * Some part derived from fs/eventfd.c (anon inode setup) and 10 * mm/ksm.c (mm hashing). 10 * mm/ksm.c (mm hashing). 11 */ 11 */ 12 12 13 #include <linux/list.h> 13 #include <linux/list.h> 14 #include <linux/hashtable.h> 14 #include <linux/hashtable.h> 15 #include <linux/sched/signal.h> 15 #include <linux/sched/signal.h> 16 #include <linux/sched/mm.h> 16 #include <linux/sched/mm.h> 17 #include <linux/mm.h> 17 #include <linux/mm.h> 18 #include <linux/mm_inline.h> << 19 #include <linux/mmu_notifier.h> << 20 #include <linux/poll.h> 18 #include <linux/poll.h> 21 #include <linux/slab.h> 19 #include <linux/slab.h> 22 #include <linux/seq_file.h> 20 #include <linux/seq_file.h> 23 #include <linux/file.h> 21 #include <linux/file.h> 24 #include <linux/bug.h> 22 #include <linux/bug.h> 25 #include <linux/anon_inodes.h> 23 #include <linux/anon_inodes.h> 26 #include <linux/syscalls.h> 24 #include <linux/syscalls.h> 27 #include <linux/userfaultfd_k.h> 25 #include <linux/userfaultfd_k.h> 28 #include <linux/mempolicy.h> 26 #include <linux/mempolicy.h> 29 #include <linux/ioctl.h> 27 #include <linux/ioctl.h> 30 #include <linux/security.h> 28 #include <linux/security.h> 31 #include <linux/hugetlb.h> 29 #include <linux/hugetlb.h> 32 #include <linux/swapops.h> !! 30 33 #include <linux/miscdevice.h> !! 31 int sysctl_unprivileged_userfaultfd __read_mostly; 34 #include <linux/uio.h> !! 32 35 !! 33 static struct kmem_cache *userfaultfd_ctx_cachep __read_mostly; 36 static int sysctl_unprivileged_userfaultfd __r !! 34 37 !! 35 enum userfaultfd_state { 38 #ifdef CONFIG_SYSCTL !! 36 UFFD_STATE_WAIT_API, 39 static struct ctl_table vm_userfaultfd_table[] !! 37 UFFD_STATE_RUNNING, 40 { << 41 .procname = "unprivilege << 42 .data = &sysctl_unpr << 43 .maxlen = sizeof(sysct << 44 .mode = 0644, << 45 .proc_handler = proc_dointve << 46 .extra1 = SYSCTL_ZERO, << 47 .extra2 = SYSCTL_ONE, << 48 }, << 49 }; 38 }; 50 #endif << 51 39 52 static struct kmem_cache *userfaultfd_ctx_cach !! 40 /* >> 41 * Start with fault_pending_wqh and fault_wqh so they're more likely >> 42 * to be in the same cacheline. >> 43 * >> 44 * Locking order: >> 45 * fd_wqh.lock >> 46 * fault_pending_wqh.lock >> 47 * fault_wqh.lock >> 48 * event_wqh.lock >> 49 * >> 50 * To avoid deadlocks, IRQs must be disabled when taking any of the above locks, >> 51 * since fd_wqh.lock is taken by aio_poll() while it's holding a lock that's >> 52 * also taken in IRQ context. >> 53 */ >> 54 struct userfaultfd_ctx { >> 55 /* waitqueue head for the pending (i.e. not read) userfaults */ >> 56 wait_queue_head_t fault_pending_wqh; >> 57 /* waitqueue head for the userfaults */ >> 58 wait_queue_head_t fault_wqh; >> 59 /* waitqueue head for the pseudo fd to wakeup poll/read */ >> 60 wait_queue_head_t fd_wqh; >> 61 /* waitqueue head for events */ >> 62 wait_queue_head_t event_wqh; >> 63 /* a refile sequence protected by fault_pending_wqh lock */ >> 64 seqcount_spinlock_t refile_seq; >> 65 /* pseudo fd refcounting */ >> 66 refcount_t refcount; >> 67 /* userfaultfd syscall flags */ >> 68 unsigned int flags; >> 69 /* features requested from the userspace */ >> 70 unsigned int features; >> 71 /* state machine */ >> 72 enum userfaultfd_state state; >> 73 /* released */ >> 74 bool released; >> 75 /* memory mappings are changing because of non-cooperative event */ >> 76 bool mmap_changing; >> 77 /* mm with one ore more vmas attached to this userfaultfd_ctx */ >> 78 struct mm_struct *mm; >> 79 }; 53 80 54 struct userfaultfd_fork_ctx { 81 struct userfaultfd_fork_ctx { 55 struct userfaultfd_ctx *orig; 82 struct userfaultfd_ctx *orig; 56 struct userfaultfd_ctx *new; 83 struct userfaultfd_ctx *new; 57 struct list_head list; 84 struct list_head list; 58 }; 85 }; 59 86 60 struct userfaultfd_unmap_ctx { 87 struct userfaultfd_unmap_ctx { 61 struct userfaultfd_ctx *ctx; 88 struct userfaultfd_ctx *ctx; 62 unsigned long start; 89 unsigned long start; 63 unsigned long end; 90 unsigned long end; 64 struct list_head list; 91 struct list_head list; 65 }; 92 }; 66 93 67 struct userfaultfd_wait_queue { 94 struct userfaultfd_wait_queue { 68 struct uffd_msg msg; 95 struct uffd_msg msg; 69 wait_queue_entry_t wq; 96 wait_queue_entry_t wq; 70 struct userfaultfd_ctx *ctx; 97 struct userfaultfd_ctx *ctx; 71 bool waken; 98 bool waken; 72 }; 99 }; 73 100 74 struct userfaultfd_wake_range { 101 struct userfaultfd_wake_range { 75 unsigned long start; 102 unsigned long start; 76 unsigned long len; 103 unsigned long len; 77 }; 104 }; 78 105 79 /* internal indication that UFFD_API ioctl was << 80 #define UFFD_FEATURE_INITIALIZED << 81 << 82 static bool userfaultfd_is_initialized(struct << 83 { << 84 return ctx->features & UFFD_FEATURE_IN << 85 } << 86 << 87 static bool userfaultfd_wp_async_ctx(struct us << 88 { << 89 return ctx && (ctx->features & UFFD_FE << 90 } << 91 << 92 /* << 93 * Whether WP_UNPOPULATED is enabled on the uf << 94 * meaningful when userfaultfd_wp()==true on t << 95 * anonymous. << 96 */ << 97 bool userfaultfd_wp_unpopulated(struct vm_area << 98 { << 99 struct userfaultfd_ctx *ctx = vma->vm_ << 100 << 101 if (!ctx) << 102 return false; << 103 << 104 return ctx->features & UFFD_FEATURE_WP << 105 } << 106 << 107 static void userfaultfd_set_vm_flags(struct vm << 108 vm_flags_ << 109 { << 110 const bool uffd_wp_changed = (vma->vm_ << 111 << 112 vm_flags_reset(vma, flags); << 113 /* << 114 * For shared mappings, we want to ena << 115 * userfaultfd-wp is enabled (see vma_ << 116 * recalculate vma->vm_page_prot whene << 117 */ << 118 if ((vma->vm_flags & VM_SHARED) && uff << 119 vma_set_page_prot(vma); << 120 } << 121 << 122 static int userfaultfd_wake_function(wait_queu 106 static int userfaultfd_wake_function(wait_queue_entry_t *wq, unsigned mode, 123 int wake_ 107 int wake_flags, void *key) 124 { 108 { 125 struct userfaultfd_wake_range *range = 109 struct userfaultfd_wake_range *range = key; 126 int ret; 110 int ret; 127 struct userfaultfd_wait_queue *uwq; 111 struct userfaultfd_wait_queue *uwq; 128 unsigned long start, len; 112 unsigned long start, len; 129 113 130 uwq = container_of(wq, struct userfaul 114 uwq = container_of(wq, struct userfaultfd_wait_queue, wq); 131 ret = 0; 115 ret = 0; 132 /* len == 0 means wake all */ 116 /* len == 0 means wake all */ 133 start = range->start; 117 start = range->start; 134 len = range->len; 118 len = range->len; 135 if (len && (start > uwq->msg.arg.pagef 119 if (len && (start > uwq->msg.arg.pagefault.address || 136 start + len <= uwq->msg.ar 120 start + len <= uwq->msg.arg.pagefault.address)) 137 goto out; 121 goto out; 138 WRITE_ONCE(uwq->waken, true); 122 WRITE_ONCE(uwq->waken, true); 139 /* 123 /* 140 * The Program-Order guarantees provid 124 * The Program-Order guarantees provided by the scheduler 141 * ensure uwq->waken is visible before 125 * ensure uwq->waken is visible before the task is woken. 142 */ 126 */ 143 ret = wake_up_state(wq->private, mode) 127 ret = wake_up_state(wq->private, mode); 144 if (ret) { 128 if (ret) { 145 /* 129 /* 146 * Wake only once, autoremove 130 * Wake only once, autoremove behavior. 147 * 131 * 148 * After the effect of list_de 132 * After the effect of list_del_init is visible to the other 149 * CPUs, the waitqueue may dis 133 * CPUs, the waitqueue may disappear from under us, see the 150 * !list_empty_careful() in ha 134 * !list_empty_careful() in handle_userfault(). 151 * 135 * 152 * try_to_wake_up() has an imp 136 * try_to_wake_up() has an implicit smp_mb(), and the 153 * wq->private is read before 137 * wq->private is read before calling the extern function 154 * "wake_up_state" (which in t 138 * "wake_up_state" (which in turns calls try_to_wake_up). 155 */ 139 */ 156 list_del_init(&wq->entry); 140 list_del_init(&wq->entry); 157 } 141 } 158 out: 142 out: 159 return ret; 143 return ret; 160 } 144 } 161 145 162 /** 146 /** 163 * userfaultfd_ctx_get - Acquires a reference 147 * userfaultfd_ctx_get - Acquires a reference to the internal userfaultfd 164 * context. 148 * context. 165 * @ctx: [in] Pointer to the userfaultfd conte 149 * @ctx: [in] Pointer to the userfaultfd context. 166 */ 150 */ 167 static void userfaultfd_ctx_get(struct userfau 151 static void userfaultfd_ctx_get(struct userfaultfd_ctx *ctx) 168 { 152 { 169 refcount_inc(&ctx->refcount); 153 refcount_inc(&ctx->refcount); 170 } 154 } 171 155 172 /** 156 /** 173 * userfaultfd_ctx_put - Releases a reference 157 * userfaultfd_ctx_put - Releases a reference to the internal userfaultfd 174 * context. 158 * context. 175 * @ctx: [in] Pointer to userfaultfd context. 159 * @ctx: [in] Pointer to userfaultfd context. 176 * 160 * 177 * The userfaultfd context reference must have 161 * The userfaultfd context reference must have been previously acquired either 178 * with userfaultfd_ctx_get() or userfaultfd_c 162 * with userfaultfd_ctx_get() or userfaultfd_ctx_fdget(). 179 */ 163 */ 180 static void userfaultfd_ctx_put(struct userfau 164 static void userfaultfd_ctx_put(struct userfaultfd_ctx *ctx) 181 { 165 { 182 if (refcount_dec_and_test(&ctx->refcou 166 if (refcount_dec_and_test(&ctx->refcount)) { 183 VM_BUG_ON(spin_is_locked(&ctx- 167 VM_BUG_ON(spin_is_locked(&ctx->fault_pending_wqh.lock)); 184 VM_BUG_ON(waitqueue_active(&ct 168 VM_BUG_ON(waitqueue_active(&ctx->fault_pending_wqh)); 185 VM_BUG_ON(spin_is_locked(&ctx- 169 VM_BUG_ON(spin_is_locked(&ctx->fault_wqh.lock)); 186 VM_BUG_ON(waitqueue_active(&ct 170 VM_BUG_ON(waitqueue_active(&ctx->fault_wqh)); 187 VM_BUG_ON(spin_is_locked(&ctx- 171 VM_BUG_ON(spin_is_locked(&ctx->event_wqh.lock)); 188 VM_BUG_ON(waitqueue_active(&ct 172 VM_BUG_ON(waitqueue_active(&ctx->event_wqh)); 189 VM_BUG_ON(spin_is_locked(&ctx- 173 VM_BUG_ON(spin_is_locked(&ctx->fd_wqh.lock)); 190 VM_BUG_ON(waitqueue_active(&ct 174 VM_BUG_ON(waitqueue_active(&ctx->fd_wqh)); 191 mmdrop(ctx->mm); 175 mmdrop(ctx->mm); 192 kmem_cache_free(userfaultfd_ct 176 kmem_cache_free(userfaultfd_ctx_cachep, ctx); 193 } 177 } 194 } 178 } 195 179 196 static inline void msg_init(struct uffd_msg *m 180 static inline void msg_init(struct uffd_msg *msg) 197 { 181 { 198 BUILD_BUG_ON(sizeof(struct uffd_msg) ! 182 BUILD_BUG_ON(sizeof(struct uffd_msg) != 32); 199 /* 183 /* 200 * Must use memset to zero out the pad 184 * Must use memset to zero out the paddings or kernel data is 201 * leaked to userland. 185 * leaked to userland. 202 */ 186 */ 203 memset(msg, 0, sizeof(struct uffd_msg) 187 memset(msg, 0, sizeof(struct uffd_msg)); 204 } 188 } 205 189 206 static inline struct uffd_msg userfault_msg(un 190 static inline struct uffd_msg userfault_msg(unsigned long address, 207 un << 208 un 191 unsigned int flags, 209 un 192 unsigned long reason, 210 un 193 unsigned int features) 211 { 194 { 212 struct uffd_msg msg; 195 struct uffd_msg msg; 213 << 214 msg_init(&msg); 196 msg_init(&msg); 215 msg.event = UFFD_EVENT_PAGEFAULT; 197 msg.event = UFFD_EVENT_PAGEFAULT; 216 !! 198 msg.arg.pagefault.address = address; 217 msg.arg.pagefault.address = (features << 218 real_addre << 219 << 220 /* << 221 * These flags indicate why the userfa << 222 * - UFFD_PAGEFAULT_FLAG_WP indicates << 223 * - UFFD_PAGEFAULT_FLAG_MINOR indicat << 224 * - Neither of these flags being set << 225 * << 226 * Separately, UFFD_PAGEFAULT_FLAG_WRI << 227 * fault. Otherwise, it was a read fau << 228 */ << 229 if (flags & FAULT_FLAG_WRITE) 199 if (flags & FAULT_FLAG_WRITE) >> 200 /* >> 201 * If UFFD_FEATURE_PAGEFAULT_FLAG_WP was set in the >> 202 * uffdio_api.features and UFFD_PAGEFAULT_FLAG_WRITE >> 203 * was not set in a UFFD_EVENT_PAGEFAULT, it means it >> 204 * was a read fault, otherwise if set it means it's >> 205 * a write fault. >> 206 */ 230 msg.arg.pagefault.flags |= UFF 207 msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_WRITE; 231 if (reason & VM_UFFD_WP) 208 if (reason & VM_UFFD_WP) >> 209 /* >> 210 * If UFFD_FEATURE_PAGEFAULT_FLAG_WP was set in the >> 211 * uffdio_api.features and UFFD_PAGEFAULT_FLAG_WP was >> 212 * not set in a UFFD_EVENT_PAGEFAULT, it means it was >> 213 * a missing fault, otherwise if set it means it's a >> 214 * write protect fault. >> 215 */ 232 msg.arg.pagefault.flags |= UFF 216 msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_WP; 233 if (reason & VM_UFFD_MINOR) << 234 msg.arg.pagefault.flags |= UFF << 235 if (features & UFFD_FEATURE_THREAD_ID) 217 if (features & UFFD_FEATURE_THREAD_ID) 236 msg.arg.pagefault.feat.ptid = 218 msg.arg.pagefault.feat.ptid = task_pid_vnr(current); 237 return msg; 219 return msg; 238 } 220 } 239 221 240 #ifdef CONFIG_HUGETLB_PAGE 222 #ifdef CONFIG_HUGETLB_PAGE 241 /* 223 /* 242 * Same functionality as userfaultfd_must_wait 224 * Same functionality as userfaultfd_must_wait below with modifications for 243 * hugepmd ranges. 225 * hugepmd ranges. 244 */ 226 */ 245 static inline bool userfaultfd_huge_must_wait( 227 static inline bool userfaultfd_huge_must_wait(struct userfaultfd_ctx *ctx, 246 !! 228 struct vm_area_struct *vma, 247 !! 229 unsigned long address, >> 230 unsigned long flags, >> 231 unsigned long reason) 248 { 232 { 249 struct vm_area_struct *vma = vmf->vma; !! 233 struct mm_struct *mm = ctx->mm; 250 pte_t *ptep, pte; 234 pte_t *ptep, pte; 251 bool ret = true; 235 bool ret = true; 252 236 253 assert_fault_locked(vmf); !! 237 mmap_assert_locked(mm); >> 238 >> 239 ptep = huge_pte_offset(mm, address, vma_mmu_pagesize(vma)); 254 240 255 ptep = hugetlb_walk(vma, vmf->address, << 256 if (!ptep) 241 if (!ptep) 257 goto out; 242 goto out; 258 243 259 ret = false; 244 ret = false; 260 pte = huge_ptep_get(vma->vm_mm, vmf->a !! 245 pte = huge_ptep_get(ptep); 261 246 262 /* 247 /* 263 * Lockless access: we're in a wait_ev 248 * Lockless access: we're in a wait_event so it's ok if it 264 * changes under us. PTE markers shou !! 249 * changes under us. 265 * ptes here. << 266 */ 250 */ 267 if (huge_pte_none_mostly(pte)) !! 251 if (huge_pte_none(pte)) 268 ret = true; 252 ret = true; 269 if (!huge_pte_write(pte) && (reason & 253 if (!huge_pte_write(pte) && (reason & VM_UFFD_WP)) 270 ret = true; 254 ret = true; 271 out: 255 out: 272 return ret; 256 return ret; 273 } 257 } 274 #else 258 #else 275 static inline bool userfaultfd_huge_must_wait( 259 static inline bool userfaultfd_huge_must_wait(struct userfaultfd_ctx *ctx, 276 !! 260 struct vm_area_struct *vma, 277 !! 261 unsigned long address, >> 262 unsigned long flags, >> 263 unsigned long reason) 278 { 264 { 279 return false; /* should never get he 265 return false; /* should never get here */ 280 } 266 } 281 #endif /* CONFIG_HUGETLB_PAGE */ 267 #endif /* CONFIG_HUGETLB_PAGE */ 282 268 283 /* 269 /* 284 * Verify the pagetables are still not ok afte 270 * Verify the pagetables are still not ok after having reigstered into 285 * the fault_pending_wqh to avoid userland hav 271 * the fault_pending_wqh to avoid userland having to UFFDIO_WAKE any 286 * userfault that has already been resolved, i !! 272 * userfault that has already been resolved, if userfaultfd_read and 287 * UFFDIO_COPY|ZEROPAGE are being run simultan 273 * UFFDIO_COPY|ZEROPAGE are being run simultaneously on two different 288 * threads. 274 * threads. 289 */ 275 */ 290 static inline bool userfaultfd_must_wait(struc 276 static inline bool userfaultfd_must_wait(struct userfaultfd_ctx *ctx, 291 struc !! 277 unsigned long address, >> 278 unsigned long flags, 292 unsig 279 unsigned long reason) 293 { 280 { 294 struct mm_struct *mm = ctx->mm; 281 struct mm_struct *mm = ctx->mm; 295 unsigned long address = vmf->address; << 296 pgd_t *pgd; 282 pgd_t *pgd; 297 p4d_t *p4d; 283 p4d_t *p4d; 298 pud_t *pud; 284 pud_t *pud; 299 pmd_t *pmd, _pmd; 285 pmd_t *pmd, _pmd; 300 pte_t *pte; 286 pte_t *pte; 301 pte_t ptent; << 302 bool ret = true; 287 bool ret = true; 303 288 304 assert_fault_locked(vmf); !! 289 mmap_assert_locked(mm); 305 290 306 pgd = pgd_offset(mm, address); 291 pgd = pgd_offset(mm, address); 307 if (!pgd_present(*pgd)) 292 if (!pgd_present(*pgd)) 308 goto out; 293 goto out; 309 p4d = p4d_offset(pgd, address); 294 p4d = p4d_offset(pgd, address); 310 if (!p4d_present(*p4d)) 295 if (!p4d_present(*p4d)) 311 goto out; 296 goto out; 312 pud = pud_offset(p4d, address); 297 pud = pud_offset(p4d, address); 313 if (!pud_present(*pud)) 298 if (!pud_present(*pud)) 314 goto out; 299 goto out; 315 pmd = pmd_offset(pud, address); 300 pmd = pmd_offset(pud, address); 316 again: !! 301 /* 317 _pmd = pmdp_get_lockless(pmd); !! 302 * READ_ONCE must function as a barrier with narrower scope >> 303 * and it must be equivalent to: >> 304 * _pmd = *pmd; barrier(); >> 305 * >> 306 * This is to deal with the instability (as in >> 307 * pmd_trans_unstable) of the pmd. >> 308 */ >> 309 _pmd = READ_ONCE(*pmd); 318 if (pmd_none(_pmd)) 310 if (pmd_none(_pmd)) 319 goto out; 311 goto out; 320 312 321 ret = false; 313 ret = false; 322 if (!pmd_present(_pmd) || pmd_devmap(_ !! 314 if (!pmd_present(_pmd)) 323 goto out; 315 goto out; 324 316 325 if (pmd_trans_huge(_pmd)) { 317 if (pmd_trans_huge(_pmd)) { 326 if (!pmd_write(_pmd) && (reaso 318 if (!pmd_write(_pmd) && (reason & VM_UFFD_WP)) 327 ret = true; 319 ret = true; 328 goto out; 320 goto out; 329 } 321 } 330 322 >> 323 /* >> 324 * the pmd is stable (as in !pmd_trans_unstable) so we can re-read it >> 325 * and use the standard pte_offset_map() instead of parsing _pmd. >> 326 */ 331 pte = pte_offset_map(pmd, address); 327 pte = pte_offset_map(pmd, address); 332 if (!pte) { << 333 ret = true; << 334 goto again; << 335 } << 336 /* 328 /* 337 * Lockless access: we're in a wait_ev 329 * Lockless access: we're in a wait_event so it's ok if it 338 * changes under us. PTE markers shou !! 330 * changes under us. 339 * ptes here. << 340 */ 331 */ 341 ptent = ptep_get(pte); !! 332 if (pte_none(*pte)) 342 if (pte_none_mostly(ptent)) << 343 ret = true; 333 ret = true; 344 if (!pte_write(ptent) && (reason & VM_ !! 334 if (!pte_write(*pte) && (reason & VM_UFFD_WP)) 345 ret = true; 335 ret = true; 346 pte_unmap(pte); 336 pte_unmap(pte); 347 337 348 out: 338 out: 349 return ret; 339 return ret; 350 } 340 } 351 341 352 static inline unsigned int userfaultfd_get_blo !! 342 static inline long userfaultfd_get_blocking_state(unsigned int flags) 353 { 343 { 354 if (flags & FAULT_FLAG_INTERRUPTIBLE) 344 if (flags & FAULT_FLAG_INTERRUPTIBLE) 355 return TASK_INTERRUPTIBLE; 345 return TASK_INTERRUPTIBLE; 356 346 357 if (flags & FAULT_FLAG_KILLABLE) 347 if (flags & FAULT_FLAG_KILLABLE) 358 return TASK_KILLABLE; 348 return TASK_KILLABLE; 359 349 360 return TASK_UNINTERRUPTIBLE; 350 return TASK_UNINTERRUPTIBLE; 361 } 351 } 362 352 363 /* 353 /* 364 * The locking rules involved in returning VM_ 354 * The locking rules involved in returning VM_FAULT_RETRY depending on 365 * FAULT_FLAG_ALLOW_RETRY, FAULT_FLAG_RETRY_NO 355 * FAULT_FLAG_ALLOW_RETRY, FAULT_FLAG_RETRY_NOWAIT and 366 * FAULT_FLAG_KILLABLE are not straightforward 356 * FAULT_FLAG_KILLABLE are not straightforward. The "Caution" 367 * recommendation in __lock_page_or_retry is n 357 * recommendation in __lock_page_or_retry is not an understatement. 368 * 358 * 369 * If FAULT_FLAG_ALLOW_RETRY is set, the mmap_ 359 * If FAULT_FLAG_ALLOW_RETRY is set, the mmap_lock must be released 370 * before returning VM_FAULT_RETRY only if FAU 360 * before returning VM_FAULT_RETRY only if FAULT_FLAG_RETRY_NOWAIT is 371 * not set. 361 * not set. 372 * 362 * 373 * If FAULT_FLAG_ALLOW_RETRY is set but FAULT_ 363 * If FAULT_FLAG_ALLOW_RETRY is set but FAULT_FLAG_KILLABLE is not 374 * set, VM_FAULT_RETRY can still be returned i 364 * set, VM_FAULT_RETRY can still be returned if and only if there are 375 * fatal_signal_pending()s, and the mmap_lock 365 * fatal_signal_pending()s, and the mmap_lock must be released before 376 * returning it. 366 * returning it. 377 */ 367 */ 378 vm_fault_t handle_userfault(struct vm_fault *v 368 vm_fault_t handle_userfault(struct vm_fault *vmf, unsigned long reason) 379 { 369 { 380 struct vm_area_struct *vma = vmf->vma; !! 370 struct mm_struct *mm = vmf->vma->vm_mm; 381 struct mm_struct *mm = vma->vm_mm; << 382 struct userfaultfd_ctx *ctx; 371 struct userfaultfd_ctx *ctx; 383 struct userfaultfd_wait_queue uwq; 372 struct userfaultfd_wait_queue uwq; 384 vm_fault_t ret = VM_FAULT_SIGBUS; 373 vm_fault_t ret = VM_FAULT_SIGBUS; 385 bool must_wait; 374 bool must_wait; 386 unsigned int blocking_state; !! 375 long blocking_state; 387 376 388 /* 377 /* 389 * We don't do userfault handling for 378 * We don't do userfault handling for the final child pid update. 390 * 379 * 391 * We also don't do userfault handling 380 * We also don't do userfault handling during 392 * coredumping. hugetlbfs has the spec 381 * coredumping. hugetlbfs has the special 393 * hugetlb_follow_page_mask() to skip !! 382 * follow_hugetlb_page() to skip missing pages in the 394 * FOLL_DUMP case, anon memory also ch 383 * FOLL_DUMP case, anon memory also checks for FOLL_DUMP with 395 * the no_page_table() helper in follo 384 * the no_page_table() helper in follow_page_mask(), but the 396 * shmem_vm_ops->fault method is invok 385 * shmem_vm_ops->fault method is invoked even during 397 * coredumping and it ends up here. !! 386 * coredumping without mmap_lock and it ends up here. 398 */ 387 */ 399 if (current->flags & (PF_EXITING|PF_DU 388 if (current->flags & (PF_EXITING|PF_DUMPCORE)) 400 goto out; 389 goto out; 401 390 402 assert_fault_locked(vmf); !! 391 /* >> 392 * Coredumping runs without mmap_lock so we can only check that >> 393 * the mmap_lock is held, if PF_DUMPCORE was not set. >> 394 */ >> 395 mmap_assert_locked(mm); 403 396 404 ctx = vma->vm_userfaultfd_ctx.ctx; !! 397 ctx = vmf->vma->vm_userfaultfd_ctx.ctx; 405 if (!ctx) 398 if (!ctx) 406 goto out; 399 goto out; 407 400 408 BUG_ON(ctx->mm != mm); 401 BUG_ON(ctx->mm != mm); 409 402 410 /* Any unrecognized flag is a bug. */ !! 403 VM_BUG_ON(reason & ~(VM_UFFD_MISSING|VM_UFFD_WP)); 411 VM_BUG_ON(reason & ~__VM_UFFD_FLAGS); !! 404 VM_BUG_ON(!(reason & VM_UFFD_MISSING) ^ !!(reason & VM_UFFD_WP)); 412 /* 0 or > 1 flags set is a bug; we exp << 413 VM_BUG_ON(!reason || (reason & (reason << 414 405 415 if (ctx->features & UFFD_FEATURE_SIGBU 406 if (ctx->features & UFFD_FEATURE_SIGBUS) 416 goto out; 407 goto out; 417 if (!(vmf->flags & FAULT_FLAG_USER) && !! 408 if ((vmf->flags & FAULT_FLAG_USER) == 0 && >> 409 ctx->flags & UFFD_USER_MODE_ONLY) { >> 410 printk_once(KERN_WARNING "uffd: Set unprivileged_userfaultfd " >> 411 "sysctl knob to 1 if kernel faults must be handled " >> 412 "without obtaining CAP_SYS_PTRACE capability\n"); 418 goto out; 413 goto out; >> 414 } 419 415 420 /* 416 /* 421 * If it's already released don't get 417 * If it's already released don't get it. This avoids to loop 422 * in __get_user_pages if userfaultfd_ 418 * in __get_user_pages if userfaultfd_release waits on the 423 * caller of handle_userfault to relea 419 * caller of handle_userfault to release the mmap_lock. 424 */ 420 */ 425 if (unlikely(READ_ONCE(ctx->released)) 421 if (unlikely(READ_ONCE(ctx->released))) { 426 /* 422 /* 427 * Don't return VM_FAULT_SIGBU 423 * Don't return VM_FAULT_SIGBUS in this case, so a non 428 * cooperative manager can clo 424 * cooperative manager can close the uffd after the 429 * last UFFDIO_COPY, without r 425 * last UFFDIO_COPY, without risking to trigger an 430 * involuntary SIGBUS if the p 426 * involuntary SIGBUS if the process was starting the 431 * userfaultfd while the userf 427 * userfaultfd while the userfaultfd was still armed 432 * (but after the last UFFDIO_ 428 * (but after the last UFFDIO_COPY). If the uffd 433 * wasn't already closed when 429 * wasn't already closed when the userfault reached 434 * this point, that would norm 430 * this point, that would normally be solved by 435 * userfaultfd_must_wait retur 431 * userfaultfd_must_wait returning 'false'. 436 * 432 * 437 * If we were to return VM_FAU 433 * If we were to return VM_FAULT_SIGBUS here, the non 438 * cooperative manager would b 434 * cooperative manager would be instead forced to 439 * always call UFFDIO_UNREGIST 435 * always call UFFDIO_UNREGISTER before it can safely 440 * close the uffd. 436 * close the uffd. 441 */ 437 */ 442 ret = VM_FAULT_NOPAGE; 438 ret = VM_FAULT_NOPAGE; 443 goto out; 439 goto out; 444 } 440 } 445 441 446 /* 442 /* 447 * Check that we can return VM_FAULT_R 443 * Check that we can return VM_FAULT_RETRY. 448 * 444 * 449 * NOTE: it should become possible to 445 * NOTE: it should become possible to return VM_FAULT_RETRY 450 * even if FAULT_FLAG_TRIED is set wit 446 * even if FAULT_FLAG_TRIED is set without leading to gup() 451 * -EBUSY failures, if the userfaultfd 447 * -EBUSY failures, if the userfaultfd is to be extended for 452 * VM_UFFD_WP tracking and we intend t 448 * VM_UFFD_WP tracking and we intend to arm the userfault 453 * without first stopping userland acc 449 * without first stopping userland access to the memory. For 454 * VM_UFFD_MISSING userfaults this is 450 * VM_UFFD_MISSING userfaults this is enough for now. 455 */ 451 */ 456 if (unlikely(!(vmf->flags & FAULT_FLAG 452 if (unlikely(!(vmf->flags & FAULT_FLAG_ALLOW_RETRY))) { 457 /* 453 /* 458 * Validate the invariant that 454 * Validate the invariant that nowait must allow retry 459 * to be sure not to return SI 455 * to be sure not to return SIGBUS erroneously on 460 * nowait invocations. 456 * nowait invocations. 461 */ 457 */ 462 BUG_ON(vmf->flags & FAULT_FLAG 458 BUG_ON(vmf->flags & FAULT_FLAG_RETRY_NOWAIT); 463 #ifdef CONFIG_DEBUG_VM 459 #ifdef CONFIG_DEBUG_VM 464 if (printk_ratelimit()) { 460 if (printk_ratelimit()) { 465 printk(KERN_WARNING 461 printk(KERN_WARNING 466 "FAULT_FLAG_ALL 462 "FAULT_FLAG_ALLOW_RETRY missing %x\n", 467 vmf->flags); 463 vmf->flags); 468 dump_stack(); 464 dump_stack(); 469 } 465 } 470 #endif 466 #endif 471 goto out; 467 goto out; 472 } 468 } 473 469 474 /* 470 /* 475 * Handle nowait, not much to do other 471 * Handle nowait, not much to do other than tell it to retry 476 * and wait. 472 * and wait. 477 */ 473 */ 478 ret = VM_FAULT_RETRY; 474 ret = VM_FAULT_RETRY; 479 if (vmf->flags & FAULT_FLAG_RETRY_NOWA 475 if (vmf->flags & FAULT_FLAG_RETRY_NOWAIT) 480 goto out; 476 goto out; 481 477 482 /* take the reference before dropping 478 /* take the reference before dropping the mmap_lock */ 483 userfaultfd_ctx_get(ctx); 479 userfaultfd_ctx_get(ctx); 484 480 485 init_waitqueue_func_entry(&uwq.wq, use 481 init_waitqueue_func_entry(&uwq.wq, userfaultfd_wake_function); 486 uwq.wq.private = current; 482 uwq.wq.private = current; 487 uwq.msg = userfault_msg(vmf->address, !! 483 uwq.msg = userfault_msg(vmf->address, vmf->flags, reason, 488 reason, ctx->f !! 484 ctx->features); 489 uwq.ctx = ctx; 485 uwq.ctx = ctx; 490 uwq.waken = false; 486 uwq.waken = false; 491 487 492 blocking_state = userfaultfd_get_block 488 blocking_state = userfaultfd_get_blocking_state(vmf->flags); 493 489 494 /* << 495 * Take the vma lock now, in order to << 496 * userfaultfd_huge_must_wait() later. << 497 * (sleepable) vma lock can modify the << 498 * must be before explicitly calling s << 499 */ << 500 if (is_vm_hugetlb_page(vma)) << 501 hugetlb_vma_lock_read(vma); << 502 << 503 spin_lock_irq(&ctx->fault_pending_wqh. 490 spin_lock_irq(&ctx->fault_pending_wqh.lock); 504 /* 491 /* 505 * After the __add_wait_queue the uwq 492 * After the __add_wait_queue the uwq is visible to userland 506 * through poll/read(). 493 * through poll/read(). 507 */ 494 */ 508 __add_wait_queue(&ctx->fault_pending_w 495 __add_wait_queue(&ctx->fault_pending_wqh, &uwq.wq); 509 /* 496 /* 510 * The smp_mb() after __set_current_st 497 * The smp_mb() after __set_current_state prevents the reads 511 * following the spin_unlock to happen 498 * following the spin_unlock to happen before the list_add in 512 * __add_wait_queue. 499 * __add_wait_queue. 513 */ 500 */ 514 set_current_state(blocking_state); 501 set_current_state(blocking_state); 515 spin_unlock_irq(&ctx->fault_pending_wq 502 spin_unlock_irq(&ctx->fault_pending_wqh.lock); 516 503 517 if (!is_vm_hugetlb_page(vma)) !! 504 if (!is_vm_hugetlb_page(vmf->vma)) 518 must_wait = userfaultfd_must_w !! 505 must_wait = userfaultfd_must_wait(ctx, vmf->address, vmf->flags, >> 506 reason); 519 else 507 else 520 must_wait = userfaultfd_huge_m !! 508 must_wait = userfaultfd_huge_must_wait(ctx, vmf->vma, 521 if (is_vm_hugetlb_page(vma)) !! 509 vmf->address, 522 hugetlb_vma_unlock_read(vma); !! 510 vmf->flags, reason); 523 release_fault_lock(vmf); !! 511 mmap_read_unlock(mm); 524 512 525 if (likely(must_wait && !READ_ONCE(ctx 513 if (likely(must_wait && !READ_ONCE(ctx->released))) { 526 wake_up_poll(&ctx->fd_wqh, EPO 514 wake_up_poll(&ctx->fd_wqh, EPOLLIN); 527 schedule(); 515 schedule(); 528 } 516 } 529 517 530 __set_current_state(TASK_RUNNING); 518 __set_current_state(TASK_RUNNING); 531 519 532 /* 520 /* 533 * Here we race with the list_del; lis 521 * Here we race with the list_del; list_add in 534 * userfaultfd_ctx_read(), however bec 522 * userfaultfd_ctx_read(), however because we don't ever run 535 * list_del_init() to refile across th 523 * list_del_init() to refile across the two lists, the prev 536 * and next pointers will never point 524 * and next pointers will never point to self. list_add also 537 * would never let any of the two poin 525 * would never let any of the two pointers to point to 538 * self. So list_empty_careful won't r 526 * self. So list_empty_careful won't risk to see both pointers 539 * pointing to self at any time during 527 * pointing to self at any time during the list refile. The 540 * only case where list_del_init() is 528 * only case where list_del_init() is called is the full 541 * removal in the wake function and th 529 * removal in the wake function and there we don't re-list_add 542 * and it's fine not to block on the s 530 * and it's fine not to block on the spinlock. The uwq on this 543 * kernel stack can be released after 531 * kernel stack can be released after the list_del_init. 544 */ 532 */ 545 if (!list_empty_careful(&uwq.wq.entry) 533 if (!list_empty_careful(&uwq.wq.entry)) { 546 spin_lock_irq(&ctx->fault_pend 534 spin_lock_irq(&ctx->fault_pending_wqh.lock); 547 /* 535 /* 548 * No need of list_del_init(), 536 * No need of list_del_init(), the uwq on the stack 549 * will be freed shortly anywa 537 * will be freed shortly anyway. 550 */ 538 */ 551 list_del(&uwq.wq.entry); 539 list_del(&uwq.wq.entry); 552 spin_unlock_irq(&ctx->fault_pe 540 spin_unlock_irq(&ctx->fault_pending_wqh.lock); 553 } 541 } 554 542 555 /* 543 /* 556 * ctx may go away after this if the u 544 * ctx may go away after this if the userfault pseudo fd is 557 * already released. 545 * already released. 558 */ 546 */ 559 userfaultfd_ctx_put(ctx); 547 userfaultfd_ctx_put(ctx); 560 548 561 out: 549 out: 562 return ret; 550 return ret; 563 } 551 } 564 552 565 static void userfaultfd_event_wait_completion( 553 static void userfaultfd_event_wait_completion(struct userfaultfd_ctx *ctx, 566 554 struct userfaultfd_wait_queue *ewq) 567 { 555 { 568 struct userfaultfd_ctx *release_new_ct 556 struct userfaultfd_ctx *release_new_ctx; 569 557 570 if (WARN_ON_ONCE(current->flags & PF_E 558 if (WARN_ON_ONCE(current->flags & PF_EXITING)) 571 goto out; 559 goto out; 572 560 573 ewq->ctx = ctx; 561 ewq->ctx = ctx; 574 init_waitqueue_entry(&ewq->wq, current 562 init_waitqueue_entry(&ewq->wq, current); 575 release_new_ctx = NULL; 563 release_new_ctx = NULL; 576 564 577 spin_lock_irq(&ctx->event_wqh.lock); 565 spin_lock_irq(&ctx->event_wqh.lock); 578 /* 566 /* 579 * After the __add_wait_queue the uwq 567 * After the __add_wait_queue the uwq is visible to userland 580 * through poll/read(). 568 * through poll/read(). 581 */ 569 */ 582 __add_wait_queue(&ctx->event_wqh, &ewq 570 __add_wait_queue(&ctx->event_wqh, &ewq->wq); 583 for (;;) { 571 for (;;) { 584 set_current_state(TASK_KILLABL 572 set_current_state(TASK_KILLABLE); 585 if (ewq->msg.event == 0) 573 if (ewq->msg.event == 0) 586 break; 574 break; 587 if (READ_ONCE(ctx->released) | 575 if (READ_ONCE(ctx->released) || 588 fatal_signal_pending(curre 576 fatal_signal_pending(current)) { 589 /* 577 /* 590 * &ewq->wq may be que 578 * &ewq->wq may be queued in fork_event, but 591 * __remove_wait_queue 579 * __remove_wait_queue ignores the head 592 * parameter. It would 580 * parameter. It would be a problem if it 593 * didn't. 581 * didn't. 594 */ 582 */ 595 __remove_wait_queue(&c 583 __remove_wait_queue(&ctx->event_wqh, &ewq->wq); 596 if (ewq->msg.event == 584 if (ewq->msg.event == UFFD_EVENT_FORK) { 597 struct userfau 585 struct userfaultfd_ctx *new; 598 586 599 new = (struct 587 new = (struct userfaultfd_ctx *) 600 (unsig 588 (unsigned long) 601 ewq->m 589 ewq->msg.arg.reserved.reserved1; 602 release_new_ct 590 release_new_ctx = new; 603 } 591 } 604 break; 592 break; 605 } 593 } 606 594 607 spin_unlock_irq(&ctx->event_wq 595 spin_unlock_irq(&ctx->event_wqh.lock); 608 596 609 wake_up_poll(&ctx->fd_wqh, EPO 597 wake_up_poll(&ctx->fd_wqh, EPOLLIN); 610 schedule(); 598 schedule(); 611 599 612 spin_lock_irq(&ctx->event_wqh. 600 spin_lock_irq(&ctx->event_wqh.lock); 613 } 601 } 614 __set_current_state(TASK_RUNNING); 602 __set_current_state(TASK_RUNNING); 615 spin_unlock_irq(&ctx->event_wqh.lock); 603 spin_unlock_irq(&ctx->event_wqh.lock); 616 604 617 if (release_new_ctx) { 605 if (release_new_ctx) { 618 struct vm_area_struct *vma; 606 struct vm_area_struct *vma; 619 struct mm_struct *mm = release 607 struct mm_struct *mm = release_new_ctx->mm; 620 VMA_ITERATOR(vmi, mm, 0); << 621 608 622 /* the various vma->vm_userfau 609 /* the various vma->vm_userfaultfd_ctx still points to it */ 623 mmap_write_lock(mm); 610 mmap_write_lock(mm); 624 for_each_vma(vmi, vma) { !! 611 for (vma = mm->mmap; vma; vma = vma->vm_next) 625 if (vma->vm_userfaultf 612 if (vma->vm_userfaultfd_ctx.ctx == release_new_ctx) { 626 vma_start_writ << 627 vma->vm_userfa 613 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX; 628 userfaultfd_se !! 614 vma->vm_flags &= ~(VM_UFFD_WP | VM_UFFD_MISSING); 629 << 630 } 615 } 631 } << 632 mmap_write_unlock(mm); 616 mmap_write_unlock(mm); 633 617 634 userfaultfd_ctx_put(release_ne 618 userfaultfd_ctx_put(release_new_ctx); 635 } 619 } 636 620 637 /* 621 /* 638 * ctx may go away after this if the u 622 * ctx may go away after this if the userfault pseudo fd is 639 * already released. 623 * already released. 640 */ 624 */ 641 out: 625 out: 642 atomic_dec(&ctx->mmap_changing); !! 626 WRITE_ONCE(ctx->mmap_changing, false); 643 VM_BUG_ON(atomic_read(&ctx->mmap_chang << 644 userfaultfd_ctx_put(ctx); 627 userfaultfd_ctx_put(ctx); 645 } 628 } 646 629 647 static void userfaultfd_event_complete(struct 630 static void userfaultfd_event_complete(struct userfaultfd_ctx *ctx, 648 struct 631 struct userfaultfd_wait_queue *ewq) 649 { 632 { 650 ewq->msg.event = 0; 633 ewq->msg.event = 0; 651 wake_up_locked(&ctx->event_wqh); 634 wake_up_locked(&ctx->event_wqh); 652 __remove_wait_queue(&ctx->event_wqh, & 635 __remove_wait_queue(&ctx->event_wqh, &ewq->wq); 653 } 636 } 654 637 655 int dup_userfaultfd(struct vm_area_struct *vma 638 int dup_userfaultfd(struct vm_area_struct *vma, struct list_head *fcs) 656 { 639 { 657 struct userfaultfd_ctx *ctx = NULL, *o 640 struct userfaultfd_ctx *ctx = NULL, *octx; 658 struct userfaultfd_fork_ctx *fctx; 641 struct userfaultfd_fork_ctx *fctx; 659 642 660 octx = vma->vm_userfaultfd_ctx.ctx; 643 octx = vma->vm_userfaultfd_ctx.ctx; 661 if (!octx) !! 644 if (!octx || !(octx->features & UFFD_FEATURE_EVENT_FORK)) { 662 return 0; << 663 << 664 if (!(octx->features & UFFD_FEATURE_EV << 665 vma_start_write(vma); << 666 vma->vm_userfaultfd_ctx = NULL 645 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX; 667 userfaultfd_set_vm_flags(vma, !! 646 vma->vm_flags &= ~(VM_UFFD_WP | VM_UFFD_MISSING); 668 return 0; 647 return 0; 669 } 648 } 670 649 671 list_for_each_entry(fctx, fcs, list) 650 list_for_each_entry(fctx, fcs, list) 672 if (fctx->orig == octx) { 651 if (fctx->orig == octx) { 673 ctx = fctx->new; 652 ctx = fctx->new; 674 break; 653 break; 675 } 654 } 676 655 677 if (!ctx) { 656 if (!ctx) { 678 fctx = kmalloc(sizeof(*fctx), 657 fctx = kmalloc(sizeof(*fctx), GFP_KERNEL); 679 if (!fctx) 658 if (!fctx) 680 return -ENOMEM; 659 return -ENOMEM; 681 660 682 ctx = kmem_cache_alloc(userfau 661 ctx = kmem_cache_alloc(userfaultfd_ctx_cachep, GFP_KERNEL); 683 if (!ctx) { 662 if (!ctx) { 684 kfree(fctx); 663 kfree(fctx); 685 return -ENOMEM; 664 return -ENOMEM; 686 } 665 } 687 666 688 refcount_set(&ctx->refcount, 1 667 refcount_set(&ctx->refcount, 1); 689 ctx->flags = octx->flags; 668 ctx->flags = octx->flags; >> 669 ctx->state = UFFD_STATE_RUNNING; 690 ctx->features = octx->features 670 ctx->features = octx->features; 691 ctx->released = false; 671 ctx->released = false; 692 init_rwsem(&ctx->map_changing_ !! 672 ctx->mmap_changing = false; 693 atomic_set(&ctx->mmap_changing << 694 ctx->mm = vma->vm_mm; 673 ctx->mm = vma->vm_mm; 695 mmgrab(ctx->mm); 674 mmgrab(ctx->mm); 696 675 697 userfaultfd_ctx_get(octx); 676 userfaultfd_ctx_get(octx); 698 down_write(&octx->map_changing !! 677 WRITE_ONCE(octx->mmap_changing, true); 699 atomic_inc(&octx->mmap_changin << 700 up_write(&octx->map_changing_l << 701 fctx->orig = octx; 678 fctx->orig = octx; 702 fctx->new = ctx; 679 fctx->new = ctx; 703 list_add_tail(&fctx->list, fcs 680 list_add_tail(&fctx->list, fcs); 704 } 681 } 705 682 706 vma->vm_userfaultfd_ctx.ctx = ctx; 683 vma->vm_userfaultfd_ctx.ctx = ctx; 707 return 0; 684 return 0; 708 } 685 } 709 686 710 static void dup_fctx(struct userfaultfd_fork_c 687 static void dup_fctx(struct userfaultfd_fork_ctx *fctx) 711 { 688 { 712 struct userfaultfd_ctx *ctx = fctx->or 689 struct userfaultfd_ctx *ctx = fctx->orig; 713 struct userfaultfd_wait_queue ewq; 690 struct userfaultfd_wait_queue ewq; 714 691 715 msg_init(&ewq.msg); 692 msg_init(&ewq.msg); 716 693 717 ewq.msg.event = UFFD_EVENT_FORK; 694 ewq.msg.event = UFFD_EVENT_FORK; 718 ewq.msg.arg.reserved.reserved1 = (unsi 695 ewq.msg.arg.reserved.reserved1 = (unsigned long)fctx->new; 719 696 720 userfaultfd_event_wait_completion(ctx, 697 userfaultfd_event_wait_completion(ctx, &ewq); 721 } 698 } 722 699 723 void dup_userfaultfd_complete(struct list_head 700 void dup_userfaultfd_complete(struct list_head *fcs) 724 { 701 { 725 struct userfaultfd_fork_ctx *fctx, *n; 702 struct userfaultfd_fork_ctx *fctx, *n; 726 703 727 list_for_each_entry_safe(fctx, n, fcs, 704 list_for_each_entry_safe(fctx, n, fcs, list) { 728 dup_fctx(fctx); 705 dup_fctx(fctx); 729 list_del(&fctx->list); 706 list_del(&fctx->list); 730 kfree(fctx); 707 kfree(fctx); 731 } 708 } 732 } 709 } 733 710 734 void mremap_userfaultfd_prep(struct vm_area_st 711 void mremap_userfaultfd_prep(struct vm_area_struct *vma, 735 struct vm_userfau 712 struct vm_userfaultfd_ctx *vm_ctx) 736 { 713 { 737 struct userfaultfd_ctx *ctx; 714 struct userfaultfd_ctx *ctx; 738 715 739 ctx = vma->vm_userfaultfd_ctx.ctx; 716 ctx = vma->vm_userfaultfd_ctx.ctx; 740 717 741 if (!ctx) 718 if (!ctx) 742 return; 719 return; 743 720 744 if (ctx->features & UFFD_FEATURE_EVENT 721 if (ctx->features & UFFD_FEATURE_EVENT_REMAP) { 745 vm_ctx->ctx = ctx; 722 vm_ctx->ctx = ctx; 746 userfaultfd_ctx_get(ctx); 723 userfaultfd_ctx_get(ctx); 747 down_write(&ctx->map_changing_ !! 724 WRITE_ONCE(ctx->mmap_changing, true); 748 atomic_inc(&ctx->mmap_changing << 749 up_write(&ctx->map_changing_lo << 750 } else { 725 } else { 751 /* Drop uffd context if remap 726 /* Drop uffd context if remap feature not enabled */ 752 vma_start_write(vma); << 753 vma->vm_userfaultfd_ctx = NULL 727 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX; 754 userfaultfd_set_vm_flags(vma, !! 728 vma->vm_flags &= ~(VM_UFFD_WP | VM_UFFD_MISSING); 755 } 729 } 756 } 730 } 757 731 758 void mremap_userfaultfd_complete(struct vm_use 732 void mremap_userfaultfd_complete(struct vm_userfaultfd_ctx *vm_ctx, 759 unsigned long 733 unsigned long from, unsigned long to, 760 unsigned long 734 unsigned long len) 761 { 735 { 762 struct userfaultfd_ctx *ctx = vm_ctx-> 736 struct userfaultfd_ctx *ctx = vm_ctx->ctx; 763 struct userfaultfd_wait_queue ewq; 737 struct userfaultfd_wait_queue ewq; 764 738 765 if (!ctx) 739 if (!ctx) 766 return; 740 return; 767 741 768 if (to & ~PAGE_MASK) { 742 if (to & ~PAGE_MASK) { 769 userfaultfd_ctx_put(ctx); 743 userfaultfd_ctx_put(ctx); 770 return; 744 return; 771 } 745 } 772 746 773 msg_init(&ewq.msg); 747 msg_init(&ewq.msg); 774 748 775 ewq.msg.event = UFFD_EVENT_REMAP; 749 ewq.msg.event = UFFD_EVENT_REMAP; 776 ewq.msg.arg.remap.from = from; 750 ewq.msg.arg.remap.from = from; 777 ewq.msg.arg.remap.to = to; 751 ewq.msg.arg.remap.to = to; 778 ewq.msg.arg.remap.len = len; 752 ewq.msg.arg.remap.len = len; 779 753 780 userfaultfd_event_wait_completion(ctx, 754 userfaultfd_event_wait_completion(ctx, &ewq); 781 } 755 } 782 756 783 bool userfaultfd_remove(struct vm_area_struct 757 bool userfaultfd_remove(struct vm_area_struct *vma, 784 unsigned long start, u 758 unsigned long start, unsigned long end) 785 { 759 { 786 struct mm_struct *mm = vma->vm_mm; 760 struct mm_struct *mm = vma->vm_mm; 787 struct userfaultfd_ctx *ctx; 761 struct userfaultfd_ctx *ctx; 788 struct userfaultfd_wait_queue ewq; 762 struct userfaultfd_wait_queue ewq; 789 763 790 ctx = vma->vm_userfaultfd_ctx.ctx; 764 ctx = vma->vm_userfaultfd_ctx.ctx; 791 if (!ctx || !(ctx->features & UFFD_FEA 765 if (!ctx || !(ctx->features & UFFD_FEATURE_EVENT_REMOVE)) 792 return true; 766 return true; 793 767 794 userfaultfd_ctx_get(ctx); 768 userfaultfd_ctx_get(ctx); 795 down_write(&ctx->map_changing_lock); !! 769 WRITE_ONCE(ctx->mmap_changing, true); 796 atomic_inc(&ctx->mmap_changing); << 797 up_write(&ctx->map_changing_lock); << 798 mmap_read_unlock(mm); 770 mmap_read_unlock(mm); 799 771 800 msg_init(&ewq.msg); 772 msg_init(&ewq.msg); 801 773 802 ewq.msg.event = UFFD_EVENT_REMOVE; 774 ewq.msg.event = UFFD_EVENT_REMOVE; 803 ewq.msg.arg.remove.start = start; 775 ewq.msg.arg.remove.start = start; 804 ewq.msg.arg.remove.end = end; 776 ewq.msg.arg.remove.end = end; 805 777 806 userfaultfd_event_wait_completion(ctx, 778 userfaultfd_event_wait_completion(ctx, &ewq); 807 779 808 return false; 780 return false; 809 } 781 } 810 782 811 static bool has_unmap_ctx(struct userfaultfd_c 783 static bool has_unmap_ctx(struct userfaultfd_ctx *ctx, struct list_head *unmaps, 812 unsigned long start, 784 unsigned long start, unsigned long end) 813 { 785 { 814 struct userfaultfd_unmap_ctx *unmap_ct 786 struct userfaultfd_unmap_ctx *unmap_ctx; 815 787 816 list_for_each_entry(unmap_ctx, unmaps, 788 list_for_each_entry(unmap_ctx, unmaps, list) 817 if (unmap_ctx->ctx == ctx && u 789 if (unmap_ctx->ctx == ctx && unmap_ctx->start == start && 818 unmap_ctx->end == end) 790 unmap_ctx->end == end) 819 return true; 791 return true; 820 792 821 return false; 793 return false; 822 } 794 } 823 795 824 int userfaultfd_unmap_prep(struct vm_area_stru !! 796 int userfaultfd_unmap_prep(struct vm_area_struct *vma, 825 unsigned long end, !! 797 unsigned long start, unsigned long end, 826 { !! 798 struct list_head *unmaps) 827 struct userfaultfd_unmap_ctx *unmap_ct !! 799 { 828 struct userfaultfd_ctx *ctx = vma->vm_ !! 800 for ( ; vma && vma->vm_start < end; vma = vma->vm_next) { >> 801 struct userfaultfd_unmap_ctx *unmap_ctx; >> 802 struct userfaultfd_ctx *ctx = vma->vm_userfaultfd_ctx.ctx; 829 803 830 if (!ctx || !(ctx->features & UFFD_FEA !! 804 if (!ctx || !(ctx->features & UFFD_FEATURE_EVENT_UNMAP) || 831 has_unmap_ctx(ctx, unmaps, start, !! 805 has_unmap_ctx(ctx, unmaps, start, end)) 832 return 0; !! 806 continue; 833 807 834 unmap_ctx = kzalloc(sizeof(*unmap_ctx) !! 808 unmap_ctx = kzalloc(sizeof(*unmap_ctx), GFP_KERNEL); 835 if (!unmap_ctx) !! 809 if (!unmap_ctx) 836 return -ENOMEM; !! 810 return -ENOMEM; 837 811 838 userfaultfd_ctx_get(ctx); !! 812 userfaultfd_ctx_get(ctx); 839 down_write(&ctx->map_changing_lock); !! 813 WRITE_ONCE(ctx->mmap_changing, true); 840 atomic_inc(&ctx->mmap_changing); !! 814 unmap_ctx->ctx = ctx; 841 up_write(&ctx->map_changing_lock); !! 815 unmap_ctx->start = start; 842 unmap_ctx->ctx = ctx; !! 816 unmap_ctx->end = end; 843 unmap_ctx->start = start; !! 817 list_add_tail(&unmap_ctx->list, unmaps); 844 unmap_ctx->end = end; !! 818 } 845 list_add_tail(&unmap_ctx->list, unmaps << 846 819 847 return 0; 820 return 0; 848 } 821 } 849 822 850 void userfaultfd_unmap_complete(struct mm_stru 823 void userfaultfd_unmap_complete(struct mm_struct *mm, struct list_head *uf) 851 { 824 { 852 struct userfaultfd_unmap_ctx *ctx, *n; 825 struct userfaultfd_unmap_ctx *ctx, *n; 853 struct userfaultfd_wait_queue ewq; 826 struct userfaultfd_wait_queue ewq; 854 827 855 list_for_each_entry_safe(ctx, n, uf, l 828 list_for_each_entry_safe(ctx, n, uf, list) { 856 msg_init(&ewq.msg); 829 msg_init(&ewq.msg); 857 830 858 ewq.msg.event = UFFD_EVENT_UNM 831 ewq.msg.event = UFFD_EVENT_UNMAP; 859 ewq.msg.arg.remove.start = ctx 832 ewq.msg.arg.remove.start = ctx->start; 860 ewq.msg.arg.remove.end = ctx-> 833 ewq.msg.arg.remove.end = ctx->end; 861 834 862 userfaultfd_event_wait_complet 835 userfaultfd_event_wait_completion(ctx->ctx, &ewq); 863 836 864 list_del(&ctx->list); 837 list_del(&ctx->list); 865 kfree(ctx); 838 kfree(ctx); 866 } 839 } 867 } 840 } 868 841 869 static int userfaultfd_release(struct inode *i 842 static int userfaultfd_release(struct inode *inode, struct file *file) 870 { 843 { 871 struct userfaultfd_ctx *ctx = file->pr 844 struct userfaultfd_ctx *ctx = file->private_data; 872 struct mm_struct *mm = ctx->mm; 845 struct mm_struct *mm = ctx->mm; 873 struct vm_area_struct *vma, *prev; 846 struct vm_area_struct *vma, *prev; 874 /* len == 0 means wake all */ 847 /* len == 0 means wake all */ 875 struct userfaultfd_wake_range range = 848 struct userfaultfd_wake_range range = { .len = 0, }; 876 unsigned long new_flags; 849 unsigned long new_flags; 877 VMA_ITERATOR(vmi, mm, 0); << 878 850 879 WRITE_ONCE(ctx->released, true); 851 WRITE_ONCE(ctx->released, true); 880 852 881 if (!mmget_not_zero(mm)) 853 if (!mmget_not_zero(mm)) 882 goto wakeup; 854 goto wakeup; 883 855 884 /* 856 /* 885 * Flush page faults out of all CPUs. 857 * Flush page faults out of all CPUs. NOTE: all page faults 886 * must be retried without returning V 858 * must be retried without returning VM_FAULT_SIGBUS if 887 * userfaultfd_ctx_get() succeeds but 859 * userfaultfd_ctx_get() succeeds but vma->vma_userfault_ctx 888 * changes while handle_userfault rele 860 * changes while handle_userfault released the mmap_lock. So 889 * it's critical that released is set 861 * it's critical that released is set to true (above), before 890 * taking the mmap_lock for writing. 862 * taking the mmap_lock for writing. 891 */ 863 */ 892 mmap_write_lock(mm); 864 mmap_write_lock(mm); 893 prev = NULL; 865 prev = NULL; 894 for_each_vma(vmi, vma) { !! 866 for (vma = mm->mmap; vma; vma = vma->vm_next) { 895 cond_resched(); 867 cond_resched(); 896 BUG_ON(!!vma->vm_userfaultfd_c 868 BUG_ON(!!vma->vm_userfaultfd_ctx.ctx ^ 897 !!(vma->vm_flags & __VM !! 869 !!(vma->vm_flags & (VM_UFFD_MISSING | VM_UFFD_WP))); 898 if (vma->vm_userfaultfd_ctx.ct 870 if (vma->vm_userfaultfd_ctx.ctx != ctx) { 899 prev = vma; 871 prev = vma; 900 continue; 872 continue; 901 } 873 } 902 /* Reset ptes for the whole vm !! 874 new_flags = vma->vm_flags & ~(VM_UFFD_MISSING | VM_UFFD_WP); 903 if (userfaultfd_wp(vma)) !! 875 prev = vma_merge(mm, prev, vma->vm_start, vma->vm_end, 904 uffd_wp_range(vma, vma !! 876 new_flags, vma->anon_vma, 905 vma->vm_ !! 877 vma->vm_file, vma->vm_pgoff, 906 new_flags = vma->vm_flags & ~_ !! 878 vma_policy(vma), 907 vma = vma_modify_flags_uffd(&v !! 879 NULL_VM_UFFD_CTX); 908 vm !! 880 if (prev) 909 NU !! 881 vma = prev; 910 !! 882 else 911 vma_start_write(vma); !! 883 prev = vma; 912 userfaultfd_set_vm_flags(vma, !! 884 vma->vm_flags = new_flags; 913 vma->vm_userfaultfd_ctx = NULL 885 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX; 914 << 915 prev = vma; << 916 } 886 } 917 mmap_write_unlock(mm); 887 mmap_write_unlock(mm); 918 mmput(mm); 888 mmput(mm); 919 wakeup: 889 wakeup: 920 /* 890 /* 921 * After no new page faults can wait o 891 * After no new page faults can wait on this fault_*wqh, flush 922 * the last page faults that may have 892 * the last page faults that may have been already waiting on 923 * the fault_*wqh. 893 * the fault_*wqh. 924 */ 894 */ 925 spin_lock_irq(&ctx->fault_pending_wqh. 895 spin_lock_irq(&ctx->fault_pending_wqh.lock); 926 __wake_up_locked_key(&ctx->fault_pendi 896 __wake_up_locked_key(&ctx->fault_pending_wqh, TASK_NORMAL, &range); 927 __wake_up(&ctx->fault_wqh, TASK_NORMAL 897 __wake_up(&ctx->fault_wqh, TASK_NORMAL, 1, &range); 928 spin_unlock_irq(&ctx->fault_pending_wq 898 spin_unlock_irq(&ctx->fault_pending_wqh.lock); 929 899 930 /* Flush pending events that may still 900 /* Flush pending events that may still wait on event_wqh */ 931 wake_up_all(&ctx->event_wqh); 901 wake_up_all(&ctx->event_wqh); 932 902 933 wake_up_poll(&ctx->fd_wqh, EPOLLHUP); 903 wake_up_poll(&ctx->fd_wqh, EPOLLHUP); 934 userfaultfd_ctx_put(ctx); 904 userfaultfd_ctx_put(ctx); 935 return 0; 905 return 0; 936 } 906 } 937 907 938 /* fault_pending_wqh.lock must be hold by the 908 /* fault_pending_wqh.lock must be hold by the caller */ 939 static inline struct userfaultfd_wait_queue *f 909 static inline struct userfaultfd_wait_queue *find_userfault_in( 940 wait_queue_head_t *wqh) 910 wait_queue_head_t *wqh) 941 { 911 { 942 wait_queue_entry_t *wq; 912 wait_queue_entry_t *wq; 943 struct userfaultfd_wait_queue *uwq; 913 struct userfaultfd_wait_queue *uwq; 944 914 945 lockdep_assert_held(&wqh->lock); 915 lockdep_assert_held(&wqh->lock); 946 916 947 uwq = NULL; 917 uwq = NULL; 948 if (!waitqueue_active(wqh)) 918 if (!waitqueue_active(wqh)) 949 goto out; 919 goto out; 950 /* walk in reverse to provide FIFO beh 920 /* walk in reverse to provide FIFO behavior to read userfaults */ 951 wq = list_last_entry(&wqh->head, typeo 921 wq = list_last_entry(&wqh->head, typeof(*wq), entry); 952 uwq = container_of(wq, struct userfaul 922 uwq = container_of(wq, struct userfaultfd_wait_queue, wq); 953 out: 923 out: 954 return uwq; 924 return uwq; 955 } 925 } 956 926 957 static inline struct userfaultfd_wait_queue *f 927 static inline struct userfaultfd_wait_queue *find_userfault( 958 struct userfaultfd_ctx *ctx) 928 struct userfaultfd_ctx *ctx) 959 { 929 { 960 return find_userfault_in(&ctx->fault_p 930 return find_userfault_in(&ctx->fault_pending_wqh); 961 } 931 } 962 932 963 static inline struct userfaultfd_wait_queue *f 933 static inline struct userfaultfd_wait_queue *find_userfault_evt( 964 struct userfaultfd_ctx *ctx) 934 struct userfaultfd_ctx *ctx) 965 { 935 { 966 return find_userfault_in(&ctx->event_w 936 return find_userfault_in(&ctx->event_wqh); 967 } 937 } 968 938 969 static __poll_t userfaultfd_poll(struct file * 939 static __poll_t userfaultfd_poll(struct file *file, poll_table *wait) 970 { 940 { 971 struct userfaultfd_ctx *ctx = file->pr 941 struct userfaultfd_ctx *ctx = file->private_data; 972 __poll_t ret; 942 __poll_t ret; 973 943 974 poll_wait(file, &ctx->fd_wqh, wait); 944 poll_wait(file, &ctx->fd_wqh, wait); 975 945 976 if (!userfaultfd_is_initialized(ctx)) !! 946 switch (ctx->state) { >> 947 case UFFD_STATE_WAIT_API: 977 return EPOLLERR; 948 return EPOLLERR; >> 949 case UFFD_STATE_RUNNING: >> 950 /* >> 951 * poll() never guarantees that read won't block. >> 952 * userfaults can be waken before they're read(). >> 953 */ >> 954 if (unlikely(!(file->f_flags & O_NONBLOCK))) >> 955 return EPOLLERR; >> 956 /* >> 957 * lockless access to see if there are pending faults >> 958 * __pollwait last action is the add_wait_queue but >> 959 * the spin_unlock would allow the waitqueue_active to >> 960 * pass above the actual list_add inside >> 961 * add_wait_queue critical section. So use a full >> 962 * memory barrier to serialize the list_add write of >> 963 * add_wait_queue() with the waitqueue_active read >> 964 * below. >> 965 */ >> 966 ret = 0; >> 967 smp_mb(); >> 968 if (waitqueue_active(&ctx->fault_pending_wqh)) >> 969 ret = EPOLLIN; >> 970 else if (waitqueue_active(&ctx->event_wqh)) >> 971 ret = EPOLLIN; 978 972 979 /* !! 973 return ret; 980 * poll() never guarantees that read w !! 974 default: 981 * userfaults can be waken before they !! 975 WARN_ON_ONCE(1); 982 */ << 983 if (unlikely(!(file->f_flags & O_NONBL << 984 return EPOLLERR; 976 return EPOLLERR; 985 /* !! 977 } 986 * lockless access to see if there are << 987 * __pollwait last action is the add_w << 988 * the spin_unlock would allow the wai << 989 * pass above the actual list_add insi << 990 * add_wait_queue critical section. So << 991 * memory barrier to serialize the lis << 992 * add_wait_queue() with the waitqueue << 993 * below. << 994 */ << 995 ret = 0; << 996 smp_mb(); << 997 if (waitqueue_active(&ctx->fault_pendi << 998 ret = EPOLLIN; << 999 else if (waitqueue_active(&ctx->event_ << 1000 ret = EPOLLIN; << 1001 << 1002 return ret; << 1003 } 978 } 1004 979 1005 static const struct file_operations userfault 980 static const struct file_operations userfaultfd_fops; 1006 981 1007 static int resolve_userfault_fork(struct user !! 982 static int resolve_userfault_fork(struct userfaultfd_ctx *ctx, 1008 struct inod !! 983 struct userfaultfd_ctx *new, 1009 struct uffd 984 struct uffd_msg *msg) 1010 { 985 { 1011 int fd; 986 int fd; 1012 987 1013 fd = anon_inode_create_getfd("[userfa !! 988 fd = anon_inode_getfd("[userfaultfd]", &userfaultfd_fops, new, 1014 O_RDONLY | (new->flag !! 989 O_RDWR | (new->flags & UFFD_SHARED_FCNTL_FLAGS)); 1015 if (fd < 0) 990 if (fd < 0) 1016 return fd; 991 return fd; 1017 992 1018 msg->arg.reserved.reserved1 = 0; 993 msg->arg.reserved.reserved1 = 0; 1019 msg->arg.fork.ufd = fd; 994 msg->arg.fork.ufd = fd; 1020 return 0; 995 return 0; 1021 } 996 } 1022 997 1023 static ssize_t userfaultfd_ctx_read(struct us 998 static ssize_t userfaultfd_ctx_read(struct userfaultfd_ctx *ctx, int no_wait, 1024 struct uf !! 999 struct uffd_msg *msg) 1025 { 1000 { 1026 ssize_t ret; 1001 ssize_t ret; 1027 DECLARE_WAITQUEUE(wait, current); 1002 DECLARE_WAITQUEUE(wait, current); 1028 struct userfaultfd_wait_queue *uwq; 1003 struct userfaultfd_wait_queue *uwq; 1029 /* 1004 /* 1030 * Handling fork event requires sleep 1005 * Handling fork event requires sleeping operations, so 1031 * we drop the event_wqh lock, then d 1006 * we drop the event_wqh lock, then do these ops, then 1032 * lock it back and wake up the waite 1007 * lock it back and wake up the waiter. While the lock is 1033 * dropped the ewq may go away so we 1008 * dropped the ewq may go away so we keep track of it 1034 * carefully. 1009 * carefully. 1035 */ 1010 */ 1036 LIST_HEAD(fork_event); 1011 LIST_HEAD(fork_event); 1037 struct userfaultfd_ctx *fork_nctx = N 1012 struct userfaultfd_ctx *fork_nctx = NULL; 1038 1013 1039 /* always take the fd_wqh lock before 1014 /* always take the fd_wqh lock before the fault_pending_wqh lock */ 1040 spin_lock_irq(&ctx->fd_wqh.lock); 1015 spin_lock_irq(&ctx->fd_wqh.lock); 1041 __add_wait_queue(&ctx->fd_wqh, &wait) 1016 __add_wait_queue(&ctx->fd_wqh, &wait); 1042 for (;;) { 1017 for (;;) { 1043 set_current_state(TASK_INTERR 1018 set_current_state(TASK_INTERRUPTIBLE); 1044 spin_lock(&ctx->fault_pending 1019 spin_lock(&ctx->fault_pending_wqh.lock); 1045 uwq = find_userfault(ctx); 1020 uwq = find_userfault(ctx); 1046 if (uwq) { 1021 if (uwq) { 1047 /* 1022 /* 1048 * Use a seqcount to 1023 * Use a seqcount to repeat the lockless check 1049 * in wake_userfault( 1024 * in wake_userfault() to avoid missing 1050 * wakeups because du 1025 * wakeups because during the refile both 1051 * waitqueue could be 1026 * waitqueue could become empty if this is the 1052 * only userfault. 1027 * only userfault. 1053 */ 1028 */ 1054 write_seqcount_begin( 1029 write_seqcount_begin(&ctx->refile_seq); 1055 1030 1056 /* 1031 /* 1057 * The fault_pending_ 1032 * The fault_pending_wqh.lock prevents the uwq 1058 * to disappear from 1033 * to disappear from under us. 1059 * 1034 * 1060 * Refile this userfa 1035 * Refile this userfault from 1061 * fault_pending_wqh 1036 * fault_pending_wqh to fault_wqh, it's not 1062 * pending anymore af 1037 * pending anymore after we read it. 1063 * 1038 * 1064 * Use list_del() by 1039 * Use list_del() by hand (as 1065 * userfaultfd_wake_f 1040 * userfaultfd_wake_function also uses 1066 * list_del_init() by 1041 * list_del_init() by hand) to be sure nobody 1067 * changes __remove_w 1042 * changes __remove_wait_queue() to use 1068 * list_del_init() in 1043 * list_del_init() in turn breaking the 1069 * !list_empty_carefu 1044 * !list_empty_careful() check in 1070 * handle_userfault() 1045 * handle_userfault(). The uwq->wq.head list 1071 * must never be empt 1046 * must never be empty at any time during the 1072 * refile, or the wai 1047 * refile, or the waitqueue could disappear 1073 * from under us. The 1048 * from under us. The "wait_queue_head_t" 1074 * parameter of __rem 1049 * parameter of __remove_wait_queue() is unused 1075 * anyway. 1050 * anyway. 1076 */ 1051 */ 1077 list_del(&uwq->wq.ent 1052 list_del(&uwq->wq.entry); 1078 add_wait_queue(&ctx-> 1053 add_wait_queue(&ctx->fault_wqh, &uwq->wq); 1079 1054 1080 write_seqcount_end(&c 1055 write_seqcount_end(&ctx->refile_seq); 1081 1056 1082 /* careful to always 1057 /* careful to always initialize msg if ret == 0 */ 1083 *msg = uwq->msg; 1058 *msg = uwq->msg; 1084 spin_unlock(&ctx->fau 1059 spin_unlock(&ctx->fault_pending_wqh.lock); 1085 ret = 0; 1060 ret = 0; 1086 break; 1061 break; 1087 } 1062 } 1088 spin_unlock(&ctx->fault_pendi 1063 spin_unlock(&ctx->fault_pending_wqh.lock); 1089 1064 1090 spin_lock(&ctx->event_wqh.loc 1065 spin_lock(&ctx->event_wqh.lock); 1091 uwq = find_userfault_evt(ctx) 1066 uwq = find_userfault_evt(ctx); 1092 if (uwq) { 1067 if (uwq) { 1093 *msg = uwq->msg; 1068 *msg = uwq->msg; 1094 1069 1095 if (uwq->msg.event == 1070 if (uwq->msg.event == UFFD_EVENT_FORK) { 1096 fork_nctx = ( 1071 fork_nctx = (struct userfaultfd_ctx *) 1097 (unsi 1072 (unsigned long) 1098 uwq-> 1073 uwq->msg.arg.reserved.reserved1; 1099 list_move(&uw 1074 list_move(&uwq->wq.entry, &fork_event); 1100 /* 1075 /* 1101 * fork_nctx 1076 * fork_nctx can be freed as soon as 1102 * we drop th 1077 * we drop the lock, unless we take a 1103 * reference 1078 * reference on it. 1104 */ 1079 */ 1105 userfaultfd_c 1080 userfaultfd_ctx_get(fork_nctx); 1106 spin_unlock(& 1081 spin_unlock(&ctx->event_wqh.lock); 1107 ret = 0; 1082 ret = 0; 1108 break; 1083 break; 1109 } 1084 } 1110 1085 1111 userfaultfd_event_com 1086 userfaultfd_event_complete(ctx, uwq); 1112 spin_unlock(&ctx->eve 1087 spin_unlock(&ctx->event_wqh.lock); 1113 ret = 0; 1088 ret = 0; 1114 break; 1089 break; 1115 } 1090 } 1116 spin_unlock(&ctx->event_wqh.l 1091 spin_unlock(&ctx->event_wqh.lock); 1117 1092 1118 if (signal_pending(current)) 1093 if (signal_pending(current)) { 1119 ret = -ERESTARTSYS; 1094 ret = -ERESTARTSYS; 1120 break; 1095 break; 1121 } 1096 } 1122 if (no_wait) { 1097 if (no_wait) { 1123 ret = -EAGAIN; 1098 ret = -EAGAIN; 1124 break; 1099 break; 1125 } 1100 } 1126 spin_unlock_irq(&ctx->fd_wqh. 1101 spin_unlock_irq(&ctx->fd_wqh.lock); 1127 schedule(); 1102 schedule(); 1128 spin_lock_irq(&ctx->fd_wqh.lo 1103 spin_lock_irq(&ctx->fd_wqh.lock); 1129 } 1104 } 1130 __remove_wait_queue(&ctx->fd_wqh, &wa 1105 __remove_wait_queue(&ctx->fd_wqh, &wait); 1131 __set_current_state(TASK_RUNNING); 1106 __set_current_state(TASK_RUNNING); 1132 spin_unlock_irq(&ctx->fd_wqh.lock); 1107 spin_unlock_irq(&ctx->fd_wqh.lock); 1133 1108 1134 if (!ret && msg->event == UFFD_EVENT_ 1109 if (!ret && msg->event == UFFD_EVENT_FORK) { 1135 ret = resolve_userfault_fork( !! 1110 ret = resolve_userfault_fork(ctx, fork_nctx, msg); 1136 spin_lock_irq(&ctx->event_wqh 1111 spin_lock_irq(&ctx->event_wqh.lock); 1137 if (!list_empty(&fork_event)) 1112 if (!list_empty(&fork_event)) { 1138 /* 1113 /* 1139 * The fork thread di 1114 * The fork thread didn't abort, so we can 1140 * drop the temporary 1115 * drop the temporary refcount. 1141 */ 1116 */ 1142 userfaultfd_ctx_put(f 1117 userfaultfd_ctx_put(fork_nctx); 1143 1118 1144 uwq = list_first_entr 1119 uwq = list_first_entry(&fork_event, 1145 1120 typeof(*uwq), 1146 1121 wq.entry); 1147 /* 1122 /* 1148 * If fork_event list 1123 * If fork_event list wasn't empty and in turn 1149 * the event wasn't a 1124 * the event wasn't already released by fork 1150 * (the event is allo 1125 * (the event is allocated on fork kernel 1151 * stack), put the ev 1126 * stack), put the event back to its place in 1152 * the event_wq. fork 1127 * the event_wq. fork_event head will be freed 1153 * as soon as we retu 1128 * as soon as we return so the event cannot 1154 * stay queued there 1129 * stay queued there no matter the current 1155 * "ret" value. 1130 * "ret" value. 1156 */ 1131 */ 1157 list_del(&uwq->wq.ent 1132 list_del(&uwq->wq.entry); 1158 __add_wait_queue(&ctx 1133 __add_wait_queue(&ctx->event_wqh, &uwq->wq); 1159 1134 1160 /* 1135 /* 1161 * Leave the event in 1136 * Leave the event in the waitqueue and report 1162 * error to userland 1137 * error to userland if we failed to resolve 1163 * the userfault fork 1138 * the userfault fork. 1164 */ 1139 */ 1165 if (likely(!ret)) 1140 if (likely(!ret)) 1166 userfaultfd_e 1141 userfaultfd_event_complete(ctx, uwq); 1167 } else { 1142 } else { 1168 /* 1143 /* 1169 * Here the fork thre 1144 * Here the fork thread aborted and the 1170 * refcount from the 1145 * refcount from the fork thread on fork_nctx 1171 * has already been r 1146 * has already been released. We still hold 1172 * the reference we t 1147 * the reference we took before releasing the 1173 * lock above. If res 1148 * lock above. If resolve_userfault_fork 1174 * failed we've to dr 1149 * failed we've to drop it because the 1175 * fork_nctx has to b 1150 * fork_nctx has to be freed in such case. If 1176 * it succeeded we'll 1151 * it succeeded we'll hold it because the new 1177 * uffd references it 1152 * uffd references it. 1178 */ 1153 */ 1179 if (ret) 1154 if (ret) 1180 userfaultfd_c 1155 userfaultfd_ctx_put(fork_nctx); 1181 } 1156 } 1182 spin_unlock_irq(&ctx->event_w 1157 spin_unlock_irq(&ctx->event_wqh.lock); 1183 } 1158 } 1184 1159 1185 return ret; 1160 return ret; 1186 } 1161 } 1187 1162 1188 static ssize_t userfaultfd_read_iter(struct k !! 1163 static ssize_t userfaultfd_read(struct file *file, char __user *buf, >> 1164 size_t count, loff_t *ppos) 1189 { 1165 { 1190 struct file *file = iocb->ki_filp; << 1191 struct userfaultfd_ctx *ctx = file->p 1166 struct userfaultfd_ctx *ctx = file->private_data; 1192 ssize_t _ret, ret = 0; 1167 ssize_t _ret, ret = 0; 1193 struct uffd_msg msg; 1168 struct uffd_msg msg; 1194 struct inode *inode = file_inode(file !! 1169 int no_wait = file->f_flags & O_NONBLOCK; 1195 bool no_wait; << 1196 1170 1197 if (!userfaultfd_is_initialized(ctx)) !! 1171 if (ctx->state == UFFD_STATE_WAIT_API) 1198 return -EINVAL; 1172 return -EINVAL; 1199 1173 1200 no_wait = file->f_flags & O_NONBLOCK << 1201 for (;;) { 1174 for (;;) { 1202 if (iov_iter_count(to) < size !! 1175 if (count < sizeof(msg)) 1203 return ret ? ret : -E 1176 return ret ? ret : -EINVAL; 1204 _ret = userfaultfd_ctx_read(c !! 1177 _ret = userfaultfd_ctx_read(ctx, no_wait, &msg); 1205 if (_ret < 0) 1178 if (_ret < 0) 1206 return ret ? ret : _r 1179 return ret ? ret : _ret; 1207 _ret = !copy_to_iter_full(&ms !! 1180 if (copy_to_user((__u64 __user *) buf, &msg, sizeof(msg))) 1208 if (_ret) << 1209 return ret ? ret : -E 1181 return ret ? ret : -EFAULT; 1210 ret += sizeof(msg); 1182 ret += sizeof(msg); >> 1183 buf += sizeof(msg); >> 1184 count -= sizeof(msg); 1211 /* 1185 /* 1212 * Allow to read more than on 1186 * Allow to read more than one fault at time but only 1213 * block if waiting for the v 1187 * block if waiting for the very first one. 1214 */ 1188 */ 1215 no_wait = true; !! 1189 no_wait = O_NONBLOCK; 1216 } 1190 } 1217 } 1191 } 1218 1192 1219 static void __wake_userfault(struct userfault 1193 static void __wake_userfault(struct userfaultfd_ctx *ctx, 1220 struct userfault 1194 struct userfaultfd_wake_range *range) 1221 { 1195 { 1222 spin_lock_irq(&ctx->fault_pending_wqh 1196 spin_lock_irq(&ctx->fault_pending_wqh.lock); 1223 /* wake all in the range and autoremo 1197 /* wake all in the range and autoremove */ 1224 if (waitqueue_active(&ctx->fault_pend 1198 if (waitqueue_active(&ctx->fault_pending_wqh)) 1225 __wake_up_locked_key(&ctx->fa 1199 __wake_up_locked_key(&ctx->fault_pending_wqh, TASK_NORMAL, 1226 range); 1200 range); 1227 if (waitqueue_active(&ctx->fault_wqh) 1201 if (waitqueue_active(&ctx->fault_wqh)) 1228 __wake_up(&ctx->fault_wqh, TA 1202 __wake_up(&ctx->fault_wqh, TASK_NORMAL, 1, range); 1229 spin_unlock_irq(&ctx->fault_pending_w 1203 spin_unlock_irq(&ctx->fault_pending_wqh.lock); 1230 } 1204 } 1231 1205 1232 static __always_inline void wake_userfault(st 1206 static __always_inline void wake_userfault(struct userfaultfd_ctx *ctx, 1233 st 1207 struct userfaultfd_wake_range *range) 1234 { 1208 { 1235 unsigned seq; 1209 unsigned seq; 1236 bool need_wakeup; 1210 bool need_wakeup; 1237 1211 1238 /* 1212 /* 1239 * To be sure waitqueue_active() is n 1213 * To be sure waitqueue_active() is not reordered by the CPU 1240 * before the pagetable update, use a 1214 * before the pagetable update, use an explicit SMP memory 1241 * barrier here. PT lock release or m 1215 * barrier here. PT lock release or mmap_read_unlock(mm) still 1242 * have release semantics that can al 1216 * have release semantics that can allow the 1243 * waitqueue_active() to be reordered 1217 * waitqueue_active() to be reordered before the pte update. 1244 */ 1218 */ 1245 smp_mb(); 1219 smp_mb(); 1246 1220 1247 /* 1221 /* 1248 * Use waitqueue_active because it's 1222 * Use waitqueue_active because it's very frequent to 1249 * change the address space atomicall 1223 * change the address space atomically even if there are no 1250 * userfaults yet. So we take the spi 1224 * userfaults yet. So we take the spinlock only when we're 1251 * sure we've userfaults to wake. 1225 * sure we've userfaults to wake. 1252 */ 1226 */ 1253 do { 1227 do { 1254 seq = read_seqcount_begin(&ct 1228 seq = read_seqcount_begin(&ctx->refile_seq); 1255 need_wakeup = waitqueue_activ 1229 need_wakeup = waitqueue_active(&ctx->fault_pending_wqh) || 1256 waitqueue_active(&ctx 1230 waitqueue_active(&ctx->fault_wqh); 1257 cond_resched(); 1231 cond_resched(); 1258 } while (read_seqcount_retry(&ctx->re 1232 } while (read_seqcount_retry(&ctx->refile_seq, seq)); 1259 if (need_wakeup) 1233 if (need_wakeup) 1260 __wake_userfault(ctx, range); 1234 __wake_userfault(ctx, range); 1261 } 1235 } 1262 1236 1263 static __always_inline int validate_unaligned !! 1237 static __always_inline int validate_range(struct mm_struct *mm, 1264 struct mm_struct *mm, __u64 start, __ !! 1238 __u64 *start, __u64 len) 1265 { 1239 { 1266 __u64 task_size = mm->task_size; 1240 __u64 task_size = mm->task_size; 1267 1241 >> 1242 *start = untagged_addr(*start); >> 1243 >> 1244 if (*start & ~PAGE_MASK) >> 1245 return -EINVAL; 1268 if (len & ~PAGE_MASK) 1246 if (len & ~PAGE_MASK) 1269 return -EINVAL; 1247 return -EINVAL; 1270 if (!len) 1248 if (!len) 1271 return -EINVAL; 1249 return -EINVAL; 1272 if (start < mmap_min_addr) !! 1250 if (*start < mmap_min_addr) 1273 return -EINVAL; 1251 return -EINVAL; 1274 if (start >= task_size) !! 1252 if (*start >= task_size) 1275 return -EINVAL; 1253 return -EINVAL; 1276 if (len > task_size - start) !! 1254 if (len > task_size - *start) 1277 return -EINVAL; << 1278 if (start + len <= start) << 1279 return -EINVAL; 1255 return -EINVAL; 1280 return 0; 1256 return 0; 1281 } 1257 } 1282 1258 1283 static __always_inline int validate_range(str !! 1259 static inline bool vma_can_userfault(struct vm_area_struct *vma, 1284 __u !! 1260 unsigned long vm_flags) 1285 { 1261 { 1286 if (start & ~PAGE_MASK) !! 1262 /* FIXME: add WP support to hugetlbfs and shmem */ 1287 return -EINVAL; !! 1263 return vma_is_anonymous(vma) || 1288 !! 1264 ((is_vm_hugetlb_page(vma) || vma_is_shmem(vma)) && 1289 return validate_unaligned_range(mm, s !! 1265 !(vm_flags & VM_UFFD_WP)); 1290 } 1266 } 1291 1267 1292 static int userfaultfd_register(struct userfa 1268 static int userfaultfd_register(struct userfaultfd_ctx *ctx, 1293 unsigned long 1269 unsigned long arg) 1294 { 1270 { 1295 struct mm_struct *mm = ctx->mm; 1271 struct mm_struct *mm = ctx->mm; 1296 struct vm_area_struct *vma, *prev, *c 1272 struct vm_area_struct *vma, *prev, *cur; 1297 int ret; 1273 int ret; 1298 struct uffdio_register uffdio_registe 1274 struct uffdio_register uffdio_register; 1299 struct uffdio_register __user *user_u 1275 struct uffdio_register __user *user_uffdio_register; 1300 unsigned long vm_flags, new_flags; 1276 unsigned long vm_flags, new_flags; 1301 bool found; 1277 bool found; 1302 bool basic_ioctls; 1278 bool basic_ioctls; 1303 unsigned long start, end, vma_end; 1279 unsigned long start, end, vma_end; 1304 struct vma_iterator vmi; << 1305 bool wp_async = userfaultfd_wp_async_ << 1306 1280 1307 user_uffdio_register = (struct uffdio 1281 user_uffdio_register = (struct uffdio_register __user *) arg; 1308 1282 1309 ret = -EFAULT; 1283 ret = -EFAULT; 1310 if (copy_from_user(&uffdio_register, 1284 if (copy_from_user(&uffdio_register, user_uffdio_register, 1311 sizeof(uffdio_regi 1285 sizeof(uffdio_register)-sizeof(__u64))) 1312 goto out; 1286 goto out; 1313 1287 1314 ret = -EINVAL; 1288 ret = -EINVAL; 1315 if (!uffdio_register.mode) 1289 if (!uffdio_register.mode) 1316 goto out; 1290 goto out; 1317 if (uffdio_register.mode & ~UFFD_API_ !! 1291 if (uffdio_register.mode & ~(UFFDIO_REGISTER_MODE_MISSING| >> 1292 UFFDIO_REGISTER_MODE_WP)) 1318 goto out; 1293 goto out; 1319 vm_flags = 0; 1294 vm_flags = 0; 1320 if (uffdio_register.mode & UFFDIO_REG 1295 if (uffdio_register.mode & UFFDIO_REGISTER_MODE_MISSING) 1321 vm_flags |= VM_UFFD_MISSING; 1296 vm_flags |= VM_UFFD_MISSING; 1322 if (uffdio_register.mode & UFFDIO_REG !! 1297 if (uffdio_register.mode & UFFDIO_REGISTER_MODE_WP) 1323 #ifndef CONFIG_HAVE_ARCH_USERFAULTFD_WP << 1324 goto out; << 1325 #endif << 1326 vm_flags |= VM_UFFD_WP; 1298 vm_flags |= VM_UFFD_WP; 1327 } << 1328 if (uffdio_register.mode & UFFDIO_REG << 1329 #ifndef CONFIG_HAVE_ARCH_USERFAULTFD_MINOR << 1330 goto out; << 1331 #endif << 1332 vm_flags |= VM_UFFD_MINOR; << 1333 } << 1334 1299 1335 ret = validate_range(mm, uffdio_regis !! 1300 ret = validate_range(mm, &uffdio_register.range.start, 1336 uffdio_register. 1301 uffdio_register.range.len); 1337 if (ret) 1302 if (ret) 1338 goto out; 1303 goto out; 1339 1304 1340 start = uffdio_register.range.start; 1305 start = uffdio_register.range.start; 1341 end = start + uffdio_register.range.l 1306 end = start + uffdio_register.range.len; 1342 1307 1343 ret = -ENOMEM; 1308 ret = -ENOMEM; 1344 if (!mmget_not_zero(mm)) 1309 if (!mmget_not_zero(mm)) 1345 goto out; 1310 goto out; 1346 1311 1347 ret = -EINVAL; << 1348 mmap_write_lock(mm); 1312 mmap_write_lock(mm); 1349 vma_iter_init(&vmi, mm, start); !! 1313 vma = find_vma_prev(mm, start, &prev); 1350 vma = vma_find(&vmi, end); << 1351 if (!vma) 1314 if (!vma) 1352 goto out_unlock; 1315 goto out_unlock; 1353 1316 >> 1317 /* check that there's at least one vma in the range */ >> 1318 ret = -EINVAL; >> 1319 if (vma->vm_start >= end) >> 1320 goto out_unlock; >> 1321 1354 /* 1322 /* 1355 * If the first vma contains huge pag 1323 * If the first vma contains huge pages, make sure start address 1356 * is aligned to huge page size. 1324 * is aligned to huge page size. 1357 */ 1325 */ 1358 if (is_vm_hugetlb_page(vma)) { 1326 if (is_vm_hugetlb_page(vma)) { 1359 unsigned long vma_hpagesize = 1327 unsigned long vma_hpagesize = vma_kernel_pagesize(vma); 1360 1328 1361 if (start & (vma_hpagesize - 1329 if (start & (vma_hpagesize - 1)) 1362 goto out_unlock; 1330 goto out_unlock; 1363 } 1331 } 1364 1332 1365 /* 1333 /* 1366 * Search for not compatible vmas. 1334 * Search for not compatible vmas. 1367 */ 1335 */ 1368 found = false; 1336 found = false; 1369 basic_ioctls = false; 1337 basic_ioctls = false; 1370 cur = vma; !! 1338 for (cur = vma; cur && cur->vm_start < end; cur = cur->vm_next) { 1371 do { << 1372 cond_resched(); 1339 cond_resched(); 1373 1340 1374 BUG_ON(!!cur->vm_userfaultfd_ 1341 BUG_ON(!!cur->vm_userfaultfd_ctx.ctx ^ 1375 !!(cur->vm_flags & __V !! 1342 !!(cur->vm_flags & (VM_UFFD_MISSING | VM_UFFD_WP))); 1376 1343 1377 /* check not compatible vmas 1344 /* check not compatible vmas */ 1378 ret = -EINVAL; 1345 ret = -EINVAL; 1379 if (!vma_can_userfault(cur, v !! 1346 if (!vma_can_userfault(cur, vm_flags)) 1380 goto out_unlock; 1347 goto out_unlock; 1381 1348 1382 /* 1349 /* 1383 * UFFDIO_COPY will fill file 1350 * UFFDIO_COPY will fill file holes even without 1384 * PROT_WRITE. This check enf 1351 * PROT_WRITE. This check enforces that if this is a 1385 * MAP_SHARED, the process ha 1352 * MAP_SHARED, the process has write permission to the backing 1386 * file. If VM_MAYWRITE is se 1353 * file. If VM_MAYWRITE is set it also enforces that on a 1387 * MAP_SHARED vma: there is n 1354 * MAP_SHARED vma: there is no F_WRITE_SEAL and no further 1388 * F_WRITE_SEAL can be taken 1355 * F_WRITE_SEAL can be taken until the vma is destroyed. 1389 */ 1356 */ 1390 ret = -EPERM; 1357 ret = -EPERM; 1391 if (unlikely(!(cur->vm_flags 1358 if (unlikely(!(cur->vm_flags & VM_MAYWRITE))) 1392 goto out_unlock; 1359 goto out_unlock; 1393 1360 1394 /* 1361 /* 1395 * If this vma contains endin 1362 * If this vma contains ending address, and huge pages 1396 * check alignment. 1363 * check alignment. 1397 */ 1364 */ 1398 if (is_vm_hugetlb_page(cur) & 1365 if (is_vm_hugetlb_page(cur) && end <= cur->vm_end && 1399 end > cur->vm_start) { 1366 end > cur->vm_start) { 1400 unsigned long vma_hpa 1367 unsigned long vma_hpagesize = vma_kernel_pagesize(cur); 1401 1368 1402 ret = -EINVAL; 1369 ret = -EINVAL; 1403 1370 1404 if (end & (vma_hpages 1371 if (end & (vma_hpagesize - 1)) 1405 goto out_unlo 1372 goto out_unlock; 1406 } 1373 } 1407 if ((vm_flags & VM_UFFD_WP) & 1374 if ((vm_flags & VM_UFFD_WP) && !(cur->vm_flags & VM_MAYWRITE)) 1408 goto out_unlock; 1375 goto out_unlock; 1409 1376 1410 /* 1377 /* 1411 * Check that this vma isn't 1378 * Check that this vma isn't already owned by a 1412 * different userfaultfd. We 1379 * different userfaultfd. We can't allow more than one 1413 * userfaultfd to own a singl 1380 * userfaultfd to own a single vma simultaneously or we 1414 * wouldn't know which one to 1381 * wouldn't know which one to deliver the userfaults to. 1415 */ 1382 */ 1416 ret = -EBUSY; 1383 ret = -EBUSY; 1417 if (cur->vm_userfaultfd_ctx.c 1384 if (cur->vm_userfaultfd_ctx.ctx && 1418 cur->vm_userfaultfd_ctx.c 1385 cur->vm_userfaultfd_ctx.ctx != ctx) 1419 goto out_unlock; 1386 goto out_unlock; 1420 1387 1421 /* 1388 /* 1422 * Note vmas containing huge 1389 * Note vmas containing huge pages 1423 */ 1390 */ 1424 if (is_vm_hugetlb_page(cur)) 1391 if (is_vm_hugetlb_page(cur)) 1425 basic_ioctls = true; 1392 basic_ioctls = true; 1426 1393 1427 found = true; 1394 found = true; 1428 } for_each_vma_range(vmi, cur, end); !! 1395 } 1429 BUG_ON(!found); 1396 BUG_ON(!found); 1430 1397 1431 vma_iter_set(&vmi, start); << 1432 prev = vma_prev(&vmi); << 1433 if (vma->vm_start < start) 1398 if (vma->vm_start < start) 1434 prev = vma; 1399 prev = vma; 1435 1400 1436 ret = 0; 1401 ret = 0; 1437 for_each_vma_range(vmi, vma, end) { !! 1402 do { 1438 cond_resched(); 1403 cond_resched(); 1439 1404 1440 BUG_ON(!vma_can_userfault(vma !! 1405 BUG_ON(!vma_can_userfault(vma, vm_flags)); 1441 BUG_ON(vma->vm_userfaultfd_ct 1406 BUG_ON(vma->vm_userfaultfd_ctx.ctx && 1442 vma->vm_userfaultfd_ct 1407 vma->vm_userfaultfd_ctx.ctx != ctx); 1443 WARN_ON(!(vma->vm_flags & VM_ 1408 WARN_ON(!(vma->vm_flags & VM_MAYWRITE)); 1444 1409 1445 /* 1410 /* 1446 * Nothing to do: this vma is 1411 * Nothing to do: this vma is already registered into this 1447 * userfaultfd and with the r 1412 * userfaultfd and with the right tracking mode too. 1448 */ 1413 */ 1449 if (vma->vm_userfaultfd_ctx.c 1414 if (vma->vm_userfaultfd_ctx.ctx == ctx && 1450 (vma->vm_flags & vm_flags 1415 (vma->vm_flags & vm_flags) == vm_flags) 1451 goto skip; 1416 goto skip; 1452 1417 1453 if (vma->vm_start > start) 1418 if (vma->vm_start > start) 1454 start = vma->vm_start 1419 start = vma->vm_start; 1455 vma_end = min(end, vma->vm_en 1420 vma_end = min(end, vma->vm_end); 1456 1421 1457 new_flags = (vma->vm_flags & !! 1422 new_flags = (vma->vm_flags & 1458 vma = vma_modify_flags_uffd(& !! 1423 ~(VM_UFFD_MISSING|VM_UFFD_WP)) | vm_flags; 1459 n !! 1424 prev = vma_merge(mm, prev, start, vma_end, new_flags, 1460 ( !! 1425 vma->anon_vma, vma->vm_file, vma->vm_pgoff, 1461 if (IS_ERR(vma)) { !! 1426 vma_policy(vma), 1462 ret = PTR_ERR(vma); !! 1427 ((struct vm_userfaultfd_ctx){ ctx })); 1463 break; !! 1428 if (prev) { >> 1429 vma = prev; >> 1430 goto next; 1464 } 1431 } 1465 !! 1432 if (vma->vm_start < start) { >> 1433 ret = split_vma(mm, vma, start, 1); >> 1434 if (ret) >> 1435 break; >> 1436 } >> 1437 if (vma->vm_end > end) { >> 1438 ret = split_vma(mm, vma, end, 0); >> 1439 if (ret) >> 1440 break; >> 1441 } >> 1442 next: 1466 /* 1443 /* 1467 * In the vma_merge() success 1444 * In the vma_merge() successful mprotect-like case 8: 1468 * the next vma was merged in 1445 * the next vma was merged into the current one and 1469 * the current one has not be 1446 * the current one has not been updated yet. 1470 */ 1447 */ 1471 vma_start_write(vma); !! 1448 vma->vm_flags = new_flags; 1472 userfaultfd_set_vm_flags(vma, << 1473 vma->vm_userfaultfd_ctx.ctx = 1449 vma->vm_userfaultfd_ctx.ctx = ctx; 1474 1450 1475 if (is_vm_hugetlb_page(vma) & << 1476 hugetlb_unshare_all_p << 1477 << 1478 skip: 1451 skip: 1479 prev = vma; 1452 prev = vma; 1480 start = vma->vm_end; 1453 start = vma->vm_end; 1481 } !! 1454 vma = vma->vm_next; 1482 !! 1455 } while (vma && vma->vm_start < end); 1483 out_unlock: 1456 out_unlock: 1484 mmap_write_unlock(mm); 1457 mmap_write_unlock(mm); 1485 mmput(mm); 1458 mmput(mm); 1486 if (!ret) { 1459 if (!ret) { 1487 __u64 ioctls_out; 1460 __u64 ioctls_out; 1488 1461 1489 ioctls_out = basic_ioctls ? U 1462 ioctls_out = basic_ioctls ? UFFD_API_RANGE_IOCTLS_BASIC : 1490 UFFD_API_RANGE_IOCTLS; 1463 UFFD_API_RANGE_IOCTLS; 1491 1464 1492 /* 1465 /* 1493 * Declare the WP ioctl only 1466 * Declare the WP ioctl only if the WP mode is 1494 * specified and all checks p 1467 * specified and all checks passed with the range 1495 */ 1468 */ 1496 if (!(uffdio_register.mode & 1469 if (!(uffdio_register.mode & UFFDIO_REGISTER_MODE_WP)) 1497 ioctls_out &= ~((__u6 1470 ioctls_out &= ~((__u64)1 << _UFFDIO_WRITEPROTECT); 1498 1471 1499 /* CONTINUE ioctl is only sup << 1500 if (!(uffdio_register.mode & << 1501 ioctls_out &= ~((__u6 << 1502 << 1503 /* 1472 /* 1504 * Now that we scanned all vm 1473 * Now that we scanned all vmas we can already tell 1505 * userland which ioctls meth 1474 * userland which ioctls methods are guaranteed to 1506 * succeed on this range. 1475 * succeed on this range. 1507 */ 1476 */ 1508 if (put_user(ioctls_out, &use 1477 if (put_user(ioctls_out, &user_uffdio_register->ioctls)) 1509 ret = -EFAULT; 1478 ret = -EFAULT; 1510 } 1479 } 1511 out: 1480 out: 1512 return ret; 1481 return ret; 1513 } 1482 } 1514 1483 1515 static int userfaultfd_unregister(struct user 1484 static int userfaultfd_unregister(struct userfaultfd_ctx *ctx, 1516 unsigned lo 1485 unsigned long arg) 1517 { 1486 { 1518 struct mm_struct *mm = ctx->mm; 1487 struct mm_struct *mm = ctx->mm; 1519 struct vm_area_struct *vma, *prev, *c 1488 struct vm_area_struct *vma, *prev, *cur; 1520 int ret; 1489 int ret; 1521 struct uffdio_range uffdio_unregister 1490 struct uffdio_range uffdio_unregister; 1522 unsigned long new_flags; 1491 unsigned long new_flags; 1523 bool found; 1492 bool found; 1524 unsigned long start, end, vma_end; 1493 unsigned long start, end, vma_end; 1525 const void __user *buf = (void __user 1494 const void __user *buf = (void __user *)arg; 1526 struct vma_iterator vmi; << 1527 bool wp_async = userfaultfd_wp_async_ << 1528 1495 1529 ret = -EFAULT; 1496 ret = -EFAULT; 1530 if (copy_from_user(&uffdio_unregister 1497 if (copy_from_user(&uffdio_unregister, buf, sizeof(uffdio_unregister))) 1531 goto out; 1498 goto out; 1532 1499 1533 ret = validate_range(mm, uffdio_unreg !! 1500 ret = validate_range(mm, &uffdio_unregister.start, 1534 uffdio_unregiste 1501 uffdio_unregister.len); 1535 if (ret) 1502 if (ret) 1536 goto out; 1503 goto out; 1537 1504 1538 start = uffdio_unregister.start; 1505 start = uffdio_unregister.start; 1539 end = start + uffdio_unregister.len; 1506 end = start + uffdio_unregister.len; 1540 1507 1541 ret = -ENOMEM; 1508 ret = -ENOMEM; 1542 if (!mmget_not_zero(mm)) 1509 if (!mmget_not_zero(mm)) 1543 goto out; 1510 goto out; 1544 1511 1545 mmap_write_lock(mm); 1512 mmap_write_lock(mm); 1546 ret = -EINVAL; !! 1513 vma = find_vma_prev(mm, start, &prev); 1547 vma_iter_init(&vmi, mm, start); << 1548 vma = vma_find(&vmi, end); << 1549 if (!vma) 1514 if (!vma) 1550 goto out_unlock; 1515 goto out_unlock; 1551 1516 >> 1517 /* check that there's at least one vma in the range */ >> 1518 ret = -EINVAL; >> 1519 if (vma->vm_start >= end) >> 1520 goto out_unlock; >> 1521 1552 /* 1522 /* 1553 * If the first vma contains huge pag 1523 * If the first vma contains huge pages, make sure start address 1554 * is aligned to huge page size. 1524 * is aligned to huge page size. 1555 */ 1525 */ 1556 if (is_vm_hugetlb_page(vma)) { 1526 if (is_vm_hugetlb_page(vma)) { 1557 unsigned long vma_hpagesize = 1527 unsigned long vma_hpagesize = vma_kernel_pagesize(vma); 1558 1528 1559 if (start & (vma_hpagesize - 1529 if (start & (vma_hpagesize - 1)) 1560 goto out_unlock; 1530 goto out_unlock; 1561 } 1531 } 1562 1532 1563 /* 1533 /* 1564 * Search for not compatible vmas. 1534 * Search for not compatible vmas. 1565 */ 1535 */ 1566 found = false; 1536 found = false; 1567 cur = vma; !! 1537 ret = -EINVAL; 1568 do { !! 1538 for (cur = vma; cur && cur->vm_start < end; cur = cur->vm_next) { 1569 cond_resched(); 1539 cond_resched(); 1570 1540 1571 BUG_ON(!!cur->vm_userfaultfd_ 1541 BUG_ON(!!cur->vm_userfaultfd_ctx.ctx ^ 1572 !!(cur->vm_flags & __V !! 1542 !!(cur->vm_flags & (VM_UFFD_MISSING | VM_UFFD_WP))); 1573 1543 1574 /* 1544 /* 1575 * Check not compatible vmas, 1545 * Check not compatible vmas, not strictly required 1576 * here as not compatible vma 1546 * here as not compatible vmas cannot have an 1577 * userfaultfd_ctx registered 1547 * userfaultfd_ctx registered on them, but this 1578 * provides for more strict b 1548 * provides for more strict behavior to notice 1579 * unregistration errors. 1549 * unregistration errors. 1580 */ 1550 */ 1581 if (!vma_can_userfault(cur, c !! 1551 if (!vma_can_userfault(cur, cur->vm_flags)) 1582 goto out_unlock; 1552 goto out_unlock; 1583 1553 1584 found = true; 1554 found = true; 1585 } for_each_vma_range(vmi, cur, end); !! 1555 } 1586 BUG_ON(!found); 1556 BUG_ON(!found); 1587 1557 1588 vma_iter_set(&vmi, start); << 1589 prev = vma_prev(&vmi); << 1590 if (vma->vm_start < start) 1558 if (vma->vm_start < start) 1591 prev = vma; 1559 prev = vma; 1592 1560 1593 ret = 0; 1561 ret = 0; 1594 for_each_vma_range(vmi, vma, end) { !! 1562 do { 1595 cond_resched(); 1563 cond_resched(); 1596 1564 1597 BUG_ON(!vma_can_userfault(vma !! 1565 BUG_ON(!vma_can_userfault(vma, vma->vm_flags)); 1598 1566 1599 /* 1567 /* 1600 * Nothing to do: this vma is 1568 * Nothing to do: this vma is already registered into this 1601 * userfaultfd and with the r 1569 * userfaultfd and with the right tracking mode too. 1602 */ 1570 */ 1603 if (!vma->vm_userfaultfd_ctx. 1571 if (!vma->vm_userfaultfd_ctx.ctx) 1604 goto skip; 1572 goto skip; 1605 1573 1606 WARN_ON(!(vma->vm_flags & VM_ 1574 WARN_ON(!(vma->vm_flags & VM_MAYWRITE)); 1607 1575 1608 if (vma->vm_start > start) 1576 if (vma->vm_start > start) 1609 start = vma->vm_start 1577 start = vma->vm_start; 1610 vma_end = min(end, vma->vm_en 1578 vma_end = min(end, vma->vm_end); 1611 1579 1612 if (userfaultfd_missing(vma)) 1580 if (userfaultfd_missing(vma)) { 1613 /* 1581 /* 1614 * Wake any concurren 1582 * Wake any concurrent pending userfault while 1615 * we unregister, so 1583 * we unregister, so they will not hang 1616 * permanently and it 1584 * permanently and it avoids userland to call 1617 * UFFDIO_WAKE explic 1585 * UFFDIO_WAKE explicitly. 1618 */ 1586 */ 1619 struct userfaultfd_wa 1587 struct userfaultfd_wake_range range; 1620 range.start = start; 1588 range.start = start; 1621 range.len = vma_end - 1589 range.len = vma_end - start; 1622 wake_userfault(vma->v 1590 wake_userfault(vma->vm_userfaultfd_ctx.ctx, &range); 1623 } 1591 } 1624 1592 1625 /* Reset ptes for the whole v !! 1593 new_flags = vma->vm_flags & ~(VM_UFFD_MISSING | VM_UFFD_WP); 1626 if (userfaultfd_wp(vma)) !! 1594 prev = vma_merge(mm, prev, start, vma_end, new_flags, 1627 uffd_wp_range(vma, st !! 1595 vma->anon_vma, vma->vm_file, vma->vm_pgoff, 1628 !! 1596 vma_policy(vma), 1629 new_flags = vma->vm_flags & ~ !! 1597 NULL_VM_UFFD_CTX); 1630 vma = vma_modify_flags_uffd(& !! 1598 if (prev) { 1631 n !! 1599 vma = prev; 1632 if (IS_ERR(vma)) { !! 1600 goto next; 1633 ret = PTR_ERR(vma); << 1634 break; << 1635 } 1601 } 1636 !! 1602 if (vma->vm_start < start) { >> 1603 ret = split_vma(mm, vma, start, 1); >> 1604 if (ret) >> 1605 break; >> 1606 } >> 1607 if (vma->vm_end > end) { >> 1608 ret = split_vma(mm, vma, end, 0); >> 1609 if (ret) >> 1610 break; >> 1611 } >> 1612 next: 1637 /* 1613 /* 1638 * In the vma_merge() success 1614 * In the vma_merge() successful mprotect-like case 8: 1639 * the next vma was merged in 1615 * the next vma was merged into the current one and 1640 * the current one has not be 1616 * the current one has not been updated yet. 1641 */ 1617 */ 1642 vma_start_write(vma); !! 1618 vma->vm_flags = new_flags; 1643 userfaultfd_set_vm_flags(vma, << 1644 vma->vm_userfaultfd_ctx = NUL 1619 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX; 1645 1620 1646 skip: 1621 skip: 1647 prev = vma; 1622 prev = vma; 1648 start = vma->vm_end; 1623 start = vma->vm_end; 1649 } !! 1624 vma = vma->vm_next; 1650 !! 1625 } while (vma && vma->vm_start < end); 1651 out_unlock: 1626 out_unlock: 1652 mmap_write_unlock(mm); 1627 mmap_write_unlock(mm); 1653 mmput(mm); 1628 mmput(mm); 1654 out: 1629 out: 1655 return ret; 1630 return ret; 1656 } 1631 } 1657 1632 1658 /* 1633 /* 1659 * userfaultfd_wake may be used in combinatio 1634 * userfaultfd_wake may be used in combination with the 1660 * UFFDIO_*_MODE_DONTWAKE to wakeup userfault 1635 * UFFDIO_*_MODE_DONTWAKE to wakeup userfaults in batches. 1661 */ 1636 */ 1662 static int userfaultfd_wake(struct userfaultf 1637 static int userfaultfd_wake(struct userfaultfd_ctx *ctx, 1663 unsigned long arg 1638 unsigned long arg) 1664 { 1639 { 1665 int ret; 1640 int ret; 1666 struct uffdio_range uffdio_wake; 1641 struct uffdio_range uffdio_wake; 1667 struct userfaultfd_wake_range range; 1642 struct userfaultfd_wake_range range; 1668 const void __user *buf = (void __user 1643 const void __user *buf = (void __user *)arg; 1669 1644 1670 ret = -EFAULT; 1645 ret = -EFAULT; 1671 if (copy_from_user(&uffdio_wake, buf, 1646 if (copy_from_user(&uffdio_wake, buf, sizeof(uffdio_wake))) 1672 goto out; 1647 goto out; 1673 1648 1674 ret = validate_range(ctx->mm, uffdio_ !! 1649 ret = validate_range(ctx->mm, &uffdio_wake.start, uffdio_wake.len); 1675 if (ret) 1650 if (ret) 1676 goto out; 1651 goto out; 1677 1652 1678 range.start = uffdio_wake.start; 1653 range.start = uffdio_wake.start; 1679 range.len = uffdio_wake.len; 1654 range.len = uffdio_wake.len; 1680 1655 1681 /* 1656 /* 1682 * len == 0 means wake all and we don 1657 * len == 0 means wake all and we don't want to wake all here, 1683 * so check it again to be sure. 1658 * so check it again to be sure. 1684 */ 1659 */ 1685 VM_BUG_ON(!range.len); 1660 VM_BUG_ON(!range.len); 1686 1661 1687 wake_userfault(ctx, &range); 1662 wake_userfault(ctx, &range); 1688 ret = 0; 1663 ret = 0; 1689 1664 1690 out: 1665 out: 1691 return ret; 1666 return ret; 1692 } 1667 } 1693 1668 1694 static int userfaultfd_copy(struct userfaultf 1669 static int userfaultfd_copy(struct userfaultfd_ctx *ctx, 1695 unsigned long arg 1670 unsigned long arg) 1696 { 1671 { 1697 __s64 ret; 1672 __s64 ret; 1698 struct uffdio_copy uffdio_copy; 1673 struct uffdio_copy uffdio_copy; 1699 struct uffdio_copy __user *user_uffdi 1674 struct uffdio_copy __user *user_uffdio_copy; 1700 struct userfaultfd_wake_range range; 1675 struct userfaultfd_wake_range range; 1701 uffd_flags_t flags = 0; << 1702 1676 1703 user_uffdio_copy = (struct uffdio_cop 1677 user_uffdio_copy = (struct uffdio_copy __user *) arg; 1704 1678 1705 ret = -EAGAIN; 1679 ret = -EAGAIN; 1706 if (atomic_read(&ctx->mmap_changing)) !! 1680 if (READ_ONCE(ctx->mmap_changing)) 1707 goto out; 1681 goto out; 1708 1682 1709 ret = -EFAULT; 1683 ret = -EFAULT; 1710 if (copy_from_user(&uffdio_copy, user 1684 if (copy_from_user(&uffdio_copy, user_uffdio_copy, 1711 /* don't copy "cop 1685 /* don't copy "copy" last field */ 1712 sizeof(uffdio_copy 1686 sizeof(uffdio_copy)-sizeof(__s64))) 1713 goto out; 1687 goto out; 1714 1688 1715 ret = validate_unaligned_range(ctx->m !! 1689 ret = validate_range(ctx->mm, &uffdio_copy.dst, uffdio_copy.len); 1716 uffdio << 1717 if (ret) << 1718 goto out; << 1719 ret = validate_range(ctx->mm, uffdio_ << 1720 if (ret) 1690 if (ret) 1721 goto out; 1691 goto out; 1722 !! 1692 /* >> 1693 * double check for wraparound just in case. copy_from_user() >> 1694 * will later check uffdio_copy.src + uffdio_copy.len to fit >> 1695 * in the userland range. >> 1696 */ 1723 ret = -EINVAL; 1697 ret = -EINVAL; >> 1698 if (uffdio_copy.src + uffdio_copy.len <= uffdio_copy.src) >> 1699 goto out; 1724 if (uffdio_copy.mode & ~(UFFDIO_COPY_ 1700 if (uffdio_copy.mode & ~(UFFDIO_COPY_MODE_DONTWAKE|UFFDIO_COPY_MODE_WP)) 1725 goto out; 1701 goto out; 1726 if (uffdio_copy.mode & UFFDIO_COPY_MO << 1727 flags |= MFILL_ATOMIC_WP; << 1728 if (mmget_not_zero(ctx->mm)) { 1702 if (mmget_not_zero(ctx->mm)) { 1729 ret = mfill_atomic_copy(ctx, !! 1703 ret = mcopy_atomic(ctx->mm, uffdio_copy.dst, uffdio_copy.src, 1730 uffdi !! 1704 uffdio_copy.len, &ctx->mmap_changing, >> 1705 uffdio_copy.mode); 1731 mmput(ctx->mm); 1706 mmput(ctx->mm); 1732 } else { 1707 } else { 1733 return -ESRCH; 1708 return -ESRCH; 1734 } 1709 } 1735 if (unlikely(put_user(ret, &user_uffd 1710 if (unlikely(put_user(ret, &user_uffdio_copy->copy))) 1736 return -EFAULT; 1711 return -EFAULT; 1737 if (ret < 0) 1712 if (ret < 0) 1738 goto out; 1713 goto out; 1739 BUG_ON(!ret); 1714 BUG_ON(!ret); 1740 /* len == 0 would wake all */ 1715 /* len == 0 would wake all */ 1741 range.len = ret; 1716 range.len = ret; 1742 if (!(uffdio_copy.mode & UFFDIO_COPY_ 1717 if (!(uffdio_copy.mode & UFFDIO_COPY_MODE_DONTWAKE)) { 1743 range.start = uffdio_copy.dst 1718 range.start = uffdio_copy.dst; 1744 wake_userfault(ctx, &range); 1719 wake_userfault(ctx, &range); 1745 } 1720 } 1746 ret = range.len == uffdio_copy.len ? 1721 ret = range.len == uffdio_copy.len ? 0 : -EAGAIN; 1747 out: 1722 out: 1748 return ret; 1723 return ret; 1749 } 1724 } 1750 1725 1751 static int userfaultfd_zeropage(struct userfa 1726 static int userfaultfd_zeropage(struct userfaultfd_ctx *ctx, 1752 unsigned long 1727 unsigned long arg) 1753 { 1728 { 1754 __s64 ret; 1729 __s64 ret; 1755 struct uffdio_zeropage uffdio_zeropag 1730 struct uffdio_zeropage uffdio_zeropage; 1756 struct uffdio_zeropage __user *user_u 1731 struct uffdio_zeropage __user *user_uffdio_zeropage; 1757 struct userfaultfd_wake_range range; 1732 struct userfaultfd_wake_range range; 1758 1733 1759 user_uffdio_zeropage = (struct uffdio 1734 user_uffdio_zeropage = (struct uffdio_zeropage __user *) arg; 1760 1735 1761 ret = -EAGAIN; 1736 ret = -EAGAIN; 1762 if (atomic_read(&ctx->mmap_changing)) !! 1737 if (READ_ONCE(ctx->mmap_changing)) 1763 goto out; 1738 goto out; 1764 1739 1765 ret = -EFAULT; 1740 ret = -EFAULT; 1766 if (copy_from_user(&uffdio_zeropage, 1741 if (copy_from_user(&uffdio_zeropage, user_uffdio_zeropage, 1767 /* don't copy "zer 1742 /* don't copy "zeropage" last field */ 1768 sizeof(uffdio_zero 1743 sizeof(uffdio_zeropage)-sizeof(__s64))) 1769 goto out; 1744 goto out; 1770 1745 1771 ret = validate_range(ctx->mm, uffdio_ !! 1746 ret = validate_range(ctx->mm, &uffdio_zeropage.range.start, 1772 uffdio_zeropage. 1747 uffdio_zeropage.range.len); 1773 if (ret) 1748 if (ret) 1774 goto out; 1749 goto out; 1775 ret = -EINVAL; 1750 ret = -EINVAL; 1776 if (uffdio_zeropage.mode & ~UFFDIO_ZE 1751 if (uffdio_zeropage.mode & ~UFFDIO_ZEROPAGE_MODE_DONTWAKE) 1777 goto out; 1752 goto out; 1778 1753 1779 if (mmget_not_zero(ctx->mm)) { 1754 if (mmget_not_zero(ctx->mm)) { 1780 ret = mfill_atomic_zeropage(c !! 1755 ret = mfill_zeropage(ctx->mm, uffdio_zeropage.range.start, 1781 uf !! 1756 uffdio_zeropage.range.len, >> 1757 &ctx->mmap_changing); 1782 mmput(ctx->mm); 1758 mmput(ctx->mm); 1783 } else { 1759 } else { 1784 return -ESRCH; 1760 return -ESRCH; 1785 } 1761 } 1786 if (unlikely(put_user(ret, &user_uffd 1762 if (unlikely(put_user(ret, &user_uffdio_zeropage->zeropage))) 1787 return -EFAULT; 1763 return -EFAULT; 1788 if (ret < 0) 1764 if (ret < 0) 1789 goto out; 1765 goto out; 1790 /* len == 0 would wake all */ 1766 /* len == 0 would wake all */ 1791 BUG_ON(!ret); 1767 BUG_ON(!ret); 1792 range.len = ret; 1768 range.len = ret; 1793 if (!(uffdio_zeropage.mode & UFFDIO_Z 1769 if (!(uffdio_zeropage.mode & UFFDIO_ZEROPAGE_MODE_DONTWAKE)) { 1794 range.start = uffdio_zeropage 1770 range.start = uffdio_zeropage.range.start; 1795 wake_userfault(ctx, &range); 1771 wake_userfault(ctx, &range); 1796 } 1772 } 1797 ret = range.len == uffdio_zeropage.ra 1773 ret = range.len == uffdio_zeropage.range.len ? 0 : -EAGAIN; 1798 out: 1774 out: 1799 return ret; 1775 return ret; 1800 } 1776 } 1801 1777 1802 static int userfaultfd_writeprotect(struct us 1778 static int userfaultfd_writeprotect(struct userfaultfd_ctx *ctx, 1803 unsigned 1779 unsigned long arg) 1804 { 1780 { 1805 int ret; 1781 int ret; 1806 struct uffdio_writeprotect uffdio_wp; 1782 struct uffdio_writeprotect uffdio_wp; 1807 struct uffdio_writeprotect __user *us 1783 struct uffdio_writeprotect __user *user_uffdio_wp; 1808 struct userfaultfd_wake_range range; 1784 struct userfaultfd_wake_range range; 1809 bool mode_wp, mode_dontwake; 1785 bool mode_wp, mode_dontwake; 1810 1786 1811 if (atomic_read(&ctx->mmap_changing)) !! 1787 if (READ_ONCE(ctx->mmap_changing)) 1812 return -EAGAIN; 1788 return -EAGAIN; 1813 1789 1814 user_uffdio_wp = (struct uffdio_write 1790 user_uffdio_wp = (struct uffdio_writeprotect __user *) arg; 1815 1791 1816 if (copy_from_user(&uffdio_wp, user_u 1792 if (copy_from_user(&uffdio_wp, user_uffdio_wp, 1817 sizeof(struct uffd 1793 sizeof(struct uffdio_writeprotect))) 1818 return -EFAULT; 1794 return -EFAULT; 1819 1795 1820 ret = validate_range(ctx->mm, uffdio_ !! 1796 ret = validate_range(ctx->mm, &uffdio_wp.range.start, 1821 uffdio_wp.range. 1797 uffdio_wp.range.len); 1822 if (ret) 1798 if (ret) 1823 return ret; 1799 return ret; 1824 1800 1825 if (uffdio_wp.mode & ~(UFFDIO_WRITEPR 1801 if (uffdio_wp.mode & ~(UFFDIO_WRITEPROTECT_MODE_DONTWAKE | 1826 UFFDIO_WRITEPR 1802 UFFDIO_WRITEPROTECT_MODE_WP)) 1827 return -EINVAL; 1803 return -EINVAL; 1828 1804 1829 mode_wp = uffdio_wp.mode & UFFDIO_WRI 1805 mode_wp = uffdio_wp.mode & UFFDIO_WRITEPROTECT_MODE_WP; 1830 mode_dontwake = uffdio_wp.mode & UFFD 1806 mode_dontwake = uffdio_wp.mode & UFFDIO_WRITEPROTECT_MODE_DONTWAKE; 1831 1807 1832 if (mode_wp && mode_dontwake) 1808 if (mode_wp && mode_dontwake) 1833 return -EINVAL; 1809 return -EINVAL; 1834 1810 1835 if (mmget_not_zero(ctx->mm)) { !! 1811 ret = mwriteprotect_range(ctx->mm, uffdio_wp.range.start, 1836 ret = mwriteprotect_range(ctx !! 1812 uffdio_wp.range.len, mode_wp, 1837 uff !! 1813 &ctx->mmap_changing); 1838 mmput(ctx->mm); << 1839 } else { << 1840 return -ESRCH; << 1841 } << 1842 << 1843 if (ret) 1814 if (ret) 1844 return ret; 1815 return ret; 1845 1816 1846 if (!mode_wp && !mode_dontwake) { 1817 if (!mode_wp && !mode_dontwake) { 1847 range.start = uffdio_wp.range 1818 range.start = uffdio_wp.range.start; 1848 range.len = uffdio_wp.range.l 1819 range.len = uffdio_wp.range.len; 1849 wake_userfault(ctx, &range); 1820 wake_userfault(ctx, &range); 1850 } 1821 } 1851 return ret; 1822 return ret; 1852 } 1823 } 1853 1824 1854 static int userfaultfd_continue(struct userfa << 1855 { << 1856 __s64 ret; << 1857 struct uffdio_continue uffdio_continu << 1858 struct uffdio_continue __user *user_u << 1859 struct userfaultfd_wake_range range; << 1860 uffd_flags_t flags = 0; << 1861 << 1862 user_uffdio_continue = (struct uffdio << 1863 << 1864 ret = -EAGAIN; << 1865 if (atomic_read(&ctx->mmap_changing)) << 1866 goto out; << 1867 << 1868 ret = -EFAULT; << 1869 if (copy_from_user(&uffdio_continue, << 1870 /* don't copy the << 1871 sizeof(uffdio_cont << 1872 goto out; << 1873 << 1874 ret = validate_range(ctx->mm, uffdio_ << 1875 uffdio_continue. << 1876 if (ret) << 1877 goto out; << 1878 << 1879 ret = -EINVAL; << 1880 if (uffdio_continue.mode & ~(UFFDIO_C << 1881 UFFDIO_C << 1882 goto out; << 1883 if (uffdio_continue.mode & UFFDIO_CON << 1884 flags |= MFILL_ATOMIC_WP; << 1885 << 1886 if (mmget_not_zero(ctx->mm)) { << 1887 ret = mfill_atomic_continue(c << 1888 u << 1889 mmput(ctx->mm); << 1890 } else { << 1891 return -ESRCH; << 1892 } << 1893 << 1894 if (unlikely(put_user(ret, &user_uffd << 1895 return -EFAULT; << 1896 if (ret < 0) << 1897 goto out; << 1898 << 1899 /* len == 0 would wake all */ << 1900 BUG_ON(!ret); << 1901 range.len = ret; << 1902 if (!(uffdio_continue.mode & UFFDIO_C << 1903 range.start = uffdio_continue << 1904 wake_userfault(ctx, &range); << 1905 } << 1906 ret = range.len == uffdio_continue.ra << 1907 << 1908 out: << 1909 return ret; << 1910 } << 1911 << 1912 static inline int userfaultfd_poison(struct u << 1913 { << 1914 __s64 ret; << 1915 struct uffdio_poison uffdio_poison; << 1916 struct uffdio_poison __user *user_uff << 1917 struct userfaultfd_wake_range range; << 1918 << 1919 user_uffdio_poison = (struct uffdio_p << 1920 << 1921 ret = -EAGAIN; << 1922 if (atomic_read(&ctx->mmap_changing)) << 1923 goto out; << 1924 << 1925 ret = -EFAULT; << 1926 if (copy_from_user(&uffdio_poison, us << 1927 /* don't copy the << 1928 sizeof(uffdio_pois << 1929 goto out; << 1930 << 1931 ret = validate_range(ctx->mm, uffdio_ << 1932 uffdio_poison.ra << 1933 if (ret) << 1934 goto out; << 1935 << 1936 ret = -EINVAL; << 1937 if (uffdio_poison.mode & ~UFFDIO_POIS << 1938 goto out; << 1939 << 1940 if (mmget_not_zero(ctx->mm)) { << 1941 ret = mfill_atomic_poison(ctx << 1942 uff << 1943 mmput(ctx->mm); << 1944 } else { << 1945 return -ESRCH; << 1946 } << 1947 << 1948 if (unlikely(put_user(ret, &user_uffd << 1949 return -EFAULT; << 1950 if (ret < 0) << 1951 goto out; << 1952 << 1953 /* len == 0 would wake all */ << 1954 BUG_ON(!ret); << 1955 range.len = ret; << 1956 if (!(uffdio_poison.mode & UFFDIO_POI << 1957 range.start = uffdio_poison.r << 1958 wake_userfault(ctx, &range); << 1959 } << 1960 ret = range.len == uffdio_poison.rang << 1961 << 1962 out: << 1963 return ret; << 1964 } << 1965 << 1966 bool userfaultfd_wp_async(struct vm_area_stru << 1967 { << 1968 return userfaultfd_wp_async_ctx(vma-> << 1969 } << 1970 << 1971 static inline unsigned int uffd_ctx_features( 1825 static inline unsigned int uffd_ctx_features(__u64 user_features) 1972 { 1826 { 1973 /* 1827 /* 1974 * For the current set of features th !! 1828 * For the current set of features the bits just coincide 1975 * UFFD_FEATURE_INITIALIZED to mark t << 1976 */ 1829 */ 1977 return (unsigned int)user_features | !! 1830 return (unsigned int)user_features; 1978 } << 1979 << 1980 static int userfaultfd_move(struct userfaultf << 1981 unsigned long arg << 1982 { << 1983 __s64 ret; << 1984 struct uffdio_move uffdio_move; << 1985 struct uffdio_move __user *user_uffdi << 1986 struct userfaultfd_wake_range range; << 1987 struct mm_struct *mm = ctx->mm; << 1988 << 1989 user_uffdio_move = (struct uffdio_mov << 1990 << 1991 if (atomic_read(&ctx->mmap_changing)) << 1992 return -EAGAIN; << 1993 << 1994 if (copy_from_user(&uffdio_move, user << 1995 /* don't copy "mov << 1996 sizeof(uffdio_move << 1997 return -EFAULT; << 1998 << 1999 /* Do not allow cross-mm moves. */ << 2000 if (mm != current->mm) << 2001 return -EINVAL; << 2002 << 2003 ret = validate_range(mm, uffdio_move. << 2004 if (ret) << 2005 return ret; << 2006 << 2007 ret = validate_range(mm, uffdio_move. << 2008 if (ret) << 2009 return ret; << 2010 << 2011 if (uffdio_move.mode & ~(UFFDIO_MOVE_ << 2012 UFFDIO_MOVE << 2013 return -EINVAL; << 2014 << 2015 if (mmget_not_zero(mm)) { << 2016 ret = move_pages(ctx, uffdio_ << 2017 uffdio_move. << 2018 mmput(mm); << 2019 } else { << 2020 return -ESRCH; << 2021 } << 2022 << 2023 if (unlikely(put_user(ret, &user_uffd << 2024 return -EFAULT; << 2025 if (ret < 0) << 2026 goto out; << 2027 << 2028 /* len == 0 would wake all */ << 2029 VM_WARN_ON(!ret); << 2030 range.len = ret; << 2031 if (!(uffdio_move.mode & UFFDIO_MOVE_ << 2032 range.start = uffdio_move.dst << 2033 wake_userfault(ctx, &range); << 2034 } << 2035 ret = range.len == uffdio_move.len ? << 2036 << 2037 out: << 2038 return ret; << 2039 } 1831 } 2040 1832 2041 /* 1833 /* 2042 * userland asks for a certain API version an 1834 * userland asks for a certain API version and we return which bits 2043 * and ioctl commands are implemented in this 1835 * and ioctl commands are implemented in this kernel for such API 2044 * version or -EINVAL if unknown. 1836 * version or -EINVAL if unknown. 2045 */ 1837 */ 2046 static int userfaultfd_api(struct userfaultfd 1838 static int userfaultfd_api(struct userfaultfd_ctx *ctx, 2047 unsigned long arg) 1839 unsigned long arg) 2048 { 1840 { 2049 struct uffdio_api uffdio_api; 1841 struct uffdio_api uffdio_api; 2050 void __user *buf = (void __user *)arg 1842 void __user *buf = (void __user *)arg; 2051 unsigned int ctx_features; << 2052 int ret; 1843 int ret; 2053 __u64 features; 1844 __u64 features; 2054 1845 >> 1846 ret = -EINVAL; >> 1847 if (ctx->state != UFFD_STATE_WAIT_API) >> 1848 goto out; 2055 ret = -EFAULT; 1849 ret = -EFAULT; 2056 if (copy_from_user(&uffdio_api, buf, 1850 if (copy_from_user(&uffdio_api, buf, sizeof(uffdio_api))) 2057 goto out; 1851 goto out; 2058 features = uffdio_api.features; 1852 features = uffdio_api.features; 2059 ret = -EINVAL; 1853 ret = -EINVAL; 2060 if (uffdio_api.api != UFFD_API) !! 1854 if (uffdio_api.api != UFFD_API || (features & ~UFFD_API_FEATURES)) 2061 goto err_out; 1855 goto err_out; 2062 ret = -EPERM; 1856 ret = -EPERM; 2063 if ((features & UFFD_FEATURE_EVENT_FO 1857 if ((features & UFFD_FEATURE_EVENT_FORK) && !capable(CAP_SYS_PTRACE)) 2064 goto err_out; 1858 goto err_out; 2065 << 2066 /* WP_ASYNC relies on WP_UNPOPULATED, << 2067 if (features & UFFD_FEATURE_WP_ASYNC) << 2068 features |= UFFD_FEATURE_WP_U << 2069 << 2070 /* report all available features and 1859 /* report all available features and ioctls to userland */ 2071 uffdio_api.features = UFFD_API_FEATUR 1860 uffdio_api.features = UFFD_API_FEATURES; 2072 #ifndef CONFIG_HAVE_ARCH_USERFAULTFD_MINOR << 2073 uffdio_api.features &= << 2074 ~(UFFD_FEATURE_MINOR_HUGETLBF << 2075 #endif << 2076 #ifndef CONFIG_HAVE_ARCH_USERFAULTFD_WP << 2077 uffdio_api.features &= ~UFFD_FEATURE_ << 2078 #endif << 2079 #ifndef CONFIG_PTE_MARKER_UFFD_WP << 2080 uffdio_api.features &= ~UFFD_FEATURE_ << 2081 uffdio_api.features &= ~UFFD_FEATURE_ << 2082 uffdio_api.features &= ~UFFD_FEATURE_ << 2083 #endif << 2084 << 2085 ret = -EINVAL; << 2086 if (features & ~uffdio_api.features) << 2087 goto err_out; << 2088 << 2089 uffdio_api.ioctls = UFFD_API_IOCTLS; 1861 uffdio_api.ioctls = UFFD_API_IOCTLS; 2090 ret = -EFAULT; 1862 ret = -EFAULT; 2091 if (copy_to_user(buf, &uffdio_api, si 1863 if (copy_to_user(buf, &uffdio_api, sizeof(uffdio_api))) 2092 goto out; 1864 goto out; 2093 !! 1865 ctx->state = UFFD_STATE_RUNNING; 2094 /* only enable the requested features 1866 /* only enable the requested features for this uffd context */ 2095 ctx_features = uffd_ctx_features(feat !! 1867 ctx->features = uffd_ctx_features(features); 2096 ret = -EINVAL; << 2097 if (cmpxchg(&ctx->features, 0, ctx_fe << 2098 goto err_out; << 2099 << 2100 ret = 0; 1868 ret = 0; 2101 out: 1869 out: 2102 return ret; 1870 return ret; 2103 err_out: 1871 err_out: 2104 memset(&uffdio_api, 0, sizeof(uffdio_ 1872 memset(&uffdio_api, 0, sizeof(uffdio_api)); 2105 if (copy_to_user(buf, &uffdio_api, si 1873 if (copy_to_user(buf, &uffdio_api, sizeof(uffdio_api))) 2106 ret = -EFAULT; 1874 ret = -EFAULT; 2107 goto out; 1875 goto out; 2108 } 1876 } 2109 1877 2110 static long userfaultfd_ioctl(struct file *fi 1878 static long userfaultfd_ioctl(struct file *file, unsigned cmd, 2111 unsigned long a 1879 unsigned long arg) 2112 { 1880 { 2113 int ret = -EINVAL; 1881 int ret = -EINVAL; 2114 struct userfaultfd_ctx *ctx = file->p 1882 struct userfaultfd_ctx *ctx = file->private_data; 2115 1883 2116 if (cmd != UFFDIO_API && !userfaultfd !! 1884 if (cmd != UFFDIO_API && ctx->state == UFFD_STATE_WAIT_API) 2117 return -EINVAL; 1885 return -EINVAL; 2118 1886 2119 switch(cmd) { 1887 switch(cmd) { 2120 case UFFDIO_API: 1888 case UFFDIO_API: 2121 ret = userfaultfd_api(ctx, ar 1889 ret = userfaultfd_api(ctx, arg); 2122 break; 1890 break; 2123 case UFFDIO_REGISTER: 1891 case UFFDIO_REGISTER: 2124 ret = userfaultfd_register(ct 1892 ret = userfaultfd_register(ctx, arg); 2125 break; 1893 break; 2126 case UFFDIO_UNREGISTER: 1894 case UFFDIO_UNREGISTER: 2127 ret = userfaultfd_unregister( 1895 ret = userfaultfd_unregister(ctx, arg); 2128 break; 1896 break; 2129 case UFFDIO_WAKE: 1897 case UFFDIO_WAKE: 2130 ret = userfaultfd_wake(ctx, a 1898 ret = userfaultfd_wake(ctx, arg); 2131 break; 1899 break; 2132 case UFFDIO_COPY: 1900 case UFFDIO_COPY: 2133 ret = userfaultfd_copy(ctx, a 1901 ret = userfaultfd_copy(ctx, arg); 2134 break; 1902 break; 2135 case UFFDIO_ZEROPAGE: 1903 case UFFDIO_ZEROPAGE: 2136 ret = userfaultfd_zeropage(ct 1904 ret = userfaultfd_zeropage(ctx, arg); 2137 break; 1905 break; 2138 case UFFDIO_MOVE: << 2139 ret = userfaultfd_move(ctx, a << 2140 break; << 2141 case UFFDIO_WRITEPROTECT: 1906 case UFFDIO_WRITEPROTECT: 2142 ret = userfaultfd_writeprotec 1907 ret = userfaultfd_writeprotect(ctx, arg); 2143 break; 1908 break; 2144 case UFFDIO_CONTINUE: << 2145 ret = userfaultfd_continue(ct << 2146 break; << 2147 case UFFDIO_POISON: << 2148 ret = userfaultfd_poison(ctx, << 2149 break; << 2150 } 1909 } 2151 return ret; 1910 return ret; 2152 } 1911 } 2153 1912 2154 #ifdef CONFIG_PROC_FS 1913 #ifdef CONFIG_PROC_FS 2155 static void userfaultfd_show_fdinfo(struct se 1914 static void userfaultfd_show_fdinfo(struct seq_file *m, struct file *f) 2156 { 1915 { 2157 struct userfaultfd_ctx *ctx = f->priv 1916 struct userfaultfd_ctx *ctx = f->private_data; 2158 wait_queue_entry_t *wq; 1917 wait_queue_entry_t *wq; 2159 unsigned long pending = 0, total = 0; 1918 unsigned long pending = 0, total = 0; 2160 1919 2161 spin_lock_irq(&ctx->fault_pending_wqh 1920 spin_lock_irq(&ctx->fault_pending_wqh.lock); 2162 list_for_each_entry(wq, &ctx->fault_p 1921 list_for_each_entry(wq, &ctx->fault_pending_wqh.head, entry) { 2163 pending++; 1922 pending++; 2164 total++; 1923 total++; 2165 } 1924 } 2166 list_for_each_entry(wq, &ctx->fault_w 1925 list_for_each_entry(wq, &ctx->fault_wqh.head, entry) { 2167 total++; 1926 total++; 2168 } 1927 } 2169 spin_unlock_irq(&ctx->fault_pending_w 1928 spin_unlock_irq(&ctx->fault_pending_wqh.lock); 2170 1929 2171 /* 1930 /* 2172 * If more protocols will be added, t 1931 * If more protocols will be added, there will be all shown 2173 * separated by a space. Like this: 1932 * separated by a space. Like this: 2174 * protocols: aa:... bb:... 1933 * protocols: aa:... bb:... 2175 */ 1934 */ 2176 seq_printf(m, "pending:\t%lu\ntotal:\ 1935 seq_printf(m, "pending:\t%lu\ntotal:\t%lu\nAPI:\t%Lx:%x:%Lx\n", 2177 pending, total, UFFD_API, 1936 pending, total, UFFD_API, ctx->features, 2178 UFFD_API_IOCTLS|UFFD_API_R 1937 UFFD_API_IOCTLS|UFFD_API_RANGE_IOCTLS); 2179 } 1938 } 2180 #endif 1939 #endif 2181 1940 2182 static const struct file_operations userfault 1941 static const struct file_operations userfaultfd_fops = { 2183 #ifdef CONFIG_PROC_FS 1942 #ifdef CONFIG_PROC_FS 2184 .show_fdinfo = userfaultfd_show_fd 1943 .show_fdinfo = userfaultfd_show_fdinfo, 2185 #endif 1944 #endif 2186 .release = userfaultfd_release 1945 .release = userfaultfd_release, 2187 .poll = userfaultfd_poll, 1946 .poll = userfaultfd_poll, 2188 .read_iter = userfaultfd_read_it !! 1947 .read = userfaultfd_read, 2189 .unlocked_ioctl = userfaultfd_ioctl, 1948 .unlocked_ioctl = userfaultfd_ioctl, 2190 .compat_ioctl = compat_ptr_ioctl, 1949 .compat_ioctl = compat_ptr_ioctl, 2191 .llseek = noop_llseek, 1950 .llseek = noop_llseek, 2192 }; 1951 }; 2193 1952 2194 static void init_once_userfaultfd_ctx(void *m 1953 static void init_once_userfaultfd_ctx(void *mem) 2195 { 1954 { 2196 struct userfaultfd_ctx *ctx = (struct 1955 struct userfaultfd_ctx *ctx = (struct userfaultfd_ctx *) mem; 2197 1956 2198 init_waitqueue_head(&ctx->fault_pendi 1957 init_waitqueue_head(&ctx->fault_pending_wqh); 2199 init_waitqueue_head(&ctx->fault_wqh); 1958 init_waitqueue_head(&ctx->fault_wqh); 2200 init_waitqueue_head(&ctx->event_wqh); 1959 init_waitqueue_head(&ctx->event_wqh); 2201 init_waitqueue_head(&ctx->fd_wqh); 1960 init_waitqueue_head(&ctx->fd_wqh); 2202 seqcount_spinlock_init(&ctx->refile_s 1961 seqcount_spinlock_init(&ctx->refile_seq, &ctx->fault_pending_wqh.lock); 2203 } 1962 } 2204 1963 2205 static int new_userfaultfd(int flags) !! 1964 SYSCALL_DEFINE1(userfaultfd, int, flags) 2206 { 1965 { 2207 struct userfaultfd_ctx *ctx; 1966 struct userfaultfd_ctx *ctx; 2208 struct file *file; << 2209 int fd; 1967 int fd; 2210 1968 >> 1969 if (!sysctl_unprivileged_userfaultfd && >> 1970 (flags & UFFD_USER_MODE_ONLY) == 0 && >> 1971 !capable(CAP_SYS_PTRACE)) { >> 1972 printk_once(KERN_WARNING "uffd: Set unprivileged_userfaultfd " >> 1973 "sysctl knob to 1 if kernel faults must be handled " >> 1974 "without obtaining CAP_SYS_PTRACE capability\n"); >> 1975 return -EPERM; >> 1976 } >> 1977 2211 BUG_ON(!current->mm); 1978 BUG_ON(!current->mm); 2212 1979 2213 /* Check the UFFD_* constants for con 1980 /* Check the UFFD_* constants for consistency. */ 2214 BUILD_BUG_ON(UFFD_USER_MODE_ONLY & UF 1981 BUILD_BUG_ON(UFFD_USER_MODE_ONLY & UFFD_SHARED_FCNTL_FLAGS); 2215 BUILD_BUG_ON(UFFD_CLOEXEC != O_CLOEXE 1982 BUILD_BUG_ON(UFFD_CLOEXEC != O_CLOEXEC); 2216 BUILD_BUG_ON(UFFD_NONBLOCK != O_NONBL 1983 BUILD_BUG_ON(UFFD_NONBLOCK != O_NONBLOCK); 2217 1984 2218 if (flags & ~(UFFD_SHARED_FCNTL_FLAGS 1985 if (flags & ~(UFFD_SHARED_FCNTL_FLAGS | UFFD_USER_MODE_ONLY)) 2219 return -EINVAL; 1986 return -EINVAL; 2220 1987 2221 ctx = kmem_cache_alloc(userfaultfd_ct 1988 ctx = kmem_cache_alloc(userfaultfd_ctx_cachep, GFP_KERNEL); 2222 if (!ctx) 1989 if (!ctx) 2223 return -ENOMEM; 1990 return -ENOMEM; 2224 1991 2225 refcount_set(&ctx->refcount, 1); 1992 refcount_set(&ctx->refcount, 1); 2226 ctx->flags = flags; 1993 ctx->flags = flags; 2227 ctx->features = 0; 1994 ctx->features = 0; >> 1995 ctx->state = UFFD_STATE_WAIT_API; 2228 ctx->released = false; 1996 ctx->released = false; 2229 init_rwsem(&ctx->map_changing_lock); !! 1997 ctx->mmap_changing = false; 2230 atomic_set(&ctx->mmap_changing, 0); << 2231 ctx->mm = current->mm; 1998 ctx->mm = current->mm; 2232 << 2233 fd = get_unused_fd_flags(flags & UFFD << 2234 if (fd < 0) << 2235 goto err_out; << 2236 << 2237 /* Create a new inode so that the LSM << 2238 file = anon_inode_create_getfile("[us << 2239 O_RDONLY | (flags & U << 2240 if (IS_ERR(file)) { << 2241 put_unused_fd(fd); << 2242 fd = PTR_ERR(file); << 2243 goto err_out; << 2244 } << 2245 /* prevent the mm struct to be freed 1999 /* prevent the mm struct to be freed */ 2246 mmgrab(ctx->mm); 2000 mmgrab(ctx->mm); 2247 file->f_mode |= FMODE_NOWAIT; << 2248 fd_install(fd, file); << 2249 return fd; << 2250 err_out: << 2251 kmem_cache_free(userfaultfd_ctx_cache << 2252 return fd; << 2253 } << 2254 2001 2255 static inline bool userfaultfd_syscall_allowe !! 2002 fd = anon_inode_getfd("[userfaultfd]", &userfaultfd_fops, ctx, 2256 { !! 2003 O_RDWR | (flags & UFFD_SHARED_FCNTL_FLAGS)); 2257 /* Userspace-only page faults are alw !! 2004 if (fd < 0) { 2258 if (flags & UFFD_USER_MODE_ONLY) !! 2005 mmdrop(ctx->mm); 2259 return true; !! 2006 kmem_cache_free(userfaultfd_ctx_cachep, ctx); 2260 !! 2007 } 2261 /* !! 2008 return fd; 2262 * The user is requesting a userfault << 2263 * Privileged users are always allowe << 2264 */ << 2265 if (capable(CAP_SYS_PTRACE)) << 2266 return true; << 2267 << 2268 /* Otherwise, access to kernel fault << 2269 return sysctl_unprivileged_userfaultf << 2270 } << 2271 << 2272 SYSCALL_DEFINE1(userfaultfd, int, flags) << 2273 { << 2274 if (!userfaultfd_syscall_allowed(flag << 2275 return -EPERM; << 2276 << 2277 return new_userfaultfd(flags); << 2278 } << 2279 << 2280 static long userfaultfd_dev_ioctl(struct file << 2281 { << 2282 if (cmd != USERFAULTFD_IOC_NEW) << 2283 return -EINVAL; << 2284 << 2285 return new_userfaultfd(flags); << 2286 } 2009 } 2287 2010 2288 static const struct file_operations userfault << 2289 .unlocked_ioctl = userfaultfd_dev_ioc << 2290 .compat_ioctl = userfaultfd_dev_ioctl << 2291 .owner = THIS_MODULE, << 2292 .llseek = noop_llseek, << 2293 }; << 2294 << 2295 static struct miscdevice userfaultfd_misc = { << 2296 .minor = MISC_DYNAMIC_MINOR, << 2297 .name = "userfaultfd", << 2298 .fops = &userfaultfd_dev_fops << 2299 }; << 2300 << 2301 static int __init userfaultfd_init(void) 2011 static int __init userfaultfd_init(void) 2302 { 2012 { 2303 int ret; << 2304 << 2305 ret = misc_register(&userfaultfd_misc << 2306 if (ret) << 2307 return ret; << 2308 << 2309 userfaultfd_ctx_cachep = kmem_cache_c 2013 userfaultfd_ctx_cachep = kmem_cache_create("userfaultfd_ctx_cache", 2310 2014 sizeof(struct userfaultfd_ctx), 2311 2015 0, 2312 2016 SLAB_HWCACHE_ALIGN|SLAB_PANIC, 2313 2017 init_once_userfaultfd_ctx); 2314 #ifdef CONFIG_SYSCTL << 2315 register_sysctl_init("vm", vm_userfau << 2316 #endif << 2317 return 0; 2018 return 0; 2318 } 2019 } 2319 __initcall(userfaultfd_init); 2020 __initcall(userfaultfd_init); 2320 2021
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.