1 // SPDX-License-Identifier: GPL-2.0-only 1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 2 /* 3 * fs/userfaultfd.c 3 * fs/userfaultfd.c 4 * 4 * 5 * Copyright (C) 2007 Davide Libenzi <davide 5 * Copyright (C) 2007 Davide Libenzi <davidel@xmailserver.org> 6 * Copyright (C) 2008-2009 Red Hat, Inc. 6 * Copyright (C) 2008-2009 Red Hat, Inc. 7 * Copyright (C) 2015 Red Hat, Inc. 7 * Copyright (C) 2015 Red Hat, Inc. 8 * 8 * 9 * Some part derived from fs/eventfd.c (anon 9 * Some part derived from fs/eventfd.c (anon inode setup) and 10 * mm/ksm.c (mm hashing). 10 * mm/ksm.c (mm hashing). 11 */ 11 */ 12 12 13 #include <linux/list.h> 13 #include <linux/list.h> 14 #include <linux/hashtable.h> 14 #include <linux/hashtable.h> 15 #include <linux/sched/signal.h> 15 #include <linux/sched/signal.h> 16 #include <linux/sched/mm.h> 16 #include <linux/sched/mm.h> 17 #include <linux/mm.h> 17 #include <linux/mm.h> 18 #include <linux/mm_inline.h> 18 #include <linux/mm_inline.h> 19 #include <linux/mmu_notifier.h> 19 #include <linux/mmu_notifier.h> 20 #include <linux/poll.h> 20 #include <linux/poll.h> 21 #include <linux/slab.h> 21 #include <linux/slab.h> 22 #include <linux/seq_file.h> 22 #include <linux/seq_file.h> 23 #include <linux/file.h> 23 #include <linux/file.h> 24 #include <linux/bug.h> 24 #include <linux/bug.h> 25 #include <linux/anon_inodes.h> 25 #include <linux/anon_inodes.h> 26 #include <linux/syscalls.h> 26 #include <linux/syscalls.h> 27 #include <linux/userfaultfd_k.h> 27 #include <linux/userfaultfd_k.h> 28 #include <linux/mempolicy.h> 28 #include <linux/mempolicy.h> 29 #include <linux/ioctl.h> 29 #include <linux/ioctl.h> 30 #include <linux/security.h> 30 #include <linux/security.h> 31 #include <linux/hugetlb.h> 31 #include <linux/hugetlb.h> 32 #include <linux/swapops.h> 32 #include <linux/swapops.h> 33 #include <linux/miscdevice.h> 33 #include <linux/miscdevice.h> 34 #include <linux/uio.h> << 35 34 36 static int sysctl_unprivileged_userfaultfd __r !! 35 int sysctl_unprivileged_userfaultfd __read_mostly; 37 36 38 #ifdef CONFIG_SYSCTL !! 37 static struct kmem_cache *userfaultfd_ctx_cachep __read_mostly; 39 static struct ctl_table vm_userfaultfd_table[] << 40 { << 41 .procname = "unprivilege << 42 .data = &sysctl_unpr << 43 .maxlen = sizeof(sysct << 44 .mode = 0644, << 45 .proc_handler = proc_dointve << 46 .extra1 = SYSCTL_ZERO, << 47 .extra2 = SYSCTL_ONE, << 48 }, << 49 }; << 50 #endif << 51 38 52 static struct kmem_cache *userfaultfd_ctx_cach !! 39 /* >> 40 * Start with fault_pending_wqh and fault_wqh so they're more likely >> 41 * to be in the same cacheline. >> 42 * >> 43 * Locking order: >> 44 * fd_wqh.lock >> 45 * fault_pending_wqh.lock >> 46 * fault_wqh.lock >> 47 * event_wqh.lock >> 48 * >> 49 * To avoid deadlocks, IRQs must be disabled when taking any of the above locks, >> 50 * since fd_wqh.lock is taken by aio_poll() while it's holding a lock that's >> 51 * also taken in IRQ context. >> 52 */ >> 53 struct userfaultfd_ctx { >> 54 /* waitqueue head for the pending (i.e. not read) userfaults */ >> 55 wait_queue_head_t fault_pending_wqh; >> 56 /* waitqueue head for the userfaults */ >> 57 wait_queue_head_t fault_wqh; >> 58 /* waitqueue head for the pseudo fd to wakeup poll/read */ >> 59 wait_queue_head_t fd_wqh; >> 60 /* waitqueue head for events */ >> 61 wait_queue_head_t event_wqh; >> 62 /* a refile sequence protected by fault_pending_wqh lock */ >> 63 seqcount_spinlock_t refile_seq; >> 64 /* pseudo fd refcounting */ >> 65 refcount_t refcount; >> 66 /* userfaultfd syscall flags */ >> 67 unsigned int flags; >> 68 /* features requested from the userspace */ >> 69 unsigned int features; >> 70 /* released */ >> 71 bool released; >> 72 /* memory mappings are changing because of non-cooperative event */ >> 73 atomic_t mmap_changing; >> 74 /* mm with one ore more vmas attached to this userfaultfd_ctx */ >> 75 struct mm_struct *mm; >> 76 }; 53 77 54 struct userfaultfd_fork_ctx { 78 struct userfaultfd_fork_ctx { 55 struct userfaultfd_ctx *orig; 79 struct userfaultfd_ctx *orig; 56 struct userfaultfd_ctx *new; 80 struct userfaultfd_ctx *new; 57 struct list_head list; 81 struct list_head list; 58 }; 82 }; 59 83 60 struct userfaultfd_unmap_ctx { 84 struct userfaultfd_unmap_ctx { 61 struct userfaultfd_ctx *ctx; 85 struct userfaultfd_ctx *ctx; 62 unsigned long start; 86 unsigned long start; 63 unsigned long end; 87 unsigned long end; 64 struct list_head list; 88 struct list_head list; 65 }; 89 }; 66 90 67 struct userfaultfd_wait_queue { 91 struct userfaultfd_wait_queue { 68 struct uffd_msg msg; 92 struct uffd_msg msg; 69 wait_queue_entry_t wq; 93 wait_queue_entry_t wq; 70 struct userfaultfd_ctx *ctx; 94 struct userfaultfd_ctx *ctx; 71 bool waken; 95 bool waken; 72 }; 96 }; 73 97 74 struct userfaultfd_wake_range { 98 struct userfaultfd_wake_range { 75 unsigned long start; 99 unsigned long start; 76 unsigned long len; 100 unsigned long len; 77 }; 101 }; 78 102 79 /* internal indication that UFFD_API ioctl was 103 /* internal indication that UFFD_API ioctl was successfully executed */ 80 #define UFFD_FEATURE_INITIALIZED 104 #define UFFD_FEATURE_INITIALIZED (1u << 31) 81 105 82 static bool userfaultfd_is_initialized(struct 106 static bool userfaultfd_is_initialized(struct userfaultfd_ctx *ctx) 83 { 107 { 84 return ctx->features & UFFD_FEATURE_IN 108 return ctx->features & UFFD_FEATURE_INITIALIZED; 85 } 109 } 86 110 87 static bool userfaultfd_wp_async_ctx(struct us << 88 { << 89 return ctx && (ctx->features & UFFD_FE << 90 } << 91 << 92 /* << 93 * Whether WP_UNPOPULATED is enabled on the uf << 94 * meaningful when userfaultfd_wp()==true on t << 95 * anonymous. << 96 */ << 97 bool userfaultfd_wp_unpopulated(struct vm_area << 98 { << 99 struct userfaultfd_ctx *ctx = vma->vm_ << 100 << 101 if (!ctx) << 102 return false; << 103 << 104 return ctx->features & UFFD_FEATURE_WP << 105 } << 106 << 107 static void userfaultfd_set_vm_flags(struct vm 111 static void userfaultfd_set_vm_flags(struct vm_area_struct *vma, 108 vm_flags_ 112 vm_flags_t flags) 109 { 113 { 110 const bool uffd_wp_changed = (vma->vm_ 114 const bool uffd_wp_changed = (vma->vm_flags ^ flags) & VM_UFFD_WP; 111 115 112 vm_flags_reset(vma, flags); !! 116 vma->vm_flags = flags; 113 /* 117 /* 114 * For shared mappings, we want to ena 118 * For shared mappings, we want to enable writenotify while 115 * userfaultfd-wp is enabled (see vma_ 119 * userfaultfd-wp is enabled (see vma_wants_writenotify()). We'll simply 116 * recalculate vma->vm_page_prot whene 120 * recalculate vma->vm_page_prot whenever userfaultfd-wp changes. 117 */ 121 */ 118 if ((vma->vm_flags & VM_SHARED) && uff 122 if ((vma->vm_flags & VM_SHARED) && uffd_wp_changed) 119 vma_set_page_prot(vma); 123 vma_set_page_prot(vma); 120 } 124 } 121 125 122 static int userfaultfd_wake_function(wait_queu 126 static int userfaultfd_wake_function(wait_queue_entry_t *wq, unsigned mode, 123 int wake_ 127 int wake_flags, void *key) 124 { 128 { 125 struct userfaultfd_wake_range *range = 129 struct userfaultfd_wake_range *range = key; 126 int ret; 130 int ret; 127 struct userfaultfd_wait_queue *uwq; 131 struct userfaultfd_wait_queue *uwq; 128 unsigned long start, len; 132 unsigned long start, len; 129 133 130 uwq = container_of(wq, struct userfaul 134 uwq = container_of(wq, struct userfaultfd_wait_queue, wq); 131 ret = 0; 135 ret = 0; 132 /* len == 0 means wake all */ 136 /* len == 0 means wake all */ 133 start = range->start; 137 start = range->start; 134 len = range->len; 138 len = range->len; 135 if (len && (start > uwq->msg.arg.pagef 139 if (len && (start > uwq->msg.arg.pagefault.address || 136 start + len <= uwq->msg.ar 140 start + len <= uwq->msg.arg.pagefault.address)) 137 goto out; 141 goto out; 138 WRITE_ONCE(uwq->waken, true); 142 WRITE_ONCE(uwq->waken, true); 139 /* 143 /* 140 * The Program-Order guarantees provid 144 * The Program-Order guarantees provided by the scheduler 141 * ensure uwq->waken is visible before 145 * ensure uwq->waken is visible before the task is woken. 142 */ 146 */ 143 ret = wake_up_state(wq->private, mode) 147 ret = wake_up_state(wq->private, mode); 144 if (ret) { 148 if (ret) { 145 /* 149 /* 146 * Wake only once, autoremove 150 * Wake only once, autoremove behavior. 147 * 151 * 148 * After the effect of list_de 152 * After the effect of list_del_init is visible to the other 149 * CPUs, the waitqueue may dis 153 * CPUs, the waitqueue may disappear from under us, see the 150 * !list_empty_careful() in ha 154 * !list_empty_careful() in handle_userfault(). 151 * 155 * 152 * try_to_wake_up() has an imp 156 * try_to_wake_up() has an implicit smp_mb(), and the 153 * wq->private is read before 157 * wq->private is read before calling the extern function 154 * "wake_up_state" (which in t 158 * "wake_up_state" (which in turns calls try_to_wake_up). 155 */ 159 */ 156 list_del_init(&wq->entry); 160 list_del_init(&wq->entry); 157 } 161 } 158 out: 162 out: 159 return ret; 163 return ret; 160 } 164 } 161 165 162 /** 166 /** 163 * userfaultfd_ctx_get - Acquires a reference 167 * userfaultfd_ctx_get - Acquires a reference to the internal userfaultfd 164 * context. 168 * context. 165 * @ctx: [in] Pointer to the userfaultfd conte 169 * @ctx: [in] Pointer to the userfaultfd context. 166 */ 170 */ 167 static void userfaultfd_ctx_get(struct userfau 171 static void userfaultfd_ctx_get(struct userfaultfd_ctx *ctx) 168 { 172 { 169 refcount_inc(&ctx->refcount); 173 refcount_inc(&ctx->refcount); 170 } 174 } 171 175 172 /** 176 /** 173 * userfaultfd_ctx_put - Releases a reference 177 * userfaultfd_ctx_put - Releases a reference to the internal userfaultfd 174 * context. 178 * context. 175 * @ctx: [in] Pointer to userfaultfd context. 179 * @ctx: [in] Pointer to userfaultfd context. 176 * 180 * 177 * The userfaultfd context reference must have 181 * The userfaultfd context reference must have been previously acquired either 178 * with userfaultfd_ctx_get() or userfaultfd_c 182 * with userfaultfd_ctx_get() or userfaultfd_ctx_fdget(). 179 */ 183 */ 180 static void userfaultfd_ctx_put(struct userfau 184 static void userfaultfd_ctx_put(struct userfaultfd_ctx *ctx) 181 { 185 { 182 if (refcount_dec_and_test(&ctx->refcou 186 if (refcount_dec_and_test(&ctx->refcount)) { 183 VM_BUG_ON(spin_is_locked(&ctx- 187 VM_BUG_ON(spin_is_locked(&ctx->fault_pending_wqh.lock)); 184 VM_BUG_ON(waitqueue_active(&ct 188 VM_BUG_ON(waitqueue_active(&ctx->fault_pending_wqh)); 185 VM_BUG_ON(spin_is_locked(&ctx- 189 VM_BUG_ON(spin_is_locked(&ctx->fault_wqh.lock)); 186 VM_BUG_ON(waitqueue_active(&ct 190 VM_BUG_ON(waitqueue_active(&ctx->fault_wqh)); 187 VM_BUG_ON(spin_is_locked(&ctx- 191 VM_BUG_ON(spin_is_locked(&ctx->event_wqh.lock)); 188 VM_BUG_ON(waitqueue_active(&ct 192 VM_BUG_ON(waitqueue_active(&ctx->event_wqh)); 189 VM_BUG_ON(spin_is_locked(&ctx- 193 VM_BUG_ON(spin_is_locked(&ctx->fd_wqh.lock)); 190 VM_BUG_ON(waitqueue_active(&ct 194 VM_BUG_ON(waitqueue_active(&ctx->fd_wqh)); 191 mmdrop(ctx->mm); 195 mmdrop(ctx->mm); 192 kmem_cache_free(userfaultfd_ct 196 kmem_cache_free(userfaultfd_ctx_cachep, ctx); 193 } 197 } 194 } 198 } 195 199 196 static inline void msg_init(struct uffd_msg *m 200 static inline void msg_init(struct uffd_msg *msg) 197 { 201 { 198 BUILD_BUG_ON(sizeof(struct uffd_msg) ! 202 BUILD_BUG_ON(sizeof(struct uffd_msg) != 32); 199 /* 203 /* 200 * Must use memset to zero out the pad 204 * Must use memset to zero out the paddings or kernel data is 201 * leaked to userland. 205 * leaked to userland. 202 */ 206 */ 203 memset(msg, 0, sizeof(struct uffd_msg) 207 memset(msg, 0, sizeof(struct uffd_msg)); 204 } 208 } 205 209 206 static inline struct uffd_msg userfault_msg(un 210 static inline struct uffd_msg userfault_msg(unsigned long address, 207 un 211 unsigned long real_address, 208 un 212 unsigned int flags, 209 un 213 unsigned long reason, 210 un 214 unsigned int features) 211 { 215 { 212 struct uffd_msg msg; 216 struct uffd_msg msg; 213 217 214 msg_init(&msg); 218 msg_init(&msg); 215 msg.event = UFFD_EVENT_PAGEFAULT; 219 msg.event = UFFD_EVENT_PAGEFAULT; 216 220 217 msg.arg.pagefault.address = (features 221 msg.arg.pagefault.address = (features & UFFD_FEATURE_EXACT_ADDRESS) ? 218 real_addre 222 real_address : address; 219 223 220 /* 224 /* 221 * These flags indicate why the userfa 225 * These flags indicate why the userfault occurred: 222 * - UFFD_PAGEFAULT_FLAG_WP indicates 226 * - UFFD_PAGEFAULT_FLAG_WP indicates a write protect fault. 223 * - UFFD_PAGEFAULT_FLAG_MINOR indicat 227 * - UFFD_PAGEFAULT_FLAG_MINOR indicates a minor fault. 224 * - Neither of these flags being set 228 * - Neither of these flags being set indicates a MISSING fault. 225 * 229 * 226 * Separately, UFFD_PAGEFAULT_FLAG_WRI 230 * Separately, UFFD_PAGEFAULT_FLAG_WRITE indicates it was a write 227 * fault. Otherwise, it was a read fau 231 * fault. Otherwise, it was a read fault. 228 */ 232 */ 229 if (flags & FAULT_FLAG_WRITE) 233 if (flags & FAULT_FLAG_WRITE) 230 msg.arg.pagefault.flags |= UFF 234 msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_WRITE; 231 if (reason & VM_UFFD_WP) 235 if (reason & VM_UFFD_WP) 232 msg.arg.pagefault.flags |= UFF 236 msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_WP; 233 if (reason & VM_UFFD_MINOR) 237 if (reason & VM_UFFD_MINOR) 234 msg.arg.pagefault.flags |= UFF 238 msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_MINOR; 235 if (features & UFFD_FEATURE_THREAD_ID) 239 if (features & UFFD_FEATURE_THREAD_ID) 236 msg.arg.pagefault.feat.ptid = 240 msg.arg.pagefault.feat.ptid = task_pid_vnr(current); 237 return msg; 241 return msg; 238 } 242 } 239 243 240 #ifdef CONFIG_HUGETLB_PAGE 244 #ifdef CONFIG_HUGETLB_PAGE 241 /* 245 /* 242 * Same functionality as userfaultfd_must_wait 246 * Same functionality as userfaultfd_must_wait below with modifications for 243 * hugepmd ranges. 247 * hugepmd ranges. 244 */ 248 */ 245 static inline bool userfaultfd_huge_must_wait( 249 static inline bool userfaultfd_huge_must_wait(struct userfaultfd_ctx *ctx, 246 !! 250 struct vm_area_struct *vma, 247 !! 251 unsigned long address, >> 252 unsigned long flags, >> 253 unsigned long reason) 248 { 254 { 249 struct vm_area_struct *vma = vmf->vma; !! 255 struct mm_struct *mm = ctx->mm; 250 pte_t *ptep, pte; 256 pte_t *ptep, pte; 251 bool ret = true; 257 bool ret = true; 252 258 253 assert_fault_locked(vmf); !! 259 mmap_assert_locked(mm); >> 260 >> 261 ptep = huge_pte_offset(mm, address, vma_mmu_pagesize(vma)); 254 262 255 ptep = hugetlb_walk(vma, vmf->address, << 256 if (!ptep) 263 if (!ptep) 257 goto out; 264 goto out; 258 265 259 ret = false; 266 ret = false; 260 pte = huge_ptep_get(vma->vm_mm, vmf->a !! 267 pte = huge_ptep_get(ptep); 261 268 262 /* 269 /* 263 * Lockless access: we're in a wait_ev 270 * Lockless access: we're in a wait_event so it's ok if it 264 * changes under us. PTE markers shou 271 * changes under us. PTE markers should be handled the same as none 265 * ptes here. 272 * ptes here. 266 */ 273 */ 267 if (huge_pte_none_mostly(pte)) 274 if (huge_pte_none_mostly(pte)) 268 ret = true; 275 ret = true; 269 if (!huge_pte_write(pte) && (reason & 276 if (!huge_pte_write(pte) && (reason & VM_UFFD_WP)) 270 ret = true; 277 ret = true; 271 out: 278 out: 272 return ret; 279 return ret; 273 } 280 } 274 #else 281 #else 275 static inline bool userfaultfd_huge_must_wait( 282 static inline bool userfaultfd_huge_must_wait(struct userfaultfd_ctx *ctx, 276 !! 283 struct vm_area_struct *vma, 277 !! 284 unsigned long address, >> 285 unsigned long flags, >> 286 unsigned long reason) 278 { 287 { 279 return false; /* should never get he 288 return false; /* should never get here */ 280 } 289 } 281 #endif /* CONFIG_HUGETLB_PAGE */ 290 #endif /* CONFIG_HUGETLB_PAGE */ 282 291 283 /* 292 /* 284 * Verify the pagetables are still not ok afte 293 * Verify the pagetables are still not ok after having reigstered into 285 * the fault_pending_wqh to avoid userland hav 294 * the fault_pending_wqh to avoid userland having to UFFDIO_WAKE any 286 * userfault that has already been resolved, i !! 295 * userfault that has already been resolved, if userfaultfd_read and 287 * UFFDIO_COPY|ZEROPAGE are being run simultan 296 * UFFDIO_COPY|ZEROPAGE are being run simultaneously on two different 288 * threads. 297 * threads. 289 */ 298 */ 290 static inline bool userfaultfd_must_wait(struc 299 static inline bool userfaultfd_must_wait(struct userfaultfd_ctx *ctx, 291 struc !! 300 unsigned long address, >> 301 unsigned long flags, 292 unsig 302 unsigned long reason) 293 { 303 { 294 struct mm_struct *mm = ctx->mm; 304 struct mm_struct *mm = ctx->mm; 295 unsigned long address = vmf->address; << 296 pgd_t *pgd; 305 pgd_t *pgd; 297 p4d_t *p4d; 306 p4d_t *p4d; 298 pud_t *pud; 307 pud_t *pud; 299 pmd_t *pmd, _pmd; 308 pmd_t *pmd, _pmd; 300 pte_t *pte; 309 pte_t *pte; 301 pte_t ptent; << 302 bool ret = true; 310 bool ret = true; 303 311 304 assert_fault_locked(vmf); !! 312 mmap_assert_locked(mm); 305 313 306 pgd = pgd_offset(mm, address); 314 pgd = pgd_offset(mm, address); 307 if (!pgd_present(*pgd)) 315 if (!pgd_present(*pgd)) 308 goto out; 316 goto out; 309 p4d = p4d_offset(pgd, address); 317 p4d = p4d_offset(pgd, address); 310 if (!p4d_present(*p4d)) 318 if (!p4d_present(*p4d)) 311 goto out; 319 goto out; 312 pud = pud_offset(p4d, address); 320 pud = pud_offset(p4d, address); 313 if (!pud_present(*pud)) 321 if (!pud_present(*pud)) 314 goto out; 322 goto out; 315 pmd = pmd_offset(pud, address); 323 pmd = pmd_offset(pud, address); 316 again: !! 324 /* 317 _pmd = pmdp_get_lockless(pmd); !! 325 * READ_ONCE must function as a barrier with narrower scope >> 326 * and it must be equivalent to: >> 327 * _pmd = *pmd; barrier(); >> 328 * >> 329 * This is to deal with the instability (as in >> 330 * pmd_trans_unstable) of the pmd. >> 331 */ >> 332 _pmd = READ_ONCE(*pmd); 318 if (pmd_none(_pmd)) 333 if (pmd_none(_pmd)) 319 goto out; 334 goto out; 320 335 321 ret = false; 336 ret = false; 322 if (!pmd_present(_pmd) || pmd_devmap(_ !! 337 if (!pmd_present(_pmd)) 323 goto out; 338 goto out; 324 339 325 if (pmd_trans_huge(_pmd)) { 340 if (pmd_trans_huge(_pmd)) { 326 if (!pmd_write(_pmd) && (reaso 341 if (!pmd_write(_pmd) && (reason & VM_UFFD_WP)) 327 ret = true; 342 ret = true; 328 goto out; 343 goto out; 329 } 344 } 330 345 >> 346 /* >> 347 * the pmd is stable (as in !pmd_trans_unstable) so we can re-read it >> 348 * and use the standard pte_offset_map() instead of parsing _pmd. >> 349 */ 331 pte = pte_offset_map(pmd, address); 350 pte = pte_offset_map(pmd, address); 332 if (!pte) { << 333 ret = true; << 334 goto again; << 335 } << 336 /* 351 /* 337 * Lockless access: we're in a wait_ev 352 * Lockless access: we're in a wait_event so it's ok if it 338 * changes under us. PTE markers shou 353 * changes under us. PTE markers should be handled the same as none 339 * ptes here. 354 * ptes here. 340 */ 355 */ 341 ptent = ptep_get(pte); !! 356 if (pte_none_mostly(*pte)) 342 if (pte_none_mostly(ptent)) << 343 ret = true; 357 ret = true; 344 if (!pte_write(ptent) && (reason & VM_ !! 358 if (!pte_write(*pte) && (reason & VM_UFFD_WP)) 345 ret = true; 359 ret = true; 346 pte_unmap(pte); 360 pte_unmap(pte); 347 361 348 out: 362 out: 349 return ret; 363 return ret; 350 } 364 } 351 365 352 static inline unsigned int userfaultfd_get_blo 366 static inline unsigned int userfaultfd_get_blocking_state(unsigned int flags) 353 { 367 { 354 if (flags & FAULT_FLAG_INTERRUPTIBLE) 368 if (flags & FAULT_FLAG_INTERRUPTIBLE) 355 return TASK_INTERRUPTIBLE; 369 return TASK_INTERRUPTIBLE; 356 370 357 if (flags & FAULT_FLAG_KILLABLE) 371 if (flags & FAULT_FLAG_KILLABLE) 358 return TASK_KILLABLE; 372 return TASK_KILLABLE; 359 373 360 return TASK_UNINTERRUPTIBLE; 374 return TASK_UNINTERRUPTIBLE; 361 } 375 } 362 376 363 /* 377 /* 364 * The locking rules involved in returning VM_ 378 * The locking rules involved in returning VM_FAULT_RETRY depending on 365 * FAULT_FLAG_ALLOW_RETRY, FAULT_FLAG_RETRY_NO 379 * FAULT_FLAG_ALLOW_RETRY, FAULT_FLAG_RETRY_NOWAIT and 366 * FAULT_FLAG_KILLABLE are not straightforward 380 * FAULT_FLAG_KILLABLE are not straightforward. The "Caution" 367 * recommendation in __lock_page_or_retry is n 381 * recommendation in __lock_page_or_retry is not an understatement. 368 * 382 * 369 * If FAULT_FLAG_ALLOW_RETRY is set, the mmap_ 383 * If FAULT_FLAG_ALLOW_RETRY is set, the mmap_lock must be released 370 * before returning VM_FAULT_RETRY only if FAU 384 * before returning VM_FAULT_RETRY only if FAULT_FLAG_RETRY_NOWAIT is 371 * not set. 385 * not set. 372 * 386 * 373 * If FAULT_FLAG_ALLOW_RETRY is set but FAULT_ 387 * If FAULT_FLAG_ALLOW_RETRY is set but FAULT_FLAG_KILLABLE is not 374 * set, VM_FAULT_RETRY can still be returned i 388 * set, VM_FAULT_RETRY can still be returned if and only if there are 375 * fatal_signal_pending()s, and the mmap_lock 389 * fatal_signal_pending()s, and the mmap_lock must be released before 376 * returning it. 390 * returning it. 377 */ 391 */ 378 vm_fault_t handle_userfault(struct vm_fault *v 392 vm_fault_t handle_userfault(struct vm_fault *vmf, unsigned long reason) 379 { 393 { 380 struct vm_area_struct *vma = vmf->vma; !! 394 struct mm_struct *mm = vmf->vma->vm_mm; 381 struct mm_struct *mm = vma->vm_mm; << 382 struct userfaultfd_ctx *ctx; 395 struct userfaultfd_ctx *ctx; 383 struct userfaultfd_wait_queue uwq; 396 struct userfaultfd_wait_queue uwq; 384 vm_fault_t ret = VM_FAULT_SIGBUS; 397 vm_fault_t ret = VM_FAULT_SIGBUS; 385 bool must_wait; 398 bool must_wait; 386 unsigned int blocking_state; 399 unsigned int blocking_state; 387 400 388 /* 401 /* 389 * We don't do userfault handling for 402 * We don't do userfault handling for the final child pid update. 390 * 403 * 391 * We also don't do userfault handling 404 * We also don't do userfault handling during 392 * coredumping. hugetlbfs has the spec 405 * coredumping. hugetlbfs has the special 393 * hugetlb_follow_page_mask() to skip !! 406 * follow_hugetlb_page() to skip missing pages in the 394 * FOLL_DUMP case, anon memory also ch 407 * FOLL_DUMP case, anon memory also checks for FOLL_DUMP with 395 * the no_page_table() helper in follo 408 * the no_page_table() helper in follow_page_mask(), but the 396 * shmem_vm_ops->fault method is invok 409 * shmem_vm_ops->fault method is invoked even during 397 * coredumping and it ends up here. !! 410 * coredumping without mmap_lock and it ends up here. 398 */ 411 */ 399 if (current->flags & (PF_EXITING|PF_DU 412 if (current->flags & (PF_EXITING|PF_DUMPCORE)) 400 goto out; 413 goto out; 401 414 402 assert_fault_locked(vmf); !! 415 /* >> 416 * Coredumping runs without mmap_lock so we can only check that >> 417 * the mmap_lock is held, if PF_DUMPCORE was not set. >> 418 */ >> 419 mmap_assert_locked(mm); 403 420 404 ctx = vma->vm_userfaultfd_ctx.ctx; !! 421 ctx = vmf->vma->vm_userfaultfd_ctx.ctx; 405 if (!ctx) 422 if (!ctx) 406 goto out; 423 goto out; 407 424 408 BUG_ON(ctx->mm != mm); 425 BUG_ON(ctx->mm != mm); 409 426 410 /* Any unrecognized flag is a bug. */ 427 /* Any unrecognized flag is a bug. */ 411 VM_BUG_ON(reason & ~__VM_UFFD_FLAGS); 428 VM_BUG_ON(reason & ~__VM_UFFD_FLAGS); 412 /* 0 or > 1 flags set is a bug; we exp 429 /* 0 or > 1 flags set is a bug; we expect exactly 1. */ 413 VM_BUG_ON(!reason || (reason & (reason 430 VM_BUG_ON(!reason || (reason & (reason - 1))); 414 431 415 if (ctx->features & UFFD_FEATURE_SIGBU 432 if (ctx->features & UFFD_FEATURE_SIGBUS) 416 goto out; 433 goto out; 417 if (!(vmf->flags & FAULT_FLAG_USER) && 434 if (!(vmf->flags & FAULT_FLAG_USER) && (ctx->flags & UFFD_USER_MODE_ONLY)) 418 goto out; 435 goto out; 419 436 420 /* 437 /* 421 * If it's already released don't get 438 * If it's already released don't get it. This avoids to loop 422 * in __get_user_pages if userfaultfd_ 439 * in __get_user_pages if userfaultfd_release waits on the 423 * caller of handle_userfault to relea 440 * caller of handle_userfault to release the mmap_lock. 424 */ 441 */ 425 if (unlikely(READ_ONCE(ctx->released)) 442 if (unlikely(READ_ONCE(ctx->released))) { 426 /* 443 /* 427 * Don't return VM_FAULT_SIGBU 444 * Don't return VM_FAULT_SIGBUS in this case, so a non 428 * cooperative manager can clo 445 * cooperative manager can close the uffd after the 429 * last UFFDIO_COPY, without r 446 * last UFFDIO_COPY, without risking to trigger an 430 * involuntary SIGBUS if the p 447 * involuntary SIGBUS if the process was starting the 431 * userfaultfd while the userf 448 * userfaultfd while the userfaultfd was still armed 432 * (but after the last UFFDIO_ 449 * (but after the last UFFDIO_COPY). If the uffd 433 * wasn't already closed when 450 * wasn't already closed when the userfault reached 434 * this point, that would norm 451 * this point, that would normally be solved by 435 * userfaultfd_must_wait retur 452 * userfaultfd_must_wait returning 'false'. 436 * 453 * 437 * If we were to return VM_FAU 454 * If we were to return VM_FAULT_SIGBUS here, the non 438 * cooperative manager would b 455 * cooperative manager would be instead forced to 439 * always call UFFDIO_UNREGIST 456 * always call UFFDIO_UNREGISTER before it can safely 440 * close the uffd. 457 * close the uffd. 441 */ 458 */ 442 ret = VM_FAULT_NOPAGE; 459 ret = VM_FAULT_NOPAGE; 443 goto out; 460 goto out; 444 } 461 } 445 462 446 /* 463 /* 447 * Check that we can return VM_FAULT_R 464 * Check that we can return VM_FAULT_RETRY. 448 * 465 * 449 * NOTE: it should become possible to 466 * NOTE: it should become possible to return VM_FAULT_RETRY 450 * even if FAULT_FLAG_TRIED is set wit 467 * even if FAULT_FLAG_TRIED is set without leading to gup() 451 * -EBUSY failures, if the userfaultfd 468 * -EBUSY failures, if the userfaultfd is to be extended for 452 * VM_UFFD_WP tracking and we intend t 469 * VM_UFFD_WP tracking and we intend to arm the userfault 453 * without first stopping userland acc 470 * without first stopping userland access to the memory. For 454 * VM_UFFD_MISSING userfaults this is 471 * VM_UFFD_MISSING userfaults this is enough for now. 455 */ 472 */ 456 if (unlikely(!(vmf->flags & FAULT_FLAG 473 if (unlikely(!(vmf->flags & FAULT_FLAG_ALLOW_RETRY))) { 457 /* 474 /* 458 * Validate the invariant that 475 * Validate the invariant that nowait must allow retry 459 * to be sure not to return SI 476 * to be sure not to return SIGBUS erroneously on 460 * nowait invocations. 477 * nowait invocations. 461 */ 478 */ 462 BUG_ON(vmf->flags & FAULT_FLAG 479 BUG_ON(vmf->flags & FAULT_FLAG_RETRY_NOWAIT); 463 #ifdef CONFIG_DEBUG_VM 480 #ifdef CONFIG_DEBUG_VM 464 if (printk_ratelimit()) { 481 if (printk_ratelimit()) { 465 printk(KERN_WARNING 482 printk(KERN_WARNING 466 "FAULT_FLAG_ALL 483 "FAULT_FLAG_ALLOW_RETRY missing %x\n", 467 vmf->flags); 484 vmf->flags); 468 dump_stack(); 485 dump_stack(); 469 } 486 } 470 #endif 487 #endif 471 goto out; 488 goto out; 472 } 489 } 473 490 474 /* 491 /* 475 * Handle nowait, not much to do other 492 * Handle nowait, not much to do other than tell it to retry 476 * and wait. 493 * and wait. 477 */ 494 */ 478 ret = VM_FAULT_RETRY; 495 ret = VM_FAULT_RETRY; 479 if (vmf->flags & FAULT_FLAG_RETRY_NOWA 496 if (vmf->flags & FAULT_FLAG_RETRY_NOWAIT) 480 goto out; 497 goto out; 481 498 482 /* take the reference before dropping 499 /* take the reference before dropping the mmap_lock */ 483 userfaultfd_ctx_get(ctx); 500 userfaultfd_ctx_get(ctx); 484 501 485 init_waitqueue_func_entry(&uwq.wq, use 502 init_waitqueue_func_entry(&uwq.wq, userfaultfd_wake_function); 486 uwq.wq.private = current; 503 uwq.wq.private = current; 487 uwq.msg = userfault_msg(vmf->address, 504 uwq.msg = userfault_msg(vmf->address, vmf->real_address, vmf->flags, 488 reason, ctx->f 505 reason, ctx->features); 489 uwq.ctx = ctx; 506 uwq.ctx = ctx; 490 uwq.waken = false; 507 uwq.waken = false; 491 508 492 blocking_state = userfaultfd_get_block 509 blocking_state = userfaultfd_get_blocking_state(vmf->flags); 493 510 494 /* << 495 * Take the vma lock now, in order to << 496 * userfaultfd_huge_must_wait() later. << 497 * (sleepable) vma lock can modify the << 498 * must be before explicitly calling s << 499 */ << 500 if (is_vm_hugetlb_page(vma)) << 501 hugetlb_vma_lock_read(vma); << 502 << 503 spin_lock_irq(&ctx->fault_pending_wqh. 511 spin_lock_irq(&ctx->fault_pending_wqh.lock); 504 /* 512 /* 505 * After the __add_wait_queue the uwq 513 * After the __add_wait_queue the uwq is visible to userland 506 * through poll/read(). 514 * through poll/read(). 507 */ 515 */ 508 __add_wait_queue(&ctx->fault_pending_w 516 __add_wait_queue(&ctx->fault_pending_wqh, &uwq.wq); 509 /* 517 /* 510 * The smp_mb() after __set_current_st 518 * The smp_mb() after __set_current_state prevents the reads 511 * following the spin_unlock to happen 519 * following the spin_unlock to happen before the list_add in 512 * __add_wait_queue. 520 * __add_wait_queue. 513 */ 521 */ 514 set_current_state(blocking_state); 522 set_current_state(blocking_state); 515 spin_unlock_irq(&ctx->fault_pending_wq 523 spin_unlock_irq(&ctx->fault_pending_wqh.lock); 516 524 517 if (!is_vm_hugetlb_page(vma)) !! 525 if (!is_vm_hugetlb_page(vmf->vma)) 518 must_wait = userfaultfd_must_w !! 526 must_wait = userfaultfd_must_wait(ctx, vmf->address, vmf->flags, >> 527 reason); 519 else 528 else 520 must_wait = userfaultfd_huge_m !! 529 must_wait = userfaultfd_huge_must_wait(ctx, vmf->vma, 521 if (is_vm_hugetlb_page(vma)) !! 530 vmf->address, 522 hugetlb_vma_unlock_read(vma); !! 531 vmf->flags, reason); 523 release_fault_lock(vmf); !! 532 mmap_read_unlock(mm); 524 533 525 if (likely(must_wait && !READ_ONCE(ctx 534 if (likely(must_wait && !READ_ONCE(ctx->released))) { 526 wake_up_poll(&ctx->fd_wqh, EPO 535 wake_up_poll(&ctx->fd_wqh, EPOLLIN); 527 schedule(); 536 schedule(); 528 } 537 } 529 538 530 __set_current_state(TASK_RUNNING); 539 __set_current_state(TASK_RUNNING); 531 540 532 /* 541 /* 533 * Here we race with the list_del; lis 542 * Here we race with the list_del; list_add in 534 * userfaultfd_ctx_read(), however bec 543 * userfaultfd_ctx_read(), however because we don't ever run 535 * list_del_init() to refile across th 544 * list_del_init() to refile across the two lists, the prev 536 * and next pointers will never point 545 * and next pointers will never point to self. list_add also 537 * would never let any of the two poin 546 * would never let any of the two pointers to point to 538 * self. So list_empty_careful won't r 547 * self. So list_empty_careful won't risk to see both pointers 539 * pointing to self at any time during 548 * pointing to self at any time during the list refile. The 540 * only case where list_del_init() is 549 * only case where list_del_init() is called is the full 541 * removal in the wake function and th 550 * removal in the wake function and there we don't re-list_add 542 * and it's fine not to block on the s 551 * and it's fine not to block on the spinlock. The uwq on this 543 * kernel stack can be released after 552 * kernel stack can be released after the list_del_init. 544 */ 553 */ 545 if (!list_empty_careful(&uwq.wq.entry) 554 if (!list_empty_careful(&uwq.wq.entry)) { 546 spin_lock_irq(&ctx->fault_pend 555 spin_lock_irq(&ctx->fault_pending_wqh.lock); 547 /* 556 /* 548 * No need of list_del_init(), 557 * No need of list_del_init(), the uwq on the stack 549 * will be freed shortly anywa 558 * will be freed shortly anyway. 550 */ 559 */ 551 list_del(&uwq.wq.entry); 560 list_del(&uwq.wq.entry); 552 spin_unlock_irq(&ctx->fault_pe 561 spin_unlock_irq(&ctx->fault_pending_wqh.lock); 553 } 562 } 554 563 555 /* 564 /* 556 * ctx may go away after this if the u 565 * ctx may go away after this if the userfault pseudo fd is 557 * already released. 566 * already released. 558 */ 567 */ 559 userfaultfd_ctx_put(ctx); 568 userfaultfd_ctx_put(ctx); 560 569 561 out: 570 out: 562 return ret; 571 return ret; 563 } 572 } 564 573 565 static void userfaultfd_event_wait_completion( 574 static void userfaultfd_event_wait_completion(struct userfaultfd_ctx *ctx, 566 575 struct userfaultfd_wait_queue *ewq) 567 { 576 { 568 struct userfaultfd_ctx *release_new_ct 577 struct userfaultfd_ctx *release_new_ctx; 569 578 570 if (WARN_ON_ONCE(current->flags & PF_E 579 if (WARN_ON_ONCE(current->flags & PF_EXITING)) 571 goto out; 580 goto out; 572 581 573 ewq->ctx = ctx; 582 ewq->ctx = ctx; 574 init_waitqueue_entry(&ewq->wq, current 583 init_waitqueue_entry(&ewq->wq, current); 575 release_new_ctx = NULL; 584 release_new_ctx = NULL; 576 585 577 spin_lock_irq(&ctx->event_wqh.lock); 586 spin_lock_irq(&ctx->event_wqh.lock); 578 /* 587 /* 579 * After the __add_wait_queue the uwq 588 * After the __add_wait_queue the uwq is visible to userland 580 * through poll/read(). 589 * through poll/read(). 581 */ 590 */ 582 __add_wait_queue(&ctx->event_wqh, &ewq 591 __add_wait_queue(&ctx->event_wqh, &ewq->wq); 583 for (;;) { 592 for (;;) { 584 set_current_state(TASK_KILLABL 593 set_current_state(TASK_KILLABLE); 585 if (ewq->msg.event == 0) 594 if (ewq->msg.event == 0) 586 break; 595 break; 587 if (READ_ONCE(ctx->released) | 596 if (READ_ONCE(ctx->released) || 588 fatal_signal_pending(curre 597 fatal_signal_pending(current)) { 589 /* 598 /* 590 * &ewq->wq may be que 599 * &ewq->wq may be queued in fork_event, but 591 * __remove_wait_queue 600 * __remove_wait_queue ignores the head 592 * parameter. It would 601 * parameter. It would be a problem if it 593 * didn't. 602 * didn't. 594 */ 603 */ 595 __remove_wait_queue(&c 604 __remove_wait_queue(&ctx->event_wqh, &ewq->wq); 596 if (ewq->msg.event == 605 if (ewq->msg.event == UFFD_EVENT_FORK) { 597 struct userfau 606 struct userfaultfd_ctx *new; 598 607 599 new = (struct 608 new = (struct userfaultfd_ctx *) 600 (unsig 609 (unsigned long) 601 ewq->m 610 ewq->msg.arg.reserved.reserved1; 602 release_new_ct 611 release_new_ctx = new; 603 } 612 } 604 break; 613 break; 605 } 614 } 606 615 607 spin_unlock_irq(&ctx->event_wq 616 spin_unlock_irq(&ctx->event_wqh.lock); 608 617 609 wake_up_poll(&ctx->fd_wqh, EPO 618 wake_up_poll(&ctx->fd_wqh, EPOLLIN); 610 schedule(); 619 schedule(); 611 620 612 spin_lock_irq(&ctx->event_wqh. 621 spin_lock_irq(&ctx->event_wqh.lock); 613 } 622 } 614 __set_current_state(TASK_RUNNING); 623 __set_current_state(TASK_RUNNING); 615 spin_unlock_irq(&ctx->event_wqh.lock); 624 spin_unlock_irq(&ctx->event_wqh.lock); 616 625 617 if (release_new_ctx) { 626 if (release_new_ctx) { 618 struct vm_area_struct *vma; 627 struct vm_area_struct *vma; 619 struct mm_struct *mm = release 628 struct mm_struct *mm = release_new_ctx->mm; 620 VMA_ITERATOR(vmi, mm, 0); 629 VMA_ITERATOR(vmi, mm, 0); 621 630 622 /* the various vma->vm_userfau 631 /* the various vma->vm_userfaultfd_ctx still points to it */ 623 mmap_write_lock(mm); 632 mmap_write_lock(mm); 624 for_each_vma(vmi, vma) { 633 for_each_vma(vmi, vma) { 625 if (vma->vm_userfaultf 634 if (vma->vm_userfaultfd_ctx.ctx == release_new_ctx) { 626 vma_start_writ << 627 vma->vm_userfa 635 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX; 628 userfaultfd_se 636 userfaultfd_set_vm_flags(vma, 629 637 vma->vm_flags & ~__VM_UFFD_FLAGS); 630 } 638 } 631 } 639 } 632 mmap_write_unlock(mm); 640 mmap_write_unlock(mm); 633 641 634 userfaultfd_ctx_put(release_ne 642 userfaultfd_ctx_put(release_new_ctx); 635 } 643 } 636 644 637 /* 645 /* 638 * ctx may go away after this if the u 646 * ctx may go away after this if the userfault pseudo fd is 639 * already released. 647 * already released. 640 */ 648 */ 641 out: 649 out: 642 atomic_dec(&ctx->mmap_changing); 650 atomic_dec(&ctx->mmap_changing); 643 VM_BUG_ON(atomic_read(&ctx->mmap_chang 651 VM_BUG_ON(atomic_read(&ctx->mmap_changing) < 0); 644 userfaultfd_ctx_put(ctx); 652 userfaultfd_ctx_put(ctx); 645 } 653 } 646 654 647 static void userfaultfd_event_complete(struct 655 static void userfaultfd_event_complete(struct userfaultfd_ctx *ctx, 648 struct 656 struct userfaultfd_wait_queue *ewq) 649 { 657 { 650 ewq->msg.event = 0; 658 ewq->msg.event = 0; 651 wake_up_locked(&ctx->event_wqh); 659 wake_up_locked(&ctx->event_wqh); 652 __remove_wait_queue(&ctx->event_wqh, & 660 __remove_wait_queue(&ctx->event_wqh, &ewq->wq); 653 } 661 } 654 662 655 int dup_userfaultfd(struct vm_area_struct *vma 663 int dup_userfaultfd(struct vm_area_struct *vma, struct list_head *fcs) 656 { 664 { 657 struct userfaultfd_ctx *ctx = NULL, *o 665 struct userfaultfd_ctx *ctx = NULL, *octx; 658 struct userfaultfd_fork_ctx *fctx; 666 struct userfaultfd_fork_ctx *fctx; 659 667 660 octx = vma->vm_userfaultfd_ctx.ctx; 668 octx = vma->vm_userfaultfd_ctx.ctx; 661 if (!octx) !! 669 if (!octx || !(octx->features & UFFD_FEATURE_EVENT_FORK)) { 662 return 0; << 663 << 664 if (!(octx->features & UFFD_FEATURE_EV << 665 vma_start_write(vma); << 666 vma->vm_userfaultfd_ctx = NULL 670 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX; 667 userfaultfd_set_vm_flags(vma, 671 userfaultfd_set_vm_flags(vma, vma->vm_flags & ~__VM_UFFD_FLAGS); 668 return 0; 672 return 0; 669 } 673 } 670 674 671 list_for_each_entry(fctx, fcs, list) 675 list_for_each_entry(fctx, fcs, list) 672 if (fctx->orig == octx) { 676 if (fctx->orig == octx) { 673 ctx = fctx->new; 677 ctx = fctx->new; 674 break; 678 break; 675 } 679 } 676 680 677 if (!ctx) { 681 if (!ctx) { 678 fctx = kmalloc(sizeof(*fctx), 682 fctx = kmalloc(sizeof(*fctx), GFP_KERNEL); 679 if (!fctx) 683 if (!fctx) 680 return -ENOMEM; 684 return -ENOMEM; 681 685 682 ctx = kmem_cache_alloc(userfau 686 ctx = kmem_cache_alloc(userfaultfd_ctx_cachep, GFP_KERNEL); 683 if (!ctx) { 687 if (!ctx) { 684 kfree(fctx); 688 kfree(fctx); 685 return -ENOMEM; 689 return -ENOMEM; 686 } 690 } 687 691 688 refcount_set(&ctx->refcount, 1 692 refcount_set(&ctx->refcount, 1); 689 ctx->flags = octx->flags; 693 ctx->flags = octx->flags; 690 ctx->features = octx->features 694 ctx->features = octx->features; 691 ctx->released = false; 695 ctx->released = false; 692 init_rwsem(&ctx->map_changing_ << 693 atomic_set(&ctx->mmap_changing 696 atomic_set(&ctx->mmap_changing, 0); 694 ctx->mm = vma->vm_mm; 697 ctx->mm = vma->vm_mm; 695 mmgrab(ctx->mm); 698 mmgrab(ctx->mm); 696 699 697 userfaultfd_ctx_get(octx); 700 userfaultfd_ctx_get(octx); 698 down_write(&octx->map_changing << 699 atomic_inc(&octx->mmap_changin 701 atomic_inc(&octx->mmap_changing); 700 up_write(&octx->map_changing_l << 701 fctx->orig = octx; 702 fctx->orig = octx; 702 fctx->new = ctx; 703 fctx->new = ctx; 703 list_add_tail(&fctx->list, fcs 704 list_add_tail(&fctx->list, fcs); 704 } 705 } 705 706 706 vma->vm_userfaultfd_ctx.ctx = ctx; 707 vma->vm_userfaultfd_ctx.ctx = ctx; 707 return 0; 708 return 0; 708 } 709 } 709 710 710 static void dup_fctx(struct userfaultfd_fork_c 711 static void dup_fctx(struct userfaultfd_fork_ctx *fctx) 711 { 712 { 712 struct userfaultfd_ctx *ctx = fctx->or 713 struct userfaultfd_ctx *ctx = fctx->orig; 713 struct userfaultfd_wait_queue ewq; 714 struct userfaultfd_wait_queue ewq; 714 715 715 msg_init(&ewq.msg); 716 msg_init(&ewq.msg); 716 717 717 ewq.msg.event = UFFD_EVENT_FORK; 718 ewq.msg.event = UFFD_EVENT_FORK; 718 ewq.msg.arg.reserved.reserved1 = (unsi 719 ewq.msg.arg.reserved.reserved1 = (unsigned long)fctx->new; 719 720 720 userfaultfd_event_wait_completion(ctx, 721 userfaultfd_event_wait_completion(ctx, &ewq); 721 } 722 } 722 723 723 void dup_userfaultfd_complete(struct list_head 724 void dup_userfaultfd_complete(struct list_head *fcs) 724 { 725 { 725 struct userfaultfd_fork_ctx *fctx, *n; 726 struct userfaultfd_fork_ctx *fctx, *n; 726 727 727 list_for_each_entry_safe(fctx, n, fcs, 728 list_for_each_entry_safe(fctx, n, fcs, list) { 728 dup_fctx(fctx); 729 dup_fctx(fctx); 729 list_del(&fctx->list); 730 list_del(&fctx->list); 730 kfree(fctx); 731 kfree(fctx); 731 } 732 } 732 } 733 } 733 734 734 void mremap_userfaultfd_prep(struct vm_area_st 735 void mremap_userfaultfd_prep(struct vm_area_struct *vma, 735 struct vm_userfau 736 struct vm_userfaultfd_ctx *vm_ctx) 736 { 737 { 737 struct userfaultfd_ctx *ctx; 738 struct userfaultfd_ctx *ctx; 738 739 739 ctx = vma->vm_userfaultfd_ctx.ctx; 740 ctx = vma->vm_userfaultfd_ctx.ctx; 740 741 741 if (!ctx) 742 if (!ctx) 742 return; 743 return; 743 744 744 if (ctx->features & UFFD_FEATURE_EVENT 745 if (ctx->features & UFFD_FEATURE_EVENT_REMAP) { 745 vm_ctx->ctx = ctx; 746 vm_ctx->ctx = ctx; 746 userfaultfd_ctx_get(ctx); 747 userfaultfd_ctx_get(ctx); 747 down_write(&ctx->map_changing_ << 748 atomic_inc(&ctx->mmap_changing 748 atomic_inc(&ctx->mmap_changing); 749 up_write(&ctx->map_changing_lo << 750 } else { 749 } else { 751 /* Drop uffd context if remap 750 /* Drop uffd context if remap feature not enabled */ 752 vma_start_write(vma); << 753 vma->vm_userfaultfd_ctx = NULL 751 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX; 754 userfaultfd_set_vm_flags(vma, 752 userfaultfd_set_vm_flags(vma, vma->vm_flags & ~__VM_UFFD_FLAGS); 755 } 753 } 756 } 754 } 757 755 758 void mremap_userfaultfd_complete(struct vm_use 756 void mremap_userfaultfd_complete(struct vm_userfaultfd_ctx *vm_ctx, 759 unsigned long 757 unsigned long from, unsigned long to, 760 unsigned long 758 unsigned long len) 761 { 759 { 762 struct userfaultfd_ctx *ctx = vm_ctx-> 760 struct userfaultfd_ctx *ctx = vm_ctx->ctx; 763 struct userfaultfd_wait_queue ewq; 761 struct userfaultfd_wait_queue ewq; 764 762 765 if (!ctx) 763 if (!ctx) 766 return; 764 return; 767 765 768 if (to & ~PAGE_MASK) { 766 if (to & ~PAGE_MASK) { 769 userfaultfd_ctx_put(ctx); 767 userfaultfd_ctx_put(ctx); 770 return; 768 return; 771 } 769 } 772 770 773 msg_init(&ewq.msg); 771 msg_init(&ewq.msg); 774 772 775 ewq.msg.event = UFFD_EVENT_REMAP; 773 ewq.msg.event = UFFD_EVENT_REMAP; 776 ewq.msg.arg.remap.from = from; 774 ewq.msg.arg.remap.from = from; 777 ewq.msg.arg.remap.to = to; 775 ewq.msg.arg.remap.to = to; 778 ewq.msg.arg.remap.len = len; 776 ewq.msg.arg.remap.len = len; 779 777 780 userfaultfd_event_wait_completion(ctx, 778 userfaultfd_event_wait_completion(ctx, &ewq); 781 } 779 } 782 780 783 bool userfaultfd_remove(struct vm_area_struct 781 bool userfaultfd_remove(struct vm_area_struct *vma, 784 unsigned long start, u 782 unsigned long start, unsigned long end) 785 { 783 { 786 struct mm_struct *mm = vma->vm_mm; 784 struct mm_struct *mm = vma->vm_mm; 787 struct userfaultfd_ctx *ctx; 785 struct userfaultfd_ctx *ctx; 788 struct userfaultfd_wait_queue ewq; 786 struct userfaultfd_wait_queue ewq; 789 787 790 ctx = vma->vm_userfaultfd_ctx.ctx; 788 ctx = vma->vm_userfaultfd_ctx.ctx; 791 if (!ctx || !(ctx->features & UFFD_FEA 789 if (!ctx || !(ctx->features & UFFD_FEATURE_EVENT_REMOVE)) 792 return true; 790 return true; 793 791 794 userfaultfd_ctx_get(ctx); 792 userfaultfd_ctx_get(ctx); 795 down_write(&ctx->map_changing_lock); << 796 atomic_inc(&ctx->mmap_changing); 793 atomic_inc(&ctx->mmap_changing); 797 up_write(&ctx->map_changing_lock); << 798 mmap_read_unlock(mm); 794 mmap_read_unlock(mm); 799 795 800 msg_init(&ewq.msg); 796 msg_init(&ewq.msg); 801 797 802 ewq.msg.event = UFFD_EVENT_REMOVE; 798 ewq.msg.event = UFFD_EVENT_REMOVE; 803 ewq.msg.arg.remove.start = start; 799 ewq.msg.arg.remove.start = start; 804 ewq.msg.arg.remove.end = end; 800 ewq.msg.arg.remove.end = end; 805 801 806 userfaultfd_event_wait_completion(ctx, 802 userfaultfd_event_wait_completion(ctx, &ewq); 807 803 808 return false; 804 return false; 809 } 805 } 810 806 811 static bool has_unmap_ctx(struct userfaultfd_c 807 static bool has_unmap_ctx(struct userfaultfd_ctx *ctx, struct list_head *unmaps, 812 unsigned long start, 808 unsigned long start, unsigned long end) 813 { 809 { 814 struct userfaultfd_unmap_ctx *unmap_ct 810 struct userfaultfd_unmap_ctx *unmap_ctx; 815 811 816 list_for_each_entry(unmap_ctx, unmaps, 812 list_for_each_entry(unmap_ctx, unmaps, list) 817 if (unmap_ctx->ctx == ctx && u 813 if (unmap_ctx->ctx == ctx && unmap_ctx->start == start && 818 unmap_ctx->end == end) 814 unmap_ctx->end == end) 819 return true; 815 return true; 820 816 821 return false; 817 return false; 822 } 818 } 823 819 824 int userfaultfd_unmap_prep(struct vm_area_stru !! 820 int userfaultfd_unmap_prep(struct mm_struct *mm, unsigned long start, 825 unsigned long end, 821 unsigned long end, struct list_head *unmaps) 826 { 822 { 827 struct userfaultfd_unmap_ctx *unmap_ct !! 823 VMA_ITERATOR(vmi, mm, start); 828 struct userfaultfd_ctx *ctx = vma->vm_ !! 824 struct vm_area_struct *vma; 829 825 830 if (!ctx || !(ctx->features & UFFD_FEA !! 826 for_each_vma_range(vmi, vma, end) { 831 has_unmap_ctx(ctx, unmaps, start, !! 827 struct userfaultfd_unmap_ctx *unmap_ctx; 832 return 0; !! 828 struct userfaultfd_ctx *ctx = vma->vm_userfaultfd_ctx.ctx; 833 829 834 unmap_ctx = kzalloc(sizeof(*unmap_ctx) !! 830 if (!ctx || !(ctx->features & UFFD_FEATURE_EVENT_UNMAP) || 835 if (!unmap_ctx) !! 831 has_unmap_ctx(ctx, unmaps, start, end)) 836 return -ENOMEM; !! 832 continue; 837 833 838 userfaultfd_ctx_get(ctx); !! 834 unmap_ctx = kzalloc(sizeof(*unmap_ctx), GFP_KERNEL); 839 down_write(&ctx->map_changing_lock); !! 835 if (!unmap_ctx) 840 atomic_inc(&ctx->mmap_changing); !! 836 return -ENOMEM; 841 up_write(&ctx->map_changing_lock); !! 837 842 unmap_ctx->ctx = ctx; !! 838 userfaultfd_ctx_get(ctx); 843 unmap_ctx->start = start; !! 839 atomic_inc(&ctx->mmap_changing); 844 unmap_ctx->end = end; !! 840 unmap_ctx->ctx = ctx; 845 list_add_tail(&unmap_ctx->list, unmaps !! 841 unmap_ctx->start = start; >> 842 unmap_ctx->end = end; >> 843 list_add_tail(&unmap_ctx->list, unmaps); >> 844 } 846 845 847 return 0; 846 return 0; 848 } 847 } 849 848 850 void userfaultfd_unmap_complete(struct mm_stru 849 void userfaultfd_unmap_complete(struct mm_struct *mm, struct list_head *uf) 851 { 850 { 852 struct userfaultfd_unmap_ctx *ctx, *n; 851 struct userfaultfd_unmap_ctx *ctx, *n; 853 struct userfaultfd_wait_queue ewq; 852 struct userfaultfd_wait_queue ewq; 854 853 855 list_for_each_entry_safe(ctx, n, uf, l 854 list_for_each_entry_safe(ctx, n, uf, list) { 856 msg_init(&ewq.msg); 855 msg_init(&ewq.msg); 857 856 858 ewq.msg.event = UFFD_EVENT_UNM 857 ewq.msg.event = UFFD_EVENT_UNMAP; 859 ewq.msg.arg.remove.start = ctx 858 ewq.msg.arg.remove.start = ctx->start; 860 ewq.msg.arg.remove.end = ctx-> 859 ewq.msg.arg.remove.end = ctx->end; 861 860 862 userfaultfd_event_wait_complet 861 userfaultfd_event_wait_completion(ctx->ctx, &ewq); 863 862 864 list_del(&ctx->list); 863 list_del(&ctx->list); 865 kfree(ctx); 864 kfree(ctx); 866 } 865 } 867 } 866 } 868 867 869 static int userfaultfd_release(struct inode *i 868 static int userfaultfd_release(struct inode *inode, struct file *file) 870 { 869 { 871 struct userfaultfd_ctx *ctx = file->pr 870 struct userfaultfd_ctx *ctx = file->private_data; 872 struct mm_struct *mm = ctx->mm; 871 struct mm_struct *mm = ctx->mm; 873 struct vm_area_struct *vma, *prev; 872 struct vm_area_struct *vma, *prev; 874 /* len == 0 means wake all */ 873 /* len == 0 means wake all */ 875 struct userfaultfd_wake_range range = 874 struct userfaultfd_wake_range range = { .len = 0, }; 876 unsigned long new_flags; 875 unsigned long new_flags; 877 VMA_ITERATOR(vmi, mm, 0); !! 876 MA_STATE(mas, &mm->mm_mt, 0, 0); 878 877 879 WRITE_ONCE(ctx->released, true); 878 WRITE_ONCE(ctx->released, true); 880 879 881 if (!mmget_not_zero(mm)) 880 if (!mmget_not_zero(mm)) 882 goto wakeup; 881 goto wakeup; 883 882 884 /* 883 /* 885 * Flush page faults out of all CPUs. 884 * Flush page faults out of all CPUs. NOTE: all page faults 886 * must be retried without returning V 885 * must be retried without returning VM_FAULT_SIGBUS if 887 * userfaultfd_ctx_get() succeeds but 886 * userfaultfd_ctx_get() succeeds but vma->vma_userfault_ctx 888 * changes while handle_userfault rele 887 * changes while handle_userfault released the mmap_lock. So 889 * it's critical that released is set 888 * it's critical that released is set to true (above), before 890 * taking the mmap_lock for writing. 889 * taking the mmap_lock for writing. 891 */ 890 */ 892 mmap_write_lock(mm); 891 mmap_write_lock(mm); 893 prev = NULL; 892 prev = NULL; 894 for_each_vma(vmi, vma) { !! 893 mas_for_each(&mas, vma, ULONG_MAX) { 895 cond_resched(); 894 cond_resched(); 896 BUG_ON(!!vma->vm_userfaultfd_c 895 BUG_ON(!!vma->vm_userfaultfd_ctx.ctx ^ 897 !!(vma->vm_flags & __VM 896 !!(vma->vm_flags & __VM_UFFD_FLAGS)); 898 if (vma->vm_userfaultfd_ctx.ct 897 if (vma->vm_userfaultfd_ctx.ctx != ctx) { 899 prev = vma; 898 prev = vma; 900 continue; 899 continue; 901 } 900 } 902 /* Reset ptes for the whole vm << 903 if (userfaultfd_wp(vma)) << 904 uffd_wp_range(vma, vma << 905 vma->vm_ << 906 new_flags = vma->vm_flags & ~_ 901 new_flags = vma->vm_flags & ~__VM_UFFD_FLAGS; 907 vma = vma_modify_flags_uffd(&v !! 902 prev = vma_merge(mm, prev, vma->vm_start, vma->vm_end, 908 vm !! 903 new_flags, vma->anon_vma, 909 NU !! 904 vma->vm_file, vma->vm_pgoff, >> 905 vma_policy(vma), >> 906 NULL_VM_UFFD_CTX, anon_vma_name(vma)); >> 907 if (prev) { >> 908 mas_pause(&mas); >> 909 vma = prev; >> 910 } else { >> 911 prev = vma; >> 912 } 910 913 911 vma_start_write(vma); << 912 userfaultfd_set_vm_flags(vma, 914 userfaultfd_set_vm_flags(vma, new_flags); 913 vma->vm_userfaultfd_ctx = NULL 915 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX; 914 << 915 prev = vma; << 916 } 916 } 917 mmap_write_unlock(mm); 917 mmap_write_unlock(mm); 918 mmput(mm); 918 mmput(mm); 919 wakeup: 919 wakeup: 920 /* 920 /* 921 * After no new page faults can wait o 921 * After no new page faults can wait on this fault_*wqh, flush 922 * the last page faults that may have 922 * the last page faults that may have been already waiting on 923 * the fault_*wqh. 923 * the fault_*wqh. 924 */ 924 */ 925 spin_lock_irq(&ctx->fault_pending_wqh. 925 spin_lock_irq(&ctx->fault_pending_wqh.lock); 926 __wake_up_locked_key(&ctx->fault_pendi 926 __wake_up_locked_key(&ctx->fault_pending_wqh, TASK_NORMAL, &range); 927 __wake_up(&ctx->fault_wqh, TASK_NORMAL 927 __wake_up(&ctx->fault_wqh, TASK_NORMAL, 1, &range); 928 spin_unlock_irq(&ctx->fault_pending_wq 928 spin_unlock_irq(&ctx->fault_pending_wqh.lock); 929 929 930 /* Flush pending events that may still 930 /* Flush pending events that may still wait on event_wqh */ 931 wake_up_all(&ctx->event_wqh); 931 wake_up_all(&ctx->event_wqh); 932 932 933 wake_up_poll(&ctx->fd_wqh, EPOLLHUP); 933 wake_up_poll(&ctx->fd_wqh, EPOLLHUP); 934 userfaultfd_ctx_put(ctx); 934 userfaultfd_ctx_put(ctx); 935 return 0; 935 return 0; 936 } 936 } 937 937 938 /* fault_pending_wqh.lock must be hold by the 938 /* fault_pending_wqh.lock must be hold by the caller */ 939 static inline struct userfaultfd_wait_queue *f 939 static inline struct userfaultfd_wait_queue *find_userfault_in( 940 wait_queue_head_t *wqh) 940 wait_queue_head_t *wqh) 941 { 941 { 942 wait_queue_entry_t *wq; 942 wait_queue_entry_t *wq; 943 struct userfaultfd_wait_queue *uwq; 943 struct userfaultfd_wait_queue *uwq; 944 944 945 lockdep_assert_held(&wqh->lock); 945 lockdep_assert_held(&wqh->lock); 946 946 947 uwq = NULL; 947 uwq = NULL; 948 if (!waitqueue_active(wqh)) 948 if (!waitqueue_active(wqh)) 949 goto out; 949 goto out; 950 /* walk in reverse to provide FIFO beh 950 /* walk in reverse to provide FIFO behavior to read userfaults */ 951 wq = list_last_entry(&wqh->head, typeo 951 wq = list_last_entry(&wqh->head, typeof(*wq), entry); 952 uwq = container_of(wq, struct userfaul 952 uwq = container_of(wq, struct userfaultfd_wait_queue, wq); 953 out: 953 out: 954 return uwq; 954 return uwq; 955 } 955 } 956 956 957 static inline struct userfaultfd_wait_queue *f 957 static inline struct userfaultfd_wait_queue *find_userfault( 958 struct userfaultfd_ctx *ctx) 958 struct userfaultfd_ctx *ctx) 959 { 959 { 960 return find_userfault_in(&ctx->fault_p 960 return find_userfault_in(&ctx->fault_pending_wqh); 961 } 961 } 962 962 963 static inline struct userfaultfd_wait_queue *f 963 static inline struct userfaultfd_wait_queue *find_userfault_evt( 964 struct userfaultfd_ctx *ctx) 964 struct userfaultfd_ctx *ctx) 965 { 965 { 966 return find_userfault_in(&ctx->event_w 966 return find_userfault_in(&ctx->event_wqh); 967 } 967 } 968 968 969 static __poll_t userfaultfd_poll(struct file * 969 static __poll_t userfaultfd_poll(struct file *file, poll_table *wait) 970 { 970 { 971 struct userfaultfd_ctx *ctx = file->pr 971 struct userfaultfd_ctx *ctx = file->private_data; 972 __poll_t ret; 972 __poll_t ret; 973 973 974 poll_wait(file, &ctx->fd_wqh, wait); 974 poll_wait(file, &ctx->fd_wqh, wait); 975 975 976 if (!userfaultfd_is_initialized(ctx)) 976 if (!userfaultfd_is_initialized(ctx)) 977 return EPOLLERR; 977 return EPOLLERR; 978 978 979 /* 979 /* 980 * poll() never guarantees that read w 980 * poll() never guarantees that read won't block. 981 * userfaults can be waken before they 981 * userfaults can be waken before they're read(). 982 */ 982 */ 983 if (unlikely(!(file->f_flags & O_NONBL 983 if (unlikely(!(file->f_flags & O_NONBLOCK))) 984 return EPOLLERR; 984 return EPOLLERR; 985 /* 985 /* 986 * lockless access to see if there are 986 * lockless access to see if there are pending faults 987 * __pollwait last action is the add_w 987 * __pollwait last action is the add_wait_queue but 988 * the spin_unlock would allow the wai 988 * the spin_unlock would allow the waitqueue_active to 989 * pass above the actual list_add insi 989 * pass above the actual list_add inside 990 * add_wait_queue critical section. So 990 * add_wait_queue critical section. So use a full 991 * memory barrier to serialize the lis 991 * memory barrier to serialize the list_add write of 992 * add_wait_queue() with the waitqueue 992 * add_wait_queue() with the waitqueue_active read 993 * below. 993 * below. 994 */ 994 */ 995 ret = 0; 995 ret = 0; 996 smp_mb(); 996 smp_mb(); 997 if (waitqueue_active(&ctx->fault_pendi 997 if (waitqueue_active(&ctx->fault_pending_wqh)) 998 ret = EPOLLIN; 998 ret = EPOLLIN; 999 else if (waitqueue_active(&ctx->event_ 999 else if (waitqueue_active(&ctx->event_wqh)) 1000 ret = EPOLLIN; 1000 ret = EPOLLIN; 1001 1001 1002 return ret; 1002 return ret; 1003 } 1003 } 1004 1004 1005 static const struct file_operations userfault 1005 static const struct file_operations userfaultfd_fops; 1006 1006 1007 static int resolve_userfault_fork(struct user 1007 static int resolve_userfault_fork(struct userfaultfd_ctx *new, 1008 struct inod 1008 struct inode *inode, 1009 struct uffd 1009 struct uffd_msg *msg) 1010 { 1010 { 1011 int fd; 1011 int fd; 1012 1012 1013 fd = anon_inode_create_getfd("[userfa !! 1013 fd = anon_inode_getfd_secure("[userfaultfd]", &userfaultfd_fops, new, 1014 O_RDONLY | (new->flag 1014 O_RDONLY | (new->flags & UFFD_SHARED_FCNTL_FLAGS), inode); 1015 if (fd < 0) 1015 if (fd < 0) 1016 return fd; 1016 return fd; 1017 1017 1018 msg->arg.reserved.reserved1 = 0; 1018 msg->arg.reserved.reserved1 = 0; 1019 msg->arg.fork.ufd = fd; 1019 msg->arg.fork.ufd = fd; 1020 return 0; 1020 return 0; 1021 } 1021 } 1022 1022 1023 static ssize_t userfaultfd_ctx_read(struct us 1023 static ssize_t userfaultfd_ctx_read(struct userfaultfd_ctx *ctx, int no_wait, 1024 struct uf 1024 struct uffd_msg *msg, struct inode *inode) 1025 { 1025 { 1026 ssize_t ret; 1026 ssize_t ret; 1027 DECLARE_WAITQUEUE(wait, current); 1027 DECLARE_WAITQUEUE(wait, current); 1028 struct userfaultfd_wait_queue *uwq; 1028 struct userfaultfd_wait_queue *uwq; 1029 /* 1029 /* 1030 * Handling fork event requires sleep 1030 * Handling fork event requires sleeping operations, so 1031 * we drop the event_wqh lock, then d 1031 * we drop the event_wqh lock, then do these ops, then 1032 * lock it back and wake up the waite 1032 * lock it back and wake up the waiter. While the lock is 1033 * dropped the ewq may go away so we 1033 * dropped the ewq may go away so we keep track of it 1034 * carefully. 1034 * carefully. 1035 */ 1035 */ 1036 LIST_HEAD(fork_event); 1036 LIST_HEAD(fork_event); 1037 struct userfaultfd_ctx *fork_nctx = N 1037 struct userfaultfd_ctx *fork_nctx = NULL; 1038 1038 1039 /* always take the fd_wqh lock before 1039 /* always take the fd_wqh lock before the fault_pending_wqh lock */ 1040 spin_lock_irq(&ctx->fd_wqh.lock); 1040 spin_lock_irq(&ctx->fd_wqh.lock); 1041 __add_wait_queue(&ctx->fd_wqh, &wait) 1041 __add_wait_queue(&ctx->fd_wqh, &wait); 1042 for (;;) { 1042 for (;;) { 1043 set_current_state(TASK_INTERR 1043 set_current_state(TASK_INTERRUPTIBLE); 1044 spin_lock(&ctx->fault_pending 1044 spin_lock(&ctx->fault_pending_wqh.lock); 1045 uwq = find_userfault(ctx); 1045 uwq = find_userfault(ctx); 1046 if (uwq) { 1046 if (uwq) { 1047 /* 1047 /* 1048 * Use a seqcount to 1048 * Use a seqcount to repeat the lockless check 1049 * in wake_userfault( 1049 * in wake_userfault() to avoid missing 1050 * wakeups because du 1050 * wakeups because during the refile both 1051 * waitqueue could be 1051 * waitqueue could become empty if this is the 1052 * only userfault. 1052 * only userfault. 1053 */ 1053 */ 1054 write_seqcount_begin( 1054 write_seqcount_begin(&ctx->refile_seq); 1055 1055 1056 /* 1056 /* 1057 * The fault_pending_ 1057 * The fault_pending_wqh.lock prevents the uwq 1058 * to disappear from 1058 * to disappear from under us. 1059 * 1059 * 1060 * Refile this userfa 1060 * Refile this userfault from 1061 * fault_pending_wqh 1061 * fault_pending_wqh to fault_wqh, it's not 1062 * pending anymore af 1062 * pending anymore after we read it. 1063 * 1063 * 1064 * Use list_del() by 1064 * Use list_del() by hand (as 1065 * userfaultfd_wake_f 1065 * userfaultfd_wake_function also uses 1066 * list_del_init() by 1066 * list_del_init() by hand) to be sure nobody 1067 * changes __remove_w 1067 * changes __remove_wait_queue() to use 1068 * list_del_init() in 1068 * list_del_init() in turn breaking the 1069 * !list_empty_carefu 1069 * !list_empty_careful() check in 1070 * handle_userfault() 1070 * handle_userfault(). The uwq->wq.head list 1071 * must never be empt 1071 * must never be empty at any time during the 1072 * refile, or the wai 1072 * refile, or the waitqueue could disappear 1073 * from under us. The 1073 * from under us. The "wait_queue_head_t" 1074 * parameter of __rem 1074 * parameter of __remove_wait_queue() is unused 1075 * anyway. 1075 * anyway. 1076 */ 1076 */ 1077 list_del(&uwq->wq.ent 1077 list_del(&uwq->wq.entry); 1078 add_wait_queue(&ctx-> 1078 add_wait_queue(&ctx->fault_wqh, &uwq->wq); 1079 1079 1080 write_seqcount_end(&c 1080 write_seqcount_end(&ctx->refile_seq); 1081 1081 1082 /* careful to always 1082 /* careful to always initialize msg if ret == 0 */ 1083 *msg = uwq->msg; 1083 *msg = uwq->msg; 1084 spin_unlock(&ctx->fau 1084 spin_unlock(&ctx->fault_pending_wqh.lock); 1085 ret = 0; 1085 ret = 0; 1086 break; 1086 break; 1087 } 1087 } 1088 spin_unlock(&ctx->fault_pendi 1088 spin_unlock(&ctx->fault_pending_wqh.lock); 1089 1089 1090 spin_lock(&ctx->event_wqh.loc 1090 spin_lock(&ctx->event_wqh.lock); 1091 uwq = find_userfault_evt(ctx) 1091 uwq = find_userfault_evt(ctx); 1092 if (uwq) { 1092 if (uwq) { 1093 *msg = uwq->msg; 1093 *msg = uwq->msg; 1094 1094 1095 if (uwq->msg.event == 1095 if (uwq->msg.event == UFFD_EVENT_FORK) { 1096 fork_nctx = ( 1096 fork_nctx = (struct userfaultfd_ctx *) 1097 (unsi 1097 (unsigned long) 1098 uwq-> 1098 uwq->msg.arg.reserved.reserved1; 1099 list_move(&uw 1099 list_move(&uwq->wq.entry, &fork_event); 1100 /* 1100 /* 1101 * fork_nctx 1101 * fork_nctx can be freed as soon as 1102 * we drop th 1102 * we drop the lock, unless we take a 1103 * reference 1103 * reference on it. 1104 */ 1104 */ 1105 userfaultfd_c 1105 userfaultfd_ctx_get(fork_nctx); 1106 spin_unlock(& 1106 spin_unlock(&ctx->event_wqh.lock); 1107 ret = 0; 1107 ret = 0; 1108 break; 1108 break; 1109 } 1109 } 1110 1110 1111 userfaultfd_event_com 1111 userfaultfd_event_complete(ctx, uwq); 1112 spin_unlock(&ctx->eve 1112 spin_unlock(&ctx->event_wqh.lock); 1113 ret = 0; 1113 ret = 0; 1114 break; 1114 break; 1115 } 1115 } 1116 spin_unlock(&ctx->event_wqh.l 1116 spin_unlock(&ctx->event_wqh.lock); 1117 1117 1118 if (signal_pending(current)) 1118 if (signal_pending(current)) { 1119 ret = -ERESTARTSYS; 1119 ret = -ERESTARTSYS; 1120 break; 1120 break; 1121 } 1121 } 1122 if (no_wait) { 1122 if (no_wait) { 1123 ret = -EAGAIN; 1123 ret = -EAGAIN; 1124 break; 1124 break; 1125 } 1125 } 1126 spin_unlock_irq(&ctx->fd_wqh. 1126 spin_unlock_irq(&ctx->fd_wqh.lock); 1127 schedule(); 1127 schedule(); 1128 spin_lock_irq(&ctx->fd_wqh.lo 1128 spin_lock_irq(&ctx->fd_wqh.lock); 1129 } 1129 } 1130 __remove_wait_queue(&ctx->fd_wqh, &wa 1130 __remove_wait_queue(&ctx->fd_wqh, &wait); 1131 __set_current_state(TASK_RUNNING); 1131 __set_current_state(TASK_RUNNING); 1132 spin_unlock_irq(&ctx->fd_wqh.lock); 1132 spin_unlock_irq(&ctx->fd_wqh.lock); 1133 1133 1134 if (!ret && msg->event == UFFD_EVENT_ 1134 if (!ret && msg->event == UFFD_EVENT_FORK) { 1135 ret = resolve_userfault_fork( 1135 ret = resolve_userfault_fork(fork_nctx, inode, msg); 1136 spin_lock_irq(&ctx->event_wqh 1136 spin_lock_irq(&ctx->event_wqh.lock); 1137 if (!list_empty(&fork_event)) 1137 if (!list_empty(&fork_event)) { 1138 /* 1138 /* 1139 * The fork thread di 1139 * The fork thread didn't abort, so we can 1140 * drop the temporary 1140 * drop the temporary refcount. 1141 */ 1141 */ 1142 userfaultfd_ctx_put(f 1142 userfaultfd_ctx_put(fork_nctx); 1143 1143 1144 uwq = list_first_entr 1144 uwq = list_first_entry(&fork_event, 1145 1145 typeof(*uwq), 1146 1146 wq.entry); 1147 /* 1147 /* 1148 * If fork_event list 1148 * If fork_event list wasn't empty and in turn 1149 * the event wasn't a 1149 * the event wasn't already released by fork 1150 * (the event is allo 1150 * (the event is allocated on fork kernel 1151 * stack), put the ev 1151 * stack), put the event back to its place in 1152 * the event_wq. fork 1152 * the event_wq. fork_event head will be freed 1153 * as soon as we retu 1153 * as soon as we return so the event cannot 1154 * stay queued there 1154 * stay queued there no matter the current 1155 * "ret" value. 1155 * "ret" value. 1156 */ 1156 */ 1157 list_del(&uwq->wq.ent 1157 list_del(&uwq->wq.entry); 1158 __add_wait_queue(&ctx 1158 __add_wait_queue(&ctx->event_wqh, &uwq->wq); 1159 1159 1160 /* 1160 /* 1161 * Leave the event in 1161 * Leave the event in the waitqueue and report 1162 * error to userland 1162 * error to userland if we failed to resolve 1163 * the userfault fork 1163 * the userfault fork. 1164 */ 1164 */ 1165 if (likely(!ret)) 1165 if (likely(!ret)) 1166 userfaultfd_e 1166 userfaultfd_event_complete(ctx, uwq); 1167 } else { 1167 } else { 1168 /* 1168 /* 1169 * Here the fork thre 1169 * Here the fork thread aborted and the 1170 * refcount from the 1170 * refcount from the fork thread on fork_nctx 1171 * has already been r 1171 * has already been released. We still hold 1172 * the reference we t 1172 * the reference we took before releasing the 1173 * lock above. If res 1173 * lock above. If resolve_userfault_fork 1174 * failed we've to dr 1174 * failed we've to drop it because the 1175 * fork_nctx has to b 1175 * fork_nctx has to be freed in such case. If 1176 * it succeeded we'll 1176 * it succeeded we'll hold it because the new 1177 * uffd references it 1177 * uffd references it. 1178 */ 1178 */ 1179 if (ret) 1179 if (ret) 1180 userfaultfd_c 1180 userfaultfd_ctx_put(fork_nctx); 1181 } 1181 } 1182 spin_unlock_irq(&ctx->event_w 1182 spin_unlock_irq(&ctx->event_wqh.lock); 1183 } 1183 } 1184 1184 1185 return ret; 1185 return ret; 1186 } 1186 } 1187 1187 1188 static ssize_t userfaultfd_read_iter(struct k !! 1188 static ssize_t userfaultfd_read(struct file *file, char __user *buf, >> 1189 size_t count, loff_t *ppos) 1189 { 1190 { 1190 struct file *file = iocb->ki_filp; << 1191 struct userfaultfd_ctx *ctx = file->p 1191 struct userfaultfd_ctx *ctx = file->private_data; 1192 ssize_t _ret, ret = 0; 1192 ssize_t _ret, ret = 0; 1193 struct uffd_msg msg; 1193 struct uffd_msg msg; >> 1194 int no_wait = file->f_flags & O_NONBLOCK; 1194 struct inode *inode = file_inode(file 1195 struct inode *inode = file_inode(file); 1195 bool no_wait; << 1196 1196 1197 if (!userfaultfd_is_initialized(ctx)) 1197 if (!userfaultfd_is_initialized(ctx)) 1198 return -EINVAL; 1198 return -EINVAL; 1199 1199 1200 no_wait = file->f_flags & O_NONBLOCK << 1201 for (;;) { 1200 for (;;) { 1202 if (iov_iter_count(to) < size !! 1201 if (count < sizeof(msg)) 1203 return ret ? ret : -E 1202 return ret ? ret : -EINVAL; 1204 _ret = userfaultfd_ctx_read(c 1203 _ret = userfaultfd_ctx_read(ctx, no_wait, &msg, inode); 1205 if (_ret < 0) 1204 if (_ret < 0) 1206 return ret ? ret : _r 1205 return ret ? ret : _ret; 1207 _ret = !copy_to_iter_full(&ms !! 1206 if (copy_to_user((__u64 __user *) buf, &msg, sizeof(msg))) 1208 if (_ret) << 1209 return ret ? ret : -E 1207 return ret ? ret : -EFAULT; 1210 ret += sizeof(msg); 1208 ret += sizeof(msg); >> 1209 buf += sizeof(msg); >> 1210 count -= sizeof(msg); 1211 /* 1211 /* 1212 * Allow to read more than on 1212 * Allow to read more than one fault at time but only 1213 * block if waiting for the v 1213 * block if waiting for the very first one. 1214 */ 1214 */ 1215 no_wait = true; !! 1215 no_wait = O_NONBLOCK; 1216 } 1216 } 1217 } 1217 } 1218 1218 1219 static void __wake_userfault(struct userfault 1219 static void __wake_userfault(struct userfaultfd_ctx *ctx, 1220 struct userfault 1220 struct userfaultfd_wake_range *range) 1221 { 1221 { 1222 spin_lock_irq(&ctx->fault_pending_wqh 1222 spin_lock_irq(&ctx->fault_pending_wqh.lock); 1223 /* wake all in the range and autoremo 1223 /* wake all in the range and autoremove */ 1224 if (waitqueue_active(&ctx->fault_pend 1224 if (waitqueue_active(&ctx->fault_pending_wqh)) 1225 __wake_up_locked_key(&ctx->fa 1225 __wake_up_locked_key(&ctx->fault_pending_wqh, TASK_NORMAL, 1226 range); 1226 range); 1227 if (waitqueue_active(&ctx->fault_wqh) 1227 if (waitqueue_active(&ctx->fault_wqh)) 1228 __wake_up(&ctx->fault_wqh, TA 1228 __wake_up(&ctx->fault_wqh, TASK_NORMAL, 1, range); 1229 spin_unlock_irq(&ctx->fault_pending_w 1229 spin_unlock_irq(&ctx->fault_pending_wqh.lock); 1230 } 1230 } 1231 1231 1232 static __always_inline void wake_userfault(st 1232 static __always_inline void wake_userfault(struct userfaultfd_ctx *ctx, 1233 st 1233 struct userfaultfd_wake_range *range) 1234 { 1234 { 1235 unsigned seq; 1235 unsigned seq; 1236 bool need_wakeup; 1236 bool need_wakeup; 1237 1237 1238 /* 1238 /* 1239 * To be sure waitqueue_active() is n 1239 * To be sure waitqueue_active() is not reordered by the CPU 1240 * before the pagetable update, use a 1240 * before the pagetable update, use an explicit SMP memory 1241 * barrier here. PT lock release or m 1241 * barrier here. PT lock release or mmap_read_unlock(mm) still 1242 * have release semantics that can al 1242 * have release semantics that can allow the 1243 * waitqueue_active() to be reordered 1243 * waitqueue_active() to be reordered before the pte update. 1244 */ 1244 */ 1245 smp_mb(); 1245 smp_mb(); 1246 1246 1247 /* 1247 /* 1248 * Use waitqueue_active because it's 1248 * Use waitqueue_active because it's very frequent to 1249 * change the address space atomicall 1249 * change the address space atomically even if there are no 1250 * userfaults yet. So we take the spi 1250 * userfaults yet. So we take the spinlock only when we're 1251 * sure we've userfaults to wake. 1251 * sure we've userfaults to wake. 1252 */ 1252 */ 1253 do { 1253 do { 1254 seq = read_seqcount_begin(&ct 1254 seq = read_seqcount_begin(&ctx->refile_seq); 1255 need_wakeup = waitqueue_activ 1255 need_wakeup = waitqueue_active(&ctx->fault_pending_wqh) || 1256 waitqueue_active(&ctx 1256 waitqueue_active(&ctx->fault_wqh); 1257 cond_resched(); 1257 cond_resched(); 1258 } while (read_seqcount_retry(&ctx->re 1258 } while (read_seqcount_retry(&ctx->refile_seq, seq)); 1259 if (need_wakeup) 1259 if (need_wakeup) 1260 __wake_userfault(ctx, range); 1260 __wake_userfault(ctx, range); 1261 } 1261 } 1262 1262 1263 static __always_inline int validate_unaligned !! 1263 static __always_inline int validate_range(struct mm_struct *mm, 1264 struct mm_struct *mm, __u64 start, __ !! 1264 __u64 start, __u64 len) 1265 { 1265 { 1266 __u64 task_size = mm->task_size; 1266 __u64 task_size = mm->task_size; 1267 1267 >> 1268 if (start & ~PAGE_MASK) >> 1269 return -EINVAL; 1268 if (len & ~PAGE_MASK) 1270 if (len & ~PAGE_MASK) 1269 return -EINVAL; 1271 return -EINVAL; 1270 if (!len) 1272 if (!len) 1271 return -EINVAL; 1273 return -EINVAL; 1272 if (start < mmap_min_addr) 1274 if (start < mmap_min_addr) 1273 return -EINVAL; 1275 return -EINVAL; 1274 if (start >= task_size) 1276 if (start >= task_size) 1275 return -EINVAL; 1277 return -EINVAL; 1276 if (len > task_size - start) 1278 if (len > task_size - start) 1277 return -EINVAL; 1279 return -EINVAL; 1278 if (start + len <= start) << 1279 return -EINVAL; << 1280 return 0; 1280 return 0; 1281 } 1281 } 1282 1282 1283 static __always_inline int validate_range(str << 1284 __u << 1285 { << 1286 if (start & ~PAGE_MASK) << 1287 return -EINVAL; << 1288 << 1289 return validate_unaligned_range(mm, s << 1290 } << 1291 << 1292 static int userfaultfd_register(struct userfa 1283 static int userfaultfd_register(struct userfaultfd_ctx *ctx, 1293 unsigned long 1284 unsigned long arg) 1294 { 1285 { 1295 struct mm_struct *mm = ctx->mm; 1286 struct mm_struct *mm = ctx->mm; 1296 struct vm_area_struct *vma, *prev, *c 1287 struct vm_area_struct *vma, *prev, *cur; 1297 int ret; 1288 int ret; 1298 struct uffdio_register uffdio_registe 1289 struct uffdio_register uffdio_register; 1299 struct uffdio_register __user *user_u 1290 struct uffdio_register __user *user_uffdio_register; 1300 unsigned long vm_flags, new_flags; 1291 unsigned long vm_flags, new_flags; 1301 bool found; 1292 bool found; 1302 bool basic_ioctls; 1293 bool basic_ioctls; 1303 unsigned long start, end, vma_end; 1294 unsigned long start, end, vma_end; 1304 struct vma_iterator vmi; !! 1295 MA_STATE(mas, &mm->mm_mt, 0, 0); 1305 bool wp_async = userfaultfd_wp_async_ << 1306 1296 1307 user_uffdio_register = (struct uffdio 1297 user_uffdio_register = (struct uffdio_register __user *) arg; 1308 1298 1309 ret = -EFAULT; 1299 ret = -EFAULT; 1310 if (copy_from_user(&uffdio_register, 1300 if (copy_from_user(&uffdio_register, user_uffdio_register, 1311 sizeof(uffdio_regi 1301 sizeof(uffdio_register)-sizeof(__u64))) 1312 goto out; 1302 goto out; 1313 1303 1314 ret = -EINVAL; 1304 ret = -EINVAL; 1315 if (!uffdio_register.mode) 1305 if (!uffdio_register.mode) 1316 goto out; 1306 goto out; 1317 if (uffdio_register.mode & ~UFFD_API_ 1307 if (uffdio_register.mode & ~UFFD_API_REGISTER_MODES) 1318 goto out; 1308 goto out; 1319 vm_flags = 0; 1309 vm_flags = 0; 1320 if (uffdio_register.mode & UFFDIO_REG 1310 if (uffdio_register.mode & UFFDIO_REGISTER_MODE_MISSING) 1321 vm_flags |= VM_UFFD_MISSING; 1311 vm_flags |= VM_UFFD_MISSING; 1322 if (uffdio_register.mode & UFFDIO_REG 1312 if (uffdio_register.mode & UFFDIO_REGISTER_MODE_WP) { 1323 #ifndef CONFIG_HAVE_ARCH_USERFAULTFD_WP 1313 #ifndef CONFIG_HAVE_ARCH_USERFAULTFD_WP 1324 goto out; 1314 goto out; 1325 #endif 1315 #endif 1326 vm_flags |= VM_UFFD_WP; 1316 vm_flags |= VM_UFFD_WP; 1327 } 1317 } 1328 if (uffdio_register.mode & UFFDIO_REG 1318 if (uffdio_register.mode & UFFDIO_REGISTER_MODE_MINOR) { 1329 #ifndef CONFIG_HAVE_ARCH_USERFAULTFD_MINOR 1319 #ifndef CONFIG_HAVE_ARCH_USERFAULTFD_MINOR 1330 goto out; 1320 goto out; 1331 #endif 1321 #endif 1332 vm_flags |= VM_UFFD_MINOR; 1322 vm_flags |= VM_UFFD_MINOR; 1333 } 1323 } 1334 1324 1335 ret = validate_range(mm, uffdio_regis 1325 ret = validate_range(mm, uffdio_register.range.start, 1336 uffdio_register. 1326 uffdio_register.range.len); 1337 if (ret) 1327 if (ret) 1338 goto out; 1328 goto out; 1339 1329 1340 start = uffdio_register.range.start; 1330 start = uffdio_register.range.start; 1341 end = start + uffdio_register.range.l 1331 end = start + uffdio_register.range.len; 1342 1332 1343 ret = -ENOMEM; 1333 ret = -ENOMEM; 1344 if (!mmget_not_zero(mm)) 1334 if (!mmget_not_zero(mm)) 1345 goto out; 1335 goto out; 1346 1336 1347 ret = -EINVAL; << 1348 mmap_write_lock(mm); 1337 mmap_write_lock(mm); 1349 vma_iter_init(&vmi, mm, start); !! 1338 mas_set(&mas, start); 1350 vma = vma_find(&vmi, end); !! 1339 vma = mas_find(&mas, ULONG_MAX); 1351 if (!vma) 1340 if (!vma) 1352 goto out_unlock; 1341 goto out_unlock; 1353 1342 >> 1343 /* check that there's at least one vma in the range */ >> 1344 ret = -EINVAL; >> 1345 if (vma->vm_start >= end) >> 1346 goto out_unlock; >> 1347 1354 /* 1348 /* 1355 * If the first vma contains huge pag 1349 * If the first vma contains huge pages, make sure start address 1356 * is aligned to huge page size. 1350 * is aligned to huge page size. 1357 */ 1351 */ 1358 if (is_vm_hugetlb_page(vma)) { 1352 if (is_vm_hugetlb_page(vma)) { 1359 unsigned long vma_hpagesize = 1353 unsigned long vma_hpagesize = vma_kernel_pagesize(vma); 1360 1354 1361 if (start & (vma_hpagesize - 1355 if (start & (vma_hpagesize - 1)) 1362 goto out_unlock; 1356 goto out_unlock; 1363 } 1357 } 1364 1358 1365 /* 1359 /* 1366 * Search for not compatible vmas. 1360 * Search for not compatible vmas. 1367 */ 1361 */ 1368 found = false; 1362 found = false; 1369 basic_ioctls = false; 1363 basic_ioctls = false; 1370 cur = vma; !! 1364 for (cur = vma; cur; cur = mas_next(&mas, end - 1)) { 1371 do { << 1372 cond_resched(); 1365 cond_resched(); 1373 1366 1374 BUG_ON(!!cur->vm_userfaultfd_ 1367 BUG_ON(!!cur->vm_userfaultfd_ctx.ctx ^ 1375 !!(cur->vm_flags & __V 1368 !!(cur->vm_flags & __VM_UFFD_FLAGS)); 1376 1369 1377 /* check not compatible vmas 1370 /* check not compatible vmas */ 1378 ret = -EINVAL; 1371 ret = -EINVAL; 1379 if (!vma_can_userfault(cur, v !! 1372 if (!vma_can_userfault(cur, vm_flags)) 1380 goto out_unlock; 1373 goto out_unlock; 1381 1374 1382 /* 1375 /* 1383 * UFFDIO_COPY will fill file 1376 * UFFDIO_COPY will fill file holes even without 1384 * PROT_WRITE. This check enf 1377 * PROT_WRITE. This check enforces that if this is a 1385 * MAP_SHARED, the process ha 1378 * MAP_SHARED, the process has write permission to the backing 1386 * file. If VM_MAYWRITE is se 1379 * file. If VM_MAYWRITE is set it also enforces that on a 1387 * MAP_SHARED vma: there is n 1380 * MAP_SHARED vma: there is no F_WRITE_SEAL and no further 1388 * F_WRITE_SEAL can be taken 1381 * F_WRITE_SEAL can be taken until the vma is destroyed. 1389 */ 1382 */ 1390 ret = -EPERM; 1383 ret = -EPERM; 1391 if (unlikely(!(cur->vm_flags 1384 if (unlikely(!(cur->vm_flags & VM_MAYWRITE))) 1392 goto out_unlock; 1385 goto out_unlock; 1393 1386 1394 /* 1387 /* 1395 * If this vma contains endin 1388 * If this vma contains ending address, and huge pages 1396 * check alignment. 1389 * check alignment. 1397 */ 1390 */ 1398 if (is_vm_hugetlb_page(cur) & 1391 if (is_vm_hugetlb_page(cur) && end <= cur->vm_end && 1399 end > cur->vm_start) { 1392 end > cur->vm_start) { 1400 unsigned long vma_hpa 1393 unsigned long vma_hpagesize = vma_kernel_pagesize(cur); 1401 1394 1402 ret = -EINVAL; 1395 ret = -EINVAL; 1403 1396 1404 if (end & (vma_hpages 1397 if (end & (vma_hpagesize - 1)) 1405 goto out_unlo 1398 goto out_unlock; 1406 } 1399 } 1407 if ((vm_flags & VM_UFFD_WP) & 1400 if ((vm_flags & VM_UFFD_WP) && !(cur->vm_flags & VM_MAYWRITE)) 1408 goto out_unlock; 1401 goto out_unlock; 1409 1402 1410 /* 1403 /* 1411 * Check that this vma isn't 1404 * Check that this vma isn't already owned by a 1412 * different userfaultfd. We 1405 * different userfaultfd. We can't allow more than one 1413 * userfaultfd to own a singl 1406 * userfaultfd to own a single vma simultaneously or we 1414 * wouldn't know which one to 1407 * wouldn't know which one to deliver the userfaults to. 1415 */ 1408 */ 1416 ret = -EBUSY; 1409 ret = -EBUSY; 1417 if (cur->vm_userfaultfd_ctx.c 1410 if (cur->vm_userfaultfd_ctx.ctx && 1418 cur->vm_userfaultfd_ctx.c 1411 cur->vm_userfaultfd_ctx.ctx != ctx) 1419 goto out_unlock; 1412 goto out_unlock; 1420 1413 1421 /* 1414 /* 1422 * Note vmas containing huge 1415 * Note vmas containing huge pages 1423 */ 1416 */ 1424 if (is_vm_hugetlb_page(cur)) 1417 if (is_vm_hugetlb_page(cur)) 1425 basic_ioctls = true; 1418 basic_ioctls = true; 1426 1419 1427 found = true; 1420 found = true; 1428 } for_each_vma_range(vmi, cur, end); !! 1421 } 1429 BUG_ON(!found); 1422 BUG_ON(!found); 1430 1423 1431 vma_iter_set(&vmi, start); !! 1424 mas_set(&mas, start); 1432 prev = vma_prev(&vmi); !! 1425 prev = mas_prev(&mas, 0); 1433 if (vma->vm_start < start) !! 1426 if (prev != vma) 1434 prev = vma; !! 1427 mas_next(&mas, ULONG_MAX); 1435 1428 1436 ret = 0; 1429 ret = 0; 1437 for_each_vma_range(vmi, vma, end) { !! 1430 do { 1438 cond_resched(); 1431 cond_resched(); 1439 1432 1440 BUG_ON(!vma_can_userfault(vma !! 1433 BUG_ON(!vma_can_userfault(vma, vm_flags)); 1441 BUG_ON(vma->vm_userfaultfd_ct 1434 BUG_ON(vma->vm_userfaultfd_ctx.ctx && 1442 vma->vm_userfaultfd_ct 1435 vma->vm_userfaultfd_ctx.ctx != ctx); 1443 WARN_ON(!(vma->vm_flags & VM_ 1436 WARN_ON(!(vma->vm_flags & VM_MAYWRITE)); 1444 1437 1445 /* 1438 /* 1446 * Nothing to do: this vma is 1439 * Nothing to do: this vma is already registered into this 1447 * userfaultfd and with the r 1440 * userfaultfd and with the right tracking mode too. 1448 */ 1441 */ 1449 if (vma->vm_userfaultfd_ctx.c 1442 if (vma->vm_userfaultfd_ctx.ctx == ctx && 1450 (vma->vm_flags & vm_flags 1443 (vma->vm_flags & vm_flags) == vm_flags) 1451 goto skip; 1444 goto skip; 1452 1445 1453 if (vma->vm_start > start) 1446 if (vma->vm_start > start) 1454 start = vma->vm_start 1447 start = vma->vm_start; 1455 vma_end = min(end, vma->vm_en 1448 vma_end = min(end, vma->vm_end); 1456 1449 1457 new_flags = (vma->vm_flags & 1450 new_flags = (vma->vm_flags & ~__VM_UFFD_FLAGS) | vm_flags; 1458 vma = vma_modify_flags_uffd(& !! 1451 prev = vma_merge(mm, prev, start, vma_end, new_flags, 1459 n !! 1452 vma->anon_vma, vma->vm_file, vma->vm_pgoff, 1460 ( !! 1453 vma_policy(vma), 1461 if (IS_ERR(vma)) { !! 1454 ((struct vm_userfaultfd_ctx){ ctx }), 1462 ret = PTR_ERR(vma); !! 1455 anon_vma_name(vma)); 1463 break; !! 1456 if (prev) { >> 1457 /* vma_merge() invalidated the mas */ >> 1458 mas_pause(&mas); >> 1459 vma = prev; >> 1460 goto next; 1464 } 1461 } 1465 !! 1462 if (vma->vm_start < start) { >> 1463 ret = split_vma(mm, vma, start, 1); >> 1464 if (ret) >> 1465 break; >> 1466 /* split_vma() invalidated the mas */ >> 1467 mas_pause(&mas); >> 1468 } >> 1469 if (vma->vm_end > end) { >> 1470 ret = split_vma(mm, vma, end, 0); >> 1471 if (ret) >> 1472 break; >> 1473 /* split_vma() invalidated the mas */ >> 1474 mas_pause(&mas); >> 1475 } >> 1476 next: 1466 /* 1477 /* 1467 * In the vma_merge() success 1478 * In the vma_merge() successful mprotect-like case 8: 1468 * the next vma was merged in 1479 * the next vma was merged into the current one and 1469 * the current one has not be 1480 * the current one has not been updated yet. 1470 */ 1481 */ 1471 vma_start_write(vma); << 1472 userfaultfd_set_vm_flags(vma, 1482 userfaultfd_set_vm_flags(vma, new_flags); 1473 vma->vm_userfaultfd_ctx.ctx = 1483 vma->vm_userfaultfd_ctx.ctx = ctx; 1474 1484 1475 if (is_vm_hugetlb_page(vma) & 1485 if (is_vm_hugetlb_page(vma) && uffd_disable_huge_pmd_share(vma)) 1476 hugetlb_unshare_all_p 1486 hugetlb_unshare_all_pmds(vma); 1477 1487 1478 skip: 1488 skip: 1479 prev = vma; 1489 prev = vma; 1480 start = vma->vm_end; 1490 start = vma->vm_end; 1481 } !! 1491 vma = mas_next(&mas, end - 1); 1482 !! 1492 } while (vma); 1483 out_unlock: 1493 out_unlock: 1484 mmap_write_unlock(mm); 1494 mmap_write_unlock(mm); 1485 mmput(mm); 1495 mmput(mm); 1486 if (!ret) { 1496 if (!ret) { 1487 __u64 ioctls_out; 1497 __u64 ioctls_out; 1488 1498 1489 ioctls_out = basic_ioctls ? U 1499 ioctls_out = basic_ioctls ? UFFD_API_RANGE_IOCTLS_BASIC : 1490 UFFD_API_RANGE_IOCTLS; 1500 UFFD_API_RANGE_IOCTLS; 1491 1501 1492 /* 1502 /* 1493 * Declare the WP ioctl only 1503 * Declare the WP ioctl only if the WP mode is 1494 * specified and all checks p 1504 * specified and all checks passed with the range 1495 */ 1505 */ 1496 if (!(uffdio_register.mode & 1506 if (!(uffdio_register.mode & UFFDIO_REGISTER_MODE_WP)) 1497 ioctls_out &= ~((__u6 1507 ioctls_out &= ~((__u64)1 << _UFFDIO_WRITEPROTECT); 1498 1508 1499 /* CONTINUE ioctl is only sup 1509 /* CONTINUE ioctl is only supported for MINOR ranges. */ 1500 if (!(uffdio_register.mode & 1510 if (!(uffdio_register.mode & UFFDIO_REGISTER_MODE_MINOR)) 1501 ioctls_out &= ~((__u6 1511 ioctls_out &= ~((__u64)1 << _UFFDIO_CONTINUE); 1502 1512 1503 /* 1513 /* 1504 * Now that we scanned all vm 1514 * Now that we scanned all vmas we can already tell 1505 * userland which ioctls meth 1515 * userland which ioctls methods are guaranteed to 1506 * succeed on this range. 1516 * succeed on this range. 1507 */ 1517 */ 1508 if (put_user(ioctls_out, &use 1518 if (put_user(ioctls_out, &user_uffdio_register->ioctls)) 1509 ret = -EFAULT; 1519 ret = -EFAULT; 1510 } 1520 } 1511 out: 1521 out: 1512 return ret; 1522 return ret; 1513 } 1523 } 1514 1524 1515 static int userfaultfd_unregister(struct user 1525 static int userfaultfd_unregister(struct userfaultfd_ctx *ctx, 1516 unsigned lo 1526 unsigned long arg) 1517 { 1527 { 1518 struct mm_struct *mm = ctx->mm; 1528 struct mm_struct *mm = ctx->mm; 1519 struct vm_area_struct *vma, *prev, *c 1529 struct vm_area_struct *vma, *prev, *cur; 1520 int ret; 1530 int ret; 1521 struct uffdio_range uffdio_unregister 1531 struct uffdio_range uffdio_unregister; 1522 unsigned long new_flags; 1532 unsigned long new_flags; 1523 bool found; 1533 bool found; 1524 unsigned long start, end, vma_end; 1534 unsigned long start, end, vma_end; 1525 const void __user *buf = (void __user 1535 const void __user *buf = (void __user *)arg; 1526 struct vma_iterator vmi; !! 1536 MA_STATE(mas, &mm->mm_mt, 0, 0); 1527 bool wp_async = userfaultfd_wp_async_ << 1528 1537 1529 ret = -EFAULT; 1538 ret = -EFAULT; 1530 if (copy_from_user(&uffdio_unregister 1539 if (copy_from_user(&uffdio_unregister, buf, sizeof(uffdio_unregister))) 1531 goto out; 1540 goto out; 1532 1541 1533 ret = validate_range(mm, uffdio_unreg 1542 ret = validate_range(mm, uffdio_unregister.start, 1534 uffdio_unregiste 1543 uffdio_unregister.len); 1535 if (ret) 1544 if (ret) 1536 goto out; 1545 goto out; 1537 1546 1538 start = uffdio_unregister.start; 1547 start = uffdio_unregister.start; 1539 end = start + uffdio_unregister.len; 1548 end = start + uffdio_unregister.len; 1540 1549 1541 ret = -ENOMEM; 1550 ret = -ENOMEM; 1542 if (!mmget_not_zero(mm)) 1551 if (!mmget_not_zero(mm)) 1543 goto out; 1552 goto out; 1544 1553 1545 mmap_write_lock(mm); 1554 mmap_write_lock(mm); 1546 ret = -EINVAL; !! 1555 mas_set(&mas, start); 1547 vma_iter_init(&vmi, mm, start); !! 1556 vma = mas_find(&mas, ULONG_MAX); 1548 vma = vma_find(&vmi, end); << 1549 if (!vma) 1557 if (!vma) 1550 goto out_unlock; 1558 goto out_unlock; 1551 1559 >> 1560 /* check that there's at least one vma in the range */ >> 1561 ret = -EINVAL; >> 1562 if (vma->vm_start >= end) >> 1563 goto out_unlock; >> 1564 1552 /* 1565 /* 1553 * If the first vma contains huge pag 1566 * If the first vma contains huge pages, make sure start address 1554 * is aligned to huge page size. 1567 * is aligned to huge page size. 1555 */ 1568 */ 1556 if (is_vm_hugetlb_page(vma)) { 1569 if (is_vm_hugetlb_page(vma)) { 1557 unsigned long vma_hpagesize = 1570 unsigned long vma_hpagesize = vma_kernel_pagesize(vma); 1558 1571 1559 if (start & (vma_hpagesize - 1572 if (start & (vma_hpagesize - 1)) 1560 goto out_unlock; 1573 goto out_unlock; 1561 } 1574 } 1562 1575 1563 /* 1576 /* 1564 * Search for not compatible vmas. 1577 * Search for not compatible vmas. 1565 */ 1578 */ 1566 found = false; 1579 found = false; 1567 cur = vma; !! 1580 ret = -EINVAL; 1568 do { !! 1581 for (cur = vma; cur; cur = mas_next(&mas, end - 1)) { 1569 cond_resched(); 1582 cond_resched(); 1570 1583 1571 BUG_ON(!!cur->vm_userfaultfd_ 1584 BUG_ON(!!cur->vm_userfaultfd_ctx.ctx ^ 1572 !!(cur->vm_flags & __V 1585 !!(cur->vm_flags & __VM_UFFD_FLAGS)); 1573 1586 1574 /* 1587 /* 1575 * Check not compatible vmas, 1588 * Check not compatible vmas, not strictly required 1576 * here as not compatible vma 1589 * here as not compatible vmas cannot have an 1577 * userfaultfd_ctx registered 1590 * userfaultfd_ctx registered on them, but this 1578 * provides for more strict b 1591 * provides for more strict behavior to notice 1579 * unregistration errors. 1592 * unregistration errors. 1580 */ 1593 */ 1581 if (!vma_can_userfault(cur, c !! 1594 if (!vma_can_userfault(cur, cur->vm_flags)) 1582 goto out_unlock; 1595 goto out_unlock; 1583 1596 1584 found = true; 1597 found = true; 1585 } for_each_vma_range(vmi, cur, end); !! 1598 } 1586 BUG_ON(!found); 1599 BUG_ON(!found); 1587 1600 1588 vma_iter_set(&vmi, start); !! 1601 mas_set(&mas, start); 1589 prev = vma_prev(&vmi); !! 1602 prev = mas_prev(&mas, 0); 1590 if (vma->vm_start < start) !! 1603 if (prev != vma) 1591 prev = vma; !! 1604 mas_next(&mas, ULONG_MAX); 1592 1605 1593 ret = 0; 1606 ret = 0; 1594 for_each_vma_range(vmi, vma, end) { !! 1607 do { 1595 cond_resched(); 1608 cond_resched(); 1596 1609 1597 BUG_ON(!vma_can_userfault(vma !! 1610 BUG_ON(!vma_can_userfault(vma, vma->vm_flags)); 1598 1611 1599 /* 1612 /* 1600 * Nothing to do: this vma is 1613 * Nothing to do: this vma is already registered into this 1601 * userfaultfd and with the r 1614 * userfaultfd and with the right tracking mode too. 1602 */ 1615 */ 1603 if (!vma->vm_userfaultfd_ctx. 1616 if (!vma->vm_userfaultfd_ctx.ctx) 1604 goto skip; 1617 goto skip; 1605 1618 1606 WARN_ON(!(vma->vm_flags & VM_ 1619 WARN_ON(!(vma->vm_flags & VM_MAYWRITE)); 1607 1620 1608 if (vma->vm_start > start) 1621 if (vma->vm_start > start) 1609 start = vma->vm_start 1622 start = vma->vm_start; 1610 vma_end = min(end, vma->vm_en 1623 vma_end = min(end, vma->vm_end); 1611 1624 1612 if (userfaultfd_missing(vma)) 1625 if (userfaultfd_missing(vma)) { 1613 /* 1626 /* 1614 * Wake any concurren 1627 * Wake any concurrent pending userfault while 1615 * we unregister, so 1628 * we unregister, so they will not hang 1616 * permanently and it 1629 * permanently and it avoids userland to call 1617 * UFFDIO_WAKE explic 1630 * UFFDIO_WAKE explicitly. 1618 */ 1631 */ 1619 struct userfaultfd_wa 1632 struct userfaultfd_wake_range range; 1620 range.start = start; 1633 range.start = start; 1621 range.len = vma_end - 1634 range.len = vma_end - start; 1622 wake_userfault(vma->v 1635 wake_userfault(vma->vm_userfaultfd_ctx.ctx, &range); 1623 } 1636 } 1624 1637 1625 /* Reset ptes for the whole v 1638 /* Reset ptes for the whole vma range if wr-protected */ 1626 if (userfaultfd_wp(vma)) 1639 if (userfaultfd_wp(vma)) 1627 uffd_wp_range(vma, st !! 1640 uffd_wp_range(mm, vma, start, vma_end - start, false); 1628 1641 1629 new_flags = vma->vm_flags & ~ 1642 new_flags = vma->vm_flags & ~__VM_UFFD_FLAGS; 1630 vma = vma_modify_flags_uffd(& !! 1643 prev = vma_merge(mm, prev, start, vma_end, new_flags, 1631 n !! 1644 vma->anon_vma, vma->vm_file, vma->vm_pgoff, 1632 if (IS_ERR(vma)) { !! 1645 vma_policy(vma), 1633 ret = PTR_ERR(vma); !! 1646 NULL_VM_UFFD_CTX, anon_vma_name(vma)); 1634 break; !! 1647 if (prev) { >> 1648 vma = prev; >> 1649 mas_pause(&mas); >> 1650 goto next; 1635 } 1651 } 1636 !! 1652 if (vma->vm_start < start) { >> 1653 ret = split_vma(mm, vma, start, 1); >> 1654 if (ret) >> 1655 break; >> 1656 mas_pause(&mas); >> 1657 } >> 1658 if (vma->vm_end > end) { >> 1659 ret = split_vma(mm, vma, end, 0); >> 1660 if (ret) >> 1661 break; >> 1662 mas_pause(&mas); >> 1663 } >> 1664 next: 1637 /* 1665 /* 1638 * In the vma_merge() success 1666 * In the vma_merge() successful mprotect-like case 8: 1639 * the next vma was merged in 1667 * the next vma was merged into the current one and 1640 * the current one has not be 1668 * the current one has not been updated yet. 1641 */ 1669 */ 1642 vma_start_write(vma); << 1643 userfaultfd_set_vm_flags(vma, 1670 userfaultfd_set_vm_flags(vma, new_flags); 1644 vma->vm_userfaultfd_ctx = NUL 1671 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX; 1645 1672 1646 skip: 1673 skip: 1647 prev = vma; 1674 prev = vma; 1648 start = vma->vm_end; 1675 start = vma->vm_end; 1649 } !! 1676 vma = mas_next(&mas, end - 1); 1650 !! 1677 } while (vma); 1651 out_unlock: 1678 out_unlock: 1652 mmap_write_unlock(mm); 1679 mmap_write_unlock(mm); 1653 mmput(mm); 1680 mmput(mm); 1654 out: 1681 out: 1655 return ret; 1682 return ret; 1656 } 1683 } 1657 1684 1658 /* 1685 /* 1659 * userfaultfd_wake may be used in combinatio 1686 * userfaultfd_wake may be used in combination with the 1660 * UFFDIO_*_MODE_DONTWAKE to wakeup userfault 1687 * UFFDIO_*_MODE_DONTWAKE to wakeup userfaults in batches. 1661 */ 1688 */ 1662 static int userfaultfd_wake(struct userfaultf 1689 static int userfaultfd_wake(struct userfaultfd_ctx *ctx, 1663 unsigned long arg 1690 unsigned long arg) 1664 { 1691 { 1665 int ret; 1692 int ret; 1666 struct uffdio_range uffdio_wake; 1693 struct uffdio_range uffdio_wake; 1667 struct userfaultfd_wake_range range; 1694 struct userfaultfd_wake_range range; 1668 const void __user *buf = (void __user 1695 const void __user *buf = (void __user *)arg; 1669 1696 1670 ret = -EFAULT; 1697 ret = -EFAULT; 1671 if (copy_from_user(&uffdio_wake, buf, 1698 if (copy_from_user(&uffdio_wake, buf, sizeof(uffdio_wake))) 1672 goto out; 1699 goto out; 1673 1700 1674 ret = validate_range(ctx->mm, uffdio_ 1701 ret = validate_range(ctx->mm, uffdio_wake.start, uffdio_wake.len); 1675 if (ret) 1702 if (ret) 1676 goto out; 1703 goto out; 1677 1704 1678 range.start = uffdio_wake.start; 1705 range.start = uffdio_wake.start; 1679 range.len = uffdio_wake.len; 1706 range.len = uffdio_wake.len; 1680 1707 1681 /* 1708 /* 1682 * len == 0 means wake all and we don 1709 * len == 0 means wake all and we don't want to wake all here, 1683 * so check it again to be sure. 1710 * so check it again to be sure. 1684 */ 1711 */ 1685 VM_BUG_ON(!range.len); 1712 VM_BUG_ON(!range.len); 1686 1713 1687 wake_userfault(ctx, &range); 1714 wake_userfault(ctx, &range); 1688 ret = 0; 1715 ret = 0; 1689 1716 1690 out: 1717 out: 1691 return ret; 1718 return ret; 1692 } 1719 } 1693 1720 1694 static int userfaultfd_copy(struct userfaultf 1721 static int userfaultfd_copy(struct userfaultfd_ctx *ctx, 1695 unsigned long arg 1722 unsigned long arg) 1696 { 1723 { 1697 __s64 ret; 1724 __s64 ret; 1698 struct uffdio_copy uffdio_copy; 1725 struct uffdio_copy uffdio_copy; 1699 struct uffdio_copy __user *user_uffdi 1726 struct uffdio_copy __user *user_uffdio_copy; 1700 struct userfaultfd_wake_range range; 1727 struct userfaultfd_wake_range range; 1701 uffd_flags_t flags = 0; << 1702 1728 1703 user_uffdio_copy = (struct uffdio_cop 1729 user_uffdio_copy = (struct uffdio_copy __user *) arg; 1704 1730 1705 ret = -EAGAIN; 1731 ret = -EAGAIN; 1706 if (atomic_read(&ctx->mmap_changing)) 1732 if (atomic_read(&ctx->mmap_changing)) 1707 goto out; 1733 goto out; 1708 1734 1709 ret = -EFAULT; 1735 ret = -EFAULT; 1710 if (copy_from_user(&uffdio_copy, user 1736 if (copy_from_user(&uffdio_copy, user_uffdio_copy, 1711 /* don't copy "cop 1737 /* don't copy "copy" last field */ 1712 sizeof(uffdio_copy 1738 sizeof(uffdio_copy)-sizeof(__s64))) 1713 goto out; 1739 goto out; 1714 1740 1715 ret = validate_unaligned_range(ctx->m << 1716 uffdio << 1717 if (ret) << 1718 goto out; << 1719 ret = validate_range(ctx->mm, uffdio_ 1741 ret = validate_range(ctx->mm, uffdio_copy.dst, uffdio_copy.len); 1720 if (ret) 1742 if (ret) 1721 goto out; 1743 goto out; 1722 !! 1744 /* >> 1745 * double check for wraparound just in case. copy_from_user() >> 1746 * will later check uffdio_copy.src + uffdio_copy.len to fit >> 1747 * in the userland range. >> 1748 */ 1723 ret = -EINVAL; 1749 ret = -EINVAL; >> 1750 if (uffdio_copy.src + uffdio_copy.len <= uffdio_copy.src) >> 1751 goto out; 1724 if (uffdio_copy.mode & ~(UFFDIO_COPY_ 1752 if (uffdio_copy.mode & ~(UFFDIO_COPY_MODE_DONTWAKE|UFFDIO_COPY_MODE_WP)) 1725 goto out; 1753 goto out; 1726 if (uffdio_copy.mode & UFFDIO_COPY_MO << 1727 flags |= MFILL_ATOMIC_WP; << 1728 if (mmget_not_zero(ctx->mm)) { 1754 if (mmget_not_zero(ctx->mm)) { 1729 ret = mfill_atomic_copy(ctx, !! 1755 ret = mcopy_atomic(ctx->mm, uffdio_copy.dst, uffdio_copy.src, 1730 uffdi !! 1756 uffdio_copy.len, &ctx->mmap_changing, >> 1757 uffdio_copy.mode); 1731 mmput(ctx->mm); 1758 mmput(ctx->mm); 1732 } else { 1759 } else { 1733 return -ESRCH; 1760 return -ESRCH; 1734 } 1761 } 1735 if (unlikely(put_user(ret, &user_uffd 1762 if (unlikely(put_user(ret, &user_uffdio_copy->copy))) 1736 return -EFAULT; 1763 return -EFAULT; 1737 if (ret < 0) 1764 if (ret < 0) 1738 goto out; 1765 goto out; 1739 BUG_ON(!ret); 1766 BUG_ON(!ret); 1740 /* len == 0 would wake all */ 1767 /* len == 0 would wake all */ 1741 range.len = ret; 1768 range.len = ret; 1742 if (!(uffdio_copy.mode & UFFDIO_COPY_ 1769 if (!(uffdio_copy.mode & UFFDIO_COPY_MODE_DONTWAKE)) { 1743 range.start = uffdio_copy.dst 1770 range.start = uffdio_copy.dst; 1744 wake_userfault(ctx, &range); 1771 wake_userfault(ctx, &range); 1745 } 1772 } 1746 ret = range.len == uffdio_copy.len ? 1773 ret = range.len == uffdio_copy.len ? 0 : -EAGAIN; 1747 out: 1774 out: 1748 return ret; 1775 return ret; 1749 } 1776 } 1750 1777 1751 static int userfaultfd_zeropage(struct userfa 1778 static int userfaultfd_zeropage(struct userfaultfd_ctx *ctx, 1752 unsigned long 1779 unsigned long arg) 1753 { 1780 { 1754 __s64 ret; 1781 __s64 ret; 1755 struct uffdio_zeropage uffdio_zeropag 1782 struct uffdio_zeropage uffdio_zeropage; 1756 struct uffdio_zeropage __user *user_u 1783 struct uffdio_zeropage __user *user_uffdio_zeropage; 1757 struct userfaultfd_wake_range range; 1784 struct userfaultfd_wake_range range; 1758 1785 1759 user_uffdio_zeropage = (struct uffdio 1786 user_uffdio_zeropage = (struct uffdio_zeropage __user *) arg; 1760 1787 1761 ret = -EAGAIN; 1788 ret = -EAGAIN; 1762 if (atomic_read(&ctx->mmap_changing)) 1789 if (atomic_read(&ctx->mmap_changing)) 1763 goto out; 1790 goto out; 1764 1791 1765 ret = -EFAULT; 1792 ret = -EFAULT; 1766 if (copy_from_user(&uffdio_zeropage, 1793 if (copy_from_user(&uffdio_zeropage, user_uffdio_zeropage, 1767 /* don't copy "zer 1794 /* don't copy "zeropage" last field */ 1768 sizeof(uffdio_zero 1795 sizeof(uffdio_zeropage)-sizeof(__s64))) 1769 goto out; 1796 goto out; 1770 1797 1771 ret = validate_range(ctx->mm, uffdio_ 1798 ret = validate_range(ctx->mm, uffdio_zeropage.range.start, 1772 uffdio_zeropage. 1799 uffdio_zeropage.range.len); 1773 if (ret) 1800 if (ret) 1774 goto out; 1801 goto out; 1775 ret = -EINVAL; 1802 ret = -EINVAL; 1776 if (uffdio_zeropage.mode & ~UFFDIO_ZE 1803 if (uffdio_zeropage.mode & ~UFFDIO_ZEROPAGE_MODE_DONTWAKE) 1777 goto out; 1804 goto out; 1778 1805 1779 if (mmget_not_zero(ctx->mm)) { 1806 if (mmget_not_zero(ctx->mm)) { 1780 ret = mfill_atomic_zeropage(c !! 1807 ret = mfill_zeropage(ctx->mm, uffdio_zeropage.range.start, 1781 uf !! 1808 uffdio_zeropage.range.len, >> 1809 &ctx->mmap_changing); 1782 mmput(ctx->mm); 1810 mmput(ctx->mm); 1783 } else { 1811 } else { 1784 return -ESRCH; 1812 return -ESRCH; 1785 } 1813 } 1786 if (unlikely(put_user(ret, &user_uffd 1814 if (unlikely(put_user(ret, &user_uffdio_zeropage->zeropage))) 1787 return -EFAULT; 1815 return -EFAULT; 1788 if (ret < 0) 1816 if (ret < 0) 1789 goto out; 1817 goto out; 1790 /* len == 0 would wake all */ 1818 /* len == 0 would wake all */ 1791 BUG_ON(!ret); 1819 BUG_ON(!ret); 1792 range.len = ret; 1820 range.len = ret; 1793 if (!(uffdio_zeropage.mode & UFFDIO_Z 1821 if (!(uffdio_zeropage.mode & UFFDIO_ZEROPAGE_MODE_DONTWAKE)) { 1794 range.start = uffdio_zeropage 1822 range.start = uffdio_zeropage.range.start; 1795 wake_userfault(ctx, &range); 1823 wake_userfault(ctx, &range); 1796 } 1824 } 1797 ret = range.len == uffdio_zeropage.ra 1825 ret = range.len == uffdio_zeropage.range.len ? 0 : -EAGAIN; 1798 out: 1826 out: 1799 return ret; 1827 return ret; 1800 } 1828 } 1801 1829 1802 static int userfaultfd_writeprotect(struct us 1830 static int userfaultfd_writeprotect(struct userfaultfd_ctx *ctx, 1803 unsigned 1831 unsigned long arg) 1804 { 1832 { 1805 int ret; 1833 int ret; 1806 struct uffdio_writeprotect uffdio_wp; 1834 struct uffdio_writeprotect uffdio_wp; 1807 struct uffdio_writeprotect __user *us 1835 struct uffdio_writeprotect __user *user_uffdio_wp; 1808 struct userfaultfd_wake_range range; 1836 struct userfaultfd_wake_range range; 1809 bool mode_wp, mode_dontwake; 1837 bool mode_wp, mode_dontwake; 1810 1838 1811 if (atomic_read(&ctx->mmap_changing)) 1839 if (atomic_read(&ctx->mmap_changing)) 1812 return -EAGAIN; 1840 return -EAGAIN; 1813 1841 1814 user_uffdio_wp = (struct uffdio_write 1842 user_uffdio_wp = (struct uffdio_writeprotect __user *) arg; 1815 1843 1816 if (copy_from_user(&uffdio_wp, user_u 1844 if (copy_from_user(&uffdio_wp, user_uffdio_wp, 1817 sizeof(struct uffd 1845 sizeof(struct uffdio_writeprotect))) 1818 return -EFAULT; 1846 return -EFAULT; 1819 1847 1820 ret = validate_range(ctx->mm, uffdio_ 1848 ret = validate_range(ctx->mm, uffdio_wp.range.start, 1821 uffdio_wp.range. 1849 uffdio_wp.range.len); 1822 if (ret) 1850 if (ret) 1823 return ret; 1851 return ret; 1824 1852 1825 if (uffdio_wp.mode & ~(UFFDIO_WRITEPR 1853 if (uffdio_wp.mode & ~(UFFDIO_WRITEPROTECT_MODE_DONTWAKE | 1826 UFFDIO_WRITEPR 1854 UFFDIO_WRITEPROTECT_MODE_WP)) 1827 return -EINVAL; 1855 return -EINVAL; 1828 1856 1829 mode_wp = uffdio_wp.mode & UFFDIO_WRI 1857 mode_wp = uffdio_wp.mode & UFFDIO_WRITEPROTECT_MODE_WP; 1830 mode_dontwake = uffdio_wp.mode & UFFD 1858 mode_dontwake = uffdio_wp.mode & UFFDIO_WRITEPROTECT_MODE_DONTWAKE; 1831 1859 1832 if (mode_wp && mode_dontwake) 1860 if (mode_wp && mode_dontwake) 1833 return -EINVAL; 1861 return -EINVAL; 1834 1862 1835 if (mmget_not_zero(ctx->mm)) { 1863 if (mmget_not_zero(ctx->mm)) { 1836 ret = mwriteprotect_range(ctx !! 1864 ret = mwriteprotect_range(ctx->mm, uffdio_wp.range.start, 1837 uff !! 1865 uffdio_wp.range.len, mode_wp, >> 1866 &ctx->mmap_changing); 1838 mmput(ctx->mm); 1867 mmput(ctx->mm); 1839 } else { 1868 } else { 1840 return -ESRCH; 1869 return -ESRCH; 1841 } 1870 } 1842 1871 1843 if (ret) 1872 if (ret) 1844 return ret; 1873 return ret; 1845 1874 1846 if (!mode_wp && !mode_dontwake) { 1875 if (!mode_wp && !mode_dontwake) { 1847 range.start = uffdio_wp.range 1876 range.start = uffdio_wp.range.start; 1848 range.len = uffdio_wp.range.l 1877 range.len = uffdio_wp.range.len; 1849 wake_userfault(ctx, &range); 1878 wake_userfault(ctx, &range); 1850 } 1879 } 1851 return ret; 1880 return ret; 1852 } 1881 } 1853 1882 1854 static int userfaultfd_continue(struct userfa 1883 static int userfaultfd_continue(struct userfaultfd_ctx *ctx, unsigned long arg) 1855 { 1884 { 1856 __s64 ret; 1885 __s64 ret; 1857 struct uffdio_continue uffdio_continu 1886 struct uffdio_continue uffdio_continue; 1858 struct uffdio_continue __user *user_u 1887 struct uffdio_continue __user *user_uffdio_continue; 1859 struct userfaultfd_wake_range range; 1888 struct userfaultfd_wake_range range; 1860 uffd_flags_t flags = 0; << 1861 1889 1862 user_uffdio_continue = (struct uffdio 1890 user_uffdio_continue = (struct uffdio_continue __user *)arg; 1863 1891 1864 ret = -EAGAIN; 1892 ret = -EAGAIN; 1865 if (atomic_read(&ctx->mmap_changing)) 1893 if (atomic_read(&ctx->mmap_changing)) 1866 goto out; 1894 goto out; 1867 1895 1868 ret = -EFAULT; 1896 ret = -EFAULT; 1869 if (copy_from_user(&uffdio_continue, 1897 if (copy_from_user(&uffdio_continue, user_uffdio_continue, 1870 /* don't copy the 1898 /* don't copy the output fields */ 1871 sizeof(uffdio_cont 1899 sizeof(uffdio_continue) - (sizeof(__s64)))) 1872 goto out; 1900 goto out; 1873 1901 1874 ret = validate_range(ctx->mm, uffdio_ 1902 ret = validate_range(ctx->mm, uffdio_continue.range.start, 1875 uffdio_continue. 1903 uffdio_continue.range.len); 1876 if (ret) 1904 if (ret) 1877 goto out; 1905 goto out; 1878 1906 1879 ret = -EINVAL; 1907 ret = -EINVAL; 1880 if (uffdio_continue.mode & ~(UFFDIO_C !! 1908 /* double check for wraparound just in case. */ 1881 UFFDIO_C !! 1909 if (uffdio_continue.range.start + uffdio_continue.range.len <= >> 1910 uffdio_continue.range.start) { >> 1911 goto out; >> 1912 } >> 1913 if (uffdio_continue.mode & ~UFFDIO_CONTINUE_MODE_DONTWAKE) 1882 goto out; 1914 goto out; 1883 if (uffdio_continue.mode & UFFDIO_CON << 1884 flags |= MFILL_ATOMIC_WP; << 1885 1915 1886 if (mmget_not_zero(ctx->mm)) { 1916 if (mmget_not_zero(ctx->mm)) { 1887 ret = mfill_atomic_continue(c !! 1917 ret = mcopy_continue(ctx->mm, uffdio_continue.range.start, 1888 u !! 1918 uffdio_continue.range.len, >> 1919 &ctx->mmap_changing); 1889 mmput(ctx->mm); 1920 mmput(ctx->mm); 1890 } else { 1921 } else { 1891 return -ESRCH; 1922 return -ESRCH; 1892 } 1923 } 1893 1924 1894 if (unlikely(put_user(ret, &user_uffd 1925 if (unlikely(put_user(ret, &user_uffdio_continue->mapped))) 1895 return -EFAULT; 1926 return -EFAULT; 1896 if (ret < 0) 1927 if (ret < 0) 1897 goto out; 1928 goto out; 1898 1929 1899 /* len == 0 would wake all */ 1930 /* len == 0 would wake all */ 1900 BUG_ON(!ret); 1931 BUG_ON(!ret); 1901 range.len = ret; 1932 range.len = ret; 1902 if (!(uffdio_continue.mode & UFFDIO_C 1933 if (!(uffdio_continue.mode & UFFDIO_CONTINUE_MODE_DONTWAKE)) { 1903 range.start = uffdio_continue 1934 range.start = uffdio_continue.range.start; 1904 wake_userfault(ctx, &range); 1935 wake_userfault(ctx, &range); 1905 } 1936 } 1906 ret = range.len == uffdio_continue.ra 1937 ret = range.len == uffdio_continue.range.len ? 0 : -EAGAIN; 1907 1938 1908 out: 1939 out: 1909 return ret; 1940 return ret; 1910 } 1941 } 1911 1942 1912 static inline int userfaultfd_poison(struct u << 1913 { << 1914 __s64 ret; << 1915 struct uffdio_poison uffdio_poison; << 1916 struct uffdio_poison __user *user_uff << 1917 struct userfaultfd_wake_range range; << 1918 << 1919 user_uffdio_poison = (struct uffdio_p << 1920 << 1921 ret = -EAGAIN; << 1922 if (atomic_read(&ctx->mmap_changing)) << 1923 goto out; << 1924 << 1925 ret = -EFAULT; << 1926 if (copy_from_user(&uffdio_poison, us << 1927 /* don't copy the << 1928 sizeof(uffdio_pois << 1929 goto out; << 1930 << 1931 ret = validate_range(ctx->mm, uffdio_ << 1932 uffdio_poison.ra << 1933 if (ret) << 1934 goto out; << 1935 << 1936 ret = -EINVAL; << 1937 if (uffdio_poison.mode & ~UFFDIO_POIS << 1938 goto out; << 1939 << 1940 if (mmget_not_zero(ctx->mm)) { << 1941 ret = mfill_atomic_poison(ctx << 1942 uff << 1943 mmput(ctx->mm); << 1944 } else { << 1945 return -ESRCH; << 1946 } << 1947 << 1948 if (unlikely(put_user(ret, &user_uffd << 1949 return -EFAULT; << 1950 if (ret < 0) << 1951 goto out; << 1952 << 1953 /* len == 0 would wake all */ << 1954 BUG_ON(!ret); << 1955 range.len = ret; << 1956 if (!(uffdio_poison.mode & UFFDIO_POI << 1957 range.start = uffdio_poison.r << 1958 wake_userfault(ctx, &range); << 1959 } << 1960 ret = range.len == uffdio_poison.rang << 1961 << 1962 out: << 1963 return ret; << 1964 } << 1965 << 1966 bool userfaultfd_wp_async(struct vm_area_stru << 1967 { << 1968 return userfaultfd_wp_async_ctx(vma-> << 1969 } << 1970 << 1971 static inline unsigned int uffd_ctx_features( 1943 static inline unsigned int uffd_ctx_features(__u64 user_features) 1972 { 1944 { 1973 /* 1945 /* 1974 * For the current set of features th 1946 * For the current set of features the bits just coincide. Set 1975 * UFFD_FEATURE_INITIALIZED to mark t 1947 * UFFD_FEATURE_INITIALIZED to mark the features as enabled. 1976 */ 1948 */ 1977 return (unsigned int)user_features | 1949 return (unsigned int)user_features | UFFD_FEATURE_INITIALIZED; 1978 } 1950 } 1979 1951 1980 static int userfaultfd_move(struct userfaultf << 1981 unsigned long arg << 1982 { << 1983 __s64 ret; << 1984 struct uffdio_move uffdio_move; << 1985 struct uffdio_move __user *user_uffdi << 1986 struct userfaultfd_wake_range range; << 1987 struct mm_struct *mm = ctx->mm; << 1988 << 1989 user_uffdio_move = (struct uffdio_mov << 1990 << 1991 if (atomic_read(&ctx->mmap_changing)) << 1992 return -EAGAIN; << 1993 << 1994 if (copy_from_user(&uffdio_move, user << 1995 /* don't copy "mov << 1996 sizeof(uffdio_move << 1997 return -EFAULT; << 1998 << 1999 /* Do not allow cross-mm moves. */ << 2000 if (mm != current->mm) << 2001 return -EINVAL; << 2002 << 2003 ret = validate_range(mm, uffdio_move. << 2004 if (ret) << 2005 return ret; << 2006 << 2007 ret = validate_range(mm, uffdio_move. << 2008 if (ret) << 2009 return ret; << 2010 << 2011 if (uffdio_move.mode & ~(UFFDIO_MOVE_ << 2012 UFFDIO_MOVE << 2013 return -EINVAL; << 2014 << 2015 if (mmget_not_zero(mm)) { << 2016 ret = move_pages(ctx, uffdio_ << 2017 uffdio_move. << 2018 mmput(mm); << 2019 } else { << 2020 return -ESRCH; << 2021 } << 2022 << 2023 if (unlikely(put_user(ret, &user_uffd << 2024 return -EFAULT; << 2025 if (ret < 0) << 2026 goto out; << 2027 << 2028 /* len == 0 would wake all */ << 2029 VM_WARN_ON(!ret); << 2030 range.len = ret; << 2031 if (!(uffdio_move.mode & UFFDIO_MOVE_ << 2032 range.start = uffdio_move.dst << 2033 wake_userfault(ctx, &range); << 2034 } << 2035 ret = range.len == uffdio_move.len ? << 2036 << 2037 out: << 2038 return ret; << 2039 } << 2040 << 2041 /* 1952 /* 2042 * userland asks for a certain API version an 1953 * userland asks for a certain API version and we return which bits 2043 * and ioctl commands are implemented in this 1954 * and ioctl commands are implemented in this kernel for such API 2044 * version or -EINVAL if unknown. 1955 * version or -EINVAL if unknown. 2045 */ 1956 */ 2046 static int userfaultfd_api(struct userfaultfd 1957 static int userfaultfd_api(struct userfaultfd_ctx *ctx, 2047 unsigned long arg) 1958 unsigned long arg) 2048 { 1959 { 2049 struct uffdio_api uffdio_api; 1960 struct uffdio_api uffdio_api; 2050 void __user *buf = (void __user *)arg 1961 void __user *buf = (void __user *)arg; 2051 unsigned int ctx_features; 1962 unsigned int ctx_features; 2052 int ret; 1963 int ret; 2053 __u64 features; 1964 __u64 features; 2054 1965 2055 ret = -EFAULT; 1966 ret = -EFAULT; 2056 if (copy_from_user(&uffdio_api, buf, 1967 if (copy_from_user(&uffdio_api, buf, sizeof(uffdio_api))) 2057 goto out; 1968 goto out; 2058 features = uffdio_api.features; 1969 features = uffdio_api.features; 2059 ret = -EINVAL; 1970 ret = -EINVAL; 2060 if (uffdio_api.api != UFFD_API) !! 1971 if (uffdio_api.api != UFFD_API || (features & ~UFFD_API_FEATURES)) 2061 goto err_out; 1972 goto err_out; 2062 ret = -EPERM; 1973 ret = -EPERM; 2063 if ((features & UFFD_FEATURE_EVENT_FO 1974 if ((features & UFFD_FEATURE_EVENT_FORK) && !capable(CAP_SYS_PTRACE)) 2064 goto err_out; 1975 goto err_out; 2065 << 2066 /* WP_ASYNC relies on WP_UNPOPULATED, << 2067 if (features & UFFD_FEATURE_WP_ASYNC) << 2068 features |= UFFD_FEATURE_WP_U << 2069 << 2070 /* report all available features and 1976 /* report all available features and ioctls to userland */ 2071 uffdio_api.features = UFFD_API_FEATUR 1977 uffdio_api.features = UFFD_API_FEATURES; 2072 #ifndef CONFIG_HAVE_ARCH_USERFAULTFD_MINOR 1978 #ifndef CONFIG_HAVE_ARCH_USERFAULTFD_MINOR 2073 uffdio_api.features &= 1979 uffdio_api.features &= 2074 ~(UFFD_FEATURE_MINOR_HUGETLBF 1980 ~(UFFD_FEATURE_MINOR_HUGETLBFS | UFFD_FEATURE_MINOR_SHMEM); 2075 #endif 1981 #endif 2076 #ifndef CONFIG_HAVE_ARCH_USERFAULTFD_WP 1982 #ifndef CONFIG_HAVE_ARCH_USERFAULTFD_WP 2077 uffdio_api.features &= ~UFFD_FEATURE_ 1983 uffdio_api.features &= ~UFFD_FEATURE_PAGEFAULT_FLAG_WP; 2078 #endif 1984 #endif 2079 #ifndef CONFIG_PTE_MARKER_UFFD_WP 1985 #ifndef CONFIG_PTE_MARKER_UFFD_WP 2080 uffdio_api.features &= ~UFFD_FEATURE_ 1986 uffdio_api.features &= ~UFFD_FEATURE_WP_HUGETLBFS_SHMEM; 2081 uffdio_api.features &= ~UFFD_FEATURE_ << 2082 uffdio_api.features &= ~UFFD_FEATURE_ << 2083 #endif 1987 #endif 2084 << 2085 ret = -EINVAL; << 2086 if (features & ~uffdio_api.features) << 2087 goto err_out; << 2088 << 2089 uffdio_api.ioctls = UFFD_API_IOCTLS; 1988 uffdio_api.ioctls = UFFD_API_IOCTLS; 2090 ret = -EFAULT; 1989 ret = -EFAULT; 2091 if (copy_to_user(buf, &uffdio_api, si 1990 if (copy_to_user(buf, &uffdio_api, sizeof(uffdio_api))) 2092 goto out; 1991 goto out; 2093 1992 2094 /* only enable the requested features 1993 /* only enable the requested features for this uffd context */ 2095 ctx_features = uffd_ctx_features(feat 1994 ctx_features = uffd_ctx_features(features); 2096 ret = -EINVAL; 1995 ret = -EINVAL; 2097 if (cmpxchg(&ctx->features, 0, ctx_fe 1996 if (cmpxchg(&ctx->features, 0, ctx_features) != 0) 2098 goto err_out; 1997 goto err_out; 2099 1998 2100 ret = 0; 1999 ret = 0; 2101 out: 2000 out: 2102 return ret; 2001 return ret; 2103 err_out: 2002 err_out: 2104 memset(&uffdio_api, 0, sizeof(uffdio_ 2003 memset(&uffdio_api, 0, sizeof(uffdio_api)); 2105 if (copy_to_user(buf, &uffdio_api, si 2004 if (copy_to_user(buf, &uffdio_api, sizeof(uffdio_api))) 2106 ret = -EFAULT; 2005 ret = -EFAULT; 2107 goto out; 2006 goto out; 2108 } 2007 } 2109 2008 2110 static long userfaultfd_ioctl(struct file *fi 2009 static long userfaultfd_ioctl(struct file *file, unsigned cmd, 2111 unsigned long a 2010 unsigned long arg) 2112 { 2011 { 2113 int ret = -EINVAL; 2012 int ret = -EINVAL; 2114 struct userfaultfd_ctx *ctx = file->p 2013 struct userfaultfd_ctx *ctx = file->private_data; 2115 2014 2116 if (cmd != UFFDIO_API && !userfaultfd 2015 if (cmd != UFFDIO_API && !userfaultfd_is_initialized(ctx)) 2117 return -EINVAL; 2016 return -EINVAL; 2118 2017 2119 switch(cmd) { 2018 switch(cmd) { 2120 case UFFDIO_API: 2019 case UFFDIO_API: 2121 ret = userfaultfd_api(ctx, ar 2020 ret = userfaultfd_api(ctx, arg); 2122 break; 2021 break; 2123 case UFFDIO_REGISTER: 2022 case UFFDIO_REGISTER: 2124 ret = userfaultfd_register(ct 2023 ret = userfaultfd_register(ctx, arg); 2125 break; 2024 break; 2126 case UFFDIO_UNREGISTER: 2025 case UFFDIO_UNREGISTER: 2127 ret = userfaultfd_unregister( 2026 ret = userfaultfd_unregister(ctx, arg); 2128 break; 2027 break; 2129 case UFFDIO_WAKE: 2028 case UFFDIO_WAKE: 2130 ret = userfaultfd_wake(ctx, a 2029 ret = userfaultfd_wake(ctx, arg); 2131 break; 2030 break; 2132 case UFFDIO_COPY: 2031 case UFFDIO_COPY: 2133 ret = userfaultfd_copy(ctx, a 2032 ret = userfaultfd_copy(ctx, arg); 2134 break; 2033 break; 2135 case UFFDIO_ZEROPAGE: 2034 case UFFDIO_ZEROPAGE: 2136 ret = userfaultfd_zeropage(ct 2035 ret = userfaultfd_zeropage(ctx, arg); 2137 break; 2036 break; 2138 case UFFDIO_MOVE: << 2139 ret = userfaultfd_move(ctx, a << 2140 break; << 2141 case UFFDIO_WRITEPROTECT: 2037 case UFFDIO_WRITEPROTECT: 2142 ret = userfaultfd_writeprotec 2038 ret = userfaultfd_writeprotect(ctx, arg); 2143 break; 2039 break; 2144 case UFFDIO_CONTINUE: 2040 case UFFDIO_CONTINUE: 2145 ret = userfaultfd_continue(ct 2041 ret = userfaultfd_continue(ctx, arg); 2146 break; 2042 break; 2147 case UFFDIO_POISON: << 2148 ret = userfaultfd_poison(ctx, << 2149 break; << 2150 } 2043 } 2151 return ret; 2044 return ret; 2152 } 2045 } 2153 2046 2154 #ifdef CONFIG_PROC_FS 2047 #ifdef CONFIG_PROC_FS 2155 static void userfaultfd_show_fdinfo(struct se 2048 static void userfaultfd_show_fdinfo(struct seq_file *m, struct file *f) 2156 { 2049 { 2157 struct userfaultfd_ctx *ctx = f->priv 2050 struct userfaultfd_ctx *ctx = f->private_data; 2158 wait_queue_entry_t *wq; 2051 wait_queue_entry_t *wq; 2159 unsigned long pending = 0, total = 0; 2052 unsigned long pending = 0, total = 0; 2160 2053 2161 spin_lock_irq(&ctx->fault_pending_wqh 2054 spin_lock_irq(&ctx->fault_pending_wqh.lock); 2162 list_for_each_entry(wq, &ctx->fault_p 2055 list_for_each_entry(wq, &ctx->fault_pending_wqh.head, entry) { 2163 pending++; 2056 pending++; 2164 total++; 2057 total++; 2165 } 2058 } 2166 list_for_each_entry(wq, &ctx->fault_w 2059 list_for_each_entry(wq, &ctx->fault_wqh.head, entry) { 2167 total++; 2060 total++; 2168 } 2061 } 2169 spin_unlock_irq(&ctx->fault_pending_w 2062 spin_unlock_irq(&ctx->fault_pending_wqh.lock); 2170 2063 2171 /* 2064 /* 2172 * If more protocols will be added, t 2065 * If more protocols will be added, there will be all shown 2173 * separated by a space. Like this: 2066 * separated by a space. Like this: 2174 * protocols: aa:... bb:... 2067 * protocols: aa:... bb:... 2175 */ 2068 */ 2176 seq_printf(m, "pending:\t%lu\ntotal:\ 2069 seq_printf(m, "pending:\t%lu\ntotal:\t%lu\nAPI:\t%Lx:%x:%Lx\n", 2177 pending, total, UFFD_API, 2070 pending, total, UFFD_API, ctx->features, 2178 UFFD_API_IOCTLS|UFFD_API_R 2071 UFFD_API_IOCTLS|UFFD_API_RANGE_IOCTLS); 2179 } 2072 } 2180 #endif 2073 #endif 2181 2074 2182 static const struct file_operations userfault 2075 static const struct file_operations userfaultfd_fops = { 2183 #ifdef CONFIG_PROC_FS 2076 #ifdef CONFIG_PROC_FS 2184 .show_fdinfo = userfaultfd_show_fd 2077 .show_fdinfo = userfaultfd_show_fdinfo, 2185 #endif 2078 #endif 2186 .release = userfaultfd_release 2079 .release = userfaultfd_release, 2187 .poll = userfaultfd_poll, 2080 .poll = userfaultfd_poll, 2188 .read_iter = userfaultfd_read_it !! 2081 .read = userfaultfd_read, 2189 .unlocked_ioctl = userfaultfd_ioctl, 2082 .unlocked_ioctl = userfaultfd_ioctl, 2190 .compat_ioctl = compat_ptr_ioctl, 2083 .compat_ioctl = compat_ptr_ioctl, 2191 .llseek = noop_llseek, 2084 .llseek = noop_llseek, 2192 }; 2085 }; 2193 2086 2194 static void init_once_userfaultfd_ctx(void *m 2087 static void init_once_userfaultfd_ctx(void *mem) 2195 { 2088 { 2196 struct userfaultfd_ctx *ctx = (struct 2089 struct userfaultfd_ctx *ctx = (struct userfaultfd_ctx *) mem; 2197 2090 2198 init_waitqueue_head(&ctx->fault_pendi 2091 init_waitqueue_head(&ctx->fault_pending_wqh); 2199 init_waitqueue_head(&ctx->fault_wqh); 2092 init_waitqueue_head(&ctx->fault_wqh); 2200 init_waitqueue_head(&ctx->event_wqh); 2093 init_waitqueue_head(&ctx->event_wqh); 2201 init_waitqueue_head(&ctx->fd_wqh); 2094 init_waitqueue_head(&ctx->fd_wqh); 2202 seqcount_spinlock_init(&ctx->refile_s 2095 seqcount_spinlock_init(&ctx->refile_seq, &ctx->fault_pending_wqh.lock); 2203 } 2096 } 2204 2097 2205 static int new_userfaultfd(int flags) 2098 static int new_userfaultfd(int flags) 2206 { 2099 { 2207 struct userfaultfd_ctx *ctx; 2100 struct userfaultfd_ctx *ctx; 2208 struct file *file; << 2209 int fd; 2101 int fd; 2210 2102 2211 BUG_ON(!current->mm); 2103 BUG_ON(!current->mm); 2212 2104 2213 /* Check the UFFD_* constants for con 2105 /* Check the UFFD_* constants for consistency. */ 2214 BUILD_BUG_ON(UFFD_USER_MODE_ONLY & UF 2106 BUILD_BUG_ON(UFFD_USER_MODE_ONLY & UFFD_SHARED_FCNTL_FLAGS); 2215 BUILD_BUG_ON(UFFD_CLOEXEC != O_CLOEXE 2107 BUILD_BUG_ON(UFFD_CLOEXEC != O_CLOEXEC); 2216 BUILD_BUG_ON(UFFD_NONBLOCK != O_NONBL 2108 BUILD_BUG_ON(UFFD_NONBLOCK != O_NONBLOCK); 2217 2109 2218 if (flags & ~(UFFD_SHARED_FCNTL_FLAGS 2110 if (flags & ~(UFFD_SHARED_FCNTL_FLAGS | UFFD_USER_MODE_ONLY)) 2219 return -EINVAL; 2111 return -EINVAL; 2220 2112 2221 ctx = kmem_cache_alloc(userfaultfd_ct 2113 ctx = kmem_cache_alloc(userfaultfd_ctx_cachep, GFP_KERNEL); 2222 if (!ctx) 2114 if (!ctx) 2223 return -ENOMEM; 2115 return -ENOMEM; 2224 2116 2225 refcount_set(&ctx->refcount, 1); 2117 refcount_set(&ctx->refcount, 1); 2226 ctx->flags = flags; 2118 ctx->flags = flags; 2227 ctx->features = 0; 2119 ctx->features = 0; 2228 ctx->released = false; 2120 ctx->released = false; 2229 init_rwsem(&ctx->map_changing_lock); << 2230 atomic_set(&ctx->mmap_changing, 0); 2121 atomic_set(&ctx->mmap_changing, 0); 2231 ctx->mm = current->mm; 2122 ctx->mm = current->mm; >> 2123 /* prevent the mm struct to be freed */ >> 2124 mmgrab(ctx->mm); 2232 2125 2233 fd = get_unused_fd_flags(flags & UFFD !! 2126 fd = anon_inode_getfd_secure("[userfaultfd]", &userfaultfd_fops, ctx, 2234 if (fd < 0) << 2235 goto err_out; << 2236 << 2237 /* Create a new inode so that the LSM << 2238 file = anon_inode_create_getfile("[us << 2239 O_RDONLY | (flags & U 2127 O_RDONLY | (flags & UFFD_SHARED_FCNTL_FLAGS), NULL); 2240 if (IS_ERR(file)) { !! 2128 if (fd < 0) { 2241 put_unused_fd(fd); !! 2129 mmdrop(ctx->mm); 2242 fd = PTR_ERR(file); !! 2130 kmem_cache_free(userfaultfd_ctx_cachep, ctx); 2243 goto err_out; << 2244 } 2131 } 2245 /* prevent the mm struct to be freed << 2246 mmgrab(ctx->mm); << 2247 file->f_mode |= FMODE_NOWAIT; << 2248 fd_install(fd, file); << 2249 return fd; << 2250 err_out: << 2251 kmem_cache_free(userfaultfd_ctx_cache << 2252 return fd; 2132 return fd; 2253 } 2133 } 2254 2134 2255 static inline bool userfaultfd_syscall_allowe 2135 static inline bool userfaultfd_syscall_allowed(int flags) 2256 { 2136 { 2257 /* Userspace-only page faults are alw 2137 /* Userspace-only page faults are always allowed */ 2258 if (flags & UFFD_USER_MODE_ONLY) 2138 if (flags & UFFD_USER_MODE_ONLY) 2259 return true; 2139 return true; 2260 2140 2261 /* 2141 /* 2262 * The user is requesting a userfault 2142 * The user is requesting a userfaultfd which can handle kernel faults. 2263 * Privileged users are always allowe 2143 * Privileged users are always allowed to do this. 2264 */ 2144 */ 2265 if (capable(CAP_SYS_PTRACE)) 2145 if (capable(CAP_SYS_PTRACE)) 2266 return true; 2146 return true; 2267 2147 2268 /* Otherwise, access to kernel fault 2148 /* Otherwise, access to kernel fault handling is sysctl controlled. */ 2269 return sysctl_unprivileged_userfaultf 2149 return sysctl_unprivileged_userfaultfd; 2270 } 2150 } 2271 2151 2272 SYSCALL_DEFINE1(userfaultfd, int, flags) 2152 SYSCALL_DEFINE1(userfaultfd, int, flags) 2273 { 2153 { 2274 if (!userfaultfd_syscall_allowed(flag 2154 if (!userfaultfd_syscall_allowed(flags)) 2275 return -EPERM; 2155 return -EPERM; 2276 2156 2277 return new_userfaultfd(flags); 2157 return new_userfaultfd(flags); 2278 } 2158 } 2279 2159 2280 static long userfaultfd_dev_ioctl(struct file 2160 static long userfaultfd_dev_ioctl(struct file *file, unsigned int cmd, unsigned long flags) 2281 { 2161 { 2282 if (cmd != USERFAULTFD_IOC_NEW) 2162 if (cmd != USERFAULTFD_IOC_NEW) 2283 return -EINVAL; 2163 return -EINVAL; 2284 2164 2285 return new_userfaultfd(flags); 2165 return new_userfaultfd(flags); 2286 } 2166 } 2287 2167 2288 static const struct file_operations userfault 2168 static const struct file_operations userfaultfd_dev_fops = { 2289 .unlocked_ioctl = userfaultfd_dev_ioc 2169 .unlocked_ioctl = userfaultfd_dev_ioctl, 2290 .compat_ioctl = userfaultfd_dev_ioctl 2170 .compat_ioctl = userfaultfd_dev_ioctl, 2291 .owner = THIS_MODULE, 2171 .owner = THIS_MODULE, 2292 .llseek = noop_llseek, 2172 .llseek = noop_llseek, 2293 }; 2173 }; 2294 2174 2295 static struct miscdevice userfaultfd_misc = { 2175 static struct miscdevice userfaultfd_misc = { 2296 .minor = MISC_DYNAMIC_MINOR, 2176 .minor = MISC_DYNAMIC_MINOR, 2297 .name = "userfaultfd", 2177 .name = "userfaultfd", 2298 .fops = &userfaultfd_dev_fops 2178 .fops = &userfaultfd_dev_fops 2299 }; 2179 }; 2300 2180 2301 static int __init userfaultfd_init(void) 2181 static int __init userfaultfd_init(void) 2302 { 2182 { 2303 int ret; 2183 int ret; 2304 2184 2305 ret = misc_register(&userfaultfd_misc 2185 ret = misc_register(&userfaultfd_misc); 2306 if (ret) 2186 if (ret) 2307 return ret; 2187 return ret; 2308 2188 2309 userfaultfd_ctx_cachep = kmem_cache_c 2189 userfaultfd_ctx_cachep = kmem_cache_create("userfaultfd_ctx_cache", 2310 2190 sizeof(struct userfaultfd_ctx), 2311 2191 0, 2312 2192 SLAB_HWCACHE_ALIGN|SLAB_PANIC, 2313 2193 init_once_userfaultfd_ctx); 2314 #ifdef CONFIG_SYSCTL << 2315 register_sysctl_init("vm", vm_userfau << 2316 #endif << 2317 return 0; 2194 return 0; 2318 } 2195 } 2319 __initcall(userfaultfd_init); 2196 __initcall(userfaultfd_init); 2320 2197
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.