1 // SPDX-License-Identifier: GPL-2.0-only 1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 2 /* 3 * fs/userfaultfd.c 3 * fs/userfaultfd.c 4 * 4 * 5 * Copyright (C) 2007 Davide Libenzi <davide 5 * Copyright (C) 2007 Davide Libenzi <davidel@xmailserver.org> 6 * Copyright (C) 2008-2009 Red Hat, Inc. 6 * Copyright (C) 2008-2009 Red Hat, Inc. 7 * Copyright (C) 2015 Red Hat, Inc. 7 * Copyright (C) 2015 Red Hat, Inc. 8 * 8 * 9 * Some part derived from fs/eventfd.c (anon 9 * Some part derived from fs/eventfd.c (anon inode setup) and 10 * mm/ksm.c (mm hashing). 10 * mm/ksm.c (mm hashing). 11 */ 11 */ 12 12 13 #include <linux/list.h> 13 #include <linux/list.h> 14 #include <linux/hashtable.h> 14 #include <linux/hashtable.h> 15 #include <linux/sched/signal.h> 15 #include <linux/sched/signal.h> 16 #include <linux/sched/mm.h> 16 #include <linux/sched/mm.h> 17 #include <linux/mm.h> 17 #include <linux/mm.h> 18 #include <linux/mm_inline.h> 18 #include <linux/mm_inline.h> 19 #include <linux/mmu_notifier.h> 19 #include <linux/mmu_notifier.h> 20 #include <linux/poll.h> 20 #include <linux/poll.h> 21 #include <linux/slab.h> 21 #include <linux/slab.h> 22 #include <linux/seq_file.h> 22 #include <linux/seq_file.h> 23 #include <linux/file.h> 23 #include <linux/file.h> 24 #include <linux/bug.h> 24 #include <linux/bug.h> 25 #include <linux/anon_inodes.h> 25 #include <linux/anon_inodes.h> 26 #include <linux/syscalls.h> 26 #include <linux/syscalls.h> 27 #include <linux/userfaultfd_k.h> 27 #include <linux/userfaultfd_k.h> 28 #include <linux/mempolicy.h> 28 #include <linux/mempolicy.h> 29 #include <linux/ioctl.h> 29 #include <linux/ioctl.h> 30 #include <linux/security.h> 30 #include <linux/security.h> 31 #include <linux/hugetlb.h> 31 #include <linux/hugetlb.h> 32 #include <linux/swapops.h> 32 #include <linux/swapops.h> 33 #include <linux/miscdevice.h> 33 #include <linux/miscdevice.h> 34 #include <linux/uio.h> << 35 34 36 static int sysctl_unprivileged_userfaultfd __r 35 static int sysctl_unprivileged_userfaultfd __read_mostly; 37 36 38 #ifdef CONFIG_SYSCTL 37 #ifdef CONFIG_SYSCTL 39 static struct ctl_table vm_userfaultfd_table[] 38 static struct ctl_table vm_userfaultfd_table[] = { 40 { 39 { 41 .procname = "unprivilege 40 .procname = "unprivileged_userfaultfd", 42 .data = &sysctl_unpr 41 .data = &sysctl_unprivileged_userfaultfd, 43 .maxlen = sizeof(sysct 42 .maxlen = sizeof(sysctl_unprivileged_userfaultfd), 44 .mode = 0644, 43 .mode = 0644, 45 .proc_handler = proc_dointve 44 .proc_handler = proc_dointvec_minmax, 46 .extra1 = SYSCTL_ZERO, 45 .extra1 = SYSCTL_ZERO, 47 .extra2 = SYSCTL_ONE, 46 .extra2 = SYSCTL_ONE, 48 }, 47 }, 49 }; 48 }; 50 #endif 49 #endif 51 50 52 static struct kmem_cache *userfaultfd_ctx_cach 51 static struct kmem_cache *userfaultfd_ctx_cachep __ro_after_init; 53 52 >> 53 /* >> 54 * Start with fault_pending_wqh and fault_wqh so they're more likely >> 55 * to be in the same cacheline. >> 56 * >> 57 * Locking order: >> 58 * fd_wqh.lock >> 59 * fault_pending_wqh.lock >> 60 * fault_wqh.lock >> 61 * event_wqh.lock >> 62 * >> 63 * To avoid deadlocks, IRQs must be disabled when taking any of the above locks, >> 64 * since fd_wqh.lock is taken by aio_poll() while it's holding a lock that's >> 65 * also taken in IRQ context. >> 66 */ >> 67 struct userfaultfd_ctx { >> 68 /* waitqueue head for the pending (i.e. not read) userfaults */ >> 69 wait_queue_head_t fault_pending_wqh; >> 70 /* waitqueue head for the userfaults */ >> 71 wait_queue_head_t fault_wqh; >> 72 /* waitqueue head for the pseudo fd to wakeup poll/read */ >> 73 wait_queue_head_t fd_wqh; >> 74 /* waitqueue head for events */ >> 75 wait_queue_head_t event_wqh; >> 76 /* a refile sequence protected by fault_pending_wqh lock */ >> 77 seqcount_spinlock_t refile_seq; >> 78 /* pseudo fd refcounting */ >> 79 refcount_t refcount; >> 80 /* userfaultfd syscall flags */ >> 81 unsigned int flags; >> 82 /* features requested from the userspace */ >> 83 unsigned int features; >> 84 /* released */ >> 85 bool released; >> 86 /* memory mappings are changing because of non-cooperative event */ >> 87 atomic_t mmap_changing; >> 88 /* mm with one ore more vmas attached to this userfaultfd_ctx */ >> 89 struct mm_struct *mm; >> 90 }; >> 91 54 struct userfaultfd_fork_ctx { 92 struct userfaultfd_fork_ctx { 55 struct userfaultfd_ctx *orig; 93 struct userfaultfd_ctx *orig; 56 struct userfaultfd_ctx *new; 94 struct userfaultfd_ctx *new; 57 struct list_head list; 95 struct list_head list; 58 }; 96 }; 59 97 60 struct userfaultfd_unmap_ctx { 98 struct userfaultfd_unmap_ctx { 61 struct userfaultfd_ctx *ctx; 99 struct userfaultfd_ctx *ctx; 62 unsigned long start; 100 unsigned long start; 63 unsigned long end; 101 unsigned long end; 64 struct list_head list; 102 struct list_head list; 65 }; 103 }; 66 104 67 struct userfaultfd_wait_queue { 105 struct userfaultfd_wait_queue { 68 struct uffd_msg msg; 106 struct uffd_msg msg; 69 wait_queue_entry_t wq; 107 wait_queue_entry_t wq; 70 struct userfaultfd_ctx *ctx; 108 struct userfaultfd_ctx *ctx; 71 bool waken; 109 bool waken; 72 }; 110 }; 73 111 74 struct userfaultfd_wake_range { 112 struct userfaultfd_wake_range { 75 unsigned long start; 113 unsigned long start; 76 unsigned long len; 114 unsigned long len; 77 }; 115 }; 78 116 79 /* internal indication that UFFD_API ioctl was 117 /* internal indication that UFFD_API ioctl was successfully executed */ 80 #define UFFD_FEATURE_INITIALIZED 118 #define UFFD_FEATURE_INITIALIZED (1u << 31) 81 119 82 static bool userfaultfd_is_initialized(struct 120 static bool userfaultfd_is_initialized(struct userfaultfd_ctx *ctx) 83 { 121 { 84 return ctx->features & UFFD_FEATURE_IN 122 return ctx->features & UFFD_FEATURE_INITIALIZED; 85 } 123 } 86 124 87 static bool userfaultfd_wp_async_ctx(struct us 125 static bool userfaultfd_wp_async_ctx(struct userfaultfd_ctx *ctx) 88 { 126 { 89 return ctx && (ctx->features & UFFD_FE 127 return ctx && (ctx->features & UFFD_FEATURE_WP_ASYNC); 90 } 128 } 91 129 92 /* 130 /* 93 * Whether WP_UNPOPULATED is enabled on the uf 131 * Whether WP_UNPOPULATED is enabled on the uffd context. It is only 94 * meaningful when userfaultfd_wp()==true on t 132 * meaningful when userfaultfd_wp()==true on the vma and when it's 95 * anonymous. 133 * anonymous. 96 */ 134 */ 97 bool userfaultfd_wp_unpopulated(struct vm_area 135 bool userfaultfd_wp_unpopulated(struct vm_area_struct *vma) 98 { 136 { 99 struct userfaultfd_ctx *ctx = vma->vm_ 137 struct userfaultfd_ctx *ctx = vma->vm_userfaultfd_ctx.ctx; 100 138 101 if (!ctx) 139 if (!ctx) 102 return false; 140 return false; 103 141 104 return ctx->features & UFFD_FEATURE_WP 142 return ctx->features & UFFD_FEATURE_WP_UNPOPULATED; 105 } 143 } 106 144 107 static void userfaultfd_set_vm_flags(struct vm 145 static void userfaultfd_set_vm_flags(struct vm_area_struct *vma, 108 vm_flags_ 146 vm_flags_t flags) 109 { 147 { 110 const bool uffd_wp_changed = (vma->vm_ 148 const bool uffd_wp_changed = (vma->vm_flags ^ flags) & VM_UFFD_WP; 111 149 112 vm_flags_reset(vma, flags); 150 vm_flags_reset(vma, flags); 113 /* 151 /* 114 * For shared mappings, we want to ena 152 * For shared mappings, we want to enable writenotify while 115 * userfaultfd-wp is enabled (see vma_ 153 * userfaultfd-wp is enabled (see vma_wants_writenotify()). We'll simply 116 * recalculate vma->vm_page_prot whene 154 * recalculate vma->vm_page_prot whenever userfaultfd-wp changes. 117 */ 155 */ 118 if ((vma->vm_flags & VM_SHARED) && uff 156 if ((vma->vm_flags & VM_SHARED) && uffd_wp_changed) 119 vma_set_page_prot(vma); 157 vma_set_page_prot(vma); 120 } 158 } 121 159 122 static int userfaultfd_wake_function(wait_queu 160 static int userfaultfd_wake_function(wait_queue_entry_t *wq, unsigned mode, 123 int wake_ 161 int wake_flags, void *key) 124 { 162 { 125 struct userfaultfd_wake_range *range = 163 struct userfaultfd_wake_range *range = key; 126 int ret; 164 int ret; 127 struct userfaultfd_wait_queue *uwq; 165 struct userfaultfd_wait_queue *uwq; 128 unsigned long start, len; 166 unsigned long start, len; 129 167 130 uwq = container_of(wq, struct userfaul 168 uwq = container_of(wq, struct userfaultfd_wait_queue, wq); 131 ret = 0; 169 ret = 0; 132 /* len == 0 means wake all */ 170 /* len == 0 means wake all */ 133 start = range->start; 171 start = range->start; 134 len = range->len; 172 len = range->len; 135 if (len && (start > uwq->msg.arg.pagef 173 if (len && (start > uwq->msg.arg.pagefault.address || 136 start + len <= uwq->msg.ar 174 start + len <= uwq->msg.arg.pagefault.address)) 137 goto out; 175 goto out; 138 WRITE_ONCE(uwq->waken, true); 176 WRITE_ONCE(uwq->waken, true); 139 /* 177 /* 140 * The Program-Order guarantees provid 178 * The Program-Order guarantees provided by the scheduler 141 * ensure uwq->waken is visible before 179 * ensure uwq->waken is visible before the task is woken. 142 */ 180 */ 143 ret = wake_up_state(wq->private, mode) 181 ret = wake_up_state(wq->private, mode); 144 if (ret) { 182 if (ret) { 145 /* 183 /* 146 * Wake only once, autoremove 184 * Wake only once, autoremove behavior. 147 * 185 * 148 * After the effect of list_de 186 * After the effect of list_del_init is visible to the other 149 * CPUs, the waitqueue may dis 187 * CPUs, the waitqueue may disappear from under us, see the 150 * !list_empty_careful() in ha 188 * !list_empty_careful() in handle_userfault(). 151 * 189 * 152 * try_to_wake_up() has an imp 190 * try_to_wake_up() has an implicit smp_mb(), and the 153 * wq->private is read before 191 * wq->private is read before calling the extern function 154 * "wake_up_state" (which in t 192 * "wake_up_state" (which in turns calls try_to_wake_up). 155 */ 193 */ 156 list_del_init(&wq->entry); 194 list_del_init(&wq->entry); 157 } 195 } 158 out: 196 out: 159 return ret; 197 return ret; 160 } 198 } 161 199 162 /** 200 /** 163 * userfaultfd_ctx_get - Acquires a reference 201 * userfaultfd_ctx_get - Acquires a reference to the internal userfaultfd 164 * context. 202 * context. 165 * @ctx: [in] Pointer to the userfaultfd conte 203 * @ctx: [in] Pointer to the userfaultfd context. 166 */ 204 */ 167 static void userfaultfd_ctx_get(struct userfau 205 static void userfaultfd_ctx_get(struct userfaultfd_ctx *ctx) 168 { 206 { 169 refcount_inc(&ctx->refcount); 207 refcount_inc(&ctx->refcount); 170 } 208 } 171 209 172 /** 210 /** 173 * userfaultfd_ctx_put - Releases a reference 211 * userfaultfd_ctx_put - Releases a reference to the internal userfaultfd 174 * context. 212 * context. 175 * @ctx: [in] Pointer to userfaultfd context. 213 * @ctx: [in] Pointer to userfaultfd context. 176 * 214 * 177 * The userfaultfd context reference must have 215 * The userfaultfd context reference must have been previously acquired either 178 * with userfaultfd_ctx_get() or userfaultfd_c 216 * with userfaultfd_ctx_get() or userfaultfd_ctx_fdget(). 179 */ 217 */ 180 static void userfaultfd_ctx_put(struct userfau 218 static void userfaultfd_ctx_put(struct userfaultfd_ctx *ctx) 181 { 219 { 182 if (refcount_dec_and_test(&ctx->refcou 220 if (refcount_dec_and_test(&ctx->refcount)) { 183 VM_BUG_ON(spin_is_locked(&ctx- 221 VM_BUG_ON(spin_is_locked(&ctx->fault_pending_wqh.lock)); 184 VM_BUG_ON(waitqueue_active(&ct 222 VM_BUG_ON(waitqueue_active(&ctx->fault_pending_wqh)); 185 VM_BUG_ON(spin_is_locked(&ctx- 223 VM_BUG_ON(spin_is_locked(&ctx->fault_wqh.lock)); 186 VM_BUG_ON(waitqueue_active(&ct 224 VM_BUG_ON(waitqueue_active(&ctx->fault_wqh)); 187 VM_BUG_ON(spin_is_locked(&ctx- 225 VM_BUG_ON(spin_is_locked(&ctx->event_wqh.lock)); 188 VM_BUG_ON(waitqueue_active(&ct 226 VM_BUG_ON(waitqueue_active(&ctx->event_wqh)); 189 VM_BUG_ON(spin_is_locked(&ctx- 227 VM_BUG_ON(spin_is_locked(&ctx->fd_wqh.lock)); 190 VM_BUG_ON(waitqueue_active(&ct 228 VM_BUG_ON(waitqueue_active(&ctx->fd_wqh)); 191 mmdrop(ctx->mm); 229 mmdrop(ctx->mm); 192 kmem_cache_free(userfaultfd_ct 230 kmem_cache_free(userfaultfd_ctx_cachep, ctx); 193 } 231 } 194 } 232 } 195 233 196 static inline void msg_init(struct uffd_msg *m 234 static inline void msg_init(struct uffd_msg *msg) 197 { 235 { 198 BUILD_BUG_ON(sizeof(struct uffd_msg) ! 236 BUILD_BUG_ON(sizeof(struct uffd_msg) != 32); 199 /* 237 /* 200 * Must use memset to zero out the pad 238 * Must use memset to zero out the paddings or kernel data is 201 * leaked to userland. 239 * leaked to userland. 202 */ 240 */ 203 memset(msg, 0, sizeof(struct uffd_msg) 241 memset(msg, 0, sizeof(struct uffd_msg)); 204 } 242 } 205 243 206 static inline struct uffd_msg userfault_msg(un 244 static inline struct uffd_msg userfault_msg(unsigned long address, 207 un 245 unsigned long real_address, 208 un 246 unsigned int flags, 209 un 247 unsigned long reason, 210 un 248 unsigned int features) 211 { 249 { 212 struct uffd_msg msg; 250 struct uffd_msg msg; 213 251 214 msg_init(&msg); 252 msg_init(&msg); 215 msg.event = UFFD_EVENT_PAGEFAULT; 253 msg.event = UFFD_EVENT_PAGEFAULT; 216 254 217 msg.arg.pagefault.address = (features 255 msg.arg.pagefault.address = (features & UFFD_FEATURE_EXACT_ADDRESS) ? 218 real_addre 256 real_address : address; 219 257 220 /* 258 /* 221 * These flags indicate why the userfa 259 * These flags indicate why the userfault occurred: 222 * - UFFD_PAGEFAULT_FLAG_WP indicates 260 * - UFFD_PAGEFAULT_FLAG_WP indicates a write protect fault. 223 * - UFFD_PAGEFAULT_FLAG_MINOR indicat 261 * - UFFD_PAGEFAULT_FLAG_MINOR indicates a minor fault. 224 * - Neither of these flags being set 262 * - Neither of these flags being set indicates a MISSING fault. 225 * 263 * 226 * Separately, UFFD_PAGEFAULT_FLAG_WRI 264 * Separately, UFFD_PAGEFAULT_FLAG_WRITE indicates it was a write 227 * fault. Otherwise, it was a read fau 265 * fault. Otherwise, it was a read fault. 228 */ 266 */ 229 if (flags & FAULT_FLAG_WRITE) 267 if (flags & FAULT_FLAG_WRITE) 230 msg.arg.pagefault.flags |= UFF 268 msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_WRITE; 231 if (reason & VM_UFFD_WP) 269 if (reason & VM_UFFD_WP) 232 msg.arg.pagefault.flags |= UFF 270 msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_WP; 233 if (reason & VM_UFFD_MINOR) 271 if (reason & VM_UFFD_MINOR) 234 msg.arg.pagefault.flags |= UFF 272 msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_MINOR; 235 if (features & UFFD_FEATURE_THREAD_ID) 273 if (features & UFFD_FEATURE_THREAD_ID) 236 msg.arg.pagefault.feat.ptid = 274 msg.arg.pagefault.feat.ptid = task_pid_vnr(current); 237 return msg; 275 return msg; 238 } 276 } 239 277 240 #ifdef CONFIG_HUGETLB_PAGE 278 #ifdef CONFIG_HUGETLB_PAGE 241 /* 279 /* 242 * Same functionality as userfaultfd_must_wait 280 * Same functionality as userfaultfd_must_wait below with modifications for 243 * hugepmd ranges. 281 * hugepmd ranges. 244 */ 282 */ 245 static inline bool userfaultfd_huge_must_wait( 283 static inline bool userfaultfd_huge_must_wait(struct userfaultfd_ctx *ctx, 246 284 struct vm_fault *vmf, 247 285 unsigned long reason) 248 { 286 { 249 struct vm_area_struct *vma = vmf->vma; 287 struct vm_area_struct *vma = vmf->vma; 250 pte_t *ptep, pte; 288 pte_t *ptep, pte; 251 bool ret = true; 289 bool ret = true; 252 290 253 assert_fault_locked(vmf); 291 assert_fault_locked(vmf); 254 292 255 ptep = hugetlb_walk(vma, vmf->address, 293 ptep = hugetlb_walk(vma, vmf->address, vma_mmu_pagesize(vma)); 256 if (!ptep) 294 if (!ptep) 257 goto out; 295 goto out; 258 296 259 ret = false; 297 ret = false; 260 pte = huge_ptep_get(vma->vm_mm, vmf->a !! 298 pte = huge_ptep_get(ptep); 261 299 262 /* 300 /* 263 * Lockless access: we're in a wait_ev 301 * Lockless access: we're in a wait_event so it's ok if it 264 * changes under us. PTE markers shou 302 * changes under us. PTE markers should be handled the same as none 265 * ptes here. 303 * ptes here. 266 */ 304 */ 267 if (huge_pte_none_mostly(pte)) 305 if (huge_pte_none_mostly(pte)) 268 ret = true; 306 ret = true; 269 if (!huge_pte_write(pte) && (reason & 307 if (!huge_pte_write(pte) && (reason & VM_UFFD_WP)) 270 ret = true; 308 ret = true; 271 out: 309 out: 272 return ret; 310 return ret; 273 } 311 } 274 #else 312 #else 275 static inline bool userfaultfd_huge_must_wait( 313 static inline bool userfaultfd_huge_must_wait(struct userfaultfd_ctx *ctx, 276 314 struct vm_fault *vmf, 277 315 unsigned long reason) 278 { 316 { 279 return false; /* should never get he 317 return false; /* should never get here */ 280 } 318 } 281 #endif /* CONFIG_HUGETLB_PAGE */ 319 #endif /* CONFIG_HUGETLB_PAGE */ 282 320 283 /* 321 /* 284 * Verify the pagetables are still not ok afte 322 * Verify the pagetables are still not ok after having reigstered into 285 * the fault_pending_wqh to avoid userland hav 323 * the fault_pending_wqh to avoid userland having to UFFDIO_WAKE any 286 * userfault that has already been resolved, i !! 324 * userfault that has already been resolved, if userfaultfd_read and 287 * UFFDIO_COPY|ZEROPAGE are being run simultan 325 * UFFDIO_COPY|ZEROPAGE are being run simultaneously on two different 288 * threads. 326 * threads. 289 */ 327 */ 290 static inline bool userfaultfd_must_wait(struc 328 static inline bool userfaultfd_must_wait(struct userfaultfd_ctx *ctx, 291 struc 329 struct vm_fault *vmf, 292 unsig 330 unsigned long reason) 293 { 331 { 294 struct mm_struct *mm = ctx->mm; 332 struct mm_struct *mm = ctx->mm; 295 unsigned long address = vmf->address; 333 unsigned long address = vmf->address; 296 pgd_t *pgd; 334 pgd_t *pgd; 297 p4d_t *p4d; 335 p4d_t *p4d; 298 pud_t *pud; 336 pud_t *pud; 299 pmd_t *pmd, _pmd; 337 pmd_t *pmd, _pmd; 300 pte_t *pte; 338 pte_t *pte; 301 pte_t ptent; 339 pte_t ptent; 302 bool ret = true; 340 bool ret = true; 303 341 304 assert_fault_locked(vmf); 342 assert_fault_locked(vmf); 305 343 306 pgd = pgd_offset(mm, address); 344 pgd = pgd_offset(mm, address); 307 if (!pgd_present(*pgd)) 345 if (!pgd_present(*pgd)) 308 goto out; 346 goto out; 309 p4d = p4d_offset(pgd, address); 347 p4d = p4d_offset(pgd, address); 310 if (!p4d_present(*p4d)) 348 if (!p4d_present(*p4d)) 311 goto out; 349 goto out; 312 pud = pud_offset(p4d, address); 350 pud = pud_offset(p4d, address); 313 if (!pud_present(*pud)) 351 if (!pud_present(*pud)) 314 goto out; 352 goto out; 315 pmd = pmd_offset(pud, address); 353 pmd = pmd_offset(pud, address); 316 again: 354 again: 317 _pmd = pmdp_get_lockless(pmd); 355 _pmd = pmdp_get_lockless(pmd); 318 if (pmd_none(_pmd)) 356 if (pmd_none(_pmd)) 319 goto out; 357 goto out; 320 358 321 ret = false; 359 ret = false; 322 if (!pmd_present(_pmd) || pmd_devmap(_ 360 if (!pmd_present(_pmd) || pmd_devmap(_pmd)) 323 goto out; 361 goto out; 324 362 325 if (pmd_trans_huge(_pmd)) { 363 if (pmd_trans_huge(_pmd)) { 326 if (!pmd_write(_pmd) && (reaso 364 if (!pmd_write(_pmd) && (reason & VM_UFFD_WP)) 327 ret = true; 365 ret = true; 328 goto out; 366 goto out; 329 } 367 } 330 368 331 pte = pte_offset_map(pmd, address); 369 pte = pte_offset_map(pmd, address); 332 if (!pte) { 370 if (!pte) { 333 ret = true; 371 ret = true; 334 goto again; 372 goto again; 335 } 373 } 336 /* 374 /* 337 * Lockless access: we're in a wait_ev 375 * Lockless access: we're in a wait_event so it's ok if it 338 * changes under us. PTE markers shou 376 * changes under us. PTE markers should be handled the same as none 339 * ptes here. 377 * ptes here. 340 */ 378 */ 341 ptent = ptep_get(pte); 379 ptent = ptep_get(pte); 342 if (pte_none_mostly(ptent)) 380 if (pte_none_mostly(ptent)) 343 ret = true; 381 ret = true; 344 if (!pte_write(ptent) && (reason & VM_ 382 if (!pte_write(ptent) && (reason & VM_UFFD_WP)) 345 ret = true; 383 ret = true; 346 pte_unmap(pte); 384 pte_unmap(pte); 347 385 348 out: 386 out: 349 return ret; 387 return ret; 350 } 388 } 351 389 352 static inline unsigned int userfaultfd_get_blo 390 static inline unsigned int userfaultfd_get_blocking_state(unsigned int flags) 353 { 391 { 354 if (flags & FAULT_FLAG_INTERRUPTIBLE) 392 if (flags & FAULT_FLAG_INTERRUPTIBLE) 355 return TASK_INTERRUPTIBLE; 393 return TASK_INTERRUPTIBLE; 356 394 357 if (flags & FAULT_FLAG_KILLABLE) 395 if (flags & FAULT_FLAG_KILLABLE) 358 return TASK_KILLABLE; 396 return TASK_KILLABLE; 359 397 360 return TASK_UNINTERRUPTIBLE; 398 return TASK_UNINTERRUPTIBLE; 361 } 399 } 362 400 363 /* 401 /* 364 * The locking rules involved in returning VM_ 402 * The locking rules involved in returning VM_FAULT_RETRY depending on 365 * FAULT_FLAG_ALLOW_RETRY, FAULT_FLAG_RETRY_NO 403 * FAULT_FLAG_ALLOW_RETRY, FAULT_FLAG_RETRY_NOWAIT and 366 * FAULT_FLAG_KILLABLE are not straightforward 404 * FAULT_FLAG_KILLABLE are not straightforward. The "Caution" 367 * recommendation in __lock_page_or_retry is n 405 * recommendation in __lock_page_or_retry is not an understatement. 368 * 406 * 369 * If FAULT_FLAG_ALLOW_RETRY is set, the mmap_ 407 * If FAULT_FLAG_ALLOW_RETRY is set, the mmap_lock must be released 370 * before returning VM_FAULT_RETRY only if FAU 408 * before returning VM_FAULT_RETRY only if FAULT_FLAG_RETRY_NOWAIT is 371 * not set. 409 * not set. 372 * 410 * 373 * If FAULT_FLAG_ALLOW_RETRY is set but FAULT_ 411 * If FAULT_FLAG_ALLOW_RETRY is set but FAULT_FLAG_KILLABLE is not 374 * set, VM_FAULT_RETRY can still be returned i 412 * set, VM_FAULT_RETRY can still be returned if and only if there are 375 * fatal_signal_pending()s, and the mmap_lock 413 * fatal_signal_pending()s, and the mmap_lock must be released before 376 * returning it. 414 * returning it. 377 */ 415 */ 378 vm_fault_t handle_userfault(struct vm_fault *v 416 vm_fault_t handle_userfault(struct vm_fault *vmf, unsigned long reason) 379 { 417 { 380 struct vm_area_struct *vma = vmf->vma; 418 struct vm_area_struct *vma = vmf->vma; 381 struct mm_struct *mm = vma->vm_mm; 419 struct mm_struct *mm = vma->vm_mm; 382 struct userfaultfd_ctx *ctx; 420 struct userfaultfd_ctx *ctx; 383 struct userfaultfd_wait_queue uwq; 421 struct userfaultfd_wait_queue uwq; 384 vm_fault_t ret = VM_FAULT_SIGBUS; 422 vm_fault_t ret = VM_FAULT_SIGBUS; 385 bool must_wait; 423 bool must_wait; 386 unsigned int blocking_state; 424 unsigned int blocking_state; 387 425 388 /* 426 /* 389 * We don't do userfault handling for 427 * We don't do userfault handling for the final child pid update. 390 * 428 * 391 * We also don't do userfault handling 429 * We also don't do userfault handling during 392 * coredumping. hugetlbfs has the spec 430 * coredumping. hugetlbfs has the special 393 * hugetlb_follow_page_mask() to skip 431 * hugetlb_follow_page_mask() to skip missing pages in the 394 * FOLL_DUMP case, anon memory also ch 432 * FOLL_DUMP case, anon memory also checks for FOLL_DUMP with 395 * the no_page_table() helper in follo 433 * the no_page_table() helper in follow_page_mask(), but the 396 * shmem_vm_ops->fault method is invok 434 * shmem_vm_ops->fault method is invoked even during 397 * coredumping and it ends up here. 435 * coredumping and it ends up here. 398 */ 436 */ 399 if (current->flags & (PF_EXITING|PF_DU 437 if (current->flags & (PF_EXITING|PF_DUMPCORE)) 400 goto out; 438 goto out; 401 439 402 assert_fault_locked(vmf); 440 assert_fault_locked(vmf); 403 441 404 ctx = vma->vm_userfaultfd_ctx.ctx; 442 ctx = vma->vm_userfaultfd_ctx.ctx; 405 if (!ctx) 443 if (!ctx) 406 goto out; 444 goto out; 407 445 408 BUG_ON(ctx->mm != mm); 446 BUG_ON(ctx->mm != mm); 409 447 410 /* Any unrecognized flag is a bug. */ 448 /* Any unrecognized flag is a bug. */ 411 VM_BUG_ON(reason & ~__VM_UFFD_FLAGS); 449 VM_BUG_ON(reason & ~__VM_UFFD_FLAGS); 412 /* 0 or > 1 flags set is a bug; we exp 450 /* 0 or > 1 flags set is a bug; we expect exactly 1. */ 413 VM_BUG_ON(!reason || (reason & (reason 451 VM_BUG_ON(!reason || (reason & (reason - 1))); 414 452 415 if (ctx->features & UFFD_FEATURE_SIGBU 453 if (ctx->features & UFFD_FEATURE_SIGBUS) 416 goto out; 454 goto out; 417 if (!(vmf->flags & FAULT_FLAG_USER) && 455 if (!(vmf->flags & FAULT_FLAG_USER) && (ctx->flags & UFFD_USER_MODE_ONLY)) 418 goto out; 456 goto out; 419 457 420 /* 458 /* 421 * If it's already released don't get 459 * If it's already released don't get it. This avoids to loop 422 * in __get_user_pages if userfaultfd_ 460 * in __get_user_pages if userfaultfd_release waits on the 423 * caller of handle_userfault to relea 461 * caller of handle_userfault to release the mmap_lock. 424 */ 462 */ 425 if (unlikely(READ_ONCE(ctx->released)) 463 if (unlikely(READ_ONCE(ctx->released))) { 426 /* 464 /* 427 * Don't return VM_FAULT_SIGBU 465 * Don't return VM_FAULT_SIGBUS in this case, so a non 428 * cooperative manager can clo 466 * cooperative manager can close the uffd after the 429 * last UFFDIO_COPY, without r 467 * last UFFDIO_COPY, without risking to trigger an 430 * involuntary SIGBUS if the p 468 * involuntary SIGBUS if the process was starting the 431 * userfaultfd while the userf 469 * userfaultfd while the userfaultfd was still armed 432 * (but after the last UFFDIO_ 470 * (but after the last UFFDIO_COPY). If the uffd 433 * wasn't already closed when 471 * wasn't already closed when the userfault reached 434 * this point, that would norm 472 * this point, that would normally be solved by 435 * userfaultfd_must_wait retur 473 * userfaultfd_must_wait returning 'false'. 436 * 474 * 437 * If we were to return VM_FAU 475 * If we were to return VM_FAULT_SIGBUS here, the non 438 * cooperative manager would b 476 * cooperative manager would be instead forced to 439 * always call UFFDIO_UNREGIST 477 * always call UFFDIO_UNREGISTER before it can safely 440 * close the uffd. 478 * close the uffd. 441 */ 479 */ 442 ret = VM_FAULT_NOPAGE; 480 ret = VM_FAULT_NOPAGE; 443 goto out; 481 goto out; 444 } 482 } 445 483 446 /* 484 /* 447 * Check that we can return VM_FAULT_R 485 * Check that we can return VM_FAULT_RETRY. 448 * 486 * 449 * NOTE: it should become possible to 487 * NOTE: it should become possible to return VM_FAULT_RETRY 450 * even if FAULT_FLAG_TRIED is set wit 488 * even if FAULT_FLAG_TRIED is set without leading to gup() 451 * -EBUSY failures, if the userfaultfd 489 * -EBUSY failures, if the userfaultfd is to be extended for 452 * VM_UFFD_WP tracking and we intend t 490 * VM_UFFD_WP tracking and we intend to arm the userfault 453 * without first stopping userland acc 491 * without first stopping userland access to the memory. For 454 * VM_UFFD_MISSING userfaults this is 492 * VM_UFFD_MISSING userfaults this is enough for now. 455 */ 493 */ 456 if (unlikely(!(vmf->flags & FAULT_FLAG 494 if (unlikely(!(vmf->flags & FAULT_FLAG_ALLOW_RETRY))) { 457 /* 495 /* 458 * Validate the invariant that 496 * Validate the invariant that nowait must allow retry 459 * to be sure not to return SI 497 * to be sure not to return SIGBUS erroneously on 460 * nowait invocations. 498 * nowait invocations. 461 */ 499 */ 462 BUG_ON(vmf->flags & FAULT_FLAG 500 BUG_ON(vmf->flags & FAULT_FLAG_RETRY_NOWAIT); 463 #ifdef CONFIG_DEBUG_VM 501 #ifdef CONFIG_DEBUG_VM 464 if (printk_ratelimit()) { 502 if (printk_ratelimit()) { 465 printk(KERN_WARNING 503 printk(KERN_WARNING 466 "FAULT_FLAG_ALL 504 "FAULT_FLAG_ALLOW_RETRY missing %x\n", 467 vmf->flags); 505 vmf->flags); 468 dump_stack(); 506 dump_stack(); 469 } 507 } 470 #endif 508 #endif 471 goto out; 509 goto out; 472 } 510 } 473 511 474 /* 512 /* 475 * Handle nowait, not much to do other 513 * Handle nowait, not much to do other than tell it to retry 476 * and wait. 514 * and wait. 477 */ 515 */ 478 ret = VM_FAULT_RETRY; 516 ret = VM_FAULT_RETRY; 479 if (vmf->flags & FAULT_FLAG_RETRY_NOWA 517 if (vmf->flags & FAULT_FLAG_RETRY_NOWAIT) 480 goto out; 518 goto out; 481 519 482 /* take the reference before dropping 520 /* take the reference before dropping the mmap_lock */ 483 userfaultfd_ctx_get(ctx); 521 userfaultfd_ctx_get(ctx); 484 522 485 init_waitqueue_func_entry(&uwq.wq, use 523 init_waitqueue_func_entry(&uwq.wq, userfaultfd_wake_function); 486 uwq.wq.private = current; 524 uwq.wq.private = current; 487 uwq.msg = userfault_msg(vmf->address, 525 uwq.msg = userfault_msg(vmf->address, vmf->real_address, vmf->flags, 488 reason, ctx->f 526 reason, ctx->features); 489 uwq.ctx = ctx; 527 uwq.ctx = ctx; 490 uwq.waken = false; 528 uwq.waken = false; 491 529 492 blocking_state = userfaultfd_get_block 530 blocking_state = userfaultfd_get_blocking_state(vmf->flags); 493 531 494 /* 532 /* 495 * Take the vma lock now, in order to 533 * Take the vma lock now, in order to safely call 496 * userfaultfd_huge_must_wait() later. 534 * userfaultfd_huge_must_wait() later. Since acquiring the 497 * (sleepable) vma lock can modify the 535 * (sleepable) vma lock can modify the current task state, that 498 * must be before explicitly calling s 536 * must be before explicitly calling set_current_state(). 499 */ 537 */ 500 if (is_vm_hugetlb_page(vma)) 538 if (is_vm_hugetlb_page(vma)) 501 hugetlb_vma_lock_read(vma); 539 hugetlb_vma_lock_read(vma); 502 540 503 spin_lock_irq(&ctx->fault_pending_wqh. 541 spin_lock_irq(&ctx->fault_pending_wqh.lock); 504 /* 542 /* 505 * After the __add_wait_queue the uwq 543 * After the __add_wait_queue the uwq is visible to userland 506 * through poll/read(). 544 * through poll/read(). 507 */ 545 */ 508 __add_wait_queue(&ctx->fault_pending_w 546 __add_wait_queue(&ctx->fault_pending_wqh, &uwq.wq); 509 /* 547 /* 510 * The smp_mb() after __set_current_st 548 * The smp_mb() after __set_current_state prevents the reads 511 * following the spin_unlock to happen 549 * following the spin_unlock to happen before the list_add in 512 * __add_wait_queue. 550 * __add_wait_queue. 513 */ 551 */ 514 set_current_state(blocking_state); 552 set_current_state(blocking_state); 515 spin_unlock_irq(&ctx->fault_pending_wq 553 spin_unlock_irq(&ctx->fault_pending_wqh.lock); 516 554 517 if (!is_vm_hugetlb_page(vma)) 555 if (!is_vm_hugetlb_page(vma)) 518 must_wait = userfaultfd_must_w 556 must_wait = userfaultfd_must_wait(ctx, vmf, reason); 519 else 557 else 520 must_wait = userfaultfd_huge_m 558 must_wait = userfaultfd_huge_must_wait(ctx, vmf, reason); 521 if (is_vm_hugetlb_page(vma)) 559 if (is_vm_hugetlb_page(vma)) 522 hugetlb_vma_unlock_read(vma); 560 hugetlb_vma_unlock_read(vma); 523 release_fault_lock(vmf); 561 release_fault_lock(vmf); 524 562 525 if (likely(must_wait && !READ_ONCE(ctx 563 if (likely(must_wait && !READ_ONCE(ctx->released))) { 526 wake_up_poll(&ctx->fd_wqh, EPO 564 wake_up_poll(&ctx->fd_wqh, EPOLLIN); 527 schedule(); 565 schedule(); 528 } 566 } 529 567 530 __set_current_state(TASK_RUNNING); 568 __set_current_state(TASK_RUNNING); 531 569 532 /* 570 /* 533 * Here we race with the list_del; lis 571 * Here we race with the list_del; list_add in 534 * userfaultfd_ctx_read(), however bec 572 * userfaultfd_ctx_read(), however because we don't ever run 535 * list_del_init() to refile across th 573 * list_del_init() to refile across the two lists, the prev 536 * and next pointers will never point 574 * and next pointers will never point to self. list_add also 537 * would never let any of the two poin 575 * would never let any of the two pointers to point to 538 * self. So list_empty_careful won't r 576 * self. So list_empty_careful won't risk to see both pointers 539 * pointing to self at any time during 577 * pointing to self at any time during the list refile. The 540 * only case where list_del_init() is 578 * only case where list_del_init() is called is the full 541 * removal in the wake function and th 579 * removal in the wake function and there we don't re-list_add 542 * and it's fine not to block on the s 580 * and it's fine not to block on the spinlock. The uwq on this 543 * kernel stack can be released after 581 * kernel stack can be released after the list_del_init. 544 */ 582 */ 545 if (!list_empty_careful(&uwq.wq.entry) 583 if (!list_empty_careful(&uwq.wq.entry)) { 546 spin_lock_irq(&ctx->fault_pend 584 spin_lock_irq(&ctx->fault_pending_wqh.lock); 547 /* 585 /* 548 * No need of list_del_init(), 586 * No need of list_del_init(), the uwq on the stack 549 * will be freed shortly anywa 587 * will be freed shortly anyway. 550 */ 588 */ 551 list_del(&uwq.wq.entry); 589 list_del(&uwq.wq.entry); 552 spin_unlock_irq(&ctx->fault_pe 590 spin_unlock_irq(&ctx->fault_pending_wqh.lock); 553 } 591 } 554 592 555 /* 593 /* 556 * ctx may go away after this if the u 594 * ctx may go away after this if the userfault pseudo fd is 557 * already released. 595 * already released. 558 */ 596 */ 559 userfaultfd_ctx_put(ctx); 597 userfaultfd_ctx_put(ctx); 560 598 561 out: 599 out: 562 return ret; 600 return ret; 563 } 601 } 564 602 565 static void userfaultfd_event_wait_completion( 603 static void userfaultfd_event_wait_completion(struct userfaultfd_ctx *ctx, 566 604 struct userfaultfd_wait_queue *ewq) 567 { 605 { 568 struct userfaultfd_ctx *release_new_ct 606 struct userfaultfd_ctx *release_new_ctx; 569 607 570 if (WARN_ON_ONCE(current->flags & PF_E 608 if (WARN_ON_ONCE(current->flags & PF_EXITING)) 571 goto out; 609 goto out; 572 610 573 ewq->ctx = ctx; 611 ewq->ctx = ctx; 574 init_waitqueue_entry(&ewq->wq, current 612 init_waitqueue_entry(&ewq->wq, current); 575 release_new_ctx = NULL; 613 release_new_ctx = NULL; 576 614 577 spin_lock_irq(&ctx->event_wqh.lock); 615 spin_lock_irq(&ctx->event_wqh.lock); 578 /* 616 /* 579 * After the __add_wait_queue the uwq 617 * After the __add_wait_queue the uwq is visible to userland 580 * through poll/read(). 618 * through poll/read(). 581 */ 619 */ 582 __add_wait_queue(&ctx->event_wqh, &ewq 620 __add_wait_queue(&ctx->event_wqh, &ewq->wq); 583 for (;;) { 621 for (;;) { 584 set_current_state(TASK_KILLABL 622 set_current_state(TASK_KILLABLE); 585 if (ewq->msg.event == 0) 623 if (ewq->msg.event == 0) 586 break; 624 break; 587 if (READ_ONCE(ctx->released) | 625 if (READ_ONCE(ctx->released) || 588 fatal_signal_pending(curre 626 fatal_signal_pending(current)) { 589 /* 627 /* 590 * &ewq->wq may be que 628 * &ewq->wq may be queued in fork_event, but 591 * __remove_wait_queue 629 * __remove_wait_queue ignores the head 592 * parameter. It would 630 * parameter. It would be a problem if it 593 * didn't. 631 * didn't. 594 */ 632 */ 595 __remove_wait_queue(&c 633 __remove_wait_queue(&ctx->event_wqh, &ewq->wq); 596 if (ewq->msg.event == 634 if (ewq->msg.event == UFFD_EVENT_FORK) { 597 struct userfau 635 struct userfaultfd_ctx *new; 598 636 599 new = (struct 637 new = (struct userfaultfd_ctx *) 600 (unsig 638 (unsigned long) 601 ewq->m 639 ewq->msg.arg.reserved.reserved1; 602 release_new_ct 640 release_new_ctx = new; 603 } 641 } 604 break; 642 break; 605 } 643 } 606 644 607 spin_unlock_irq(&ctx->event_wq 645 spin_unlock_irq(&ctx->event_wqh.lock); 608 646 609 wake_up_poll(&ctx->fd_wqh, EPO 647 wake_up_poll(&ctx->fd_wqh, EPOLLIN); 610 schedule(); 648 schedule(); 611 649 612 spin_lock_irq(&ctx->event_wqh. 650 spin_lock_irq(&ctx->event_wqh.lock); 613 } 651 } 614 __set_current_state(TASK_RUNNING); 652 __set_current_state(TASK_RUNNING); 615 spin_unlock_irq(&ctx->event_wqh.lock); 653 spin_unlock_irq(&ctx->event_wqh.lock); 616 654 617 if (release_new_ctx) { 655 if (release_new_ctx) { 618 struct vm_area_struct *vma; 656 struct vm_area_struct *vma; 619 struct mm_struct *mm = release 657 struct mm_struct *mm = release_new_ctx->mm; 620 VMA_ITERATOR(vmi, mm, 0); 658 VMA_ITERATOR(vmi, mm, 0); 621 659 622 /* the various vma->vm_userfau 660 /* the various vma->vm_userfaultfd_ctx still points to it */ 623 mmap_write_lock(mm); 661 mmap_write_lock(mm); 624 for_each_vma(vmi, vma) { 662 for_each_vma(vmi, vma) { 625 if (vma->vm_userfaultf 663 if (vma->vm_userfaultfd_ctx.ctx == release_new_ctx) { 626 vma_start_writ 664 vma_start_write(vma); 627 vma->vm_userfa 665 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX; 628 userfaultfd_se 666 userfaultfd_set_vm_flags(vma, 629 667 vma->vm_flags & ~__VM_UFFD_FLAGS); 630 } 668 } 631 } 669 } 632 mmap_write_unlock(mm); 670 mmap_write_unlock(mm); 633 671 634 userfaultfd_ctx_put(release_ne 672 userfaultfd_ctx_put(release_new_ctx); 635 } 673 } 636 674 637 /* 675 /* 638 * ctx may go away after this if the u 676 * ctx may go away after this if the userfault pseudo fd is 639 * already released. 677 * already released. 640 */ 678 */ 641 out: 679 out: 642 atomic_dec(&ctx->mmap_changing); 680 atomic_dec(&ctx->mmap_changing); 643 VM_BUG_ON(atomic_read(&ctx->mmap_chang 681 VM_BUG_ON(atomic_read(&ctx->mmap_changing) < 0); 644 userfaultfd_ctx_put(ctx); 682 userfaultfd_ctx_put(ctx); 645 } 683 } 646 684 647 static void userfaultfd_event_complete(struct 685 static void userfaultfd_event_complete(struct userfaultfd_ctx *ctx, 648 struct 686 struct userfaultfd_wait_queue *ewq) 649 { 687 { 650 ewq->msg.event = 0; 688 ewq->msg.event = 0; 651 wake_up_locked(&ctx->event_wqh); 689 wake_up_locked(&ctx->event_wqh); 652 __remove_wait_queue(&ctx->event_wqh, & 690 __remove_wait_queue(&ctx->event_wqh, &ewq->wq); 653 } 691 } 654 692 655 int dup_userfaultfd(struct vm_area_struct *vma 693 int dup_userfaultfd(struct vm_area_struct *vma, struct list_head *fcs) 656 { 694 { 657 struct userfaultfd_ctx *ctx = NULL, *o 695 struct userfaultfd_ctx *ctx = NULL, *octx; 658 struct userfaultfd_fork_ctx *fctx; 696 struct userfaultfd_fork_ctx *fctx; 659 697 660 octx = vma->vm_userfaultfd_ctx.ctx; 698 octx = vma->vm_userfaultfd_ctx.ctx; 661 if (!octx) !! 699 if (!octx || !(octx->features & UFFD_FEATURE_EVENT_FORK)) { 662 return 0; << 663 << 664 if (!(octx->features & UFFD_FEATURE_EV << 665 vma_start_write(vma); 700 vma_start_write(vma); 666 vma->vm_userfaultfd_ctx = NULL 701 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX; 667 userfaultfd_set_vm_flags(vma, 702 userfaultfd_set_vm_flags(vma, vma->vm_flags & ~__VM_UFFD_FLAGS); 668 return 0; 703 return 0; 669 } 704 } 670 705 671 list_for_each_entry(fctx, fcs, list) 706 list_for_each_entry(fctx, fcs, list) 672 if (fctx->orig == octx) { 707 if (fctx->orig == octx) { 673 ctx = fctx->new; 708 ctx = fctx->new; 674 break; 709 break; 675 } 710 } 676 711 677 if (!ctx) { 712 if (!ctx) { 678 fctx = kmalloc(sizeof(*fctx), 713 fctx = kmalloc(sizeof(*fctx), GFP_KERNEL); 679 if (!fctx) 714 if (!fctx) 680 return -ENOMEM; 715 return -ENOMEM; 681 716 682 ctx = kmem_cache_alloc(userfau 717 ctx = kmem_cache_alloc(userfaultfd_ctx_cachep, GFP_KERNEL); 683 if (!ctx) { 718 if (!ctx) { 684 kfree(fctx); 719 kfree(fctx); 685 return -ENOMEM; 720 return -ENOMEM; 686 } 721 } 687 722 688 refcount_set(&ctx->refcount, 1 723 refcount_set(&ctx->refcount, 1); 689 ctx->flags = octx->flags; 724 ctx->flags = octx->flags; 690 ctx->features = octx->features 725 ctx->features = octx->features; 691 ctx->released = false; 726 ctx->released = false; 692 init_rwsem(&ctx->map_changing_ << 693 atomic_set(&ctx->mmap_changing 727 atomic_set(&ctx->mmap_changing, 0); 694 ctx->mm = vma->vm_mm; 728 ctx->mm = vma->vm_mm; 695 mmgrab(ctx->mm); 729 mmgrab(ctx->mm); 696 730 697 userfaultfd_ctx_get(octx); 731 userfaultfd_ctx_get(octx); 698 down_write(&octx->map_changing << 699 atomic_inc(&octx->mmap_changin 732 atomic_inc(&octx->mmap_changing); 700 up_write(&octx->map_changing_l << 701 fctx->orig = octx; 733 fctx->orig = octx; 702 fctx->new = ctx; 734 fctx->new = ctx; 703 list_add_tail(&fctx->list, fcs 735 list_add_tail(&fctx->list, fcs); 704 } 736 } 705 737 706 vma->vm_userfaultfd_ctx.ctx = ctx; 738 vma->vm_userfaultfd_ctx.ctx = ctx; 707 return 0; 739 return 0; 708 } 740 } 709 741 710 static void dup_fctx(struct userfaultfd_fork_c 742 static void dup_fctx(struct userfaultfd_fork_ctx *fctx) 711 { 743 { 712 struct userfaultfd_ctx *ctx = fctx->or 744 struct userfaultfd_ctx *ctx = fctx->orig; 713 struct userfaultfd_wait_queue ewq; 745 struct userfaultfd_wait_queue ewq; 714 746 715 msg_init(&ewq.msg); 747 msg_init(&ewq.msg); 716 748 717 ewq.msg.event = UFFD_EVENT_FORK; 749 ewq.msg.event = UFFD_EVENT_FORK; 718 ewq.msg.arg.reserved.reserved1 = (unsi 750 ewq.msg.arg.reserved.reserved1 = (unsigned long)fctx->new; 719 751 720 userfaultfd_event_wait_completion(ctx, 752 userfaultfd_event_wait_completion(ctx, &ewq); 721 } 753 } 722 754 723 void dup_userfaultfd_complete(struct list_head 755 void dup_userfaultfd_complete(struct list_head *fcs) 724 { 756 { 725 struct userfaultfd_fork_ctx *fctx, *n; 757 struct userfaultfd_fork_ctx *fctx, *n; 726 758 727 list_for_each_entry_safe(fctx, n, fcs, 759 list_for_each_entry_safe(fctx, n, fcs, list) { 728 dup_fctx(fctx); 760 dup_fctx(fctx); 729 list_del(&fctx->list); 761 list_del(&fctx->list); 730 kfree(fctx); 762 kfree(fctx); 731 } 763 } 732 } 764 } 733 765 734 void mremap_userfaultfd_prep(struct vm_area_st 766 void mremap_userfaultfd_prep(struct vm_area_struct *vma, 735 struct vm_userfau 767 struct vm_userfaultfd_ctx *vm_ctx) 736 { 768 { 737 struct userfaultfd_ctx *ctx; 769 struct userfaultfd_ctx *ctx; 738 770 739 ctx = vma->vm_userfaultfd_ctx.ctx; 771 ctx = vma->vm_userfaultfd_ctx.ctx; 740 772 741 if (!ctx) 773 if (!ctx) 742 return; 774 return; 743 775 744 if (ctx->features & UFFD_FEATURE_EVENT 776 if (ctx->features & UFFD_FEATURE_EVENT_REMAP) { 745 vm_ctx->ctx = ctx; 777 vm_ctx->ctx = ctx; 746 userfaultfd_ctx_get(ctx); 778 userfaultfd_ctx_get(ctx); 747 down_write(&ctx->map_changing_ << 748 atomic_inc(&ctx->mmap_changing 779 atomic_inc(&ctx->mmap_changing); 749 up_write(&ctx->map_changing_lo << 750 } else { 780 } else { 751 /* Drop uffd context if remap 781 /* Drop uffd context if remap feature not enabled */ 752 vma_start_write(vma); 782 vma_start_write(vma); 753 vma->vm_userfaultfd_ctx = NULL 783 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX; 754 userfaultfd_set_vm_flags(vma, 784 userfaultfd_set_vm_flags(vma, vma->vm_flags & ~__VM_UFFD_FLAGS); 755 } 785 } 756 } 786 } 757 787 758 void mremap_userfaultfd_complete(struct vm_use 788 void mremap_userfaultfd_complete(struct vm_userfaultfd_ctx *vm_ctx, 759 unsigned long 789 unsigned long from, unsigned long to, 760 unsigned long 790 unsigned long len) 761 { 791 { 762 struct userfaultfd_ctx *ctx = vm_ctx-> 792 struct userfaultfd_ctx *ctx = vm_ctx->ctx; 763 struct userfaultfd_wait_queue ewq; 793 struct userfaultfd_wait_queue ewq; 764 794 765 if (!ctx) 795 if (!ctx) 766 return; 796 return; 767 797 768 if (to & ~PAGE_MASK) { 798 if (to & ~PAGE_MASK) { 769 userfaultfd_ctx_put(ctx); 799 userfaultfd_ctx_put(ctx); 770 return; 800 return; 771 } 801 } 772 802 773 msg_init(&ewq.msg); 803 msg_init(&ewq.msg); 774 804 775 ewq.msg.event = UFFD_EVENT_REMAP; 805 ewq.msg.event = UFFD_EVENT_REMAP; 776 ewq.msg.arg.remap.from = from; 806 ewq.msg.arg.remap.from = from; 777 ewq.msg.arg.remap.to = to; 807 ewq.msg.arg.remap.to = to; 778 ewq.msg.arg.remap.len = len; 808 ewq.msg.arg.remap.len = len; 779 809 780 userfaultfd_event_wait_completion(ctx, 810 userfaultfd_event_wait_completion(ctx, &ewq); 781 } 811 } 782 812 783 bool userfaultfd_remove(struct vm_area_struct 813 bool userfaultfd_remove(struct vm_area_struct *vma, 784 unsigned long start, u 814 unsigned long start, unsigned long end) 785 { 815 { 786 struct mm_struct *mm = vma->vm_mm; 816 struct mm_struct *mm = vma->vm_mm; 787 struct userfaultfd_ctx *ctx; 817 struct userfaultfd_ctx *ctx; 788 struct userfaultfd_wait_queue ewq; 818 struct userfaultfd_wait_queue ewq; 789 819 790 ctx = vma->vm_userfaultfd_ctx.ctx; 820 ctx = vma->vm_userfaultfd_ctx.ctx; 791 if (!ctx || !(ctx->features & UFFD_FEA 821 if (!ctx || !(ctx->features & UFFD_FEATURE_EVENT_REMOVE)) 792 return true; 822 return true; 793 823 794 userfaultfd_ctx_get(ctx); 824 userfaultfd_ctx_get(ctx); 795 down_write(&ctx->map_changing_lock); << 796 atomic_inc(&ctx->mmap_changing); 825 atomic_inc(&ctx->mmap_changing); 797 up_write(&ctx->map_changing_lock); << 798 mmap_read_unlock(mm); 826 mmap_read_unlock(mm); 799 827 800 msg_init(&ewq.msg); 828 msg_init(&ewq.msg); 801 829 802 ewq.msg.event = UFFD_EVENT_REMOVE; 830 ewq.msg.event = UFFD_EVENT_REMOVE; 803 ewq.msg.arg.remove.start = start; 831 ewq.msg.arg.remove.start = start; 804 ewq.msg.arg.remove.end = end; 832 ewq.msg.arg.remove.end = end; 805 833 806 userfaultfd_event_wait_completion(ctx, 834 userfaultfd_event_wait_completion(ctx, &ewq); 807 835 808 return false; 836 return false; 809 } 837 } 810 838 811 static bool has_unmap_ctx(struct userfaultfd_c 839 static bool has_unmap_ctx(struct userfaultfd_ctx *ctx, struct list_head *unmaps, 812 unsigned long start, 840 unsigned long start, unsigned long end) 813 { 841 { 814 struct userfaultfd_unmap_ctx *unmap_ct 842 struct userfaultfd_unmap_ctx *unmap_ctx; 815 843 816 list_for_each_entry(unmap_ctx, unmaps, 844 list_for_each_entry(unmap_ctx, unmaps, list) 817 if (unmap_ctx->ctx == ctx && u 845 if (unmap_ctx->ctx == ctx && unmap_ctx->start == start && 818 unmap_ctx->end == end) 846 unmap_ctx->end == end) 819 return true; 847 return true; 820 848 821 return false; 849 return false; 822 } 850 } 823 851 824 int userfaultfd_unmap_prep(struct vm_area_stru 852 int userfaultfd_unmap_prep(struct vm_area_struct *vma, unsigned long start, 825 unsigned long end, 853 unsigned long end, struct list_head *unmaps) 826 { 854 { 827 struct userfaultfd_unmap_ctx *unmap_ct 855 struct userfaultfd_unmap_ctx *unmap_ctx; 828 struct userfaultfd_ctx *ctx = vma->vm_ 856 struct userfaultfd_ctx *ctx = vma->vm_userfaultfd_ctx.ctx; 829 857 830 if (!ctx || !(ctx->features & UFFD_FEA 858 if (!ctx || !(ctx->features & UFFD_FEATURE_EVENT_UNMAP) || 831 has_unmap_ctx(ctx, unmaps, start, 859 has_unmap_ctx(ctx, unmaps, start, end)) 832 return 0; 860 return 0; 833 861 834 unmap_ctx = kzalloc(sizeof(*unmap_ctx) 862 unmap_ctx = kzalloc(sizeof(*unmap_ctx), GFP_KERNEL); 835 if (!unmap_ctx) 863 if (!unmap_ctx) 836 return -ENOMEM; 864 return -ENOMEM; 837 865 838 userfaultfd_ctx_get(ctx); 866 userfaultfd_ctx_get(ctx); 839 down_write(&ctx->map_changing_lock); << 840 atomic_inc(&ctx->mmap_changing); 867 atomic_inc(&ctx->mmap_changing); 841 up_write(&ctx->map_changing_lock); << 842 unmap_ctx->ctx = ctx; 868 unmap_ctx->ctx = ctx; 843 unmap_ctx->start = start; 869 unmap_ctx->start = start; 844 unmap_ctx->end = end; 870 unmap_ctx->end = end; 845 list_add_tail(&unmap_ctx->list, unmaps 871 list_add_tail(&unmap_ctx->list, unmaps); 846 872 847 return 0; 873 return 0; 848 } 874 } 849 875 850 void userfaultfd_unmap_complete(struct mm_stru 876 void userfaultfd_unmap_complete(struct mm_struct *mm, struct list_head *uf) 851 { 877 { 852 struct userfaultfd_unmap_ctx *ctx, *n; 878 struct userfaultfd_unmap_ctx *ctx, *n; 853 struct userfaultfd_wait_queue ewq; 879 struct userfaultfd_wait_queue ewq; 854 880 855 list_for_each_entry_safe(ctx, n, uf, l 881 list_for_each_entry_safe(ctx, n, uf, list) { 856 msg_init(&ewq.msg); 882 msg_init(&ewq.msg); 857 883 858 ewq.msg.event = UFFD_EVENT_UNM 884 ewq.msg.event = UFFD_EVENT_UNMAP; 859 ewq.msg.arg.remove.start = ctx 885 ewq.msg.arg.remove.start = ctx->start; 860 ewq.msg.arg.remove.end = ctx-> 886 ewq.msg.arg.remove.end = ctx->end; 861 887 862 userfaultfd_event_wait_complet 888 userfaultfd_event_wait_completion(ctx->ctx, &ewq); 863 889 864 list_del(&ctx->list); 890 list_del(&ctx->list); 865 kfree(ctx); 891 kfree(ctx); 866 } 892 } 867 } 893 } 868 894 869 static int userfaultfd_release(struct inode *i 895 static int userfaultfd_release(struct inode *inode, struct file *file) 870 { 896 { 871 struct userfaultfd_ctx *ctx = file->pr 897 struct userfaultfd_ctx *ctx = file->private_data; 872 struct mm_struct *mm = ctx->mm; 898 struct mm_struct *mm = ctx->mm; 873 struct vm_area_struct *vma, *prev; 899 struct vm_area_struct *vma, *prev; 874 /* len == 0 means wake all */ 900 /* len == 0 means wake all */ 875 struct userfaultfd_wake_range range = 901 struct userfaultfd_wake_range range = { .len = 0, }; 876 unsigned long new_flags; 902 unsigned long new_flags; 877 VMA_ITERATOR(vmi, mm, 0); 903 VMA_ITERATOR(vmi, mm, 0); 878 904 879 WRITE_ONCE(ctx->released, true); 905 WRITE_ONCE(ctx->released, true); 880 906 881 if (!mmget_not_zero(mm)) 907 if (!mmget_not_zero(mm)) 882 goto wakeup; 908 goto wakeup; 883 909 884 /* 910 /* 885 * Flush page faults out of all CPUs. 911 * Flush page faults out of all CPUs. NOTE: all page faults 886 * must be retried without returning V 912 * must be retried without returning VM_FAULT_SIGBUS if 887 * userfaultfd_ctx_get() succeeds but 913 * userfaultfd_ctx_get() succeeds but vma->vma_userfault_ctx 888 * changes while handle_userfault rele 914 * changes while handle_userfault released the mmap_lock. So 889 * it's critical that released is set 915 * it's critical that released is set to true (above), before 890 * taking the mmap_lock for writing. 916 * taking the mmap_lock for writing. 891 */ 917 */ 892 mmap_write_lock(mm); 918 mmap_write_lock(mm); 893 prev = NULL; 919 prev = NULL; 894 for_each_vma(vmi, vma) { 920 for_each_vma(vmi, vma) { 895 cond_resched(); 921 cond_resched(); 896 BUG_ON(!!vma->vm_userfaultfd_c 922 BUG_ON(!!vma->vm_userfaultfd_ctx.ctx ^ 897 !!(vma->vm_flags & __VM 923 !!(vma->vm_flags & __VM_UFFD_FLAGS)); 898 if (vma->vm_userfaultfd_ctx.ct 924 if (vma->vm_userfaultfd_ctx.ctx != ctx) { 899 prev = vma; 925 prev = vma; 900 continue; 926 continue; 901 } 927 } 902 /* Reset ptes for the whole vm 928 /* Reset ptes for the whole vma range if wr-protected */ 903 if (userfaultfd_wp(vma)) 929 if (userfaultfd_wp(vma)) 904 uffd_wp_range(vma, vma 930 uffd_wp_range(vma, vma->vm_start, 905 vma->vm_ 931 vma->vm_end - vma->vm_start, false); 906 new_flags = vma->vm_flags & ~_ 932 new_flags = vma->vm_flags & ~__VM_UFFD_FLAGS; 907 vma = vma_modify_flags_uffd(&v 933 vma = vma_modify_flags_uffd(&vmi, prev, vma, vma->vm_start, 908 vm 934 vma->vm_end, new_flags, 909 NU 935 NULL_VM_UFFD_CTX); 910 936 911 vma_start_write(vma); 937 vma_start_write(vma); 912 userfaultfd_set_vm_flags(vma, 938 userfaultfd_set_vm_flags(vma, new_flags); 913 vma->vm_userfaultfd_ctx = NULL 939 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX; 914 940 915 prev = vma; 941 prev = vma; 916 } 942 } 917 mmap_write_unlock(mm); 943 mmap_write_unlock(mm); 918 mmput(mm); 944 mmput(mm); 919 wakeup: 945 wakeup: 920 /* 946 /* 921 * After no new page faults can wait o 947 * After no new page faults can wait on this fault_*wqh, flush 922 * the last page faults that may have 948 * the last page faults that may have been already waiting on 923 * the fault_*wqh. 949 * the fault_*wqh. 924 */ 950 */ 925 spin_lock_irq(&ctx->fault_pending_wqh. 951 spin_lock_irq(&ctx->fault_pending_wqh.lock); 926 __wake_up_locked_key(&ctx->fault_pendi 952 __wake_up_locked_key(&ctx->fault_pending_wqh, TASK_NORMAL, &range); 927 __wake_up(&ctx->fault_wqh, TASK_NORMAL 953 __wake_up(&ctx->fault_wqh, TASK_NORMAL, 1, &range); 928 spin_unlock_irq(&ctx->fault_pending_wq 954 spin_unlock_irq(&ctx->fault_pending_wqh.lock); 929 955 930 /* Flush pending events that may still 956 /* Flush pending events that may still wait on event_wqh */ 931 wake_up_all(&ctx->event_wqh); 957 wake_up_all(&ctx->event_wqh); 932 958 933 wake_up_poll(&ctx->fd_wqh, EPOLLHUP); 959 wake_up_poll(&ctx->fd_wqh, EPOLLHUP); 934 userfaultfd_ctx_put(ctx); 960 userfaultfd_ctx_put(ctx); 935 return 0; 961 return 0; 936 } 962 } 937 963 938 /* fault_pending_wqh.lock must be hold by the 964 /* fault_pending_wqh.lock must be hold by the caller */ 939 static inline struct userfaultfd_wait_queue *f 965 static inline struct userfaultfd_wait_queue *find_userfault_in( 940 wait_queue_head_t *wqh) 966 wait_queue_head_t *wqh) 941 { 967 { 942 wait_queue_entry_t *wq; 968 wait_queue_entry_t *wq; 943 struct userfaultfd_wait_queue *uwq; 969 struct userfaultfd_wait_queue *uwq; 944 970 945 lockdep_assert_held(&wqh->lock); 971 lockdep_assert_held(&wqh->lock); 946 972 947 uwq = NULL; 973 uwq = NULL; 948 if (!waitqueue_active(wqh)) 974 if (!waitqueue_active(wqh)) 949 goto out; 975 goto out; 950 /* walk in reverse to provide FIFO beh 976 /* walk in reverse to provide FIFO behavior to read userfaults */ 951 wq = list_last_entry(&wqh->head, typeo 977 wq = list_last_entry(&wqh->head, typeof(*wq), entry); 952 uwq = container_of(wq, struct userfaul 978 uwq = container_of(wq, struct userfaultfd_wait_queue, wq); 953 out: 979 out: 954 return uwq; 980 return uwq; 955 } 981 } 956 982 957 static inline struct userfaultfd_wait_queue *f 983 static inline struct userfaultfd_wait_queue *find_userfault( 958 struct userfaultfd_ctx *ctx) 984 struct userfaultfd_ctx *ctx) 959 { 985 { 960 return find_userfault_in(&ctx->fault_p 986 return find_userfault_in(&ctx->fault_pending_wqh); 961 } 987 } 962 988 963 static inline struct userfaultfd_wait_queue *f 989 static inline struct userfaultfd_wait_queue *find_userfault_evt( 964 struct userfaultfd_ctx *ctx) 990 struct userfaultfd_ctx *ctx) 965 { 991 { 966 return find_userfault_in(&ctx->event_w 992 return find_userfault_in(&ctx->event_wqh); 967 } 993 } 968 994 969 static __poll_t userfaultfd_poll(struct file * 995 static __poll_t userfaultfd_poll(struct file *file, poll_table *wait) 970 { 996 { 971 struct userfaultfd_ctx *ctx = file->pr 997 struct userfaultfd_ctx *ctx = file->private_data; 972 __poll_t ret; 998 __poll_t ret; 973 999 974 poll_wait(file, &ctx->fd_wqh, wait); 1000 poll_wait(file, &ctx->fd_wqh, wait); 975 1001 976 if (!userfaultfd_is_initialized(ctx)) 1002 if (!userfaultfd_is_initialized(ctx)) 977 return EPOLLERR; 1003 return EPOLLERR; 978 1004 979 /* 1005 /* 980 * poll() never guarantees that read w 1006 * poll() never guarantees that read won't block. 981 * userfaults can be waken before they 1007 * userfaults can be waken before they're read(). 982 */ 1008 */ 983 if (unlikely(!(file->f_flags & O_NONBL 1009 if (unlikely(!(file->f_flags & O_NONBLOCK))) 984 return EPOLLERR; 1010 return EPOLLERR; 985 /* 1011 /* 986 * lockless access to see if there are 1012 * lockless access to see if there are pending faults 987 * __pollwait last action is the add_w 1013 * __pollwait last action is the add_wait_queue but 988 * the spin_unlock would allow the wai 1014 * the spin_unlock would allow the waitqueue_active to 989 * pass above the actual list_add insi 1015 * pass above the actual list_add inside 990 * add_wait_queue critical section. So 1016 * add_wait_queue critical section. So use a full 991 * memory barrier to serialize the lis 1017 * memory barrier to serialize the list_add write of 992 * add_wait_queue() with the waitqueue 1018 * add_wait_queue() with the waitqueue_active read 993 * below. 1019 * below. 994 */ 1020 */ 995 ret = 0; 1021 ret = 0; 996 smp_mb(); 1022 smp_mb(); 997 if (waitqueue_active(&ctx->fault_pendi 1023 if (waitqueue_active(&ctx->fault_pending_wqh)) 998 ret = EPOLLIN; 1024 ret = EPOLLIN; 999 else if (waitqueue_active(&ctx->event_ 1025 else if (waitqueue_active(&ctx->event_wqh)) 1000 ret = EPOLLIN; 1026 ret = EPOLLIN; 1001 1027 1002 return ret; 1028 return ret; 1003 } 1029 } 1004 1030 1005 static const struct file_operations userfault 1031 static const struct file_operations userfaultfd_fops; 1006 1032 1007 static int resolve_userfault_fork(struct user 1033 static int resolve_userfault_fork(struct userfaultfd_ctx *new, 1008 struct inod 1034 struct inode *inode, 1009 struct uffd 1035 struct uffd_msg *msg) 1010 { 1036 { 1011 int fd; 1037 int fd; 1012 1038 1013 fd = anon_inode_create_getfd("[userfa 1039 fd = anon_inode_create_getfd("[userfaultfd]", &userfaultfd_fops, new, 1014 O_RDONLY | (new->flag 1040 O_RDONLY | (new->flags & UFFD_SHARED_FCNTL_FLAGS), inode); 1015 if (fd < 0) 1041 if (fd < 0) 1016 return fd; 1042 return fd; 1017 1043 1018 msg->arg.reserved.reserved1 = 0; 1044 msg->arg.reserved.reserved1 = 0; 1019 msg->arg.fork.ufd = fd; 1045 msg->arg.fork.ufd = fd; 1020 return 0; 1046 return 0; 1021 } 1047 } 1022 1048 1023 static ssize_t userfaultfd_ctx_read(struct us 1049 static ssize_t userfaultfd_ctx_read(struct userfaultfd_ctx *ctx, int no_wait, 1024 struct uf 1050 struct uffd_msg *msg, struct inode *inode) 1025 { 1051 { 1026 ssize_t ret; 1052 ssize_t ret; 1027 DECLARE_WAITQUEUE(wait, current); 1053 DECLARE_WAITQUEUE(wait, current); 1028 struct userfaultfd_wait_queue *uwq; 1054 struct userfaultfd_wait_queue *uwq; 1029 /* 1055 /* 1030 * Handling fork event requires sleep 1056 * Handling fork event requires sleeping operations, so 1031 * we drop the event_wqh lock, then d 1057 * we drop the event_wqh lock, then do these ops, then 1032 * lock it back and wake up the waite 1058 * lock it back and wake up the waiter. While the lock is 1033 * dropped the ewq may go away so we 1059 * dropped the ewq may go away so we keep track of it 1034 * carefully. 1060 * carefully. 1035 */ 1061 */ 1036 LIST_HEAD(fork_event); 1062 LIST_HEAD(fork_event); 1037 struct userfaultfd_ctx *fork_nctx = N 1063 struct userfaultfd_ctx *fork_nctx = NULL; 1038 1064 1039 /* always take the fd_wqh lock before 1065 /* always take the fd_wqh lock before the fault_pending_wqh lock */ 1040 spin_lock_irq(&ctx->fd_wqh.lock); 1066 spin_lock_irq(&ctx->fd_wqh.lock); 1041 __add_wait_queue(&ctx->fd_wqh, &wait) 1067 __add_wait_queue(&ctx->fd_wqh, &wait); 1042 for (;;) { 1068 for (;;) { 1043 set_current_state(TASK_INTERR 1069 set_current_state(TASK_INTERRUPTIBLE); 1044 spin_lock(&ctx->fault_pending 1070 spin_lock(&ctx->fault_pending_wqh.lock); 1045 uwq = find_userfault(ctx); 1071 uwq = find_userfault(ctx); 1046 if (uwq) { 1072 if (uwq) { 1047 /* 1073 /* 1048 * Use a seqcount to 1074 * Use a seqcount to repeat the lockless check 1049 * in wake_userfault( 1075 * in wake_userfault() to avoid missing 1050 * wakeups because du 1076 * wakeups because during the refile both 1051 * waitqueue could be 1077 * waitqueue could become empty if this is the 1052 * only userfault. 1078 * only userfault. 1053 */ 1079 */ 1054 write_seqcount_begin( 1080 write_seqcount_begin(&ctx->refile_seq); 1055 1081 1056 /* 1082 /* 1057 * The fault_pending_ 1083 * The fault_pending_wqh.lock prevents the uwq 1058 * to disappear from 1084 * to disappear from under us. 1059 * 1085 * 1060 * Refile this userfa 1086 * Refile this userfault from 1061 * fault_pending_wqh 1087 * fault_pending_wqh to fault_wqh, it's not 1062 * pending anymore af 1088 * pending anymore after we read it. 1063 * 1089 * 1064 * Use list_del() by 1090 * Use list_del() by hand (as 1065 * userfaultfd_wake_f 1091 * userfaultfd_wake_function also uses 1066 * list_del_init() by 1092 * list_del_init() by hand) to be sure nobody 1067 * changes __remove_w 1093 * changes __remove_wait_queue() to use 1068 * list_del_init() in 1094 * list_del_init() in turn breaking the 1069 * !list_empty_carefu 1095 * !list_empty_careful() check in 1070 * handle_userfault() 1096 * handle_userfault(). The uwq->wq.head list 1071 * must never be empt 1097 * must never be empty at any time during the 1072 * refile, or the wai 1098 * refile, or the waitqueue could disappear 1073 * from under us. The 1099 * from under us. The "wait_queue_head_t" 1074 * parameter of __rem 1100 * parameter of __remove_wait_queue() is unused 1075 * anyway. 1101 * anyway. 1076 */ 1102 */ 1077 list_del(&uwq->wq.ent 1103 list_del(&uwq->wq.entry); 1078 add_wait_queue(&ctx-> 1104 add_wait_queue(&ctx->fault_wqh, &uwq->wq); 1079 1105 1080 write_seqcount_end(&c 1106 write_seqcount_end(&ctx->refile_seq); 1081 1107 1082 /* careful to always 1108 /* careful to always initialize msg if ret == 0 */ 1083 *msg = uwq->msg; 1109 *msg = uwq->msg; 1084 spin_unlock(&ctx->fau 1110 spin_unlock(&ctx->fault_pending_wqh.lock); 1085 ret = 0; 1111 ret = 0; 1086 break; 1112 break; 1087 } 1113 } 1088 spin_unlock(&ctx->fault_pendi 1114 spin_unlock(&ctx->fault_pending_wqh.lock); 1089 1115 1090 spin_lock(&ctx->event_wqh.loc 1116 spin_lock(&ctx->event_wqh.lock); 1091 uwq = find_userfault_evt(ctx) 1117 uwq = find_userfault_evt(ctx); 1092 if (uwq) { 1118 if (uwq) { 1093 *msg = uwq->msg; 1119 *msg = uwq->msg; 1094 1120 1095 if (uwq->msg.event == 1121 if (uwq->msg.event == UFFD_EVENT_FORK) { 1096 fork_nctx = ( 1122 fork_nctx = (struct userfaultfd_ctx *) 1097 (unsi 1123 (unsigned long) 1098 uwq-> 1124 uwq->msg.arg.reserved.reserved1; 1099 list_move(&uw 1125 list_move(&uwq->wq.entry, &fork_event); 1100 /* 1126 /* 1101 * fork_nctx 1127 * fork_nctx can be freed as soon as 1102 * we drop th 1128 * we drop the lock, unless we take a 1103 * reference 1129 * reference on it. 1104 */ 1130 */ 1105 userfaultfd_c 1131 userfaultfd_ctx_get(fork_nctx); 1106 spin_unlock(& 1132 spin_unlock(&ctx->event_wqh.lock); 1107 ret = 0; 1133 ret = 0; 1108 break; 1134 break; 1109 } 1135 } 1110 1136 1111 userfaultfd_event_com 1137 userfaultfd_event_complete(ctx, uwq); 1112 spin_unlock(&ctx->eve 1138 spin_unlock(&ctx->event_wqh.lock); 1113 ret = 0; 1139 ret = 0; 1114 break; 1140 break; 1115 } 1141 } 1116 spin_unlock(&ctx->event_wqh.l 1142 spin_unlock(&ctx->event_wqh.lock); 1117 1143 1118 if (signal_pending(current)) 1144 if (signal_pending(current)) { 1119 ret = -ERESTARTSYS; 1145 ret = -ERESTARTSYS; 1120 break; 1146 break; 1121 } 1147 } 1122 if (no_wait) { 1148 if (no_wait) { 1123 ret = -EAGAIN; 1149 ret = -EAGAIN; 1124 break; 1150 break; 1125 } 1151 } 1126 spin_unlock_irq(&ctx->fd_wqh. 1152 spin_unlock_irq(&ctx->fd_wqh.lock); 1127 schedule(); 1153 schedule(); 1128 spin_lock_irq(&ctx->fd_wqh.lo 1154 spin_lock_irq(&ctx->fd_wqh.lock); 1129 } 1155 } 1130 __remove_wait_queue(&ctx->fd_wqh, &wa 1156 __remove_wait_queue(&ctx->fd_wqh, &wait); 1131 __set_current_state(TASK_RUNNING); 1157 __set_current_state(TASK_RUNNING); 1132 spin_unlock_irq(&ctx->fd_wqh.lock); 1158 spin_unlock_irq(&ctx->fd_wqh.lock); 1133 1159 1134 if (!ret && msg->event == UFFD_EVENT_ 1160 if (!ret && msg->event == UFFD_EVENT_FORK) { 1135 ret = resolve_userfault_fork( 1161 ret = resolve_userfault_fork(fork_nctx, inode, msg); 1136 spin_lock_irq(&ctx->event_wqh 1162 spin_lock_irq(&ctx->event_wqh.lock); 1137 if (!list_empty(&fork_event)) 1163 if (!list_empty(&fork_event)) { 1138 /* 1164 /* 1139 * The fork thread di 1165 * The fork thread didn't abort, so we can 1140 * drop the temporary 1166 * drop the temporary refcount. 1141 */ 1167 */ 1142 userfaultfd_ctx_put(f 1168 userfaultfd_ctx_put(fork_nctx); 1143 1169 1144 uwq = list_first_entr 1170 uwq = list_first_entry(&fork_event, 1145 1171 typeof(*uwq), 1146 1172 wq.entry); 1147 /* 1173 /* 1148 * If fork_event list 1174 * If fork_event list wasn't empty and in turn 1149 * the event wasn't a 1175 * the event wasn't already released by fork 1150 * (the event is allo 1176 * (the event is allocated on fork kernel 1151 * stack), put the ev 1177 * stack), put the event back to its place in 1152 * the event_wq. fork 1178 * the event_wq. fork_event head will be freed 1153 * as soon as we retu 1179 * as soon as we return so the event cannot 1154 * stay queued there 1180 * stay queued there no matter the current 1155 * "ret" value. 1181 * "ret" value. 1156 */ 1182 */ 1157 list_del(&uwq->wq.ent 1183 list_del(&uwq->wq.entry); 1158 __add_wait_queue(&ctx 1184 __add_wait_queue(&ctx->event_wqh, &uwq->wq); 1159 1185 1160 /* 1186 /* 1161 * Leave the event in 1187 * Leave the event in the waitqueue and report 1162 * error to userland 1188 * error to userland if we failed to resolve 1163 * the userfault fork 1189 * the userfault fork. 1164 */ 1190 */ 1165 if (likely(!ret)) 1191 if (likely(!ret)) 1166 userfaultfd_e 1192 userfaultfd_event_complete(ctx, uwq); 1167 } else { 1193 } else { 1168 /* 1194 /* 1169 * Here the fork thre 1195 * Here the fork thread aborted and the 1170 * refcount from the 1196 * refcount from the fork thread on fork_nctx 1171 * has already been r 1197 * has already been released. We still hold 1172 * the reference we t 1198 * the reference we took before releasing the 1173 * lock above. If res 1199 * lock above. If resolve_userfault_fork 1174 * failed we've to dr 1200 * failed we've to drop it because the 1175 * fork_nctx has to b 1201 * fork_nctx has to be freed in such case. If 1176 * it succeeded we'll 1202 * it succeeded we'll hold it because the new 1177 * uffd references it 1203 * uffd references it. 1178 */ 1204 */ 1179 if (ret) 1205 if (ret) 1180 userfaultfd_c 1206 userfaultfd_ctx_put(fork_nctx); 1181 } 1207 } 1182 spin_unlock_irq(&ctx->event_w 1208 spin_unlock_irq(&ctx->event_wqh.lock); 1183 } 1209 } 1184 1210 1185 return ret; 1211 return ret; 1186 } 1212 } 1187 1213 1188 static ssize_t userfaultfd_read_iter(struct k !! 1214 static ssize_t userfaultfd_read(struct file *file, char __user *buf, >> 1215 size_t count, loff_t *ppos) 1189 { 1216 { 1190 struct file *file = iocb->ki_filp; << 1191 struct userfaultfd_ctx *ctx = file->p 1217 struct userfaultfd_ctx *ctx = file->private_data; 1192 ssize_t _ret, ret = 0; 1218 ssize_t _ret, ret = 0; 1193 struct uffd_msg msg; 1219 struct uffd_msg msg; >> 1220 int no_wait = file->f_flags & O_NONBLOCK; 1194 struct inode *inode = file_inode(file 1221 struct inode *inode = file_inode(file); 1195 bool no_wait; << 1196 1222 1197 if (!userfaultfd_is_initialized(ctx)) 1223 if (!userfaultfd_is_initialized(ctx)) 1198 return -EINVAL; 1224 return -EINVAL; 1199 1225 1200 no_wait = file->f_flags & O_NONBLOCK << 1201 for (;;) { 1226 for (;;) { 1202 if (iov_iter_count(to) < size !! 1227 if (count < sizeof(msg)) 1203 return ret ? ret : -E 1228 return ret ? ret : -EINVAL; 1204 _ret = userfaultfd_ctx_read(c 1229 _ret = userfaultfd_ctx_read(ctx, no_wait, &msg, inode); 1205 if (_ret < 0) 1230 if (_ret < 0) 1206 return ret ? ret : _r 1231 return ret ? ret : _ret; 1207 _ret = !copy_to_iter_full(&ms !! 1232 if (copy_to_user((__u64 __user *) buf, &msg, sizeof(msg))) 1208 if (_ret) << 1209 return ret ? ret : -E 1233 return ret ? ret : -EFAULT; 1210 ret += sizeof(msg); 1234 ret += sizeof(msg); >> 1235 buf += sizeof(msg); >> 1236 count -= sizeof(msg); 1211 /* 1237 /* 1212 * Allow to read more than on 1238 * Allow to read more than one fault at time but only 1213 * block if waiting for the v 1239 * block if waiting for the very first one. 1214 */ 1240 */ 1215 no_wait = true; !! 1241 no_wait = O_NONBLOCK; 1216 } 1242 } 1217 } 1243 } 1218 1244 1219 static void __wake_userfault(struct userfault 1245 static void __wake_userfault(struct userfaultfd_ctx *ctx, 1220 struct userfault 1246 struct userfaultfd_wake_range *range) 1221 { 1247 { 1222 spin_lock_irq(&ctx->fault_pending_wqh 1248 spin_lock_irq(&ctx->fault_pending_wqh.lock); 1223 /* wake all in the range and autoremo 1249 /* wake all in the range and autoremove */ 1224 if (waitqueue_active(&ctx->fault_pend 1250 if (waitqueue_active(&ctx->fault_pending_wqh)) 1225 __wake_up_locked_key(&ctx->fa 1251 __wake_up_locked_key(&ctx->fault_pending_wqh, TASK_NORMAL, 1226 range); 1252 range); 1227 if (waitqueue_active(&ctx->fault_wqh) 1253 if (waitqueue_active(&ctx->fault_wqh)) 1228 __wake_up(&ctx->fault_wqh, TA 1254 __wake_up(&ctx->fault_wqh, TASK_NORMAL, 1, range); 1229 spin_unlock_irq(&ctx->fault_pending_w 1255 spin_unlock_irq(&ctx->fault_pending_wqh.lock); 1230 } 1256 } 1231 1257 1232 static __always_inline void wake_userfault(st 1258 static __always_inline void wake_userfault(struct userfaultfd_ctx *ctx, 1233 st 1259 struct userfaultfd_wake_range *range) 1234 { 1260 { 1235 unsigned seq; 1261 unsigned seq; 1236 bool need_wakeup; 1262 bool need_wakeup; 1237 1263 1238 /* 1264 /* 1239 * To be sure waitqueue_active() is n 1265 * To be sure waitqueue_active() is not reordered by the CPU 1240 * before the pagetable update, use a 1266 * before the pagetable update, use an explicit SMP memory 1241 * barrier here. PT lock release or m 1267 * barrier here. PT lock release or mmap_read_unlock(mm) still 1242 * have release semantics that can al 1268 * have release semantics that can allow the 1243 * waitqueue_active() to be reordered 1269 * waitqueue_active() to be reordered before the pte update. 1244 */ 1270 */ 1245 smp_mb(); 1271 smp_mb(); 1246 1272 1247 /* 1273 /* 1248 * Use waitqueue_active because it's 1274 * Use waitqueue_active because it's very frequent to 1249 * change the address space atomicall 1275 * change the address space atomically even if there are no 1250 * userfaults yet. So we take the spi 1276 * userfaults yet. So we take the spinlock only when we're 1251 * sure we've userfaults to wake. 1277 * sure we've userfaults to wake. 1252 */ 1278 */ 1253 do { 1279 do { 1254 seq = read_seqcount_begin(&ct 1280 seq = read_seqcount_begin(&ctx->refile_seq); 1255 need_wakeup = waitqueue_activ 1281 need_wakeup = waitqueue_active(&ctx->fault_pending_wqh) || 1256 waitqueue_active(&ctx 1282 waitqueue_active(&ctx->fault_wqh); 1257 cond_resched(); 1283 cond_resched(); 1258 } while (read_seqcount_retry(&ctx->re 1284 } while (read_seqcount_retry(&ctx->refile_seq, seq)); 1259 if (need_wakeup) 1285 if (need_wakeup) 1260 __wake_userfault(ctx, range); 1286 __wake_userfault(ctx, range); 1261 } 1287 } 1262 1288 1263 static __always_inline int validate_unaligned 1289 static __always_inline int validate_unaligned_range( 1264 struct mm_struct *mm, __u64 start, __ 1290 struct mm_struct *mm, __u64 start, __u64 len) 1265 { 1291 { 1266 __u64 task_size = mm->task_size; 1292 __u64 task_size = mm->task_size; 1267 1293 1268 if (len & ~PAGE_MASK) 1294 if (len & ~PAGE_MASK) 1269 return -EINVAL; 1295 return -EINVAL; 1270 if (!len) 1296 if (!len) 1271 return -EINVAL; 1297 return -EINVAL; 1272 if (start < mmap_min_addr) 1298 if (start < mmap_min_addr) 1273 return -EINVAL; 1299 return -EINVAL; 1274 if (start >= task_size) 1300 if (start >= task_size) 1275 return -EINVAL; 1301 return -EINVAL; 1276 if (len > task_size - start) 1302 if (len > task_size - start) 1277 return -EINVAL; 1303 return -EINVAL; 1278 if (start + len <= start) 1304 if (start + len <= start) 1279 return -EINVAL; 1305 return -EINVAL; 1280 return 0; 1306 return 0; 1281 } 1307 } 1282 1308 1283 static __always_inline int validate_range(str 1309 static __always_inline int validate_range(struct mm_struct *mm, 1284 __u 1310 __u64 start, __u64 len) 1285 { 1311 { 1286 if (start & ~PAGE_MASK) 1312 if (start & ~PAGE_MASK) 1287 return -EINVAL; 1313 return -EINVAL; 1288 1314 1289 return validate_unaligned_range(mm, s 1315 return validate_unaligned_range(mm, start, len); 1290 } 1316 } 1291 1317 1292 static int userfaultfd_register(struct userfa 1318 static int userfaultfd_register(struct userfaultfd_ctx *ctx, 1293 unsigned long 1319 unsigned long arg) 1294 { 1320 { 1295 struct mm_struct *mm = ctx->mm; 1321 struct mm_struct *mm = ctx->mm; 1296 struct vm_area_struct *vma, *prev, *c 1322 struct vm_area_struct *vma, *prev, *cur; 1297 int ret; 1323 int ret; 1298 struct uffdio_register uffdio_registe 1324 struct uffdio_register uffdio_register; 1299 struct uffdio_register __user *user_u 1325 struct uffdio_register __user *user_uffdio_register; 1300 unsigned long vm_flags, new_flags; 1326 unsigned long vm_flags, new_flags; 1301 bool found; 1327 bool found; 1302 bool basic_ioctls; 1328 bool basic_ioctls; 1303 unsigned long start, end, vma_end; 1329 unsigned long start, end, vma_end; 1304 struct vma_iterator vmi; 1330 struct vma_iterator vmi; 1305 bool wp_async = userfaultfd_wp_async_ 1331 bool wp_async = userfaultfd_wp_async_ctx(ctx); 1306 1332 1307 user_uffdio_register = (struct uffdio 1333 user_uffdio_register = (struct uffdio_register __user *) arg; 1308 1334 1309 ret = -EFAULT; 1335 ret = -EFAULT; 1310 if (copy_from_user(&uffdio_register, 1336 if (copy_from_user(&uffdio_register, user_uffdio_register, 1311 sizeof(uffdio_regi 1337 sizeof(uffdio_register)-sizeof(__u64))) 1312 goto out; 1338 goto out; 1313 1339 1314 ret = -EINVAL; 1340 ret = -EINVAL; 1315 if (!uffdio_register.mode) 1341 if (!uffdio_register.mode) 1316 goto out; 1342 goto out; 1317 if (uffdio_register.mode & ~UFFD_API_ 1343 if (uffdio_register.mode & ~UFFD_API_REGISTER_MODES) 1318 goto out; 1344 goto out; 1319 vm_flags = 0; 1345 vm_flags = 0; 1320 if (uffdio_register.mode & UFFDIO_REG 1346 if (uffdio_register.mode & UFFDIO_REGISTER_MODE_MISSING) 1321 vm_flags |= VM_UFFD_MISSING; 1347 vm_flags |= VM_UFFD_MISSING; 1322 if (uffdio_register.mode & UFFDIO_REG 1348 if (uffdio_register.mode & UFFDIO_REGISTER_MODE_WP) { 1323 #ifndef CONFIG_HAVE_ARCH_USERFAULTFD_WP 1349 #ifndef CONFIG_HAVE_ARCH_USERFAULTFD_WP 1324 goto out; 1350 goto out; 1325 #endif 1351 #endif 1326 vm_flags |= VM_UFFD_WP; 1352 vm_flags |= VM_UFFD_WP; 1327 } 1353 } 1328 if (uffdio_register.mode & UFFDIO_REG 1354 if (uffdio_register.mode & UFFDIO_REGISTER_MODE_MINOR) { 1329 #ifndef CONFIG_HAVE_ARCH_USERFAULTFD_MINOR 1355 #ifndef CONFIG_HAVE_ARCH_USERFAULTFD_MINOR 1330 goto out; 1356 goto out; 1331 #endif 1357 #endif 1332 vm_flags |= VM_UFFD_MINOR; 1358 vm_flags |= VM_UFFD_MINOR; 1333 } 1359 } 1334 1360 1335 ret = validate_range(mm, uffdio_regis 1361 ret = validate_range(mm, uffdio_register.range.start, 1336 uffdio_register. 1362 uffdio_register.range.len); 1337 if (ret) 1363 if (ret) 1338 goto out; 1364 goto out; 1339 1365 1340 start = uffdio_register.range.start; 1366 start = uffdio_register.range.start; 1341 end = start + uffdio_register.range.l 1367 end = start + uffdio_register.range.len; 1342 1368 1343 ret = -ENOMEM; 1369 ret = -ENOMEM; 1344 if (!mmget_not_zero(mm)) 1370 if (!mmget_not_zero(mm)) 1345 goto out; 1371 goto out; 1346 1372 1347 ret = -EINVAL; 1373 ret = -EINVAL; 1348 mmap_write_lock(mm); 1374 mmap_write_lock(mm); 1349 vma_iter_init(&vmi, mm, start); 1375 vma_iter_init(&vmi, mm, start); 1350 vma = vma_find(&vmi, end); 1376 vma = vma_find(&vmi, end); 1351 if (!vma) 1377 if (!vma) 1352 goto out_unlock; 1378 goto out_unlock; 1353 1379 1354 /* 1380 /* 1355 * If the first vma contains huge pag 1381 * If the first vma contains huge pages, make sure start address 1356 * is aligned to huge page size. 1382 * is aligned to huge page size. 1357 */ 1383 */ 1358 if (is_vm_hugetlb_page(vma)) { 1384 if (is_vm_hugetlb_page(vma)) { 1359 unsigned long vma_hpagesize = 1385 unsigned long vma_hpagesize = vma_kernel_pagesize(vma); 1360 1386 1361 if (start & (vma_hpagesize - 1387 if (start & (vma_hpagesize - 1)) 1362 goto out_unlock; 1388 goto out_unlock; 1363 } 1389 } 1364 1390 1365 /* 1391 /* 1366 * Search for not compatible vmas. 1392 * Search for not compatible vmas. 1367 */ 1393 */ 1368 found = false; 1394 found = false; 1369 basic_ioctls = false; 1395 basic_ioctls = false; 1370 cur = vma; 1396 cur = vma; 1371 do { 1397 do { 1372 cond_resched(); 1398 cond_resched(); 1373 1399 1374 BUG_ON(!!cur->vm_userfaultfd_ 1400 BUG_ON(!!cur->vm_userfaultfd_ctx.ctx ^ 1375 !!(cur->vm_flags & __V 1401 !!(cur->vm_flags & __VM_UFFD_FLAGS)); 1376 1402 1377 /* check not compatible vmas 1403 /* check not compatible vmas */ 1378 ret = -EINVAL; 1404 ret = -EINVAL; 1379 if (!vma_can_userfault(cur, v 1405 if (!vma_can_userfault(cur, vm_flags, wp_async)) 1380 goto out_unlock; 1406 goto out_unlock; 1381 1407 1382 /* 1408 /* 1383 * UFFDIO_COPY will fill file 1409 * UFFDIO_COPY will fill file holes even without 1384 * PROT_WRITE. This check enf 1410 * PROT_WRITE. This check enforces that if this is a 1385 * MAP_SHARED, the process ha 1411 * MAP_SHARED, the process has write permission to the backing 1386 * file. If VM_MAYWRITE is se 1412 * file. If VM_MAYWRITE is set it also enforces that on a 1387 * MAP_SHARED vma: there is n 1413 * MAP_SHARED vma: there is no F_WRITE_SEAL and no further 1388 * F_WRITE_SEAL can be taken 1414 * F_WRITE_SEAL can be taken until the vma is destroyed. 1389 */ 1415 */ 1390 ret = -EPERM; 1416 ret = -EPERM; 1391 if (unlikely(!(cur->vm_flags 1417 if (unlikely(!(cur->vm_flags & VM_MAYWRITE))) 1392 goto out_unlock; 1418 goto out_unlock; 1393 1419 1394 /* 1420 /* 1395 * If this vma contains endin 1421 * If this vma contains ending address, and huge pages 1396 * check alignment. 1422 * check alignment. 1397 */ 1423 */ 1398 if (is_vm_hugetlb_page(cur) & 1424 if (is_vm_hugetlb_page(cur) && end <= cur->vm_end && 1399 end > cur->vm_start) { 1425 end > cur->vm_start) { 1400 unsigned long vma_hpa 1426 unsigned long vma_hpagesize = vma_kernel_pagesize(cur); 1401 1427 1402 ret = -EINVAL; 1428 ret = -EINVAL; 1403 1429 1404 if (end & (vma_hpages 1430 if (end & (vma_hpagesize - 1)) 1405 goto out_unlo 1431 goto out_unlock; 1406 } 1432 } 1407 if ((vm_flags & VM_UFFD_WP) & 1433 if ((vm_flags & VM_UFFD_WP) && !(cur->vm_flags & VM_MAYWRITE)) 1408 goto out_unlock; 1434 goto out_unlock; 1409 1435 1410 /* 1436 /* 1411 * Check that this vma isn't 1437 * Check that this vma isn't already owned by a 1412 * different userfaultfd. We 1438 * different userfaultfd. We can't allow more than one 1413 * userfaultfd to own a singl 1439 * userfaultfd to own a single vma simultaneously or we 1414 * wouldn't know which one to 1440 * wouldn't know which one to deliver the userfaults to. 1415 */ 1441 */ 1416 ret = -EBUSY; 1442 ret = -EBUSY; 1417 if (cur->vm_userfaultfd_ctx.c 1443 if (cur->vm_userfaultfd_ctx.ctx && 1418 cur->vm_userfaultfd_ctx.c 1444 cur->vm_userfaultfd_ctx.ctx != ctx) 1419 goto out_unlock; 1445 goto out_unlock; 1420 1446 1421 /* 1447 /* 1422 * Note vmas containing huge 1448 * Note vmas containing huge pages 1423 */ 1449 */ 1424 if (is_vm_hugetlb_page(cur)) 1450 if (is_vm_hugetlb_page(cur)) 1425 basic_ioctls = true; 1451 basic_ioctls = true; 1426 1452 1427 found = true; 1453 found = true; 1428 } for_each_vma_range(vmi, cur, end); 1454 } for_each_vma_range(vmi, cur, end); 1429 BUG_ON(!found); 1455 BUG_ON(!found); 1430 1456 1431 vma_iter_set(&vmi, start); 1457 vma_iter_set(&vmi, start); 1432 prev = vma_prev(&vmi); 1458 prev = vma_prev(&vmi); 1433 if (vma->vm_start < start) 1459 if (vma->vm_start < start) 1434 prev = vma; 1460 prev = vma; 1435 1461 1436 ret = 0; 1462 ret = 0; 1437 for_each_vma_range(vmi, vma, end) { 1463 for_each_vma_range(vmi, vma, end) { 1438 cond_resched(); 1464 cond_resched(); 1439 1465 1440 BUG_ON(!vma_can_userfault(vma 1466 BUG_ON(!vma_can_userfault(vma, vm_flags, wp_async)); 1441 BUG_ON(vma->vm_userfaultfd_ct 1467 BUG_ON(vma->vm_userfaultfd_ctx.ctx && 1442 vma->vm_userfaultfd_ct 1468 vma->vm_userfaultfd_ctx.ctx != ctx); 1443 WARN_ON(!(vma->vm_flags & VM_ 1469 WARN_ON(!(vma->vm_flags & VM_MAYWRITE)); 1444 1470 1445 /* 1471 /* 1446 * Nothing to do: this vma is 1472 * Nothing to do: this vma is already registered into this 1447 * userfaultfd and with the r 1473 * userfaultfd and with the right tracking mode too. 1448 */ 1474 */ 1449 if (vma->vm_userfaultfd_ctx.c 1475 if (vma->vm_userfaultfd_ctx.ctx == ctx && 1450 (vma->vm_flags & vm_flags 1476 (vma->vm_flags & vm_flags) == vm_flags) 1451 goto skip; 1477 goto skip; 1452 1478 1453 if (vma->vm_start > start) 1479 if (vma->vm_start > start) 1454 start = vma->vm_start 1480 start = vma->vm_start; 1455 vma_end = min(end, vma->vm_en 1481 vma_end = min(end, vma->vm_end); 1456 1482 1457 new_flags = (vma->vm_flags & 1483 new_flags = (vma->vm_flags & ~__VM_UFFD_FLAGS) | vm_flags; 1458 vma = vma_modify_flags_uffd(& 1484 vma = vma_modify_flags_uffd(&vmi, prev, vma, start, vma_end, 1459 n 1485 new_flags, 1460 ( 1486 (struct vm_userfaultfd_ctx){ctx}); 1461 if (IS_ERR(vma)) { 1487 if (IS_ERR(vma)) { 1462 ret = PTR_ERR(vma); 1488 ret = PTR_ERR(vma); 1463 break; 1489 break; 1464 } 1490 } 1465 1491 1466 /* 1492 /* 1467 * In the vma_merge() success 1493 * In the vma_merge() successful mprotect-like case 8: 1468 * the next vma was merged in 1494 * the next vma was merged into the current one and 1469 * the current one has not be 1495 * the current one has not been updated yet. 1470 */ 1496 */ 1471 vma_start_write(vma); 1497 vma_start_write(vma); 1472 userfaultfd_set_vm_flags(vma, 1498 userfaultfd_set_vm_flags(vma, new_flags); 1473 vma->vm_userfaultfd_ctx.ctx = 1499 vma->vm_userfaultfd_ctx.ctx = ctx; 1474 1500 1475 if (is_vm_hugetlb_page(vma) & 1501 if (is_vm_hugetlb_page(vma) && uffd_disable_huge_pmd_share(vma)) 1476 hugetlb_unshare_all_p 1502 hugetlb_unshare_all_pmds(vma); 1477 1503 1478 skip: 1504 skip: 1479 prev = vma; 1505 prev = vma; 1480 start = vma->vm_end; 1506 start = vma->vm_end; 1481 } 1507 } 1482 1508 1483 out_unlock: 1509 out_unlock: 1484 mmap_write_unlock(mm); 1510 mmap_write_unlock(mm); 1485 mmput(mm); 1511 mmput(mm); 1486 if (!ret) { 1512 if (!ret) { 1487 __u64 ioctls_out; 1513 __u64 ioctls_out; 1488 1514 1489 ioctls_out = basic_ioctls ? U 1515 ioctls_out = basic_ioctls ? UFFD_API_RANGE_IOCTLS_BASIC : 1490 UFFD_API_RANGE_IOCTLS; 1516 UFFD_API_RANGE_IOCTLS; 1491 1517 1492 /* 1518 /* 1493 * Declare the WP ioctl only 1519 * Declare the WP ioctl only if the WP mode is 1494 * specified and all checks p 1520 * specified and all checks passed with the range 1495 */ 1521 */ 1496 if (!(uffdio_register.mode & 1522 if (!(uffdio_register.mode & UFFDIO_REGISTER_MODE_WP)) 1497 ioctls_out &= ~((__u6 1523 ioctls_out &= ~((__u64)1 << _UFFDIO_WRITEPROTECT); 1498 1524 1499 /* CONTINUE ioctl is only sup 1525 /* CONTINUE ioctl is only supported for MINOR ranges. */ 1500 if (!(uffdio_register.mode & 1526 if (!(uffdio_register.mode & UFFDIO_REGISTER_MODE_MINOR)) 1501 ioctls_out &= ~((__u6 1527 ioctls_out &= ~((__u64)1 << _UFFDIO_CONTINUE); 1502 1528 1503 /* 1529 /* 1504 * Now that we scanned all vm 1530 * Now that we scanned all vmas we can already tell 1505 * userland which ioctls meth 1531 * userland which ioctls methods are guaranteed to 1506 * succeed on this range. 1532 * succeed on this range. 1507 */ 1533 */ 1508 if (put_user(ioctls_out, &use 1534 if (put_user(ioctls_out, &user_uffdio_register->ioctls)) 1509 ret = -EFAULT; 1535 ret = -EFAULT; 1510 } 1536 } 1511 out: 1537 out: 1512 return ret; 1538 return ret; 1513 } 1539 } 1514 1540 1515 static int userfaultfd_unregister(struct user 1541 static int userfaultfd_unregister(struct userfaultfd_ctx *ctx, 1516 unsigned lo 1542 unsigned long arg) 1517 { 1543 { 1518 struct mm_struct *mm = ctx->mm; 1544 struct mm_struct *mm = ctx->mm; 1519 struct vm_area_struct *vma, *prev, *c 1545 struct vm_area_struct *vma, *prev, *cur; 1520 int ret; 1546 int ret; 1521 struct uffdio_range uffdio_unregister 1547 struct uffdio_range uffdio_unregister; 1522 unsigned long new_flags; 1548 unsigned long new_flags; 1523 bool found; 1549 bool found; 1524 unsigned long start, end, vma_end; 1550 unsigned long start, end, vma_end; 1525 const void __user *buf = (void __user 1551 const void __user *buf = (void __user *)arg; 1526 struct vma_iterator vmi; 1552 struct vma_iterator vmi; 1527 bool wp_async = userfaultfd_wp_async_ 1553 bool wp_async = userfaultfd_wp_async_ctx(ctx); 1528 1554 1529 ret = -EFAULT; 1555 ret = -EFAULT; 1530 if (copy_from_user(&uffdio_unregister 1556 if (copy_from_user(&uffdio_unregister, buf, sizeof(uffdio_unregister))) 1531 goto out; 1557 goto out; 1532 1558 1533 ret = validate_range(mm, uffdio_unreg 1559 ret = validate_range(mm, uffdio_unregister.start, 1534 uffdio_unregiste 1560 uffdio_unregister.len); 1535 if (ret) 1561 if (ret) 1536 goto out; 1562 goto out; 1537 1563 1538 start = uffdio_unregister.start; 1564 start = uffdio_unregister.start; 1539 end = start + uffdio_unregister.len; 1565 end = start + uffdio_unregister.len; 1540 1566 1541 ret = -ENOMEM; 1567 ret = -ENOMEM; 1542 if (!mmget_not_zero(mm)) 1568 if (!mmget_not_zero(mm)) 1543 goto out; 1569 goto out; 1544 1570 1545 mmap_write_lock(mm); 1571 mmap_write_lock(mm); 1546 ret = -EINVAL; 1572 ret = -EINVAL; 1547 vma_iter_init(&vmi, mm, start); 1573 vma_iter_init(&vmi, mm, start); 1548 vma = vma_find(&vmi, end); 1574 vma = vma_find(&vmi, end); 1549 if (!vma) 1575 if (!vma) 1550 goto out_unlock; 1576 goto out_unlock; 1551 1577 1552 /* 1578 /* 1553 * If the first vma contains huge pag 1579 * If the first vma contains huge pages, make sure start address 1554 * is aligned to huge page size. 1580 * is aligned to huge page size. 1555 */ 1581 */ 1556 if (is_vm_hugetlb_page(vma)) { 1582 if (is_vm_hugetlb_page(vma)) { 1557 unsigned long vma_hpagesize = 1583 unsigned long vma_hpagesize = vma_kernel_pagesize(vma); 1558 1584 1559 if (start & (vma_hpagesize - 1585 if (start & (vma_hpagesize - 1)) 1560 goto out_unlock; 1586 goto out_unlock; 1561 } 1587 } 1562 1588 1563 /* 1589 /* 1564 * Search for not compatible vmas. 1590 * Search for not compatible vmas. 1565 */ 1591 */ 1566 found = false; 1592 found = false; 1567 cur = vma; 1593 cur = vma; 1568 do { 1594 do { 1569 cond_resched(); 1595 cond_resched(); 1570 1596 1571 BUG_ON(!!cur->vm_userfaultfd_ 1597 BUG_ON(!!cur->vm_userfaultfd_ctx.ctx ^ 1572 !!(cur->vm_flags & __V 1598 !!(cur->vm_flags & __VM_UFFD_FLAGS)); 1573 1599 1574 /* 1600 /* 1575 * Check not compatible vmas, 1601 * Check not compatible vmas, not strictly required 1576 * here as not compatible vma 1602 * here as not compatible vmas cannot have an 1577 * userfaultfd_ctx registered 1603 * userfaultfd_ctx registered on them, but this 1578 * provides for more strict b 1604 * provides for more strict behavior to notice 1579 * unregistration errors. 1605 * unregistration errors. 1580 */ 1606 */ 1581 if (!vma_can_userfault(cur, c 1607 if (!vma_can_userfault(cur, cur->vm_flags, wp_async)) 1582 goto out_unlock; 1608 goto out_unlock; 1583 1609 1584 found = true; 1610 found = true; 1585 } for_each_vma_range(vmi, cur, end); 1611 } for_each_vma_range(vmi, cur, end); 1586 BUG_ON(!found); 1612 BUG_ON(!found); 1587 1613 1588 vma_iter_set(&vmi, start); 1614 vma_iter_set(&vmi, start); 1589 prev = vma_prev(&vmi); 1615 prev = vma_prev(&vmi); 1590 if (vma->vm_start < start) 1616 if (vma->vm_start < start) 1591 prev = vma; 1617 prev = vma; 1592 1618 1593 ret = 0; 1619 ret = 0; 1594 for_each_vma_range(vmi, vma, end) { 1620 for_each_vma_range(vmi, vma, end) { 1595 cond_resched(); 1621 cond_resched(); 1596 1622 1597 BUG_ON(!vma_can_userfault(vma 1623 BUG_ON(!vma_can_userfault(vma, vma->vm_flags, wp_async)); 1598 1624 1599 /* 1625 /* 1600 * Nothing to do: this vma is 1626 * Nothing to do: this vma is already registered into this 1601 * userfaultfd and with the r 1627 * userfaultfd and with the right tracking mode too. 1602 */ 1628 */ 1603 if (!vma->vm_userfaultfd_ctx. 1629 if (!vma->vm_userfaultfd_ctx.ctx) 1604 goto skip; 1630 goto skip; 1605 1631 1606 WARN_ON(!(vma->vm_flags & VM_ 1632 WARN_ON(!(vma->vm_flags & VM_MAYWRITE)); 1607 1633 1608 if (vma->vm_start > start) 1634 if (vma->vm_start > start) 1609 start = vma->vm_start 1635 start = vma->vm_start; 1610 vma_end = min(end, vma->vm_en 1636 vma_end = min(end, vma->vm_end); 1611 1637 1612 if (userfaultfd_missing(vma)) 1638 if (userfaultfd_missing(vma)) { 1613 /* 1639 /* 1614 * Wake any concurren 1640 * Wake any concurrent pending userfault while 1615 * we unregister, so 1641 * we unregister, so they will not hang 1616 * permanently and it 1642 * permanently and it avoids userland to call 1617 * UFFDIO_WAKE explic 1643 * UFFDIO_WAKE explicitly. 1618 */ 1644 */ 1619 struct userfaultfd_wa 1645 struct userfaultfd_wake_range range; 1620 range.start = start; 1646 range.start = start; 1621 range.len = vma_end - 1647 range.len = vma_end - start; 1622 wake_userfault(vma->v 1648 wake_userfault(vma->vm_userfaultfd_ctx.ctx, &range); 1623 } 1649 } 1624 1650 1625 /* Reset ptes for the whole v 1651 /* Reset ptes for the whole vma range if wr-protected */ 1626 if (userfaultfd_wp(vma)) 1652 if (userfaultfd_wp(vma)) 1627 uffd_wp_range(vma, st 1653 uffd_wp_range(vma, start, vma_end - start, false); 1628 1654 1629 new_flags = vma->vm_flags & ~ 1655 new_flags = vma->vm_flags & ~__VM_UFFD_FLAGS; 1630 vma = vma_modify_flags_uffd(& 1656 vma = vma_modify_flags_uffd(&vmi, prev, vma, start, vma_end, 1631 n 1657 new_flags, NULL_VM_UFFD_CTX); 1632 if (IS_ERR(vma)) { 1658 if (IS_ERR(vma)) { 1633 ret = PTR_ERR(vma); 1659 ret = PTR_ERR(vma); 1634 break; 1660 break; 1635 } 1661 } 1636 1662 1637 /* 1663 /* 1638 * In the vma_merge() success 1664 * In the vma_merge() successful mprotect-like case 8: 1639 * the next vma was merged in 1665 * the next vma was merged into the current one and 1640 * the current one has not be 1666 * the current one has not been updated yet. 1641 */ 1667 */ 1642 vma_start_write(vma); 1668 vma_start_write(vma); 1643 userfaultfd_set_vm_flags(vma, 1669 userfaultfd_set_vm_flags(vma, new_flags); 1644 vma->vm_userfaultfd_ctx = NUL 1670 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX; 1645 1671 1646 skip: 1672 skip: 1647 prev = vma; 1673 prev = vma; 1648 start = vma->vm_end; 1674 start = vma->vm_end; 1649 } 1675 } 1650 1676 1651 out_unlock: 1677 out_unlock: 1652 mmap_write_unlock(mm); 1678 mmap_write_unlock(mm); 1653 mmput(mm); 1679 mmput(mm); 1654 out: 1680 out: 1655 return ret; 1681 return ret; 1656 } 1682 } 1657 1683 1658 /* 1684 /* 1659 * userfaultfd_wake may be used in combinatio 1685 * userfaultfd_wake may be used in combination with the 1660 * UFFDIO_*_MODE_DONTWAKE to wakeup userfault 1686 * UFFDIO_*_MODE_DONTWAKE to wakeup userfaults in batches. 1661 */ 1687 */ 1662 static int userfaultfd_wake(struct userfaultf 1688 static int userfaultfd_wake(struct userfaultfd_ctx *ctx, 1663 unsigned long arg 1689 unsigned long arg) 1664 { 1690 { 1665 int ret; 1691 int ret; 1666 struct uffdio_range uffdio_wake; 1692 struct uffdio_range uffdio_wake; 1667 struct userfaultfd_wake_range range; 1693 struct userfaultfd_wake_range range; 1668 const void __user *buf = (void __user 1694 const void __user *buf = (void __user *)arg; 1669 1695 1670 ret = -EFAULT; 1696 ret = -EFAULT; 1671 if (copy_from_user(&uffdio_wake, buf, 1697 if (copy_from_user(&uffdio_wake, buf, sizeof(uffdio_wake))) 1672 goto out; 1698 goto out; 1673 1699 1674 ret = validate_range(ctx->mm, uffdio_ 1700 ret = validate_range(ctx->mm, uffdio_wake.start, uffdio_wake.len); 1675 if (ret) 1701 if (ret) 1676 goto out; 1702 goto out; 1677 1703 1678 range.start = uffdio_wake.start; 1704 range.start = uffdio_wake.start; 1679 range.len = uffdio_wake.len; 1705 range.len = uffdio_wake.len; 1680 1706 1681 /* 1707 /* 1682 * len == 0 means wake all and we don 1708 * len == 0 means wake all and we don't want to wake all here, 1683 * so check it again to be sure. 1709 * so check it again to be sure. 1684 */ 1710 */ 1685 VM_BUG_ON(!range.len); 1711 VM_BUG_ON(!range.len); 1686 1712 1687 wake_userfault(ctx, &range); 1713 wake_userfault(ctx, &range); 1688 ret = 0; 1714 ret = 0; 1689 1715 1690 out: 1716 out: 1691 return ret; 1717 return ret; 1692 } 1718 } 1693 1719 1694 static int userfaultfd_copy(struct userfaultf 1720 static int userfaultfd_copy(struct userfaultfd_ctx *ctx, 1695 unsigned long arg 1721 unsigned long arg) 1696 { 1722 { 1697 __s64 ret; 1723 __s64 ret; 1698 struct uffdio_copy uffdio_copy; 1724 struct uffdio_copy uffdio_copy; 1699 struct uffdio_copy __user *user_uffdi 1725 struct uffdio_copy __user *user_uffdio_copy; 1700 struct userfaultfd_wake_range range; 1726 struct userfaultfd_wake_range range; 1701 uffd_flags_t flags = 0; 1727 uffd_flags_t flags = 0; 1702 1728 1703 user_uffdio_copy = (struct uffdio_cop 1729 user_uffdio_copy = (struct uffdio_copy __user *) arg; 1704 1730 1705 ret = -EAGAIN; 1731 ret = -EAGAIN; 1706 if (atomic_read(&ctx->mmap_changing)) 1732 if (atomic_read(&ctx->mmap_changing)) 1707 goto out; 1733 goto out; 1708 1734 1709 ret = -EFAULT; 1735 ret = -EFAULT; 1710 if (copy_from_user(&uffdio_copy, user 1736 if (copy_from_user(&uffdio_copy, user_uffdio_copy, 1711 /* don't copy "cop 1737 /* don't copy "copy" last field */ 1712 sizeof(uffdio_copy 1738 sizeof(uffdio_copy)-sizeof(__s64))) 1713 goto out; 1739 goto out; 1714 1740 1715 ret = validate_unaligned_range(ctx->m 1741 ret = validate_unaligned_range(ctx->mm, uffdio_copy.src, 1716 uffdio 1742 uffdio_copy.len); 1717 if (ret) 1743 if (ret) 1718 goto out; 1744 goto out; 1719 ret = validate_range(ctx->mm, uffdio_ 1745 ret = validate_range(ctx->mm, uffdio_copy.dst, uffdio_copy.len); 1720 if (ret) 1746 if (ret) 1721 goto out; 1747 goto out; 1722 1748 1723 ret = -EINVAL; 1749 ret = -EINVAL; 1724 if (uffdio_copy.mode & ~(UFFDIO_COPY_ 1750 if (uffdio_copy.mode & ~(UFFDIO_COPY_MODE_DONTWAKE|UFFDIO_COPY_MODE_WP)) 1725 goto out; 1751 goto out; 1726 if (uffdio_copy.mode & UFFDIO_COPY_MO 1752 if (uffdio_copy.mode & UFFDIO_COPY_MODE_WP) 1727 flags |= MFILL_ATOMIC_WP; 1753 flags |= MFILL_ATOMIC_WP; 1728 if (mmget_not_zero(ctx->mm)) { 1754 if (mmget_not_zero(ctx->mm)) { 1729 ret = mfill_atomic_copy(ctx, !! 1755 ret = mfill_atomic_copy(ctx->mm, uffdio_copy.dst, uffdio_copy.src, 1730 uffdi !! 1756 uffdio_copy.len, &ctx->mmap_changing, >> 1757 flags); 1731 mmput(ctx->mm); 1758 mmput(ctx->mm); 1732 } else { 1759 } else { 1733 return -ESRCH; 1760 return -ESRCH; 1734 } 1761 } 1735 if (unlikely(put_user(ret, &user_uffd 1762 if (unlikely(put_user(ret, &user_uffdio_copy->copy))) 1736 return -EFAULT; 1763 return -EFAULT; 1737 if (ret < 0) 1764 if (ret < 0) 1738 goto out; 1765 goto out; 1739 BUG_ON(!ret); 1766 BUG_ON(!ret); 1740 /* len == 0 would wake all */ 1767 /* len == 0 would wake all */ 1741 range.len = ret; 1768 range.len = ret; 1742 if (!(uffdio_copy.mode & UFFDIO_COPY_ 1769 if (!(uffdio_copy.mode & UFFDIO_COPY_MODE_DONTWAKE)) { 1743 range.start = uffdio_copy.dst 1770 range.start = uffdio_copy.dst; 1744 wake_userfault(ctx, &range); 1771 wake_userfault(ctx, &range); 1745 } 1772 } 1746 ret = range.len == uffdio_copy.len ? 1773 ret = range.len == uffdio_copy.len ? 0 : -EAGAIN; 1747 out: 1774 out: 1748 return ret; 1775 return ret; 1749 } 1776 } 1750 1777 1751 static int userfaultfd_zeropage(struct userfa 1778 static int userfaultfd_zeropage(struct userfaultfd_ctx *ctx, 1752 unsigned long 1779 unsigned long arg) 1753 { 1780 { 1754 __s64 ret; 1781 __s64 ret; 1755 struct uffdio_zeropage uffdio_zeropag 1782 struct uffdio_zeropage uffdio_zeropage; 1756 struct uffdio_zeropage __user *user_u 1783 struct uffdio_zeropage __user *user_uffdio_zeropage; 1757 struct userfaultfd_wake_range range; 1784 struct userfaultfd_wake_range range; 1758 1785 1759 user_uffdio_zeropage = (struct uffdio 1786 user_uffdio_zeropage = (struct uffdio_zeropage __user *) arg; 1760 1787 1761 ret = -EAGAIN; 1788 ret = -EAGAIN; 1762 if (atomic_read(&ctx->mmap_changing)) 1789 if (atomic_read(&ctx->mmap_changing)) 1763 goto out; 1790 goto out; 1764 1791 1765 ret = -EFAULT; 1792 ret = -EFAULT; 1766 if (copy_from_user(&uffdio_zeropage, 1793 if (copy_from_user(&uffdio_zeropage, user_uffdio_zeropage, 1767 /* don't copy "zer 1794 /* don't copy "zeropage" last field */ 1768 sizeof(uffdio_zero 1795 sizeof(uffdio_zeropage)-sizeof(__s64))) 1769 goto out; 1796 goto out; 1770 1797 1771 ret = validate_range(ctx->mm, uffdio_ 1798 ret = validate_range(ctx->mm, uffdio_zeropage.range.start, 1772 uffdio_zeropage. 1799 uffdio_zeropage.range.len); 1773 if (ret) 1800 if (ret) 1774 goto out; 1801 goto out; 1775 ret = -EINVAL; 1802 ret = -EINVAL; 1776 if (uffdio_zeropage.mode & ~UFFDIO_ZE 1803 if (uffdio_zeropage.mode & ~UFFDIO_ZEROPAGE_MODE_DONTWAKE) 1777 goto out; 1804 goto out; 1778 1805 1779 if (mmget_not_zero(ctx->mm)) { 1806 if (mmget_not_zero(ctx->mm)) { 1780 ret = mfill_atomic_zeropage(c !! 1807 ret = mfill_atomic_zeropage(ctx->mm, uffdio_zeropage.range.start, 1781 uf !! 1808 uffdio_zeropage.range.len, >> 1809 &ctx->mmap_changing); 1782 mmput(ctx->mm); 1810 mmput(ctx->mm); 1783 } else { 1811 } else { 1784 return -ESRCH; 1812 return -ESRCH; 1785 } 1813 } 1786 if (unlikely(put_user(ret, &user_uffd 1814 if (unlikely(put_user(ret, &user_uffdio_zeropage->zeropage))) 1787 return -EFAULT; 1815 return -EFAULT; 1788 if (ret < 0) 1816 if (ret < 0) 1789 goto out; 1817 goto out; 1790 /* len == 0 would wake all */ 1818 /* len == 0 would wake all */ 1791 BUG_ON(!ret); 1819 BUG_ON(!ret); 1792 range.len = ret; 1820 range.len = ret; 1793 if (!(uffdio_zeropage.mode & UFFDIO_Z 1821 if (!(uffdio_zeropage.mode & UFFDIO_ZEROPAGE_MODE_DONTWAKE)) { 1794 range.start = uffdio_zeropage 1822 range.start = uffdio_zeropage.range.start; 1795 wake_userfault(ctx, &range); 1823 wake_userfault(ctx, &range); 1796 } 1824 } 1797 ret = range.len == uffdio_zeropage.ra 1825 ret = range.len == uffdio_zeropage.range.len ? 0 : -EAGAIN; 1798 out: 1826 out: 1799 return ret; 1827 return ret; 1800 } 1828 } 1801 1829 1802 static int userfaultfd_writeprotect(struct us 1830 static int userfaultfd_writeprotect(struct userfaultfd_ctx *ctx, 1803 unsigned 1831 unsigned long arg) 1804 { 1832 { 1805 int ret; 1833 int ret; 1806 struct uffdio_writeprotect uffdio_wp; 1834 struct uffdio_writeprotect uffdio_wp; 1807 struct uffdio_writeprotect __user *us 1835 struct uffdio_writeprotect __user *user_uffdio_wp; 1808 struct userfaultfd_wake_range range; 1836 struct userfaultfd_wake_range range; 1809 bool mode_wp, mode_dontwake; 1837 bool mode_wp, mode_dontwake; 1810 1838 1811 if (atomic_read(&ctx->mmap_changing)) 1839 if (atomic_read(&ctx->mmap_changing)) 1812 return -EAGAIN; 1840 return -EAGAIN; 1813 1841 1814 user_uffdio_wp = (struct uffdio_write 1842 user_uffdio_wp = (struct uffdio_writeprotect __user *) arg; 1815 1843 1816 if (copy_from_user(&uffdio_wp, user_u 1844 if (copy_from_user(&uffdio_wp, user_uffdio_wp, 1817 sizeof(struct uffd 1845 sizeof(struct uffdio_writeprotect))) 1818 return -EFAULT; 1846 return -EFAULT; 1819 1847 1820 ret = validate_range(ctx->mm, uffdio_ 1848 ret = validate_range(ctx->mm, uffdio_wp.range.start, 1821 uffdio_wp.range. 1849 uffdio_wp.range.len); 1822 if (ret) 1850 if (ret) 1823 return ret; 1851 return ret; 1824 1852 1825 if (uffdio_wp.mode & ~(UFFDIO_WRITEPR 1853 if (uffdio_wp.mode & ~(UFFDIO_WRITEPROTECT_MODE_DONTWAKE | 1826 UFFDIO_WRITEPR 1854 UFFDIO_WRITEPROTECT_MODE_WP)) 1827 return -EINVAL; 1855 return -EINVAL; 1828 1856 1829 mode_wp = uffdio_wp.mode & UFFDIO_WRI 1857 mode_wp = uffdio_wp.mode & UFFDIO_WRITEPROTECT_MODE_WP; 1830 mode_dontwake = uffdio_wp.mode & UFFD 1858 mode_dontwake = uffdio_wp.mode & UFFDIO_WRITEPROTECT_MODE_DONTWAKE; 1831 1859 1832 if (mode_wp && mode_dontwake) 1860 if (mode_wp && mode_dontwake) 1833 return -EINVAL; 1861 return -EINVAL; 1834 1862 1835 if (mmget_not_zero(ctx->mm)) { 1863 if (mmget_not_zero(ctx->mm)) { 1836 ret = mwriteprotect_range(ctx !! 1864 ret = mwriteprotect_range(ctx->mm, uffdio_wp.range.start, 1837 uff !! 1865 uffdio_wp.range.len, mode_wp, >> 1866 &ctx->mmap_changing); 1838 mmput(ctx->mm); 1867 mmput(ctx->mm); 1839 } else { 1868 } else { 1840 return -ESRCH; 1869 return -ESRCH; 1841 } 1870 } 1842 1871 1843 if (ret) 1872 if (ret) 1844 return ret; 1873 return ret; 1845 1874 1846 if (!mode_wp && !mode_dontwake) { 1875 if (!mode_wp && !mode_dontwake) { 1847 range.start = uffdio_wp.range 1876 range.start = uffdio_wp.range.start; 1848 range.len = uffdio_wp.range.l 1877 range.len = uffdio_wp.range.len; 1849 wake_userfault(ctx, &range); 1878 wake_userfault(ctx, &range); 1850 } 1879 } 1851 return ret; 1880 return ret; 1852 } 1881 } 1853 1882 1854 static int userfaultfd_continue(struct userfa 1883 static int userfaultfd_continue(struct userfaultfd_ctx *ctx, unsigned long arg) 1855 { 1884 { 1856 __s64 ret; 1885 __s64 ret; 1857 struct uffdio_continue uffdio_continu 1886 struct uffdio_continue uffdio_continue; 1858 struct uffdio_continue __user *user_u 1887 struct uffdio_continue __user *user_uffdio_continue; 1859 struct userfaultfd_wake_range range; 1888 struct userfaultfd_wake_range range; 1860 uffd_flags_t flags = 0; 1889 uffd_flags_t flags = 0; 1861 1890 1862 user_uffdio_continue = (struct uffdio 1891 user_uffdio_continue = (struct uffdio_continue __user *)arg; 1863 1892 1864 ret = -EAGAIN; 1893 ret = -EAGAIN; 1865 if (atomic_read(&ctx->mmap_changing)) 1894 if (atomic_read(&ctx->mmap_changing)) 1866 goto out; 1895 goto out; 1867 1896 1868 ret = -EFAULT; 1897 ret = -EFAULT; 1869 if (copy_from_user(&uffdio_continue, 1898 if (copy_from_user(&uffdio_continue, user_uffdio_continue, 1870 /* don't copy the 1899 /* don't copy the output fields */ 1871 sizeof(uffdio_cont 1900 sizeof(uffdio_continue) - (sizeof(__s64)))) 1872 goto out; 1901 goto out; 1873 1902 1874 ret = validate_range(ctx->mm, uffdio_ 1903 ret = validate_range(ctx->mm, uffdio_continue.range.start, 1875 uffdio_continue. 1904 uffdio_continue.range.len); 1876 if (ret) 1905 if (ret) 1877 goto out; 1906 goto out; 1878 1907 1879 ret = -EINVAL; 1908 ret = -EINVAL; 1880 if (uffdio_continue.mode & ~(UFFDIO_C 1909 if (uffdio_continue.mode & ~(UFFDIO_CONTINUE_MODE_DONTWAKE | 1881 UFFDIO_C 1910 UFFDIO_CONTINUE_MODE_WP)) 1882 goto out; 1911 goto out; 1883 if (uffdio_continue.mode & UFFDIO_CON 1912 if (uffdio_continue.mode & UFFDIO_CONTINUE_MODE_WP) 1884 flags |= MFILL_ATOMIC_WP; 1913 flags |= MFILL_ATOMIC_WP; 1885 1914 1886 if (mmget_not_zero(ctx->mm)) { 1915 if (mmget_not_zero(ctx->mm)) { 1887 ret = mfill_atomic_continue(c !! 1916 ret = mfill_atomic_continue(ctx->mm, uffdio_continue.range.start, 1888 u !! 1917 uffdio_continue.range.len, >> 1918 &ctx->mmap_changing, flags); 1889 mmput(ctx->mm); 1919 mmput(ctx->mm); 1890 } else { 1920 } else { 1891 return -ESRCH; 1921 return -ESRCH; 1892 } 1922 } 1893 1923 1894 if (unlikely(put_user(ret, &user_uffd 1924 if (unlikely(put_user(ret, &user_uffdio_continue->mapped))) 1895 return -EFAULT; 1925 return -EFAULT; 1896 if (ret < 0) 1926 if (ret < 0) 1897 goto out; 1927 goto out; 1898 1928 1899 /* len == 0 would wake all */ 1929 /* len == 0 would wake all */ 1900 BUG_ON(!ret); 1930 BUG_ON(!ret); 1901 range.len = ret; 1931 range.len = ret; 1902 if (!(uffdio_continue.mode & UFFDIO_C 1932 if (!(uffdio_continue.mode & UFFDIO_CONTINUE_MODE_DONTWAKE)) { 1903 range.start = uffdio_continue 1933 range.start = uffdio_continue.range.start; 1904 wake_userfault(ctx, &range); 1934 wake_userfault(ctx, &range); 1905 } 1935 } 1906 ret = range.len == uffdio_continue.ra 1936 ret = range.len == uffdio_continue.range.len ? 0 : -EAGAIN; 1907 1937 1908 out: 1938 out: 1909 return ret; 1939 return ret; 1910 } 1940 } 1911 1941 1912 static inline int userfaultfd_poison(struct u 1942 static inline int userfaultfd_poison(struct userfaultfd_ctx *ctx, unsigned long arg) 1913 { 1943 { 1914 __s64 ret; 1944 __s64 ret; 1915 struct uffdio_poison uffdio_poison; 1945 struct uffdio_poison uffdio_poison; 1916 struct uffdio_poison __user *user_uff 1946 struct uffdio_poison __user *user_uffdio_poison; 1917 struct userfaultfd_wake_range range; 1947 struct userfaultfd_wake_range range; 1918 1948 1919 user_uffdio_poison = (struct uffdio_p 1949 user_uffdio_poison = (struct uffdio_poison __user *)arg; 1920 1950 1921 ret = -EAGAIN; 1951 ret = -EAGAIN; 1922 if (atomic_read(&ctx->mmap_changing)) 1952 if (atomic_read(&ctx->mmap_changing)) 1923 goto out; 1953 goto out; 1924 1954 1925 ret = -EFAULT; 1955 ret = -EFAULT; 1926 if (copy_from_user(&uffdio_poison, us 1956 if (copy_from_user(&uffdio_poison, user_uffdio_poison, 1927 /* don't copy the 1957 /* don't copy the output fields */ 1928 sizeof(uffdio_pois 1958 sizeof(uffdio_poison) - (sizeof(__s64)))) 1929 goto out; 1959 goto out; 1930 1960 1931 ret = validate_range(ctx->mm, uffdio_ 1961 ret = validate_range(ctx->mm, uffdio_poison.range.start, 1932 uffdio_poison.ra 1962 uffdio_poison.range.len); 1933 if (ret) 1963 if (ret) 1934 goto out; 1964 goto out; 1935 1965 1936 ret = -EINVAL; 1966 ret = -EINVAL; 1937 if (uffdio_poison.mode & ~UFFDIO_POIS 1967 if (uffdio_poison.mode & ~UFFDIO_POISON_MODE_DONTWAKE) 1938 goto out; 1968 goto out; 1939 1969 1940 if (mmget_not_zero(ctx->mm)) { 1970 if (mmget_not_zero(ctx->mm)) { 1941 ret = mfill_atomic_poison(ctx !! 1971 ret = mfill_atomic_poison(ctx->mm, uffdio_poison.range.start, 1942 uff !! 1972 uffdio_poison.range.len, >> 1973 &ctx->mmap_changing, 0); 1943 mmput(ctx->mm); 1974 mmput(ctx->mm); 1944 } else { 1975 } else { 1945 return -ESRCH; 1976 return -ESRCH; 1946 } 1977 } 1947 1978 1948 if (unlikely(put_user(ret, &user_uffd 1979 if (unlikely(put_user(ret, &user_uffdio_poison->updated))) 1949 return -EFAULT; 1980 return -EFAULT; 1950 if (ret < 0) 1981 if (ret < 0) 1951 goto out; 1982 goto out; 1952 1983 1953 /* len == 0 would wake all */ 1984 /* len == 0 would wake all */ 1954 BUG_ON(!ret); 1985 BUG_ON(!ret); 1955 range.len = ret; 1986 range.len = ret; 1956 if (!(uffdio_poison.mode & UFFDIO_POI 1987 if (!(uffdio_poison.mode & UFFDIO_POISON_MODE_DONTWAKE)) { 1957 range.start = uffdio_poison.r 1988 range.start = uffdio_poison.range.start; 1958 wake_userfault(ctx, &range); 1989 wake_userfault(ctx, &range); 1959 } 1990 } 1960 ret = range.len == uffdio_poison.rang 1991 ret = range.len == uffdio_poison.range.len ? 0 : -EAGAIN; 1961 1992 1962 out: 1993 out: 1963 return ret; 1994 return ret; 1964 } 1995 } 1965 1996 1966 bool userfaultfd_wp_async(struct vm_area_stru 1997 bool userfaultfd_wp_async(struct vm_area_struct *vma) 1967 { 1998 { 1968 return userfaultfd_wp_async_ctx(vma-> 1999 return userfaultfd_wp_async_ctx(vma->vm_userfaultfd_ctx.ctx); 1969 } 2000 } 1970 2001 1971 static inline unsigned int uffd_ctx_features( 2002 static inline unsigned int uffd_ctx_features(__u64 user_features) 1972 { 2003 { 1973 /* 2004 /* 1974 * For the current set of features th 2005 * For the current set of features the bits just coincide. Set 1975 * UFFD_FEATURE_INITIALIZED to mark t 2006 * UFFD_FEATURE_INITIALIZED to mark the features as enabled. 1976 */ 2007 */ 1977 return (unsigned int)user_features | 2008 return (unsigned int)user_features | UFFD_FEATURE_INITIALIZED; 1978 } 2009 } 1979 2010 1980 static int userfaultfd_move(struct userfaultf 2011 static int userfaultfd_move(struct userfaultfd_ctx *ctx, 1981 unsigned long arg 2012 unsigned long arg) 1982 { 2013 { 1983 __s64 ret; 2014 __s64 ret; 1984 struct uffdio_move uffdio_move; 2015 struct uffdio_move uffdio_move; 1985 struct uffdio_move __user *user_uffdi 2016 struct uffdio_move __user *user_uffdio_move; 1986 struct userfaultfd_wake_range range; 2017 struct userfaultfd_wake_range range; 1987 struct mm_struct *mm = ctx->mm; 2018 struct mm_struct *mm = ctx->mm; 1988 2019 1989 user_uffdio_move = (struct uffdio_mov 2020 user_uffdio_move = (struct uffdio_move __user *) arg; 1990 2021 1991 if (atomic_read(&ctx->mmap_changing)) 2022 if (atomic_read(&ctx->mmap_changing)) 1992 return -EAGAIN; 2023 return -EAGAIN; 1993 2024 1994 if (copy_from_user(&uffdio_move, user 2025 if (copy_from_user(&uffdio_move, user_uffdio_move, 1995 /* don't copy "mov 2026 /* don't copy "move" last field */ 1996 sizeof(uffdio_move 2027 sizeof(uffdio_move)-sizeof(__s64))) 1997 return -EFAULT; 2028 return -EFAULT; 1998 2029 1999 /* Do not allow cross-mm moves. */ 2030 /* Do not allow cross-mm moves. */ 2000 if (mm != current->mm) 2031 if (mm != current->mm) 2001 return -EINVAL; 2032 return -EINVAL; 2002 2033 2003 ret = validate_range(mm, uffdio_move. 2034 ret = validate_range(mm, uffdio_move.dst, uffdio_move.len); 2004 if (ret) 2035 if (ret) 2005 return ret; 2036 return ret; 2006 2037 2007 ret = validate_range(mm, uffdio_move. 2038 ret = validate_range(mm, uffdio_move.src, uffdio_move.len); 2008 if (ret) 2039 if (ret) 2009 return ret; 2040 return ret; 2010 2041 2011 if (uffdio_move.mode & ~(UFFDIO_MOVE_ 2042 if (uffdio_move.mode & ~(UFFDIO_MOVE_MODE_ALLOW_SRC_HOLES| 2012 UFFDIO_MOVE 2043 UFFDIO_MOVE_MODE_DONTWAKE)) 2013 return -EINVAL; 2044 return -EINVAL; 2014 2045 2015 if (mmget_not_zero(mm)) { 2046 if (mmget_not_zero(mm)) { 2016 ret = move_pages(ctx, uffdio_ !! 2047 mmap_read_lock(mm); 2017 uffdio_move. !! 2048 >> 2049 /* Re-check after taking mmap_lock */ >> 2050 if (likely(!atomic_read(&ctx->mmap_changing))) >> 2051 ret = move_pages(ctx, mm, uffdio_move.dst, uffdio_move.src, >> 2052 uffdio_move.len, uffdio_move.mode); >> 2053 else >> 2054 ret = -EINVAL; >> 2055 >> 2056 mmap_read_unlock(mm); 2018 mmput(mm); 2057 mmput(mm); 2019 } else { 2058 } else { 2020 return -ESRCH; 2059 return -ESRCH; 2021 } 2060 } 2022 2061 2023 if (unlikely(put_user(ret, &user_uffd 2062 if (unlikely(put_user(ret, &user_uffdio_move->move))) 2024 return -EFAULT; 2063 return -EFAULT; 2025 if (ret < 0) 2064 if (ret < 0) 2026 goto out; 2065 goto out; 2027 2066 2028 /* len == 0 would wake all */ 2067 /* len == 0 would wake all */ 2029 VM_WARN_ON(!ret); 2068 VM_WARN_ON(!ret); 2030 range.len = ret; 2069 range.len = ret; 2031 if (!(uffdio_move.mode & UFFDIO_MOVE_ 2070 if (!(uffdio_move.mode & UFFDIO_MOVE_MODE_DONTWAKE)) { 2032 range.start = uffdio_move.dst 2071 range.start = uffdio_move.dst; 2033 wake_userfault(ctx, &range); 2072 wake_userfault(ctx, &range); 2034 } 2073 } 2035 ret = range.len == uffdio_move.len ? 2074 ret = range.len == uffdio_move.len ? 0 : -EAGAIN; 2036 2075 2037 out: 2076 out: 2038 return ret; 2077 return ret; 2039 } 2078 } 2040 2079 2041 /* 2080 /* 2042 * userland asks for a certain API version an 2081 * userland asks for a certain API version and we return which bits 2043 * and ioctl commands are implemented in this 2082 * and ioctl commands are implemented in this kernel for such API 2044 * version or -EINVAL if unknown. 2083 * version or -EINVAL if unknown. 2045 */ 2084 */ 2046 static int userfaultfd_api(struct userfaultfd 2085 static int userfaultfd_api(struct userfaultfd_ctx *ctx, 2047 unsigned long arg) 2086 unsigned long arg) 2048 { 2087 { 2049 struct uffdio_api uffdio_api; 2088 struct uffdio_api uffdio_api; 2050 void __user *buf = (void __user *)arg 2089 void __user *buf = (void __user *)arg; 2051 unsigned int ctx_features; 2090 unsigned int ctx_features; 2052 int ret; 2091 int ret; 2053 __u64 features; 2092 __u64 features; 2054 2093 2055 ret = -EFAULT; 2094 ret = -EFAULT; 2056 if (copy_from_user(&uffdio_api, buf, 2095 if (copy_from_user(&uffdio_api, buf, sizeof(uffdio_api))) 2057 goto out; 2096 goto out; 2058 features = uffdio_api.features; 2097 features = uffdio_api.features; 2059 ret = -EINVAL; 2098 ret = -EINVAL; 2060 if (uffdio_api.api != UFFD_API) !! 2099 if (uffdio_api.api != UFFD_API || (features & ~UFFD_API_FEATURES)) 2061 goto err_out; 2100 goto err_out; 2062 ret = -EPERM; 2101 ret = -EPERM; 2063 if ((features & UFFD_FEATURE_EVENT_FO 2102 if ((features & UFFD_FEATURE_EVENT_FORK) && !capable(CAP_SYS_PTRACE)) 2064 goto err_out; 2103 goto err_out; 2065 2104 2066 /* WP_ASYNC relies on WP_UNPOPULATED, 2105 /* WP_ASYNC relies on WP_UNPOPULATED, choose it unconditionally */ 2067 if (features & UFFD_FEATURE_WP_ASYNC) 2106 if (features & UFFD_FEATURE_WP_ASYNC) 2068 features |= UFFD_FEATURE_WP_U 2107 features |= UFFD_FEATURE_WP_UNPOPULATED; 2069 2108 2070 /* report all available features and 2109 /* report all available features and ioctls to userland */ 2071 uffdio_api.features = UFFD_API_FEATUR 2110 uffdio_api.features = UFFD_API_FEATURES; 2072 #ifndef CONFIG_HAVE_ARCH_USERFAULTFD_MINOR 2111 #ifndef CONFIG_HAVE_ARCH_USERFAULTFD_MINOR 2073 uffdio_api.features &= 2112 uffdio_api.features &= 2074 ~(UFFD_FEATURE_MINOR_HUGETLBF 2113 ~(UFFD_FEATURE_MINOR_HUGETLBFS | UFFD_FEATURE_MINOR_SHMEM); 2075 #endif 2114 #endif 2076 #ifndef CONFIG_HAVE_ARCH_USERFAULTFD_WP 2115 #ifndef CONFIG_HAVE_ARCH_USERFAULTFD_WP 2077 uffdio_api.features &= ~UFFD_FEATURE_ 2116 uffdio_api.features &= ~UFFD_FEATURE_PAGEFAULT_FLAG_WP; 2078 #endif 2117 #endif 2079 #ifndef CONFIG_PTE_MARKER_UFFD_WP 2118 #ifndef CONFIG_PTE_MARKER_UFFD_WP 2080 uffdio_api.features &= ~UFFD_FEATURE_ 2119 uffdio_api.features &= ~UFFD_FEATURE_WP_HUGETLBFS_SHMEM; 2081 uffdio_api.features &= ~UFFD_FEATURE_ 2120 uffdio_api.features &= ~UFFD_FEATURE_WP_UNPOPULATED; 2082 uffdio_api.features &= ~UFFD_FEATURE_ 2121 uffdio_api.features &= ~UFFD_FEATURE_WP_ASYNC; 2083 #endif 2122 #endif 2084 << 2085 ret = -EINVAL; << 2086 if (features & ~uffdio_api.features) << 2087 goto err_out; << 2088 << 2089 uffdio_api.ioctls = UFFD_API_IOCTLS; 2123 uffdio_api.ioctls = UFFD_API_IOCTLS; 2090 ret = -EFAULT; 2124 ret = -EFAULT; 2091 if (copy_to_user(buf, &uffdio_api, si 2125 if (copy_to_user(buf, &uffdio_api, sizeof(uffdio_api))) 2092 goto out; 2126 goto out; 2093 2127 2094 /* only enable the requested features 2128 /* only enable the requested features for this uffd context */ 2095 ctx_features = uffd_ctx_features(feat 2129 ctx_features = uffd_ctx_features(features); 2096 ret = -EINVAL; 2130 ret = -EINVAL; 2097 if (cmpxchg(&ctx->features, 0, ctx_fe 2131 if (cmpxchg(&ctx->features, 0, ctx_features) != 0) 2098 goto err_out; 2132 goto err_out; 2099 2133 2100 ret = 0; 2134 ret = 0; 2101 out: 2135 out: 2102 return ret; 2136 return ret; 2103 err_out: 2137 err_out: 2104 memset(&uffdio_api, 0, sizeof(uffdio_ 2138 memset(&uffdio_api, 0, sizeof(uffdio_api)); 2105 if (copy_to_user(buf, &uffdio_api, si 2139 if (copy_to_user(buf, &uffdio_api, sizeof(uffdio_api))) 2106 ret = -EFAULT; 2140 ret = -EFAULT; 2107 goto out; 2141 goto out; 2108 } 2142 } 2109 2143 2110 static long userfaultfd_ioctl(struct file *fi 2144 static long userfaultfd_ioctl(struct file *file, unsigned cmd, 2111 unsigned long a 2145 unsigned long arg) 2112 { 2146 { 2113 int ret = -EINVAL; 2147 int ret = -EINVAL; 2114 struct userfaultfd_ctx *ctx = file->p 2148 struct userfaultfd_ctx *ctx = file->private_data; 2115 2149 2116 if (cmd != UFFDIO_API && !userfaultfd 2150 if (cmd != UFFDIO_API && !userfaultfd_is_initialized(ctx)) 2117 return -EINVAL; 2151 return -EINVAL; 2118 2152 2119 switch(cmd) { 2153 switch(cmd) { 2120 case UFFDIO_API: 2154 case UFFDIO_API: 2121 ret = userfaultfd_api(ctx, ar 2155 ret = userfaultfd_api(ctx, arg); 2122 break; 2156 break; 2123 case UFFDIO_REGISTER: 2157 case UFFDIO_REGISTER: 2124 ret = userfaultfd_register(ct 2158 ret = userfaultfd_register(ctx, arg); 2125 break; 2159 break; 2126 case UFFDIO_UNREGISTER: 2160 case UFFDIO_UNREGISTER: 2127 ret = userfaultfd_unregister( 2161 ret = userfaultfd_unregister(ctx, arg); 2128 break; 2162 break; 2129 case UFFDIO_WAKE: 2163 case UFFDIO_WAKE: 2130 ret = userfaultfd_wake(ctx, a 2164 ret = userfaultfd_wake(ctx, arg); 2131 break; 2165 break; 2132 case UFFDIO_COPY: 2166 case UFFDIO_COPY: 2133 ret = userfaultfd_copy(ctx, a 2167 ret = userfaultfd_copy(ctx, arg); 2134 break; 2168 break; 2135 case UFFDIO_ZEROPAGE: 2169 case UFFDIO_ZEROPAGE: 2136 ret = userfaultfd_zeropage(ct 2170 ret = userfaultfd_zeropage(ctx, arg); 2137 break; 2171 break; 2138 case UFFDIO_MOVE: 2172 case UFFDIO_MOVE: 2139 ret = userfaultfd_move(ctx, a 2173 ret = userfaultfd_move(ctx, arg); 2140 break; 2174 break; 2141 case UFFDIO_WRITEPROTECT: 2175 case UFFDIO_WRITEPROTECT: 2142 ret = userfaultfd_writeprotec 2176 ret = userfaultfd_writeprotect(ctx, arg); 2143 break; 2177 break; 2144 case UFFDIO_CONTINUE: 2178 case UFFDIO_CONTINUE: 2145 ret = userfaultfd_continue(ct 2179 ret = userfaultfd_continue(ctx, arg); 2146 break; 2180 break; 2147 case UFFDIO_POISON: 2181 case UFFDIO_POISON: 2148 ret = userfaultfd_poison(ctx, 2182 ret = userfaultfd_poison(ctx, arg); 2149 break; 2183 break; 2150 } 2184 } 2151 return ret; 2185 return ret; 2152 } 2186 } 2153 2187 2154 #ifdef CONFIG_PROC_FS 2188 #ifdef CONFIG_PROC_FS 2155 static void userfaultfd_show_fdinfo(struct se 2189 static void userfaultfd_show_fdinfo(struct seq_file *m, struct file *f) 2156 { 2190 { 2157 struct userfaultfd_ctx *ctx = f->priv 2191 struct userfaultfd_ctx *ctx = f->private_data; 2158 wait_queue_entry_t *wq; 2192 wait_queue_entry_t *wq; 2159 unsigned long pending = 0, total = 0; 2193 unsigned long pending = 0, total = 0; 2160 2194 2161 spin_lock_irq(&ctx->fault_pending_wqh 2195 spin_lock_irq(&ctx->fault_pending_wqh.lock); 2162 list_for_each_entry(wq, &ctx->fault_p 2196 list_for_each_entry(wq, &ctx->fault_pending_wqh.head, entry) { 2163 pending++; 2197 pending++; 2164 total++; 2198 total++; 2165 } 2199 } 2166 list_for_each_entry(wq, &ctx->fault_w 2200 list_for_each_entry(wq, &ctx->fault_wqh.head, entry) { 2167 total++; 2201 total++; 2168 } 2202 } 2169 spin_unlock_irq(&ctx->fault_pending_w 2203 spin_unlock_irq(&ctx->fault_pending_wqh.lock); 2170 2204 2171 /* 2205 /* 2172 * If more protocols will be added, t 2206 * If more protocols will be added, there will be all shown 2173 * separated by a space. Like this: 2207 * separated by a space. Like this: 2174 * protocols: aa:... bb:... 2208 * protocols: aa:... bb:... 2175 */ 2209 */ 2176 seq_printf(m, "pending:\t%lu\ntotal:\ 2210 seq_printf(m, "pending:\t%lu\ntotal:\t%lu\nAPI:\t%Lx:%x:%Lx\n", 2177 pending, total, UFFD_API, 2211 pending, total, UFFD_API, ctx->features, 2178 UFFD_API_IOCTLS|UFFD_API_R 2212 UFFD_API_IOCTLS|UFFD_API_RANGE_IOCTLS); 2179 } 2213 } 2180 #endif 2214 #endif 2181 2215 2182 static const struct file_operations userfault 2216 static const struct file_operations userfaultfd_fops = { 2183 #ifdef CONFIG_PROC_FS 2217 #ifdef CONFIG_PROC_FS 2184 .show_fdinfo = userfaultfd_show_fd 2218 .show_fdinfo = userfaultfd_show_fdinfo, 2185 #endif 2219 #endif 2186 .release = userfaultfd_release 2220 .release = userfaultfd_release, 2187 .poll = userfaultfd_poll, 2221 .poll = userfaultfd_poll, 2188 .read_iter = userfaultfd_read_it !! 2222 .read = userfaultfd_read, 2189 .unlocked_ioctl = userfaultfd_ioctl, 2223 .unlocked_ioctl = userfaultfd_ioctl, 2190 .compat_ioctl = compat_ptr_ioctl, 2224 .compat_ioctl = compat_ptr_ioctl, 2191 .llseek = noop_llseek, 2225 .llseek = noop_llseek, 2192 }; 2226 }; 2193 2227 2194 static void init_once_userfaultfd_ctx(void *m 2228 static void init_once_userfaultfd_ctx(void *mem) 2195 { 2229 { 2196 struct userfaultfd_ctx *ctx = (struct 2230 struct userfaultfd_ctx *ctx = (struct userfaultfd_ctx *) mem; 2197 2231 2198 init_waitqueue_head(&ctx->fault_pendi 2232 init_waitqueue_head(&ctx->fault_pending_wqh); 2199 init_waitqueue_head(&ctx->fault_wqh); 2233 init_waitqueue_head(&ctx->fault_wqh); 2200 init_waitqueue_head(&ctx->event_wqh); 2234 init_waitqueue_head(&ctx->event_wqh); 2201 init_waitqueue_head(&ctx->fd_wqh); 2235 init_waitqueue_head(&ctx->fd_wqh); 2202 seqcount_spinlock_init(&ctx->refile_s 2236 seqcount_spinlock_init(&ctx->refile_seq, &ctx->fault_pending_wqh.lock); 2203 } 2237 } 2204 2238 2205 static int new_userfaultfd(int flags) 2239 static int new_userfaultfd(int flags) 2206 { 2240 { 2207 struct userfaultfd_ctx *ctx; 2241 struct userfaultfd_ctx *ctx; 2208 struct file *file; << 2209 int fd; 2242 int fd; 2210 2243 2211 BUG_ON(!current->mm); 2244 BUG_ON(!current->mm); 2212 2245 2213 /* Check the UFFD_* constants for con 2246 /* Check the UFFD_* constants for consistency. */ 2214 BUILD_BUG_ON(UFFD_USER_MODE_ONLY & UF 2247 BUILD_BUG_ON(UFFD_USER_MODE_ONLY & UFFD_SHARED_FCNTL_FLAGS); 2215 BUILD_BUG_ON(UFFD_CLOEXEC != O_CLOEXE 2248 BUILD_BUG_ON(UFFD_CLOEXEC != O_CLOEXEC); 2216 BUILD_BUG_ON(UFFD_NONBLOCK != O_NONBL 2249 BUILD_BUG_ON(UFFD_NONBLOCK != O_NONBLOCK); 2217 2250 2218 if (flags & ~(UFFD_SHARED_FCNTL_FLAGS 2251 if (flags & ~(UFFD_SHARED_FCNTL_FLAGS | UFFD_USER_MODE_ONLY)) 2219 return -EINVAL; 2252 return -EINVAL; 2220 2253 2221 ctx = kmem_cache_alloc(userfaultfd_ct 2254 ctx = kmem_cache_alloc(userfaultfd_ctx_cachep, GFP_KERNEL); 2222 if (!ctx) 2255 if (!ctx) 2223 return -ENOMEM; 2256 return -ENOMEM; 2224 2257 2225 refcount_set(&ctx->refcount, 1); 2258 refcount_set(&ctx->refcount, 1); 2226 ctx->flags = flags; 2259 ctx->flags = flags; 2227 ctx->features = 0; 2260 ctx->features = 0; 2228 ctx->released = false; 2261 ctx->released = false; 2229 init_rwsem(&ctx->map_changing_lock); << 2230 atomic_set(&ctx->mmap_changing, 0); 2262 atomic_set(&ctx->mmap_changing, 0); 2231 ctx->mm = current->mm; 2263 ctx->mm = current->mm; 2232 !! 2264 /* prevent the mm struct to be freed */ 2233 fd = get_unused_fd_flags(flags & UFFD !! 2265 mmgrab(ctx->mm); 2234 if (fd < 0) << 2235 goto err_out; << 2236 2266 2237 /* Create a new inode so that the LSM 2267 /* Create a new inode so that the LSM can block the creation. */ 2238 file = anon_inode_create_getfile("[us !! 2268 fd = anon_inode_create_getfd("[userfaultfd]", &userfaultfd_fops, ctx, 2239 O_RDONLY | (flags & U 2269 O_RDONLY | (flags & UFFD_SHARED_FCNTL_FLAGS), NULL); 2240 if (IS_ERR(file)) { !! 2270 if (fd < 0) { 2241 put_unused_fd(fd); !! 2271 mmdrop(ctx->mm); 2242 fd = PTR_ERR(file); !! 2272 kmem_cache_free(userfaultfd_ctx_cachep, ctx); 2243 goto err_out; << 2244 } 2273 } 2245 /* prevent the mm struct to be freed << 2246 mmgrab(ctx->mm); << 2247 file->f_mode |= FMODE_NOWAIT; << 2248 fd_install(fd, file); << 2249 return fd; << 2250 err_out: << 2251 kmem_cache_free(userfaultfd_ctx_cache << 2252 return fd; 2274 return fd; 2253 } 2275 } 2254 2276 2255 static inline bool userfaultfd_syscall_allowe 2277 static inline bool userfaultfd_syscall_allowed(int flags) 2256 { 2278 { 2257 /* Userspace-only page faults are alw 2279 /* Userspace-only page faults are always allowed */ 2258 if (flags & UFFD_USER_MODE_ONLY) 2280 if (flags & UFFD_USER_MODE_ONLY) 2259 return true; 2281 return true; 2260 2282 2261 /* 2283 /* 2262 * The user is requesting a userfault 2284 * The user is requesting a userfaultfd which can handle kernel faults. 2263 * Privileged users are always allowe 2285 * Privileged users are always allowed to do this. 2264 */ 2286 */ 2265 if (capable(CAP_SYS_PTRACE)) 2287 if (capable(CAP_SYS_PTRACE)) 2266 return true; 2288 return true; 2267 2289 2268 /* Otherwise, access to kernel fault 2290 /* Otherwise, access to kernel fault handling is sysctl controlled. */ 2269 return sysctl_unprivileged_userfaultf 2291 return sysctl_unprivileged_userfaultfd; 2270 } 2292 } 2271 2293 2272 SYSCALL_DEFINE1(userfaultfd, int, flags) 2294 SYSCALL_DEFINE1(userfaultfd, int, flags) 2273 { 2295 { 2274 if (!userfaultfd_syscall_allowed(flag 2296 if (!userfaultfd_syscall_allowed(flags)) 2275 return -EPERM; 2297 return -EPERM; 2276 2298 2277 return new_userfaultfd(flags); 2299 return new_userfaultfd(flags); 2278 } 2300 } 2279 2301 2280 static long userfaultfd_dev_ioctl(struct file 2302 static long userfaultfd_dev_ioctl(struct file *file, unsigned int cmd, unsigned long flags) 2281 { 2303 { 2282 if (cmd != USERFAULTFD_IOC_NEW) 2304 if (cmd != USERFAULTFD_IOC_NEW) 2283 return -EINVAL; 2305 return -EINVAL; 2284 2306 2285 return new_userfaultfd(flags); 2307 return new_userfaultfd(flags); 2286 } 2308 } 2287 2309 2288 static const struct file_operations userfault 2310 static const struct file_operations userfaultfd_dev_fops = { 2289 .unlocked_ioctl = userfaultfd_dev_ioc 2311 .unlocked_ioctl = userfaultfd_dev_ioctl, 2290 .compat_ioctl = userfaultfd_dev_ioctl 2312 .compat_ioctl = userfaultfd_dev_ioctl, 2291 .owner = THIS_MODULE, 2313 .owner = THIS_MODULE, 2292 .llseek = noop_llseek, 2314 .llseek = noop_llseek, 2293 }; 2315 }; 2294 2316 2295 static struct miscdevice userfaultfd_misc = { 2317 static struct miscdevice userfaultfd_misc = { 2296 .minor = MISC_DYNAMIC_MINOR, 2318 .minor = MISC_DYNAMIC_MINOR, 2297 .name = "userfaultfd", 2319 .name = "userfaultfd", 2298 .fops = &userfaultfd_dev_fops 2320 .fops = &userfaultfd_dev_fops 2299 }; 2321 }; 2300 2322 2301 static int __init userfaultfd_init(void) 2323 static int __init userfaultfd_init(void) 2302 { 2324 { 2303 int ret; 2325 int ret; 2304 2326 2305 ret = misc_register(&userfaultfd_misc 2327 ret = misc_register(&userfaultfd_misc); 2306 if (ret) 2328 if (ret) 2307 return ret; 2329 return ret; 2308 2330 2309 userfaultfd_ctx_cachep = kmem_cache_c 2331 userfaultfd_ctx_cachep = kmem_cache_create("userfaultfd_ctx_cache", 2310 2332 sizeof(struct userfaultfd_ctx), 2311 2333 0, 2312 2334 SLAB_HWCACHE_ALIGN|SLAB_PANIC, 2313 2335 init_once_userfaultfd_ctx); 2314 #ifdef CONFIG_SYSCTL 2336 #ifdef CONFIG_SYSCTL 2315 register_sysctl_init("vm", vm_userfau 2337 register_sysctl_init("vm", vm_userfaultfd_table); 2316 #endif 2338 #endif 2317 return 0; 2339 return 0; 2318 } 2340 } 2319 __initcall(userfaultfd_init); 2341 __initcall(userfaultfd_init); 2320 2342
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.