1 // SPDX-License-Identifier: GPL-2.0 1 // SPDX-License-Identifier: GPL-2.0 2 /* 2 /* 3 * Copyright (c) 2000-2005 Silicon Graphics, I 3 * Copyright (c) 2000-2005 Silicon Graphics, Inc. 4 * All Rights Reserved. 4 * All Rights Reserved. 5 */ 5 */ 6 #include "xfs.h" 6 #include "xfs.h" 7 #include "xfs_fs.h" 7 #include "xfs_fs.h" 8 #include "xfs_shared.h" 8 #include "xfs_shared.h" 9 #include "xfs_format.h" 9 #include "xfs_format.h" 10 #include "xfs_log_format.h" 10 #include "xfs_log_format.h" 11 #include "xfs_trans_resv.h" 11 #include "xfs_trans_resv.h" 12 #include "xfs_sb.h" 12 #include "xfs_sb.h" 13 #include "xfs_mount.h" 13 #include "xfs_mount.h" 14 #include "xfs_trans.h" 14 #include "xfs_trans.h" 15 #include "xfs_error.h" 15 #include "xfs_error.h" 16 #include "xfs_alloc.h" 16 #include "xfs_alloc.h" 17 #include "xfs_fsops.h" 17 #include "xfs_fsops.h" 18 #include "xfs_trans_space.h" 18 #include "xfs_trans_space.h" 19 #include "xfs_log.h" 19 #include "xfs_log.h" 20 #include "xfs_log_priv.h" 20 #include "xfs_log_priv.h" 21 #include "xfs_ag.h" 21 #include "xfs_ag.h" 22 #include "xfs_ag_resv.h" 22 #include "xfs_ag_resv.h" 23 #include "xfs_trace.h" 23 #include "xfs_trace.h" 24 24 25 /* 25 /* 26 * Write new AG headers to disk. Non-transacti 26 * Write new AG headers to disk. Non-transactional, but need to be 27 * written and completed prior to the growfs t 27 * written and completed prior to the growfs transaction being logged. 28 * To do this, we use a delayed write buffer l 28 * To do this, we use a delayed write buffer list and wait for 29 * submission and IO completion of the list as 29 * submission and IO completion of the list as a whole. This allows the 30 * IO subsystem to merge all the AG headers in 30 * IO subsystem to merge all the AG headers in a single AG into a single 31 * IO and hide most of the latency of the IO f 31 * IO and hide most of the latency of the IO from us. 32 * 32 * 33 * This also means that if we get an error whi 33 * This also means that if we get an error whilst building the buffer 34 * list to write, we can cancel the entire lis 34 * list to write, we can cancel the entire list without having written 35 * anything. 35 * anything. 36 */ 36 */ 37 static int 37 static int 38 xfs_resizefs_init_new_ags( 38 xfs_resizefs_init_new_ags( 39 struct xfs_trans *tp, 39 struct xfs_trans *tp, 40 struct aghdr_init_data *id, 40 struct aghdr_init_data *id, 41 xfs_agnumber_t oagcount, 41 xfs_agnumber_t oagcount, 42 xfs_agnumber_t nagcount, 42 xfs_agnumber_t nagcount, 43 xfs_rfsblock_t delta, 43 xfs_rfsblock_t delta, 44 struct xfs_perag *last_pag, 44 struct xfs_perag *last_pag, 45 bool *lastag_extend 45 bool *lastag_extended) 46 { 46 { 47 struct xfs_mount *mp = tp->t_mo 47 struct xfs_mount *mp = tp->t_mountp; 48 xfs_rfsblock_t nb = mp->m_sb. 48 xfs_rfsblock_t nb = mp->m_sb.sb_dblocks + delta; 49 int error; 49 int error; 50 50 51 *lastag_extended = false; 51 *lastag_extended = false; 52 52 53 INIT_LIST_HEAD(&id->buffer_list); 53 INIT_LIST_HEAD(&id->buffer_list); 54 for (id->agno = nagcount - 1; 54 for (id->agno = nagcount - 1; 55 id->agno >= oagcount; 55 id->agno >= oagcount; 56 id->agno--, delta -= id->agsize) 56 id->agno--, delta -= id->agsize) { 57 57 58 if (id->agno == nagcount - 1) 58 if (id->agno == nagcount - 1) 59 id->agsize = nb - (id- 59 id->agsize = nb - (id->agno * 60 (xfs_r 60 (xfs_rfsblock_t)mp->m_sb.sb_agblocks); 61 else 61 else 62 id->agsize = mp->m_sb. 62 id->agsize = mp->m_sb.sb_agblocks; 63 63 64 error = xfs_ag_init_headers(mp 64 error = xfs_ag_init_headers(mp, id); 65 if (error) { 65 if (error) { 66 xfs_buf_delwri_cancel( 66 xfs_buf_delwri_cancel(&id->buffer_list); 67 return error; 67 return error; 68 } 68 } 69 } 69 } 70 70 71 error = xfs_buf_delwri_submit(&id->buf 71 error = xfs_buf_delwri_submit(&id->buffer_list); 72 if (error) 72 if (error) 73 return error; 73 return error; 74 74 75 if (delta) { 75 if (delta) { 76 *lastag_extended = true; 76 *lastag_extended = true; 77 error = xfs_ag_extend_space(la 77 error = xfs_ag_extend_space(last_pag, tp, delta); 78 } 78 } 79 return error; 79 return error; 80 } 80 } 81 81 82 /* 82 /* 83 * growfs operations 83 * growfs operations 84 */ 84 */ 85 static int 85 static int 86 xfs_growfs_data_private( 86 xfs_growfs_data_private( 87 struct xfs_mount *mp, 87 struct xfs_mount *mp, /* mount point for filesystem */ 88 struct xfs_growfs_data *in) 88 struct xfs_growfs_data *in) /* growfs data input struct */ 89 { 89 { 90 xfs_agnumber_t oagcount = mp- << 91 struct xfs_buf *bp; 90 struct xfs_buf *bp; 92 int error; 91 int error; 93 xfs_agnumber_t nagcount; 92 xfs_agnumber_t nagcount; 94 xfs_agnumber_t nagimax = 0; 93 xfs_agnumber_t nagimax = 0; 95 xfs_rfsblock_t nb, nb_div, nb 94 xfs_rfsblock_t nb, nb_div, nb_mod; 96 int64_t delta; 95 int64_t delta; 97 bool lastag_extende !! 96 bool lastag_extended; >> 97 xfs_agnumber_t oagcount; 98 struct xfs_trans *tp; 98 struct xfs_trans *tp; 99 struct aghdr_init_data id = {}; 99 struct aghdr_init_data id = {}; 100 struct xfs_perag *last_pag; 100 struct xfs_perag *last_pag; 101 101 102 nb = in->newblocks; 102 nb = in->newblocks; 103 error = xfs_sb_validate_fsb_count(&mp- 103 error = xfs_sb_validate_fsb_count(&mp->m_sb, nb); 104 if (error) 104 if (error) 105 return error; 105 return error; 106 106 107 if (nb > mp->m_sb.sb_dblocks) { 107 if (nb > mp->m_sb.sb_dblocks) { 108 error = xfs_buf_read_uncached( 108 error = xfs_buf_read_uncached(mp->m_ddev_targp, 109 XFS_FSB_TO_BB( 109 XFS_FSB_TO_BB(mp, nb) - XFS_FSS_TO_BB(mp, 1), 110 XFS_FSS_TO_BB( 110 XFS_FSS_TO_BB(mp, 1), 0, &bp, NULL); 111 if (error) 111 if (error) 112 return error; 112 return error; 113 xfs_buf_relse(bp); 113 xfs_buf_relse(bp); 114 } 114 } 115 115 116 nb_div = nb; 116 nb_div = nb; 117 nb_mod = do_div(nb_div, mp->m_sb.sb_ag 117 nb_mod = do_div(nb_div, mp->m_sb.sb_agblocks); 118 if (nb_mod && nb_mod >= XFS_MIN_AG_BLO !! 118 nagcount = nb_div + (nb_mod != 0); 119 nb_div++; !! 119 if (nb_mod && nb_mod < XFS_MIN_AG_BLOCKS) { 120 else if (nb_mod) !! 120 nagcount--; 121 nb = nb_div * mp->m_sb.sb_agbl !! 121 nb = (xfs_rfsblock_t)nagcount * mp->m_sb.sb_agblocks; 122 << 123 if (nb_div > XFS_MAX_AGNUMBER + 1) { << 124 nb_div = XFS_MAX_AGNUMBER + 1; << 125 nb = nb_div * mp->m_sb.sb_agbl << 126 } 122 } 127 nagcount = nb_div; << 128 delta = nb - mp->m_sb.sb_dblocks; 123 delta = nb - mp->m_sb.sb_dblocks; 129 /* 124 /* 130 * Reject filesystems with a single AG 125 * Reject filesystems with a single AG because they are not 131 * supported, and reject a shrink oper 126 * supported, and reject a shrink operation that would cause a 132 * filesystem to become unsupported. 127 * filesystem to become unsupported. 133 */ 128 */ 134 if (delta < 0 && nagcount < 2) 129 if (delta < 0 && nagcount < 2) 135 return -EINVAL; 130 return -EINVAL; 136 131 137 /* No work to do */ !! 132 oagcount = mp->m_sb.sb_agcount; 138 if (delta == 0) !! 133 /* allocate the new per-ag structures */ 139 return 0; !! 134 if (nagcount > oagcount) { 140 !! 135 error = xfs_initialize_perag(mp, nagcount, nb, &nagimax); 141 /* TODO: shrinking the entire AGs hasn !! 136 if (error) 142 if (nagcount < oagcount) !! 137 return error; >> 138 } else if (nagcount < oagcount) { >> 139 /* TODO: shrinking the entire AGs hasn't yet completed */ 143 return -EINVAL; 140 return -EINVAL; >> 141 } 144 142 145 /* allocate the new per-ag structures !! 143 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_growdata, 146 error = xfs_initialize_perag(mp, oagco !! 144 (delta > 0 ? XFS_GROWFS_SPACE_RES(mp) : -delta), 0, >> 145 XFS_TRANS_RESERVE, &tp); 147 if (error) 146 if (error) 148 return error; 147 return error; 149 148 150 if (delta > 0) << 151 error = xfs_trans_alloc(mp, &M << 152 XFS_GROWFS_SPA << 153 &tp); << 154 else << 155 error = xfs_trans_alloc(mp, &M << 156 0, &tp); << 157 if (error) << 158 goto out_free_unused_perag; << 159 << 160 last_pag = xfs_perag_get(mp, oagcount 149 last_pag = xfs_perag_get(mp, oagcount - 1); 161 if (delta > 0) { 150 if (delta > 0) { 162 error = xfs_resizefs_init_new_ 151 error = xfs_resizefs_init_new_ags(tp, &id, oagcount, nagcount, 163 delta, last_pa 152 delta, last_pag, &lastag_extended); 164 } else { 153 } else { 165 xfs_warn_mount(mp, XFS_OPSTATE 154 xfs_warn_mount(mp, XFS_OPSTATE_WARNED_SHRINK, 166 "EXPERIMENTAL online shrink feature in 155 "EXPERIMENTAL online shrink feature in use. Use at your own risk!"); 167 156 168 error = xfs_ag_shrink_space(la 157 error = xfs_ag_shrink_space(last_pag, &tp, -delta); 169 } 158 } 170 xfs_perag_put(last_pag); 159 xfs_perag_put(last_pag); 171 if (error) 160 if (error) 172 goto out_trans_cancel; 161 goto out_trans_cancel; 173 162 174 /* 163 /* 175 * Update changed superblock fields tr 164 * Update changed superblock fields transactionally. These are not 176 * seen by the rest of the world until 165 * seen by the rest of the world until the transaction commit applies 177 * them atomically to the superblock. 166 * them atomically to the superblock. 178 */ 167 */ 179 if (nagcount > oagcount) 168 if (nagcount > oagcount) 180 xfs_trans_mod_sb(tp, XFS_TRANS 169 xfs_trans_mod_sb(tp, XFS_TRANS_SB_AGCOUNT, nagcount - oagcount); 181 if (delta) 170 if (delta) 182 xfs_trans_mod_sb(tp, XFS_TRANS 171 xfs_trans_mod_sb(tp, XFS_TRANS_SB_DBLOCKS, delta); 183 if (id.nfree) 172 if (id.nfree) 184 xfs_trans_mod_sb(tp, XFS_TRANS 173 xfs_trans_mod_sb(tp, XFS_TRANS_SB_FDBLOCKS, id.nfree); 185 174 186 /* 175 /* 187 * Sync sb counters now to reflect the 176 * Sync sb counters now to reflect the updated values. This is 188 * particularly important for shrink b 177 * particularly important for shrink because the write verifier 189 * will fail if sb_fdblocks is ever la 178 * will fail if sb_fdblocks is ever larger than sb_dblocks. 190 */ 179 */ 191 if (xfs_has_lazysbcount(mp)) 180 if (xfs_has_lazysbcount(mp)) 192 xfs_log_sb(tp); 181 xfs_log_sb(tp); 193 182 194 xfs_trans_set_sync(tp); 183 xfs_trans_set_sync(tp); 195 error = xfs_trans_commit(tp); 184 error = xfs_trans_commit(tp); 196 if (error) 185 if (error) 197 return error; 186 return error; 198 187 199 /* New allocation groups fully initial 188 /* New allocation groups fully initialized, so update mount struct */ 200 if (nagimax) 189 if (nagimax) 201 mp->m_maxagi = nagimax; 190 mp->m_maxagi = nagimax; 202 xfs_set_low_space_thresholds(mp); 191 xfs_set_low_space_thresholds(mp); 203 mp->m_alloc_set_aside = xfs_alloc_set_ 192 mp->m_alloc_set_aside = xfs_alloc_set_aside(mp); 204 193 205 if (delta > 0) { 194 if (delta > 0) { 206 /* 195 /* 207 * If we expanded the last AG, 196 * If we expanded the last AG, free the per-AG reservation 208 * so we can reinitialize it w 197 * so we can reinitialize it with the new size. 209 */ 198 */ 210 if (lastag_extended) { 199 if (lastag_extended) { 211 struct xfs_perag 200 struct xfs_perag *pag; 212 201 213 pag = xfs_perag_get(mp 202 pag = xfs_perag_get(mp, id.agno); 214 xfs_ag_resv_free(pag); !! 203 error = xfs_ag_resv_free(pag); 215 xfs_perag_put(pag); 204 xfs_perag_put(pag); >> 205 if (error) >> 206 return error; 216 } 207 } 217 /* 208 /* 218 * Reserve AG metadata blocks. 209 * Reserve AG metadata blocks. ENOSPC here does not mean there 219 * was a growfs failure, just 210 * was a growfs failure, just that there still isn't space for 220 * new user data after the gro 211 * new user data after the grow has been run. 221 */ 212 */ 222 error = xfs_fs_reserve_ag_bloc 213 error = xfs_fs_reserve_ag_blocks(mp); 223 if (error == -ENOSPC) 214 if (error == -ENOSPC) 224 error = 0; 215 error = 0; 225 } 216 } 226 return error; 217 return error; 227 218 228 out_trans_cancel: 219 out_trans_cancel: 229 xfs_trans_cancel(tp); 220 xfs_trans_cancel(tp); 230 out_free_unused_perag: << 231 if (nagcount > oagcount) << 232 xfs_free_perag_range(mp, oagco << 233 return error; 221 return error; 234 } 222 } 235 223 236 static int 224 static int 237 xfs_growfs_log_private( 225 xfs_growfs_log_private( 238 struct xfs_mount *mp, /* mou 226 struct xfs_mount *mp, /* mount point for filesystem */ 239 struct xfs_growfs_log *in) /* gro 227 struct xfs_growfs_log *in) /* growfs log input struct */ 240 { 228 { 241 xfs_extlen_t nb; 229 xfs_extlen_t nb; 242 230 243 nb = in->newblocks; 231 nb = in->newblocks; 244 if (nb < XFS_MIN_LOG_BLOCKS || nb < XF 232 if (nb < XFS_MIN_LOG_BLOCKS || nb < XFS_B_TO_FSB(mp, XFS_MIN_LOG_BYTES)) 245 return -EINVAL; 233 return -EINVAL; 246 if (nb == mp->m_sb.sb_logblocks && 234 if (nb == mp->m_sb.sb_logblocks && 247 in->isint == (mp->m_sb.sb_logstart 235 in->isint == (mp->m_sb.sb_logstart != 0)) 248 return -EINVAL; 236 return -EINVAL; 249 /* 237 /* 250 * Moving the log is hard, need new in 238 * Moving the log is hard, need new interfaces to sync 251 * the log first, hold off all activit 239 * the log first, hold off all activity while moving it. 252 * Can have shorter or longer log in t 240 * Can have shorter or longer log in the same space, 253 * or transform internal to external l 241 * or transform internal to external log or vice versa. 254 */ 242 */ 255 return -ENOSYS; 243 return -ENOSYS; 256 } 244 } 257 245 258 static int 246 static int 259 xfs_growfs_imaxpct( 247 xfs_growfs_imaxpct( 260 struct xfs_mount *mp, 248 struct xfs_mount *mp, 261 __u32 imaxpct) 249 __u32 imaxpct) 262 { 250 { 263 struct xfs_trans *tp; 251 struct xfs_trans *tp; 264 int dpct; 252 int dpct; 265 int error; 253 int error; 266 254 267 if (imaxpct > 100) 255 if (imaxpct > 100) 268 return -EINVAL; 256 return -EINVAL; 269 257 270 error = xfs_trans_alloc(mp, &M_RES(mp) 258 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_growdata, 271 XFS_GROWFS_SPACE_RES(m 259 XFS_GROWFS_SPACE_RES(mp), 0, XFS_TRANS_RESERVE, &tp); 272 if (error) 260 if (error) 273 return error; 261 return error; 274 262 275 dpct = imaxpct - mp->m_sb.sb_imax_pct; 263 dpct = imaxpct - mp->m_sb.sb_imax_pct; 276 xfs_trans_mod_sb(tp, XFS_TRANS_SB_IMAX 264 xfs_trans_mod_sb(tp, XFS_TRANS_SB_IMAXPCT, dpct); 277 xfs_trans_set_sync(tp); 265 xfs_trans_set_sync(tp); 278 return xfs_trans_commit(tp); 266 return xfs_trans_commit(tp); 279 } 267 } 280 268 281 /* 269 /* 282 * protected versions of growfs function acqui 270 * protected versions of growfs function acquire and release locks on the mount 283 * point - exported through ioctls: XFS_IOC_FS 271 * point - exported through ioctls: XFS_IOC_FSGROWFSDATA, XFS_IOC_FSGROWFSLOG, 284 * XFS_IOC_FSGROWFSRT 272 * XFS_IOC_FSGROWFSRT 285 */ 273 */ 286 int 274 int 287 xfs_growfs_data( 275 xfs_growfs_data( 288 struct xfs_mount *mp, 276 struct xfs_mount *mp, 289 struct xfs_growfs_data *in) 277 struct xfs_growfs_data *in) 290 { 278 { 291 int error = 0; 279 int error = 0; 292 280 293 if (!capable(CAP_SYS_ADMIN)) 281 if (!capable(CAP_SYS_ADMIN)) 294 return -EPERM; 282 return -EPERM; 295 if (!mutex_trylock(&mp->m_growlock)) 283 if (!mutex_trylock(&mp->m_growlock)) 296 return -EWOULDBLOCK; 284 return -EWOULDBLOCK; 297 285 298 /* update imaxpct separately to the ph 286 /* update imaxpct separately to the physical grow of the filesystem */ 299 if (in->imaxpct != mp->m_sb.sb_imax_pc 287 if (in->imaxpct != mp->m_sb.sb_imax_pct) { 300 error = xfs_growfs_imaxpct(mp, 288 error = xfs_growfs_imaxpct(mp, in->imaxpct); 301 if (error) 289 if (error) 302 goto out_error; 290 goto out_error; 303 } 291 } 304 292 305 if (in->newblocks != mp->m_sb.sb_dbloc 293 if (in->newblocks != mp->m_sb.sb_dblocks) { 306 error = xfs_growfs_data_privat 294 error = xfs_growfs_data_private(mp, in); 307 if (error) 295 if (error) 308 goto out_error; 296 goto out_error; 309 } 297 } 310 298 311 /* Post growfs calculations needed to 299 /* Post growfs calculations needed to reflect new state in operations */ 312 if (mp->m_sb.sb_imax_pct) { 300 if (mp->m_sb.sb_imax_pct) { 313 uint64_t icount = mp->m_sb.sb_ 301 uint64_t icount = mp->m_sb.sb_dblocks * mp->m_sb.sb_imax_pct; 314 do_div(icount, 100); 302 do_div(icount, 100); 315 M_IGEO(mp)->maxicount = XFS_FS 303 M_IGEO(mp)->maxicount = XFS_FSB_TO_INO(mp, icount); 316 } else 304 } else 317 M_IGEO(mp)->maxicount = 0; 305 M_IGEO(mp)->maxicount = 0; 318 306 319 /* Update secondary superblocks now th 307 /* Update secondary superblocks now the physical grow has completed */ 320 error = xfs_update_secondary_sbs(mp); 308 error = xfs_update_secondary_sbs(mp); 321 309 322 out_error: 310 out_error: 323 /* 311 /* 324 * Increment the generation unconditio 312 * Increment the generation unconditionally, the error could be from 325 * updating the secondary superblocks, 313 * updating the secondary superblocks, in which case the new size 326 * is live already. 314 * is live already. 327 */ 315 */ 328 mp->m_generation++; 316 mp->m_generation++; 329 mutex_unlock(&mp->m_growlock); 317 mutex_unlock(&mp->m_growlock); 330 return error; 318 return error; 331 } 319 } 332 320 333 int 321 int 334 xfs_growfs_log( 322 xfs_growfs_log( 335 xfs_mount_t *mp, 323 xfs_mount_t *mp, 336 struct xfs_growfs_log *in) 324 struct xfs_growfs_log *in) 337 { 325 { 338 int error; 326 int error; 339 327 340 if (!capable(CAP_SYS_ADMIN)) 328 if (!capable(CAP_SYS_ADMIN)) 341 return -EPERM; 329 return -EPERM; 342 if (!mutex_trylock(&mp->m_growlock)) 330 if (!mutex_trylock(&mp->m_growlock)) 343 return -EWOULDBLOCK; 331 return -EWOULDBLOCK; 344 error = xfs_growfs_log_private(mp, in) 332 error = xfs_growfs_log_private(mp, in); 345 mutex_unlock(&mp->m_growlock); 333 mutex_unlock(&mp->m_growlock); 346 return error; 334 return error; 347 } 335 } 348 336 349 /* 337 /* >> 338 * exported through ioctl XFS_IOC_FSCOUNTS >> 339 */ >> 340 >> 341 void >> 342 xfs_fs_counts( >> 343 xfs_mount_t *mp, >> 344 xfs_fsop_counts_t *cnt) >> 345 { >> 346 cnt->allocino = percpu_counter_read_positive(&mp->m_icount); >> 347 cnt->freeino = percpu_counter_read_positive(&mp->m_ifree); >> 348 cnt->freedata = percpu_counter_read_positive(&mp->m_fdblocks) - >> 349 xfs_fdblocks_unavailable(mp); >> 350 cnt->freertx = percpu_counter_read_positive(&mp->m_frextents); >> 351 } >> 352 >> 353 /* >> 354 * exported through ioctl XFS_IOC_SET_RESBLKS & XFS_IOC_GET_RESBLKS >> 355 * >> 356 * xfs_reserve_blocks is called to set m_resblks >> 357 * in the in-core mount table. The number of unused reserved blocks >> 358 * is kept in m_resblks_avail. >> 359 * 350 * Reserve the requested number of blocks if a 360 * Reserve the requested number of blocks if available. Otherwise return 351 * as many as possible to satisfy the request. 361 * as many as possible to satisfy the request. The actual number 352 * reserved are returned in outval. !! 362 * reserved are returned in outval >> 363 * >> 364 * A null inval pointer indicates that only the current reserved blocks >> 365 * available should be returned no settings are changed. 353 */ 366 */ >> 367 354 int 368 int 355 xfs_reserve_blocks( 369 xfs_reserve_blocks( 356 struct xfs_mount *mp, !! 370 xfs_mount_t *mp, 357 uint64_t request) !! 371 uint64_t *inval, >> 372 xfs_fsop_resblks_t *outval) 358 { 373 { 359 int64_t lcounter, delt 374 int64_t lcounter, delta; 360 int64_t fdblks_delta = 375 int64_t fdblks_delta = 0; >> 376 uint64_t request; 361 int64_t free; 377 int64_t free; 362 int error = 0; 378 int error = 0; 363 379 >> 380 /* If inval is null, report current values and return */ >> 381 if (inval == (uint64_t *)NULL) { >> 382 if (!outval) >> 383 return -EINVAL; >> 384 outval->resblks = mp->m_resblks; >> 385 outval->resblks_avail = mp->m_resblks_avail; >> 386 return 0; >> 387 } >> 388 >> 389 request = *inval; >> 390 364 /* 391 /* 365 * With per-cpu counters, this becomes 392 * With per-cpu counters, this becomes an interesting problem. we need 366 * to work out if we are freeing or al 393 * to work out if we are freeing or allocation blocks first, then we can 367 * do the modification as necessary. 394 * do the modification as necessary. 368 * 395 * 369 * We do this under the m_sb_lock so t 396 * We do this under the m_sb_lock so that if we are near ENOSPC, we will 370 * hold out any changes while we work 397 * hold out any changes while we work out what to do. This means that 371 * the amount of free space can change 398 * the amount of free space can change while we do this, so we need to 372 * retry if we end up trying to reserv 399 * retry if we end up trying to reserve more space than is available. 373 */ 400 */ 374 spin_lock(&mp->m_sb_lock); 401 spin_lock(&mp->m_sb_lock); 375 402 376 /* 403 /* 377 * If our previous reservation was lar 404 * If our previous reservation was larger than the current value, 378 * then move any unused blocks back to 405 * then move any unused blocks back to the free pool. Modify the resblks 379 * counters directly since we shouldn' 406 * counters directly since we shouldn't have any problems unreserving 380 * space. 407 * space. 381 */ 408 */ 382 if (mp->m_resblks > request) { 409 if (mp->m_resblks > request) { 383 lcounter = mp->m_resblks_avail 410 lcounter = mp->m_resblks_avail - request; 384 if (lcounter > 0) { !! 411 if (lcounter > 0) { /* release unused blocks */ 385 fdblks_delta = lcounte 412 fdblks_delta = lcounter; 386 mp->m_resblks_avail -= 413 mp->m_resblks_avail -= lcounter; 387 } 414 } 388 mp->m_resblks = request; 415 mp->m_resblks = request; 389 if (fdblks_delta) { 416 if (fdblks_delta) { 390 spin_unlock(&mp->m_sb_ 417 spin_unlock(&mp->m_sb_lock); 391 xfs_add_fdblocks(mp, f !! 418 error = xfs_mod_fdblocks(mp, fdblks_delta, 0); 392 spin_lock(&mp->m_sb_lo 419 spin_lock(&mp->m_sb_lock); 393 } 420 } 394 421 395 goto out; 422 goto out; 396 } 423 } 397 424 398 /* 425 /* 399 * If the request is larger than the c 426 * If the request is larger than the current reservation, reserve the 400 * blocks before we update the reserve 427 * blocks before we update the reserve counters. Sample m_fdblocks and 401 * perform a partial reservation if th 428 * perform a partial reservation if the request exceeds free space. 402 * 429 * 403 * The code below estimates how many b 430 * The code below estimates how many blocks it can request from 404 * fdblocks to stash in the reserve po 431 * fdblocks to stash in the reserve pool. This is a classic TOCTOU 405 * race since fdblocks updates are not 432 * race since fdblocks updates are not always coordinated via 406 * m_sb_lock. Set the reserve size ev 433 * m_sb_lock. Set the reserve size even if there's not enough free 407 * space to fill it because mod_fdbloc 434 * space to fill it because mod_fdblocks will refill an undersized 408 * reserve when it can. 435 * reserve when it can. 409 */ 436 */ 410 free = percpu_counter_sum(&mp->m_fdblo 437 free = percpu_counter_sum(&mp->m_fdblocks) - 411 438 xfs_fdblocks_unavailable(mp); 412 delta = request - mp->m_resblks; 439 delta = request - mp->m_resblks; 413 mp->m_resblks = request; 440 mp->m_resblks = request; 414 if (delta > 0 && free > 0) { 441 if (delta > 0 && free > 0) { 415 /* 442 /* 416 * We'll either succeed in get 443 * We'll either succeed in getting space from the free block 417 * count or we'll get an ENOSP 444 * count or we'll get an ENOSPC. Don't set the reserved flag 418 * here - we don't want to res 445 * here - we don't want to reserve the extra reserve blocks 419 * from the reserve. 446 * from the reserve. 420 * 447 * 421 * The desired reserve size ca 448 * The desired reserve size can change after we drop the lock. 422 * Use mod_fdblocks to put the 449 * Use mod_fdblocks to put the space into the reserve or into 423 * fdblocks as appropriate. 450 * fdblocks as appropriate. 424 */ 451 */ 425 fdblks_delta = min(free, delta 452 fdblks_delta = min(free, delta); 426 spin_unlock(&mp->m_sb_lock); 453 spin_unlock(&mp->m_sb_lock); 427 error = xfs_dec_fdblocks(mp, f !! 454 error = xfs_mod_fdblocks(mp, -fdblks_delta, 0); 428 if (!error) 455 if (!error) 429 xfs_add_fdblocks(mp, f !! 456 xfs_mod_fdblocks(mp, fdblks_delta, 0); 430 spin_lock(&mp->m_sb_lock); 457 spin_lock(&mp->m_sb_lock); 431 } 458 } 432 out: 459 out: >> 460 if (outval) { >> 461 outval->resblks = mp->m_resblks; >> 462 outval->resblks_avail = mp->m_resblks_avail; >> 463 } >> 464 433 spin_unlock(&mp->m_sb_lock); 465 spin_unlock(&mp->m_sb_lock); 434 return error; 466 return error; 435 } 467 } 436 468 437 int 469 int 438 xfs_fs_goingdown( 470 xfs_fs_goingdown( 439 xfs_mount_t *mp, 471 xfs_mount_t *mp, 440 uint32_t inflags) 472 uint32_t inflags) 441 { 473 { 442 switch (inflags) { 474 switch (inflags) { 443 case XFS_FSOP_GOING_FLAGS_DEFAULT: { 475 case XFS_FSOP_GOING_FLAGS_DEFAULT: { 444 if (!bdev_freeze(mp->m_super-> !! 476 if (!freeze_bdev(mp->m_super->s_bdev)) { 445 xfs_force_shutdown(mp, 477 xfs_force_shutdown(mp, SHUTDOWN_FORCE_UMOUNT); 446 bdev_thaw(mp->m_super- !! 478 thaw_bdev(mp->m_super->s_bdev); 447 } 479 } 448 break; 480 break; 449 } 481 } 450 case XFS_FSOP_GOING_FLAGS_LOGFLUSH: 482 case XFS_FSOP_GOING_FLAGS_LOGFLUSH: 451 xfs_force_shutdown(mp, SHUTDOW 483 xfs_force_shutdown(mp, SHUTDOWN_FORCE_UMOUNT); 452 break; 484 break; 453 case XFS_FSOP_GOING_FLAGS_NOLOGFLUSH: 485 case XFS_FSOP_GOING_FLAGS_NOLOGFLUSH: 454 xfs_force_shutdown(mp, 486 xfs_force_shutdown(mp, 455 SHUTDOWN_FORCE 487 SHUTDOWN_FORCE_UMOUNT | SHUTDOWN_LOG_IO_ERROR); 456 break; 488 break; 457 default: 489 default: 458 return -EINVAL; 490 return -EINVAL; 459 } 491 } 460 492 461 return 0; 493 return 0; 462 } 494 } 463 495 464 /* 496 /* 465 * Force a shutdown of the filesystem instantl 497 * Force a shutdown of the filesystem instantly while keeping the filesystem 466 * consistent. We don't do an unmount here; ju 498 * consistent. We don't do an unmount here; just shutdown the shop, make sure 467 * that absolutely nothing persistent happens 499 * that absolutely nothing persistent happens to this filesystem after this 468 * point. 500 * point. 469 * 501 * 470 * The shutdown state change is atomic, result 502 * The shutdown state change is atomic, resulting in the first and only the 471 * first shutdown call processing the shutdown 503 * first shutdown call processing the shutdown. This means we only shutdown the 472 * log once as it requires, and we don't spam 504 * log once as it requires, and we don't spam the logs when multiple concurrent 473 * shutdowns race to set the shutdown flags. 505 * shutdowns race to set the shutdown flags. 474 */ 506 */ 475 void 507 void 476 xfs_do_force_shutdown( 508 xfs_do_force_shutdown( 477 struct xfs_mount *mp, 509 struct xfs_mount *mp, 478 uint32_t flags, 510 uint32_t flags, 479 char *fname, 511 char *fname, 480 int lnnum) 512 int lnnum) 481 { 513 { 482 int tag; 514 int tag; 483 const char *why; 515 const char *why; 484 516 485 517 486 if (xfs_set_shutdown(mp)) { !! 518 if (test_and_set_bit(XFS_OPSTATE_SHUTDOWN, &mp->m_opstate)) { 487 xlog_shutdown_wait(mp->m_log); 519 xlog_shutdown_wait(mp->m_log); 488 return; 520 return; 489 } 521 } 490 if (mp->m_sb_bp) 522 if (mp->m_sb_bp) 491 mp->m_sb_bp->b_flags |= XBF_DO 523 mp->m_sb_bp->b_flags |= XBF_DONE; 492 524 493 if (flags & SHUTDOWN_FORCE_UMOUNT) 525 if (flags & SHUTDOWN_FORCE_UMOUNT) 494 xfs_alert(mp, "User initiated 526 xfs_alert(mp, "User initiated shutdown received."); 495 527 496 if (xlog_force_shutdown(mp->m_log, fla 528 if (xlog_force_shutdown(mp->m_log, flags)) { 497 tag = XFS_PTAG_SHUTDOWN_LOGERR 529 tag = XFS_PTAG_SHUTDOWN_LOGERROR; 498 why = "Log I/O Error"; 530 why = "Log I/O Error"; 499 } else if (flags & SHUTDOWN_CORRUPT_IN 531 } else if (flags & SHUTDOWN_CORRUPT_INCORE) { 500 tag = XFS_PTAG_SHUTDOWN_CORRUP 532 tag = XFS_PTAG_SHUTDOWN_CORRUPT; 501 why = "Corruption of in-memory 533 why = "Corruption of in-memory data"; 502 } else if (flags & SHUTDOWN_CORRUPT_ON 534 } else if (flags & SHUTDOWN_CORRUPT_ONDISK) { 503 tag = XFS_PTAG_SHUTDOWN_CORRUP 535 tag = XFS_PTAG_SHUTDOWN_CORRUPT; 504 why = "Corruption of on-disk m 536 why = "Corruption of on-disk metadata"; 505 } else if (flags & SHUTDOWN_DEVICE_REM << 506 tag = XFS_PTAG_SHUTDOWN_IOERRO << 507 why = "Block device removal"; << 508 } else { 537 } else { 509 tag = XFS_PTAG_SHUTDOWN_IOERRO 538 tag = XFS_PTAG_SHUTDOWN_IOERROR; 510 why = "Metadata I/O Error"; 539 why = "Metadata I/O Error"; 511 } 540 } 512 541 513 trace_xfs_force_shutdown(mp, tag, flag 542 trace_xfs_force_shutdown(mp, tag, flags, fname, lnnum); 514 543 515 xfs_alert_tag(mp, tag, 544 xfs_alert_tag(mp, tag, 516 "%s (0x%x) detected at %pS (%s:%d). Shutting 545 "%s (0x%x) detected at %pS (%s:%d). Shutting down filesystem.", 517 why, flags, __return_a 546 why, flags, __return_address, fname, lnnum); 518 xfs_alert(mp, 547 xfs_alert(mp, 519 "Please unmount the filesystem 548 "Please unmount the filesystem and rectify the problem(s)"); 520 if (xfs_error_level >= XFS_ERRLEVEL_HI 549 if (xfs_error_level >= XFS_ERRLEVEL_HIGH) 521 xfs_stack_trace(); 550 xfs_stack_trace(); 522 } 551 } 523 552 524 /* 553 /* 525 * Reserve free space for per-AG metadata. 554 * Reserve free space for per-AG metadata. 526 */ 555 */ 527 int 556 int 528 xfs_fs_reserve_ag_blocks( 557 xfs_fs_reserve_ag_blocks( 529 struct xfs_mount *mp) 558 struct xfs_mount *mp) 530 { 559 { 531 xfs_agnumber_t agno; 560 xfs_agnumber_t agno; 532 struct xfs_perag *pag; 561 struct xfs_perag *pag; 533 int error = 0; 562 int error = 0; 534 int err2; 563 int err2; 535 564 536 mp->m_finobt_nores = false; 565 mp->m_finobt_nores = false; 537 for_each_perag(mp, agno, pag) { 566 for_each_perag(mp, agno, pag) { 538 err2 = xfs_ag_resv_init(pag, N 567 err2 = xfs_ag_resv_init(pag, NULL); 539 if (err2 && !error) 568 if (err2 && !error) 540 error = err2; 569 error = err2; 541 } 570 } 542 571 543 if (error && error != -ENOSPC) { 572 if (error && error != -ENOSPC) { 544 xfs_warn(mp, 573 xfs_warn(mp, 545 "Error %d reserving per-AG metadata re 574 "Error %d reserving per-AG metadata reserve pool.", error); 546 xfs_force_shutdown(mp, SHUTDOW 575 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE); 547 } 576 } 548 577 549 return error; 578 return error; 550 } 579 } 551 580 552 /* 581 /* 553 * Free space reserved for per-AG metadata. 582 * Free space reserved for per-AG metadata. 554 */ 583 */ 555 void !! 584 int 556 xfs_fs_unreserve_ag_blocks( 585 xfs_fs_unreserve_ag_blocks( 557 struct xfs_mount *mp) 586 struct xfs_mount *mp) 558 { 587 { 559 xfs_agnumber_t agno; 588 xfs_agnumber_t agno; 560 struct xfs_perag *pag; 589 struct xfs_perag *pag; >> 590 int error = 0; >> 591 int err2; 561 592 562 for_each_perag(mp, agno, pag) !! 593 for_each_perag(mp, agno, pag) { 563 xfs_ag_resv_free(pag); !! 594 err2 = xfs_ag_resv_free(pag); >> 595 if (err2 && !error) >> 596 error = err2; >> 597 } >> 598 >> 599 if (error) >> 600 xfs_warn(mp, >> 601 "Error %d freeing per-AG metadata reserve pool.", error); >> 602 >> 603 return error; 564 } 604 } 565 605
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.