~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/fs/xfs/xfs_log_recover.c

Version: ~ [ linux-6.12-rc7 ] ~ [ linux-6.11.7 ] ~ [ linux-6.10.14 ] ~ [ linux-6.9.12 ] ~ [ linux-6.8.12 ] ~ [ linux-6.7.12 ] ~ [ linux-6.6.60 ] ~ [ linux-6.5.13 ] ~ [ linux-6.4.16 ] ~ [ linux-6.3.13 ] ~ [ linux-6.2.16 ] ~ [ linux-6.1.116 ] ~ [ linux-6.0.19 ] ~ [ linux-5.19.17 ] ~ [ linux-5.18.19 ] ~ [ linux-5.17.15 ] ~ [ linux-5.16.20 ] ~ [ linux-5.15.171 ] ~ [ linux-5.14.21 ] ~ [ linux-5.13.19 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.229 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.285 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.323 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.336 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.337 ] ~ [ linux-4.4.302 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.12 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

Diff markup

Differences between /fs/xfs/xfs_log_recover.c (Architecture sparc) and /fs/xfs/xfs_log_recover.c (Architecture sparc64)


  1 // SPDX-License-Identifier: GPL-2.0                 1 // SPDX-License-Identifier: GPL-2.0
  2 /*                                                  2 /*
  3  * Copyright (c) 2000-2006 Silicon Graphics, I      3  * Copyright (c) 2000-2006 Silicon Graphics, Inc.
  4  * All Rights Reserved.                             4  * All Rights Reserved.
  5  */                                                 5  */
  6 #include "xfs.h"                                    6 #include "xfs.h"
  7 #include "xfs_fs.h"                                 7 #include "xfs_fs.h"
  8 #include "xfs_shared.h"                             8 #include "xfs_shared.h"
  9 #include "xfs_format.h"                             9 #include "xfs_format.h"
 10 #include "xfs_log_format.h"                        10 #include "xfs_log_format.h"
 11 #include "xfs_trans_resv.h"                        11 #include "xfs_trans_resv.h"
 12 #include "xfs_bit.h"                               12 #include "xfs_bit.h"
 13 #include "xfs_sb.h"                                13 #include "xfs_sb.h"
 14 #include "xfs_mount.h"                             14 #include "xfs_mount.h"
 15 #include "xfs_defer.h"                             15 #include "xfs_defer.h"
 16 #include "xfs_inode.h"                             16 #include "xfs_inode.h"
 17 #include "xfs_trans.h"                             17 #include "xfs_trans.h"
 18 #include "xfs_log.h"                               18 #include "xfs_log.h"
 19 #include "xfs_log_priv.h"                          19 #include "xfs_log_priv.h"
 20 #include "xfs_log_recover.h"                       20 #include "xfs_log_recover.h"
 21 #include "xfs_trans_priv.h"                        21 #include "xfs_trans_priv.h"
 22 #include "xfs_alloc.h"                             22 #include "xfs_alloc.h"
 23 #include "xfs_ialloc.h"                            23 #include "xfs_ialloc.h"
 24 #include "xfs_trace.h"                             24 #include "xfs_trace.h"
 25 #include "xfs_icache.h"                            25 #include "xfs_icache.h"
 26 #include "xfs_error.h"                             26 #include "xfs_error.h"
 27 #include "xfs_buf_item.h"                          27 #include "xfs_buf_item.h"
 28 #include "xfs_ag.h"                                28 #include "xfs_ag.h"
 29 #include "xfs_quota.h"                             29 #include "xfs_quota.h"
 30 #include "xfs_reflink.h"                           30 #include "xfs_reflink.h"
 31                                                    31 
 32 #define BLK_AVG(blk1, blk2)     ((blk1+blk2) >     32 #define BLK_AVG(blk1, blk2)     ((blk1+blk2) >> 1)
 33                                                    33 
 34 STATIC int                                         34 STATIC int
 35 xlog_find_zeroed(                                  35 xlog_find_zeroed(
 36         struct xlog     *,                         36         struct xlog     *,
 37         xfs_daddr_t     *);                        37         xfs_daddr_t     *);
 38 STATIC int                                         38 STATIC int
 39 xlog_clear_stale_blocks(                           39 xlog_clear_stale_blocks(
 40         struct xlog     *,                         40         struct xlog     *,
 41         xfs_lsn_t);                                41         xfs_lsn_t);
 42 STATIC int                                         42 STATIC int
 43 xlog_do_recovery_pass(                             43 xlog_do_recovery_pass(
 44         struct xlog *, xfs_daddr_t, xfs_daddr_     44         struct xlog *, xfs_daddr_t, xfs_daddr_t, int, xfs_daddr_t *);
 45                                                    45 
 46 /*                                                 46 /*
 47  * Sector aligned buffer routines for buffer c     47  * Sector aligned buffer routines for buffer create/read/write/access
 48  */                                                48  */
 49                                                    49 
 50 /*                                                 50 /*
 51  * Verify the log-relative block number and le     51  * Verify the log-relative block number and length in basic blocks are valid for
 52  * an operation involving the given XFS log bu     52  * an operation involving the given XFS log buffer. Returns true if the fields
 53  * are valid, false otherwise.                     53  * are valid, false otherwise.
 54  */                                                54  */
 55 static inline bool                                 55 static inline bool
 56 xlog_verify_bno(                                   56 xlog_verify_bno(
 57         struct xlog     *log,                      57         struct xlog     *log,
 58         xfs_daddr_t     blk_no,                    58         xfs_daddr_t     blk_no,
 59         int             bbcount)                   59         int             bbcount)
 60 {                                                  60 {
 61         if (blk_no < 0 || blk_no >= log->l_log     61         if (blk_no < 0 || blk_no >= log->l_logBBsize)
 62                 return false;                      62                 return false;
 63         if (bbcount <= 0 || (blk_no + bbcount)     63         if (bbcount <= 0 || (blk_no + bbcount) > log->l_logBBsize)
 64                 return false;                      64                 return false;
 65         return true;                               65         return true;
 66 }                                                  66 }
 67                                                    67 
 68 /*                                                 68 /*
 69  * Allocate a buffer to hold log data.  The bu     69  * Allocate a buffer to hold log data.  The buffer needs to be able to map to
 70  * a range of nbblks basic blocks at any valid     70  * a range of nbblks basic blocks at any valid offset within the log.
 71  */                                                71  */
 72 static char *                                      72 static char *
 73 xlog_alloc_buffer(                                 73 xlog_alloc_buffer(
 74         struct xlog     *log,                      74         struct xlog     *log,
 75         int             nbblks)                    75         int             nbblks)
 76 {                                                  76 {
 77         /*                                         77         /*
 78          * Pass log block 0 since we don't hav     78          * Pass log block 0 since we don't have an addr yet, buffer will be
 79          * verified on read.                       79          * verified on read.
 80          */                                        80          */
 81         if (XFS_IS_CORRUPT(log->l_mp, !xlog_ve     81         if (XFS_IS_CORRUPT(log->l_mp, !xlog_verify_bno(log, 0, nbblks))) {
 82                 xfs_warn(log->l_mp, "Invalid b     82                 xfs_warn(log->l_mp, "Invalid block length (0x%x) for buffer",
 83                         nbblks);                   83                         nbblks);
 84                 return NULL;                       84                 return NULL;
 85         }                                          85         }
 86                                                    86 
 87         /*                                         87         /*
 88          * We do log I/O in units of log secto     88          * We do log I/O in units of log sectors (a power-of-2 multiple of the
 89          * basic block size), so we round up t     89          * basic block size), so we round up the requested size to accommodate
 90          * the basic blocks required for compl     90          * the basic blocks required for complete log sectors.
 91          *                                         91          *
 92          * In addition, the buffer may be used     92          * In addition, the buffer may be used for a non-sector-aligned block
 93          * offset, in which case an I/O of the     93          * offset, in which case an I/O of the requested size could extend
 94          * beyond the end of the buffer.  If t     94          * beyond the end of the buffer.  If the requested size is only 1 basic
 95          * block it will never straddle a sect     95          * block it will never straddle a sector boundary, so this won't be an
 96          * issue.  Nor will this be a problem      96          * issue.  Nor will this be a problem if the log I/O is done in basic
 97          * blocks (sector size 1).  But otherw     97          * blocks (sector size 1).  But otherwise we extend the buffer by one
 98          * extra log sector to ensure there's      98          * extra log sector to ensure there's space to accommodate this
 99          * possibility.                            99          * possibility.
100          */                                       100          */
101         if (nbblks > 1 && log->l_sectBBsize >     101         if (nbblks > 1 && log->l_sectBBsize > 1)
102                 nbblks += log->l_sectBBsize;      102                 nbblks += log->l_sectBBsize;
103         nbblks = round_up(nbblks, log->l_sectB    103         nbblks = round_up(nbblks, log->l_sectBBsize);
104         return kvzalloc(BBTOB(nbblks), GFP_KER    104         return kvzalloc(BBTOB(nbblks), GFP_KERNEL | __GFP_RETRY_MAYFAIL);
105 }                                                 105 }
106                                                   106 
107 /*                                                107 /*
108  * Return the address of the start of the give    108  * Return the address of the start of the given block number's data
109  * in a log buffer.  The buffer covers a log s    109  * in a log buffer.  The buffer covers a log sector-aligned region.
110  */                                               110  */
111 static inline unsigned int                        111 static inline unsigned int
112 xlog_align(                                       112 xlog_align(
113         struct xlog     *log,                     113         struct xlog     *log,
114         xfs_daddr_t     blk_no)                   114         xfs_daddr_t     blk_no)
115 {                                                 115 {
116         return BBTOB(blk_no & ((xfs_daddr_t)lo    116         return BBTOB(blk_no & ((xfs_daddr_t)log->l_sectBBsize - 1));
117 }                                                 117 }
118                                                   118 
119 static int                                        119 static int
120 xlog_do_io(                                       120 xlog_do_io(
121         struct xlog             *log,             121         struct xlog             *log,
122         xfs_daddr_t             blk_no,           122         xfs_daddr_t             blk_no,
123         unsigned int            nbblks,           123         unsigned int            nbblks,
124         char                    *data,            124         char                    *data,
125         enum req_op             op)               125         enum req_op             op)
126 {                                                 126 {
127         int                     error;            127         int                     error;
128                                                   128 
129         if (XFS_IS_CORRUPT(log->l_mp, !xlog_ve    129         if (XFS_IS_CORRUPT(log->l_mp, !xlog_verify_bno(log, blk_no, nbblks))) {
130                 xfs_warn(log->l_mp,               130                 xfs_warn(log->l_mp,
131                          "Invalid log block/le    131                          "Invalid log block/length (0x%llx, 0x%x) for buffer",
132                          blk_no, nbblks);         132                          blk_no, nbblks);
133                 return -EFSCORRUPTED;             133                 return -EFSCORRUPTED;
134         }                                         134         }
135                                                   135 
136         blk_no = round_down(blk_no, log->l_sec    136         blk_no = round_down(blk_no, log->l_sectBBsize);
137         nbblks = round_up(nbblks, log->l_sectB    137         nbblks = round_up(nbblks, log->l_sectBBsize);
138         ASSERT(nbblks > 0);                       138         ASSERT(nbblks > 0);
139                                                   139 
140         error = xfs_rw_bdev(log->l_targ->bt_bd    140         error = xfs_rw_bdev(log->l_targ->bt_bdev, log->l_logBBstart + blk_no,
141                         BBTOB(nbblks), data, o    141                         BBTOB(nbblks), data, op);
142         if (error && !xlog_is_shutdown(log)) {    142         if (error && !xlog_is_shutdown(log)) {
143                 xfs_alert(log->l_mp,              143                 xfs_alert(log->l_mp,
144                           "log recovery %s I/O    144                           "log recovery %s I/O error at daddr 0x%llx len %d error %d",
145                           op == REQ_OP_WRITE ?    145                           op == REQ_OP_WRITE ? "write" : "read",
146                           blk_no, nbblks, erro    146                           blk_no, nbblks, error);
147         }                                         147         }
148         return error;                             148         return error;
149 }                                                 149 }
150                                                   150 
151 STATIC int                                        151 STATIC int
152 xlog_bread_noalign(                               152 xlog_bread_noalign(
153         struct xlog     *log,                     153         struct xlog     *log,
154         xfs_daddr_t     blk_no,                   154         xfs_daddr_t     blk_no,
155         int             nbblks,                   155         int             nbblks,
156         char            *data)                    156         char            *data)
157 {                                                 157 {
158         return xlog_do_io(log, blk_no, nbblks,    158         return xlog_do_io(log, blk_no, nbblks, data, REQ_OP_READ);
159 }                                                 159 }
160                                                   160 
161 STATIC int                                        161 STATIC int
162 xlog_bread(                                       162 xlog_bread(
163         struct xlog     *log,                     163         struct xlog     *log,
164         xfs_daddr_t     blk_no,                   164         xfs_daddr_t     blk_no,
165         int             nbblks,                   165         int             nbblks,
166         char            *data,                    166         char            *data,
167         char            **offset)                 167         char            **offset)
168 {                                                 168 {
169         int             error;                    169         int             error;
170                                                   170 
171         error = xlog_do_io(log, blk_no, nbblks    171         error = xlog_do_io(log, blk_no, nbblks, data, REQ_OP_READ);
172         if (!error)                               172         if (!error)
173                 *offset = data + xlog_align(lo    173                 *offset = data + xlog_align(log, blk_no);
174         return error;                             174         return error;
175 }                                                 175 }
176                                                   176 
177 STATIC int                                        177 STATIC int
178 xlog_bwrite(                                      178 xlog_bwrite(
179         struct xlog     *log,                     179         struct xlog     *log,
180         xfs_daddr_t     blk_no,                   180         xfs_daddr_t     blk_no,
181         int             nbblks,                   181         int             nbblks,
182         char            *data)                    182         char            *data)
183 {                                                 183 {
184         return xlog_do_io(log, blk_no, nbblks,    184         return xlog_do_io(log, blk_no, nbblks, data, REQ_OP_WRITE);
185 }                                                 185 }
186                                                   186 
187 #ifdef DEBUG                                      187 #ifdef DEBUG
188 /*                                                188 /*
189  * dump debug superblock and log record inform    189  * dump debug superblock and log record information
190  */                                               190  */
191 STATIC void                                       191 STATIC void
192 xlog_header_check_dump(                           192 xlog_header_check_dump(
193         xfs_mount_t             *mp,              193         xfs_mount_t             *mp,
194         xlog_rec_header_t       *head)            194         xlog_rec_header_t       *head)
195 {                                                 195 {
196         xfs_debug(mp, "%s:  SB : uuid = %pU, f    196         xfs_debug(mp, "%s:  SB : uuid = %pU, fmt = %d",
197                 __func__, &mp->m_sb.sb_uuid, X    197                 __func__, &mp->m_sb.sb_uuid, XLOG_FMT);
198         xfs_debug(mp, "    log : uuid = %pU, f    198         xfs_debug(mp, "    log : uuid = %pU, fmt = %d",
199                 &head->h_fs_uuid, be32_to_cpu(    199                 &head->h_fs_uuid, be32_to_cpu(head->h_fmt));
200 }                                                 200 }
201 #else                                             201 #else
202 #define xlog_header_check_dump(mp, head)          202 #define xlog_header_check_dump(mp, head)
203 #endif                                            203 #endif
204                                                   204 
205 /*                                                205 /*
206  * check log record header for recovery           206  * check log record header for recovery
207  */                                               207  */
208 STATIC int                                        208 STATIC int
209 xlog_header_check_recover(                        209 xlog_header_check_recover(
210         xfs_mount_t             *mp,              210         xfs_mount_t             *mp,
211         xlog_rec_header_t       *head)            211         xlog_rec_header_t       *head)
212 {                                                 212 {
213         ASSERT(head->h_magicno == cpu_to_be32(    213         ASSERT(head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM));
214                                                   214 
215         /*                                        215         /*
216          * IRIX doesn't write the h_fmt field     216          * IRIX doesn't write the h_fmt field and leaves it zeroed
217          * (XLOG_FMT_UNKNOWN). This stops us f    217          * (XLOG_FMT_UNKNOWN). This stops us from trying to recover
218          * a dirty log created in IRIX.           218          * a dirty log created in IRIX.
219          */                                       219          */
220         if (XFS_IS_CORRUPT(mp, head->h_fmt !=     220         if (XFS_IS_CORRUPT(mp, head->h_fmt != cpu_to_be32(XLOG_FMT))) {
221                 xfs_warn(mp,                      221                 xfs_warn(mp,
222         "dirty log written in incompatible for    222         "dirty log written in incompatible format - can't recover");
223                 xlog_header_check_dump(mp, hea    223                 xlog_header_check_dump(mp, head);
224                 return -EFSCORRUPTED;             224                 return -EFSCORRUPTED;
225         }                                         225         }
226         if (XFS_IS_CORRUPT(mp, !uuid_equal(&mp    226         if (XFS_IS_CORRUPT(mp, !uuid_equal(&mp->m_sb.sb_uuid,
227                                            &he    227                                            &head->h_fs_uuid))) {
228                 xfs_warn(mp,                      228                 xfs_warn(mp,
229         "dirty log entry has mismatched uuid -    229         "dirty log entry has mismatched uuid - can't recover");
230                 xlog_header_check_dump(mp, hea    230                 xlog_header_check_dump(mp, head);
231                 return -EFSCORRUPTED;             231                 return -EFSCORRUPTED;
232         }                                         232         }
233         return 0;                                 233         return 0;
234 }                                                 234 }
235                                                   235 
236 /*                                                236 /*
237  * read the head block of the log and check th    237  * read the head block of the log and check the header
238  */                                               238  */
239 STATIC int                                        239 STATIC int
240 xlog_header_check_mount(                          240 xlog_header_check_mount(
241         xfs_mount_t             *mp,              241         xfs_mount_t             *mp,
242         xlog_rec_header_t       *head)            242         xlog_rec_header_t       *head)
243 {                                                 243 {
244         ASSERT(head->h_magicno == cpu_to_be32(    244         ASSERT(head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM));
245                                                   245 
246         if (uuid_is_null(&head->h_fs_uuid)) {     246         if (uuid_is_null(&head->h_fs_uuid)) {
247                 /*                                247                 /*
248                  * IRIX doesn't write the h_fs    248                  * IRIX doesn't write the h_fs_uuid or h_fmt fields. If
249                  * h_fs_uuid is null, we assum    249                  * h_fs_uuid is null, we assume this log was last mounted
250                  * by IRIX and continue.          250                  * by IRIX and continue.
251                  */                               251                  */
252                 xfs_warn(mp, "null uuid in log    252                 xfs_warn(mp, "null uuid in log - IRIX style log");
253         } else if (XFS_IS_CORRUPT(mp, !uuid_eq    253         } else if (XFS_IS_CORRUPT(mp, !uuid_equal(&mp->m_sb.sb_uuid,
254                                                   254                                                   &head->h_fs_uuid))) {
255                 xfs_warn(mp, "log has mismatch    255                 xfs_warn(mp, "log has mismatched uuid - can't recover");
256                 xlog_header_check_dump(mp, hea    256                 xlog_header_check_dump(mp, head);
257                 return -EFSCORRUPTED;             257                 return -EFSCORRUPTED;
258         }                                         258         }
259         return 0;                                 259         return 0;
260 }                                                 260 }
261                                                   261 
262 /*                                                262 /*
263  * This routine finds (to an approximation) th    263  * This routine finds (to an approximation) the first block in the physical
264  * log which contains the given cycle.  It use    264  * log which contains the given cycle.  It uses a binary search algorithm.
265  * Note that the algorithm can not be perfect     265  * Note that the algorithm can not be perfect because the disk will not
266  * necessarily be perfect.                        266  * necessarily be perfect.
267  */                                               267  */
268 STATIC int                                        268 STATIC int
269 xlog_find_cycle_start(                            269 xlog_find_cycle_start(
270         struct xlog     *log,                     270         struct xlog     *log,
271         char            *buffer,                  271         char            *buffer,
272         xfs_daddr_t     first_blk,                272         xfs_daddr_t     first_blk,
273         xfs_daddr_t     *last_blk,                273         xfs_daddr_t     *last_blk,
274         uint            cycle)                    274         uint            cycle)
275 {                                                 275 {
276         char            *offset;                  276         char            *offset;
277         xfs_daddr_t     mid_blk;                  277         xfs_daddr_t     mid_blk;
278         xfs_daddr_t     end_blk;                  278         xfs_daddr_t     end_blk;
279         uint            mid_cycle;                279         uint            mid_cycle;
280         int             error;                    280         int             error;
281                                                   281 
282         end_blk = *last_blk;                      282         end_blk = *last_blk;
283         mid_blk = BLK_AVG(first_blk, end_blk);    283         mid_blk = BLK_AVG(first_blk, end_blk);
284         while (mid_blk != first_blk && mid_blk    284         while (mid_blk != first_blk && mid_blk != end_blk) {
285                 error = xlog_bread(log, mid_bl    285                 error = xlog_bread(log, mid_blk, 1, buffer, &offset);
286                 if (error)                        286                 if (error)
287                         return error;             287                         return error;
288                 mid_cycle = xlog_get_cycle(off    288                 mid_cycle = xlog_get_cycle(offset);
289                 if (mid_cycle == cycle)           289                 if (mid_cycle == cycle)
290                         end_blk = mid_blk;   /    290                         end_blk = mid_blk;   /* last_half_cycle == mid_cycle */
291                 else                              291                 else
292                         first_blk = mid_blk; /    292                         first_blk = mid_blk; /* first_half_cycle == mid_cycle */
293                 mid_blk = BLK_AVG(first_blk, e    293                 mid_blk = BLK_AVG(first_blk, end_blk);
294         }                                         294         }
295         ASSERT((mid_blk == first_blk && mid_bl    295         ASSERT((mid_blk == first_blk && mid_blk+1 == end_blk) ||
296                (mid_blk == end_blk && mid_blk-    296                (mid_blk == end_blk && mid_blk-1 == first_blk));
297                                                   297 
298         *last_blk = end_blk;                      298         *last_blk = end_blk;
299                                                   299 
300         return 0;                                 300         return 0;
301 }                                                 301 }
302                                                   302 
303 /*                                                303 /*
304  * Check that a range of blocks does not conta    304  * Check that a range of blocks does not contain stop_on_cycle_no.
305  * Fill in *new_blk with the block offset wher    305  * Fill in *new_blk with the block offset where such a block is
306  * found, or with -1 (an invalid block number)    306  * found, or with -1 (an invalid block number) if there is no such
307  * block in the range.  The scan needs to occu    307  * block in the range.  The scan needs to occur from front to back
308  * and the pointer into the region must be upd    308  * and the pointer into the region must be updated since a later
309  * routine will need to perform another test.     309  * routine will need to perform another test.
310  */                                               310  */
311 STATIC int                                        311 STATIC int
312 xlog_find_verify_cycle(                           312 xlog_find_verify_cycle(
313         struct xlog     *log,                     313         struct xlog     *log,
314         xfs_daddr_t     start_blk,                314         xfs_daddr_t     start_blk,
315         int             nbblks,                   315         int             nbblks,
316         uint            stop_on_cycle_no,         316         uint            stop_on_cycle_no,
317         xfs_daddr_t     *new_blk)                 317         xfs_daddr_t     *new_blk)
318 {                                                 318 {
319         xfs_daddr_t     i, j;                     319         xfs_daddr_t     i, j;
320         uint            cycle;                    320         uint            cycle;
321         char            *buffer;                  321         char            *buffer;
322         xfs_daddr_t     bufblks;                  322         xfs_daddr_t     bufblks;
323         char            *buf = NULL;              323         char            *buf = NULL;
324         int             error = 0;                324         int             error = 0;
325                                                   325 
326         /*                                        326         /*
327          * Greedily allocate a buffer big enou    327          * Greedily allocate a buffer big enough to handle the full
328          * range of basic blocks we'll be exam    328          * range of basic blocks we'll be examining.  If that fails,
329          * try a smaller size.  We need to be     329          * try a smaller size.  We need to be able to read at least
330          * a log sector, or we're out of luck.    330          * a log sector, or we're out of luck.
331          */                                       331          */
332         bufblks = roundup_pow_of_two(nbblks);     332         bufblks = roundup_pow_of_two(nbblks);
333         while (bufblks > log->l_logBBsize)        333         while (bufblks > log->l_logBBsize)
334                 bufblks >>= 1;                    334                 bufblks >>= 1;
335         while (!(buffer = xlog_alloc_buffer(lo    335         while (!(buffer = xlog_alloc_buffer(log, bufblks))) {
336                 bufblks >>= 1;                    336                 bufblks >>= 1;
337                 if (bufblks < log->l_sectBBsiz    337                 if (bufblks < log->l_sectBBsize)
338                         return -ENOMEM;           338                         return -ENOMEM;
339         }                                         339         }
340                                                   340 
341         for (i = start_blk; i < start_blk + nb    341         for (i = start_blk; i < start_blk + nbblks; i += bufblks) {
342                 int     bcount;                   342                 int     bcount;
343                                                   343 
344                 bcount = min(bufblks, (start_b    344                 bcount = min(bufblks, (start_blk + nbblks - i));
345                                                   345 
346                 error = xlog_bread(log, i, bco    346                 error = xlog_bread(log, i, bcount, buffer, &buf);
347                 if (error)                        347                 if (error)
348                         goto out;                 348                         goto out;
349                                                   349 
350                 for (j = 0; j < bcount; j++) {    350                 for (j = 0; j < bcount; j++) {
351                         cycle = xlog_get_cycle    351                         cycle = xlog_get_cycle(buf);
352                         if (cycle == stop_on_c    352                         if (cycle == stop_on_cycle_no) {
353                                 *new_blk = i+j    353                                 *new_blk = i+j;
354                                 goto out;         354                                 goto out;
355                         }                         355                         }
356                                                   356 
357                         buf += BBSIZE;            357                         buf += BBSIZE;
358                 }                                 358                 }
359         }                                         359         }
360                                                   360 
361         *new_blk = -1;                            361         *new_blk = -1;
362                                                   362 
363 out:                                              363 out:
364         kvfree(buffer);                           364         kvfree(buffer);
365         return error;                             365         return error;
366 }                                                 366 }
367                                                   367 
368 static inline int                                 368 static inline int
369 xlog_logrec_hblks(struct xlog *log, struct xlo    369 xlog_logrec_hblks(struct xlog *log, struct xlog_rec_header *rh)
370 {                                                 370 {
371         if (xfs_has_logv2(log->l_mp)) {           371         if (xfs_has_logv2(log->l_mp)) {
372                 int     h_size = be32_to_cpu(r    372                 int     h_size = be32_to_cpu(rh->h_size);
373                                                   373 
374                 if ((be32_to_cpu(rh->h_version    374                 if ((be32_to_cpu(rh->h_version) & XLOG_VERSION_2) &&
375                     h_size > XLOG_HEADER_CYCLE    375                     h_size > XLOG_HEADER_CYCLE_SIZE)
376                         return DIV_ROUND_UP(h_    376                         return DIV_ROUND_UP(h_size, XLOG_HEADER_CYCLE_SIZE);
377         }                                         377         }
378         return 1;                                 378         return 1;
379 }                                                 379 }
380                                                   380 
381 /*                                                381 /*
382  * Potentially backup over partial log record     382  * Potentially backup over partial log record write.
383  *                                                383  *
384  * In the typical case, last_blk is the number    384  * In the typical case, last_blk is the number of the block directly after
385  * a good log record.  Therefore, we subtract     385  * a good log record.  Therefore, we subtract one to get the block number
386  * of the last block in the given buffer.  ext    386  * of the last block in the given buffer.  extra_bblks contains the number
387  * of blocks we would have read on a previous     387  * of blocks we would have read on a previous read.  This happens when the
388  * last log record is split over the end of th    388  * last log record is split over the end of the physical log.
389  *                                                389  *
390  * extra_bblks is the number of blocks potenti    390  * extra_bblks is the number of blocks potentially verified on a previous
391  * call to this routine.                          391  * call to this routine.
392  */                                               392  */
393 STATIC int                                        393 STATIC int
394 xlog_find_verify_log_record(                      394 xlog_find_verify_log_record(
395         struct xlog             *log,             395         struct xlog             *log,
396         xfs_daddr_t             start_blk,        396         xfs_daddr_t             start_blk,
397         xfs_daddr_t             *last_blk,        397         xfs_daddr_t             *last_blk,
398         int                     extra_bblks)      398         int                     extra_bblks)
399 {                                                 399 {
400         xfs_daddr_t             i;                400         xfs_daddr_t             i;
401         char                    *buffer;          401         char                    *buffer;
402         char                    *offset = NULL    402         char                    *offset = NULL;
403         xlog_rec_header_t       *head = NULL;     403         xlog_rec_header_t       *head = NULL;
404         int                     error = 0;        404         int                     error = 0;
405         int                     smallmem = 0;     405         int                     smallmem = 0;
406         int                     num_blks = *la    406         int                     num_blks = *last_blk - start_blk;
407         int                     xhdrs;            407         int                     xhdrs;
408                                                   408 
409         ASSERT(start_blk != 0 || *last_blk !=     409         ASSERT(start_blk != 0 || *last_blk != start_blk);
410                                                   410 
411         buffer = xlog_alloc_buffer(log, num_bl    411         buffer = xlog_alloc_buffer(log, num_blks);
412         if (!buffer) {                            412         if (!buffer) {
413                 buffer = xlog_alloc_buffer(log    413                 buffer = xlog_alloc_buffer(log, 1);
414                 if (!buffer)                      414                 if (!buffer)
415                         return -ENOMEM;           415                         return -ENOMEM;
416                 smallmem = 1;                     416                 smallmem = 1;
417         } else {                                  417         } else {
418                 error = xlog_bread(log, start_    418                 error = xlog_bread(log, start_blk, num_blks, buffer, &offset);
419                 if (error)                        419                 if (error)
420                         goto out;                 420                         goto out;
421                 offset += ((num_blks - 1) << B    421                 offset += ((num_blks - 1) << BBSHIFT);
422         }                                         422         }
423                                                   423 
424         for (i = (*last_blk) - 1; i >= 0; i--)    424         for (i = (*last_blk) - 1; i >= 0; i--) {
425                 if (i < start_blk) {              425                 if (i < start_blk) {
426                         /* valid log record no    426                         /* valid log record not found */
427                         xfs_warn(log->l_mp,       427                         xfs_warn(log->l_mp,
428                 "Log inconsistent (didn't find    428                 "Log inconsistent (didn't find previous header)");
429                         ASSERT(0);                429                         ASSERT(0);
430                         error = -EFSCORRUPTED;    430                         error = -EFSCORRUPTED;
431                         goto out;                 431                         goto out;
432                 }                                 432                 }
433                                                   433 
434                 if (smallmem) {                   434                 if (smallmem) {
435                         error = xlog_bread(log    435                         error = xlog_bread(log, i, 1, buffer, &offset);
436                         if (error)                436                         if (error)
437                                 goto out;         437                                 goto out;
438                 }                                 438                 }
439                                                   439 
440                 head = (xlog_rec_header_t *)of    440                 head = (xlog_rec_header_t *)offset;
441                                                   441 
442                 if (head->h_magicno == cpu_to_    442                 if (head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM))
443                         break;                    443                         break;
444                                                   444 
445                 if (!smallmem)                    445                 if (!smallmem)
446                         offset -= BBSIZE;         446                         offset -= BBSIZE;
447         }                                         447         }
448                                                   448 
449         /*                                        449         /*
450          * We hit the beginning of the physica    450          * We hit the beginning of the physical log & still no header.  Return
451          * to caller.  If caller can handle a     451          * to caller.  If caller can handle a return of -1, then this routine
452          * will be called again for the end of    452          * will be called again for the end of the physical log.
453          */                                       453          */
454         if (i == -1) {                            454         if (i == -1) {
455                 error = 1;                        455                 error = 1;
456                 goto out;                         456                 goto out;
457         }                                         457         }
458                                                   458 
459         /*                                        459         /*
460          * We have the final block of the good    460          * We have the final block of the good log (the first block
461          * of the log record _before_ the head    461          * of the log record _before_ the head. So we check the uuid.
462          */                                       462          */
463         if ((error = xlog_header_check_mount(l    463         if ((error = xlog_header_check_mount(log->l_mp, head)))
464                 goto out;                         464                 goto out;
465                                                   465 
466         /*                                        466         /*
467          * We may have found a log record head    467          * We may have found a log record header before we expected one.
468          * last_blk will be the 1st block # wi    468          * last_blk will be the 1st block # with a given cycle #.  We may end
469          * up reading an entire log record.  I    469          * up reading an entire log record.  In this case, we don't want to
470          * reset last_blk.  Only when last_blk    470          * reset last_blk.  Only when last_blk points in the middle of a log
471          * record do we update last_blk.          471          * record do we update last_blk.
472          */                                       472          */
473         xhdrs = xlog_logrec_hblks(log, head);     473         xhdrs = xlog_logrec_hblks(log, head);
474                                                   474 
475         if (*last_blk - i + extra_bblks !=        475         if (*last_blk - i + extra_bblks !=
476             BTOBB(be32_to_cpu(head->h_len)) +     476             BTOBB(be32_to_cpu(head->h_len)) + xhdrs)
477                 *last_blk = i;                    477                 *last_blk = i;
478                                                   478 
479 out:                                              479 out:
480         kvfree(buffer);                           480         kvfree(buffer);
481         return error;                             481         return error;
482 }                                                 482 }
483                                                   483 
484 /*                                                484 /*
485  * Head is defined to be the point of the log     485  * Head is defined to be the point of the log where the next log write
486  * could go.  This means that incomplete LR wr    486  * could go.  This means that incomplete LR writes at the end are
487  * eliminated when calculating the head.  We a    487  * eliminated when calculating the head.  We aren't guaranteed that previous
488  * LR have complete transactions.  We only kno    488  * LR have complete transactions.  We only know that a cycle number of
489  * current cycle number -1 won't be present in    489  * current cycle number -1 won't be present in the log if we start writing
490  * from our current block number.                 490  * from our current block number.
491  *                                                491  *
492  * last_blk contains the block number of the f    492  * last_blk contains the block number of the first block with a given
493  * cycle number.                                  493  * cycle number.
494  *                                                494  *
495  * Return: zero if normal, non-zero if error.     495  * Return: zero if normal, non-zero if error.
496  */                                               496  */
497 STATIC int                                        497 STATIC int
498 xlog_find_head(                                   498 xlog_find_head(
499         struct xlog     *log,                     499         struct xlog     *log,
500         xfs_daddr_t     *return_head_blk)         500         xfs_daddr_t     *return_head_blk)
501 {                                                 501 {
502         char            *buffer;                  502         char            *buffer;
503         char            *offset;                  503         char            *offset;
504         xfs_daddr_t     new_blk, first_blk, st    504         xfs_daddr_t     new_blk, first_blk, start_blk, last_blk, head_blk;
505         int             num_scan_bblks;           505         int             num_scan_bblks;
506         uint            first_half_cycle, last    506         uint            first_half_cycle, last_half_cycle;
507         uint            stop_on_cycle;            507         uint            stop_on_cycle;
508         int             error, log_bbnum = log    508         int             error, log_bbnum = log->l_logBBsize;
509                                                   509 
510         /* Is the end of the log device zeroed    510         /* Is the end of the log device zeroed? */
511         error = xlog_find_zeroed(log, &first_b    511         error = xlog_find_zeroed(log, &first_blk);
512         if (error < 0) {                          512         if (error < 0) {
513                 xfs_warn(log->l_mp, "empty log    513                 xfs_warn(log->l_mp, "empty log check failed");
514                 return error;                     514                 return error;
515         }                                         515         }
516         if (error == 1) {                         516         if (error == 1) {
517                 *return_head_blk = first_blk;     517                 *return_head_blk = first_blk;
518                                                   518 
519                 /* Is the whole lot zeroed? */    519                 /* Is the whole lot zeroed? */
520                 if (!first_blk) {                 520                 if (!first_blk) {
521                         /* Linux XFS shouldn't    521                         /* Linux XFS shouldn't generate totally zeroed logs -
522                          * mkfs etc write a du    522                          * mkfs etc write a dummy unmount record to a fresh
523                          * log so we can store    523                          * log so we can store the uuid in there
524                          */                       524                          */
525                         xfs_warn(log->l_mp, "t    525                         xfs_warn(log->l_mp, "totally zeroed log");
526                 }                                 526                 }
527                                                   527 
528                 return 0;                         528                 return 0;
529         }                                         529         }
530                                                   530 
531         first_blk = 0;                  /* get    531         first_blk = 0;                  /* get cycle # of 1st block */
532         buffer = xlog_alloc_buffer(log, 1);       532         buffer = xlog_alloc_buffer(log, 1);
533         if (!buffer)                              533         if (!buffer)
534                 return -ENOMEM;                   534                 return -ENOMEM;
535                                                   535 
536         error = xlog_bread(log, 0, 1, buffer,     536         error = xlog_bread(log, 0, 1, buffer, &offset);
537         if (error)                                537         if (error)
538                 goto out_free_buffer;             538                 goto out_free_buffer;
539                                                   539 
540         first_half_cycle = xlog_get_cycle(offs    540         first_half_cycle = xlog_get_cycle(offset);
541                                                   541 
542         last_blk = head_blk = log_bbnum - 1;      542         last_blk = head_blk = log_bbnum - 1;    /* get cycle # of last block */
543         error = xlog_bread(log, last_blk, 1, b    543         error = xlog_bread(log, last_blk, 1, buffer, &offset);
544         if (error)                                544         if (error)
545                 goto out_free_buffer;             545                 goto out_free_buffer;
546                                                   546 
547         last_half_cycle = xlog_get_cycle(offse    547         last_half_cycle = xlog_get_cycle(offset);
548         ASSERT(last_half_cycle != 0);             548         ASSERT(last_half_cycle != 0);
549                                                   549 
550         /*                                        550         /*
551          * If the 1st half cycle number is equ    551          * If the 1st half cycle number is equal to the last half cycle number,
552          * then the entire log is stamped with    552          * then the entire log is stamped with the same cycle number.  In this
553          * case, head_blk can't be set to zero    553          * case, head_blk can't be set to zero (which makes sense).  The below
554          * math doesn't work out properly with    554          * math doesn't work out properly with head_blk equal to zero.  Instead,
555          * we set it to log_bbnum which is an     555          * we set it to log_bbnum which is an invalid block number, but this
556          * value makes the math correct.  If h    556          * value makes the math correct.  If head_blk doesn't changed through
557          * all the tests below, *head_blk is s    557          * all the tests below, *head_blk is set to zero at the very end rather
558          * than log_bbnum.  In a sense, log_bb    558          * than log_bbnum.  In a sense, log_bbnum and zero are the same block
559          * in a circular file.                    559          * in a circular file.
560          */                                       560          */
561         if (first_half_cycle == last_half_cycl    561         if (first_half_cycle == last_half_cycle) {
562                 /*                                562                 /*
563                  * In this case we believe tha    563                  * In this case we believe that the entire log should have
564                  * cycle number last_half_cycl    564                  * cycle number last_half_cycle.  We need to scan backwards
565                  * from the end verifying that    565                  * from the end verifying that there are no holes still
566                  * containing last_half_cycle     566                  * containing last_half_cycle - 1.  If we find such a hole,
567                  * then the start of that hole    567                  * then the start of that hole will be the new head.  The
568                  * simple case looks like         568                  * simple case looks like
569                  *        x | x ... | x - 1 |     569                  *        x | x ... | x - 1 | x
570                  * Another case that fits this    570                  * Another case that fits this picture would be
571                  *        x | x + 1 | x ... |     571                  *        x | x + 1 | x ... | x
572                  * In this case the head reall    572                  * In this case the head really is somewhere at the end of the
573                  * log, as one of the latest w    573                  * log, as one of the latest writes at the beginning was
574                  * incomplete.                    574                  * incomplete.
575                  * One more case is               575                  * One more case is
576                  *        x | x + 1 | x ... |     576                  *        x | x + 1 | x ... | x - 1 | x
577                  * This is really the combinat    577                  * This is really the combination of the above two cases, and
578                  * the head has to end up at t    578                  * the head has to end up at the start of the x-1 hole at the
579                  * end of the log.                579                  * end of the log.
580                  *                                580                  *
581                  * In the 256k log case, we wi    581                  * In the 256k log case, we will read from the beginning to the
582                  * end of the log and search f    582                  * end of the log and search for cycle numbers equal to x-1.
583                  * We don't worry about the x+    583                  * We don't worry about the x+1 blocks that we encounter,
584                  * because we know that they c    584                  * because we know that they cannot be the head since the log
585                  * started with x.                585                  * started with x.
586                  */                               586                  */
587                 head_blk = log_bbnum;             587                 head_blk = log_bbnum;
588                 stop_on_cycle = last_half_cycl    588                 stop_on_cycle = last_half_cycle - 1;
589         } else {                                  589         } else {
590                 /*                                590                 /*
591                  * In this case we want to fin    591                  * In this case we want to find the first block with cycle
592                  * number matching last_half_c    592                  * number matching last_half_cycle.  We expect the log to be
593                  * some variation on              593                  * some variation on
594                  *        x + 1 ... | x ... |     594                  *        x + 1 ... | x ... | x
595                  * The first block with cycle     595                  * The first block with cycle number x (last_half_cycle) will
596                  * be where the new head belon    596                  * be where the new head belongs.  First we do a binary search
597                  * for the first occurrence of    597                  * for the first occurrence of last_half_cycle.  The binary
598                  * search may not be totally a    598                  * search may not be totally accurate, so then we scan back
599                  * from there looking for occu    599                  * from there looking for occurrences of last_half_cycle before
600                  * us.  If that backwards scan    600                  * us.  If that backwards scan wraps around the beginning of
601                  * the log, then we look for o    601                  * the log, then we look for occurrences of last_half_cycle - 1
602                  * at the end of the log.  The    602                  * at the end of the log.  The cases we're looking for look
603                  * like                           603                  * like
604                  *                                604                  *                               v binary search stopped here
605                  *        x + 1 ... | x | x +     605                  *        x + 1 ... | x | x + 1 | x ... | x
606                  *                   ^ but we     606                  *                   ^ but we want to locate this spot
607                  * or                             607                  * or
608                  *        <---------> less tha    608                  *        <---------> less than scan distance
609                  *        x + 1 ... | x ... |     609                  *        x + 1 ... | x ... | x - 1 | x
610                  *                           ^    610                  *                           ^ we want to locate this spot
611                  */                               611                  */
612                 stop_on_cycle = last_half_cycl    612                 stop_on_cycle = last_half_cycle;
613                 error = xlog_find_cycle_start(    613                 error = xlog_find_cycle_start(log, buffer, first_blk, &head_blk,
614                                 last_half_cycl    614                                 last_half_cycle);
615                 if (error)                        615                 if (error)
616                         goto out_free_buffer;     616                         goto out_free_buffer;
617         }                                         617         }
618                                                   618 
619         /*                                        619         /*
620          * Now validate the answer.  Scan back    620          * Now validate the answer.  Scan back some number of maximum possible
621          * blocks and make sure each one has t    621          * blocks and make sure each one has the expected cycle number.  The
622          * maximum is determined by the total     622          * maximum is determined by the total possible amount of buffering
623          * in the in-core log.  The following     623          * in the in-core log.  The following number can be made tighter if
624          * we actually look at the block size     624          * we actually look at the block size of the filesystem.
625          */                                       625          */
626         num_scan_bblks = min_t(int, log_bbnum,    626         num_scan_bblks = min_t(int, log_bbnum, XLOG_TOTAL_REC_SHIFT(log));
627         if (head_blk >= num_scan_bblks) {         627         if (head_blk >= num_scan_bblks) {
628                 /*                                628                 /*
629                  * We are guaranteed that the     629                  * We are guaranteed that the entire check can be performed
630                  * in one buffer.                 630                  * in one buffer.
631                  */                               631                  */
632                 start_blk = head_blk - num_sca    632                 start_blk = head_blk - num_scan_bblks;
633                 if ((error = xlog_find_verify_    633                 if ((error = xlog_find_verify_cycle(log,
634                                                   634                                                 start_blk, num_scan_bblks,
635                                                   635                                                 stop_on_cycle, &new_blk)))
636                         goto out_free_buffer;     636                         goto out_free_buffer;
637                 if (new_blk != -1)                637                 if (new_blk != -1)
638                         head_blk = new_blk;       638                         head_blk = new_blk;
639         } else {                /* need to rea    639         } else {                /* need to read 2 parts of log */
640                 /*                                640                 /*
641                  * We are going to scan backwa    641                  * We are going to scan backwards in the log in two parts.
642                  * First we scan the physical     642                  * First we scan the physical end of the log.  In this part
643                  * of the log, we are looking     643                  * of the log, we are looking for blocks with cycle number
644                  * last_half_cycle - 1.           644                  * last_half_cycle - 1.
645                  * If we find one, then we kno    645                  * If we find one, then we know that the log starts there, as
646                  * we've found a hole that did    646                  * we've found a hole that didn't get written in going around
647                  * the end of the physical log    647                  * the end of the physical log.  The simple case for this is
648                  *        x + 1 ... | x ... |     648                  *        x + 1 ... | x ... | x - 1 | x
649                  *        <---------> less tha    649                  *        <---------> less than scan distance
650                  * If all of the blocks at the    650                  * If all of the blocks at the end of the log have cycle number
651                  * last_half_cycle, then we ch    651                  * last_half_cycle, then we check the blocks at the start of
652                  * the log looking for occurre    652                  * the log looking for occurrences of last_half_cycle.  If we
653                  * find one, then our current     653                  * find one, then our current estimate for the location of the
654                  * first occurrence of last_ha    654                  * first occurrence of last_half_cycle is wrong and we move
655                  * back to the hole we've foun    655                  * back to the hole we've found.  This case looks like
656                  *        x + 1 ... | x | x +     656                  *        x + 1 ... | x | x + 1 | x ...
657                  *                                657                  *                               ^ binary search stopped here
658                  * Another case we need to han    658                  * Another case we need to handle that only occurs in 256k
659                  * logs is                        659                  * logs is
660                  *        x + 1 ... | x ... |     660                  *        x + 1 ... | x ... | x+1 | x ...
661                  *                   ^ binary     661                  *                   ^ binary search stops here
662                  * In a 256k log, the scan at     662                  * In a 256k log, the scan at the end of the log will see the
663                  * x + 1 blocks.  We need to s    663                  * x + 1 blocks.  We need to skip past those since that is
664                  * certainly not the head of t    664                  * certainly not the head of the log.  By searching for
665                  * last_half_cycle-1 we accomp    665                  * last_half_cycle-1 we accomplish that.
666                  */                               666                  */
667                 ASSERT(head_blk <= INT_MAX &&     667                 ASSERT(head_blk <= INT_MAX &&
668                         (xfs_daddr_t) num_scan    668                         (xfs_daddr_t) num_scan_bblks >= head_blk);
669                 start_blk = log_bbnum - (num_s    669                 start_blk = log_bbnum - (num_scan_bblks - head_blk);
670                 if ((error = xlog_find_verify_    670                 if ((error = xlog_find_verify_cycle(log, start_blk,
671                                         num_sc    671                                         num_scan_bblks - (int)head_blk,
672                                         (stop_    672                                         (stop_on_cycle - 1), &new_blk)))
673                         goto out_free_buffer;     673                         goto out_free_buffer;
674                 if (new_blk != -1) {              674                 if (new_blk != -1) {
675                         head_blk = new_blk;       675                         head_blk = new_blk;
676                         goto validate_head;       676                         goto validate_head;
677                 }                                 677                 }
678                                                   678 
679                 /*                                679                 /*
680                  * Scan beginning of log now.     680                  * Scan beginning of log now.  The last part of the physical
681                  * log is good.  This scan nee    681                  * log is good.  This scan needs to verify that it doesn't find
682                  * the last_half_cycle.           682                  * the last_half_cycle.
683                  */                               683                  */
684                 start_blk = 0;                    684                 start_blk = 0;
685                 ASSERT(head_blk <= INT_MAX);      685                 ASSERT(head_blk <= INT_MAX);
686                 if ((error = xlog_find_verify_    686                 if ((error = xlog_find_verify_cycle(log,
687                                         start_    687                                         start_blk, (int)head_blk,
688                                         stop_o    688                                         stop_on_cycle, &new_blk)))
689                         goto out_free_buffer;     689                         goto out_free_buffer;
690                 if (new_blk != -1)                690                 if (new_blk != -1)
691                         head_blk = new_blk;       691                         head_blk = new_blk;
692         }                                         692         }
693                                                   693 
694 validate_head:                                    694 validate_head:
695         /*                                        695         /*
696          * Now we need to make sure head_blk i    696          * Now we need to make sure head_blk is not pointing to a block in
697          * the middle of a log record.            697          * the middle of a log record.
698          */                                       698          */
699         num_scan_bblks = XLOG_REC_SHIFT(log);     699         num_scan_bblks = XLOG_REC_SHIFT(log);
700         if (head_blk >= num_scan_bblks) {         700         if (head_blk >= num_scan_bblks) {
701                 start_blk = head_blk - num_sca    701                 start_blk = head_blk - num_scan_bblks; /* don't read head_blk */
702                                                   702 
703                 /* start ptr at last block ptr    703                 /* start ptr at last block ptr before head_blk */
704                 error = xlog_find_verify_log_r    704                 error = xlog_find_verify_log_record(log, start_blk, &head_blk, 0);
705                 if (error == 1)                   705                 if (error == 1)
706                         error = -EIO;             706                         error = -EIO;
707                 if (error)                        707                 if (error)
708                         goto out_free_buffer;     708                         goto out_free_buffer;
709         } else {                                  709         } else {
710                 start_blk = 0;                    710                 start_blk = 0;
711                 ASSERT(head_blk <= INT_MAX);      711                 ASSERT(head_blk <= INT_MAX);
712                 error = xlog_find_verify_log_r    712                 error = xlog_find_verify_log_record(log, start_blk, &head_blk, 0);
713                 if (error < 0)                    713                 if (error < 0)
714                         goto out_free_buffer;     714                         goto out_free_buffer;
715                 if (error == 1) {                 715                 if (error == 1) {
716                         /* We hit the beginnin    716                         /* We hit the beginning of the log during our search */
717                         start_blk = log_bbnum     717                         start_blk = log_bbnum - (num_scan_bblks - head_blk);
718                         new_blk = log_bbnum;      718                         new_blk = log_bbnum;
719                         ASSERT(start_blk <= IN    719                         ASSERT(start_blk <= INT_MAX &&
720                                 (xfs_daddr_t)     720                                 (xfs_daddr_t) log_bbnum-start_blk >= 0);
721                         ASSERT(head_blk <= INT    721                         ASSERT(head_blk <= INT_MAX);
722                         error = xlog_find_veri    722                         error = xlog_find_verify_log_record(log, start_blk,
723                                                   723                                                         &new_blk, (int)head_blk);
724                         if (error == 1)           724                         if (error == 1)
725                                 error = -EIO;     725                                 error = -EIO;
726                         if (error)                726                         if (error)
727                                 goto out_free_    727                                 goto out_free_buffer;
728                         if (new_blk != log_bbn    728                         if (new_blk != log_bbnum)
729                                 head_blk = new    729                                 head_blk = new_blk;
730                 } else if (error)                 730                 } else if (error)
731                         goto out_free_buffer;     731                         goto out_free_buffer;
732         }                                         732         }
733                                                   733 
734         kvfree(buffer);                           734         kvfree(buffer);
735         if (head_blk == log_bbnum)                735         if (head_blk == log_bbnum)
736                 *return_head_blk = 0;             736                 *return_head_blk = 0;
737         else                                      737         else
738                 *return_head_blk = head_blk;      738                 *return_head_blk = head_blk;
739         /*                                        739         /*
740          * When returning here, we have a good    740          * When returning here, we have a good block number.  Bad block
741          * means that during a previous crash,    741          * means that during a previous crash, we didn't have a clean break
742          * from cycle number N to cycle number    742          * from cycle number N to cycle number N-1.  In this case, we need
743          * to find the first block with cycle     743          * to find the first block with cycle number N-1.
744          */                                       744          */
745         return 0;                                 745         return 0;
746                                                   746 
747 out_free_buffer:                                  747 out_free_buffer:
748         kvfree(buffer);                           748         kvfree(buffer);
749         if (error)                                749         if (error)
750                 xfs_warn(log->l_mp, "failed to    750                 xfs_warn(log->l_mp, "failed to find log head");
751         return error;                             751         return error;
752 }                                                 752 }
753                                                   753 
754 /*                                                754 /*
755  * Seek backwards in the log for log record he    755  * Seek backwards in the log for log record headers.
756  *                                                756  *
757  * Given a starting log block, walk backwards     757  * Given a starting log block, walk backwards until we find the provided number
758  * of records or hit the provided tail block.     758  * of records or hit the provided tail block. The return value is the number of
759  * records encountered or a negative error cod    759  * records encountered or a negative error code. The log block and buffer
760  * pointer of the last record seen are returne    760  * pointer of the last record seen are returned in rblk and rhead respectively.
761  */                                               761  */
762 STATIC int                                        762 STATIC int
763 xlog_rseek_logrec_hdr(                            763 xlog_rseek_logrec_hdr(
764         struct xlog             *log,             764         struct xlog             *log,
765         xfs_daddr_t             head_blk,         765         xfs_daddr_t             head_blk,
766         xfs_daddr_t             tail_blk,         766         xfs_daddr_t             tail_blk,
767         int                     count,            767         int                     count,
768         char                    *buffer,          768         char                    *buffer,
769         xfs_daddr_t             *rblk,            769         xfs_daddr_t             *rblk,
770         struct xlog_rec_header  **rhead,          770         struct xlog_rec_header  **rhead,
771         bool                    *wrapped)         771         bool                    *wrapped)
772 {                                                 772 {
773         int                     i;                773         int                     i;
774         int                     error;            774         int                     error;
775         int                     found = 0;        775         int                     found = 0;
776         char                    *offset = NULL    776         char                    *offset = NULL;
777         xfs_daddr_t             end_blk;          777         xfs_daddr_t             end_blk;
778                                                   778 
779         *wrapped = false;                         779         *wrapped = false;
780                                                   780 
781         /*                                        781         /*
782          * Walk backwards from the head block     782          * Walk backwards from the head block until we hit the tail or the first
783          * block in the log.                      783          * block in the log.
784          */                                       784          */
785         end_blk = head_blk > tail_blk ? tail_b    785         end_blk = head_blk > tail_blk ? tail_blk : 0;
786         for (i = (int) head_blk - 1; i >= end_    786         for (i = (int) head_blk - 1; i >= end_blk; i--) {
787                 error = xlog_bread(log, i, 1,     787                 error = xlog_bread(log, i, 1, buffer, &offset);
788                 if (error)                        788                 if (error)
789                         goto out_error;           789                         goto out_error;
790                                                   790 
791                 if (*(__be32 *) offset == cpu_    791                 if (*(__be32 *) offset == cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) {
792                         *rblk = i;                792                         *rblk = i;
793                         *rhead = (struct xlog_    793                         *rhead = (struct xlog_rec_header *) offset;
794                         if (++found == count)     794                         if (++found == count)
795                                 break;            795                                 break;
796                 }                                 796                 }
797         }                                         797         }
798                                                   798 
799         /*                                        799         /*
800          * If we haven't hit the tail block or    800          * If we haven't hit the tail block or the log record header count,
801          * start looking again from the end of    801          * start looking again from the end of the physical log. Note that
802          * callers can pass head == tail if th    802          * callers can pass head == tail if the tail is not yet known.
803          */                                       803          */
804         if (tail_blk >= head_blk && found != c    804         if (tail_blk >= head_blk && found != count) {
805                 for (i = log->l_logBBsize - 1;    805                 for (i = log->l_logBBsize - 1; i >= (int) tail_blk; i--) {
806                         error = xlog_bread(log    806                         error = xlog_bread(log, i, 1, buffer, &offset);
807                         if (error)                807                         if (error)
808                                 goto out_error    808                                 goto out_error;
809                                                   809 
810                         if (*(__be32 *)offset     810                         if (*(__be32 *)offset ==
811                             cpu_to_be32(XLOG_H    811                             cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) {
812                                 *wrapped = tru    812                                 *wrapped = true;
813                                 *rblk = i;        813                                 *rblk = i;
814                                 *rhead = (stru    814                                 *rhead = (struct xlog_rec_header *) offset;
815                                 if (++found ==    815                                 if (++found == count)
816                                         break;    816                                         break;
817                         }                         817                         }
818                 }                                 818                 }
819         }                                         819         }
820                                                   820 
821         return found;                             821         return found;
822                                                   822 
823 out_error:                                        823 out_error:
824         return error;                             824         return error;
825 }                                                 825 }
826                                                   826 
827 /*                                                827 /*
828  * Seek forward in the log for log record head    828  * Seek forward in the log for log record headers.
829  *                                                829  *
830  * Given head and tail blocks, walk forward fr    830  * Given head and tail blocks, walk forward from the tail block until we find
831  * the provided number of records or hit the h    831  * the provided number of records or hit the head block. The return value is the
832  * number of records encountered or a negative    832  * number of records encountered or a negative error code. The log block and
833  * buffer pointer of the last record seen are     833  * buffer pointer of the last record seen are returned in rblk and rhead
834  * respectively.                                  834  * respectively.
835  */                                               835  */
836 STATIC int                                        836 STATIC int
837 xlog_seek_logrec_hdr(                             837 xlog_seek_logrec_hdr(
838         struct xlog             *log,             838         struct xlog             *log,
839         xfs_daddr_t             head_blk,         839         xfs_daddr_t             head_blk,
840         xfs_daddr_t             tail_blk,         840         xfs_daddr_t             tail_blk,
841         int                     count,            841         int                     count,
842         char                    *buffer,          842         char                    *buffer,
843         xfs_daddr_t             *rblk,            843         xfs_daddr_t             *rblk,
844         struct xlog_rec_header  **rhead,          844         struct xlog_rec_header  **rhead,
845         bool                    *wrapped)         845         bool                    *wrapped)
846 {                                                 846 {
847         int                     i;                847         int                     i;
848         int                     error;            848         int                     error;
849         int                     found = 0;        849         int                     found = 0;
850         char                    *offset = NULL    850         char                    *offset = NULL;
851         xfs_daddr_t             end_blk;          851         xfs_daddr_t             end_blk;
852                                                   852 
853         *wrapped = false;                         853         *wrapped = false;
854                                                   854 
855         /*                                        855         /*
856          * Walk forward from the tail block un    856          * Walk forward from the tail block until we hit the head or the last
857          * block in the log.                      857          * block in the log.
858          */                                       858          */
859         end_blk = head_blk > tail_blk ? head_b    859         end_blk = head_blk > tail_blk ? head_blk : log->l_logBBsize - 1;
860         for (i = (int) tail_blk; i <= end_blk;    860         for (i = (int) tail_blk; i <= end_blk; i++) {
861                 error = xlog_bread(log, i, 1,     861                 error = xlog_bread(log, i, 1, buffer, &offset);
862                 if (error)                        862                 if (error)
863                         goto out_error;           863                         goto out_error;
864                                                   864 
865                 if (*(__be32 *) offset == cpu_    865                 if (*(__be32 *) offset == cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) {
866                         *rblk = i;                866                         *rblk = i;
867                         *rhead = (struct xlog_    867                         *rhead = (struct xlog_rec_header *) offset;
868                         if (++found == count)     868                         if (++found == count)
869                                 break;            869                                 break;
870                 }                                 870                 }
871         }                                         871         }
872                                                   872 
873         /*                                        873         /*
874          * If we haven't hit the head block or    874          * If we haven't hit the head block or the log record header count,
875          * start looking again from the start     875          * start looking again from the start of the physical log.
876          */                                       876          */
877         if (tail_blk > head_blk && found != co    877         if (tail_blk > head_blk && found != count) {
878                 for (i = 0; i < (int) head_blk    878                 for (i = 0; i < (int) head_blk; i++) {
879                         error = xlog_bread(log    879                         error = xlog_bread(log, i, 1, buffer, &offset);
880                         if (error)                880                         if (error)
881                                 goto out_error    881                                 goto out_error;
882                                                   882 
883                         if (*(__be32 *)offset     883                         if (*(__be32 *)offset ==
884                             cpu_to_be32(XLOG_H    884                             cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) {
885                                 *wrapped = tru    885                                 *wrapped = true;
886                                 *rblk = i;        886                                 *rblk = i;
887                                 *rhead = (stru    887                                 *rhead = (struct xlog_rec_header *) offset;
888                                 if (++found ==    888                                 if (++found == count)
889                                         break;    889                                         break;
890                         }                         890                         }
891                 }                                 891                 }
892         }                                         892         }
893                                                   893 
894         return found;                             894         return found;
895                                                   895 
896 out_error:                                        896 out_error:
897         return error;                             897         return error;
898 }                                                 898 }
899                                                   899 
900 /*                                                900 /*
901  * Calculate distance from head to tail (i.e.,    901  * Calculate distance from head to tail (i.e., unused space in the log).
902  */                                               902  */
903 static inline int                                 903 static inline int
904 xlog_tail_distance(                               904 xlog_tail_distance(
905         struct xlog     *log,                     905         struct xlog     *log,
906         xfs_daddr_t     head_blk,                 906         xfs_daddr_t     head_blk,
907         xfs_daddr_t     tail_blk)                 907         xfs_daddr_t     tail_blk)
908 {                                                 908 {
909         if (head_blk < tail_blk)                  909         if (head_blk < tail_blk)
910                 return tail_blk - head_blk;       910                 return tail_blk - head_blk;
911                                                   911 
912         return tail_blk + (log->l_logBBsize -     912         return tail_blk + (log->l_logBBsize - head_blk);
913 }                                                 913 }
914                                                   914 
915 /*                                                915 /*
916  * Verify the log tail. This is particularly i    916  * Verify the log tail. This is particularly important when torn or incomplete
917  * writes have been detected near the front of    917  * writes have been detected near the front of the log and the head has been
918  * walked back accordingly.                       918  * walked back accordingly.
919  *                                                919  *
920  * We also have to handle the case where the t    920  * We also have to handle the case where the tail was pinned and the head
921  * blocked behind the tail right before a cras    921  * blocked behind the tail right before a crash. If the tail had been pushed
922  * immediately prior to the crash and the subs    922  * immediately prior to the crash and the subsequent checkpoint was only
923  * partially written, it's possible it overwro    923  * partially written, it's possible it overwrote the last referenced tail in the
924  * log with garbage. This is not a coherency p    924  * log with garbage. This is not a coherency problem because the tail must have
925  * been pushed before it can be overwritten, b    925  * been pushed before it can be overwritten, but appears as log corruption to
926  * recovery because we have no way to know the    926  * recovery because we have no way to know the tail was updated if the
927  * subsequent checkpoint didn't write successf    927  * subsequent checkpoint didn't write successfully.
928  *                                                928  *
929  * Therefore, CRC check the log from tail to h    929  * Therefore, CRC check the log from tail to head. If a failure occurs and the
930  * offending record is within max iclog bufs f    930  * offending record is within max iclog bufs from the head, walk the tail
931  * forward and retry until a valid tail is fou    931  * forward and retry until a valid tail is found or corruption is detected out
932  * of the range of a possible overwrite.          932  * of the range of a possible overwrite.
933  */                                               933  */
934 STATIC int                                        934 STATIC int
935 xlog_verify_tail(                                 935 xlog_verify_tail(
936         struct xlog             *log,             936         struct xlog             *log,
937         xfs_daddr_t             head_blk,         937         xfs_daddr_t             head_blk,
938         xfs_daddr_t             *tail_blk,        938         xfs_daddr_t             *tail_blk,
939         int                     hsize)            939         int                     hsize)
940 {                                                 940 {
941         struct xlog_rec_header  *thead;           941         struct xlog_rec_header  *thead;
942         char                    *buffer;          942         char                    *buffer;
943         xfs_daddr_t             first_bad;        943         xfs_daddr_t             first_bad;
944         int                     error = 0;        944         int                     error = 0;
945         bool                    wrapped;          945         bool                    wrapped;
946         xfs_daddr_t             tmp_tail;         946         xfs_daddr_t             tmp_tail;
947         xfs_daddr_t             orig_tail = *t    947         xfs_daddr_t             orig_tail = *tail_blk;
948                                                   948 
949         buffer = xlog_alloc_buffer(log, 1);       949         buffer = xlog_alloc_buffer(log, 1);
950         if (!buffer)                              950         if (!buffer)
951                 return -ENOMEM;                   951                 return -ENOMEM;
952                                                   952 
953         /*                                        953         /*
954          * Make sure the tail points to a reco    954          * Make sure the tail points to a record (returns positive count on
955          * success).                              955          * success).
956          */                                       956          */
957         error = xlog_seek_logrec_hdr(log, head    957         error = xlog_seek_logrec_hdr(log, head_blk, *tail_blk, 1, buffer,
958                         &tmp_tail, &thead, &wr    958                         &tmp_tail, &thead, &wrapped);
959         if (error < 0)                            959         if (error < 0)
960                 goto out;                         960                 goto out;
961         if (*tail_blk != tmp_tail)                961         if (*tail_blk != tmp_tail)
962                 *tail_blk = tmp_tail;             962                 *tail_blk = tmp_tail;
963                                                   963 
964         /*                                        964         /*
965          * Run a CRC check from the tail to th    965          * Run a CRC check from the tail to the head. We can't just check
966          * MAX_ICLOGS records past the tail be    966          * MAX_ICLOGS records past the tail because the tail may point to stale
967          * blocks cleared during the search fo    967          * blocks cleared during the search for the head/tail. These blocks are
968          * overwritten with zero-length record    968          * overwritten with zero-length records and thus record count is not a
969          * reliable indicator of the iclog sta    969          * reliable indicator of the iclog state before a crash.
970          */                                       970          */
971         first_bad = 0;                            971         first_bad = 0;
972         error = xlog_do_recovery_pass(log, hea    972         error = xlog_do_recovery_pass(log, head_blk, *tail_blk,
973                                       XLOG_REC    973                                       XLOG_RECOVER_CRCPASS, &first_bad);
974         while ((error == -EFSBADCRC || error =    974         while ((error == -EFSBADCRC || error == -EFSCORRUPTED) && first_bad) {
975                 int     tail_distance;            975                 int     tail_distance;
976                                                   976 
977                 /*                                977                 /*
978                  * Is corruption within range     978                  * Is corruption within range of the head? If so, retry from
979                  * the next record. Otherwise     979                  * the next record. Otherwise return an error.
980                  */                               980                  */
981                 tail_distance = xlog_tail_dist    981                 tail_distance = xlog_tail_distance(log, head_blk, first_bad);
982                 if (tail_distance > BTOBB(XLOG    982                 if (tail_distance > BTOBB(XLOG_MAX_ICLOGS * hsize))
983                         break;                    983                         break;
984                                                   984 
985                 /* skip to the next record; re    985                 /* skip to the next record; returns positive count on success */
986                 error = xlog_seek_logrec_hdr(l    986                 error = xlog_seek_logrec_hdr(log, head_blk, first_bad, 2,
987                                 buffer, &tmp_t    987                                 buffer, &tmp_tail, &thead, &wrapped);
988                 if (error < 0)                    988                 if (error < 0)
989                         goto out;                 989                         goto out;
990                                                   990 
991                 *tail_blk = tmp_tail;             991                 *tail_blk = tmp_tail;
992                 first_bad = 0;                    992                 first_bad = 0;
993                 error = xlog_do_recovery_pass(    993                 error = xlog_do_recovery_pass(log, head_blk, *tail_blk,
994                                                   994                                               XLOG_RECOVER_CRCPASS, &first_bad);
995         }                                         995         }
996                                                   996 
997         if (!error && *tail_blk != orig_tail)     997         if (!error && *tail_blk != orig_tail)
998                 xfs_warn(log->l_mp,               998                 xfs_warn(log->l_mp,
999                 "Tail block (0x%llx) overwrite    999                 "Tail block (0x%llx) overwrite detected. Updated to 0x%llx",
1000                          orig_tail, *tail_blk    1000                          orig_tail, *tail_blk);
1001 out:                                             1001 out:
1002         kvfree(buffer);                          1002         kvfree(buffer);
1003         return error;                            1003         return error;
1004 }                                                1004 }
1005                                                  1005 
1006 /*                                               1006 /*
1007  * Detect and trim torn writes from the head     1007  * Detect and trim torn writes from the head of the log.
1008  *                                               1008  *
1009  * Storage without sector atomicity guarantee    1009  * Storage without sector atomicity guarantees can result in torn writes in the
1010  * log in the event of a crash. Our only mean    1010  * log in the event of a crash. Our only means to detect this scenario is via
1011  * CRC verification. While we can't always be    1011  * CRC verification. While we can't always be certain that CRC verification
1012  * failure is due to a torn write vs. an unre    1012  * failure is due to a torn write vs. an unrelated corruption, we do know that
1013  * only a certain number (XLOG_MAX_ICLOGS) of    1013  * only a certain number (XLOG_MAX_ICLOGS) of log records can be written out at
1014  * one time. Therefore, CRC verify up to XLOG    1014  * one time. Therefore, CRC verify up to XLOG_MAX_ICLOGS records at the head of
1015  * the log and treat failures in this range a    1015  * the log and treat failures in this range as torn writes as a matter of
1016  * policy. In the event of CRC failure, the h    1016  * policy. In the event of CRC failure, the head is walked back to the last good
1017  * record in the log and the tail is updated     1017  * record in the log and the tail is updated from that record and verified.
1018  */                                              1018  */
1019 STATIC int                                       1019 STATIC int
1020 xlog_verify_head(                                1020 xlog_verify_head(
1021         struct xlog             *log,            1021         struct xlog             *log,
1022         xfs_daddr_t             *head_blk,       1022         xfs_daddr_t             *head_blk,      /* in/out: unverified head */
1023         xfs_daddr_t             *tail_blk,       1023         xfs_daddr_t             *tail_blk,      /* out: tail block */
1024         char                    *buffer,         1024         char                    *buffer,
1025         xfs_daddr_t             *rhead_blk,      1025         xfs_daddr_t             *rhead_blk,     /* start blk of last record */
1026         struct xlog_rec_header  **rhead,         1026         struct xlog_rec_header  **rhead,        /* ptr to last record */
1027         bool                    *wrapped)        1027         bool                    *wrapped)       /* last rec. wraps phys. log */
1028 {                                                1028 {
1029         struct xlog_rec_header  *tmp_rhead;      1029         struct xlog_rec_header  *tmp_rhead;
1030         char                    *tmp_buffer;     1030         char                    *tmp_buffer;
1031         xfs_daddr_t             first_bad;       1031         xfs_daddr_t             first_bad;
1032         xfs_daddr_t             tmp_rhead_blk    1032         xfs_daddr_t             tmp_rhead_blk;
1033         int                     found;           1033         int                     found;
1034         int                     error;           1034         int                     error;
1035         bool                    tmp_wrapped;     1035         bool                    tmp_wrapped;
1036                                                  1036 
1037         /*                                       1037         /*
1038          * Check the head of the log for torn    1038          * Check the head of the log for torn writes. Search backwards from the
1039          * head until we hit the tail or the     1039          * head until we hit the tail or the maximum number of log record I/Os
1040          * that could have been in flight at     1040          * that could have been in flight at one time. Use a temporary buffer so
1041          * we don't trash the rhead/buffer po    1041          * we don't trash the rhead/buffer pointers from the caller.
1042          */                                      1042          */
1043         tmp_buffer = xlog_alloc_buffer(log, 1    1043         tmp_buffer = xlog_alloc_buffer(log, 1);
1044         if (!tmp_buffer)                         1044         if (!tmp_buffer)
1045                 return -ENOMEM;                  1045                 return -ENOMEM;
1046         error = xlog_rseek_logrec_hdr(log, *h    1046         error = xlog_rseek_logrec_hdr(log, *head_blk, *tail_blk,
1047                                       XLOG_MA    1047                                       XLOG_MAX_ICLOGS, tmp_buffer,
1048                                       &tmp_rh    1048                                       &tmp_rhead_blk, &tmp_rhead, &tmp_wrapped);
1049         kvfree(tmp_buffer);                      1049         kvfree(tmp_buffer);
1050         if (error < 0)                           1050         if (error < 0)
1051                 return error;                    1051                 return error;
1052                                                  1052 
1053         /*                                       1053         /*
1054          * Now run a CRC verification pass ov    1054          * Now run a CRC verification pass over the records starting at the
1055          * block found above to the current h    1055          * block found above to the current head. If a CRC failure occurs, the
1056          * log block of the first bad record     1056          * log block of the first bad record is saved in first_bad.
1057          */                                      1057          */
1058         error = xlog_do_recovery_pass(log, *h    1058         error = xlog_do_recovery_pass(log, *head_blk, tmp_rhead_blk,
1059                                       XLOG_RE    1059                                       XLOG_RECOVER_CRCPASS, &first_bad);
1060         if ((error == -EFSBADCRC || error ==     1060         if ((error == -EFSBADCRC || error == -EFSCORRUPTED) && first_bad) {
1061                 /*                               1061                 /*
1062                  * We've hit a potential torn    1062                  * We've hit a potential torn write. Reset the error and warn
1063                  * about it.                     1063                  * about it.
1064                  */                              1064                  */
1065                 error = 0;                       1065                 error = 0;
1066                 xfs_warn(log->l_mp,              1066                 xfs_warn(log->l_mp,
1067 "Torn write (CRC failure) detected at log blo    1067 "Torn write (CRC failure) detected at log block 0x%llx. Truncating head block from 0x%llx.",
1068                          first_bad, *head_blk    1068                          first_bad, *head_blk);
1069                                                  1069 
1070                 /*                               1070                 /*
1071                  * Get the header block and b    1071                  * Get the header block and buffer pointer for the last good
1072                  * record before the bad reco    1072                  * record before the bad record.
1073                  *                               1073                  *
1074                  * Note that xlog_find_tail()    1074                  * Note that xlog_find_tail() clears the blocks at the new head
1075                  * (i.e., the records with in    1075                  * (i.e., the records with invalid CRC) if the cycle number
1076                  * matches the current cycle.    1076                  * matches the current cycle.
1077                  */                              1077                  */
1078                 found = xlog_rseek_logrec_hdr    1078                 found = xlog_rseek_logrec_hdr(log, first_bad, *tail_blk, 1,
1079                                 buffer, rhead    1079                                 buffer, rhead_blk, rhead, wrapped);
1080                 if (found < 0)                   1080                 if (found < 0)
1081                         return found;            1081                         return found;
1082                 if (found == 0)         /* XX    1082                 if (found == 0)         /* XXX: right thing to do here? */
1083                         return -EIO;             1083                         return -EIO;
1084                                                  1084 
1085                 /*                               1085                 /*
1086                  * Reset the head block to th    1086                  * Reset the head block to the starting block of the first bad
1087                  * log record and set the tai    1087                  * log record and set the tail block based on the last good
1088                  * record.                       1088                  * record.
1089                  *                               1089                  *
1090                  * Bail out if the updated he    1090                  * Bail out if the updated head/tail match as this indicates
1091                  * possible corruption outsid    1091                  * possible corruption outside of the acceptable
1092                  * (XLOG_MAX_ICLOGS) range. T    1092                  * (XLOG_MAX_ICLOGS) range. This is a job for xfs_repair...
1093                  */                              1093                  */
1094                 *head_blk = first_bad;           1094                 *head_blk = first_bad;
1095                 *tail_blk = BLOCK_LSN(be64_to    1095                 *tail_blk = BLOCK_LSN(be64_to_cpu((*rhead)->h_tail_lsn));
1096                 if (*head_blk == *tail_blk) {    1096                 if (*head_blk == *tail_blk) {
1097                         ASSERT(0);               1097                         ASSERT(0);
1098                         return 0;                1098                         return 0;
1099                 }                                1099                 }
1100         }                                        1100         }
1101         if (error)                               1101         if (error)
1102                 return error;                    1102                 return error;
1103                                                  1103 
1104         return xlog_verify_tail(log, *head_bl    1104         return xlog_verify_tail(log, *head_blk, tail_blk,
1105                                 be32_to_cpu((    1105                                 be32_to_cpu((*rhead)->h_size));
1106 }                                                1106 }
1107                                                  1107 
1108 /*                                               1108 /*
1109  * We need to make sure we handle log wrappin    1109  * We need to make sure we handle log wrapping properly, so we can't use the
1110  * calculated logbno directly. Make sure it w    1110  * calculated logbno directly. Make sure it wraps to the correct bno inside the
1111  * log.                                          1111  * log.
1112  *                                               1112  *
1113  * The log is limited to 32 bit sizes, so we     1113  * The log is limited to 32 bit sizes, so we use the appropriate modulus
1114  * operation here and cast it back to a 64 bi    1114  * operation here and cast it back to a 64 bit daddr on return.
1115  */                                              1115  */
1116 static inline xfs_daddr_t                        1116 static inline xfs_daddr_t
1117 xlog_wrap_logbno(                                1117 xlog_wrap_logbno(
1118         struct xlog             *log,            1118         struct xlog             *log,
1119         xfs_daddr_t             bno)             1119         xfs_daddr_t             bno)
1120 {                                                1120 {
1121         int                     mod;             1121         int                     mod;
1122                                                  1122 
1123         div_s64_rem(bno, log->l_logBBsize, &m    1123         div_s64_rem(bno, log->l_logBBsize, &mod);
1124         return mod;                              1124         return mod;
1125 }                                                1125 }
1126                                                  1126 
1127 /*                                               1127 /*
1128  * Check whether the head of the log points t    1128  * Check whether the head of the log points to an unmount record. In other
1129  * words, determine whether the log is clean.    1129  * words, determine whether the log is clean. If so, update the in-core state
1130  * appropriately.                                1130  * appropriately.
1131  */                                              1131  */
1132 static int                                       1132 static int
1133 xlog_check_unmount_rec(                          1133 xlog_check_unmount_rec(
1134         struct xlog             *log,            1134         struct xlog             *log,
1135         xfs_daddr_t             *head_blk,       1135         xfs_daddr_t             *head_blk,
1136         xfs_daddr_t             *tail_blk,       1136         xfs_daddr_t             *tail_blk,
1137         struct xlog_rec_header  *rhead,          1137         struct xlog_rec_header  *rhead,
1138         xfs_daddr_t             rhead_blk,       1138         xfs_daddr_t             rhead_blk,
1139         char                    *buffer,         1139         char                    *buffer,
1140         bool                    *clean)          1140         bool                    *clean)
1141 {                                                1141 {
1142         struct xlog_op_header   *op_head;        1142         struct xlog_op_header   *op_head;
1143         xfs_daddr_t             umount_data_b    1143         xfs_daddr_t             umount_data_blk;
1144         xfs_daddr_t             after_umount_    1144         xfs_daddr_t             after_umount_blk;
1145         int                     hblks;           1145         int                     hblks;
1146         int                     error;           1146         int                     error;
1147         char                    *offset;         1147         char                    *offset;
1148                                                  1148 
1149         *clean = false;                          1149         *clean = false;
1150                                                  1150 
1151         /*                                       1151         /*
1152          * Look for unmount record. If we fin    1152          * Look for unmount record. If we find it, then we know there was a
1153          * clean unmount. Since 'i' could be     1153          * clean unmount. Since 'i' could be the last block in the physical
1154          * log, we convert to a log block bef    1154          * log, we convert to a log block before comparing to the head_blk.
1155          *                                       1155          *
1156          * Save the current tail lsn to use t    1156          * Save the current tail lsn to use to pass to xlog_clear_stale_blocks()
1157          * below. We won't want to clear the     1157          * below. We won't want to clear the unmount record if there is one, so
1158          * we pass the lsn of the unmount rec    1158          * we pass the lsn of the unmount record rather than the block after it.
1159          */                                      1159          */
1160         hblks = xlog_logrec_hblks(log, rhead)    1160         hblks = xlog_logrec_hblks(log, rhead);
1161         after_umount_blk = xlog_wrap_logbno(l    1161         after_umount_blk = xlog_wrap_logbno(log,
1162                         rhead_blk + hblks + B    1162                         rhead_blk + hblks + BTOBB(be32_to_cpu(rhead->h_len)));
1163                                                  1163 
1164         if (*head_blk == after_umount_blk &&     1164         if (*head_blk == after_umount_blk &&
1165             be32_to_cpu(rhead->h_num_logops)     1165             be32_to_cpu(rhead->h_num_logops) == 1) {
1166                 umount_data_blk = xlog_wrap_l    1166                 umount_data_blk = xlog_wrap_logbno(log, rhead_blk + hblks);
1167                 error = xlog_bread(log, umoun    1167                 error = xlog_bread(log, umount_data_blk, 1, buffer, &offset);
1168                 if (error)                       1168                 if (error)
1169                         return error;            1169                         return error;
1170                                                  1170 
1171                 op_head = (struct xlog_op_hea    1171                 op_head = (struct xlog_op_header *)offset;
1172                 if (op_head->oh_flags & XLOG_    1172                 if (op_head->oh_flags & XLOG_UNMOUNT_TRANS) {
1173                         /*                       1173                         /*
1174                          * Set tail and last     1174                          * Set tail and last sync so that newly written log
1175                          * records will point    1175                          * records will point recovery to after the current
1176                          * unmount record.       1176                          * unmount record.
1177                          */                      1177                          */
1178                         xlog_assign_atomic_ls    1178                         xlog_assign_atomic_lsn(&log->l_tail_lsn,
1179                                         log->    1179                                         log->l_curr_cycle, after_umount_blk);
1180                         log->l_ailp->ail_head    1180                         log->l_ailp->ail_head_lsn =
1181                                         atomi    1181                                         atomic64_read(&log->l_tail_lsn);
1182                         *tail_blk = after_umo    1182                         *tail_blk = after_umount_blk;
1183                                                  1183 
1184                         *clean = true;           1184                         *clean = true;
1185                 }                                1185                 }
1186         }                                        1186         }
1187                                                  1187 
1188         return 0;                                1188         return 0;
1189 }                                                1189 }
1190                                                  1190 
1191 static void                                      1191 static void
1192 xlog_set_state(                                  1192 xlog_set_state(
1193         struct xlog             *log,            1193         struct xlog             *log,
1194         xfs_daddr_t             head_blk,        1194         xfs_daddr_t             head_blk,
1195         struct xlog_rec_header  *rhead,          1195         struct xlog_rec_header  *rhead,
1196         xfs_daddr_t             rhead_blk,       1196         xfs_daddr_t             rhead_blk,
1197         bool                    bump_cycle)      1197         bool                    bump_cycle)
1198 {                                                1198 {
1199         /*                                       1199         /*
1200          * Reset log values according to the     1200          * Reset log values according to the state of the log when we
1201          * crashed.  In the case where head_b    1201          * crashed.  In the case where head_blk == 0, we bump curr_cycle
1202          * one because the next write starts     1202          * one because the next write starts a new cycle rather than
1203          * continuing the cycle of the last g    1203          * continuing the cycle of the last good log record.  At this
1204          * point we have guaranteed that all     1204          * point we have guaranteed that all partial log records have been
1205          * accounted for.  Therefore, we know    1205          * accounted for.  Therefore, we know that the last good log record
1206          * written was complete and ended exa    1206          * written was complete and ended exactly on the end boundary
1207          * of the physical log.                  1207          * of the physical log.
1208          */                                      1208          */
1209         log->l_prev_block = rhead_blk;           1209         log->l_prev_block = rhead_blk;
1210         log->l_curr_block = (int)head_blk;       1210         log->l_curr_block = (int)head_blk;
1211         log->l_curr_cycle = be32_to_cpu(rhead    1211         log->l_curr_cycle = be32_to_cpu(rhead->h_cycle);
1212         if (bump_cycle)                          1212         if (bump_cycle)
1213                 log->l_curr_cycle++;             1213                 log->l_curr_cycle++;
1214         atomic64_set(&log->l_tail_lsn, be64_t    1214         atomic64_set(&log->l_tail_lsn, be64_to_cpu(rhead->h_tail_lsn));
1215         log->l_ailp->ail_head_lsn = be64_to_c    1215         log->l_ailp->ail_head_lsn = be64_to_cpu(rhead->h_lsn);
1216 }                                                1216 }
1217                                                  1217 
1218 /*                                               1218 /*
1219  * Find the sync block number or the tail of     1219  * Find the sync block number or the tail of the log.
1220  *                                               1220  *
1221  * This will be the block number of the last     1221  * This will be the block number of the last record to have its
1222  * associated buffers synced to disk.  Every     1222  * associated buffers synced to disk.  Every log record header has
1223  * a sync lsn embedded in it.  LSNs hold bloc    1223  * a sync lsn embedded in it.  LSNs hold block numbers, so it is easy
1224  * to get a sync block number.  The only conc    1224  * to get a sync block number.  The only concern is to figure out which
1225  * log record header to believe.                 1225  * log record header to believe.
1226  *                                               1226  *
1227  * The following algorithm uses the log recor    1227  * The following algorithm uses the log record header with the largest
1228  * lsn.  The entire log record does not need     1228  * lsn.  The entire log record does not need to be valid.  We only care
1229  * that the header is valid.                     1229  * that the header is valid.
1230  *                                               1230  *
1231  * We could speed up search by using current     1231  * We could speed up search by using current head_blk buffer, but it is not
1232  * available.                                    1232  * available.
1233  */                                              1233  */
1234 STATIC int                                       1234 STATIC int
1235 xlog_find_tail(                                  1235 xlog_find_tail(
1236         struct xlog             *log,            1236         struct xlog             *log,
1237         xfs_daddr_t             *head_blk,       1237         xfs_daddr_t             *head_blk,
1238         xfs_daddr_t             *tail_blk)       1238         xfs_daddr_t             *tail_blk)
1239 {                                                1239 {
1240         xlog_rec_header_t       *rhead;          1240         xlog_rec_header_t       *rhead;
1241         char                    *offset = NUL    1241         char                    *offset = NULL;
1242         char                    *buffer;         1242         char                    *buffer;
1243         int                     error;           1243         int                     error;
1244         xfs_daddr_t             rhead_blk;       1244         xfs_daddr_t             rhead_blk;
1245         xfs_lsn_t               tail_lsn;        1245         xfs_lsn_t               tail_lsn;
1246         bool                    wrapped = fal    1246         bool                    wrapped = false;
1247         bool                    clean = false    1247         bool                    clean = false;
1248                                                  1248 
1249         /*                                       1249         /*
1250          * Find previous log record              1250          * Find previous log record
1251          */                                      1251          */
1252         if ((error = xlog_find_head(log, head    1252         if ((error = xlog_find_head(log, head_blk)))
1253                 return error;                    1253                 return error;
1254         ASSERT(*head_blk < INT_MAX);             1254         ASSERT(*head_blk < INT_MAX);
1255                                                  1255 
1256         buffer = xlog_alloc_buffer(log, 1);      1256         buffer = xlog_alloc_buffer(log, 1);
1257         if (!buffer)                             1257         if (!buffer)
1258                 return -ENOMEM;                  1258                 return -ENOMEM;
1259         if (*head_blk == 0) {                    1259         if (*head_blk == 0) {                           /* special case */
1260                 error = xlog_bread(log, 0, 1,    1260                 error = xlog_bread(log, 0, 1, buffer, &offset);
1261                 if (error)                       1261                 if (error)
1262                         goto done;               1262                         goto done;
1263                                                  1263 
1264                 if (xlog_get_cycle(offset) ==    1264                 if (xlog_get_cycle(offset) == 0) {
1265                         *tail_blk = 0;           1265                         *tail_blk = 0;
1266                         /* leave all other lo    1266                         /* leave all other log inited values alone */
1267                         goto done;               1267                         goto done;
1268                 }                                1268                 }
1269         }                                        1269         }
1270                                                  1270 
1271         /*                                       1271         /*
1272          * Search backwards through the log l    1272          * Search backwards through the log looking for the log record header
1273          * block. This wraps all the way back    1273          * block. This wraps all the way back around to the head so something is
1274          * seriously wrong if we can't find i    1274          * seriously wrong if we can't find it.
1275          */                                      1275          */
1276         error = xlog_rseek_logrec_hdr(log, *h    1276         error = xlog_rseek_logrec_hdr(log, *head_blk, *head_blk, 1, buffer,
1277                                       &rhead_    1277                                       &rhead_blk, &rhead, &wrapped);
1278         if (error < 0)                           1278         if (error < 0)
1279                 goto done;                       1279                 goto done;
1280         if (!error) {                            1280         if (!error) {
1281                 xfs_warn(log->l_mp, "%s: coul    1281                 xfs_warn(log->l_mp, "%s: couldn't find sync record", __func__);
1282                 error = -EFSCORRUPTED;           1282                 error = -EFSCORRUPTED;
1283                 goto done;                       1283                 goto done;
1284         }                                        1284         }
1285         *tail_blk = BLOCK_LSN(be64_to_cpu(rhe    1285         *tail_blk = BLOCK_LSN(be64_to_cpu(rhead->h_tail_lsn));
1286                                                  1286 
1287         /*                                       1287         /*
1288          * Set the log state based on the cur    1288          * Set the log state based on the current head record.
1289          */                                      1289          */
1290         xlog_set_state(log, *head_blk, rhead,    1290         xlog_set_state(log, *head_blk, rhead, rhead_blk, wrapped);
1291         tail_lsn = atomic64_read(&log->l_tail    1291         tail_lsn = atomic64_read(&log->l_tail_lsn);
1292                                                  1292 
1293         /*                                       1293         /*
1294          * Look for an unmount record at the     1294          * Look for an unmount record at the head of the log. This sets the log
1295          * state to determine whether recover    1295          * state to determine whether recovery is necessary.
1296          */                                      1296          */
1297         error = xlog_check_unmount_rec(log, h    1297         error = xlog_check_unmount_rec(log, head_blk, tail_blk, rhead,
1298                                        rhead_    1298                                        rhead_blk, buffer, &clean);
1299         if (error)                               1299         if (error)
1300                 goto done;                       1300                 goto done;
1301                                                  1301 
1302         /*                                       1302         /*
1303          * Verify the log head if the log is     1303          * Verify the log head if the log is not clean (e.g., we have anything
1304          * but an unmount record at the head)    1304          * but an unmount record at the head). This uses CRC verification to
1305          * detect and trim torn writes. If di    1305          * detect and trim torn writes. If discovered, CRC failures are
1306          * considered torn writes and the log    1306          * considered torn writes and the log head is trimmed accordingly.
1307          *                                       1307          *
1308          * Note that we can only run CRC veri    1308          * Note that we can only run CRC verification when the log is dirty
1309          * because there's no guarantee that     1309          * because there's no guarantee that the log data behind an unmount
1310          * record is compatible with the curr    1310          * record is compatible with the current architecture.
1311          */                                      1311          */
1312         if (!clean) {                            1312         if (!clean) {
1313                 xfs_daddr_t     orig_head = *    1313                 xfs_daddr_t     orig_head = *head_blk;
1314                                                  1314 
1315                 error = xlog_verify_head(log,    1315                 error = xlog_verify_head(log, head_blk, tail_blk, buffer,
1316                                          &rhe    1316                                          &rhead_blk, &rhead, &wrapped);
1317                 if (error)                       1317                 if (error)
1318                         goto done;               1318                         goto done;
1319                                                  1319 
1320                 /* update in-core state again    1320                 /* update in-core state again if the head changed */
1321                 if (*head_blk != orig_head) {    1321                 if (*head_blk != orig_head) {
1322                         xlog_set_state(log, *    1322                         xlog_set_state(log, *head_blk, rhead, rhead_blk,
1323                                        wrappe    1323                                        wrapped);
1324                         tail_lsn = atomic64_r    1324                         tail_lsn = atomic64_read(&log->l_tail_lsn);
1325                         error = xlog_check_un    1325                         error = xlog_check_unmount_rec(log, head_blk, tail_blk,
1326                                                  1326                                                        rhead, rhead_blk, buffer,
1327                                                  1327                                                        &clean);
1328                         if (error)               1328                         if (error)
1329                                 goto done;       1329                                 goto done;
1330                 }                                1330                 }
1331         }                                        1331         }
1332                                                  1332 
1333         /*                                       1333         /*
1334          * Note that the unmount was clean. I    1334          * Note that the unmount was clean. If the unmount was not clean, we
1335          * need to know this to rebuild the s    1335          * need to know this to rebuild the superblock counters from the perag
1336          * headers if we have a filesystem us    1336          * headers if we have a filesystem using non-persistent counters.
1337          */                                      1337          */
1338         if (clean)                               1338         if (clean)
1339                 xfs_set_clean(log->l_mp);        1339                 xfs_set_clean(log->l_mp);
1340                                                  1340 
1341         /*                                       1341         /*
1342          * Make sure that there are no blocks    1342          * Make sure that there are no blocks in front of the head
1343          * with the same cycle number as the     1343          * with the same cycle number as the head.  This can happen
1344          * because we allow multiple outstand    1344          * because we allow multiple outstanding log writes concurrently,
1345          * and the later writes might make it    1345          * and the later writes might make it out before earlier ones.
1346          *                                       1346          *
1347          * We use the lsn from before modifyi    1347          * We use the lsn from before modifying it so that we'll never
1348          * overwrite the unmount record after    1348          * overwrite the unmount record after a clean unmount.
1349          *                                       1349          *
1350          * Do this only if we are going to re    1350          * Do this only if we are going to recover the filesystem
1351          *                                       1351          *
1352          * NOTE: This used to say "if (!reado    1352          * NOTE: This used to say "if (!readonly)"
1353          * However on Linux, we can & do reco    1353          * However on Linux, we can & do recover a read-only filesystem.
1354          * We only skip recovery if NORECOVER    1354          * We only skip recovery if NORECOVERY is specified on mount,
1355          * in which case we would not be here    1355          * in which case we would not be here.
1356          *                                       1356          *
1357          * But... if the -device- itself is r    1357          * But... if the -device- itself is readonly, just skip this.
1358          * We can't recover this device anywa    1358          * We can't recover this device anyway, so it won't matter.
1359          */                                      1359          */
1360         if (!xfs_readonly_buftarg(log->l_targ    1360         if (!xfs_readonly_buftarg(log->l_targ))
1361                 error = xlog_clear_stale_bloc    1361                 error = xlog_clear_stale_blocks(log, tail_lsn);
1362                                                  1362 
1363 done:                                            1363 done:
1364         kvfree(buffer);                          1364         kvfree(buffer);
1365                                                  1365 
1366         if (error)                               1366         if (error)
1367                 xfs_warn(log->l_mp, "failed t    1367                 xfs_warn(log->l_mp, "failed to locate log tail");
1368         return error;                            1368         return error;
1369 }                                                1369 }
1370                                                  1370 
1371 /*                                               1371 /*
1372  * Is the log zeroed at all?                     1372  * Is the log zeroed at all?
1373  *                                               1373  *
1374  * The last binary search should be changed t    1374  * The last binary search should be changed to perform an X block read
1375  * once X becomes small enough.  You can then    1375  * once X becomes small enough.  You can then search linearly through
1376  * the X blocks.  This will cut down on the n    1376  * the X blocks.  This will cut down on the number of reads we need to do.
1377  *                                               1377  *
1378  * If the log is partially zeroed, this routi    1378  * If the log is partially zeroed, this routine will pass back the blkno
1379  * of the first block with cycle number 0.  I    1379  * of the first block with cycle number 0.  It won't have a complete LR
1380  * preceding it.                                 1380  * preceding it.
1381  *                                               1381  *
1382  * Return:                                       1382  * Return:
1383  *      0  => the log is completely written t    1383  *      0  => the log is completely written to
1384  *      1 => use *blk_no as the first block o    1384  *      1 => use *blk_no as the first block of the log
1385  *      <0 => error has occurred                 1385  *      <0 => error has occurred
1386  */                                              1386  */
1387 STATIC int                                       1387 STATIC int
1388 xlog_find_zeroed(                                1388 xlog_find_zeroed(
1389         struct xlog     *log,                    1389         struct xlog     *log,
1390         xfs_daddr_t     *blk_no)                 1390         xfs_daddr_t     *blk_no)
1391 {                                                1391 {
1392         char            *buffer;                 1392         char            *buffer;
1393         char            *offset;                 1393         char            *offset;
1394         uint            first_cycle, last_cyc    1394         uint            first_cycle, last_cycle;
1395         xfs_daddr_t     new_blk, last_blk, st    1395         xfs_daddr_t     new_blk, last_blk, start_blk;
1396         xfs_daddr_t     num_scan_bblks;          1396         xfs_daddr_t     num_scan_bblks;
1397         int             error, log_bbnum = lo    1397         int             error, log_bbnum = log->l_logBBsize;
1398         int             ret = 1;                 1398         int             ret = 1;
1399                                                  1399 
1400         *blk_no = 0;                             1400         *blk_no = 0;
1401                                                  1401 
1402         /* check totally zeroed log */           1402         /* check totally zeroed log */
1403         buffer = xlog_alloc_buffer(log, 1);      1403         buffer = xlog_alloc_buffer(log, 1);
1404         if (!buffer)                             1404         if (!buffer)
1405                 return -ENOMEM;                  1405                 return -ENOMEM;
1406         error = xlog_bread(log, 0, 1, buffer,    1406         error = xlog_bread(log, 0, 1, buffer, &offset);
1407         if (error)                               1407         if (error)
1408                 goto out_free_buffer;            1408                 goto out_free_buffer;
1409                                                  1409 
1410         first_cycle = xlog_get_cycle(offset);    1410         first_cycle = xlog_get_cycle(offset);
1411         if (first_cycle == 0) {         /* co    1411         if (first_cycle == 0) {         /* completely zeroed log */
1412                 *blk_no = 0;                     1412                 *blk_no = 0;
1413                 goto out_free_buffer;            1413                 goto out_free_buffer;
1414         }                                        1414         }
1415                                                  1415 
1416         /* check partially zeroed log */         1416         /* check partially zeroed log */
1417         error = xlog_bread(log, log_bbnum-1,     1417         error = xlog_bread(log, log_bbnum-1, 1, buffer, &offset);
1418         if (error)                               1418         if (error)
1419                 goto out_free_buffer;            1419                 goto out_free_buffer;
1420                                                  1420 
1421         last_cycle = xlog_get_cycle(offset);     1421         last_cycle = xlog_get_cycle(offset);
1422         if (last_cycle != 0) {          /* lo    1422         if (last_cycle != 0) {          /* log completely written to */
1423                 ret = 0;                         1423                 ret = 0;
1424                 goto out_free_buffer;            1424                 goto out_free_buffer;
1425         }                                        1425         }
1426                                                  1426 
1427         /* we have a partially zeroed log */     1427         /* we have a partially zeroed log */
1428         last_blk = log_bbnum-1;                  1428         last_blk = log_bbnum-1;
1429         error = xlog_find_cycle_start(log, bu    1429         error = xlog_find_cycle_start(log, buffer, 0, &last_blk, 0);
1430         if (error)                               1430         if (error)
1431                 goto out_free_buffer;            1431                 goto out_free_buffer;
1432                                                  1432 
1433         /*                                       1433         /*
1434          * Validate the answer.  Because ther    1434          * Validate the answer.  Because there is no way to guarantee that
1435          * the entire log is made up of log r    1435          * the entire log is made up of log records which are the same size,
1436          * we scan over the defined maximum b    1436          * we scan over the defined maximum blocks.  At this point, the maximum
1437          * is not chosen to mean anything spe    1437          * is not chosen to mean anything special.   XXXmiken
1438          */                                      1438          */
1439         num_scan_bblks = XLOG_TOTAL_REC_SHIFT    1439         num_scan_bblks = XLOG_TOTAL_REC_SHIFT(log);
1440         ASSERT(num_scan_bblks <= INT_MAX);       1440         ASSERT(num_scan_bblks <= INT_MAX);
1441                                                  1441 
1442         if (last_blk < num_scan_bblks)           1442         if (last_blk < num_scan_bblks)
1443                 num_scan_bblks = last_blk;       1443                 num_scan_bblks = last_blk;
1444         start_blk = last_blk - num_scan_bblks    1444         start_blk = last_blk - num_scan_bblks;
1445                                                  1445 
1446         /*                                       1446         /*
1447          * We search for any instances of cyc    1447          * We search for any instances of cycle number 0 that occur before
1448          * our current estimate of the head.     1448          * our current estimate of the head.  What we're trying to detect is
1449          *        1 ... | 0 | 1 | 0...           1449          *        1 ... | 0 | 1 | 0...
1450          *                       ^ binary sea    1450          *                       ^ binary search ends here
1451          */                                      1451          */
1452         if ((error = xlog_find_verify_cycle(l    1452         if ((error = xlog_find_verify_cycle(log, start_blk,
1453                                          (int    1453                                          (int)num_scan_bblks, 0, &new_blk)))
1454                 goto out_free_buffer;            1454                 goto out_free_buffer;
1455         if (new_blk != -1)                       1455         if (new_blk != -1)
1456                 last_blk = new_blk;              1456                 last_blk = new_blk;
1457                                                  1457 
1458         /*                                       1458         /*
1459          * Potentially backup over partial lo    1459          * Potentially backup over partial log record write.  We don't need
1460          * to search the end of the log becau    1460          * to search the end of the log because we know it is zero.
1461          */                                      1461          */
1462         error = xlog_find_verify_log_record(l    1462         error = xlog_find_verify_log_record(log, start_blk, &last_blk, 0);
1463         if (error == 1)                          1463         if (error == 1)
1464                 error = -EIO;                    1464                 error = -EIO;
1465         if (error)                               1465         if (error)
1466                 goto out_free_buffer;            1466                 goto out_free_buffer;
1467                                                  1467 
1468         *blk_no = last_blk;                      1468         *blk_no = last_blk;
1469 out_free_buffer:                                 1469 out_free_buffer:
1470         kvfree(buffer);                          1470         kvfree(buffer);
1471         if (error)                               1471         if (error)
1472                 return error;                    1472                 return error;
1473         return ret;                              1473         return ret;
1474 }                                                1474 }
1475                                                  1475 
1476 /*                                               1476 /*
1477  * These are simple subroutines used by xlog_    1477  * These are simple subroutines used by xlog_clear_stale_blocks() below
1478  * to initialize a buffer full of empty log r    1478  * to initialize a buffer full of empty log record headers and write
1479  * them into the log.                            1479  * them into the log.
1480  */                                              1480  */
1481 STATIC void                                      1481 STATIC void
1482 xlog_add_record(                                 1482 xlog_add_record(
1483         struct xlog             *log,            1483         struct xlog             *log,
1484         char                    *buf,            1484         char                    *buf,
1485         int                     cycle,           1485         int                     cycle,
1486         int                     block,           1486         int                     block,
1487         int                     tail_cycle,      1487         int                     tail_cycle,
1488         int                     tail_block)      1488         int                     tail_block)
1489 {                                                1489 {
1490         xlog_rec_header_t       *recp = (xlog    1490         xlog_rec_header_t       *recp = (xlog_rec_header_t *)buf;
1491                                                  1491 
1492         memset(buf, 0, BBSIZE);                  1492         memset(buf, 0, BBSIZE);
1493         recp->h_magicno = cpu_to_be32(XLOG_HE    1493         recp->h_magicno = cpu_to_be32(XLOG_HEADER_MAGIC_NUM);
1494         recp->h_cycle = cpu_to_be32(cycle);      1494         recp->h_cycle = cpu_to_be32(cycle);
1495         recp->h_version = cpu_to_be32(           1495         recp->h_version = cpu_to_be32(
1496                         xfs_has_logv2(log->l_    1496                         xfs_has_logv2(log->l_mp) ? 2 : 1);
1497         recp->h_lsn = cpu_to_be64(xlog_assign    1497         recp->h_lsn = cpu_to_be64(xlog_assign_lsn(cycle, block));
1498         recp->h_tail_lsn = cpu_to_be64(xlog_a    1498         recp->h_tail_lsn = cpu_to_be64(xlog_assign_lsn(tail_cycle, tail_block));
1499         recp->h_fmt = cpu_to_be32(XLOG_FMT);     1499         recp->h_fmt = cpu_to_be32(XLOG_FMT);
1500         memcpy(&recp->h_fs_uuid, &log->l_mp->    1500         memcpy(&recp->h_fs_uuid, &log->l_mp->m_sb.sb_uuid, sizeof(uuid_t));
1501 }                                                1501 }
1502                                                  1502 
1503 STATIC int                                       1503 STATIC int
1504 xlog_write_log_records(                          1504 xlog_write_log_records(
1505         struct xlog     *log,                    1505         struct xlog     *log,
1506         int             cycle,                   1506         int             cycle,
1507         int             start_block,             1507         int             start_block,
1508         int             blocks,                  1508         int             blocks,
1509         int             tail_cycle,              1509         int             tail_cycle,
1510         int             tail_block)              1510         int             tail_block)
1511 {                                                1511 {
1512         char            *offset;                 1512         char            *offset;
1513         char            *buffer;                 1513         char            *buffer;
1514         int             balign, ealign;          1514         int             balign, ealign;
1515         int             sectbb = log->l_sectB    1515         int             sectbb = log->l_sectBBsize;
1516         int             end_block = start_blo    1516         int             end_block = start_block + blocks;
1517         int             bufblks;                 1517         int             bufblks;
1518         int             error = 0;               1518         int             error = 0;
1519         int             i, j = 0;                1519         int             i, j = 0;
1520                                                  1520 
1521         /*                                       1521         /*
1522          * Greedily allocate a buffer big eno    1522          * Greedily allocate a buffer big enough to handle the full
1523          * range of basic blocks to be writte    1523          * range of basic blocks to be written.  If that fails, try
1524          * a smaller size.  We need to be abl    1524          * a smaller size.  We need to be able to write at least a
1525          * log sector, or we're out of luck.     1525          * log sector, or we're out of luck.
1526          */                                      1526          */
1527         bufblks = roundup_pow_of_two(blocks);    1527         bufblks = roundup_pow_of_two(blocks);
1528         while (bufblks > log->l_logBBsize)       1528         while (bufblks > log->l_logBBsize)
1529                 bufblks >>= 1;                   1529                 bufblks >>= 1;
1530         while (!(buffer = xlog_alloc_buffer(l    1530         while (!(buffer = xlog_alloc_buffer(log, bufblks))) {
1531                 bufblks >>= 1;                   1531                 bufblks >>= 1;
1532                 if (bufblks < sectbb)            1532                 if (bufblks < sectbb)
1533                         return -ENOMEM;          1533                         return -ENOMEM;
1534         }                                        1534         }
1535                                                  1535 
1536         /* We may need to do a read at the st    1536         /* We may need to do a read at the start to fill in part of
1537          * the buffer in the starting sector     1537          * the buffer in the starting sector not covered by the first
1538          * write below.                          1538          * write below.
1539          */                                      1539          */
1540         balign = round_down(start_block, sect    1540         balign = round_down(start_block, sectbb);
1541         if (balign != start_block) {             1541         if (balign != start_block) {
1542                 error = xlog_bread_noalign(lo    1542                 error = xlog_bread_noalign(log, start_block, 1, buffer);
1543                 if (error)                       1543                 if (error)
1544                         goto out_free_buffer;    1544                         goto out_free_buffer;
1545                                                  1545 
1546                 j = start_block - balign;        1546                 j = start_block - balign;
1547         }                                        1547         }
1548                                                  1548 
1549         for (i = start_block; i < end_block;     1549         for (i = start_block; i < end_block; i += bufblks) {
1550                 int             bcount, endco    1550                 int             bcount, endcount;
1551                                                  1551 
1552                 bcount = min(bufblks, end_blo    1552                 bcount = min(bufblks, end_block - start_block);
1553                 endcount = bcount - j;           1553                 endcount = bcount - j;
1554                                                  1554 
1555                 /* We may need to do a read a    1555                 /* We may need to do a read at the end to fill in part of
1556                  * the buffer in the final se    1556                  * the buffer in the final sector not covered by the write.
1557                  * If this is the same sector    1557                  * If this is the same sector as the above read, skip it.
1558                  */                              1558                  */
1559                 ealign = round_down(end_block    1559                 ealign = round_down(end_block, sectbb);
1560                 if (j == 0 && (start_block +     1560                 if (j == 0 && (start_block + endcount > ealign)) {
1561                         error = xlog_bread_no    1561                         error = xlog_bread_noalign(log, ealign, sectbb,
1562                                         buffe    1562                                         buffer + BBTOB(ealign - start_block));
1563                         if (error)               1563                         if (error)
1564                                 break;           1564                                 break;
1565                                                  1565 
1566                 }                                1566                 }
1567                                                  1567 
1568                 offset = buffer + xlog_align(    1568                 offset = buffer + xlog_align(log, start_block);
1569                 for (; j < endcount; j++) {      1569                 for (; j < endcount; j++) {
1570                         xlog_add_record(log,     1570                         xlog_add_record(log, offset, cycle, i+j,
1571                                         tail_    1571                                         tail_cycle, tail_block);
1572                         offset += BBSIZE;        1572                         offset += BBSIZE;
1573                 }                                1573                 }
1574                 error = xlog_bwrite(log, star    1574                 error = xlog_bwrite(log, start_block, endcount, buffer);
1575                 if (error)                       1575                 if (error)
1576                         break;                   1576                         break;
1577                 start_block += endcount;         1577                 start_block += endcount;
1578                 j = 0;                           1578                 j = 0;
1579         }                                        1579         }
1580                                                  1580 
1581 out_free_buffer:                                 1581 out_free_buffer:
1582         kvfree(buffer);                          1582         kvfree(buffer);
1583         return error;                            1583         return error;
1584 }                                                1584 }
1585                                                  1585 
1586 /*                                               1586 /*
1587  * This routine is called to blow away any in    1587  * This routine is called to blow away any incomplete log writes out
1588  * in front of the log head.  We do this so t    1588  * in front of the log head.  We do this so that we won't become confused
1589  * if we come up, write only a little bit mor    1589  * if we come up, write only a little bit more, and then crash again.
1590  * If we leave the partial log records out th    1590  * If we leave the partial log records out there, this situation could
1591  * cause us to think those partial writes are    1591  * cause us to think those partial writes are valid blocks since they
1592  * have the current cycle number.  We get rid    1592  * have the current cycle number.  We get rid of them by overwriting them
1593  * with empty log records with the old cycle     1593  * with empty log records with the old cycle number rather than the
1594  * current one.                                  1594  * current one.
1595  *                                               1595  *
1596  * The tail lsn is passed in rather than take    1596  * The tail lsn is passed in rather than taken from
1597  * the log so that we will not write over the    1597  * the log so that we will not write over the unmount record after a
1598  * clean unmount in a 512 block log.  Doing s    1598  * clean unmount in a 512 block log.  Doing so would leave the log without
1599  * any valid log records in it until a new on    1599  * any valid log records in it until a new one was written.  If we crashed
1600  * during that time we would not be able to r    1600  * during that time we would not be able to recover.
1601  */                                              1601  */
1602 STATIC int                                       1602 STATIC int
1603 xlog_clear_stale_blocks(                         1603 xlog_clear_stale_blocks(
1604         struct xlog     *log,                    1604         struct xlog     *log,
1605         xfs_lsn_t       tail_lsn)                1605         xfs_lsn_t       tail_lsn)
1606 {                                                1606 {
1607         int             tail_cycle, head_cycl    1607         int             tail_cycle, head_cycle;
1608         int             tail_block, head_bloc    1608         int             tail_block, head_block;
1609         int             tail_distance, max_di    1609         int             tail_distance, max_distance;
1610         int             distance;                1610         int             distance;
1611         int             error;                   1611         int             error;
1612                                                  1612 
1613         tail_cycle = CYCLE_LSN(tail_lsn);        1613         tail_cycle = CYCLE_LSN(tail_lsn);
1614         tail_block = BLOCK_LSN(tail_lsn);        1614         tail_block = BLOCK_LSN(tail_lsn);
1615         head_cycle = log->l_curr_cycle;          1615         head_cycle = log->l_curr_cycle;
1616         head_block = log->l_curr_block;          1616         head_block = log->l_curr_block;
1617                                                  1617 
1618         /*                                       1618         /*
1619          * Figure out the distance between th    1619          * Figure out the distance between the new head of the log
1620          * and the tail.  We want to write ov    1620          * and the tail.  We want to write over any blocks beyond the
1621          * head that we may have written just    1621          * head that we may have written just before the crash, but
1622          * we don't want to overwrite the tai    1622          * we don't want to overwrite the tail of the log.
1623          */                                      1623          */
1624         if (head_cycle == tail_cycle) {          1624         if (head_cycle == tail_cycle) {
1625                 /*                               1625                 /*
1626                  * The tail is behind the hea    1626                  * The tail is behind the head in the physical log,
1627                  * so the distance from the h    1627                  * so the distance from the head to the tail is the
1628                  * distance from the head to     1628                  * distance from the head to the end of the log plus
1629                  * the distance from the begi    1629                  * the distance from the beginning of the log to the
1630                  * tail.                         1630                  * tail.
1631                  */                              1631                  */
1632                 if (XFS_IS_CORRUPT(log->l_mp,    1632                 if (XFS_IS_CORRUPT(log->l_mp,
1633                                    head_block    1633                                    head_block < tail_block ||
1634                                    head_block    1634                                    head_block >= log->l_logBBsize))
1635                         return -EFSCORRUPTED;    1635                         return -EFSCORRUPTED;
1636                 tail_distance = tail_block +     1636                 tail_distance = tail_block + (log->l_logBBsize - head_block);
1637         } else {                                 1637         } else {
1638                 /*                               1638                 /*
1639                  * The head is behind the tai    1639                  * The head is behind the tail in the physical log,
1640                  * so the distance from the h    1640                  * so the distance from the head to the tail is just
1641                  * the tail block minus the h    1641                  * the tail block minus the head block.
1642                  */                              1642                  */
1643                 if (XFS_IS_CORRUPT(log->l_mp,    1643                 if (XFS_IS_CORRUPT(log->l_mp,
1644                                    head_block    1644                                    head_block >= tail_block ||
1645                                    head_cycle    1645                                    head_cycle != tail_cycle + 1))
1646                         return -EFSCORRUPTED;    1646                         return -EFSCORRUPTED;
1647                 tail_distance = tail_block -     1647                 tail_distance = tail_block - head_block;
1648         }                                        1648         }
1649                                                  1649 
1650         /*                                       1650         /*
1651          * If the head is right up against th    1651          * If the head is right up against the tail, we can't clear
1652          * anything.                             1652          * anything.
1653          */                                      1653          */
1654         if (tail_distance <= 0) {                1654         if (tail_distance <= 0) {
1655                 ASSERT(tail_distance == 0);      1655                 ASSERT(tail_distance == 0);
1656                 return 0;                        1656                 return 0;
1657         }                                        1657         }
1658                                                  1658 
1659         max_distance = XLOG_TOTAL_REC_SHIFT(l    1659         max_distance = XLOG_TOTAL_REC_SHIFT(log);
1660         /*                                       1660         /*
1661          * Take the smaller of the maximum am    1661          * Take the smaller of the maximum amount of outstanding I/O
1662          * we could have and the distance to     1662          * we could have and the distance to the tail to clear out.
1663          * We take the smaller so that we don    1663          * We take the smaller so that we don't overwrite the tail and
1664          * we don't waste all day writing fro    1664          * we don't waste all day writing from the head to the tail
1665          * for no reason.                        1665          * for no reason.
1666          */                                      1666          */
1667         max_distance = min(max_distance, tail    1667         max_distance = min(max_distance, tail_distance);
1668                                                  1668 
1669         if ((head_block + max_distance) <= lo    1669         if ((head_block + max_distance) <= log->l_logBBsize) {
1670                 /*                               1670                 /*
1671                  * We can stomp all the block    1671                  * We can stomp all the blocks we need to without
1672                  * wrapping around the end of    1672                  * wrapping around the end of the log.  Just do it
1673                  * in a single write.  Use th    1673                  * in a single write.  Use the cycle number of the
1674                  * current cycle minus one so    1674                  * current cycle minus one so that the log will look like:
1675                  *     n ... | n - 1 ...         1675                  *     n ... | n - 1 ...
1676                  */                              1676                  */
1677                 error = xlog_write_log_record    1677                 error = xlog_write_log_records(log, (head_cycle - 1),
1678                                 head_block, m    1678                                 head_block, max_distance, tail_cycle,
1679                                 tail_block);     1679                                 tail_block);
1680                 if (error)                       1680                 if (error)
1681                         return error;            1681                         return error;
1682         } else {                                 1682         } else {
1683                 /*                               1683                 /*
1684                  * We need to wrap around the    1684                  * We need to wrap around the end of the physical log in
1685                  * order to clear all the blo    1685                  * order to clear all the blocks.  Do it in two separate
1686                  * I/Os.  The first write sho    1686                  * I/Os.  The first write should be from the head to the
1687                  * end of the physical log, a    1687                  * end of the physical log, and it should use the current
1688                  * cycle number minus one jus    1688                  * cycle number minus one just like above.
1689                  */                              1689                  */
1690                 distance = log->l_logBBsize -    1690                 distance = log->l_logBBsize - head_block;
1691                 error = xlog_write_log_record    1691                 error = xlog_write_log_records(log, (head_cycle - 1),
1692                                 head_block, d    1692                                 head_block, distance, tail_cycle,
1693                                 tail_block);     1693                                 tail_block);
1694                                                  1694 
1695                 if (error)                       1695                 if (error)
1696                         return error;            1696                         return error;
1697                                                  1697 
1698                 /*                               1698                 /*
1699                  * Now write the blocks at th    1699                  * Now write the blocks at the start of the physical log.
1700                  * This writes the remainder     1700                  * This writes the remainder of the blocks we want to clear.
1701                  * It uses the current cycle     1701                  * It uses the current cycle number since we're now on the
1702                  * same cycle as the head so     1702                  * same cycle as the head so that we get:
1703                  *    n ... n ... | n - 1 ...    1703                  *    n ... n ... | n - 1 ...
1704                  *    ^^^^^ blocks we're writ    1704                  *    ^^^^^ blocks we're writing
1705                  */                              1705                  */
1706                 distance = max_distance - (lo    1706                 distance = max_distance - (log->l_logBBsize - head_block);
1707                 error = xlog_write_log_record    1707                 error = xlog_write_log_records(log, head_cycle, 0, distance,
1708                                 tail_cycle, t    1708                                 tail_cycle, tail_block);
1709                 if (error)                       1709                 if (error)
1710                         return error;            1710                         return error;
1711         }                                        1711         }
1712                                                  1712 
1713         return 0;                                1713         return 0;
1714 }                                                1714 }
1715                                                  1715 
1716 /*                                               1716 /*
1717  * Release the recovered intent item in the A    1717  * Release the recovered intent item in the AIL that matches the given intent
1718  * type and intent id.                           1718  * type and intent id.
1719  */                                              1719  */
1720 void                                             1720 void
1721 xlog_recover_release_intent(                     1721 xlog_recover_release_intent(
1722         struct xlog                     *log,    1722         struct xlog                     *log,
1723         unsigned short                  inten    1723         unsigned short                  intent_type,
1724         uint64_t                        inten    1724         uint64_t                        intent_id)
1725 {                                                1725 {
1726         struct xfs_defer_pending        *dfp,    1726         struct xfs_defer_pending        *dfp, *n;
1727                                                  1727 
1728         list_for_each_entry_safe(dfp, n, &log    1728         list_for_each_entry_safe(dfp, n, &log->r_dfops, dfp_list) {
1729                 struct xfs_log_item     *lip     1729                 struct xfs_log_item     *lip = dfp->dfp_intent;
1730                                                  1730 
1731                 if (lip->li_type != intent_ty    1731                 if (lip->li_type != intent_type)
1732                         continue;                1732                         continue;
1733                 if (!lip->li_ops->iop_match(l    1733                 if (!lip->li_ops->iop_match(lip, intent_id))
1734                         continue;                1734                         continue;
1735                                                  1735 
1736                 ASSERT(xlog_item_is_intent(li    1736                 ASSERT(xlog_item_is_intent(lip));
1737                                                  1737 
1738                 xfs_defer_cancel_recovery(log    1738                 xfs_defer_cancel_recovery(log->l_mp, dfp);
1739         }                                        1739         }
1740 }                                                1740 }
1741                                                  1741 
1742 int                                              1742 int
1743 xlog_recover_iget(                               1743 xlog_recover_iget(
1744         struct xfs_mount        *mp,             1744         struct xfs_mount        *mp,
1745         xfs_ino_t               ino,             1745         xfs_ino_t               ino,
1746         struct xfs_inode        **ipp)           1746         struct xfs_inode        **ipp)
1747 {                                                1747 {
1748         int                     error;           1748         int                     error;
1749                                                  1749 
1750         error = xfs_iget(mp, NULL, ino, 0, 0,    1750         error = xfs_iget(mp, NULL, ino, 0, 0, ipp);
1751         if (error)                               1751         if (error)
1752                 return error;                    1752                 return error;
1753                                                  1753 
1754         error = xfs_qm_dqattach(*ipp);           1754         error = xfs_qm_dqattach(*ipp);
1755         if (error) {                             1755         if (error) {
1756                 xfs_irele(*ipp);                 1756                 xfs_irele(*ipp);
1757                 return error;                    1757                 return error;
1758         }                                        1758         }
1759                                                  1759 
1760         if (VFS_I(*ipp)->i_nlink == 0)           1760         if (VFS_I(*ipp)->i_nlink == 0)
1761                 xfs_iflags_set(*ipp, XFS_IREC    1761                 xfs_iflags_set(*ipp, XFS_IRECOVERY);
1762                                                  1762 
1763         return 0;                                1763         return 0;
1764 }                                                1764 }
1765                                                  1765 
1766 /*                                               1766 /*
1767  * Get an inode so that we can recover a log     1767  * Get an inode so that we can recover a log operation.
1768  *                                               1768  *
1769  * Log intent items that target inodes effect    1769  * Log intent items that target inodes effectively contain a file handle.
1770  * Check that the generation number matches t    1770  * Check that the generation number matches the intent item like we do for
1771  * other file handles.  Log intent items defi    1771  * other file handles.  Log intent items defined after this validation weakness
1772  * was identified must use this function.        1772  * was identified must use this function.
1773  */                                              1773  */
1774 int                                              1774 int
1775 xlog_recover_iget_handle(                        1775 xlog_recover_iget_handle(
1776         struct xfs_mount        *mp,             1776         struct xfs_mount        *mp,
1777         xfs_ino_t               ino,             1777         xfs_ino_t               ino,
1778         uint32_t                gen,             1778         uint32_t                gen,
1779         struct xfs_inode        **ipp)           1779         struct xfs_inode        **ipp)
1780 {                                                1780 {
1781         struct xfs_inode        *ip;             1781         struct xfs_inode        *ip;
1782         int                     error;           1782         int                     error;
1783                                                  1783 
1784         error = xlog_recover_iget(mp, ino, &i    1784         error = xlog_recover_iget(mp, ino, &ip);
1785         if (error)                               1785         if (error)
1786                 return error;                    1786                 return error;
1787                                                  1787 
1788         if (VFS_I(ip)->i_generation != gen) {    1788         if (VFS_I(ip)->i_generation != gen) {
1789                 xfs_irele(ip);                   1789                 xfs_irele(ip);
1790                 return -EFSCORRUPTED;            1790                 return -EFSCORRUPTED;
1791         }                                        1791         }
1792                                                  1792 
1793         *ipp = ip;                               1793         *ipp = ip;
1794         return 0;                                1794         return 0;
1795 }                                                1795 }
1796                                                  1796 
1797 /********************************************    1797 /******************************************************************************
1798  *                                               1798  *
1799  *              Log recover routines             1799  *              Log recover routines
1800  *                                               1800  *
1801  ********************************************    1801  ******************************************************************************
1802  */                                              1802  */
1803 static const struct xlog_recover_item_ops *xl    1803 static const struct xlog_recover_item_ops *xlog_recover_item_ops[] = {
1804         &xlog_buf_item_ops,                      1804         &xlog_buf_item_ops,
1805         &xlog_inode_item_ops,                    1805         &xlog_inode_item_ops,
1806         &xlog_dquot_item_ops,                    1806         &xlog_dquot_item_ops,
1807         &xlog_quotaoff_item_ops,                 1807         &xlog_quotaoff_item_ops,
1808         &xlog_icreate_item_ops,                  1808         &xlog_icreate_item_ops,
1809         &xlog_efi_item_ops,                      1809         &xlog_efi_item_ops,
1810         &xlog_efd_item_ops,                      1810         &xlog_efd_item_ops,
1811         &xlog_rui_item_ops,                      1811         &xlog_rui_item_ops,
1812         &xlog_rud_item_ops,                      1812         &xlog_rud_item_ops,
1813         &xlog_cui_item_ops,                      1813         &xlog_cui_item_ops,
1814         &xlog_cud_item_ops,                      1814         &xlog_cud_item_ops,
1815         &xlog_bui_item_ops,                      1815         &xlog_bui_item_ops,
1816         &xlog_bud_item_ops,                      1816         &xlog_bud_item_ops,
1817         &xlog_attri_item_ops,                    1817         &xlog_attri_item_ops,
1818         &xlog_attrd_item_ops,                    1818         &xlog_attrd_item_ops,
1819         &xlog_xmi_item_ops,                      1819         &xlog_xmi_item_ops,
1820         &xlog_xmd_item_ops,                      1820         &xlog_xmd_item_ops,
1821 };                                               1821 };
1822                                                  1822 
1823 static const struct xlog_recover_item_ops *      1823 static const struct xlog_recover_item_ops *
1824 xlog_find_item_ops(                              1824 xlog_find_item_ops(
1825         struct xlog_recover_item                 1825         struct xlog_recover_item                *item)
1826 {                                                1826 {
1827         unsigned int                             1827         unsigned int                            i;
1828                                                  1828 
1829         for (i = 0; i < ARRAY_SIZE(xlog_recov    1829         for (i = 0; i < ARRAY_SIZE(xlog_recover_item_ops); i++)
1830                 if (ITEM_TYPE(item) == xlog_r    1830                 if (ITEM_TYPE(item) == xlog_recover_item_ops[i]->item_type)
1831                         return xlog_recover_i    1831                         return xlog_recover_item_ops[i];
1832                                                  1832 
1833         return NULL;                             1833         return NULL;
1834 }                                                1834 }
1835                                                  1835 
1836 /*                                               1836 /*
1837  * Sort the log items in the transaction.        1837  * Sort the log items in the transaction.
1838  *                                               1838  *
1839  * The ordering constraints are defined by th    1839  * The ordering constraints are defined by the inode allocation and unlink
1840  * behaviour. The rules are:                     1840  * behaviour. The rules are:
1841  *                                               1841  *
1842  *      1. Every item is only logged once in     1842  *      1. Every item is only logged once in a given transaction. Hence it
1843  *         represents the last logged state o    1843  *         represents the last logged state of the item. Hence ordering is
1844  *         dependent on the order in which op    1844  *         dependent on the order in which operations need to be performed so
1845  *         required initial conditions are al    1845  *         required initial conditions are always met.
1846  *                                               1846  *
1847  *      2. Cancelled buffers are recorded in     1847  *      2. Cancelled buffers are recorded in pass 1 in a separate table and
1848  *         there's nothing to replay from the    1848  *         there's nothing to replay from them so we can simply cull them
1849  *         from the transaction. However, we     1849  *         from the transaction. However, we can't do that until after we've
1850  *         replayed all the other items becau    1850  *         replayed all the other items because they may be dependent on the
1851  *         cancelled buffer and replaying the    1851  *         cancelled buffer and replaying the cancelled buffer can remove it
1852  *         form the cancelled buffer table. H    1852  *         form the cancelled buffer table. Hence they have to be done last.
1853  *                                               1853  *
1854  *      3. Inode allocation buffers must be r    1854  *      3. Inode allocation buffers must be replayed before inode items that
1855  *         read the buffer and replay changes    1855  *         read the buffer and replay changes into it. For filesystems using the
1856  *         ICREATE transactions, this means X    1856  *         ICREATE transactions, this means XFS_LI_ICREATE objects need to get
1857  *         treated the same as inode allocati    1857  *         treated the same as inode allocation buffers as they create and
1858  *         initialise the buffers directly.      1858  *         initialise the buffers directly.
1859  *                                               1859  *
1860  *      4. Inode unlink buffers must be repla    1860  *      4. Inode unlink buffers must be replayed after inode items are replayed.
1861  *         This ensures that inodes are compl    1861  *         This ensures that inodes are completely flushed to the inode buffer
1862  *         in a "free" state before we remove    1862  *         in a "free" state before we remove the unlinked inode list pointer.
1863  *                                               1863  *
1864  * Hence the ordering needs to be inode alloc    1864  * Hence the ordering needs to be inode allocation buffers first, inode items
1865  * second, inode unlink buffers third and can    1865  * second, inode unlink buffers third and cancelled buffers last.
1866  *                                               1866  *
1867  * But there's a problem with that - we can't    1867  * But there's a problem with that - we can't tell an inode allocation buffer
1868  * apart from a regular buffer, so we can't s    1868  * apart from a regular buffer, so we can't separate them. We can, however,
1869  * tell an inode unlink buffer from the other    1869  * tell an inode unlink buffer from the others, and so we can separate them out
1870  * from all the other buffers and move them t    1870  * from all the other buffers and move them to last.
1871  *                                               1871  *
1872  * Hence, 4 lists, in order from head to tail    1872  * Hence, 4 lists, in order from head to tail:
1873  *      - buffer_list for all buffers except     1873  *      - buffer_list for all buffers except cancelled/inode unlink buffers
1874  *      - item_list for all non-buffer items     1874  *      - item_list for all non-buffer items
1875  *      - inode_buffer_list for inode unlink     1875  *      - inode_buffer_list for inode unlink buffers
1876  *      - cancel_list for the cancelled buffe    1876  *      - cancel_list for the cancelled buffers
1877  *                                               1877  *
1878  * Note that we add objects to the tail of th    1878  * Note that we add objects to the tail of the lists so that first-to-last
1879  * ordering is preserved within the lists. Ad    1879  * ordering is preserved within the lists. Adding objects to the head of the
1880  * list means when we traverse from the head     1880  * list means when we traverse from the head we walk them in last-to-first
1881  * order. For cancelled buffers and inode unl    1881  * order. For cancelled buffers and inode unlink buffers this doesn't matter,
1882  * but for all other items there may be speci    1882  * but for all other items there may be specific ordering that we need to
1883  * preserve.                                     1883  * preserve.
1884  */                                              1884  */
1885 STATIC int                                       1885 STATIC int
1886 xlog_recover_reorder_trans(                      1886 xlog_recover_reorder_trans(
1887         struct xlog             *log,            1887         struct xlog             *log,
1888         struct xlog_recover     *trans,          1888         struct xlog_recover     *trans,
1889         int                     pass)            1889         int                     pass)
1890 {                                                1890 {
1891         struct xlog_recover_item *item, *n;      1891         struct xlog_recover_item *item, *n;
1892         int                     error = 0;       1892         int                     error = 0;
1893         LIST_HEAD(sort_list);                    1893         LIST_HEAD(sort_list);
1894         LIST_HEAD(cancel_list);                  1894         LIST_HEAD(cancel_list);
1895         LIST_HEAD(buffer_list);                  1895         LIST_HEAD(buffer_list);
1896         LIST_HEAD(inode_buffer_list);            1896         LIST_HEAD(inode_buffer_list);
1897         LIST_HEAD(item_list);                    1897         LIST_HEAD(item_list);
1898                                                  1898 
1899         list_splice_init(&trans->r_itemq, &so    1899         list_splice_init(&trans->r_itemq, &sort_list);
1900         list_for_each_entry_safe(item, n, &so    1900         list_for_each_entry_safe(item, n, &sort_list, ri_list) {
1901                 enum xlog_recover_reorder        1901                 enum xlog_recover_reorder       fate = XLOG_REORDER_ITEM_LIST;
1902                                                  1902 
1903                 item->ri_ops = xlog_find_item    1903                 item->ri_ops = xlog_find_item_ops(item);
1904                 if (!item->ri_ops) {             1904                 if (!item->ri_ops) {
1905                         xfs_warn(log->l_mp,      1905                         xfs_warn(log->l_mp,
1906                                 "%s: unrecogn    1906                                 "%s: unrecognized type of log operation (%d)",
1907                                 __func__, ITE    1907                                 __func__, ITEM_TYPE(item));
1908                         ASSERT(0);               1908                         ASSERT(0);
1909                         /*                       1909                         /*
1910                          * return the remaini    1910                          * return the remaining items back to the transaction
1911                          * item list so they     1911                          * item list so they can be freed in caller.
1912                          */                      1912                          */
1913                         if (!list_empty(&sort    1913                         if (!list_empty(&sort_list))
1914                                 list_splice_i    1914                                 list_splice_init(&sort_list, &trans->r_itemq);
1915                         error = -EFSCORRUPTED    1915                         error = -EFSCORRUPTED;
1916                         break;                   1916                         break;
1917                 }                                1917                 }
1918                                                  1918 
1919                 if (item->ri_ops->reorder)       1919                 if (item->ri_ops->reorder)
1920                         fate = item->ri_ops->    1920                         fate = item->ri_ops->reorder(item);
1921                                                  1921 
1922                 switch (fate) {                  1922                 switch (fate) {
1923                 case XLOG_REORDER_BUFFER_LIST    1923                 case XLOG_REORDER_BUFFER_LIST:
1924                         list_move_tail(&item-    1924                         list_move_tail(&item->ri_list, &buffer_list);
1925                         break;                   1925                         break;
1926                 case XLOG_REORDER_CANCEL_LIST    1926                 case XLOG_REORDER_CANCEL_LIST:
1927                         trace_xfs_log_recover    1927                         trace_xfs_log_recover_item_reorder_head(log,
1928                                         trans    1928                                         trans, item, pass);
1929                         list_move(&item->ri_l    1929                         list_move(&item->ri_list, &cancel_list);
1930                         break;                   1930                         break;
1931                 case XLOG_REORDER_INODE_BUFFE    1931                 case XLOG_REORDER_INODE_BUFFER_LIST:
1932                         list_move(&item->ri_l    1932                         list_move(&item->ri_list, &inode_buffer_list);
1933                         break;                   1933                         break;
1934                 case XLOG_REORDER_ITEM_LIST:     1934                 case XLOG_REORDER_ITEM_LIST:
1935                         trace_xfs_log_recover    1935                         trace_xfs_log_recover_item_reorder_tail(log,
1936                                                  1936                                                         trans, item, pass);
1937                         list_move_tail(&item-    1937                         list_move_tail(&item->ri_list, &item_list);
1938                         break;                   1938                         break;
1939                 }                                1939                 }
1940         }                                        1940         }
1941                                                  1941 
1942         ASSERT(list_empty(&sort_list));          1942         ASSERT(list_empty(&sort_list));
1943         if (!list_empty(&buffer_list))           1943         if (!list_empty(&buffer_list))
1944                 list_splice(&buffer_list, &tr    1944                 list_splice(&buffer_list, &trans->r_itemq);
1945         if (!list_empty(&item_list))             1945         if (!list_empty(&item_list))
1946                 list_splice_tail(&item_list,     1946                 list_splice_tail(&item_list, &trans->r_itemq);
1947         if (!list_empty(&inode_buffer_list))     1947         if (!list_empty(&inode_buffer_list))
1948                 list_splice_tail(&inode_buffe    1948                 list_splice_tail(&inode_buffer_list, &trans->r_itemq);
1949         if (!list_empty(&cancel_list))           1949         if (!list_empty(&cancel_list))
1950                 list_splice_tail(&cancel_list    1950                 list_splice_tail(&cancel_list, &trans->r_itemq);
1951         return error;                            1951         return error;
1952 }                                                1952 }
1953                                                  1953 
1954 void                                             1954 void
1955 xlog_buf_readahead(                              1955 xlog_buf_readahead(
1956         struct xlog             *log,            1956         struct xlog             *log,
1957         xfs_daddr_t             blkno,           1957         xfs_daddr_t             blkno,
1958         uint                    len,             1958         uint                    len,
1959         const struct xfs_buf_ops *ops)           1959         const struct xfs_buf_ops *ops)
1960 {                                                1960 {
1961         if (!xlog_is_buffer_cancelled(log, bl    1961         if (!xlog_is_buffer_cancelled(log, blkno, len))
1962                 xfs_buf_readahead(log->l_mp->    1962                 xfs_buf_readahead(log->l_mp->m_ddev_targp, blkno, len, ops);
1963 }                                                1963 }
1964                                                  1964 
1965 /*                                               1965 /*
1966  * Create a deferred work structure for resum    1966  * Create a deferred work structure for resuming and tracking the progress of a
1967  * log intent item that was found during reco    1967  * log intent item that was found during recovery.
1968  */                                              1968  */
1969 void                                             1969 void
1970 xlog_recover_intent_item(                        1970 xlog_recover_intent_item(
1971         struct xlog                     *log,    1971         struct xlog                     *log,
1972         struct xfs_log_item             *lip,    1972         struct xfs_log_item             *lip,
1973         xfs_lsn_t                       lsn,     1973         xfs_lsn_t                       lsn,
1974         const struct xfs_defer_op_type  *ops)    1974         const struct xfs_defer_op_type  *ops)
1975 {                                                1975 {
1976         ASSERT(xlog_item_is_intent(lip));        1976         ASSERT(xlog_item_is_intent(lip));
1977                                                  1977 
1978         xfs_defer_start_recovery(lip, &log->r    1978         xfs_defer_start_recovery(lip, &log->r_dfops, ops);
1979                                                  1979 
1980         /*                                       1980         /*
1981          * Insert the intent into the AIL dir    1981          * Insert the intent into the AIL directly and drop one reference so
1982          * that finishing or canceling the wo    1982          * that finishing or canceling the work will drop the other.
1983          */                                      1983          */
1984         xfs_trans_ail_insert(log->l_ailp, lip    1984         xfs_trans_ail_insert(log->l_ailp, lip, lsn);
1985         lip->li_ops->iop_unpin(lip, 0);          1985         lip->li_ops->iop_unpin(lip, 0);
1986 }                                                1986 }
1987                                                  1987 
1988 STATIC int                                       1988 STATIC int
1989 xlog_recover_items_pass2(                        1989 xlog_recover_items_pass2(
1990         struct xlog                     *log,    1990         struct xlog                     *log,
1991         struct xlog_recover             *tran    1991         struct xlog_recover             *trans,
1992         struct list_head                *buff    1992         struct list_head                *buffer_list,
1993         struct list_head                *item    1993         struct list_head                *item_list)
1994 {                                                1994 {
1995         struct xlog_recover_item        *item    1995         struct xlog_recover_item        *item;
1996         int                             error    1996         int                             error = 0;
1997                                                  1997 
1998         list_for_each_entry(item, item_list,     1998         list_for_each_entry(item, item_list, ri_list) {
1999                 trace_xfs_log_recover_item_re    1999                 trace_xfs_log_recover_item_recover(log, trans, item,
2000                                 XLOG_RECOVER_    2000                                 XLOG_RECOVER_PASS2);
2001                                                  2001 
2002                 if (item->ri_ops->commit_pass    2002                 if (item->ri_ops->commit_pass2)
2003                         error = item->ri_ops-    2003                         error = item->ri_ops->commit_pass2(log, buffer_list,
2004                                         item,    2004                                         item, trans->r_lsn);
2005                 if (error)                       2005                 if (error)
2006                         return error;            2006                         return error;
2007         }                                        2007         }
2008                                                  2008 
2009         return error;                            2009         return error;
2010 }                                                2010 }
2011                                                  2011 
2012 /*                                               2012 /*
2013  * Perform the transaction.                      2013  * Perform the transaction.
2014  *                                               2014  *
2015  * If the transaction modifies a buffer or in    2015  * If the transaction modifies a buffer or inode, do it now.  Otherwise,
2016  * EFIs and EFDs get queued up by adding entr    2016  * EFIs and EFDs get queued up by adding entries into the AIL for them.
2017  */                                              2017  */
2018 STATIC int                                       2018 STATIC int
2019 xlog_recover_commit_trans(                       2019 xlog_recover_commit_trans(
2020         struct xlog             *log,            2020         struct xlog             *log,
2021         struct xlog_recover     *trans,          2021         struct xlog_recover     *trans,
2022         int                     pass,            2022         int                     pass,
2023         struct list_head        *buffer_list)    2023         struct list_head        *buffer_list)
2024 {                                                2024 {
2025         int                             error    2025         int                             error = 0;
2026         int                             items    2026         int                             items_queued = 0;
2027         struct xlog_recover_item        *item    2027         struct xlog_recover_item        *item;
2028         struct xlog_recover_item        *next    2028         struct xlog_recover_item        *next;
2029         LIST_HEAD                       (ra_l    2029         LIST_HEAD                       (ra_list);
2030         LIST_HEAD                       (done    2030         LIST_HEAD                       (done_list);
2031                                                  2031 
2032         #define XLOG_RECOVER_COMMIT_QUEUE_MAX    2032         #define XLOG_RECOVER_COMMIT_QUEUE_MAX 100
2033                                                  2033 
2034         hlist_del_init(&trans->r_list);          2034         hlist_del_init(&trans->r_list);
2035                                                  2035 
2036         error = xlog_recover_reorder_trans(lo    2036         error = xlog_recover_reorder_trans(log, trans, pass);
2037         if (error)                               2037         if (error)
2038                 return error;                    2038                 return error;
2039                                                  2039 
2040         list_for_each_entry_safe(item, next,     2040         list_for_each_entry_safe(item, next, &trans->r_itemq, ri_list) {
2041                 trace_xfs_log_recover_item_re    2041                 trace_xfs_log_recover_item_recover(log, trans, item, pass);
2042                                                  2042 
2043                 switch (pass) {                  2043                 switch (pass) {
2044                 case XLOG_RECOVER_PASS1:         2044                 case XLOG_RECOVER_PASS1:
2045                         if (item->ri_ops->com    2045                         if (item->ri_ops->commit_pass1)
2046                                 error = item-    2046                                 error = item->ri_ops->commit_pass1(log, item);
2047                         break;                   2047                         break;
2048                 case XLOG_RECOVER_PASS2:         2048                 case XLOG_RECOVER_PASS2:
2049                         if (item->ri_ops->ra_    2049                         if (item->ri_ops->ra_pass2)
2050                                 item->ri_ops-    2050                                 item->ri_ops->ra_pass2(log, item);
2051                         list_move_tail(&item-    2051                         list_move_tail(&item->ri_list, &ra_list);
2052                         items_queued++;          2052                         items_queued++;
2053                         if (items_queued >= X    2053                         if (items_queued >= XLOG_RECOVER_COMMIT_QUEUE_MAX) {
2054                                 error = xlog_    2054                                 error = xlog_recover_items_pass2(log, trans,
2055                                                  2055                                                 buffer_list, &ra_list);
2056                                 list_splice_t    2056                                 list_splice_tail_init(&ra_list, &done_list);
2057                                 items_queued     2057                                 items_queued = 0;
2058                         }                        2058                         }
2059                                                  2059 
2060                         break;                   2060                         break;
2061                 default:                         2061                 default:
2062                         ASSERT(0);               2062                         ASSERT(0);
2063                 }                                2063                 }
2064                                                  2064 
2065                 if (error)                       2065                 if (error)
2066                         goto out;                2066                         goto out;
2067         }                                        2067         }
2068                                                  2068 
2069 out:                                             2069 out:
2070         if (!list_empty(&ra_list)) {             2070         if (!list_empty(&ra_list)) {
2071                 if (!error)                      2071                 if (!error)
2072                         error = xlog_recover_    2072                         error = xlog_recover_items_pass2(log, trans,
2073                                         buffe    2073                                         buffer_list, &ra_list);
2074                 list_splice_tail_init(&ra_lis    2074                 list_splice_tail_init(&ra_list, &done_list);
2075         }                                        2075         }
2076                                                  2076 
2077         if (!list_empty(&done_list))             2077         if (!list_empty(&done_list))
2078                 list_splice_init(&done_list,     2078                 list_splice_init(&done_list, &trans->r_itemq);
2079                                                  2079 
2080         return error;                            2080         return error;
2081 }                                                2081 }
2082                                                  2082 
2083 STATIC void                                      2083 STATIC void
2084 xlog_recover_add_item(                           2084 xlog_recover_add_item(
2085         struct list_head        *head)           2085         struct list_head        *head)
2086 {                                                2086 {
2087         struct xlog_recover_item *item;          2087         struct xlog_recover_item *item;
2088                                                  2088 
2089         item = kzalloc(sizeof(struct xlog_rec    2089         item = kzalloc(sizeof(struct xlog_recover_item),
2090                         GFP_KERNEL | __GFP_NO    2090                         GFP_KERNEL | __GFP_NOFAIL);
2091         INIT_LIST_HEAD(&item->ri_list);          2091         INIT_LIST_HEAD(&item->ri_list);
2092         list_add_tail(&item->ri_list, head);     2092         list_add_tail(&item->ri_list, head);
2093 }                                                2093 }
2094                                                  2094 
2095 STATIC int                                       2095 STATIC int
2096 xlog_recover_add_to_cont_trans(                  2096 xlog_recover_add_to_cont_trans(
2097         struct xlog             *log,            2097         struct xlog             *log,
2098         struct xlog_recover     *trans,          2098         struct xlog_recover     *trans,
2099         char                    *dp,             2099         char                    *dp,
2100         int                     len)             2100         int                     len)
2101 {                                                2101 {
2102         struct xlog_recover_item *item;          2102         struct xlog_recover_item *item;
2103         char                    *ptr, *old_pt    2103         char                    *ptr, *old_ptr;
2104         int                     old_len;         2104         int                     old_len;
2105                                                  2105 
2106         /*                                       2106         /*
2107          * If the transaction is empty, the h    2107          * If the transaction is empty, the header was split across this and the
2108          * previous record. Copy the rest of     2108          * previous record. Copy the rest of the header.
2109          */                                      2109          */
2110         if (list_empty(&trans->r_itemq)) {       2110         if (list_empty(&trans->r_itemq)) {
2111                 ASSERT(len <= sizeof(struct x    2111                 ASSERT(len <= sizeof(struct xfs_trans_header));
2112                 if (len > sizeof(struct xfs_t    2112                 if (len > sizeof(struct xfs_trans_header)) {
2113                         xfs_warn(log->l_mp, "    2113                         xfs_warn(log->l_mp, "%s: bad header length", __func__);
2114                         return -EFSCORRUPTED;    2114                         return -EFSCORRUPTED;
2115                 }                                2115                 }
2116                                                  2116 
2117                 xlog_recover_add_item(&trans-    2117                 xlog_recover_add_item(&trans->r_itemq);
2118                 ptr = (char *)&trans->r_thead    2118                 ptr = (char *)&trans->r_theader +
2119                                 sizeof(struct    2119                                 sizeof(struct xfs_trans_header) - len;
2120                 memcpy(ptr, dp, len);            2120                 memcpy(ptr, dp, len);
2121                 return 0;                        2121                 return 0;
2122         }                                        2122         }
2123                                                  2123 
2124         /* take the tail entry */                2124         /* take the tail entry */
2125         item = list_entry(trans->r_itemq.prev    2125         item = list_entry(trans->r_itemq.prev, struct xlog_recover_item,
2126                           ri_list);              2126                           ri_list);
2127                                                  2127 
2128         old_ptr = item->ri_buf[item->ri_cnt-1    2128         old_ptr = item->ri_buf[item->ri_cnt-1].i_addr;
2129         old_len = item->ri_buf[item->ri_cnt-1    2129         old_len = item->ri_buf[item->ri_cnt-1].i_len;
2130                                                  2130 
2131         ptr = kvrealloc(old_ptr, len + old_le    2131         ptr = kvrealloc(old_ptr, len + old_len, GFP_KERNEL);
2132         if (!ptr)                                2132         if (!ptr)
2133                 return -ENOMEM;                  2133                 return -ENOMEM;
2134         memcpy(&ptr[old_len], dp, len);          2134         memcpy(&ptr[old_len], dp, len);
2135         item->ri_buf[item->ri_cnt-1].i_len +=    2135         item->ri_buf[item->ri_cnt-1].i_len += len;
2136         item->ri_buf[item->ri_cnt-1].i_addr =    2136         item->ri_buf[item->ri_cnt-1].i_addr = ptr;
2137         trace_xfs_log_recover_item_add_cont(l    2137         trace_xfs_log_recover_item_add_cont(log, trans, item, 0);
2138         return 0;                                2138         return 0;
2139 }                                                2139 }
2140                                                  2140 
2141 /*                                               2141 /*
2142  * The next region to add is the start of a n    2142  * The next region to add is the start of a new region.  It could be
2143  * a whole region or it could be the first pa    2143  * a whole region or it could be the first part of a new region.  Because
2144  * of this, the assumption here is that the t    2144  * of this, the assumption here is that the type and size fields of all
2145  * format structures fit into the first 32 bi    2145  * format structures fit into the first 32 bits of the structure.
2146  *                                               2146  *
2147  * This works because all regions must be 32     2147  * This works because all regions must be 32 bit aligned.  Therefore, we
2148  * either have both fields or we have neither    2148  * either have both fields or we have neither field.  In the case we have
2149  * neither field, the data part of the region    2149  * neither field, the data part of the region is zero length.  We only have
2150  * a log_op_header and can throw away the hea    2150  * a log_op_header and can throw away the header since a new one will appear
2151  * later.  If we have at least 4 bytes, then     2151  * later.  If we have at least 4 bytes, then we can determine how many regions
2152  * will appear in the current log item.          2152  * will appear in the current log item.
2153  */                                              2153  */
2154 STATIC int                                       2154 STATIC int
2155 xlog_recover_add_to_trans(                       2155 xlog_recover_add_to_trans(
2156         struct xlog             *log,            2156         struct xlog             *log,
2157         struct xlog_recover     *trans,          2157         struct xlog_recover     *trans,
2158         char                    *dp,             2158         char                    *dp,
2159         int                     len)             2159         int                     len)
2160 {                                                2160 {
2161         struct xfs_inode_log_format     *in_f    2161         struct xfs_inode_log_format     *in_f;                  /* any will do */
2162         struct xlog_recover_item *item;          2162         struct xlog_recover_item *item;
2163         char                    *ptr;            2163         char                    *ptr;
2164                                                  2164 
2165         if (!len)                                2165         if (!len)
2166                 return 0;                        2166                 return 0;
2167         if (list_empty(&trans->r_itemq)) {       2167         if (list_empty(&trans->r_itemq)) {
2168                 /* we need to catch log corru    2168                 /* we need to catch log corruptions here */
2169                 if (*(uint *)dp != XFS_TRANS_    2169                 if (*(uint *)dp != XFS_TRANS_HEADER_MAGIC) {
2170                         xfs_warn(log->l_mp, "    2170                         xfs_warn(log->l_mp, "%s: bad header magic number",
2171                                 __func__);       2171                                 __func__);
2172                         ASSERT(0);               2172                         ASSERT(0);
2173                         return -EFSCORRUPTED;    2173                         return -EFSCORRUPTED;
2174                 }                                2174                 }
2175                                                  2175 
2176                 if (len > sizeof(struct xfs_t    2176                 if (len > sizeof(struct xfs_trans_header)) {
2177                         xfs_warn(log->l_mp, "    2177                         xfs_warn(log->l_mp, "%s: bad header length", __func__);
2178                         ASSERT(0);               2178                         ASSERT(0);
2179                         return -EFSCORRUPTED;    2179                         return -EFSCORRUPTED;
2180                 }                                2180                 }
2181                                                  2181 
2182                 /*                               2182                 /*
2183                  * The transaction header can    2183                  * The transaction header can be arbitrarily split across op
2184                  * records. If we don't have     2184                  * records. If we don't have the whole thing here, copy what we
2185                  * do have and handle the res    2185                  * do have and handle the rest in the next record.
2186                  */                              2186                  */
2187                 if (len == sizeof(struct xfs_    2187                 if (len == sizeof(struct xfs_trans_header))
2188                         xlog_recover_add_item    2188                         xlog_recover_add_item(&trans->r_itemq);
2189                 memcpy(&trans->r_theader, dp,    2189                 memcpy(&trans->r_theader, dp, len);
2190                 return 0;                        2190                 return 0;
2191         }                                        2191         }
2192                                                  2192 
2193         ptr = xlog_kvmalloc(len);                2193         ptr = xlog_kvmalloc(len);
2194         memcpy(ptr, dp, len);                    2194         memcpy(ptr, dp, len);
2195         in_f = (struct xfs_inode_log_format *    2195         in_f = (struct xfs_inode_log_format *)ptr;
2196                                                  2196 
2197         /* take the tail entry */                2197         /* take the tail entry */
2198         item = list_entry(trans->r_itemq.prev    2198         item = list_entry(trans->r_itemq.prev, struct xlog_recover_item,
2199                           ri_list);              2199                           ri_list);
2200         if (item->ri_total != 0 &&               2200         if (item->ri_total != 0 &&
2201              item->ri_total == item->ri_cnt)     2201              item->ri_total == item->ri_cnt) {
2202                 /* tail item is in use, get a    2202                 /* tail item is in use, get a new one */
2203                 xlog_recover_add_item(&trans-    2203                 xlog_recover_add_item(&trans->r_itemq);
2204                 item = list_entry(trans->r_it    2204                 item = list_entry(trans->r_itemq.prev,
2205                                         struc    2205                                         struct xlog_recover_item, ri_list);
2206         }                                        2206         }
2207                                                  2207 
2208         if (item->ri_total == 0) {               2208         if (item->ri_total == 0) {              /* first region to be added */
2209                 if (in_f->ilf_size == 0 ||       2209                 if (in_f->ilf_size == 0 ||
2210                     in_f->ilf_size > XLOG_MAX    2210                     in_f->ilf_size > XLOG_MAX_REGIONS_IN_ITEM) {
2211                         xfs_warn(log->l_mp,      2211                         xfs_warn(log->l_mp,
2212                 "bad number of regions (%d) i    2212                 "bad number of regions (%d) in inode log format",
2213                                   in_f->ilf_s    2213                                   in_f->ilf_size);
2214                         ASSERT(0);               2214                         ASSERT(0);
2215                         kvfree(ptr);             2215                         kvfree(ptr);
2216                         return -EFSCORRUPTED;    2216                         return -EFSCORRUPTED;
2217                 }                                2217                 }
2218                                                  2218 
2219                 item->ri_total = in_f->ilf_si    2219                 item->ri_total = in_f->ilf_size;
2220                 item->ri_buf = kzalloc(item->    2220                 item->ri_buf = kzalloc(item->ri_total * sizeof(xfs_log_iovec_t),
2221                                 GFP_KERNEL |     2221                                 GFP_KERNEL | __GFP_NOFAIL);
2222         }                                        2222         }
2223                                                  2223 
2224         if (item->ri_total <= item->ri_cnt) {    2224         if (item->ri_total <= item->ri_cnt) {
2225                 xfs_warn(log->l_mp,              2225                 xfs_warn(log->l_mp,
2226         "log item region count (%d) overflowe    2226         "log item region count (%d) overflowed size (%d)",
2227                                 item->ri_cnt,    2227                                 item->ri_cnt, item->ri_total);
2228                 ASSERT(0);                       2228                 ASSERT(0);
2229                 kvfree(ptr);                     2229                 kvfree(ptr);
2230                 return -EFSCORRUPTED;            2230                 return -EFSCORRUPTED;
2231         }                                        2231         }
2232                                                  2232 
2233         /* Description region is ri_buf[0] */    2233         /* Description region is ri_buf[0] */
2234         item->ri_buf[item->ri_cnt].i_addr = p    2234         item->ri_buf[item->ri_cnt].i_addr = ptr;
2235         item->ri_buf[item->ri_cnt].i_len  = l    2235         item->ri_buf[item->ri_cnt].i_len  = len;
2236         item->ri_cnt++;                          2236         item->ri_cnt++;
2237         trace_xfs_log_recover_item_add(log, t    2237         trace_xfs_log_recover_item_add(log, trans, item, 0);
2238         return 0;                                2238         return 0;
2239 }                                                2239 }
2240                                                  2240 
2241 /*                                               2241 /*
2242  * Free up any resources allocated by the tra    2242  * Free up any resources allocated by the transaction
2243  *                                               2243  *
2244  * Remember that EFIs, EFDs, and IUNLINKs are    2244  * Remember that EFIs, EFDs, and IUNLINKs are handled later.
2245  */                                              2245  */
2246 STATIC void                                      2246 STATIC void
2247 xlog_recover_free_trans(                         2247 xlog_recover_free_trans(
2248         struct xlog_recover     *trans)          2248         struct xlog_recover     *trans)
2249 {                                                2249 {
2250         struct xlog_recover_item *item, *n;      2250         struct xlog_recover_item *item, *n;
2251         int                     i;               2251         int                     i;
2252                                                  2252 
2253         hlist_del_init(&trans->r_list);          2253         hlist_del_init(&trans->r_list);
2254                                                  2254 
2255         list_for_each_entry_safe(item, n, &tr    2255         list_for_each_entry_safe(item, n, &trans->r_itemq, ri_list) {
2256                 /* Free the regions in the it    2256                 /* Free the regions in the item. */
2257                 list_del(&item->ri_list);        2257                 list_del(&item->ri_list);
2258                 for (i = 0; i < item->ri_cnt;    2258                 for (i = 0; i < item->ri_cnt; i++)
2259                         kvfree(item->ri_buf[i    2259                         kvfree(item->ri_buf[i].i_addr);
2260                 /* Free the item itself */       2260                 /* Free the item itself */
2261                 kfree(item->ri_buf);             2261                 kfree(item->ri_buf);
2262                 kfree(item);                     2262                 kfree(item);
2263         }                                        2263         }
2264         /* Free the transaction recover struc    2264         /* Free the transaction recover structure */
2265         kfree(trans);                            2265         kfree(trans);
2266 }                                                2266 }
2267                                                  2267 
2268 /*                                               2268 /*
2269  * On error or completion, trans is freed.       2269  * On error or completion, trans is freed.
2270  */                                              2270  */
2271 STATIC int                                       2271 STATIC int
2272 xlog_recovery_process_trans(                     2272 xlog_recovery_process_trans(
2273         struct xlog             *log,            2273         struct xlog             *log,
2274         struct xlog_recover     *trans,          2274         struct xlog_recover     *trans,
2275         char                    *dp,             2275         char                    *dp,
2276         unsigned int            len,             2276         unsigned int            len,
2277         unsigned int            flags,           2277         unsigned int            flags,
2278         int                     pass,            2278         int                     pass,
2279         struct list_head        *buffer_list)    2279         struct list_head        *buffer_list)
2280 {                                                2280 {
2281         int                     error = 0;       2281         int                     error = 0;
2282         bool                    freeit = fals    2282         bool                    freeit = false;
2283                                                  2283 
2284         /* mask off ophdr transaction contain    2284         /* mask off ophdr transaction container flags */
2285         flags &= ~XLOG_END_TRANS;                2285         flags &= ~XLOG_END_TRANS;
2286         if (flags & XLOG_WAS_CONT_TRANS)         2286         if (flags & XLOG_WAS_CONT_TRANS)
2287                 flags &= ~XLOG_CONTINUE_TRANS    2287                 flags &= ~XLOG_CONTINUE_TRANS;
2288                                                  2288 
2289         /*                                       2289         /*
2290          * Callees must not free the trans st    2290          * Callees must not free the trans structure. We'll decide if we need to
2291          * free it or not based on the operat    2291          * free it or not based on the operation being done and it's result.
2292          */                                      2292          */
2293         switch (flags) {                         2293         switch (flags) {
2294         /* expected flag values */               2294         /* expected flag values */
2295         case 0:                                  2295         case 0:
2296         case XLOG_CONTINUE_TRANS:                2296         case XLOG_CONTINUE_TRANS:
2297                 error = xlog_recover_add_to_t    2297                 error = xlog_recover_add_to_trans(log, trans, dp, len);
2298                 break;                           2298                 break;
2299         case XLOG_WAS_CONT_TRANS:                2299         case XLOG_WAS_CONT_TRANS:
2300                 error = xlog_recover_add_to_c    2300                 error = xlog_recover_add_to_cont_trans(log, trans, dp, len);
2301                 break;                           2301                 break;
2302         case XLOG_COMMIT_TRANS:                  2302         case XLOG_COMMIT_TRANS:
2303                 error = xlog_recover_commit_t    2303                 error = xlog_recover_commit_trans(log, trans, pass,
2304                                                  2304                                                   buffer_list);
2305                 /* success or fail, we are no    2305                 /* success or fail, we are now done with this transaction. */
2306                 freeit = true;                   2306                 freeit = true;
2307                 break;                           2307                 break;
2308                                                  2308 
2309         /* unexpected flag values */             2309         /* unexpected flag values */
2310         case XLOG_UNMOUNT_TRANS:                 2310         case XLOG_UNMOUNT_TRANS:
2311                 /* just skip trans */            2311                 /* just skip trans */
2312                 xfs_warn(log->l_mp, "%s: Unmo    2312                 xfs_warn(log->l_mp, "%s: Unmount LR", __func__);
2313                 freeit = true;                   2313                 freeit = true;
2314                 break;                           2314                 break;
2315         case XLOG_START_TRANS:                   2315         case XLOG_START_TRANS:
2316         default:                                 2316         default:
2317                 xfs_warn(log->l_mp, "%s: bad     2317                 xfs_warn(log->l_mp, "%s: bad flag 0x%x", __func__, flags);
2318                 ASSERT(0);                       2318                 ASSERT(0);
2319                 error = -EFSCORRUPTED;           2319                 error = -EFSCORRUPTED;
2320                 break;                           2320                 break;
2321         }                                        2321         }
2322         if (error || freeit)                     2322         if (error || freeit)
2323                 xlog_recover_free_trans(trans    2323                 xlog_recover_free_trans(trans);
2324         return error;                            2324         return error;
2325 }                                                2325 }
2326                                                  2326 
2327 /*                                               2327 /*
2328  * Lookup the transaction recovery structure     2328  * Lookup the transaction recovery structure associated with the ID in the
2329  * current ophdr. If the transaction doesn't     2329  * current ophdr. If the transaction doesn't exist and the start flag is set in
2330  * the ophdr, then allocate a new transaction    2330  * the ophdr, then allocate a new transaction for future ID matches to find.
2331  * Either way, return what we found during th    2331  * Either way, return what we found during the lookup - an existing transaction
2332  * or nothing.                                   2332  * or nothing.
2333  */                                              2333  */
2334 STATIC struct xlog_recover *                     2334 STATIC struct xlog_recover *
2335 xlog_recover_ophdr_to_trans(                     2335 xlog_recover_ophdr_to_trans(
2336         struct hlist_head       rhash[],         2336         struct hlist_head       rhash[],
2337         struct xlog_rec_header  *rhead,          2337         struct xlog_rec_header  *rhead,
2338         struct xlog_op_header   *ohead)          2338         struct xlog_op_header   *ohead)
2339 {                                                2339 {
2340         struct xlog_recover     *trans;          2340         struct xlog_recover     *trans;
2341         xlog_tid_t              tid;             2341         xlog_tid_t              tid;
2342         struct hlist_head       *rhp;            2342         struct hlist_head       *rhp;
2343                                                  2343 
2344         tid = be32_to_cpu(ohead->oh_tid);        2344         tid = be32_to_cpu(ohead->oh_tid);
2345         rhp = &rhash[XLOG_RHASH(tid)];           2345         rhp = &rhash[XLOG_RHASH(tid)];
2346         hlist_for_each_entry(trans, rhp, r_li    2346         hlist_for_each_entry(trans, rhp, r_list) {
2347                 if (trans->r_log_tid == tid)     2347                 if (trans->r_log_tid == tid)
2348                         return trans;            2348                         return trans;
2349         }                                        2349         }
2350                                                  2350 
2351         /*                                       2351         /*
2352          * skip over non-start transaction he    2352          * skip over non-start transaction headers - we could be
2353          * processing slack space before the     2353          * processing slack space before the next transaction starts
2354          */                                      2354          */
2355         if (!(ohead->oh_flags & XLOG_START_TR    2355         if (!(ohead->oh_flags & XLOG_START_TRANS))
2356                 return NULL;                     2356                 return NULL;
2357                                                  2357 
2358         ASSERT(be32_to_cpu(ohead->oh_len) ==     2358         ASSERT(be32_to_cpu(ohead->oh_len) == 0);
2359                                                  2359 
2360         /*                                       2360         /*
2361          * This is a new transaction so alloc    2361          * This is a new transaction so allocate a new recovery container to
2362          * hold the recovery ops that will fo    2362          * hold the recovery ops that will follow.
2363          */                                      2363          */
2364         trans = kzalloc(sizeof(struct xlog_re    2364         trans = kzalloc(sizeof(struct xlog_recover), GFP_KERNEL | __GFP_NOFAIL);
2365         trans->r_log_tid = tid;                  2365         trans->r_log_tid = tid;
2366         trans->r_lsn = be64_to_cpu(rhead->h_l    2366         trans->r_lsn = be64_to_cpu(rhead->h_lsn);
2367         INIT_LIST_HEAD(&trans->r_itemq);         2367         INIT_LIST_HEAD(&trans->r_itemq);
2368         INIT_HLIST_NODE(&trans->r_list);         2368         INIT_HLIST_NODE(&trans->r_list);
2369         hlist_add_head(&trans->r_list, rhp);     2369         hlist_add_head(&trans->r_list, rhp);
2370                                                  2370 
2371         /*                                       2371         /*
2372          * Nothing more to do for this ophdr.    2372          * Nothing more to do for this ophdr. Items to be added to this new
2373          * transaction will be in subsequent     2373          * transaction will be in subsequent ophdr containers.
2374          */                                      2374          */
2375         return NULL;                             2375         return NULL;
2376 }                                                2376 }
2377                                                  2377 
2378 STATIC int                                       2378 STATIC int
2379 xlog_recover_process_ophdr(                      2379 xlog_recover_process_ophdr(
2380         struct xlog             *log,            2380         struct xlog             *log,
2381         struct hlist_head       rhash[],         2381         struct hlist_head       rhash[],
2382         struct xlog_rec_header  *rhead,          2382         struct xlog_rec_header  *rhead,
2383         struct xlog_op_header   *ohead,          2383         struct xlog_op_header   *ohead,
2384         char                    *dp,             2384         char                    *dp,
2385         char                    *end,            2385         char                    *end,
2386         int                     pass,            2386         int                     pass,
2387         struct list_head        *buffer_list)    2387         struct list_head        *buffer_list)
2388 {                                                2388 {
2389         struct xlog_recover     *trans;          2389         struct xlog_recover     *trans;
2390         unsigned int            len;             2390         unsigned int            len;
2391         int                     error;           2391         int                     error;
2392                                                  2392 
2393         /* Do we understand who wrote this op    2393         /* Do we understand who wrote this op? */
2394         if (ohead->oh_clientid != XFS_TRANSAC    2394         if (ohead->oh_clientid != XFS_TRANSACTION &&
2395             ohead->oh_clientid != XFS_LOG) {     2395             ohead->oh_clientid != XFS_LOG) {
2396                 xfs_warn(log->l_mp, "%s: bad     2396                 xfs_warn(log->l_mp, "%s: bad clientid 0x%x",
2397                         __func__, ohead->oh_c    2397                         __func__, ohead->oh_clientid);
2398                 ASSERT(0);                       2398                 ASSERT(0);
2399                 return -EFSCORRUPTED;            2399                 return -EFSCORRUPTED;
2400         }                                        2400         }
2401                                                  2401 
2402         /*                                       2402         /*
2403          * Check the ophdr contains all the d    2403          * Check the ophdr contains all the data it is supposed to contain.
2404          */                                      2404          */
2405         len = be32_to_cpu(ohead->oh_len);        2405         len = be32_to_cpu(ohead->oh_len);
2406         if (dp + len > end) {                    2406         if (dp + len > end) {
2407                 xfs_warn(log->l_mp, "%s: bad     2407                 xfs_warn(log->l_mp, "%s: bad length 0x%x", __func__, len);
2408                 WARN_ON(1);                      2408                 WARN_ON(1);
2409                 return -EFSCORRUPTED;            2409                 return -EFSCORRUPTED;
2410         }                                        2410         }
2411                                                  2411 
2412         trans = xlog_recover_ophdr_to_trans(r    2412         trans = xlog_recover_ophdr_to_trans(rhash, rhead, ohead);
2413         if (!trans) {                            2413         if (!trans) {
2414                 /* nothing to do, so skip ove    2414                 /* nothing to do, so skip over this ophdr */
2415                 return 0;                        2415                 return 0;
2416         }                                        2416         }
2417                                                  2417 
2418         /*                                       2418         /*
2419          * The recovered buffer queue is drai    2419          * The recovered buffer queue is drained only once we know that all
2420          * recovery items for the current LSN    2420          * recovery items for the current LSN have been processed. This is
2421          * required because:                     2421          * required because:
2422          *                                       2422          *
2423          * - Buffer write submission updates     2423          * - Buffer write submission updates the metadata LSN of the buffer.
2424          * - Log recovery skips items with a     2424          * - Log recovery skips items with a metadata LSN >= the current LSN of
2425          *   the recovery item.                  2425          *   the recovery item.
2426          * - Separate recovery items against     2426          * - Separate recovery items against the same metadata buffer can share
2427          *   a current LSN. I.e., consider th    2427          *   a current LSN. I.e., consider that the LSN of a recovery item is
2428          *   defined as the starting LSN of t    2428          *   defined as the starting LSN of the first record in which its
2429          *   transaction appears, that a reco    2429          *   transaction appears, that a record can hold multiple transactions,
2430          *   and/or that a transaction can sp    2430          *   and/or that a transaction can span multiple records.
2431          *                                       2431          *
2432          * In other words, we are allowed to     2432          * In other words, we are allowed to submit a buffer from log recovery
2433          * once per current LSN. Otherwise, w    2433          * once per current LSN. Otherwise, we may incorrectly skip recovery
2434          * items and cause corruption.           2434          * items and cause corruption.
2435          *                                       2435          *
2436          * We don't know up front whether buf    2436          * We don't know up front whether buffers are updated multiple times per
2437          * LSN. Therefore, track the current     2437          * LSN. Therefore, track the current LSN of each commit log record as it
2438          * is processed and drain the queue w    2438          * is processed and drain the queue when it changes. Use commit records
2439          * because they are ordered correctly    2439          * because they are ordered correctly by the logging code.
2440          */                                      2440          */
2441         if (log->l_recovery_lsn != trans->r_l    2441         if (log->l_recovery_lsn != trans->r_lsn &&
2442             ohead->oh_flags & XLOG_COMMIT_TRA    2442             ohead->oh_flags & XLOG_COMMIT_TRANS) {
2443                 error = xfs_buf_delwri_submit    2443                 error = xfs_buf_delwri_submit(buffer_list);
2444                 if (error)                       2444                 if (error)
2445                         return error;            2445                         return error;
2446                 log->l_recovery_lsn = trans->    2446                 log->l_recovery_lsn = trans->r_lsn;
2447         }                                        2447         }
2448                                                  2448 
2449         return xlog_recovery_process_trans(lo    2449         return xlog_recovery_process_trans(log, trans, dp, len,
2450                                            oh    2450                                            ohead->oh_flags, pass, buffer_list);
2451 }                                                2451 }
2452                                                  2452 
2453 /*                                               2453 /*
2454  * There are two valid states of the r_state     2454  * There are two valid states of the r_state field.  0 indicates that the
2455  * transaction structure is in a normal state    2455  * transaction structure is in a normal state.  We have either seen the
2456  * start of the transaction or the last opera    2456  * start of the transaction or the last operation we added was not a partial
2457  * operation.  If the last operation we added    2457  * operation.  If the last operation we added to the transaction was a
2458  * partial operation, we need to mark r_state    2458  * partial operation, we need to mark r_state with XLOG_WAS_CONT_TRANS.
2459  *                                               2459  *
2460  * NOTE: skip LRs with 0 data length.            2460  * NOTE: skip LRs with 0 data length.
2461  */                                              2461  */
2462 STATIC int                                       2462 STATIC int
2463 xlog_recover_process_data(                       2463 xlog_recover_process_data(
2464         struct xlog             *log,            2464         struct xlog             *log,
2465         struct hlist_head       rhash[],         2465         struct hlist_head       rhash[],
2466         struct xlog_rec_header  *rhead,          2466         struct xlog_rec_header  *rhead,
2467         char                    *dp,             2467         char                    *dp,
2468         int                     pass,            2468         int                     pass,
2469         struct list_head        *buffer_list)    2469         struct list_head        *buffer_list)
2470 {                                                2470 {
2471         struct xlog_op_header   *ohead;          2471         struct xlog_op_header   *ohead;
2472         char                    *end;            2472         char                    *end;
2473         int                     num_logops;      2473         int                     num_logops;
2474         int                     error;           2474         int                     error;
2475                                                  2475 
2476         end = dp + be32_to_cpu(rhead->h_len);    2476         end = dp + be32_to_cpu(rhead->h_len);
2477         num_logops = be32_to_cpu(rhead->h_num    2477         num_logops = be32_to_cpu(rhead->h_num_logops);
2478                                                  2478 
2479         /* check the log format matches our o    2479         /* check the log format matches our own - else we can't recover */
2480         if (xlog_header_check_recover(log->l_    2480         if (xlog_header_check_recover(log->l_mp, rhead))
2481                 return -EIO;                     2481                 return -EIO;
2482                                                  2482 
2483         trace_xfs_log_recover_record(log, rhe    2483         trace_xfs_log_recover_record(log, rhead, pass);
2484         while ((dp < end) && num_logops) {       2484         while ((dp < end) && num_logops) {
2485                                                  2485 
2486                 ohead = (struct xlog_op_heade    2486                 ohead = (struct xlog_op_header *)dp;
2487                 dp += sizeof(*ohead);            2487                 dp += sizeof(*ohead);
2488                 if (dp > end) {                  2488                 if (dp > end) {
2489                         xfs_warn(log->l_mp, "    2489                         xfs_warn(log->l_mp, "%s: op header overrun", __func__);
2490                         return -EFSCORRUPTED;    2490                         return -EFSCORRUPTED;
2491                 }                                2491                 }
2492                                                  2492 
2493                 /* errors will abort recovery    2493                 /* errors will abort recovery */
2494                 error = xlog_recover_process_    2494                 error = xlog_recover_process_ophdr(log, rhash, rhead, ohead,
2495                                                  2495                                                    dp, end, pass, buffer_list);
2496                 if (error)                       2496                 if (error)
2497                         return error;            2497                         return error;
2498                                                  2498 
2499                 dp += be32_to_cpu(ohead->oh_l    2499                 dp += be32_to_cpu(ohead->oh_len);
2500                 num_logops--;                    2500                 num_logops--;
2501         }                                        2501         }
2502         return 0;                                2502         return 0;
2503 }                                                2503 }
2504                                                  2504 
2505 /* Take all the collected deferred ops and fi    2505 /* Take all the collected deferred ops and finish them in order. */
2506 static int                                       2506 static int
2507 xlog_finish_defer_ops(                           2507 xlog_finish_defer_ops(
2508         struct xfs_mount        *mp,             2508         struct xfs_mount        *mp,
2509         struct list_head        *capture_list    2509         struct list_head        *capture_list)
2510 {                                                2510 {
2511         struct xfs_defer_capture *dfc, *next;    2511         struct xfs_defer_capture *dfc, *next;
2512         struct xfs_trans        *tp;             2512         struct xfs_trans        *tp;
2513         int                     error = 0;       2513         int                     error = 0;
2514                                                  2514 
2515         list_for_each_entry_safe(dfc, next, c    2515         list_for_each_entry_safe(dfc, next, capture_list, dfc_list) {
2516                 struct xfs_trans_res    resv;    2516                 struct xfs_trans_res    resv;
2517                 struct xfs_defer_resources dr    2517                 struct xfs_defer_resources dres;
2518                                                  2518 
2519                 /*                               2519                 /*
2520                  * Create a new transaction r    2520                  * Create a new transaction reservation from the captured
2521                  * information.  Set logcount    2521                  * information.  Set logcount to 1 to force the new transaction
2522                  * to regrant every roll so t    2522                  * to regrant every roll so that we can make forward progress
2523                  * in recovery no matter how     2523                  * in recovery no matter how full the log might be.
2524                  */                              2524                  */
2525                 resv.tr_logres = dfc->dfc_log    2525                 resv.tr_logres = dfc->dfc_logres;
2526                 resv.tr_logcount = 1;            2526                 resv.tr_logcount = 1;
2527                 resv.tr_logflags = XFS_TRANS_    2527                 resv.tr_logflags = XFS_TRANS_PERM_LOG_RES;
2528                                                  2528 
2529                 error = xfs_trans_alloc(mp, &    2529                 error = xfs_trans_alloc(mp, &resv, dfc->dfc_blkres,
2530                                 dfc->dfc_rtxr    2530                                 dfc->dfc_rtxres, XFS_TRANS_RESERVE, &tp);
2531                 if (error) {                     2531                 if (error) {
2532                         xlog_force_shutdown(m    2532                         xlog_force_shutdown(mp->m_log, SHUTDOWN_LOG_IO_ERROR);
2533                         return error;            2533                         return error;
2534                 }                                2534                 }
2535                                                  2535 
2536                 /*                               2536                 /*
2537                  * Transfer to this new trans    2537                  * Transfer to this new transaction all the dfops we captured
2538                  * from recovering a single i    2538                  * from recovering a single intent item.
2539                  */                              2539                  */
2540                 list_del_init(&dfc->dfc_list)    2540                 list_del_init(&dfc->dfc_list);
2541                 xfs_defer_ops_continue(dfc, t    2541                 xfs_defer_ops_continue(dfc, tp, &dres);
2542                 error = xfs_trans_commit(tp);    2542                 error = xfs_trans_commit(tp);
2543                 xfs_defer_resources_rele(&dre    2543                 xfs_defer_resources_rele(&dres);
2544                 if (error)                       2544                 if (error)
2545                         return error;            2545                         return error;
2546         }                                        2546         }
2547                                                  2547 
2548         ASSERT(list_empty(capture_list));        2548         ASSERT(list_empty(capture_list));
2549         return 0;                                2549         return 0;
2550 }                                                2550 }
2551                                                  2551 
2552 /* Release all the captured defer ops and cap    2552 /* Release all the captured defer ops and capture structures in this list. */
2553 static void                                      2553 static void
2554 xlog_abort_defer_ops(                            2554 xlog_abort_defer_ops(
2555         struct xfs_mount                *mp,     2555         struct xfs_mount                *mp,
2556         struct list_head                *capt    2556         struct list_head                *capture_list)
2557 {                                                2557 {
2558         struct xfs_defer_capture        *dfc;    2558         struct xfs_defer_capture        *dfc;
2559         struct xfs_defer_capture        *next    2559         struct xfs_defer_capture        *next;
2560                                                  2560 
2561         list_for_each_entry_safe(dfc, next, c    2561         list_for_each_entry_safe(dfc, next, capture_list, dfc_list) {
2562                 list_del_init(&dfc->dfc_list)    2562                 list_del_init(&dfc->dfc_list);
2563                 xfs_defer_ops_capture_abort(m    2563                 xfs_defer_ops_capture_abort(mp, dfc);
2564         }                                        2564         }
2565 }                                                2565 }
2566                                                  2566 
2567 /*                                               2567 /*
2568  * When this is called, all of the log intent    2568  * When this is called, all of the log intent items which did not have
2569  * corresponding log done items should be in     2569  * corresponding log done items should be in the AIL.  What we do now is update
2570  * the data structures associated with each o    2570  * the data structures associated with each one.
2571  *                                               2571  *
2572  * Since we process the log intent items in n    2572  * Since we process the log intent items in normal transactions, they will be
2573  * removed at some point after the commit.  T    2573  * removed at some point after the commit.  This prevents us from just walking
2574  * down the list processing each one.  We'll     2574  * down the list processing each one.  We'll use a flag in the intent item to
2575  * skip those that we've already processed an    2575  * skip those that we've already processed and use the AIL iteration mechanism's
2576  * generation count to try to speed this up a    2576  * generation count to try to speed this up at least a bit.
2577  *                                               2577  *
2578  * When we start, we know that the intents ar    2578  * When we start, we know that the intents are the only things in the AIL. As we
2579  * process them, however, other items are add    2579  * process them, however, other items are added to the AIL. Hence we know we
2580  * have started recovery on all the pending i    2580  * have started recovery on all the pending intents when we find an non-intent
2581  * item in the AIL.                              2581  * item in the AIL.
2582  */                                              2582  */
2583 STATIC int                                       2583 STATIC int
2584 xlog_recover_process_intents(                    2584 xlog_recover_process_intents(
2585         struct xlog                     *log)    2585         struct xlog                     *log)
2586 {                                                2586 {
2587         LIST_HEAD(capture_list);                 2587         LIST_HEAD(capture_list);
2588         struct xfs_defer_pending        *dfp,    2588         struct xfs_defer_pending        *dfp, *n;
2589         int                             error    2589         int                             error = 0;
2590 #if defined(DEBUG) || defined(XFS_WARN)          2590 #if defined(DEBUG) || defined(XFS_WARN)
2591         xfs_lsn_t                       last_    2591         xfs_lsn_t                       last_lsn;
2592                                                  2592 
2593         last_lsn = xlog_assign_lsn(log->l_cur    2593         last_lsn = xlog_assign_lsn(log->l_curr_cycle, log->l_curr_block);
2594 #endif                                           2594 #endif
2595                                                  2595 
2596         list_for_each_entry_safe(dfp, n, &log    2596         list_for_each_entry_safe(dfp, n, &log->r_dfops, dfp_list) {
2597                 ASSERT(xlog_item_is_intent(df    2597                 ASSERT(xlog_item_is_intent(dfp->dfp_intent));
2598                                                  2598 
2599                 /*                               2599                 /*
2600                  * We should never see a redo    2600                  * We should never see a redo item with a LSN higher than
2601                  * the last transaction we fo    2601                  * the last transaction we found in the log at the start
2602                  * of recovery.                  2602                  * of recovery.
2603                  */                              2603                  */
2604                 ASSERT(XFS_LSN_CMP(last_lsn,     2604                 ASSERT(XFS_LSN_CMP(last_lsn, dfp->dfp_intent->li_lsn) >= 0);
2605                                                  2605 
2606                 /*                               2606                 /*
2607                  * NOTE: If your intent proce    2607                  * NOTE: If your intent processing routine can create more
2608                  * deferred ops, you /must/ a    2608                  * deferred ops, you /must/ attach them to the capture list in
2609                  * the recover routine or els    2609                  * the recover routine or else those subsequent intents will be
2610                  * replayed in the wrong orde    2610                  * replayed in the wrong order!
2611                  *                               2611                  *
2612                  * The recovery function can     2612                  * The recovery function can free the log item, so we must not
2613                  * access dfp->dfp_intent aft    2613                  * access dfp->dfp_intent after it returns.  It must dispose of
2614                  * @dfp if it returns 0.         2614                  * @dfp if it returns 0.
2615                  */                              2615                  */
2616                 error = xfs_defer_finish_reco    2616                 error = xfs_defer_finish_recovery(log->l_mp, dfp,
2617                                 &capture_list    2617                                 &capture_list);
2618                 if (error)                       2618                 if (error)
2619                         break;                   2619                         break;
2620         }                                        2620         }
2621         if (error)                               2621         if (error)
2622                 goto err;                        2622                 goto err;
2623                                                  2623 
2624         error = xlog_finish_defer_ops(log->l_    2624         error = xlog_finish_defer_ops(log->l_mp, &capture_list);
2625         if (error)                               2625         if (error)
2626                 goto err;                        2626                 goto err;
2627                                                  2627 
2628         return 0;                                2628         return 0;
2629 err:                                             2629 err:
2630         xlog_abort_defer_ops(log->l_mp, &capt    2630         xlog_abort_defer_ops(log->l_mp, &capture_list);
2631         return error;                            2631         return error;
2632 }                                                2632 }
2633                                                  2633 
2634 /*                                               2634 /*
2635  * A cancel occurs when the mount has failed     2635  * A cancel occurs when the mount has failed and we're bailing out.  Release all
2636  * pending log intent items that we haven't s    2636  * pending log intent items that we haven't started recovery on so they don't
2637  * pin the AIL.                                  2637  * pin the AIL.
2638  */                                              2638  */
2639 STATIC void                                      2639 STATIC void
2640 xlog_recover_cancel_intents(                     2640 xlog_recover_cancel_intents(
2641         struct xlog                     *log)    2641         struct xlog                     *log)
2642 {                                                2642 {
2643         struct xfs_defer_pending        *dfp,    2643         struct xfs_defer_pending        *dfp, *n;
2644                                                  2644 
2645         list_for_each_entry_safe(dfp, n, &log    2645         list_for_each_entry_safe(dfp, n, &log->r_dfops, dfp_list) {
2646                 ASSERT(xlog_item_is_intent(df    2646                 ASSERT(xlog_item_is_intent(dfp->dfp_intent));
2647                                                  2647 
2648                 xfs_defer_cancel_recovery(log    2648                 xfs_defer_cancel_recovery(log->l_mp, dfp);
2649         }                                        2649         }
2650 }                                                2650 }
2651                                                  2651 
2652 /*                                               2652 /*
2653  * Transfer ownership of the recovered pendin    2653  * Transfer ownership of the recovered pending work to the recovery transaction
2654  * and try to finish the work.  If there is m    2654  * and try to finish the work.  If there is more work to be done, the dfp will
2655  * remain attached to the transaction.  If no    2655  * remain attached to the transaction.  If not, the dfp is freed.
2656  */                                              2656  */
2657 int                                              2657 int
2658 xlog_recover_finish_intent(                      2658 xlog_recover_finish_intent(
2659         struct xfs_trans                *tp,     2659         struct xfs_trans                *tp,
2660         struct xfs_defer_pending        *dfp)    2660         struct xfs_defer_pending        *dfp)
2661 {                                                2661 {
2662         int                             error    2662         int                             error;
2663                                                  2663 
2664         list_move(&dfp->dfp_list, &tp->t_dfop    2664         list_move(&dfp->dfp_list, &tp->t_dfops);
2665         error = xfs_defer_finish_one(tp, dfp)    2665         error = xfs_defer_finish_one(tp, dfp);
2666         if (error == -EAGAIN)                    2666         if (error == -EAGAIN)
2667                 return 0;                        2667                 return 0;
2668         return error;                            2668         return error;
2669 }                                                2669 }
2670                                                  2670 
2671 /*                                               2671 /*
2672  * This routine performs a transaction to nul    2672  * This routine performs a transaction to null out a bad inode pointer
2673  * in an agi unlinked inode hash bucket.         2673  * in an agi unlinked inode hash bucket.
2674  */                                              2674  */
2675 STATIC void                                      2675 STATIC void
2676 xlog_recover_clear_agi_bucket(                   2676 xlog_recover_clear_agi_bucket(
2677         struct xfs_perag        *pag,            2677         struct xfs_perag        *pag,
2678         int                     bucket)          2678         int                     bucket)
2679 {                                                2679 {
2680         struct xfs_mount        *mp = pag->pa    2680         struct xfs_mount        *mp = pag->pag_mount;
2681         struct xfs_trans        *tp;             2681         struct xfs_trans        *tp;
2682         struct xfs_agi          *agi;            2682         struct xfs_agi          *agi;
2683         struct xfs_buf          *agibp;          2683         struct xfs_buf          *agibp;
2684         int                     offset;          2684         int                     offset;
2685         int                     error;           2685         int                     error;
2686                                                  2686 
2687         error = xfs_trans_alloc(mp, &M_RES(mp    2687         error = xfs_trans_alloc(mp, &M_RES(mp)->tr_clearagi, 0, 0, 0, &tp);
2688         if (error)                               2688         if (error)
2689                 goto out_error;                  2689                 goto out_error;
2690                                                  2690 
2691         error = xfs_read_agi(pag, tp, 0, &agi    2691         error = xfs_read_agi(pag, tp, 0, &agibp);
2692         if (error)                               2692         if (error)
2693                 goto out_abort;                  2693                 goto out_abort;
2694                                                  2694 
2695         agi = agibp->b_addr;                     2695         agi = agibp->b_addr;
2696         agi->agi_unlinked[bucket] = cpu_to_be    2696         agi->agi_unlinked[bucket] = cpu_to_be32(NULLAGINO);
2697         offset = offsetof(xfs_agi_t, agi_unli    2697         offset = offsetof(xfs_agi_t, agi_unlinked) +
2698                  (sizeof(xfs_agino_t) * bucke    2698                  (sizeof(xfs_agino_t) * bucket);
2699         xfs_trans_log_buf(tp, agibp, offset,     2699         xfs_trans_log_buf(tp, agibp, offset,
2700                           (offset + sizeof(xf    2700                           (offset + sizeof(xfs_agino_t) - 1));
2701                                                  2701 
2702         error = xfs_trans_commit(tp);            2702         error = xfs_trans_commit(tp);
2703         if (error)                               2703         if (error)
2704                 goto out_error;                  2704                 goto out_error;
2705         return;                                  2705         return;
2706                                                  2706 
2707 out_abort:                                       2707 out_abort:
2708         xfs_trans_cancel(tp);                    2708         xfs_trans_cancel(tp);
2709 out_error:                                       2709 out_error:
2710         xfs_warn(mp, "%s: failed to clear agi    2710         xfs_warn(mp, "%s: failed to clear agi %d. Continuing.", __func__,
2711                         pag->pag_agno);          2711                         pag->pag_agno);
2712         return;                                  2712         return;
2713 }                                                2713 }
2714                                                  2714 
2715 static int                                       2715 static int
2716 xlog_recover_iunlink_bucket(                     2716 xlog_recover_iunlink_bucket(
2717         struct xfs_perag        *pag,            2717         struct xfs_perag        *pag,
2718         struct xfs_agi          *agi,            2718         struct xfs_agi          *agi,
2719         int                     bucket)          2719         int                     bucket)
2720 {                                                2720 {
2721         struct xfs_mount        *mp = pag->pa    2721         struct xfs_mount        *mp = pag->pag_mount;
2722         struct xfs_inode        *prev_ip = NU    2722         struct xfs_inode        *prev_ip = NULL;
2723         struct xfs_inode        *ip;             2723         struct xfs_inode        *ip;
2724         xfs_agino_t             prev_agino, a    2724         xfs_agino_t             prev_agino, agino;
2725         int                     error = 0;       2725         int                     error = 0;
2726                                                  2726 
2727         agino = be32_to_cpu(agi->agi_unlinked    2727         agino = be32_to_cpu(agi->agi_unlinked[bucket]);
2728         while (agino != NULLAGINO) {             2728         while (agino != NULLAGINO) {
2729                 error = xfs_iget(mp, NULL,       2729                 error = xfs_iget(mp, NULL,
2730                                 XFS_AGINO_TO_    2730                                 XFS_AGINO_TO_INO(mp, pag->pag_agno, agino),
2731                                 0, 0, &ip);      2731                                 0, 0, &ip);
2732                 if (error)                       2732                 if (error)
2733                         break;                   2733                         break;
2734                                                  2734 
2735                 ASSERT(VFS_I(ip)->i_nlink ==     2735                 ASSERT(VFS_I(ip)->i_nlink == 0);
2736                 ASSERT(VFS_I(ip)->i_mode != 0    2736                 ASSERT(VFS_I(ip)->i_mode != 0);
2737                 xfs_iflags_clear(ip, XFS_IREC    2737                 xfs_iflags_clear(ip, XFS_IRECOVERY);
2738                 agino = ip->i_next_unlinked;     2738                 agino = ip->i_next_unlinked;
2739                                                  2739 
2740                 if (prev_ip) {                   2740                 if (prev_ip) {
2741                         ip->i_prev_unlinked =    2741                         ip->i_prev_unlinked = prev_agino;
2742                         xfs_irele(prev_ip);      2742                         xfs_irele(prev_ip);
2743                                                  2743 
2744                         /*                       2744                         /*
2745                          * Ensure the inode i    2745                          * Ensure the inode is removed from the unlinked list
2746                          * before we continue    2746                          * before we continue so that it won't race with
2747                          * building the in-me    2747                          * building the in-memory list here. This could be
2748                          * serialised with th    2748                          * serialised with the agibp lock, but that just
2749                          * serialises via loc    2749                          * serialises via lockstepping and it's much simpler
2750                          * just to flush the     2750                          * just to flush the inodegc queue and wait for it to
2751                          * complete.             2751                          * complete.
2752                          */                      2752                          */
2753                         error = xfs_inodegc_f    2753                         error = xfs_inodegc_flush(mp);
2754                         if (error)               2754                         if (error)
2755                                 break;           2755                                 break;
2756                 }                                2756                 }
2757                                                  2757 
2758                 prev_agino = agino;              2758                 prev_agino = agino;
2759                 prev_ip = ip;                    2759                 prev_ip = ip;
2760         }                                        2760         }
2761                                                  2761 
2762         if (prev_ip) {                           2762         if (prev_ip) {
2763                 int     error2;                  2763                 int     error2;
2764                                                  2764 
2765                 ip->i_prev_unlinked = prev_ag    2765                 ip->i_prev_unlinked = prev_agino;
2766                 xfs_irele(prev_ip);              2766                 xfs_irele(prev_ip);
2767                                                  2767 
2768                 error2 = xfs_inodegc_flush(mp    2768                 error2 = xfs_inodegc_flush(mp);
2769                 if (error2 && !error)            2769                 if (error2 && !error)
2770                         return error2;           2770                         return error2;
2771         }                                        2771         }
2772         return error;                            2772         return error;
2773 }                                                2773 }
2774                                                  2774 
2775 /*                                               2775 /*
2776  * Recover AGI unlinked lists                    2776  * Recover AGI unlinked lists
2777  *                                               2777  *
2778  * This is called during recovery to process     2778  * This is called during recovery to process any inodes which we unlinked but
2779  * not freed when the system crashed.  These     2779  * not freed when the system crashed.  These inodes will be on the lists in the
2780  * AGI blocks. What we do here is scan all th    2780  * AGI blocks. What we do here is scan all the AGIs and fully truncate and free
2781  * any inodes found on the lists. Each inode     2781  * any inodes found on the lists. Each inode is removed from the lists when it
2782  * has been fully truncated and is freed. The    2782  * has been fully truncated and is freed. The freeing of the inode and its
2783  * removal from the list must be atomic.         2783  * removal from the list must be atomic.
2784  *                                               2784  *
2785  * If everything we touch in the agi processi    2785  * If everything we touch in the agi processing loop is already in memory, this
2786  * loop can hold the cpu for a long time. It     2786  * loop can hold the cpu for a long time. It runs without lock contention,
2787  * memory allocation contention, the need wai    2787  * memory allocation contention, the need wait for IO, etc, and so will run
2788  * until we either run out of inodes to proce    2788  * until we either run out of inodes to process, run low on memory or we run out
2789  * of log space.                                 2789  * of log space.
2790  *                                               2790  *
2791  * This behaviour is bad for latency on singl    2791  * This behaviour is bad for latency on single CPU and non-preemptible kernels,
2792  * and can prevent other filesystem work (suc    2792  * and can prevent other filesystem work (such as CIL pushes) from running. This
2793  * can lead to deadlocks if the recovery proc    2793  * can lead to deadlocks if the recovery process runs out of log reservation
2794  * space. Hence we need to yield the CPU when    2794  * space. Hence we need to yield the CPU when there is other kernel work
2795  * scheduled on this CPU to ensure other sche    2795  * scheduled on this CPU to ensure other scheduled work can run without undue
2796  * latency.                                      2796  * latency.
2797  */                                              2797  */
2798 static void                                      2798 static void
2799 xlog_recover_iunlink_ag(                         2799 xlog_recover_iunlink_ag(
2800         struct xfs_perag        *pag)            2800         struct xfs_perag        *pag)
2801 {                                                2801 {
2802         struct xfs_agi          *agi;            2802         struct xfs_agi          *agi;
2803         struct xfs_buf          *agibp;          2803         struct xfs_buf          *agibp;
2804         int                     bucket;          2804         int                     bucket;
2805         int                     error;           2805         int                     error;
2806                                                  2806 
2807         error = xfs_read_agi(pag, NULL, 0, &a    2807         error = xfs_read_agi(pag, NULL, 0, &agibp);
2808         if (error) {                             2808         if (error) {
2809                 /*                               2809                 /*
2810                  * AGI is b0rked. Don't proce    2810                  * AGI is b0rked. Don't process it.
2811                  *                               2811                  *
2812                  * We should probably mark th    2812                  * We should probably mark the filesystem as corrupt after we've
2813                  * recovered all the ag's we     2813                  * recovered all the ag's we can....
2814                  */                              2814                  */
2815                 return;                          2815                 return;
2816         }                                        2816         }
2817                                                  2817 
2818         /*                                       2818         /*
2819          * Unlock the buffer so that it can b    2819          * Unlock the buffer so that it can be acquired in the normal course of
2820          * the transaction to truncate and fr    2820          * the transaction to truncate and free each inode.  Because we are not
2821          * racing with anyone else here for t    2821          * racing with anyone else here for the AGI buffer, we don't even need
2822          * to hold it locked to read the init    2822          * to hold it locked to read the initial unlinked bucket entries out of
2823          * the buffer. We keep buffer referen    2823          * the buffer. We keep buffer reference though, so that it stays pinned
2824          * in memory while we need the buffer    2824          * in memory while we need the buffer.
2825          */                                      2825          */
2826         agi = agibp->b_addr;                     2826         agi = agibp->b_addr;
2827         xfs_buf_unlock(agibp);                   2827         xfs_buf_unlock(agibp);
2828                                                  2828 
2829         for (bucket = 0; bucket < XFS_AGI_UNL    2829         for (bucket = 0; bucket < XFS_AGI_UNLINKED_BUCKETS; bucket++) {
2830                 error = xlog_recover_iunlink_    2830                 error = xlog_recover_iunlink_bucket(pag, agi, bucket);
2831                 if (error) {                     2831                 if (error) {
2832                         /*                       2832                         /*
2833                          * Bucket is unrecove    2833                          * Bucket is unrecoverable, so only a repair scan can
2834                          * free the remaining    2834                          * free the remaining unlinked inodes. Just empty the
2835                          * bucket and remaini    2835                          * bucket and remaining inodes on it unreferenced and
2836                          * unfreeable.           2836                          * unfreeable.
2837                          */                      2837                          */
2838                         xlog_recover_clear_ag    2838                         xlog_recover_clear_agi_bucket(pag, bucket);
2839                 }                                2839                 }
2840         }                                        2840         }
2841                                                  2841 
2842         xfs_buf_rele(agibp);                     2842         xfs_buf_rele(agibp);
2843 }                                                2843 }
2844                                                  2844 
2845 static void                                      2845 static void
2846 xlog_recover_process_iunlinks(                   2846 xlog_recover_process_iunlinks(
2847         struct xlog     *log)                    2847         struct xlog     *log)
2848 {                                                2848 {
2849         struct xfs_perag        *pag;            2849         struct xfs_perag        *pag;
2850         xfs_agnumber_t          agno;            2850         xfs_agnumber_t          agno;
2851                                                  2851 
2852         for_each_perag(log->l_mp, agno, pag)     2852         for_each_perag(log->l_mp, agno, pag)
2853                 xlog_recover_iunlink_ag(pag);    2853                 xlog_recover_iunlink_ag(pag);
2854 }                                                2854 }
2855                                                  2855 
2856 STATIC void                                      2856 STATIC void
2857 xlog_unpack_data(                                2857 xlog_unpack_data(
2858         struct xlog_rec_header  *rhead,          2858         struct xlog_rec_header  *rhead,
2859         char                    *dp,             2859         char                    *dp,
2860         struct xlog             *log)            2860         struct xlog             *log)
2861 {                                                2861 {
2862         int                     i, j, k;         2862         int                     i, j, k;
2863                                                  2863 
2864         for (i = 0; i < BTOBB(be32_to_cpu(rhe    2864         for (i = 0; i < BTOBB(be32_to_cpu(rhead->h_len)) &&
2865                   i < (XLOG_HEADER_CYCLE_SIZE    2865                   i < (XLOG_HEADER_CYCLE_SIZE / BBSIZE); i++) {
2866                 *(__be32 *)dp = *(__be32 *)&r    2866                 *(__be32 *)dp = *(__be32 *)&rhead->h_cycle_data[i];
2867                 dp += BBSIZE;                    2867                 dp += BBSIZE;
2868         }                                        2868         }
2869                                                  2869 
2870         if (xfs_has_logv2(log->l_mp)) {          2870         if (xfs_has_logv2(log->l_mp)) {
2871                 xlog_in_core_2_t *xhdr = (xlo    2871                 xlog_in_core_2_t *xhdr = (xlog_in_core_2_t *)rhead;
2872                 for ( ; i < BTOBB(be32_to_cpu    2872                 for ( ; i < BTOBB(be32_to_cpu(rhead->h_len)); i++) {
2873                         j = i / (XLOG_HEADER_    2873                         j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
2874                         k = i % (XLOG_HEADER_    2874                         k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
2875                         *(__be32 *)dp = xhdr[    2875                         *(__be32 *)dp = xhdr[j].hic_xheader.xh_cycle_data[k];
2876                         dp += BBSIZE;            2876                         dp += BBSIZE;
2877                 }                                2877                 }
2878         }                                        2878         }
2879 }                                                2879 }
2880                                                  2880 
2881 /*                                               2881 /*
2882  * CRC check, unpack and process a log record    2882  * CRC check, unpack and process a log record.
2883  */                                              2883  */
2884 STATIC int                                       2884 STATIC int
2885 xlog_recover_process(                            2885 xlog_recover_process(
2886         struct xlog             *log,            2886         struct xlog             *log,
2887         struct hlist_head       rhash[],         2887         struct hlist_head       rhash[],
2888         struct xlog_rec_header  *rhead,          2888         struct xlog_rec_header  *rhead,
2889         char                    *dp,             2889         char                    *dp,
2890         int                     pass,            2890         int                     pass,
2891         struct list_head        *buffer_list)    2891         struct list_head        *buffer_list)
2892 {                                                2892 {
2893         __le32                  old_crc = rhe    2893         __le32                  old_crc = rhead->h_crc;
2894         __le32                  crc;             2894         __le32                  crc;
2895                                                  2895 
2896         crc = xlog_cksum(log, rhead, dp, be32    2896         crc = xlog_cksum(log, rhead, dp, be32_to_cpu(rhead->h_len));
2897                                                  2897 
2898         /*                                       2898         /*
2899          * Nothing else to do if this is a CR    2899          * Nothing else to do if this is a CRC verification pass. Just return
2900          * if this a record with a non-zero c    2900          * if this a record with a non-zero crc. Unfortunately, mkfs always
2901          * sets old_crc to 0 so we must consi    2901          * sets old_crc to 0 so we must consider this valid even on v5 supers.
2902          * Otherwise, return EFSBADCRC on fai    2902          * Otherwise, return EFSBADCRC on failure so the callers up the stack
2903          * know precisely what failed.           2903          * know precisely what failed.
2904          */                                      2904          */
2905         if (pass == XLOG_RECOVER_CRCPASS) {      2905         if (pass == XLOG_RECOVER_CRCPASS) {
2906                 if (old_crc && crc != old_crc    2906                 if (old_crc && crc != old_crc)
2907                         return -EFSBADCRC;       2907                         return -EFSBADCRC;
2908                 return 0;                        2908                 return 0;
2909         }                                        2909         }
2910                                                  2910 
2911         /*                                       2911         /*
2912          * We're in the normal recovery path.    2912          * We're in the normal recovery path. Issue a warning if and only if the
2913          * CRC in the header is non-zero. Thi    2913          * CRC in the header is non-zero. This is an advisory warning and the
2914          * zero CRC check prevents warnings f    2914          * zero CRC check prevents warnings from being emitted when upgrading
2915          * the kernel from one that does not     2915          * the kernel from one that does not add CRCs by default.
2916          */                                      2916          */
2917         if (crc != old_crc) {                    2917         if (crc != old_crc) {
2918                 if (old_crc || xfs_has_crc(lo    2918                 if (old_crc || xfs_has_crc(log->l_mp)) {
2919                         xfs_alert(log->l_mp,     2919                         xfs_alert(log->l_mp,
2920                 "log record CRC mismatch: fou    2920                 "log record CRC mismatch: found 0x%x, expected 0x%x.",
2921                                         le32_    2921                                         le32_to_cpu(old_crc),
2922                                         le32_    2922                                         le32_to_cpu(crc));
2923                         xfs_hex_dump(dp, 32);    2923                         xfs_hex_dump(dp, 32);
2924                 }                                2924                 }
2925                                                  2925 
2926                 /*                               2926                 /*
2927                  * If the filesystem is CRC e    2927                  * If the filesystem is CRC enabled, this mismatch becomes a
2928                  * fatal log corruption failu    2928                  * fatal log corruption failure.
2929                  */                              2929                  */
2930                 if (xfs_has_crc(log->l_mp)) {    2930                 if (xfs_has_crc(log->l_mp)) {
2931                         XFS_ERROR_REPORT(__fu    2931                         XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_LOW, log->l_mp);
2932                         return -EFSCORRUPTED;    2932                         return -EFSCORRUPTED;
2933                 }                                2933                 }
2934         }                                        2934         }
2935                                                  2935 
2936         xlog_unpack_data(rhead, dp, log);        2936         xlog_unpack_data(rhead, dp, log);
2937                                                  2937 
2938         return xlog_recover_process_data(log,    2938         return xlog_recover_process_data(log, rhash, rhead, dp, pass,
2939                                          buff    2939                                          buffer_list);
2940 }                                                2940 }
2941                                                  2941 
2942 STATIC int                                       2942 STATIC int
2943 xlog_valid_rec_header(                           2943 xlog_valid_rec_header(
2944         struct xlog             *log,            2944         struct xlog             *log,
2945         struct xlog_rec_header  *rhead,          2945         struct xlog_rec_header  *rhead,
2946         xfs_daddr_t             blkno,           2946         xfs_daddr_t             blkno,
2947         int                     bufsize)         2947         int                     bufsize)
2948 {                                                2948 {
2949         int                     hlen;            2949         int                     hlen;
2950                                                  2950 
2951         if (XFS_IS_CORRUPT(log->l_mp,            2951         if (XFS_IS_CORRUPT(log->l_mp,
2952                            rhead->h_magicno !    2952                            rhead->h_magicno != cpu_to_be32(XLOG_HEADER_MAGIC_NUM)))
2953                 return -EFSCORRUPTED;            2953                 return -EFSCORRUPTED;
2954         if (XFS_IS_CORRUPT(log->l_mp,            2954         if (XFS_IS_CORRUPT(log->l_mp,
2955                            (!rhead->h_version    2955                            (!rhead->h_version ||
2956                            (be32_to_cpu(rhead    2956                            (be32_to_cpu(rhead->h_version) &
2957                             (~XLOG_VERSION_OK    2957                             (~XLOG_VERSION_OKBITS))))) {
2958                 xfs_warn(log->l_mp, "%s: unre    2958                 xfs_warn(log->l_mp, "%s: unrecognised log version (%d).",
2959                         __func__, be32_to_cpu    2959                         __func__, be32_to_cpu(rhead->h_version));
2960                 return -EFSCORRUPTED;            2960                 return -EFSCORRUPTED;
2961         }                                        2961         }
2962                                                  2962 
2963         /*                                       2963         /*
2964          * LR body must have data (or it woul    2964          * LR body must have data (or it wouldn't have been written)
2965          * and h_len must not be greater than    2965          * and h_len must not be greater than LR buffer size.
2966          */                                      2966          */
2967         hlen = be32_to_cpu(rhead->h_len);        2967         hlen = be32_to_cpu(rhead->h_len);
2968         if (XFS_IS_CORRUPT(log->l_mp, hlen <=    2968         if (XFS_IS_CORRUPT(log->l_mp, hlen <= 0 || hlen > bufsize))
2969                 return -EFSCORRUPTED;            2969                 return -EFSCORRUPTED;
2970                                                  2970 
2971         if (XFS_IS_CORRUPT(log->l_mp,            2971         if (XFS_IS_CORRUPT(log->l_mp,
2972                            blkno > log->l_log    2972                            blkno > log->l_logBBsize || blkno > INT_MAX))
2973                 return -EFSCORRUPTED;            2973                 return -EFSCORRUPTED;
2974         return 0;                                2974         return 0;
2975 }                                                2975 }
2976                                                  2976 
2977 /*                                               2977 /*
2978  * Read the log from tail to head and process    2978  * Read the log from tail to head and process the log records found.
2979  * Handle the two cases where the tail and he    2979  * Handle the two cases where the tail and head are in the same cycle
2980  * and where the active portion of the log wr    2980  * and where the active portion of the log wraps around the end of
2981  * the physical log separately.  The pass par    2981  * the physical log separately.  The pass parameter is passed through
2982  * to the routines called to process the data    2982  * to the routines called to process the data and is not looked at
2983  * here.                                         2983  * here.
2984  */                                              2984  */
2985 STATIC int                                       2985 STATIC int
2986 xlog_do_recovery_pass(                           2986 xlog_do_recovery_pass(
2987         struct xlog             *log,            2987         struct xlog             *log,
2988         xfs_daddr_t             head_blk,        2988         xfs_daddr_t             head_blk,
2989         xfs_daddr_t             tail_blk,        2989         xfs_daddr_t             tail_blk,
2990         int                     pass,            2990         int                     pass,
2991         xfs_daddr_t             *first_bad)      2991         xfs_daddr_t             *first_bad)     /* out: first bad log rec */
2992 {                                                2992 {
2993         xlog_rec_header_t       *rhead;          2993         xlog_rec_header_t       *rhead;
2994         xfs_daddr_t             blk_no, rblk_    2994         xfs_daddr_t             blk_no, rblk_no;
2995         xfs_daddr_t             rhead_blk;       2995         xfs_daddr_t             rhead_blk;
2996         char                    *offset;         2996         char                    *offset;
2997         char                    *hbp, *dbp;      2997         char                    *hbp, *dbp;
2998         int                     error = 0, h_    2998         int                     error = 0, h_size, h_len;
2999         int                     error2 = 0;      2999         int                     error2 = 0;
3000         int                     bblks, split_    3000         int                     bblks, split_bblks;
3001         int                     hblks = 1, sp    3001         int                     hblks = 1, split_hblks, wrapped_hblks;
3002         int                     i;               3002         int                     i;
3003         struct hlist_head       rhash[XLOG_RH    3003         struct hlist_head       rhash[XLOG_RHASH_SIZE];
3004         LIST_HEAD               (buffer_list)    3004         LIST_HEAD               (buffer_list);
3005                                                  3005 
3006         ASSERT(head_blk != tail_blk);            3006         ASSERT(head_blk != tail_blk);
3007         blk_no = rhead_blk = tail_blk;           3007         blk_no = rhead_blk = tail_blk;
3008                                                  3008 
3009         for (i = 0; i < XLOG_RHASH_SIZE; i++)    3009         for (i = 0; i < XLOG_RHASH_SIZE; i++)
3010                 INIT_HLIST_HEAD(&rhash[i]);      3010                 INIT_HLIST_HEAD(&rhash[i]);
3011                                                  3011 
3012         hbp = xlog_alloc_buffer(log, hblks);     3012         hbp = xlog_alloc_buffer(log, hblks);
3013         if (!hbp)                                3013         if (!hbp)
3014                 return -ENOMEM;                  3014                 return -ENOMEM;
3015                                                  3015 
3016         /*                                       3016         /*
3017          * Read the header of the tail block     3017          * Read the header of the tail block and get the iclog buffer size from
3018          * h_size.  Use this to tell how many    3018          * h_size.  Use this to tell how many sectors make up the log header.
3019          */                                      3019          */
3020         if (xfs_has_logv2(log->l_mp)) {          3020         if (xfs_has_logv2(log->l_mp)) {
3021                 /*                               3021                 /*
3022                  * When using variable length    3022                  * When using variable length iclogs, read first sector of
3023                  * iclog header and extract t    3023                  * iclog header and extract the header size from it.  Get a
3024                  * new hbp that is the correc    3024                  * new hbp that is the correct size.
3025                  */                              3025                  */
3026                 error = xlog_bread(log, tail_    3026                 error = xlog_bread(log, tail_blk, 1, hbp, &offset);
3027                 if (error)                       3027                 if (error)
3028                         goto bread_err1;         3028                         goto bread_err1;
3029                                                  3029 
3030                 rhead = (xlog_rec_header_t *)    3030                 rhead = (xlog_rec_header_t *)offset;
3031                                                  3031 
3032                 /*                               3032                 /*
3033                  * xfsprogs has a bug where r    3033                  * xfsprogs has a bug where record length is based on lsunit but
3034                  * h_size (iclog size) is har    3034                  * h_size (iclog size) is hardcoded to 32k. Now that we
3035                  * unconditionally CRC verify    3035                  * unconditionally CRC verify the unmount record, this means the
3036                  * log buffer can be too smal    3036                  * log buffer can be too small for the record and cause an
3037                  * overrun.                      3037                  * overrun.
3038                  *                               3038                  *
3039                  * Detect this condition here    3039                  * Detect this condition here. Use lsunit for the buffer size as
3040                  * long as this looks like th    3040                  * long as this looks like the mkfs case. Otherwise, return an
3041                  * error to avoid a buffer ov    3041                  * error to avoid a buffer overrun.
3042                  */                              3042                  */
3043                 h_size = be32_to_cpu(rhead->h    3043                 h_size = be32_to_cpu(rhead->h_size);
3044                 h_len = be32_to_cpu(rhead->h_    3044                 h_len = be32_to_cpu(rhead->h_len);
3045                 if (h_len > h_size && h_len <    3045                 if (h_len > h_size && h_len <= log->l_mp->m_logbsize &&
3046                     rhead->h_num_logops == cp    3046                     rhead->h_num_logops == cpu_to_be32(1)) {
3047                         xfs_warn(log->l_mp,      3047                         xfs_warn(log->l_mp,
3048                 "invalid iclog size (%d bytes    3048                 "invalid iclog size (%d bytes), using lsunit (%d bytes)",
3049                                  h_size, log-    3049                                  h_size, log->l_mp->m_logbsize);
3050                         h_size = log->l_mp->m    3050                         h_size = log->l_mp->m_logbsize;
3051                 }                                3051                 }
3052                                                  3052 
3053                 error = xlog_valid_rec_header    3053                 error = xlog_valid_rec_header(log, rhead, tail_blk, h_size);
3054                 if (error)                       3054                 if (error)
3055                         goto bread_err1;         3055                         goto bread_err1;
3056                                                  3056 
3057                 /*                               3057                 /*
3058                  * This open codes xlog_logre    3058                  * This open codes xlog_logrec_hblks so that we can reuse the
3059                  * fixed up h_size value calc    3059                  * fixed up h_size value calculated above.  Without that we'd
3060                  * still allocate the buffer     3060                  * still allocate the buffer based on the incorrect on-disk
3061                  * size.                         3061                  * size.
3062                  */                              3062                  */
3063                 if (h_size > XLOG_HEADER_CYCL    3063                 if (h_size > XLOG_HEADER_CYCLE_SIZE &&
3064                     (rhead->h_version & cpu_t    3064                     (rhead->h_version & cpu_to_be32(XLOG_VERSION_2))) {
3065                         hblks = DIV_ROUND_UP(    3065                         hblks = DIV_ROUND_UP(h_size, XLOG_HEADER_CYCLE_SIZE);
3066                         if (hblks > 1) {         3066                         if (hblks > 1) {
3067                                 kvfree(hbp);     3067                                 kvfree(hbp);
3068                                 hbp = xlog_al    3068                                 hbp = xlog_alloc_buffer(log, hblks);
3069                                 if (!hbp)        3069                                 if (!hbp)
3070                                         retur    3070                                         return -ENOMEM;
3071                         }                        3071                         }
3072                 }                                3072                 }
3073         } else {                                 3073         } else {
3074                 ASSERT(log->l_sectBBsize == 1    3074                 ASSERT(log->l_sectBBsize == 1);
3075                 h_size = XLOG_BIG_RECORD_BSIZ    3075                 h_size = XLOG_BIG_RECORD_BSIZE;
3076         }                                        3076         }
3077                                                  3077 
3078         dbp = xlog_alloc_buffer(log, BTOBB(h_    3078         dbp = xlog_alloc_buffer(log, BTOBB(h_size));
3079         if (!dbp) {                              3079         if (!dbp) {
3080                 kvfree(hbp);                     3080                 kvfree(hbp);
3081                 return -ENOMEM;                  3081                 return -ENOMEM;
3082         }                                        3082         }
3083                                                  3083 
3084         memset(rhash, 0, sizeof(rhash));         3084         memset(rhash, 0, sizeof(rhash));
3085         if (tail_blk > head_blk) {               3085         if (tail_blk > head_blk) {
3086                 /*                               3086                 /*
3087                  * Perform recovery around th    3087                  * Perform recovery around the end of the physical log.
3088                  * When the head is not on th    3088                  * When the head is not on the same cycle number as the tail,
3089                  * we can't do a sequential r    3089                  * we can't do a sequential recovery.
3090                  */                              3090                  */
3091                 while (blk_no < log->l_logBBs    3091                 while (blk_no < log->l_logBBsize) {
3092                         /*                       3092                         /*
3093                          * Check for header w    3093                          * Check for header wrapping around physical end-of-log
3094                          */                      3094                          */
3095                         offset = hbp;            3095                         offset = hbp;
3096                         split_hblks = 0;         3096                         split_hblks = 0;
3097                         wrapped_hblks = 0;       3097                         wrapped_hblks = 0;
3098                         if (blk_no + hblks <=    3098                         if (blk_no + hblks <= log->l_logBBsize) {
3099                                 /* Read heade    3099                                 /* Read header in one read */
3100                                 error = xlog_    3100                                 error = xlog_bread(log, blk_no, hblks, hbp,
3101                                                  3101                                                    &offset);
3102                                 if (error)       3102                                 if (error)
3103                                         goto     3103                                         goto bread_err2;
3104                         } else {                 3104                         } else {
3105                                 /* This LR is    3105                                 /* This LR is split across physical log end */
3106                                 if (blk_no !=    3106                                 if (blk_no != log->l_logBBsize) {
3107                                         /* so    3107                                         /* some data before physical log end */
3108                                         ASSER    3108                                         ASSERT(blk_no <= INT_MAX);
3109                                         split    3109                                         split_hblks = log->l_logBBsize - (int)blk_no;
3110                                         ASSER    3110                                         ASSERT(split_hblks > 0);
3111                                         error    3111                                         error = xlog_bread(log, blk_no,
3112                                                  3112                                                            split_hblks, hbp,
3113                                                  3113                                                            &offset);
3114                                         if (e    3114                                         if (error)
3115                                                  3115                                                 goto bread_err2;
3116                                 }                3116                                 }
3117                                                  3117 
3118                                 /*               3118                                 /*
3119                                  * Note: this    3119                                  * Note: this black magic still works with
3120                                  * large sect    3120                                  * large sector sizes (non-512) only because:
3121                                  * - we incre    3121                                  * - we increased the buffer size originally
3122                                  *   by 1 sec    3122                                  *   by 1 sector giving us enough extra space
3123                                  *   for the     3123                                  *   for the second read;
3124                                  * - the log     3124                                  * - the log start is guaranteed to be sector
3125                                  *   aligned;    3125                                  *   aligned;
3126                                  * - we read     3126                                  * - we read the log end (LR header start)
3127                                  *   _first_,    3127                                  *   _first_, then the log start (LR header end)
3128                                  *   - order     3128                                  *   - order is important.
3129                                  */              3129                                  */
3130                                 wrapped_hblks    3130                                 wrapped_hblks = hblks - split_hblks;
3131                                 error = xlog_    3131                                 error = xlog_bread_noalign(log, 0,
3132                                                  3132                                                 wrapped_hblks,
3133                                                  3133                                                 offset + BBTOB(split_hblks));
3134                                 if (error)       3134                                 if (error)
3135                                         goto     3135                                         goto bread_err2;
3136                         }                        3136                         }
3137                         rhead = (xlog_rec_hea    3137                         rhead = (xlog_rec_header_t *)offset;
3138                         error = xlog_valid_re    3138                         error = xlog_valid_rec_header(log, rhead,
3139                                         split    3139                                         split_hblks ? blk_no : 0, h_size);
3140                         if (error)               3140                         if (error)
3141                                 goto bread_er    3141                                 goto bread_err2;
3142                                                  3142 
3143                         bblks = (int)BTOBB(be    3143                         bblks = (int)BTOBB(be32_to_cpu(rhead->h_len));
3144                         blk_no += hblks;         3144                         blk_no += hblks;
3145                                                  3145 
3146                         /*                       3146                         /*
3147                          * Read the log recor    3147                          * Read the log record data in multiple reads if it
3148                          * wraps around the e    3148                          * wraps around the end of the log. Note that if the
3149                          * header already wra    3149                          * header already wrapped, blk_no could point past the
3150                          * end of the log. Th    3150                          * end of the log. The record data is contiguous in
3151                          * that case.            3151                          * that case.
3152                          */                      3152                          */
3153                         if (blk_no + bblks <=    3153                         if (blk_no + bblks <= log->l_logBBsize ||
3154                             blk_no >= log->l_    3154                             blk_no >= log->l_logBBsize) {
3155                                 rblk_no = xlo    3155                                 rblk_no = xlog_wrap_logbno(log, blk_no);
3156                                 error = xlog_    3156                                 error = xlog_bread(log, rblk_no, bblks, dbp,
3157                                                  3157                                                    &offset);
3158                                 if (error)       3158                                 if (error)
3159                                         goto     3159                                         goto bread_err2;
3160                         } else {                 3160                         } else {
3161                                 /* This log r    3161                                 /* This log record is split across the
3162                                  * physical e    3162                                  * physical end of log */
3163                                 offset = dbp;    3163                                 offset = dbp;
3164                                 split_bblks =    3164                                 split_bblks = 0;
3165                                 if (blk_no !=    3165                                 if (blk_no != log->l_logBBsize) {
3166                                         /* so    3166                                         /* some data is before the physical
3167                                          * en    3167                                          * end of log */
3168                                         ASSER    3168                                         ASSERT(!wrapped_hblks);
3169                                         ASSER    3169                                         ASSERT(blk_no <= INT_MAX);
3170                                         split    3170                                         split_bblks =
3171                                                  3171                                                 log->l_logBBsize - (int)blk_no;
3172                                         ASSER    3172                                         ASSERT(split_bblks > 0);
3173                                         error    3173                                         error = xlog_bread(log, blk_no,
3174                                                  3174                                                         split_bblks, dbp,
3175                                                  3175                                                         &offset);
3176                                         if (e    3176                                         if (error)
3177                                                  3177                                                 goto bread_err2;
3178                                 }                3178                                 }
3179                                                  3179 
3180                                 /*               3180                                 /*
3181                                  * Note: this    3181                                  * Note: this black magic still works with
3182                                  * large sect    3182                                  * large sector sizes (non-512) only because:
3183                                  * - we incre    3183                                  * - we increased the buffer size originally
3184                                  *   by 1 sec    3184                                  *   by 1 sector giving us enough extra space
3185                                  *   for the     3185                                  *   for the second read;
3186                                  * - the log     3186                                  * - the log start is guaranteed to be sector
3187                                  *   aligned;    3187                                  *   aligned;
3188                                  * - we read     3188                                  * - we read the log end (LR header start)
3189                                  *   _first_,    3189                                  *   _first_, then the log start (LR header end)
3190                                  *   - order     3190                                  *   - order is important.
3191                                  */              3191                                  */
3192                                 error = xlog_    3192                                 error = xlog_bread_noalign(log, 0,
3193                                                  3193                                                 bblks - split_bblks,
3194                                                  3194                                                 offset + BBTOB(split_bblks));
3195                                 if (error)       3195                                 if (error)
3196                                         goto     3196                                         goto bread_err2;
3197                         }                        3197                         }
3198                                                  3198 
3199                         error = xlog_recover_    3199                         error = xlog_recover_process(log, rhash, rhead, offset,
3200                                                  3200                                                      pass, &buffer_list);
3201                         if (error)               3201                         if (error)
3202                                 goto bread_er    3202                                 goto bread_err2;
3203                                                  3203 
3204                         blk_no += bblks;         3204                         blk_no += bblks;
3205                         rhead_blk = blk_no;      3205                         rhead_blk = blk_no;
3206                 }                                3206                 }
3207                                                  3207 
3208                 ASSERT(blk_no >= log->l_logBB    3208                 ASSERT(blk_no >= log->l_logBBsize);
3209                 blk_no -= log->l_logBBsize;      3209                 blk_no -= log->l_logBBsize;
3210                 rhead_blk = blk_no;              3210                 rhead_blk = blk_no;
3211         }                                        3211         }
3212                                                  3212 
3213         /* read first part of physical log */    3213         /* read first part of physical log */
3214         while (blk_no < head_blk) {              3214         while (blk_no < head_blk) {
3215                 error = xlog_bread(log, blk_n    3215                 error = xlog_bread(log, blk_no, hblks, hbp, &offset);
3216                 if (error)                       3216                 if (error)
3217                         goto bread_err2;         3217                         goto bread_err2;
3218                                                  3218 
3219                 rhead = (xlog_rec_header_t *)    3219                 rhead = (xlog_rec_header_t *)offset;
3220                 error = xlog_valid_rec_header    3220                 error = xlog_valid_rec_header(log, rhead, blk_no, h_size);
3221                 if (error)                       3221                 if (error)
3222                         goto bread_err2;         3222                         goto bread_err2;
3223                                                  3223 
3224                 /* blocks in data section */     3224                 /* blocks in data section */
3225                 bblks = (int)BTOBB(be32_to_cp    3225                 bblks = (int)BTOBB(be32_to_cpu(rhead->h_len));
3226                 error = xlog_bread(log, blk_n    3226                 error = xlog_bread(log, blk_no+hblks, bblks, dbp,
3227                                    &offset);     3227                                    &offset);
3228                 if (error)                       3228                 if (error)
3229                         goto bread_err2;         3229                         goto bread_err2;
3230                                                  3230 
3231                 error = xlog_recover_process(    3231                 error = xlog_recover_process(log, rhash, rhead, offset, pass,
3232                                                  3232                                              &buffer_list);
3233                 if (error)                       3233                 if (error)
3234                         goto bread_err2;         3234                         goto bread_err2;
3235                                                  3235 
3236                 blk_no += bblks + hblks;         3236                 blk_no += bblks + hblks;
3237                 rhead_blk = blk_no;              3237                 rhead_blk = blk_no;
3238         }                                        3238         }
3239                                                  3239 
3240  bread_err2:                                     3240  bread_err2:
3241         kvfree(dbp);                             3241         kvfree(dbp);
3242  bread_err1:                                     3242  bread_err1:
3243         kvfree(hbp);                             3243         kvfree(hbp);
3244                                                  3244 
3245         /*                                       3245         /*
3246          * Submit buffers that have been dirt    3246          * Submit buffers that have been dirtied by the last record recovered.
3247          */                                      3247          */
3248         if (!list_empty(&buffer_list)) {         3248         if (!list_empty(&buffer_list)) {
3249                 if (error) {                     3249                 if (error) {
3250                         /*                       3250                         /*
3251                          * If there has been     3251                          * If there has been an item recovery error then we
3252                          * cannot allow parti    3252                          * cannot allow partial checkpoint writeback to
3253                          * occur.  We might h    3253                          * occur.  We might have multiple checkpoints with the
3254                          * same start LSN in     3254                          * same start LSN in this buffer list, and partial
3255                          * writeback of a che    3255                          * writeback of a checkpoint in this situation can
3256                          * prevent future rec    3256                          * prevent future recovery of all the changes in the
3257                          * checkpoints at thi    3257                          * checkpoints at this start LSN.
3258                          *                       3258                          *
3259                          * Note: Shutting dow    3259                          * Note: Shutting down the filesystem will result in the
3260                          * delwri submission     3260                          * delwri submission marking all the buffers stale,
3261                          * completing them an    3261                          * completing them and cleaning up _XBF_LOGRECOVERY
3262                          * state without doin    3262                          * state without doing any IO.
3263                          */                      3263                          */
3264                         xlog_force_shutdown(l    3264                         xlog_force_shutdown(log, SHUTDOWN_LOG_IO_ERROR);
3265                 }                                3265                 }
3266                 error2 = xfs_buf_delwri_submi    3266                 error2 = xfs_buf_delwri_submit(&buffer_list);
3267         }                                        3267         }
3268                                                  3268 
3269         if (error && first_bad)                  3269         if (error && first_bad)
3270                 *first_bad = rhead_blk;          3270                 *first_bad = rhead_blk;
3271                                                  3271 
3272         /*                                       3272         /*
3273          * Transactions are freed at commit t    3273          * Transactions are freed at commit time but transactions without commit
3274          * records on disk are never committe    3274          * records on disk are never committed. Free any that may be left in the
3275          * hash table.                           3275          * hash table.
3276          */                                      3276          */
3277         for (i = 0; i < XLOG_RHASH_SIZE; i++)    3277         for (i = 0; i < XLOG_RHASH_SIZE; i++) {
3278                 struct hlist_node       *tmp;    3278                 struct hlist_node       *tmp;
3279                 struct xlog_recover     *tran    3279                 struct xlog_recover     *trans;
3280                                                  3280 
3281                 hlist_for_each_entry_safe(tra    3281                 hlist_for_each_entry_safe(trans, tmp, &rhash[i], r_list)
3282                         xlog_recover_free_tra    3282                         xlog_recover_free_trans(trans);
3283         }                                        3283         }
3284                                                  3284 
3285         return error ? error : error2;           3285         return error ? error : error2;
3286 }                                                3286 }
3287                                                  3287 
3288 /*                                               3288 /*
3289  * Do the recovery of the log.  We actually d    3289  * Do the recovery of the log.  We actually do this in two phases.
3290  * The two passes are necessary in order to i    3290  * The two passes are necessary in order to implement the function
3291  * of cancelling a record written into the lo    3291  * of cancelling a record written into the log.  The first pass
3292  * determines those things which have been ca    3292  * determines those things which have been cancelled, and the
3293  * second pass replays log items normally exc    3293  * second pass replays log items normally except for those which
3294  * have been cancelled.  The handling of the     3294  * have been cancelled.  The handling of the replay and cancellations
3295  * takes place in the log item type specific     3295  * takes place in the log item type specific routines.
3296  *                                               3296  *
3297  * The table of items which have cancel recor    3297  * The table of items which have cancel records in the log is allocated
3298  * and freed at this level, since only here d    3298  * and freed at this level, since only here do we know when all of
3299  * the log recovery has been completed.          3299  * the log recovery has been completed.
3300  */                                              3300  */
3301 STATIC int                                       3301 STATIC int
3302 xlog_do_log_recovery(                            3302 xlog_do_log_recovery(
3303         struct xlog     *log,                    3303         struct xlog     *log,
3304         xfs_daddr_t     head_blk,                3304         xfs_daddr_t     head_blk,
3305         xfs_daddr_t     tail_blk)                3305         xfs_daddr_t     tail_blk)
3306 {                                                3306 {
3307         int             error;                   3307         int             error;
3308                                                  3308 
3309         ASSERT(head_blk != tail_blk);            3309         ASSERT(head_blk != tail_blk);
3310                                                  3310 
3311         /*                                       3311         /*
3312          * First do a pass to find all of the    3312          * First do a pass to find all of the cancelled buf log items.
3313          * Store them in the buf_cancel_table    3313          * Store them in the buf_cancel_table for use in the second pass.
3314          */                                      3314          */
3315         error = xlog_alloc_buf_cancel_table(l    3315         error = xlog_alloc_buf_cancel_table(log);
3316         if (error)                               3316         if (error)
3317                 return error;                    3317                 return error;
3318                                                  3318 
3319         error = xlog_do_recovery_pass(log, he    3319         error = xlog_do_recovery_pass(log, head_blk, tail_blk,
3320                                       XLOG_RE    3320                                       XLOG_RECOVER_PASS1, NULL);
3321         if (error != 0)                          3321         if (error != 0)
3322                 goto out_cancel;                 3322                 goto out_cancel;
3323                                                  3323 
3324         /*                                       3324         /*
3325          * Then do a second pass to actually     3325          * Then do a second pass to actually recover the items in the log.
3326          * When it is complete free the table    3326          * When it is complete free the table of buf cancel items.
3327          */                                      3327          */
3328         error = xlog_do_recovery_pass(log, he    3328         error = xlog_do_recovery_pass(log, head_blk, tail_blk,
3329                                       XLOG_RE    3329                                       XLOG_RECOVER_PASS2, NULL);
3330         if (!error)                              3330         if (!error)
3331                 xlog_check_buf_cancel_table(l    3331                 xlog_check_buf_cancel_table(log);
3332 out_cancel:                                      3332 out_cancel:
3333         xlog_free_buf_cancel_table(log);         3333         xlog_free_buf_cancel_table(log);
3334         return error;                            3334         return error;
3335 }                                                3335 }
3336                                                  3336 
3337 /*                                               3337 /*
3338  * Do the actual recovery                        3338  * Do the actual recovery
3339  */                                              3339  */
3340 STATIC int                                       3340 STATIC int
3341 xlog_do_recover(                                 3341 xlog_do_recover(
3342         struct xlog             *log,            3342         struct xlog             *log,
3343         xfs_daddr_t             head_blk,        3343         xfs_daddr_t             head_blk,
3344         xfs_daddr_t             tail_blk)        3344         xfs_daddr_t             tail_blk)
3345 {                                                3345 {
3346         struct xfs_mount        *mp = log->l_    3346         struct xfs_mount        *mp = log->l_mp;
3347         struct xfs_buf          *bp = mp->m_s    3347         struct xfs_buf          *bp = mp->m_sb_bp;
3348         struct xfs_sb           *sbp = &mp->m    3348         struct xfs_sb           *sbp = &mp->m_sb;
3349         int                     error;           3349         int                     error;
3350                                                  3350 
3351         trace_xfs_log_recover(log, head_blk,     3351         trace_xfs_log_recover(log, head_blk, tail_blk);
3352                                                  3352 
3353         /*                                       3353         /*
3354          * First replay the images in the log    3354          * First replay the images in the log.
3355          */                                      3355          */
3356         error = xlog_do_log_recovery(log, hea    3356         error = xlog_do_log_recovery(log, head_blk, tail_blk);
3357         if (error)                               3357         if (error)
3358                 return error;                    3358                 return error;
3359                                                  3359 
3360         if (xlog_is_shutdown(log))               3360         if (xlog_is_shutdown(log))
3361                 return -EIO;                     3361                 return -EIO;
3362                                                  3362 
3363         /*                                       3363         /*
3364          * We now update the tail_lsn since m    3364          * We now update the tail_lsn since much of the recovery has completed
3365          * and there may be space available t    3365          * and there may be space available to use.  If there were no extent or
3366          * iunlinks, we can free up the entir    3366          * iunlinks, we can free up the entire log.  This was set in
3367          * xlog_find_tail to be the lsn of th    3367          * xlog_find_tail to be the lsn of the last known good LR on disk.  If
3368          * there are extent frees or iunlinks    3368          * there are extent frees or iunlinks they will have some entries in the
3369          * AIL; so we look at the AIL to dete    3369          * AIL; so we look at the AIL to determine how to set the tail_lsn.
3370          */                                      3370          */
3371         xfs_ail_assign_tail_lsn(log->l_ailp);    3371         xfs_ail_assign_tail_lsn(log->l_ailp);
3372                                                  3372 
3373         /*                                       3373         /*
3374          * Now that we've finished replaying     3374          * Now that we've finished replaying all buffer and inode updates,
3375          * re-read the superblock and reverif    3375          * re-read the superblock and reverify it.
3376          */                                      3376          */
3377         xfs_buf_lock(bp);                        3377         xfs_buf_lock(bp);
3378         xfs_buf_hold(bp);                        3378         xfs_buf_hold(bp);
3379         error = _xfs_buf_read(bp, XBF_READ);     3379         error = _xfs_buf_read(bp, XBF_READ);
3380         if (error) {                             3380         if (error) {
3381                 if (!xlog_is_shutdown(log)) {    3381                 if (!xlog_is_shutdown(log)) {
3382                         xfs_buf_ioerror_alert    3382                         xfs_buf_ioerror_alert(bp, __this_address);
3383                         ASSERT(0);               3383                         ASSERT(0);
3384                 }                                3384                 }
3385                 xfs_buf_relse(bp);               3385                 xfs_buf_relse(bp);
3386                 return error;                    3386                 return error;
3387         }                                        3387         }
3388                                                  3388 
3389         /* Convert superblock from on-disk fo    3389         /* Convert superblock from on-disk format */
3390         xfs_sb_from_disk(sbp, bp->b_addr);       3390         xfs_sb_from_disk(sbp, bp->b_addr);
3391         xfs_buf_relse(bp);                       3391         xfs_buf_relse(bp);
3392                                                  3392 
3393         /* re-initialise in-core superblock a    3393         /* re-initialise in-core superblock and geometry structures */
3394         mp->m_features |= xfs_sb_version_to_f    3394         mp->m_features |= xfs_sb_version_to_features(sbp);
3395         xfs_reinit_percpu_counters(mp);          3395         xfs_reinit_percpu_counters(mp);
3396                                                  3396 
3397         /* Normal transactions can now occur     3397         /* Normal transactions can now occur */
3398         clear_bit(XLOG_ACTIVE_RECOVERY, &log-    3398         clear_bit(XLOG_ACTIVE_RECOVERY, &log->l_opstate);
3399         return 0;                                3399         return 0;
3400 }                                                3400 }
3401                                                  3401 
3402 /*                                               3402 /*
3403  * Perform recovery and re-initialize some lo    3403  * Perform recovery and re-initialize some log variables in xlog_find_tail.
3404  *                                               3404  *
3405  * Return error or zero.                         3405  * Return error or zero.
3406  */                                              3406  */
3407 int                                              3407 int
3408 xlog_recover(                                    3408 xlog_recover(
3409         struct xlog     *log)                    3409         struct xlog     *log)
3410 {                                                3410 {
3411         xfs_daddr_t     head_blk, tail_blk;      3411         xfs_daddr_t     head_blk, tail_blk;
3412         int             error;                   3412         int             error;
3413                                                  3413 
3414         /* find the tail of the log */           3414         /* find the tail of the log */
3415         error = xlog_find_tail(log, &head_blk    3415         error = xlog_find_tail(log, &head_blk, &tail_blk);
3416         if (error)                               3416         if (error)
3417                 return error;                    3417                 return error;
3418                                                  3418 
3419         /*                                       3419         /*
3420          * The superblock was read before the    3420          * The superblock was read before the log was available and thus the LSN
3421          * could not be verified. Check the s    3421          * could not be verified. Check the superblock LSN against the current
3422          * LSN now that it's known.              3422          * LSN now that it's known.
3423          */                                      3423          */
3424         if (xfs_has_crc(log->l_mp) &&            3424         if (xfs_has_crc(log->l_mp) &&
3425             !xfs_log_check_lsn(log->l_mp, log    3425             !xfs_log_check_lsn(log->l_mp, log->l_mp->m_sb.sb_lsn))
3426                 return -EINVAL;                  3426                 return -EINVAL;
3427                                                  3427 
3428         if (tail_blk != head_blk) {              3428         if (tail_blk != head_blk) {
3429                 /* There used to be a comment    3429                 /* There used to be a comment here:
3430                  *                               3430                  *
3431                  * disallow recovery on read-    3431                  * disallow recovery on read-only mounts.  note -- mount
3432                  * checks for ENOSPC and turn    3432                  * checks for ENOSPC and turns it into an intelligent
3433                  * error message.                3433                  * error message.
3434                  * ...but this is no longer t    3434                  * ...but this is no longer true.  Now, unless you specify
3435                  * NORECOVERY (in which case     3435                  * NORECOVERY (in which case this function would never be
3436                  * called), we just go ahead     3436                  * called), we just go ahead and recover.  We do this all
3437                  * under the vfs layer, so we    3437                  * under the vfs layer, so we can get away with it unless
3438                  * the device itself is read-    3438                  * the device itself is read-only, in which case we fail.
3439                  */                              3439                  */
3440                 if ((error = xfs_dev_is_read_    3440                 if ((error = xfs_dev_is_read_only(log->l_mp, "recovery"))) {
3441                         return error;            3441                         return error;
3442                 }                                3442                 }
3443                                                  3443 
3444                 /*                               3444                 /*
3445                  * Version 5 superblock log f    3445                  * Version 5 superblock log feature mask validation. We know the
3446                  * log is dirty so check if t    3446                  * log is dirty so check if there are any unknown log features
3447                  * in what we need to recover    3447                  * in what we need to recover. If there are unknown features
3448                  * (e.g. unsupported transact    3448                  * (e.g. unsupported transactions, then simply reject the
3449                  * attempt at recovery before    3449                  * attempt at recovery before touching anything.
3450                  */                              3450                  */
3451                 if (xfs_sb_is_v5(&log->l_mp->    3451                 if (xfs_sb_is_v5(&log->l_mp->m_sb) &&
3452                     xfs_sb_has_incompat_log_f    3452                     xfs_sb_has_incompat_log_feature(&log->l_mp->m_sb,
3453                                         XFS_S    3453                                         XFS_SB_FEAT_INCOMPAT_LOG_UNKNOWN)) {
3454                         xfs_warn(log->l_mp,      3454                         xfs_warn(log->l_mp,
3455 "Superblock has unknown incompatible log feat    3455 "Superblock has unknown incompatible log features (0x%x) enabled.",
3456                                 (log->l_mp->m    3456                                 (log->l_mp->m_sb.sb_features_log_incompat &
3457                                         XFS_S    3457                                         XFS_SB_FEAT_INCOMPAT_LOG_UNKNOWN));
3458                         xfs_warn(log->l_mp,      3458                         xfs_warn(log->l_mp,
3459 "The log can not be fully and/or safely recov    3459 "The log can not be fully and/or safely recovered by this kernel.");
3460                         xfs_warn(log->l_mp,      3460                         xfs_warn(log->l_mp,
3461 "Please recover the log on a kernel that supp    3461 "Please recover the log on a kernel that supports the unknown features.");
3462                         return -EINVAL;          3462                         return -EINVAL;
3463                 }                                3463                 }
3464                                                  3464 
3465                 /*                               3465                 /*
3466                  * Delay log recovery if the     3466                  * Delay log recovery if the debug hook is set. This is debug
3467                  * instrumentation to coordin    3467                  * instrumentation to coordinate simulation of I/O failures with
3468                  * log recovery.                 3468                  * log recovery.
3469                  */                              3469                  */
3470                 if (xfs_globals.log_recovery_    3470                 if (xfs_globals.log_recovery_delay) {
3471                         xfs_notice(log->l_mp,    3471                         xfs_notice(log->l_mp,
3472                                 "Delaying log    3472                                 "Delaying log recovery for %d seconds.",
3473                                 xfs_globals.l    3473                                 xfs_globals.log_recovery_delay);
3474                         msleep(xfs_globals.lo    3474                         msleep(xfs_globals.log_recovery_delay * 1000);
3475                 }                                3475                 }
3476                                                  3476 
3477                 xfs_notice(log->l_mp, "Starti    3477                 xfs_notice(log->l_mp, "Starting recovery (logdev: %s)",
3478                                 log->l_mp->m_    3478                                 log->l_mp->m_logname ? log->l_mp->m_logname
3479                                                  3479                                                      : "internal");
3480                                                  3480 
3481                 error = xlog_do_recover(log,     3481                 error = xlog_do_recover(log, head_blk, tail_blk);
3482                 set_bit(XLOG_RECOVERY_NEEDED,    3482                 set_bit(XLOG_RECOVERY_NEEDED, &log->l_opstate);
3483         }                                        3483         }
3484         return error;                            3484         return error;
3485 }                                                3485 }
3486                                                  3486 
3487 /*                                               3487 /*
3488  * In the first part of recovery we replay in    3488  * In the first part of recovery we replay inodes and buffers and build up the
3489  * list of intents which need to be processed    3489  * list of intents which need to be processed. Here we process the intents and
3490  * clean up the on disk unlinked inode lists.    3490  * clean up the on disk unlinked inode lists. This is separated from the first
3491  * part of recovery so that the root and real    3491  * part of recovery so that the root and real-time bitmap inodes can be read in
3492  * from disk in between the two stages.  This    3492  * from disk in between the two stages.  This is necessary so that we can free
3493  * space in the real-time portion of the file    3493  * space in the real-time portion of the file system.
3494  *                                               3494  *
3495  * We run this whole process under GFP_NOFS a    3495  * We run this whole process under GFP_NOFS allocation context. We do a
3496  * combination of non-transactional and trans    3496  * combination of non-transactional and transactional work, yet we really don't
3497  * want to recurse into the filesystem from d    3497  * want to recurse into the filesystem from direct reclaim during any of this
3498  * processing. This allows all the recovery c    3498  * processing. This allows all the recovery code run here not to care about the
3499  * memory allocation context it is running in    3499  * memory allocation context it is running in.
3500  */                                              3500  */
3501 int                                              3501 int
3502 xlog_recover_finish(                             3502 xlog_recover_finish(
3503         struct xlog     *log)                    3503         struct xlog     *log)
3504 {                                                3504 {
3505         unsigned int    nofs_flags = memalloc    3505         unsigned int    nofs_flags = memalloc_nofs_save();
3506         int             error;                   3506         int             error;
3507                                                  3507 
3508         error = xlog_recover_process_intents(    3508         error = xlog_recover_process_intents(log);
3509         if (error) {                             3509         if (error) {
3510                 /*                               3510                 /*
3511                  * Cancel all the unprocessed    3511                  * Cancel all the unprocessed intent items now so that we don't
3512                  * leave them pinned in the A    3512                  * leave them pinned in the AIL.  This can cause the AIL to
3513                  * livelock on the pinned ite    3513                  * livelock on the pinned item if anyone tries to push the AIL
3514                  * (inode reclaim does this)     3514                  * (inode reclaim does this) before we get around to
3515                  * xfs_log_mount_cancel.         3515                  * xfs_log_mount_cancel.
3516                  */                              3516                  */
3517                 xlog_recover_cancel_intents(l    3517                 xlog_recover_cancel_intents(log);
3518                 xfs_alert(log->l_mp, "Failed     3518                 xfs_alert(log->l_mp, "Failed to recover intents");
3519                 xlog_force_shutdown(log, SHUT    3519                 xlog_force_shutdown(log, SHUTDOWN_LOG_IO_ERROR);
3520                 goto out_error;                  3520                 goto out_error;
3521         }                                        3521         }
3522                                                  3522 
3523         /*                                       3523         /*
3524          * Sync the log to get all the intent    3524          * Sync the log to get all the intents out of the AIL.  This isn't
3525          * absolutely necessary, but it helps    3525          * absolutely necessary, but it helps in case the unlink transactions
3526          * would have problems pushing the in    3526          * would have problems pushing the intents out of the way.
3527          */                                      3527          */
3528         xfs_log_force(log->l_mp, XFS_LOG_SYNC    3528         xfs_log_force(log->l_mp, XFS_LOG_SYNC);
3529                                                  3529 
3530         xlog_recover_process_iunlinks(log);      3530         xlog_recover_process_iunlinks(log);
3531                                                  3531 
3532         /*                                       3532         /*
3533          * Recover any CoW staging blocks tha    3533          * Recover any CoW staging blocks that are still referenced by the
3534          * ondisk refcount metadata.  During     3534          * ondisk refcount metadata.  During mount there cannot be any live
3535          * staging extents as we have not per    3535          * staging extents as we have not permitted any user modifications.
3536          * Therefore, it is safe to free them    3536          * Therefore, it is safe to free them all right now, even on a
3537          * read-only mount.                      3537          * read-only mount.
3538          */                                      3538          */
3539         error = xfs_reflink_recover_cow(log->    3539         error = xfs_reflink_recover_cow(log->l_mp);
3540         if (error) {                             3540         if (error) {
3541                 xfs_alert(log->l_mp,             3541                 xfs_alert(log->l_mp,
3542         "Failed to recover leftover CoW stagi    3542         "Failed to recover leftover CoW staging extents, err %d.",
3543                                 error);          3543                                 error);
3544                 /*                               3544                 /*
3545                  * If we get an error here, m    3545                  * If we get an error here, make sure the log is shut down
3546                  * but return zero so that an    3546                  * but return zero so that any log items committed since the
3547                  * end of intents processing     3547                  * end of intents processing can be pushed through the CIL
3548                  * and AIL.                      3548                  * and AIL.
3549                  */                              3549                  */
3550                 xlog_force_shutdown(log, SHUT    3550                 xlog_force_shutdown(log, SHUTDOWN_LOG_IO_ERROR);
3551                 error = 0;                       3551                 error = 0;
3552                 goto out_error;                  3552                 goto out_error;
3553         }                                        3553         }
3554                                                  3554 
3555 out_error:                                       3555 out_error:
3556         memalloc_nofs_restore(nofs_flags);       3556         memalloc_nofs_restore(nofs_flags);
3557         return error;                            3557         return error;
3558 }                                                3558 }
3559                                                  3559 
3560 void                                             3560 void
3561 xlog_recover_cancel(                             3561 xlog_recover_cancel(
3562         struct xlog     *log)                    3562         struct xlog     *log)
3563 {                                                3563 {
3564         if (xlog_recovery_needed(log))           3564         if (xlog_recovery_needed(log))
3565                 xlog_recover_cancel_intents(l    3565                 xlog_recover_cancel_intents(log);
3566 }                                                3566 }
3567                                                  3567 
3568                                                  3568 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

sflogo.php