1 // SPDX-License-Identifier: GPL-2.0 1 // SPDX-License-Identifier: GPL-2.0 2 /* 2 /* 3 * Copyright (c) 2000-2006 Silicon Graphics, I 3 * Copyright (c) 2000-2006 Silicon Graphics, Inc. 4 * All Rights Reserved. 4 * All Rights Reserved. 5 */ 5 */ 6 #include "xfs.h" 6 #include "xfs.h" 7 #include "xfs_fs.h" 7 #include "xfs_fs.h" 8 #include "xfs_shared.h" 8 #include "xfs_shared.h" 9 #include "xfs_format.h" 9 #include "xfs_format.h" 10 #include "xfs_log_format.h" 10 #include "xfs_log_format.h" 11 #include "xfs_trans_resv.h" 11 #include "xfs_trans_resv.h" 12 #include "xfs_bit.h" 12 #include "xfs_bit.h" 13 #include "xfs_sb.h" 13 #include "xfs_sb.h" 14 #include "xfs_mount.h" 14 #include "xfs_mount.h" 15 #include "xfs_defer.h" 15 #include "xfs_defer.h" 16 #include "xfs_inode.h" 16 #include "xfs_inode.h" 17 #include "xfs_trans.h" 17 #include "xfs_trans.h" 18 #include "xfs_log.h" 18 #include "xfs_log.h" 19 #include "xfs_log_priv.h" 19 #include "xfs_log_priv.h" 20 #include "xfs_log_recover.h" 20 #include "xfs_log_recover.h" 21 #include "xfs_trans_priv.h" 21 #include "xfs_trans_priv.h" 22 #include "xfs_alloc.h" 22 #include "xfs_alloc.h" 23 #include "xfs_ialloc.h" 23 #include "xfs_ialloc.h" 24 #include "xfs_trace.h" 24 #include "xfs_trace.h" 25 #include "xfs_icache.h" 25 #include "xfs_icache.h" 26 #include "xfs_error.h" 26 #include "xfs_error.h" 27 #include "xfs_buf_item.h" 27 #include "xfs_buf_item.h" 28 #include "xfs_ag.h" 28 #include "xfs_ag.h" 29 #include "xfs_quota.h" 29 #include "xfs_quota.h" 30 #include "xfs_reflink.h" 30 #include "xfs_reflink.h" 31 31 32 #define BLK_AVG(blk1, blk2) ((blk1+blk2) > 32 #define BLK_AVG(blk1, blk2) ((blk1+blk2) >> 1) 33 33 34 STATIC int 34 STATIC int 35 xlog_find_zeroed( 35 xlog_find_zeroed( 36 struct xlog *, 36 struct xlog *, 37 xfs_daddr_t *); 37 xfs_daddr_t *); 38 STATIC int 38 STATIC int 39 xlog_clear_stale_blocks( 39 xlog_clear_stale_blocks( 40 struct xlog *, 40 struct xlog *, 41 xfs_lsn_t); 41 xfs_lsn_t); 42 STATIC int 42 STATIC int 43 xlog_do_recovery_pass( 43 xlog_do_recovery_pass( 44 struct xlog *, xfs_daddr_t, xfs_daddr_ 44 struct xlog *, xfs_daddr_t, xfs_daddr_t, int, xfs_daddr_t *); 45 45 46 /* 46 /* 47 * Sector aligned buffer routines for buffer c 47 * Sector aligned buffer routines for buffer create/read/write/access 48 */ 48 */ 49 49 50 /* 50 /* 51 * Verify the log-relative block number and le 51 * Verify the log-relative block number and length in basic blocks are valid for 52 * an operation involving the given XFS log bu 52 * an operation involving the given XFS log buffer. Returns true if the fields 53 * are valid, false otherwise. 53 * are valid, false otherwise. 54 */ 54 */ 55 static inline bool 55 static inline bool 56 xlog_verify_bno( 56 xlog_verify_bno( 57 struct xlog *log, 57 struct xlog *log, 58 xfs_daddr_t blk_no, 58 xfs_daddr_t blk_no, 59 int bbcount) 59 int bbcount) 60 { 60 { 61 if (blk_no < 0 || blk_no >= log->l_log 61 if (blk_no < 0 || blk_no >= log->l_logBBsize) 62 return false; 62 return false; 63 if (bbcount <= 0 || (blk_no + bbcount) 63 if (bbcount <= 0 || (blk_no + bbcount) > log->l_logBBsize) 64 return false; 64 return false; 65 return true; 65 return true; 66 } 66 } 67 67 68 /* 68 /* 69 * Allocate a buffer to hold log data. The bu 69 * Allocate a buffer to hold log data. The buffer needs to be able to map to 70 * a range of nbblks basic blocks at any valid 70 * a range of nbblks basic blocks at any valid offset within the log. 71 */ 71 */ 72 static char * 72 static char * 73 xlog_alloc_buffer( 73 xlog_alloc_buffer( 74 struct xlog *log, 74 struct xlog *log, 75 int nbblks) 75 int nbblks) 76 { 76 { 77 /* 77 /* 78 * Pass log block 0 since we don't hav 78 * Pass log block 0 since we don't have an addr yet, buffer will be 79 * verified on read. 79 * verified on read. 80 */ 80 */ 81 if (XFS_IS_CORRUPT(log->l_mp, !xlog_ve 81 if (XFS_IS_CORRUPT(log->l_mp, !xlog_verify_bno(log, 0, nbblks))) { 82 xfs_warn(log->l_mp, "Invalid b 82 xfs_warn(log->l_mp, "Invalid block length (0x%x) for buffer", 83 nbblks); 83 nbblks); 84 return NULL; 84 return NULL; 85 } 85 } 86 86 87 /* 87 /* 88 * We do log I/O in units of log secto 88 * We do log I/O in units of log sectors (a power-of-2 multiple of the 89 * basic block size), so we round up t 89 * basic block size), so we round up the requested size to accommodate 90 * the basic blocks required for compl 90 * the basic blocks required for complete log sectors. 91 * 91 * 92 * In addition, the buffer may be used 92 * In addition, the buffer may be used for a non-sector-aligned block 93 * offset, in which case an I/O of the 93 * offset, in which case an I/O of the requested size could extend 94 * beyond the end of the buffer. If t 94 * beyond the end of the buffer. If the requested size is only 1 basic 95 * block it will never straddle a sect 95 * block it will never straddle a sector boundary, so this won't be an 96 * issue. Nor will this be a problem 96 * issue. Nor will this be a problem if the log I/O is done in basic 97 * blocks (sector size 1). But otherw 97 * blocks (sector size 1). But otherwise we extend the buffer by one 98 * extra log sector to ensure there's 98 * extra log sector to ensure there's space to accommodate this 99 * possibility. 99 * possibility. 100 */ 100 */ 101 if (nbblks > 1 && log->l_sectBBsize > 101 if (nbblks > 1 && log->l_sectBBsize > 1) 102 nbblks += log->l_sectBBsize; 102 nbblks += log->l_sectBBsize; 103 nbblks = round_up(nbblks, log->l_sectB 103 nbblks = round_up(nbblks, log->l_sectBBsize); 104 return kvzalloc(BBTOB(nbblks), GFP_KER 104 return kvzalloc(BBTOB(nbblks), GFP_KERNEL | __GFP_RETRY_MAYFAIL); 105 } 105 } 106 106 107 /* 107 /* 108 * Return the address of the start of the give 108 * Return the address of the start of the given block number's data 109 * in a log buffer. The buffer covers a log s 109 * in a log buffer. The buffer covers a log sector-aligned region. 110 */ 110 */ 111 static inline unsigned int 111 static inline unsigned int 112 xlog_align( 112 xlog_align( 113 struct xlog *log, 113 struct xlog *log, 114 xfs_daddr_t blk_no) 114 xfs_daddr_t blk_no) 115 { 115 { 116 return BBTOB(blk_no & ((xfs_daddr_t)lo 116 return BBTOB(blk_no & ((xfs_daddr_t)log->l_sectBBsize - 1)); 117 } 117 } 118 118 119 static int 119 static int 120 xlog_do_io( 120 xlog_do_io( 121 struct xlog *log, 121 struct xlog *log, 122 xfs_daddr_t blk_no, 122 xfs_daddr_t blk_no, 123 unsigned int nbblks, 123 unsigned int nbblks, 124 char *data, 124 char *data, 125 enum req_op op) 125 enum req_op op) 126 { 126 { 127 int error; 127 int error; 128 128 129 if (XFS_IS_CORRUPT(log->l_mp, !xlog_ve 129 if (XFS_IS_CORRUPT(log->l_mp, !xlog_verify_bno(log, blk_no, nbblks))) { 130 xfs_warn(log->l_mp, 130 xfs_warn(log->l_mp, 131 "Invalid log block/le 131 "Invalid log block/length (0x%llx, 0x%x) for buffer", 132 blk_no, nbblks); 132 blk_no, nbblks); 133 return -EFSCORRUPTED; 133 return -EFSCORRUPTED; 134 } 134 } 135 135 136 blk_no = round_down(blk_no, log->l_sec 136 blk_no = round_down(blk_no, log->l_sectBBsize); 137 nbblks = round_up(nbblks, log->l_sectB 137 nbblks = round_up(nbblks, log->l_sectBBsize); 138 ASSERT(nbblks > 0); 138 ASSERT(nbblks > 0); 139 139 140 error = xfs_rw_bdev(log->l_targ->bt_bd 140 error = xfs_rw_bdev(log->l_targ->bt_bdev, log->l_logBBstart + blk_no, 141 BBTOB(nbblks), data, o 141 BBTOB(nbblks), data, op); 142 if (error && !xlog_is_shutdown(log)) { 142 if (error && !xlog_is_shutdown(log)) { 143 xfs_alert(log->l_mp, 143 xfs_alert(log->l_mp, 144 "log recovery %s I/O 144 "log recovery %s I/O error at daddr 0x%llx len %d error %d", 145 op == REQ_OP_WRITE ? 145 op == REQ_OP_WRITE ? "write" : "read", 146 blk_no, nbblks, erro 146 blk_no, nbblks, error); 147 } 147 } 148 return error; 148 return error; 149 } 149 } 150 150 151 STATIC int 151 STATIC int 152 xlog_bread_noalign( 152 xlog_bread_noalign( 153 struct xlog *log, 153 struct xlog *log, 154 xfs_daddr_t blk_no, 154 xfs_daddr_t blk_no, 155 int nbblks, 155 int nbblks, 156 char *data) 156 char *data) 157 { 157 { 158 return xlog_do_io(log, blk_no, nbblks, 158 return xlog_do_io(log, blk_no, nbblks, data, REQ_OP_READ); 159 } 159 } 160 160 161 STATIC int 161 STATIC int 162 xlog_bread( 162 xlog_bread( 163 struct xlog *log, 163 struct xlog *log, 164 xfs_daddr_t blk_no, 164 xfs_daddr_t blk_no, 165 int nbblks, 165 int nbblks, 166 char *data, 166 char *data, 167 char **offset) 167 char **offset) 168 { 168 { 169 int error; 169 int error; 170 170 171 error = xlog_do_io(log, blk_no, nbblks 171 error = xlog_do_io(log, blk_no, nbblks, data, REQ_OP_READ); 172 if (!error) 172 if (!error) 173 *offset = data + xlog_align(lo 173 *offset = data + xlog_align(log, blk_no); 174 return error; 174 return error; 175 } 175 } 176 176 177 STATIC int 177 STATIC int 178 xlog_bwrite( 178 xlog_bwrite( 179 struct xlog *log, 179 struct xlog *log, 180 xfs_daddr_t blk_no, 180 xfs_daddr_t blk_no, 181 int nbblks, 181 int nbblks, 182 char *data) 182 char *data) 183 { 183 { 184 return xlog_do_io(log, blk_no, nbblks, 184 return xlog_do_io(log, blk_no, nbblks, data, REQ_OP_WRITE); 185 } 185 } 186 186 187 #ifdef DEBUG 187 #ifdef DEBUG 188 /* 188 /* 189 * dump debug superblock and log record inform 189 * dump debug superblock and log record information 190 */ 190 */ 191 STATIC void 191 STATIC void 192 xlog_header_check_dump( 192 xlog_header_check_dump( 193 xfs_mount_t *mp, 193 xfs_mount_t *mp, 194 xlog_rec_header_t *head) 194 xlog_rec_header_t *head) 195 { 195 { 196 xfs_debug(mp, "%s: SB : uuid = %pU, f 196 xfs_debug(mp, "%s: SB : uuid = %pU, fmt = %d", 197 __func__, &mp->m_sb.sb_uuid, X 197 __func__, &mp->m_sb.sb_uuid, XLOG_FMT); 198 xfs_debug(mp, " log : uuid = %pU, f 198 xfs_debug(mp, " log : uuid = %pU, fmt = %d", 199 &head->h_fs_uuid, be32_to_cpu( 199 &head->h_fs_uuid, be32_to_cpu(head->h_fmt)); 200 } 200 } 201 #else 201 #else 202 #define xlog_header_check_dump(mp, head) 202 #define xlog_header_check_dump(mp, head) 203 #endif 203 #endif 204 204 205 /* 205 /* 206 * check log record header for recovery 206 * check log record header for recovery 207 */ 207 */ 208 STATIC int 208 STATIC int 209 xlog_header_check_recover( 209 xlog_header_check_recover( 210 xfs_mount_t *mp, 210 xfs_mount_t *mp, 211 xlog_rec_header_t *head) 211 xlog_rec_header_t *head) 212 { 212 { 213 ASSERT(head->h_magicno == cpu_to_be32( 213 ASSERT(head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM)); 214 214 215 /* 215 /* 216 * IRIX doesn't write the h_fmt field 216 * IRIX doesn't write the h_fmt field and leaves it zeroed 217 * (XLOG_FMT_UNKNOWN). This stops us f 217 * (XLOG_FMT_UNKNOWN). This stops us from trying to recover 218 * a dirty log created in IRIX. 218 * a dirty log created in IRIX. 219 */ 219 */ 220 if (XFS_IS_CORRUPT(mp, head->h_fmt != 220 if (XFS_IS_CORRUPT(mp, head->h_fmt != cpu_to_be32(XLOG_FMT))) { 221 xfs_warn(mp, 221 xfs_warn(mp, 222 "dirty log written in incompatible for 222 "dirty log written in incompatible format - can't recover"); 223 xlog_header_check_dump(mp, hea 223 xlog_header_check_dump(mp, head); 224 return -EFSCORRUPTED; 224 return -EFSCORRUPTED; 225 } 225 } 226 if (XFS_IS_CORRUPT(mp, !uuid_equal(&mp 226 if (XFS_IS_CORRUPT(mp, !uuid_equal(&mp->m_sb.sb_uuid, 227 &he 227 &head->h_fs_uuid))) { 228 xfs_warn(mp, 228 xfs_warn(mp, 229 "dirty log entry has mismatched uuid - 229 "dirty log entry has mismatched uuid - can't recover"); 230 xlog_header_check_dump(mp, hea 230 xlog_header_check_dump(mp, head); 231 return -EFSCORRUPTED; 231 return -EFSCORRUPTED; 232 } 232 } 233 return 0; 233 return 0; 234 } 234 } 235 235 236 /* 236 /* 237 * read the head block of the log and check th 237 * read the head block of the log and check the header 238 */ 238 */ 239 STATIC int 239 STATIC int 240 xlog_header_check_mount( 240 xlog_header_check_mount( 241 xfs_mount_t *mp, 241 xfs_mount_t *mp, 242 xlog_rec_header_t *head) 242 xlog_rec_header_t *head) 243 { 243 { 244 ASSERT(head->h_magicno == cpu_to_be32( 244 ASSERT(head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM)); 245 245 246 if (uuid_is_null(&head->h_fs_uuid)) { 246 if (uuid_is_null(&head->h_fs_uuid)) { 247 /* 247 /* 248 * IRIX doesn't write the h_fs 248 * IRIX doesn't write the h_fs_uuid or h_fmt fields. If 249 * h_fs_uuid is null, we assum 249 * h_fs_uuid is null, we assume this log was last mounted 250 * by IRIX and continue. 250 * by IRIX and continue. 251 */ 251 */ 252 xfs_warn(mp, "null uuid in log 252 xfs_warn(mp, "null uuid in log - IRIX style log"); 253 } else if (XFS_IS_CORRUPT(mp, !uuid_eq 253 } else if (XFS_IS_CORRUPT(mp, !uuid_equal(&mp->m_sb.sb_uuid, 254 254 &head->h_fs_uuid))) { 255 xfs_warn(mp, "log has mismatch 255 xfs_warn(mp, "log has mismatched uuid - can't recover"); 256 xlog_header_check_dump(mp, hea 256 xlog_header_check_dump(mp, head); 257 return -EFSCORRUPTED; 257 return -EFSCORRUPTED; 258 } 258 } 259 return 0; 259 return 0; 260 } 260 } 261 261 262 /* 262 /* 263 * This routine finds (to an approximation) th 263 * This routine finds (to an approximation) the first block in the physical 264 * log which contains the given cycle. It use 264 * log which contains the given cycle. It uses a binary search algorithm. 265 * Note that the algorithm can not be perfect 265 * Note that the algorithm can not be perfect because the disk will not 266 * necessarily be perfect. 266 * necessarily be perfect. 267 */ 267 */ 268 STATIC int 268 STATIC int 269 xlog_find_cycle_start( 269 xlog_find_cycle_start( 270 struct xlog *log, 270 struct xlog *log, 271 char *buffer, 271 char *buffer, 272 xfs_daddr_t first_blk, 272 xfs_daddr_t first_blk, 273 xfs_daddr_t *last_blk, 273 xfs_daddr_t *last_blk, 274 uint cycle) 274 uint cycle) 275 { 275 { 276 char *offset; 276 char *offset; 277 xfs_daddr_t mid_blk; 277 xfs_daddr_t mid_blk; 278 xfs_daddr_t end_blk; 278 xfs_daddr_t end_blk; 279 uint mid_cycle; 279 uint mid_cycle; 280 int error; 280 int error; 281 281 282 end_blk = *last_blk; 282 end_blk = *last_blk; 283 mid_blk = BLK_AVG(first_blk, end_blk); 283 mid_blk = BLK_AVG(first_blk, end_blk); 284 while (mid_blk != first_blk && mid_blk 284 while (mid_blk != first_blk && mid_blk != end_blk) { 285 error = xlog_bread(log, mid_bl 285 error = xlog_bread(log, mid_blk, 1, buffer, &offset); 286 if (error) 286 if (error) 287 return error; 287 return error; 288 mid_cycle = xlog_get_cycle(off 288 mid_cycle = xlog_get_cycle(offset); 289 if (mid_cycle == cycle) 289 if (mid_cycle == cycle) 290 end_blk = mid_blk; / 290 end_blk = mid_blk; /* last_half_cycle == mid_cycle */ 291 else 291 else 292 first_blk = mid_blk; / 292 first_blk = mid_blk; /* first_half_cycle == mid_cycle */ 293 mid_blk = BLK_AVG(first_blk, e 293 mid_blk = BLK_AVG(first_blk, end_blk); 294 } 294 } 295 ASSERT((mid_blk == first_blk && mid_bl 295 ASSERT((mid_blk == first_blk && mid_blk+1 == end_blk) || 296 (mid_blk == end_blk && mid_blk- 296 (mid_blk == end_blk && mid_blk-1 == first_blk)); 297 297 298 *last_blk = end_blk; 298 *last_blk = end_blk; 299 299 300 return 0; 300 return 0; 301 } 301 } 302 302 303 /* 303 /* 304 * Check that a range of blocks does not conta 304 * Check that a range of blocks does not contain stop_on_cycle_no. 305 * Fill in *new_blk with the block offset wher 305 * Fill in *new_blk with the block offset where such a block is 306 * found, or with -1 (an invalid block number) 306 * found, or with -1 (an invalid block number) if there is no such 307 * block in the range. The scan needs to occu 307 * block in the range. The scan needs to occur from front to back 308 * and the pointer into the region must be upd 308 * and the pointer into the region must be updated since a later 309 * routine will need to perform another test. 309 * routine will need to perform another test. 310 */ 310 */ 311 STATIC int 311 STATIC int 312 xlog_find_verify_cycle( 312 xlog_find_verify_cycle( 313 struct xlog *log, 313 struct xlog *log, 314 xfs_daddr_t start_blk, 314 xfs_daddr_t start_blk, 315 int nbblks, 315 int nbblks, 316 uint stop_on_cycle_no, 316 uint stop_on_cycle_no, 317 xfs_daddr_t *new_blk) 317 xfs_daddr_t *new_blk) 318 { 318 { 319 xfs_daddr_t i, j; 319 xfs_daddr_t i, j; 320 uint cycle; 320 uint cycle; 321 char *buffer; 321 char *buffer; 322 xfs_daddr_t bufblks; 322 xfs_daddr_t bufblks; 323 char *buf = NULL; 323 char *buf = NULL; 324 int error = 0; 324 int error = 0; 325 325 326 /* 326 /* 327 * Greedily allocate a buffer big enou 327 * Greedily allocate a buffer big enough to handle the full 328 * range of basic blocks we'll be exam 328 * range of basic blocks we'll be examining. If that fails, 329 * try a smaller size. We need to be 329 * try a smaller size. We need to be able to read at least 330 * a log sector, or we're out of luck. 330 * a log sector, or we're out of luck. 331 */ 331 */ 332 bufblks = roundup_pow_of_two(nbblks); 332 bufblks = roundup_pow_of_two(nbblks); 333 while (bufblks > log->l_logBBsize) 333 while (bufblks > log->l_logBBsize) 334 bufblks >>= 1; 334 bufblks >>= 1; 335 while (!(buffer = xlog_alloc_buffer(lo 335 while (!(buffer = xlog_alloc_buffer(log, bufblks))) { 336 bufblks >>= 1; 336 bufblks >>= 1; 337 if (bufblks < log->l_sectBBsiz 337 if (bufblks < log->l_sectBBsize) 338 return -ENOMEM; 338 return -ENOMEM; 339 } 339 } 340 340 341 for (i = start_blk; i < start_blk + nb 341 for (i = start_blk; i < start_blk + nbblks; i += bufblks) { 342 int bcount; 342 int bcount; 343 343 344 bcount = min(bufblks, (start_b 344 bcount = min(bufblks, (start_blk + nbblks - i)); 345 345 346 error = xlog_bread(log, i, bco 346 error = xlog_bread(log, i, bcount, buffer, &buf); 347 if (error) 347 if (error) 348 goto out; 348 goto out; 349 349 350 for (j = 0; j < bcount; j++) { 350 for (j = 0; j < bcount; j++) { 351 cycle = xlog_get_cycle 351 cycle = xlog_get_cycle(buf); 352 if (cycle == stop_on_c 352 if (cycle == stop_on_cycle_no) { 353 *new_blk = i+j 353 *new_blk = i+j; 354 goto out; 354 goto out; 355 } 355 } 356 356 357 buf += BBSIZE; 357 buf += BBSIZE; 358 } 358 } 359 } 359 } 360 360 361 *new_blk = -1; 361 *new_blk = -1; 362 362 363 out: 363 out: 364 kvfree(buffer); 364 kvfree(buffer); 365 return error; 365 return error; 366 } 366 } 367 367 368 static inline int 368 static inline int 369 xlog_logrec_hblks(struct xlog *log, struct xlo 369 xlog_logrec_hblks(struct xlog *log, struct xlog_rec_header *rh) 370 { 370 { 371 if (xfs_has_logv2(log->l_mp)) { 371 if (xfs_has_logv2(log->l_mp)) { 372 int h_size = be32_to_cpu(r 372 int h_size = be32_to_cpu(rh->h_size); 373 373 374 if ((be32_to_cpu(rh->h_version 374 if ((be32_to_cpu(rh->h_version) & XLOG_VERSION_2) && 375 h_size > XLOG_HEADER_CYCLE 375 h_size > XLOG_HEADER_CYCLE_SIZE) 376 return DIV_ROUND_UP(h_ 376 return DIV_ROUND_UP(h_size, XLOG_HEADER_CYCLE_SIZE); 377 } 377 } 378 return 1; 378 return 1; 379 } 379 } 380 380 381 /* 381 /* 382 * Potentially backup over partial log record 382 * Potentially backup over partial log record write. 383 * 383 * 384 * In the typical case, last_blk is the number 384 * In the typical case, last_blk is the number of the block directly after 385 * a good log record. Therefore, we subtract 385 * a good log record. Therefore, we subtract one to get the block number 386 * of the last block in the given buffer. ext 386 * of the last block in the given buffer. extra_bblks contains the number 387 * of blocks we would have read on a previous 387 * of blocks we would have read on a previous read. This happens when the 388 * last log record is split over the end of th 388 * last log record is split over the end of the physical log. 389 * 389 * 390 * extra_bblks is the number of blocks potenti 390 * extra_bblks is the number of blocks potentially verified on a previous 391 * call to this routine. 391 * call to this routine. 392 */ 392 */ 393 STATIC int 393 STATIC int 394 xlog_find_verify_log_record( 394 xlog_find_verify_log_record( 395 struct xlog *log, 395 struct xlog *log, 396 xfs_daddr_t start_blk, 396 xfs_daddr_t start_blk, 397 xfs_daddr_t *last_blk, 397 xfs_daddr_t *last_blk, 398 int extra_bblks) 398 int extra_bblks) 399 { 399 { 400 xfs_daddr_t i; 400 xfs_daddr_t i; 401 char *buffer; 401 char *buffer; 402 char *offset = NULL 402 char *offset = NULL; 403 xlog_rec_header_t *head = NULL; 403 xlog_rec_header_t *head = NULL; 404 int error = 0; 404 int error = 0; 405 int smallmem = 0; 405 int smallmem = 0; 406 int num_blks = *la 406 int num_blks = *last_blk - start_blk; 407 int xhdrs; 407 int xhdrs; 408 408 409 ASSERT(start_blk != 0 || *last_blk != 409 ASSERT(start_blk != 0 || *last_blk != start_blk); 410 410 411 buffer = xlog_alloc_buffer(log, num_bl 411 buffer = xlog_alloc_buffer(log, num_blks); 412 if (!buffer) { 412 if (!buffer) { 413 buffer = xlog_alloc_buffer(log 413 buffer = xlog_alloc_buffer(log, 1); 414 if (!buffer) 414 if (!buffer) 415 return -ENOMEM; 415 return -ENOMEM; 416 smallmem = 1; 416 smallmem = 1; 417 } else { 417 } else { 418 error = xlog_bread(log, start_ 418 error = xlog_bread(log, start_blk, num_blks, buffer, &offset); 419 if (error) 419 if (error) 420 goto out; 420 goto out; 421 offset += ((num_blks - 1) << B 421 offset += ((num_blks - 1) << BBSHIFT); 422 } 422 } 423 423 424 for (i = (*last_blk) - 1; i >= 0; i--) 424 for (i = (*last_blk) - 1; i >= 0; i--) { 425 if (i < start_blk) { 425 if (i < start_blk) { 426 /* valid log record no 426 /* valid log record not found */ 427 xfs_warn(log->l_mp, 427 xfs_warn(log->l_mp, 428 "Log inconsistent (didn't find 428 "Log inconsistent (didn't find previous header)"); 429 ASSERT(0); 429 ASSERT(0); 430 error = -EFSCORRUPTED; 430 error = -EFSCORRUPTED; 431 goto out; 431 goto out; 432 } 432 } 433 433 434 if (smallmem) { 434 if (smallmem) { 435 error = xlog_bread(log 435 error = xlog_bread(log, i, 1, buffer, &offset); 436 if (error) 436 if (error) 437 goto out; 437 goto out; 438 } 438 } 439 439 440 head = (xlog_rec_header_t *)of 440 head = (xlog_rec_header_t *)offset; 441 441 442 if (head->h_magicno == cpu_to_ 442 if (head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) 443 break; 443 break; 444 444 445 if (!smallmem) 445 if (!smallmem) 446 offset -= BBSIZE; 446 offset -= BBSIZE; 447 } 447 } 448 448 449 /* 449 /* 450 * We hit the beginning of the physica 450 * We hit the beginning of the physical log & still no header. Return 451 * to caller. If caller can handle a 451 * to caller. If caller can handle a return of -1, then this routine 452 * will be called again for the end of 452 * will be called again for the end of the physical log. 453 */ 453 */ 454 if (i == -1) { 454 if (i == -1) { 455 error = 1; 455 error = 1; 456 goto out; 456 goto out; 457 } 457 } 458 458 459 /* 459 /* 460 * We have the final block of the good 460 * We have the final block of the good log (the first block 461 * of the log record _before_ the head 461 * of the log record _before_ the head. So we check the uuid. 462 */ 462 */ 463 if ((error = xlog_header_check_mount(l 463 if ((error = xlog_header_check_mount(log->l_mp, head))) 464 goto out; 464 goto out; 465 465 466 /* 466 /* 467 * We may have found a log record head 467 * We may have found a log record header before we expected one. 468 * last_blk will be the 1st block # wi 468 * last_blk will be the 1st block # with a given cycle #. We may end 469 * up reading an entire log record. I 469 * up reading an entire log record. In this case, we don't want to 470 * reset last_blk. Only when last_blk 470 * reset last_blk. Only when last_blk points in the middle of a log 471 * record do we update last_blk. 471 * record do we update last_blk. 472 */ 472 */ 473 xhdrs = xlog_logrec_hblks(log, head); 473 xhdrs = xlog_logrec_hblks(log, head); 474 474 475 if (*last_blk - i + extra_bblks != 475 if (*last_blk - i + extra_bblks != 476 BTOBB(be32_to_cpu(head->h_len)) + 476 BTOBB(be32_to_cpu(head->h_len)) + xhdrs) 477 *last_blk = i; 477 *last_blk = i; 478 478 479 out: 479 out: 480 kvfree(buffer); 480 kvfree(buffer); 481 return error; 481 return error; 482 } 482 } 483 483 484 /* 484 /* 485 * Head is defined to be the point of the log 485 * Head is defined to be the point of the log where the next log write 486 * could go. This means that incomplete LR wr 486 * could go. This means that incomplete LR writes at the end are 487 * eliminated when calculating the head. We a 487 * eliminated when calculating the head. We aren't guaranteed that previous 488 * LR have complete transactions. We only kno 488 * LR have complete transactions. We only know that a cycle number of 489 * current cycle number -1 won't be present in 489 * current cycle number -1 won't be present in the log if we start writing 490 * from our current block number. 490 * from our current block number. 491 * 491 * 492 * last_blk contains the block number of the f 492 * last_blk contains the block number of the first block with a given 493 * cycle number. 493 * cycle number. 494 * 494 * 495 * Return: zero if normal, non-zero if error. 495 * Return: zero if normal, non-zero if error. 496 */ 496 */ 497 STATIC int 497 STATIC int 498 xlog_find_head( 498 xlog_find_head( 499 struct xlog *log, 499 struct xlog *log, 500 xfs_daddr_t *return_head_blk) 500 xfs_daddr_t *return_head_blk) 501 { 501 { 502 char *buffer; 502 char *buffer; 503 char *offset; 503 char *offset; 504 xfs_daddr_t new_blk, first_blk, st 504 xfs_daddr_t new_blk, first_blk, start_blk, last_blk, head_blk; 505 int num_scan_bblks; 505 int num_scan_bblks; 506 uint first_half_cycle, last 506 uint first_half_cycle, last_half_cycle; 507 uint stop_on_cycle; 507 uint stop_on_cycle; 508 int error, log_bbnum = log 508 int error, log_bbnum = log->l_logBBsize; 509 509 510 /* Is the end of the log device zeroed 510 /* Is the end of the log device zeroed? */ 511 error = xlog_find_zeroed(log, &first_b 511 error = xlog_find_zeroed(log, &first_blk); 512 if (error < 0) { 512 if (error < 0) { 513 xfs_warn(log->l_mp, "empty log 513 xfs_warn(log->l_mp, "empty log check failed"); 514 return error; 514 return error; 515 } 515 } 516 if (error == 1) { 516 if (error == 1) { 517 *return_head_blk = first_blk; 517 *return_head_blk = first_blk; 518 518 519 /* Is the whole lot zeroed? */ 519 /* Is the whole lot zeroed? */ 520 if (!first_blk) { 520 if (!first_blk) { 521 /* Linux XFS shouldn't 521 /* Linux XFS shouldn't generate totally zeroed logs - 522 * mkfs etc write a du 522 * mkfs etc write a dummy unmount record to a fresh 523 * log so we can store 523 * log so we can store the uuid in there 524 */ 524 */ 525 xfs_warn(log->l_mp, "t 525 xfs_warn(log->l_mp, "totally zeroed log"); 526 } 526 } 527 527 528 return 0; 528 return 0; 529 } 529 } 530 530 531 first_blk = 0; /* get 531 first_blk = 0; /* get cycle # of 1st block */ 532 buffer = xlog_alloc_buffer(log, 1); 532 buffer = xlog_alloc_buffer(log, 1); 533 if (!buffer) 533 if (!buffer) 534 return -ENOMEM; 534 return -ENOMEM; 535 535 536 error = xlog_bread(log, 0, 1, buffer, 536 error = xlog_bread(log, 0, 1, buffer, &offset); 537 if (error) 537 if (error) 538 goto out_free_buffer; 538 goto out_free_buffer; 539 539 540 first_half_cycle = xlog_get_cycle(offs 540 first_half_cycle = xlog_get_cycle(offset); 541 541 542 last_blk = head_blk = log_bbnum - 1; 542 last_blk = head_blk = log_bbnum - 1; /* get cycle # of last block */ 543 error = xlog_bread(log, last_blk, 1, b 543 error = xlog_bread(log, last_blk, 1, buffer, &offset); 544 if (error) 544 if (error) 545 goto out_free_buffer; 545 goto out_free_buffer; 546 546 547 last_half_cycle = xlog_get_cycle(offse 547 last_half_cycle = xlog_get_cycle(offset); 548 ASSERT(last_half_cycle != 0); 548 ASSERT(last_half_cycle != 0); 549 549 550 /* 550 /* 551 * If the 1st half cycle number is equ 551 * If the 1st half cycle number is equal to the last half cycle number, 552 * then the entire log is stamped with 552 * then the entire log is stamped with the same cycle number. In this 553 * case, head_blk can't be set to zero 553 * case, head_blk can't be set to zero (which makes sense). The below 554 * math doesn't work out properly with 554 * math doesn't work out properly with head_blk equal to zero. Instead, 555 * we set it to log_bbnum which is an 555 * we set it to log_bbnum which is an invalid block number, but this 556 * value makes the math correct. If h 556 * value makes the math correct. If head_blk doesn't changed through 557 * all the tests below, *head_blk is s 557 * all the tests below, *head_blk is set to zero at the very end rather 558 * than log_bbnum. In a sense, log_bb 558 * than log_bbnum. In a sense, log_bbnum and zero are the same block 559 * in a circular file. 559 * in a circular file. 560 */ 560 */ 561 if (first_half_cycle == last_half_cycl 561 if (first_half_cycle == last_half_cycle) { 562 /* 562 /* 563 * In this case we believe tha 563 * In this case we believe that the entire log should have 564 * cycle number last_half_cycl 564 * cycle number last_half_cycle. We need to scan backwards 565 * from the end verifying that 565 * from the end verifying that there are no holes still 566 * containing last_half_cycle 566 * containing last_half_cycle - 1. If we find such a hole, 567 * then the start of that hole 567 * then the start of that hole will be the new head. The 568 * simple case looks like 568 * simple case looks like 569 * x | x ... | x - 1 | 569 * x | x ... | x - 1 | x 570 * Another case that fits this 570 * Another case that fits this picture would be 571 * x | x + 1 | x ... | 571 * x | x + 1 | x ... | x 572 * In this case the head reall 572 * In this case the head really is somewhere at the end of the 573 * log, as one of the latest w 573 * log, as one of the latest writes at the beginning was 574 * incomplete. 574 * incomplete. 575 * One more case is 575 * One more case is 576 * x | x + 1 | x ... | 576 * x | x + 1 | x ... | x - 1 | x 577 * This is really the combinat 577 * This is really the combination of the above two cases, and 578 * the head has to end up at t 578 * the head has to end up at the start of the x-1 hole at the 579 * end of the log. 579 * end of the log. 580 * 580 * 581 * In the 256k log case, we wi 581 * In the 256k log case, we will read from the beginning to the 582 * end of the log and search f 582 * end of the log and search for cycle numbers equal to x-1. 583 * We don't worry about the x+ 583 * We don't worry about the x+1 blocks that we encounter, 584 * because we know that they c 584 * because we know that they cannot be the head since the log 585 * started with x. 585 * started with x. 586 */ 586 */ 587 head_blk = log_bbnum; 587 head_blk = log_bbnum; 588 stop_on_cycle = last_half_cycl 588 stop_on_cycle = last_half_cycle - 1; 589 } else { 589 } else { 590 /* 590 /* 591 * In this case we want to fin 591 * In this case we want to find the first block with cycle 592 * number matching last_half_c 592 * number matching last_half_cycle. We expect the log to be 593 * some variation on 593 * some variation on 594 * x + 1 ... | x ... | 594 * x + 1 ... | x ... | x 595 * The first block with cycle 595 * The first block with cycle number x (last_half_cycle) will 596 * be where the new head belon 596 * be where the new head belongs. First we do a binary search 597 * for the first occurrence of 597 * for the first occurrence of last_half_cycle. The binary 598 * search may not be totally a 598 * search may not be totally accurate, so then we scan back 599 * from there looking for occu 599 * from there looking for occurrences of last_half_cycle before 600 * us. If that backwards scan 600 * us. If that backwards scan wraps around the beginning of 601 * the log, then we look for o 601 * the log, then we look for occurrences of last_half_cycle - 1 602 * at the end of the log. The 602 * at the end of the log. The cases we're looking for look 603 * like 603 * like 604 * 604 * v binary search stopped here 605 * x + 1 ... | x | x + 605 * x + 1 ... | x | x + 1 | x ... | x 606 * ^ but we 606 * ^ but we want to locate this spot 607 * or 607 * or 608 * <---------> less tha 608 * <---------> less than scan distance 609 * x + 1 ... | x ... | 609 * x + 1 ... | x ... | x - 1 | x 610 * ^ 610 * ^ we want to locate this spot 611 */ 611 */ 612 stop_on_cycle = last_half_cycl 612 stop_on_cycle = last_half_cycle; 613 error = xlog_find_cycle_start( 613 error = xlog_find_cycle_start(log, buffer, first_blk, &head_blk, 614 last_half_cycl 614 last_half_cycle); 615 if (error) 615 if (error) 616 goto out_free_buffer; 616 goto out_free_buffer; 617 } 617 } 618 618 619 /* 619 /* 620 * Now validate the answer. Scan back 620 * Now validate the answer. Scan back some number of maximum possible 621 * blocks and make sure each one has t 621 * blocks and make sure each one has the expected cycle number. The 622 * maximum is determined by the total 622 * maximum is determined by the total possible amount of buffering 623 * in the in-core log. The following 623 * in the in-core log. The following number can be made tighter if 624 * we actually look at the block size 624 * we actually look at the block size of the filesystem. 625 */ 625 */ 626 num_scan_bblks = min_t(int, log_bbnum, 626 num_scan_bblks = min_t(int, log_bbnum, XLOG_TOTAL_REC_SHIFT(log)); 627 if (head_blk >= num_scan_bblks) { 627 if (head_blk >= num_scan_bblks) { 628 /* 628 /* 629 * We are guaranteed that the 629 * We are guaranteed that the entire check can be performed 630 * in one buffer. 630 * in one buffer. 631 */ 631 */ 632 start_blk = head_blk - num_sca 632 start_blk = head_blk - num_scan_bblks; 633 if ((error = xlog_find_verify_ 633 if ((error = xlog_find_verify_cycle(log, 634 634 start_blk, num_scan_bblks, 635 635 stop_on_cycle, &new_blk))) 636 goto out_free_buffer; 636 goto out_free_buffer; 637 if (new_blk != -1) 637 if (new_blk != -1) 638 head_blk = new_blk; 638 head_blk = new_blk; 639 } else { /* need to rea 639 } else { /* need to read 2 parts of log */ 640 /* 640 /* 641 * We are going to scan backwa 641 * We are going to scan backwards in the log in two parts. 642 * First we scan the physical 642 * First we scan the physical end of the log. In this part 643 * of the log, we are looking 643 * of the log, we are looking for blocks with cycle number 644 * last_half_cycle - 1. 644 * last_half_cycle - 1. 645 * If we find one, then we kno 645 * If we find one, then we know that the log starts there, as 646 * we've found a hole that did 646 * we've found a hole that didn't get written in going around 647 * the end of the physical log 647 * the end of the physical log. The simple case for this is 648 * x + 1 ... | x ... | 648 * x + 1 ... | x ... | x - 1 | x 649 * <---------> less tha 649 * <---------> less than scan distance 650 * If all of the blocks at the 650 * If all of the blocks at the end of the log have cycle number 651 * last_half_cycle, then we ch 651 * last_half_cycle, then we check the blocks at the start of 652 * the log looking for occurre 652 * the log looking for occurrences of last_half_cycle. If we 653 * find one, then our current 653 * find one, then our current estimate for the location of the 654 * first occurrence of last_ha 654 * first occurrence of last_half_cycle is wrong and we move 655 * back to the hole we've foun 655 * back to the hole we've found. This case looks like 656 * x + 1 ... | x | x + 656 * x + 1 ... | x | x + 1 | x ... 657 * 657 * ^ binary search stopped here 658 * Another case we need to han 658 * Another case we need to handle that only occurs in 256k 659 * logs is 659 * logs is 660 * x + 1 ... | x ... | 660 * x + 1 ... | x ... | x+1 | x ... 661 * ^ binary 661 * ^ binary search stops here 662 * In a 256k log, the scan at 662 * In a 256k log, the scan at the end of the log will see the 663 * x + 1 blocks. We need to s 663 * x + 1 blocks. We need to skip past those since that is 664 * certainly not the head of t 664 * certainly not the head of the log. By searching for 665 * last_half_cycle-1 we accomp 665 * last_half_cycle-1 we accomplish that. 666 */ 666 */ 667 ASSERT(head_blk <= INT_MAX && 667 ASSERT(head_blk <= INT_MAX && 668 (xfs_daddr_t) num_scan 668 (xfs_daddr_t) num_scan_bblks >= head_blk); 669 start_blk = log_bbnum - (num_s 669 start_blk = log_bbnum - (num_scan_bblks - head_blk); 670 if ((error = xlog_find_verify_ 670 if ((error = xlog_find_verify_cycle(log, start_blk, 671 num_sc 671 num_scan_bblks - (int)head_blk, 672 (stop_ 672 (stop_on_cycle - 1), &new_blk))) 673 goto out_free_buffer; 673 goto out_free_buffer; 674 if (new_blk != -1) { 674 if (new_blk != -1) { 675 head_blk = new_blk; 675 head_blk = new_blk; 676 goto validate_head; 676 goto validate_head; 677 } 677 } 678 678 679 /* 679 /* 680 * Scan beginning of log now. 680 * Scan beginning of log now. The last part of the physical 681 * log is good. This scan nee 681 * log is good. This scan needs to verify that it doesn't find 682 * the last_half_cycle. 682 * the last_half_cycle. 683 */ 683 */ 684 start_blk = 0; 684 start_blk = 0; 685 ASSERT(head_blk <= INT_MAX); 685 ASSERT(head_blk <= INT_MAX); 686 if ((error = xlog_find_verify_ 686 if ((error = xlog_find_verify_cycle(log, 687 start_ 687 start_blk, (int)head_blk, 688 stop_o 688 stop_on_cycle, &new_blk))) 689 goto out_free_buffer; 689 goto out_free_buffer; 690 if (new_blk != -1) 690 if (new_blk != -1) 691 head_blk = new_blk; 691 head_blk = new_blk; 692 } 692 } 693 693 694 validate_head: 694 validate_head: 695 /* 695 /* 696 * Now we need to make sure head_blk i 696 * Now we need to make sure head_blk is not pointing to a block in 697 * the middle of a log record. 697 * the middle of a log record. 698 */ 698 */ 699 num_scan_bblks = XLOG_REC_SHIFT(log); 699 num_scan_bblks = XLOG_REC_SHIFT(log); 700 if (head_blk >= num_scan_bblks) { 700 if (head_blk >= num_scan_bblks) { 701 start_blk = head_blk - num_sca 701 start_blk = head_blk - num_scan_bblks; /* don't read head_blk */ 702 702 703 /* start ptr at last block ptr 703 /* start ptr at last block ptr before head_blk */ 704 error = xlog_find_verify_log_r 704 error = xlog_find_verify_log_record(log, start_blk, &head_blk, 0); 705 if (error == 1) 705 if (error == 1) 706 error = -EIO; 706 error = -EIO; 707 if (error) 707 if (error) 708 goto out_free_buffer; 708 goto out_free_buffer; 709 } else { 709 } else { 710 start_blk = 0; 710 start_blk = 0; 711 ASSERT(head_blk <= INT_MAX); 711 ASSERT(head_blk <= INT_MAX); 712 error = xlog_find_verify_log_r 712 error = xlog_find_verify_log_record(log, start_blk, &head_blk, 0); 713 if (error < 0) 713 if (error < 0) 714 goto out_free_buffer; 714 goto out_free_buffer; 715 if (error == 1) { 715 if (error == 1) { 716 /* We hit the beginnin 716 /* We hit the beginning of the log during our search */ 717 start_blk = log_bbnum 717 start_blk = log_bbnum - (num_scan_bblks - head_blk); 718 new_blk = log_bbnum; 718 new_blk = log_bbnum; 719 ASSERT(start_blk <= IN 719 ASSERT(start_blk <= INT_MAX && 720 (xfs_daddr_t) 720 (xfs_daddr_t) log_bbnum-start_blk >= 0); 721 ASSERT(head_blk <= INT 721 ASSERT(head_blk <= INT_MAX); 722 error = xlog_find_veri 722 error = xlog_find_verify_log_record(log, start_blk, 723 723 &new_blk, (int)head_blk); 724 if (error == 1) 724 if (error == 1) 725 error = -EIO; 725 error = -EIO; 726 if (error) 726 if (error) 727 goto out_free_ 727 goto out_free_buffer; 728 if (new_blk != log_bbn 728 if (new_blk != log_bbnum) 729 head_blk = new 729 head_blk = new_blk; 730 } else if (error) 730 } else if (error) 731 goto out_free_buffer; 731 goto out_free_buffer; 732 } 732 } 733 733 734 kvfree(buffer); 734 kvfree(buffer); 735 if (head_blk == log_bbnum) 735 if (head_blk == log_bbnum) 736 *return_head_blk = 0; 736 *return_head_blk = 0; 737 else 737 else 738 *return_head_blk = head_blk; 738 *return_head_blk = head_blk; 739 /* 739 /* 740 * When returning here, we have a good 740 * When returning here, we have a good block number. Bad block 741 * means that during a previous crash, 741 * means that during a previous crash, we didn't have a clean break 742 * from cycle number N to cycle number 742 * from cycle number N to cycle number N-1. In this case, we need 743 * to find the first block with cycle 743 * to find the first block with cycle number N-1. 744 */ 744 */ 745 return 0; 745 return 0; 746 746 747 out_free_buffer: 747 out_free_buffer: 748 kvfree(buffer); 748 kvfree(buffer); 749 if (error) 749 if (error) 750 xfs_warn(log->l_mp, "failed to 750 xfs_warn(log->l_mp, "failed to find log head"); 751 return error; 751 return error; 752 } 752 } 753 753 754 /* 754 /* 755 * Seek backwards in the log for log record he 755 * Seek backwards in the log for log record headers. 756 * 756 * 757 * Given a starting log block, walk backwards 757 * Given a starting log block, walk backwards until we find the provided number 758 * of records or hit the provided tail block. 758 * of records or hit the provided tail block. The return value is the number of 759 * records encountered or a negative error cod 759 * records encountered or a negative error code. The log block and buffer 760 * pointer of the last record seen are returne 760 * pointer of the last record seen are returned in rblk and rhead respectively. 761 */ 761 */ 762 STATIC int 762 STATIC int 763 xlog_rseek_logrec_hdr( 763 xlog_rseek_logrec_hdr( 764 struct xlog *log, 764 struct xlog *log, 765 xfs_daddr_t head_blk, 765 xfs_daddr_t head_blk, 766 xfs_daddr_t tail_blk, 766 xfs_daddr_t tail_blk, 767 int count, 767 int count, 768 char *buffer, 768 char *buffer, 769 xfs_daddr_t *rblk, 769 xfs_daddr_t *rblk, 770 struct xlog_rec_header **rhead, 770 struct xlog_rec_header **rhead, 771 bool *wrapped) 771 bool *wrapped) 772 { 772 { 773 int i; 773 int i; 774 int error; 774 int error; 775 int found = 0; 775 int found = 0; 776 char *offset = NULL 776 char *offset = NULL; 777 xfs_daddr_t end_blk; 777 xfs_daddr_t end_blk; 778 778 779 *wrapped = false; 779 *wrapped = false; 780 780 781 /* 781 /* 782 * Walk backwards from the head block 782 * Walk backwards from the head block until we hit the tail or the first 783 * block in the log. 783 * block in the log. 784 */ 784 */ 785 end_blk = head_blk > tail_blk ? tail_b 785 end_blk = head_blk > tail_blk ? tail_blk : 0; 786 for (i = (int) head_blk - 1; i >= end_ 786 for (i = (int) head_blk - 1; i >= end_blk; i--) { 787 error = xlog_bread(log, i, 1, 787 error = xlog_bread(log, i, 1, buffer, &offset); 788 if (error) 788 if (error) 789 goto out_error; 789 goto out_error; 790 790 791 if (*(__be32 *) offset == cpu_ 791 if (*(__be32 *) offset == cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) { 792 *rblk = i; 792 *rblk = i; 793 *rhead = (struct xlog_ 793 *rhead = (struct xlog_rec_header *) offset; 794 if (++found == count) 794 if (++found == count) 795 break; 795 break; 796 } 796 } 797 } 797 } 798 798 799 /* 799 /* 800 * If we haven't hit the tail block or 800 * If we haven't hit the tail block or the log record header count, 801 * start looking again from the end of 801 * start looking again from the end of the physical log. Note that 802 * callers can pass head == tail if th 802 * callers can pass head == tail if the tail is not yet known. 803 */ 803 */ 804 if (tail_blk >= head_blk && found != c 804 if (tail_blk >= head_blk && found != count) { 805 for (i = log->l_logBBsize - 1; 805 for (i = log->l_logBBsize - 1; i >= (int) tail_blk; i--) { 806 error = xlog_bread(log 806 error = xlog_bread(log, i, 1, buffer, &offset); 807 if (error) 807 if (error) 808 goto out_error 808 goto out_error; 809 809 810 if (*(__be32 *)offset 810 if (*(__be32 *)offset == 811 cpu_to_be32(XLOG_H 811 cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) { 812 *wrapped = tru 812 *wrapped = true; 813 *rblk = i; 813 *rblk = i; 814 *rhead = (stru 814 *rhead = (struct xlog_rec_header *) offset; 815 if (++found == 815 if (++found == count) 816 break; 816 break; 817 } 817 } 818 } 818 } 819 } 819 } 820 820 821 return found; 821 return found; 822 822 823 out_error: 823 out_error: 824 return error; 824 return error; 825 } 825 } 826 826 827 /* 827 /* 828 * Seek forward in the log for log record head 828 * Seek forward in the log for log record headers. 829 * 829 * 830 * Given head and tail blocks, walk forward fr 830 * Given head and tail blocks, walk forward from the tail block until we find 831 * the provided number of records or hit the h 831 * the provided number of records or hit the head block. The return value is the 832 * number of records encountered or a negative 832 * number of records encountered or a negative error code. The log block and 833 * buffer pointer of the last record seen are 833 * buffer pointer of the last record seen are returned in rblk and rhead 834 * respectively. 834 * respectively. 835 */ 835 */ 836 STATIC int 836 STATIC int 837 xlog_seek_logrec_hdr( 837 xlog_seek_logrec_hdr( 838 struct xlog *log, 838 struct xlog *log, 839 xfs_daddr_t head_blk, 839 xfs_daddr_t head_blk, 840 xfs_daddr_t tail_blk, 840 xfs_daddr_t tail_blk, 841 int count, 841 int count, 842 char *buffer, 842 char *buffer, 843 xfs_daddr_t *rblk, 843 xfs_daddr_t *rblk, 844 struct xlog_rec_header **rhead, 844 struct xlog_rec_header **rhead, 845 bool *wrapped) 845 bool *wrapped) 846 { 846 { 847 int i; 847 int i; 848 int error; 848 int error; 849 int found = 0; 849 int found = 0; 850 char *offset = NULL 850 char *offset = NULL; 851 xfs_daddr_t end_blk; 851 xfs_daddr_t end_blk; 852 852 853 *wrapped = false; 853 *wrapped = false; 854 854 855 /* 855 /* 856 * Walk forward from the tail block un 856 * Walk forward from the tail block until we hit the head or the last 857 * block in the log. 857 * block in the log. 858 */ 858 */ 859 end_blk = head_blk > tail_blk ? head_b 859 end_blk = head_blk > tail_blk ? head_blk : log->l_logBBsize - 1; 860 for (i = (int) tail_blk; i <= end_blk; 860 for (i = (int) tail_blk; i <= end_blk; i++) { 861 error = xlog_bread(log, i, 1, 861 error = xlog_bread(log, i, 1, buffer, &offset); 862 if (error) 862 if (error) 863 goto out_error; 863 goto out_error; 864 864 865 if (*(__be32 *) offset == cpu_ 865 if (*(__be32 *) offset == cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) { 866 *rblk = i; 866 *rblk = i; 867 *rhead = (struct xlog_ 867 *rhead = (struct xlog_rec_header *) offset; 868 if (++found == count) 868 if (++found == count) 869 break; 869 break; 870 } 870 } 871 } 871 } 872 872 873 /* 873 /* 874 * If we haven't hit the head block or 874 * If we haven't hit the head block or the log record header count, 875 * start looking again from the start 875 * start looking again from the start of the physical log. 876 */ 876 */ 877 if (tail_blk > head_blk && found != co 877 if (tail_blk > head_blk && found != count) { 878 for (i = 0; i < (int) head_blk 878 for (i = 0; i < (int) head_blk; i++) { 879 error = xlog_bread(log 879 error = xlog_bread(log, i, 1, buffer, &offset); 880 if (error) 880 if (error) 881 goto out_error 881 goto out_error; 882 882 883 if (*(__be32 *)offset 883 if (*(__be32 *)offset == 884 cpu_to_be32(XLOG_H 884 cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) { 885 *wrapped = tru 885 *wrapped = true; 886 *rblk = i; 886 *rblk = i; 887 *rhead = (stru 887 *rhead = (struct xlog_rec_header *) offset; 888 if (++found == 888 if (++found == count) 889 break; 889 break; 890 } 890 } 891 } 891 } 892 } 892 } 893 893 894 return found; 894 return found; 895 895 896 out_error: 896 out_error: 897 return error; 897 return error; 898 } 898 } 899 899 900 /* 900 /* 901 * Calculate distance from head to tail (i.e., 901 * Calculate distance from head to tail (i.e., unused space in the log). 902 */ 902 */ 903 static inline int 903 static inline int 904 xlog_tail_distance( 904 xlog_tail_distance( 905 struct xlog *log, 905 struct xlog *log, 906 xfs_daddr_t head_blk, 906 xfs_daddr_t head_blk, 907 xfs_daddr_t tail_blk) 907 xfs_daddr_t tail_blk) 908 { 908 { 909 if (head_blk < tail_blk) 909 if (head_blk < tail_blk) 910 return tail_blk - head_blk; 910 return tail_blk - head_blk; 911 911 912 return tail_blk + (log->l_logBBsize - 912 return tail_blk + (log->l_logBBsize - head_blk); 913 } 913 } 914 914 915 /* 915 /* 916 * Verify the log tail. This is particularly i 916 * Verify the log tail. This is particularly important when torn or incomplete 917 * writes have been detected near the front of 917 * writes have been detected near the front of the log and the head has been 918 * walked back accordingly. 918 * walked back accordingly. 919 * 919 * 920 * We also have to handle the case where the t 920 * We also have to handle the case where the tail was pinned and the head 921 * blocked behind the tail right before a cras 921 * blocked behind the tail right before a crash. If the tail had been pushed 922 * immediately prior to the crash and the subs 922 * immediately prior to the crash and the subsequent checkpoint was only 923 * partially written, it's possible it overwro 923 * partially written, it's possible it overwrote the last referenced tail in the 924 * log with garbage. This is not a coherency p 924 * log with garbage. This is not a coherency problem because the tail must have 925 * been pushed before it can be overwritten, b 925 * been pushed before it can be overwritten, but appears as log corruption to 926 * recovery because we have no way to know the 926 * recovery because we have no way to know the tail was updated if the 927 * subsequent checkpoint didn't write successf 927 * subsequent checkpoint didn't write successfully. 928 * 928 * 929 * Therefore, CRC check the log from tail to h 929 * Therefore, CRC check the log from tail to head. If a failure occurs and the 930 * offending record is within max iclog bufs f 930 * offending record is within max iclog bufs from the head, walk the tail 931 * forward and retry until a valid tail is fou 931 * forward and retry until a valid tail is found or corruption is detected out 932 * of the range of a possible overwrite. 932 * of the range of a possible overwrite. 933 */ 933 */ 934 STATIC int 934 STATIC int 935 xlog_verify_tail( 935 xlog_verify_tail( 936 struct xlog *log, 936 struct xlog *log, 937 xfs_daddr_t head_blk, 937 xfs_daddr_t head_blk, 938 xfs_daddr_t *tail_blk, 938 xfs_daddr_t *tail_blk, 939 int hsize) 939 int hsize) 940 { 940 { 941 struct xlog_rec_header *thead; 941 struct xlog_rec_header *thead; 942 char *buffer; 942 char *buffer; 943 xfs_daddr_t first_bad; 943 xfs_daddr_t first_bad; 944 int error = 0; 944 int error = 0; 945 bool wrapped; 945 bool wrapped; 946 xfs_daddr_t tmp_tail; 946 xfs_daddr_t tmp_tail; 947 xfs_daddr_t orig_tail = *t 947 xfs_daddr_t orig_tail = *tail_blk; 948 948 949 buffer = xlog_alloc_buffer(log, 1); 949 buffer = xlog_alloc_buffer(log, 1); 950 if (!buffer) 950 if (!buffer) 951 return -ENOMEM; 951 return -ENOMEM; 952 952 953 /* 953 /* 954 * Make sure the tail points to a reco 954 * Make sure the tail points to a record (returns positive count on 955 * success). 955 * success). 956 */ 956 */ 957 error = xlog_seek_logrec_hdr(log, head 957 error = xlog_seek_logrec_hdr(log, head_blk, *tail_blk, 1, buffer, 958 &tmp_tail, &thead, &wr 958 &tmp_tail, &thead, &wrapped); 959 if (error < 0) 959 if (error < 0) 960 goto out; 960 goto out; 961 if (*tail_blk != tmp_tail) 961 if (*tail_blk != tmp_tail) 962 *tail_blk = tmp_tail; 962 *tail_blk = tmp_tail; 963 963 964 /* 964 /* 965 * Run a CRC check from the tail to th 965 * Run a CRC check from the tail to the head. We can't just check 966 * MAX_ICLOGS records past the tail be 966 * MAX_ICLOGS records past the tail because the tail may point to stale 967 * blocks cleared during the search fo 967 * blocks cleared during the search for the head/tail. These blocks are 968 * overwritten with zero-length record 968 * overwritten with zero-length records and thus record count is not a 969 * reliable indicator of the iclog sta 969 * reliable indicator of the iclog state before a crash. 970 */ 970 */ 971 first_bad = 0; 971 first_bad = 0; 972 error = xlog_do_recovery_pass(log, hea 972 error = xlog_do_recovery_pass(log, head_blk, *tail_blk, 973 XLOG_REC 973 XLOG_RECOVER_CRCPASS, &first_bad); 974 while ((error == -EFSBADCRC || error = 974 while ((error == -EFSBADCRC || error == -EFSCORRUPTED) && first_bad) { 975 int tail_distance; 975 int tail_distance; 976 976 977 /* 977 /* 978 * Is corruption within range 978 * Is corruption within range of the head? If so, retry from 979 * the next record. Otherwise 979 * the next record. Otherwise return an error. 980 */ 980 */ 981 tail_distance = xlog_tail_dist 981 tail_distance = xlog_tail_distance(log, head_blk, first_bad); 982 if (tail_distance > BTOBB(XLOG 982 if (tail_distance > BTOBB(XLOG_MAX_ICLOGS * hsize)) 983 break; 983 break; 984 984 985 /* skip to the next record; re 985 /* skip to the next record; returns positive count on success */ 986 error = xlog_seek_logrec_hdr(l 986 error = xlog_seek_logrec_hdr(log, head_blk, first_bad, 2, 987 buffer, &tmp_t 987 buffer, &tmp_tail, &thead, &wrapped); 988 if (error < 0) 988 if (error < 0) 989 goto out; 989 goto out; 990 990 991 *tail_blk = tmp_tail; 991 *tail_blk = tmp_tail; 992 first_bad = 0; 992 first_bad = 0; 993 error = xlog_do_recovery_pass( 993 error = xlog_do_recovery_pass(log, head_blk, *tail_blk, 994 994 XLOG_RECOVER_CRCPASS, &first_bad); 995 } 995 } 996 996 997 if (!error && *tail_blk != orig_tail) 997 if (!error && *tail_blk != orig_tail) 998 xfs_warn(log->l_mp, 998 xfs_warn(log->l_mp, 999 "Tail block (0x%llx) overwrite 999 "Tail block (0x%llx) overwrite detected. Updated to 0x%llx", 1000 orig_tail, *tail_blk 1000 orig_tail, *tail_blk); 1001 out: 1001 out: 1002 kvfree(buffer); 1002 kvfree(buffer); 1003 return error; 1003 return error; 1004 } 1004 } 1005 1005 1006 /* 1006 /* 1007 * Detect and trim torn writes from the head 1007 * Detect and trim torn writes from the head of the log. 1008 * 1008 * 1009 * Storage without sector atomicity guarantee 1009 * Storage without sector atomicity guarantees can result in torn writes in the 1010 * log in the event of a crash. Our only mean 1010 * log in the event of a crash. Our only means to detect this scenario is via 1011 * CRC verification. While we can't always be 1011 * CRC verification. While we can't always be certain that CRC verification 1012 * failure is due to a torn write vs. an unre 1012 * failure is due to a torn write vs. an unrelated corruption, we do know that 1013 * only a certain number (XLOG_MAX_ICLOGS) of 1013 * only a certain number (XLOG_MAX_ICLOGS) of log records can be written out at 1014 * one time. Therefore, CRC verify up to XLOG 1014 * one time. Therefore, CRC verify up to XLOG_MAX_ICLOGS records at the head of 1015 * the log and treat failures in this range a 1015 * the log and treat failures in this range as torn writes as a matter of 1016 * policy. In the event of CRC failure, the h 1016 * policy. In the event of CRC failure, the head is walked back to the last good 1017 * record in the log and the tail is updated 1017 * record in the log and the tail is updated from that record and verified. 1018 */ 1018 */ 1019 STATIC int 1019 STATIC int 1020 xlog_verify_head( 1020 xlog_verify_head( 1021 struct xlog *log, 1021 struct xlog *log, 1022 xfs_daddr_t *head_blk, 1022 xfs_daddr_t *head_blk, /* in/out: unverified head */ 1023 xfs_daddr_t *tail_blk, 1023 xfs_daddr_t *tail_blk, /* out: tail block */ 1024 char *buffer, 1024 char *buffer, 1025 xfs_daddr_t *rhead_blk, 1025 xfs_daddr_t *rhead_blk, /* start blk of last record */ 1026 struct xlog_rec_header **rhead, 1026 struct xlog_rec_header **rhead, /* ptr to last record */ 1027 bool *wrapped) 1027 bool *wrapped) /* last rec. wraps phys. log */ 1028 { 1028 { 1029 struct xlog_rec_header *tmp_rhead; 1029 struct xlog_rec_header *tmp_rhead; 1030 char *tmp_buffer; 1030 char *tmp_buffer; 1031 xfs_daddr_t first_bad; 1031 xfs_daddr_t first_bad; 1032 xfs_daddr_t tmp_rhead_blk 1032 xfs_daddr_t tmp_rhead_blk; 1033 int found; 1033 int found; 1034 int error; 1034 int error; 1035 bool tmp_wrapped; 1035 bool tmp_wrapped; 1036 1036 1037 /* 1037 /* 1038 * Check the head of the log for torn 1038 * Check the head of the log for torn writes. Search backwards from the 1039 * head until we hit the tail or the 1039 * head until we hit the tail or the maximum number of log record I/Os 1040 * that could have been in flight at 1040 * that could have been in flight at one time. Use a temporary buffer so 1041 * we don't trash the rhead/buffer po 1041 * we don't trash the rhead/buffer pointers from the caller. 1042 */ 1042 */ 1043 tmp_buffer = xlog_alloc_buffer(log, 1 1043 tmp_buffer = xlog_alloc_buffer(log, 1); 1044 if (!tmp_buffer) 1044 if (!tmp_buffer) 1045 return -ENOMEM; 1045 return -ENOMEM; 1046 error = xlog_rseek_logrec_hdr(log, *h 1046 error = xlog_rseek_logrec_hdr(log, *head_blk, *tail_blk, 1047 XLOG_MA 1047 XLOG_MAX_ICLOGS, tmp_buffer, 1048 &tmp_rh 1048 &tmp_rhead_blk, &tmp_rhead, &tmp_wrapped); 1049 kvfree(tmp_buffer); 1049 kvfree(tmp_buffer); 1050 if (error < 0) 1050 if (error < 0) 1051 return error; 1051 return error; 1052 1052 1053 /* 1053 /* 1054 * Now run a CRC verification pass ov 1054 * Now run a CRC verification pass over the records starting at the 1055 * block found above to the current h 1055 * block found above to the current head. If a CRC failure occurs, the 1056 * log block of the first bad record 1056 * log block of the first bad record is saved in first_bad. 1057 */ 1057 */ 1058 error = xlog_do_recovery_pass(log, *h 1058 error = xlog_do_recovery_pass(log, *head_blk, tmp_rhead_blk, 1059 XLOG_RE 1059 XLOG_RECOVER_CRCPASS, &first_bad); 1060 if ((error == -EFSBADCRC || error == 1060 if ((error == -EFSBADCRC || error == -EFSCORRUPTED) && first_bad) { 1061 /* 1061 /* 1062 * We've hit a potential torn 1062 * We've hit a potential torn write. Reset the error and warn 1063 * about it. 1063 * about it. 1064 */ 1064 */ 1065 error = 0; 1065 error = 0; 1066 xfs_warn(log->l_mp, 1066 xfs_warn(log->l_mp, 1067 "Torn write (CRC failure) detected at log blo 1067 "Torn write (CRC failure) detected at log block 0x%llx. Truncating head block from 0x%llx.", 1068 first_bad, *head_blk 1068 first_bad, *head_blk); 1069 1069 1070 /* 1070 /* 1071 * Get the header block and b 1071 * Get the header block and buffer pointer for the last good 1072 * record before the bad reco 1072 * record before the bad record. 1073 * 1073 * 1074 * Note that xlog_find_tail() 1074 * Note that xlog_find_tail() clears the blocks at the new head 1075 * (i.e., the records with in 1075 * (i.e., the records with invalid CRC) if the cycle number 1076 * matches the current cycle. 1076 * matches the current cycle. 1077 */ 1077 */ 1078 found = xlog_rseek_logrec_hdr 1078 found = xlog_rseek_logrec_hdr(log, first_bad, *tail_blk, 1, 1079 buffer, rhead 1079 buffer, rhead_blk, rhead, wrapped); 1080 if (found < 0) 1080 if (found < 0) 1081 return found; 1081 return found; 1082 if (found == 0) /* XX 1082 if (found == 0) /* XXX: right thing to do here? */ 1083 return -EIO; 1083 return -EIO; 1084 1084 1085 /* 1085 /* 1086 * Reset the head block to th 1086 * Reset the head block to the starting block of the first bad 1087 * log record and set the tai 1087 * log record and set the tail block based on the last good 1088 * record. 1088 * record. 1089 * 1089 * 1090 * Bail out if the updated he 1090 * Bail out if the updated head/tail match as this indicates 1091 * possible corruption outsid 1091 * possible corruption outside of the acceptable 1092 * (XLOG_MAX_ICLOGS) range. T 1092 * (XLOG_MAX_ICLOGS) range. This is a job for xfs_repair... 1093 */ 1093 */ 1094 *head_blk = first_bad; 1094 *head_blk = first_bad; 1095 *tail_blk = BLOCK_LSN(be64_to 1095 *tail_blk = BLOCK_LSN(be64_to_cpu((*rhead)->h_tail_lsn)); 1096 if (*head_blk == *tail_blk) { 1096 if (*head_blk == *tail_blk) { 1097 ASSERT(0); 1097 ASSERT(0); 1098 return 0; 1098 return 0; 1099 } 1099 } 1100 } 1100 } 1101 if (error) 1101 if (error) 1102 return error; 1102 return error; 1103 1103 1104 return xlog_verify_tail(log, *head_bl 1104 return xlog_verify_tail(log, *head_blk, tail_blk, 1105 be32_to_cpu(( 1105 be32_to_cpu((*rhead)->h_size)); 1106 } 1106 } 1107 1107 1108 /* 1108 /* 1109 * We need to make sure we handle log wrappin 1109 * We need to make sure we handle log wrapping properly, so we can't use the 1110 * calculated logbno directly. Make sure it w 1110 * calculated logbno directly. Make sure it wraps to the correct bno inside the 1111 * log. 1111 * log. 1112 * 1112 * 1113 * The log is limited to 32 bit sizes, so we 1113 * The log is limited to 32 bit sizes, so we use the appropriate modulus 1114 * operation here and cast it back to a 64 bi 1114 * operation here and cast it back to a 64 bit daddr on return. 1115 */ 1115 */ 1116 static inline xfs_daddr_t 1116 static inline xfs_daddr_t 1117 xlog_wrap_logbno( 1117 xlog_wrap_logbno( 1118 struct xlog *log, 1118 struct xlog *log, 1119 xfs_daddr_t bno) 1119 xfs_daddr_t bno) 1120 { 1120 { 1121 int mod; 1121 int mod; 1122 1122 1123 div_s64_rem(bno, log->l_logBBsize, &m 1123 div_s64_rem(bno, log->l_logBBsize, &mod); 1124 return mod; 1124 return mod; 1125 } 1125 } 1126 1126 1127 /* 1127 /* 1128 * Check whether the head of the log points t 1128 * Check whether the head of the log points to an unmount record. In other 1129 * words, determine whether the log is clean. 1129 * words, determine whether the log is clean. If so, update the in-core state 1130 * appropriately. 1130 * appropriately. 1131 */ 1131 */ 1132 static int 1132 static int 1133 xlog_check_unmount_rec( 1133 xlog_check_unmount_rec( 1134 struct xlog *log, 1134 struct xlog *log, 1135 xfs_daddr_t *head_blk, 1135 xfs_daddr_t *head_blk, 1136 xfs_daddr_t *tail_blk, 1136 xfs_daddr_t *tail_blk, 1137 struct xlog_rec_header *rhead, 1137 struct xlog_rec_header *rhead, 1138 xfs_daddr_t rhead_blk, 1138 xfs_daddr_t rhead_blk, 1139 char *buffer, 1139 char *buffer, 1140 bool *clean) 1140 bool *clean) 1141 { 1141 { 1142 struct xlog_op_header *op_head; 1142 struct xlog_op_header *op_head; 1143 xfs_daddr_t umount_data_b 1143 xfs_daddr_t umount_data_blk; 1144 xfs_daddr_t after_umount_ 1144 xfs_daddr_t after_umount_blk; 1145 int hblks; 1145 int hblks; 1146 int error; 1146 int error; 1147 char *offset; 1147 char *offset; 1148 1148 1149 *clean = false; 1149 *clean = false; 1150 1150 1151 /* 1151 /* 1152 * Look for unmount record. If we fin 1152 * Look for unmount record. If we find it, then we know there was a 1153 * clean unmount. Since 'i' could be 1153 * clean unmount. Since 'i' could be the last block in the physical 1154 * log, we convert to a log block bef 1154 * log, we convert to a log block before comparing to the head_blk. 1155 * 1155 * 1156 * Save the current tail lsn to use t 1156 * Save the current tail lsn to use to pass to xlog_clear_stale_blocks() 1157 * below. We won't want to clear the 1157 * below. We won't want to clear the unmount record if there is one, so 1158 * we pass the lsn of the unmount rec 1158 * we pass the lsn of the unmount record rather than the block after it. 1159 */ 1159 */ 1160 hblks = xlog_logrec_hblks(log, rhead) 1160 hblks = xlog_logrec_hblks(log, rhead); 1161 after_umount_blk = xlog_wrap_logbno(l 1161 after_umount_blk = xlog_wrap_logbno(log, 1162 rhead_blk + hblks + B 1162 rhead_blk + hblks + BTOBB(be32_to_cpu(rhead->h_len))); 1163 1163 1164 if (*head_blk == after_umount_blk && 1164 if (*head_blk == after_umount_blk && 1165 be32_to_cpu(rhead->h_num_logops) 1165 be32_to_cpu(rhead->h_num_logops) == 1) { 1166 umount_data_blk = xlog_wrap_l 1166 umount_data_blk = xlog_wrap_logbno(log, rhead_blk + hblks); 1167 error = xlog_bread(log, umoun 1167 error = xlog_bread(log, umount_data_blk, 1, buffer, &offset); 1168 if (error) 1168 if (error) 1169 return error; 1169 return error; 1170 1170 1171 op_head = (struct xlog_op_hea 1171 op_head = (struct xlog_op_header *)offset; 1172 if (op_head->oh_flags & XLOG_ 1172 if (op_head->oh_flags & XLOG_UNMOUNT_TRANS) { 1173 /* 1173 /* 1174 * Set tail and last 1174 * Set tail and last sync so that newly written log 1175 * records will point 1175 * records will point recovery to after the current 1176 * unmount record. 1176 * unmount record. 1177 */ 1177 */ 1178 xlog_assign_atomic_ls 1178 xlog_assign_atomic_lsn(&log->l_tail_lsn, 1179 log-> 1179 log->l_curr_cycle, after_umount_blk); 1180 log->l_ailp->ail_head 1180 log->l_ailp->ail_head_lsn = 1181 atomi 1181 atomic64_read(&log->l_tail_lsn); 1182 *tail_blk = after_umo 1182 *tail_blk = after_umount_blk; 1183 1183 1184 *clean = true; 1184 *clean = true; 1185 } 1185 } 1186 } 1186 } 1187 1187 1188 return 0; 1188 return 0; 1189 } 1189 } 1190 1190 1191 static void 1191 static void 1192 xlog_set_state( 1192 xlog_set_state( 1193 struct xlog *log, 1193 struct xlog *log, 1194 xfs_daddr_t head_blk, 1194 xfs_daddr_t head_blk, 1195 struct xlog_rec_header *rhead, 1195 struct xlog_rec_header *rhead, 1196 xfs_daddr_t rhead_blk, 1196 xfs_daddr_t rhead_blk, 1197 bool bump_cycle) 1197 bool bump_cycle) 1198 { 1198 { 1199 /* 1199 /* 1200 * Reset log values according to the 1200 * Reset log values according to the state of the log when we 1201 * crashed. In the case where head_b 1201 * crashed. In the case where head_blk == 0, we bump curr_cycle 1202 * one because the next write starts 1202 * one because the next write starts a new cycle rather than 1203 * continuing the cycle of the last g 1203 * continuing the cycle of the last good log record. At this 1204 * point we have guaranteed that all 1204 * point we have guaranteed that all partial log records have been 1205 * accounted for. Therefore, we know 1205 * accounted for. Therefore, we know that the last good log record 1206 * written was complete and ended exa 1206 * written was complete and ended exactly on the end boundary 1207 * of the physical log. 1207 * of the physical log. 1208 */ 1208 */ 1209 log->l_prev_block = rhead_blk; 1209 log->l_prev_block = rhead_blk; 1210 log->l_curr_block = (int)head_blk; 1210 log->l_curr_block = (int)head_blk; 1211 log->l_curr_cycle = be32_to_cpu(rhead 1211 log->l_curr_cycle = be32_to_cpu(rhead->h_cycle); 1212 if (bump_cycle) 1212 if (bump_cycle) 1213 log->l_curr_cycle++; 1213 log->l_curr_cycle++; 1214 atomic64_set(&log->l_tail_lsn, be64_t 1214 atomic64_set(&log->l_tail_lsn, be64_to_cpu(rhead->h_tail_lsn)); 1215 log->l_ailp->ail_head_lsn = be64_to_c 1215 log->l_ailp->ail_head_lsn = be64_to_cpu(rhead->h_lsn); 1216 } 1216 } 1217 1217 1218 /* 1218 /* 1219 * Find the sync block number or the tail of 1219 * Find the sync block number or the tail of the log. 1220 * 1220 * 1221 * This will be the block number of the last 1221 * This will be the block number of the last record to have its 1222 * associated buffers synced to disk. Every 1222 * associated buffers synced to disk. Every log record header has 1223 * a sync lsn embedded in it. LSNs hold bloc 1223 * a sync lsn embedded in it. LSNs hold block numbers, so it is easy 1224 * to get a sync block number. The only conc 1224 * to get a sync block number. The only concern is to figure out which 1225 * log record header to believe. 1225 * log record header to believe. 1226 * 1226 * 1227 * The following algorithm uses the log recor 1227 * The following algorithm uses the log record header with the largest 1228 * lsn. The entire log record does not need 1228 * lsn. The entire log record does not need to be valid. We only care 1229 * that the header is valid. 1229 * that the header is valid. 1230 * 1230 * 1231 * We could speed up search by using current 1231 * We could speed up search by using current head_blk buffer, but it is not 1232 * available. 1232 * available. 1233 */ 1233 */ 1234 STATIC int 1234 STATIC int 1235 xlog_find_tail( 1235 xlog_find_tail( 1236 struct xlog *log, 1236 struct xlog *log, 1237 xfs_daddr_t *head_blk, 1237 xfs_daddr_t *head_blk, 1238 xfs_daddr_t *tail_blk) 1238 xfs_daddr_t *tail_blk) 1239 { 1239 { 1240 xlog_rec_header_t *rhead; 1240 xlog_rec_header_t *rhead; 1241 char *offset = NUL 1241 char *offset = NULL; 1242 char *buffer; 1242 char *buffer; 1243 int error; 1243 int error; 1244 xfs_daddr_t rhead_blk; 1244 xfs_daddr_t rhead_blk; 1245 xfs_lsn_t tail_lsn; 1245 xfs_lsn_t tail_lsn; 1246 bool wrapped = fal 1246 bool wrapped = false; 1247 bool clean = false 1247 bool clean = false; 1248 1248 1249 /* 1249 /* 1250 * Find previous log record 1250 * Find previous log record 1251 */ 1251 */ 1252 if ((error = xlog_find_head(log, head 1252 if ((error = xlog_find_head(log, head_blk))) 1253 return error; 1253 return error; 1254 ASSERT(*head_blk < INT_MAX); 1254 ASSERT(*head_blk < INT_MAX); 1255 1255 1256 buffer = xlog_alloc_buffer(log, 1); 1256 buffer = xlog_alloc_buffer(log, 1); 1257 if (!buffer) 1257 if (!buffer) 1258 return -ENOMEM; 1258 return -ENOMEM; 1259 if (*head_blk == 0) { 1259 if (*head_blk == 0) { /* special case */ 1260 error = xlog_bread(log, 0, 1, 1260 error = xlog_bread(log, 0, 1, buffer, &offset); 1261 if (error) 1261 if (error) 1262 goto done; 1262 goto done; 1263 1263 1264 if (xlog_get_cycle(offset) == 1264 if (xlog_get_cycle(offset) == 0) { 1265 *tail_blk = 0; 1265 *tail_blk = 0; 1266 /* leave all other lo 1266 /* leave all other log inited values alone */ 1267 goto done; 1267 goto done; 1268 } 1268 } 1269 } 1269 } 1270 1270 1271 /* 1271 /* 1272 * Search backwards through the log l 1272 * Search backwards through the log looking for the log record header 1273 * block. This wraps all the way back 1273 * block. This wraps all the way back around to the head so something is 1274 * seriously wrong if we can't find i 1274 * seriously wrong if we can't find it. 1275 */ 1275 */ 1276 error = xlog_rseek_logrec_hdr(log, *h 1276 error = xlog_rseek_logrec_hdr(log, *head_blk, *head_blk, 1, buffer, 1277 &rhead_ 1277 &rhead_blk, &rhead, &wrapped); 1278 if (error < 0) 1278 if (error < 0) 1279 goto done; 1279 goto done; 1280 if (!error) { 1280 if (!error) { 1281 xfs_warn(log->l_mp, "%s: coul 1281 xfs_warn(log->l_mp, "%s: couldn't find sync record", __func__); 1282 error = -EFSCORRUPTED; 1282 error = -EFSCORRUPTED; 1283 goto done; 1283 goto done; 1284 } 1284 } 1285 *tail_blk = BLOCK_LSN(be64_to_cpu(rhe 1285 *tail_blk = BLOCK_LSN(be64_to_cpu(rhead->h_tail_lsn)); 1286 1286 1287 /* 1287 /* 1288 * Set the log state based on the cur 1288 * Set the log state based on the current head record. 1289 */ 1289 */ 1290 xlog_set_state(log, *head_blk, rhead, 1290 xlog_set_state(log, *head_blk, rhead, rhead_blk, wrapped); 1291 tail_lsn = atomic64_read(&log->l_tail 1291 tail_lsn = atomic64_read(&log->l_tail_lsn); 1292 1292 1293 /* 1293 /* 1294 * Look for an unmount record at the 1294 * Look for an unmount record at the head of the log. This sets the log 1295 * state to determine whether recover 1295 * state to determine whether recovery is necessary. 1296 */ 1296 */ 1297 error = xlog_check_unmount_rec(log, h 1297 error = xlog_check_unmount_rec(log, head_blk, tail_blk, rhead, 1298 rhead_ 1298 rhead_blk, buffer, &clean); 1299 if (error) 1299 if (error) 1300 goto done; 1300 goto done; 1301 1301 1302 /* 1302 /* 1303 * Verify the log head if the log is 1303 * Verify the log head if the log is not clean (e.g., we have anything 1304 * but an unmount record at the head) 1304 * but an unmount record at the head). This uses CRC verification to 1305 * detect and trim torn writes. If di 1305 * detect and trim torn writes. If discovered, CRC failures are 1306 * considered torn writes and the log 1306 * considered torn writes and the log head is trimmed accordingly. 1307 * 1307 * 1308 * Note that we can only run CRC veri 1308 * Note that we can only run CRC verification when the log is dirty 1309 * because there's no guarantee that 1309 * because there's no guarantee that the log data behind an unmount 1310 * record is compatible with the curr 1310 * record is compatible with the current architecture. 1311 */ 1311 */ 1312 if (!clean) { 1312 if (!clean) { 1313 xfs_daddr_t orig_head = * 1313 xfs_daddr_t orig_head = *head_blk; 1314 1314 1315 error = xlog_verify_head(log, 1315 error = xlog_verify_head(log, head_blk, tail_blk, buffer, 1316 &rhe 1316 &rhead_blk, &rhead, &wrapped); 1317 if (error) 1317 if (error) 1318 goto done; 1318 goto done; 1319 1319 1320 /* update in-core state again 1320 /* update in-core state again if the head changed */ 1321 if (*head_blk != orig_head) { 1321 if (*head_blk != orig_head) { 1322 xlog_set_state(log, * 1322 xlog_set_state(log, *head_blk, rhead, rhead_blk, 1323 wrappe 1323 wrapped); 1324 tail_lsn = atomic64_r 1324 tail_lsn = atomic64_read(&log->l_tail_lsn); 1325 error = xlog_check_un 1325 error = xlog_check_unmount_rec(log, head_blk, tail_blk, 1326 1326 rhead, rhead_blk, buffer, 1327 1327 &clean); 1328 if (error) 1328 if (error) 1329 goto done; 1329 goto done; 1330 } 1330 } 1331 } 1331 } 1332 1332 1333 /* 1333 /* 1334 * Note that the unmount was clean. I 1334 * Note that the unmount was clean. If the unmount was not clean, we 1335 * need to know this to rebuild the s 1335 * need to know this to rebuild the superblock counters from the perag 1336 * headers if we have a filesystem us 1336 * headers if we have a filesystem using non-persistent counters. 1337 */ 1337 */ 1338 if (clean) 1338 if (clean) 1339 xfs_set_clean(log->l_mp); 1339 xfs_set_clean(log->l_mp); 1340 1340 1341 /* 1341 /* 1342 * Make sure that there are no blocks 1342 * Make sure that there are no blocks in front of the head 1343 * with the same cycle number as the 1343 * with the same cycle number as the head. This can happen 1344 * because we allow multiple outstand 1344 * because we allow multiple outstanding log writes concurrently, 1345 * and the later writes might make it 1345 * and the later writes might make it out before earlier ones. 1346 * 1346 * 1347 * We use the lsn from before modifyi 1347 * We use the lsn from before modifying it so that we'll never 1348 * overwrite the unmount record after 1348 * overwrite the unmount record after a clean unmount. 1349 * 1349 * 1350 * Do this only if we are going to re 1350 * Do this only if we are going to recover the filesystem 1351 * 1351 * 1352 * NOTE: This used to say "if (!reado 1352 * NOTE: This used to say "if (!readonly)" 1353 * However on Linux, we can & do reco 1353 * However on Linux, we can & do recover a read-only filesystem. 1354 * We only skip recovery if NORECOVER 1354 * We only skip recovery if NORECOVERY is specified on mount, 1355 * in which case we would not be here 1355 * in which case we would not be here. 1356 * 1356 * 1357 * But... if the -device- itself is r 1357 * But... if the -device- itself is readonly, just skip this. 1358 * We can't recover this device anywa 1358 * We can't recover this device anyway, so it won't matter. 1359 */ 1359 */ 1360 if (!xfs_readonly_buftarg(log->l_targ 1360 if (!xfs_readonly_buftarg(log->l_targ)) 1361 error = xlog_clear_stale_bloc 1361 error = xlog_clear_stale_blocks(log, tail_lsn); 1362 1362 1363 done: 1363 done: 1364 kvfree(buffer); 1364 kvfree(buffer); 1365 1365 1366 if (error) 1366 if (error) 1367 xfs_warn(log->l_mp, "failed t 1367 xfs_warn(log->l_mp, "failed to locate log tail"); 1368 return error; 1368 return error; 1369 } 1369 } 1370 1370 1371 /* 1371 /* 1372 * Is the log zeroed at all? 1372 * Is the log zeroed at all? 1373 * 1373 * 1374 * The last binary search should be changed t 1374 * The last binary search should be changed to perform an X block read 1375 * once X becomes small enough. You can then 1375 * once X becomes small enough. You can then search linearly through 1376 * the X blocks. This will cut down on the n 1376 * the X blocks. This will cut down on the number of reads we need to do. 1377 * 1377 * 1378 * If the log is partially zeroed, this routi 1378 * If the log is partially zeroed, this routine will pass back the blkno 1379 * of the first block with cycle number 0. I 1379 * of the first block with cycle number 0. It won't have a complete LR 1380 * preceding it. 1380 * preceding it. 1381 * 1381 * 1382 * Return: 1382 * Return: 1383 * 0 => the log is completely written t 1383 * 0 => the log is completely written to 1384 * 1 => use *blk_no as the first block o 1384 * 1 => use *blk_no as the first block of the log 1385 * <0 => error has occurred 1385 * <0 => error has occurred 1386 */ 1386 */ 1387 STATIC int 1387 STATIC int 1388 xlog_find_zeroed( 1388 xlog_find_zeroed( 1389 struct xlog *log, 1389 struct xlog *log, 1390 xfs_daddr_t *blk_no) 1390 xfs_daddr_t *blk_no) 1391 { 1391 { 1392 char *buffer; 1392 char *buffer; 1393 char *offset; 1393 char *offset; 1394 uint first_cycle, last_cyc 1394 uint first_cycle, last_cycle; 1395 xfs_daddr_t new_blk, last_blk, st 1395 xfs_daddr_t new_blk, last_blk, start_blk; 1396 xfs_daddr_t num_scan_bblks; 1396 xfs_daddr_t num_scan_bblks; 1397 int error, log_bbnum = lo 1397 int error, log_bbnum = log->l_logBBsize; 1398 int ret = 1; 1398 int ret = 1; 1399 1399 1400 *blk_no = 0; 1400 *blk_no = 0; 1401 1401 1402 /* check totally zeroed log */ 1402 /* check totally zeroed log */ 1403 buffer = xlog_alloc_buffer(log, 1); 1403 buffer = xlog_alloc_buffer(log, 1); 1404 if (!buffer) 1404 if (!buffer) 1405 return -ENOMEM; 1405 return -ENOMEM; 1406 error = xlog_bread(log, 0, 1, buffer, 1406 error = xlog_bread(log, 0, 1, buffer, &offset); 1407 if (error) 1407 if (error) 1408 goto out_free_buffer; 1408 goto out_free_buffer; 1409 1409 1410 first_cycle = xlog_get_cycle(offset); 1410 first_cycle = xlog_get_cycle(offset); 1411 if (first_cycle == 0) { /* co 1411 if (first_cycle == 0) { /* completely zeroed log */ 1412 *blk_no = 0; 1412 *blk_no = 0; 1413 goto out_free_buffer; 1413 goto out_free_buffer; 1414 } 1414 } 1415 1415 1416 /* check partially zeroed log */ 1416 /* check partially zeroed log */ 1417 error = xlog_bread(log, log_bbnum-1, 1417 error = xlog_bread(log, log_bbnum-1, 1, buffer, &offset); 1418 if (error) 1418 if (error) 1419 goto out_free_buffer; 1419 goto out_free_buffer; 1420 1420 1421 last_cycle = xlog_get_cycle(offset); 1421 last_cycle = xlog_get_cycle(offset); 1422 if (last_cycle != 0) { /* lo 1422 if (last_cycle != 0) { /* log completely written to */ 1423 ret = 0; 1423 ret = 0; 1424 goto out_free_buffer; 1424 goto out_free_buffer; 1425 } 1425 } 1426 1426 1427 /* we have a partially zeroed log */ 1427 /* we have a partially zeroed log */ 1428 last_blk = log_bbnum-1; 1428 last_blk = log_bbnum-1; 1429 error = xlog_find_cycle_start(log, bu 1429 error = xlog_find_cycle_start(log, buffer, 0, &last_blk, 0); 1430 if (error) 1430 if (error) 1431 goto out_free_buffer; 1431 goto out_free_buffer; 1432 1432 1433 /* 1433 /* 1434 * Validate the answer. Because ther 1434 * Validate the answer. Because there is no way to guarantee that 1435 * the entire log is made up of log r 1435 * the entire log is made up of log records which are the same size, 1436 * we scan over the defined maximum b 1436 * we scan over the defined maximum blocks. At this point, the maximum 1437 * is not chosen to mean anything spe 1437 * is not chosen to mean anything special. XXXmiken 1438 */ 1438 */ 1439 num_scan_bblks = XLOG_TOTAL_REC_SHIFT 1439 num_scan_bblks = XLOG_TOTAL_REC_SHIFT(log); 1440 ASSERT(num_scan_bblks <= INT_MAX); 1440 ASSERT(num_scan_bblks <= INT_MAX); 1441 1441 1442 if (last_blk < num_scan_bblks) 1442 if (last_blk < num_scan_bblks) 1443 num_scan_bblks = last_blk; 1443 num_scan_bblks = last_blk; 1444 start_blk = last_blk - num_scan_bblks 1444 start_blk = last_blk - num_scan_bblks; 1445 1445 1446 /* 1446 /* 1447 * We search for any instances of cyc 1447 * We search for any instances of cycle number 0 that occur before 1448 * our current estimate of the head. 1448 * our current estimate of the head. What we're trying to detect is 1449 * 1 ... | 0 | 1 | 0... 1449 * 1 ... | 0 | 1 | 0... 1450 * ^ binary sea 1450 * ^ binary search ends here 1451 */ 1451 */ 1452 if ((error = xlog_find_verify_cycle(l 1452 if ((error = xlog_find_verify_cycle(log, start_blk, 1453 (int 1453 (int)num_scan_bblks, 0, &new_blk))) 1454 goto out_free_buffer; 1454 goto out_free_buffer; 1455 if (new_blk != -1) 1455 if (new_blk != -1) 1456 last_blk = new_blk; 1456 last_blk = new_blk; 1457 1457 1458 /* 1458 /* 1459 * Potentially backup over partial lo 1459 * Potentially backup over partial log record write. We don't need 1460 * to search the end of the log becau 1460 * to search the end of the log because we know it is zero. 1461 */ 1461 */ 1462 error = xlog_find_verify_log_record(l 1462 error = xlog_find_verify_log_record(log, start_blk, &last_blk, 0); 1463 if (error == 1) 1463 if (error == 1) 1464 error = -EIO; 1464 error = -EIO; 1465 if (error) 1465 if (error) 1466 goto out_free_buffer; 1466 goto out_free_buffer; 1467 1467 1468 *blk_no = last_blk; 1468 *blk_no = last_blk; 1469 out_free_buffer: 1469 out_free_buffer: 1470 kvfree(buffer); 1470 kvfree(buffer); 1471 if (error) 1471 if (error) 1472 return error; 1472 return error; 1473 return ret; 1473 return ret; 1474 } 1474 } 1475 1475 1476 /* 1476 /* 1477 * These are simple subroutines used by xlog_ 1477 * These are simple subroutines used by xlog_clear_stale_blocks() below 1478 * to initialize a buffer full of empty log r 1478 * to initialize a buffer full of empty log record headers and write 1479 * them into the log. 1479 * them into the log. 1480 */ 1480 */ 1481 STATIC void 1481 STATIC void 1482 xlog_add_record( 1482 xlog_add_record( 1483 struct xlog *log, 1483 struct xlog *log, 1484 char *buf, 1484 char *buf, 1485 int cycle, 1485 int cycle, 1486 int block, 1486 int block, 1487 int tail_cycle, 1487 int tail_cycle, 1488 int tail_block) 1488 int tail_block) 1489 { 1489 { 1490 xlog_rec_header_t *recp = (xlog 1490 xlog_rec_header_t *recp = (xlog_rec_header_t *)buf; 1491 1491 1492 memset(buf, 0, BBSIZE); 1492 memset(buf, 0, BBSIZE); 1493 recp->h_magicno = cpu_to_be32(XLOG_HE 1493 recp->h_magicno = cpu_to_be32(XLOG_HEADER_MAGIC_NUM); 1494 recp->h_cycle = cpu_to_be32(cycle); 1494 recp->h_cycle = cpu_to_be32(cycle); 1495 recp->h_version = cpu_to_be32( 1495 recp->h_version = cpu_to_be32( 1496 xfs_has_logv2(log->l_ 1496 xfs_has_logv2(log->l_mp) ? 2 : 1); 1497 recp->h_lsn = cpu_to_be64(xlog_assign 1497 recp->h_lsn = cpu_to_be64(xlog_assign_lsn(cycle, block)); 1498 recp->h_tail_lsn = cpu_to_be64(xlog_a 1498 recp->h_tail_lsn = cpu_to_be64(xlog_assign_lsn(tail_cycle, tail_block)); 1499 recp->h_fmt = cpu_to_be32(XLOG_FMT); 1499 recp->h_fmt = cpu_to_be32(XLOG_FMT); 1500 memcpy(&recp->h_fs_uuid, &log->l_mp-> 1500 memcpy(&recp->h_fs_uuid, &log->l_mp->m_sb.sb_uuid, sizeof(uuid_t)); 1501 } 1501 } 1502 1502 1503 STATIC int 1503 STATIC int 1504 xlog_write_log_records( 1504 xlog_write_log_records( 1505 struct xlog *log, 1505 struct xlog *log, 1506 int cycle, 1506 int cycle, 1507 int start_block, 1507 int start_block, 1508 int blocks, 1508 int blocks, 1509 int tail_cycle, 1509 int tail_cycle, 1510 int tail_block) 1510 int tail_block) 1511 { 1511 { 1512 char *offset; 1512 char *offset; 1513 char *buffer; 1513 char *buffer; 1514 int balign, ealign; 1514 int balign, ealign; 1515 int sectbb = log->l_sectB 1515 int sectbb = log->l_sectBBsize; 1516 int end_block = start_blo 1516 int end_block = start_block + blocks; 1517 int bufblks; 1517 int bufblks; 1518 int error = 0; 1518 int error = 0; 1519 int i, j = 0; 1519 int i, j = 0; 1520 1520 1521 /* 1521 /* 1522 * Greedily allocate a buffer big eno 1522 * Greedily allocate a buffer big enough to handle the full 1523 * range of basic blocks to be writte 1523 * range of basic blocks to be written. If that fails, try 1524 * a smaller size. We need to be abl 1524 * a smaller size. We need to be able to write at least a 1525 * log sector, or we're out of luck. 1525 * log sector, or we're out of luck. 1526 */ 1526 */ 1527 bufblks = roundup_pow_of_two(blocks); 1527 bufblks = roundup_pow_of_two(blocks); 1528 while (bufblks > log->l_logBBsize) 1528 while (bufblks > log->l_logBBsize) 1529 bufblks >>= 1; 1529 bufblks >>= 1; 1530 while (!(buffer = xlog_alloc_buffer(l 1530 while (!(buffer = xlog_alloc_buffer(log, bufblks))) { 1531 bufblks >>= 1; 1531 bufblks >>= 1; 1532 if (bufblks < sectbb) 1532 if (bufblks < sectbb) 1533 return -ENOMEM; 1533 return -ENOMEM; 1534 } 1534 } 1535 1535 1536 /* We may need to do a read at the st 1536 /* We may need to do a read at the start to fill in part of 1537 * the buffer in the starting sector 1537 * the buffer in the starting sector not covered by the first 1538 * write below. 1538 * write below. 1539 */ 1539 */ 1540 balign = round_down(start_block, sect 1540 balign = round_down(start_block, sectbb); 1541 if (balign != start_block) { 1541 if (balign != start_block) { 1542 error = xlog_bread_noalign(lo 1542 error = xlog_bread_noalign(log, start_block, 1, buffer); 1543 if (error) 1543 if (error) 1544 goto out_free_buffer; 1544 goto out_free_buffer; 1545 1545 1546 j = start_block - balign; 1546 j = start_block - balign; 1547 } 1547 } 1548 1548 1549 for (i = start_block; i < end_block; 1549 for (i = start_block; i < end_block; i += bufblks) { 1550 int bcount, endco 1550 int bcount, endcount; 1551 1551 1552 bcount = min(bufblks, end_blo 1552 bcount = min(bufblks, end_block - start_block); 1553 endcount = bcount - j; 1553 endcount = bcount - j; 1554 1554 1555 /* We may need to do a read a 1555 /* We may need to do a read at the end to fill in part of 1556 * the buffer in the final se 1556 * the buffer in the final sector not covered by the write. 1557 * If this is the same sector 1557 * If this is the same sector as the above read, skip it. 1558 */ 1558 */ 1559 ealign = round_down(end_block 1559 ealign = round_down(end_block, sectbb); 1560 if (j == 0 && (start_block + 1560 if (j == 0 && (start_block + endcount > ealign)) { 1561 error = xlog_bread_no 1561 error = xlog_bread_noalign(log, ealign, sectbb, 1562 buffe 1562 buffer + BBTOB(ealign - start_block)); 1563 if (error) 1563 if (error) 1564 break; 1564 break; 1565 1565 1566 } 1566 } 1567 1567 1568 offset = buffer + xlog_align( 1568 offset = buffer + xlog_align(log, start_block); 1569 for (; j < endcount; j++) { 1569 for (; j < endcount; j++) { 1570 xlog_add_record(log, 1570 xlog_add_record(log, offset, cycle, i+j, 1571 tail_ 1571 tail_cycle, tail_block); 1572 offset += BBSIZE; 1572 offset += BBSIZE; 1573 } 1573 } 1574 error = xlog_bwrite(log, star 1574 error = xlog_bwrite(log, start_block, endcount, buffer); 1575 if (error) 1575 if (error) 1576 break; 1576 break; 1577 start_block += endcount; 1577 start_block += endcount; 1578 j = 0; 1578 j = 0; 1579 } 1579 } 1580 1580 1581 out_free_buffer: 1581 out_free_buffer: 1582 kvfree(buffer); 1582 kvfree(buffer); 1583 return error; 1583 return error; 1584 } 1584 } 1585 1585 1586 /* 1586 /* 1587 * This routine is called to blow away any in 1587 * This routine is called to blow away any incomplete log writes out 1588 * in front of the log head. We do this so t 1588 * in front of the log head. We do this so that we won't become confused 1589 * if we come up, write only a little bit mor 1589 * if we come up, write only a little bit more, and then crash again. 1590 * If we leave the partial log records out th 1590 * If we leave the partial log records out there, this situation could 1591 * cause us to think those partial writes are 1591 * cause us to think those partial writes are valid blocks since they 1592 * have the current cycle number. We get rid 1592 * have the current cycle number. We get rid of them by overwriting them 1593 * with empty log records with the old cycle 1593 * with empty log records with the old cycle number rather than the 1594 * current one. 1594 * current one. 1595 * 1595 * 1596 * The tail lsn is passed in rather than take 1596 * The tail lsn is passed in rather than taken from 1597 * the log so that we will not write over the 1597 * the log so that we will not write over the unmount record after a 1598 * clean unmount in a 512 block log. Doing s 1598 * clean unmount in a 512 block log. Doing so would leave the log without 1599 * any valid log records in it until a new on 1599 * any valid log records in it until a new one was written. If we crashed 1600 * during that time we would not be able to r 1600 * during that time we would not be able to recover. 1601 */ 1601 */ 1602 STATIC int 1602 STATIC int 1603 xlog_clear_stale_blocks( 1603 xlog_clear_stale_blocks( 1604 struct xlog *log, 1604 struct xlog *log, 1605 xfs_lsn_t tail_lsn) 1605 xfs_lsn_t tail_lsn) 1606 { 1606 { 1607 int tail_cycle, head_cycl 1607 int tail_cycle, head_cycle; 1608 int tail_block, head_bloc 1608 int tail_block, head_block; 1609 int tail_distance, max_di 1609 int tail_distance, max_distance; 1610 int distance; 1610 int distance; 1611 int error; 1611 int error; 1612 1612 1613 tail_cycle = CYCLE_LSN(tail_lsn); 1613 tail_cycle = CYCLE_LSN(tail_lsn); 1614 tail_block = BLOCK_LSN(tail_lsn); 1614 tail_block = BLOCK_LSN(tail_lsn); 1615 head_cycle = log->l_curr_cycle; 1615 head_cycle = log->l_curr_cycle; 1616 head_block = log->l_curr_block; 1616 head_block = log->l_curr_block; 1617 1617 1618 /* 1618 /* 1619 * Figure out the distance between th 1619 * Figure out the distance between the new head of the log 1620 * and the tail. We want to write ov 1620 * and the tail. We want to write over any blocks beyond the 1621 * head that we may have written just 1621 * head that we may have written just before the crash, but 1622 * we don't want to overwrite the tai 1622 * we don't want to overwrite the tail of the log. 1623 */ 1623 */ 1624 if (head_cycle == tail_cycle) { 1624 if (head_cycle == tail_cycle) { 1625 /* 1625 /* 1626 * The tail is behind the hea 1626 * The tail is behind the head in the physical log, 1627 * so the distance from the h 1627 * so the distance from the head to the tail is the 1628 * distance from the head to 1628 * distance from the head to the end of the log plus 1629 * the distance from the begi 1629 * the distance from the beginning of the log to the 1630 * tail. 1630 * tail. 1631 */ 1631 */ 1632 if (XFS_IS_CORRUPT(log->l_mp, 1632 if (XFS_IS_CORRUPT(log->l_mp, 1633 head_block 1633 head_block < tail_block || 1634 head_block 1634 head_block >= log->l_logBBsize)) 1635 return -EFSCORRUPTED; 1635 return -EFSCORRUPTED; 1636 tail_distance = tail_block + 1636 tail_distance = tail_block + (log->l_logBBsize - head_block); 1637 } else { 1637 } else { 1638 /* 1638 /* 1639 * The head is behind the tai 1639 * The head is behind the tail in the physical log, 1640 * so the distance from the h 1640 * so the distance from the head to the tail is just 1641 * the tail block minus the h 1641 * the tail block minus the head block. 1642 */ 1642 */ 1643 if (XFS_IS_CORRUPT(log->l_mp, 1643 if (XFS_IS_CORRUPT(log->l_mp, 1644 head_block 1644 head_block >= tail_block || 1645 head_cycle 1645 head_cycle != tail_cycle + 1)) 1646 return -EFSCORRUPTED; 1646 return -EFSCORRUPTED; 1647 tail_distance = tail_block - 1647 tail_distance = tail_block - head_block; 1648 } 1648 } 1649 1649 1650 /* 1650 /* 1651 * If the head is right up against th 1651 * If the head is right up against the tail, we can't clear 1652 * anything. 1652 * anything. 1653 */ 1653 */ 1654 if (tail_distance <= 0) { 1654 if (tail_distance <= 0) { 1655 ASSERT(tail_distance == 0); 1655 ASSERT(tail_distance == 0); 1656 return 0; 1656 return 0; 1657 } 1657 } 1658 1658 1659 max_distance = XLOG_TOTAL_REC_SHIFT(l 1659 max_distance = XLOG_TOTAL_REC_SHIFT(log); 1660 /* 1660 /* 1661 * Take the smaller of the maximum am 1661 * Take the smaller of the maximum amount of outstanding I/O 1662 * we could have and the distance to 1662 * we could have and the distance to the tail to clear out. 1663 * We take the smaller so that we don 1663 * We take the smaller so that we don't overwrite the tail and 1664 * we don't waste all day writing fro 1664 * we don't waste all day writing from the head to the tail 1665 * for no reason. 1665 * for no reason. 1666 */ 1666 */ 1667 max_distance = min(max_distance, tail 1667 max_distance = min(max_distance, tail_distance); 1668 1668 1669 if ((head_block + max_distance) <= lo 1669 if ((head_block + max_distance) <= log->l_logBBsize) { 1670 /* 1670 /* 1671 * We can stomp all the block 1671 * We can stomp all the blocks we need to without 1672 * wrapping around the end of 1672 * wrapping around the end of the log. Just do it 1673 * in a single write. Use th 1673 * in a single write. Use the cycle number of the 1674 * current cycle minus one so 1674 * current cycle minus one so that the log will look like: 1675 * n ... | n - 1 ... 1675 * n ... | n - 1 ... 1676 */ 1676 */ 1677 error = xlog_write_log_record 1677 error = xlog_write_log_records(log, (head_cycle - 1), 1678 head_block, m 1678 head_block, max_distance, tail_cycle, 1679 tail_block); 1679 tail_block); 1680 if (error) 1680 if (error) 1681 return error; 1681 return error; 1682 } else { 1682 } else { 1683 /* 1683 /* 1684 * We need to wrap around the 1684 * We need to wrap around the end of the physical log in 1685 * order to clear all the blo 1685 * order to clear all the blocks. Do it in two separate 1686 * I/Os. The first write sho 1686 * I/Os. The first write should be from the head to the 1687 * end of the physical log, a 1687 * end of the physical log, and it should use the current 1688 * cycle number minus one jus 1688 * cycle number minus one just like above. 1689 */ 1689 */ 1690 distance = log->l_logBBsize - 1690 distance = log->l_logBBsize - head_block; 1691 error = xlog_write_log_record 1691 error = xlog_write_log_records(log, (head_cycle - 1), 1692 head_block, d 1692 head_block, distance, tail_cycle, 1693 tail_block); 1693 tail_block); 1694 1694 1695 if (error) 1695 if (error) 1696 return error; 1696 return error; 1697 1697 1698 /* 1698 /* 1699 * Now write the blocks at th 1699 * Now write the blocks at the start of the physical log. 1700 * This writes the remainder 1700 * This writes the remainder of the blocks we want to clear. 1701 * It uses the current cycle 1701 * It uses the current cycle number since we're now on the 1702 * same cycle as the head so 1702 * same cycle as the head so that we get: 1703 * n ... n ... | n - 1 ... 1703 * n ... n ... | n - 1 ... 1704 * ^^^^^ blocks we're writ 1704 * ^^^^^ blocks we're writing 1705 */ 1705 */ 1706 distance = max_distance - (lo 1706 distance = max_distance - (log->l_logBBsize - head_block); 1707 error = xlog_write_log_record 1707 error = xlog_write_log_records(log, head_cycle, 0, distance, 1708 tail_cycle, t 1708 tail_cycle, tail_block); 1709 if (error) 1709 if (error) 1710 return error; 1710 return error; 1711 } 1711 } 1712 1712 1713 return 0; 1713 return 0; 1714 } 1714 } 1715 1715 1716 /* 1716 /* 1717 * Release the recovered intent item in the A 1717 * Release the recovered intent item in the AIL that matches the given intent 1718 * type and intent id. 1718 * type and intent id. 1719 */ 1719 */ 1720 void 1720 void 1721 xlog_recover_release_intent( 1721 xlog_recover_release_intent( 1722 struct xlog *log, 1722 struct xlog *log, 1723 unsigned short inten 1723 unsigned short intent_type, 1724 uint64_t inten 1724 uint64_t intent_id) 1725 { 1725 { 1726 struct xfs_defer_pending *dfp, 1726 struct xfs_defer_pending *dfp, *n; 1727 1727 1728 list_for_each_entry_safe(dfp, n, &log 1728 list_for_each_entry_safe(dfp, n, &log->r_dfops, dfp_list) { 1729 struct xfs_log_item *lip 1729 struct xfs_log_item *lip = dfp->dfp_intent; 1730 1730 1731 if (lip->li_type != intent_ty 1731 if (lip->li_type != intent_type) 1732 continue; 1732 continue; 1733 if (!lip->li_ops->iop_match(l 1733 if (!lip->li_ops->iop_match(lip, intent_id)) 1734 continue; 1734 continue; 1735 1735 1736 ASSERT(xlog_item_is_intent(li 1736 ASSERT(xlog_item_is_intent(lip)); 1737 1737 1738 xfs_defer_cancel_recovery(log 1738 xfs_defer_cancel_recovery(log->l_mp, dfp); 1739 } 1739 } 1740 } 1740 } 1741 1741 1742 int 1742 int 1743 xlog_recover_iget( 1743 xlog_recover_iget( 1744 struct xfs_mount *mp, 1744 struct xfs_mount *mp, 1745 xfs_ino_t ino, 1745 xfs_ino_t ino, 1746 struct xfs_inode **ipp) 1746 struct xfs_inode **ipp) 1747 { 1747 { 1748 int error; 1748 int error; 1749 1749 1750 error = xfs_iget(mp, NULL, ino, 0, 0, 1750 error = xfs_iget(mp, NULL, ino, 0, 0, ipp); 1751 if (error) 1751 if (error) 1752 return error; 1752 return error; 1753 1753 1754 error = xfs_qm_dqattach(*ipp); 1754 error = xfs_qm_dqattach(*ipp); 1755 if (error) { 1755 if (error) { 1756 xfs_irele(*ipp); 1756 xfs_irele(*ipp); 1757 return error; 1757 return error; 1758 } 1758 } 1759 1759 1760 if (VFS_I(*ipp)->i_nlink == 0) 1760 if (VFS_I(*ipp)->i_nlink == 0) 1761 xfs_iflags_set(*ipp, XFS_IREC 1761 xfs_iflags_set(*ipp, XFS_IRECOVERY); 1762 1762 1763 return 0; 1763 return 0; 1764 } 1764 } 1765 1765 1766 /* 1766 /* 1767 * Get an inode so that we can recover a log 1767 * Get an inode so that we can recover a log operation. 1768 * 1768 * 1769 * Log intent items that target inodes effect 1769 * Log intent items that target inodes effectively contain a file handle. 1770 * Check that the generation number matches t 1770 * Check that the generation number matches the intent item like we do for 1771 * other file handles. Log intent items defi 1771 * other file handles. Log intent items defined after this validation weakness 1772 * was identified must use this function. 1772 * was identified must use this function. 1773 */ 1773 */ 1774 int 1774 int 1775 xlog_recover_iget_handle( 1775 xlog_recover_iget_handle( 1776 struct xfs_mount *mp, 1776 struct xfs_mount *mp, 1777 xfs_ino_t ino, 1777 xfs_ino_t ino, 1778 uint32_t gen, 1778 uint32_t gen, 1779 struct xfs_inode **ipp) 1779 struct xfs_inode **ipp) 1780 { 1780 { 1781 struct xfs_inode *ip; 1781 struct xfs_inode *ip; 1782 int error; 1782 int error; 1783 1783 1784 error = xlog_recover_iget(mp, ino, &i 1784 error = xlog_recover_iget(mp, ino, &ip); 1785 if (error) 1785 if (error) 1786 return error; 1786 return error; 1787 1787 1788 if (VFS_I(ip)->i_generation != gen) { 1788 if (VFS_I(ip)->i_generation != gen) { 1789 xfs_irele(ip); 1789 xfs_irele(ip); 1790 return -EFSCORRUPTED; 1790 return -EFSCORRUPTED; 1791 } 1791 } 1792 1792 1793 *ipp = ip; 1793 *ipp = ip; 1794 return 0; 1794 return 0; 1795 } 1795 } 1796 1796 1797 /******************************************** 1797 /****************************************************************************** 1798 * 1798 * 1799 * Log recover routines 1799 * Log recover routines 1800 * 1800 * 1801 ******************************************** 1801 ****************************************************************************** 1802 */ 1802 */ 1803 static const struct xlog_recover_item_ops *xl 1803 static const struct xlog_recover_item_ops *xlog_recover_item_ops[] = { 1804 &xlog_buf_item_ops, 1804 &xlog_buf_item_ops, 1805 &xlog_inode_item_ops, 1805 &xlog_inode_item_ops, 1806 &xlog_dquot_item_ops, 1806 &xlog_dquot_item_ops, 1807 &xlog_quotaoff_item_ops, 1807 &xlog_quotaoff_item_ops, 1808 &xlog_icreate_item_ops, 1808 &xlog_icreate_item_ops, 1809 &xlog_efi_item_ops, 1809 &xlog_efi_item_ops, 1810 &xlog_efd_item_ops, 1810 &xlog_efd_item_ops, 1811 &xlog_rui_item_ops, 1811 &xlog_rui_item_ops, 1812 &xlog_rud_item_ops, 1812 &xlog_rud_item_ops, 1813 &xlog_cui_item_ops, 1813 &xlog_cui_item_ops, 1814 &xlog_cud_item_ops, 1814 &xlog_cud_item_ops, 1815 &xlog_bui_item_ops, 1815 &xlog_bui_item_ops, 1816 &xlog_bud_item_ops, 1816 &xlog_bud_item_ops, 1817 &xlog_attri_item_ops, 1817 &xlog_attri_item_ops, 1818 &xlog_attrd_item_ops, 1818 &xlog_attrd_item_ops, 1819 &xlog_xmi_item_ops, 1819 &xlog_xmi_item_ops, 1820 &xlog_xmd_item_ops, 1820 &xlog_xmd_item_ops, 1821 }; 1821 }; 1822 1822 1823 static const struct xlog_recover_item_ops * 1823 static const struct xlog_recover_item_ops * 1824 xlog_find_item_ops( 1824 xlog_find_item_ops( 1825 struct xlog_recover_item 1825 struct xlog_recover_item *item) 1826 { 1826 { 1827 unsigned int 1827 unsigned int i; 1828 1828 1829 for (i = 0; i < ARRAY_SIZE(xlog_recov 1829 for (i = 0; i < ARRAY_SIZE(xlog_recover_item_ops); i++) 1830 if (ITEM_TYPE(item) == xlog_r 1830 if (ITEM_TYPE(item) == xlog_recover_item_ops[i]->item_type) 1831 return xlog_recover_i 1831 return xlog_recover_item_ops[i]; 1832 1832 1833 return NULL; 1833 return NULL; 1834 } 1834 } 1835 1835 1836 /* 1836 /* 1837 * Sort the log items in the transaction. 1837 * Sort the log items in the transaction. 1838 * 1838 * 1839 * The ordering constraints are defined by th 1839 * The ordering constraints are defined by the inode allocation and unlink 1840 * behaviour. The rules are: 1840 * behaviour. The rules are: 1841 * 1841 * 1842 * 1. Every item is only logged once in 1842 * 1. Every item is only logged once in a given transaction. Hence it 1843 * represents the last logged state o 1843 * represents the last logged state of the item. Hence ordering is 1844 * dependent on the order in which op 1844 * dependent on the order in which operations need to be performed so 1845 * required initial conditions are al 1845 * required initial conditions are always met. 1846 * 1846 * 1847 * 2. Cancelled buffers are recorded in 1847 * 2. Cancelled buffers are recorded in pass 1 in a separate table and 1848 * there's nothing to replay from the 1848 * there's nothing to replay from them so we can simply cull them 1849 * from the transaction. However, we 1849 * from the transaction. However, we can't do that until after we've 1850 * replayed all the other items becau 1850 * replayed all the other items because they may be dependent on the 1851 * cancelled buffer and replaying the 1851 * cancelled buffer and replaying the cancelled buffer can remove it 1852 * form the cancelled buffer table. H 1852 * form the cancelled buffer table. Hence they have to be done last. 1853 * 1853 * 1854 * 3. Inode allocation buffers must be r 1854 * 3. Inode allocation buffers must be replayed before inode items that 1855 * read the buffer and replay changes 1855 * read the buffer and replay changes into it. For filesystems using the 1856 * ICREATE transactions, this means X 1856 * ICREATE transactions, this means XFS_LI_ICREATE objects need to get 1857 * treated the same as inode allocati 1857 * treated the same as inode allocation buffers as they create and 1858 * initialise the buffers directly. 1858 * initialise the buffers directly. 1859 * 1859 * 1860 * 4. Inode unlink buffers must be repla 1860 * 4. Inode unlink buffers must be replayed after inode items are replayed. 1861 * This ensures that inodes are compl 1861 * This ensures that inodes are completely flushed to the inode buffer 1862 * in a "free" state before we remove 1862 * in a "free" state before we remove the unlinked inode list pointer. 1863 * 1863 * 1864 * Hence the ordering needs to be inode alloc 1864 * Hence the ordering needs to be inode allocation buffers first, inode items 1865 * second, inode unlink buffers third and can 1865 * second, inode unlink buffers third and cancelled buffers last. 1866 * 1866 * 1867 * But there's a problem with that - we can't 1867 * But there's a problem with that - we can't tell an inode allocation buffer 1868 * apart from a regular buffer, so we can't s 1868 * apart from a regular buffer, so we can't separate them. We can, however, 1869 * tell an inode unlink buffer from the other 1869 * tell an inode unlink buffer from the others, and so we can separate them out 1870 * from all the other buffers and move them t 1870 * from all the other buffers and move them to last. 1871 * 1871 * 1872 * Hence, 4 lists, in order from head to tail 1872 * Hence, 4 lists, in order from head to tail: 1873 * - buffer_list for all buffers except 1873 * - buffer_list for all buffers except cancelled/inode unlink buffers 1874 * - item_list for all non-buffer items 1874 * - item_list for all non-buffer items 1875 * - inode_buffer_list for inode unlink 1875 * - inode_buffer_list for inode unlink buffers 1876 * - cancel_list for the cancelled buffe 1876 * - cancel_list for the cancelled buffers 1877 * 1877 * 1878 * Note that we add objects to the tail of th 1878 * Note that we add objects to the tail of the lists so that first-to-last 1879 * ordering is preserved within the lists. Ad 1879 * ordering is preserved within the lists. Adding objects to the head of the 1880 * list means when we traverse from the head 1880 * list means when we traverse from the head we walk them in last-to-first 1881 * order. For cancelled buffers and inode unl 1881 * order. For cancelled buffers and inode unlink buffers this doesn't matter, 1882 * but for all other items there may be speci 1882 * but for all other items there may be specific ordering that we need to 1883 * preserve. 1883 * preserve. 1884 */ 1884 */ 1885 STATIC int 1885 STATIC int 1886 xlog_recover_reorder_trans( 1886 xlog_recover_reorder_trans( 1887 struct xlog *log, 1887 struct xlog *log, 1888 struct xlog_recover *trans, 1888 struct xlog_recover *trans, 1889 int pass) 1889 int pass) 1890 { 1890 { 1891 struct xlog_recover_item *item, *n; 1891 struct xlog_recover_item *item, *n; 1892 int error = 0; 1892 int error = 0; 1893 LIST_HEAD(sort_list); 1893 LIST_HEAD(sort_list); 1894 LIST_HEAD(cancel_list); 1894 LIST_HEAD(cancel_list); 1895 LIST_HEAD(buffer_list); 1895 LIST_HEAD(buffer_list); 1896 LIST_HEAD(inode_buffer_list); 1896 LIST_HEAD(inode_buffer_list); 1897 LIST_HEAD(item_list); 1897 LIST_HEAD(item_list); 1898 1898 1899 list_splice_init(&trans->r_itemq, &so 1899 list_splice_init(&trans->r_itemq, &sort_list); 1900 list_for_each_entry_safe(item, n, &so 1900 list_for_each_entry_safe(item, n, &sort_list, ri_list) { 1901 enum xlog_recover_reorder 1901 enum xlog_recover_reorder fate = XLOG_REORDER_ITEM_LIST; 1902 1902 1903 item->ri_ops = xlog_find_item 1903 item->ri_ops = xlog_find_item_ops(item); 1904 if (!item->ri_ops) { 1904 if (!item->ri_ops) { 1905 xfs_warn(log->l_mp, 1905 xfs_warn(log->l_mp, 1906 "%s: unrecogn 1906 "%s: unrecognized type of log operation (%d)", 1907 __func__, ITE 1907 __func__, ITEM_TYPE(item)); 1908 ASSERT(0); 1908 ASSERT(0); 1909 /* 1909 /* 1910 * return the remaini 1910 * return the remaining items back to the transaction 1911 * item list so they 1911 * item list so they can be freed in caller. 1912 */ 1912 */ 1913 if (!list_empty(&sort 1913 if (!list_empty(&sort_list)) 1914 list_splice_i 1914 list_splice_init(&sort_list, &trans->r_itemq); 1915 error = -EFSCORRUPTED 1915 error = -EFSCORRUPTED; 1916 break; 1916 break; 1917 } 1917 } 1918 1918 1919 if (item->ri_ops->reorder) 1919 if (item->ri_ops->reorder) 1920 fate = item->ri_ops-> 1920 fate = item->ri_ops->reorder(item); 1921 1921 1922 switch (fate) { 1922 switch (fate) { 1923 case XLOG_REORDER_BUFFER_LIST 1923 case XLOG_REORDER_BUFFER_LIST: 1924 list_move_tail(&item- 1924 list_move_tail(&item->ri_list, &buffer_list); 1925 break; 1925 break; 1926 case XLOG_REORDER_CANCEL_LIST 1926 case XLOG_REORDER_CANCEL_LIST: 1927 trace_xfs_log_recover 1927 trace_xfs_log_recover_item_reorder_head(log, 1928 trans 1928 trans, item, pass); 1929 list_move(&item->ri_l 1929 list_move(&item->ri_list, &cancel_list); 1930 break; 1930 break; 1931 case XLOG_REORDER_INODE_BUFFE 1931 case XLOG_REORDER_INODE_BUFFER_LIST: 1932 list_move(&item->ri_l 1932 list_move(&item->ri_list, &inode_buffer_list); 1933 break; 1933 break; 1934 case XLOG_REORDER_ITEM_LIST: 1934 case XLOG_REORDER_ITEM_LIST: 1935 trace_xfs_log_recover 1935 trace_xfs_log_recover_item_reorder_tail(log, 1936 1936 trans, item, pass); 1937 list_move_tail(&item- 1937 list_move_tail(&item->ri_list, &item_list); 1938 break; 1938 break; 1939 } 1939 } 1940 } 1940 } 1941 1941 1942 ASSERT(list_empty(&sort_list)); 1942 ASSERT(list_empty(&sort_list)); 1943 if (!list_empty(&buffer_list)) 1943 if (!list_empty(&buffer_list)) 1944 list_splice(&buffer_list, &tr 1944 list_splice(&buffer_list, &trans->r_itemq); 1945 if (!list_empty(&item_list)) 1945 if (!list_empty(&item_list)) 1946 list_splice_tail(&item_list, 1946 list_splice_tail(&item_list, &trans->r_itemq); 1947 if (!list_empty(&inode_buffer_list)) 1947 if (!list_empty(&inode_buffer_list)) 1948 list_splice_tail(&inode_buffe 1948 list_splice_tail(&inode_buffer_list, &trans->r_itemq); 1949 if (!list_empty(&cancel_list)) 1949 if (!list_empty(&cancel_list)) 1950 list_splice_tail(&cancel_list 1950 list_splice_tail(&cancel_list, &trans->r_itemq); 1951 return error; 1951 return error; 1952 } 1952 } 1953 1953 1954 void 1954 void 1955 xlog_buf_readahead( 1955 xlog_buf_readahead( 1956 struct xlog *log, 1956 struct xlog *log, 1957 xfs_daddr_t blkno, 1957 xfs_daddr_t blkno, 1958 uint len, 1958 uint len, 1959 const struct xfs_buf_ops *ops) 1959 const struct xfs_buf_ops *ops) 1960 { 1960 { 1961 if (!xlog_is_buffer_cancelled(log, bl 1961 if (!xlog_is_buffer_cancelled(log, blkno, len)) 1962 xfs_buf_readahead(log->l_mp-> 1962 xfs_buf_readahead(log->l_mp->m_ddev_targp, blkno, len, ops); 1963 } 1963 } 1964 1964 1965 /* 1965 /* 1966 * Create a deferred work structure for resum 1966 * Create a deferred work structure for resuming and tracking the progress of a 1967 * log intent item that was found during reco 1967 * log intent item that was found during recovery. 1968 */ 1968 */ 1969 void 1969 void 1970 xlog_recover_intent_item( 1970 xlog_recover_intent_item( 1971 struct xlog *log, 1971 struct xlog *log, 1972 struct xfs_log_item *lip, 1972 struct xfs_log_item *lip, 1973 xfs_lsn_t lsn, 1973 xfs_lsn_t lsn, 1974 const struct xfs_defer_op_type *ops) 1974 const struct xfs_defer_op_type *ops) 1975 { 1975 { 1976 ASSERT(xlog_item_is_intent(lip)); 1976 ASSERT(xlog_item_is_intent(lip)); 1977 1977 1978 xfs_defer_start_recovery(lip, &log->r 1978 xfs_defer_start_recovery(lip, &log->r_dfops, ops); 1979 1979 1980 /* 1980 /* 1981 * Insert the intent into the AIL dir 1981 * Insert the intent into the AIL directly and drop one reference so 1982 * that finishing or canceling the wo 1982 * that finishing or canceling the work will drop the other. 1983 */ 1983 */ 1984 xfs_trans_ail_insert(log->l_ailp, lip 1984 xfs_trans_ail_insert(log->l_ailp, lip, lsn); 1985 lip->li_ops->iop_unpin(lip, 0); 1985 lip->li_ops->iop_unpin(lip, 0); 1986 } 1986 } 1987 1987 1988 STATIC int 1988 STATIC int 1989 xlog_recover_items_pass2( 1989 xlog_recover_items_pass2( 1990 struct xlog *log, 1990 struct xlog *log, 1991 struct xlog_recover *tran 1991 struct xlog_recover *trans, 1992 struct list_head *buff 1992 struct list_head *buffer_list, 1993 struct list_head *item 1993 struct list_head *item_list) 1994 { 1994 { 1995 struct xlog_recover_item *item 1995 struct xlog_recover_item *item; 1996 int error 1996 int error = 0; 1997 1997 1998 list_for_each_entry(item, item_list, 1998 list_for_each_entry(item, item_list, ri_list) { 1999 trace_xfs_log_recover_item_re 1999 trace_xfs_log_recover_item_recover(log, trans, item, 2000 XLOG_RECOVER_ 2000 XLOG_RECOVER_PASS2); 2001 2001 2002 if (item->ri_ops->commit_pass 2002 if (item->ri_ops->commit_pass2) 2003 error = item->ri_ops- 2003 error = item->ri_ops->commit_pass2(log, buffer_list, 2004 item, 2004 item, trans->r_lsn); 2005 if (error) 2005 if (error) 2006 return error; 2006 return error; 2007 } 2007 } 2008 2008 2009 return error; 2009 return error; 2010 } 2010 } 2011 2011 2012 /* 2012 /* 2013 * Perform the transaction. 2013 * Perform the transaction. 2014 * 2014 * 2015 * If the transaction modifies a buffer or in 2015 * If the transaction modifies a buffer or inode, do it now. Otherwise, 2016 * EFIs and EFDs get queued up by adding entr 2016 * EFIs and EFDs get queued up by adding entries into the AIL for them. 2017 */ 2017 */ 2018 STATIC int 2018 STATIC int 2019 xlog_recover_commit_trans( 2019 xlog_recover_commit_trans( 2020 struct xlog *log, 2020 struct xlog *log, 2021 struct xlog_recover *trans, 2021 struct xlog_recover *trans, 2022 int pass, 2022 int pass, 2023 struct list_head *buffer_list) 2023 struct list_head *buffer_list) 2024 { 2024 { 2025 int error 2025 int error = 0; 2026 int items 2026 int items_queued = 0; 2027 struct xlog_recover_item *item 2027 struct xlog_recover_item *item; 2028 struct xlog_recover_item *next 2028 struct xlog_recover_item *next; 2029 LIST_HEAD (ra_l 2029 LIST_HEAD (ra_list); 2030 LIST_HEAD (done 2030 LIST_HEAD (done_list); 2031 2031 2032 #define XLOG_RECOVER_COMMIT_QUEUE_MAX 2032 #define XLOG_RECOVER_COMMIT_QUEUE_MAX 100 2033 2033 2034 hlist_del_init(&trans->r_list); 2034 hlist_del_init(&trans->r_list); 2035 2035 2036 error = xlog_recover_reorder_trans(lo 2036 error = xlog_recover_reorder_trans(log, trans, pass); 2037 if (error) 2037 if (error) 2038 return error; 2038 return error; 2039 2039 2040 list_for_each_entry_safe(item, next, 2040 list_for_each_entry_safe(item, next, &trans->r_itemq, ri_list) { 2041 trace_xfs_log_recover_item_re 2041 trace_xfs_log_recover_item_recover(log, trans, item, pass); 2042 2042 2043 switch (pass) { 2043 switch (pass) { 2044 case XLOG_RECOVER_PASS1: 2044 case XLOG_RECOVER_PASS1: 2045 if (item->ri_ops->com 2045 if (item->ri_ops->commit_pass1) 2046 error = item- 2046 error = item->ri_ops->commit_pass1(log, item); 2047 break; 2047 break; 2048 case XLOG_RECOVER_PASS2: 2048 case XLOG_RECOVER_PASS2: 2049 if (item->ri_ops->ra_ 2049 if (item->ri_ops->ra_pass2) 2050 item->ri_ops- 2050 item->ri_ops->ra_pass2(log, item); 2051 list_move_tail(&item- 2051 list_move_tail(&item->ri_list, &ra_list); 2052 items_queued++; 2052 items_queued++; 2053 if (items_queued >= X 2053 if (items_queued >= XLOG_RECOVER_COMMIT_QUEUE_MAX) { 2054 error = xlog_ 2054 error = xlog_recover_items_pass2(log, trans, 2055 2055 buffer_list, &ra_list); 2056 list_splice_t 2056 list_splice_tail_init(&ra_list, &done_list); 2057 items_queued 2057 items_queued = 0; 2058 } 2058 } 2059 2059 2060 break; 2060 break; 2061 default: 2061 default: 2062 ASSERT(0); 2062 ASSERT(0); 2063 } 2063 } 2064 2064 2065 if (error) 2065 if (error) 2066 goto out; 2066 goto out; 2067 } 2067 } 2068 2068 2069 out: 2069 out: 2070 if (!list_empty(&ra_list)) { 2070 if (!list_empty(&ra_list)) { 2071 if (!error) 2071 if (!error) 2072 error = xlog_recover_ 2072 error = xlog_recover_items_pass2(log, trans, 2073 buffe 2073 buffer_list, &ra_list); 2074 list_splice_tail_init(&ra_lis 2074 list_splice_tail_init(&ra_list, &done_list); 2075 } 2075 } 2076 2076 2077 if (!list_empty(&done_list)) 2077 if (!list_empty(&done_list)) 2078 list_splice_init(&done_list, 2078 list_splice_init(&done_list, &trans->r_itemq); 2079 2079 2080 return error; 2080 return error; 2081 } 2081 } 2082 2082 2083 STATIC void 2083 STATIC void 2084 xlog_recover_add_item( 2084 xlog_recover_add_item( 2085 struct list_head *head) 2085 struct list_head *head) 2086 { 2086 { 2087 struct xlog_recover_item *item; 2087 struct xlog_recover_item *item; 2088 2088 2089 item = kzalloc(sizeof(struct xlog_rec 2089 item = kzalloc(sizeof(struct xlog_recover_item), 2090 GFP_KERNEL | __GFP_NO 2090 GFP_KERNEL | __GFP_NOFAIL); 2091 INIT_LIST_HEAD(&item->ri_list); 2091 INIT_LIST_HEAD(&item->ri_list); 2092 list_add_tail(&item->ri_list, head); 2092 list_add_tail(&item->ri_list, head); 2093 } 2093 } 2094 2094 2095 STATIC int 2095 STATIC int 2096 xlog_recover_add_to_cont_trans( 2096 xlog_recover_add_to_cont_trans( 2097 struct xlog *log, 2097 struct xlog *log, 2098 struct xlog_recover *trans, 2098 struct xlog_recover *trans, 2099 char *dp, 2099 char *dp, 2100 int len) 2100 int len) 2101 { 2101 { 2102 struct xlog_recover_item *item; 2102 struct xlog_recover_item *item; 2103 char *ptr, *old_pt 2103 char *ptr, *old_ptr; 2104 int old_len; 2104 int old_len; 2105 2105 2106 /* 2106 /* 2107 * If the transaction is empty, the h 2107 * If the transaction is empty, the header was split across this and the 2108 * previous record. Copy the rest of 2108 * previous record. Copy the rest of the header. 2109 */ 2109 */ 2110 if (list_empty(&trans->r_itemq)) { 2110 if (list_empty(&trans->r_itemq)) { 2111 ASSERT(len <= sizeof(struct x 2111 ASSERT(len <= sizeof(struct xfs_trans_header)); 2112 if (len > sizeof(struct xfs_t 2112 if (len > sizeof(struct xfs_trans_header)) { 2113 xfs_warn(log->l_mp, " 2113 xfs_warn(log->l_mp, "%s: bad header length", __func__); 2114 return -EFSCORRUPTED; 2114 return -EFSCORRUPTED; 2115 } 2115 } 2116 2116 2117 xlog_recover_add_item(&trans- 2117 xlog_recover_add_item(&trans->r_itemq); 2118 ptr = (char *)&trans->r_thead 2118 ptr = (char *)&trans->r_theader + 2119 sizeof(struct 2119 sizeof(struct xfs_trans_header) - len; 2120 memcpy(ptr, dp, len); 2120 memcpy(ptr, dp, len); 2121 return 0; 2121 return 0; 2122 } 2122 } 2123 2123 2124 /* take the tail entry */ 2124 /* take the tail entry */ 2125 item = list_entry(trans->r_itemq.prev 2125 item = list_entry(trans->r_itemq.prev, struct xlog_recover_item, 2126 ri_list); 2126 ri_list); 2127 2127 2128 old_ptr = item->ri_buf[item->ri_cnt-1 2128 old_ptr = item->ri_buf[item->ri_cnt-1].i_addr; 2129 old_len = item->ri_buf[item->ri_cnt-1 2129 old_len = item->ri_buf[item->ri_cnt-1].i_len; 2130 2130 2131 ptr = kvrealloc(old_ptr, len + old_le 2131 ptr = kvrealloc(old_ptr, len + old_len, GFP_KERNEL); 2132 if (!ptr) 2132 if (!ptr) 2133 return -ENOMEM; 2133 return -ENOMEM; 2134 memcpy(&ptr[old_len], dp, len); 2134 memcpy(&ptr[old_len], dp, len); 2135 item->ri_buf[item->ri_cnt-1].i_len += 2135 item->ri_buf[item->ri_cnt-1].i_len += len; 2136 item->ri_buf[item->ri_cnt-1].i_addr = 2136 item->ri_buf[item->ri_cnt-1].i_addr = ptr; 2137 trace_xfs_log_recover_item_add_cont(l 2137 trace_xfs_log_recover_item_add_cont(log, trans, item, 0); 2138 return 0; 2138 return 0; 2139 } 2139 } 2140 2140 2141 /* 2141 /* 2142 * The next region to add is the start of a n 2142 * The next region to add is the start of a new region. It could be 2143 * a whole region or it could be the first pa 2143 * a whole region or it could be the first part of a new region. Because 2144 * of this, the assumption here is that the t 2144 * of this, the assumption here is that the type and size fields of all 2145 * format structures fit into the first 32 bi 2145 * format structures fit into the first 32 bits of the structure. 2146 * 2146 * 2147 * This works because all regions must be 32 2147 * This works because all regions must be 32 bit aligned. Therefore, we 2148 * either have both fields or we have neither 2148 * either have both fields or we have neither field. In the case we have 2149 * neither field, the data part of the region 2149 * neither field, the data part of the region is zero length. We only have 2150 * a log_op_header and can throw away the hea 2150 * a log_op_header and can throw away the header since a new one will appear 2151 * later. If we have at least 4 bytes, then 2151 * later. If we have at least 4 bytes, then we can determine how many regions 2152 * will appear in the current log item. 2152 * will appear in the current log item. 2153 */ 2153 */ 2154 STATIC int 2154 STATIC int 2155 xlog_recover_add_to_trans( 2155 xlog_recover_add_to_trans( 2156 struct xlog *log, 2156 struct xlog *log, 2157 struct xlog_recover *trans, 2157 struct xlog_recover *trans, 2158 char *dp, 2158 char *dp, 2159 int len) 2159 int len) 2160 { 2160 { 2161 struct xfs_inode_log_format *in_f 2161 struct xfs_inode_log_format *in_f; /* any will do */ 2162 struct xlog_recover_item *item; 2162 struct xlog_recover_item *item; 2163 char *ptr; 2163 char *ptr; 2164 2164 2165 if (!len) 2165 if (!len) 2166 return 0; 2166 return 0; 2167 if (list_empty(&trans->r_itemq)) { 2167 if (list_empty(&trans->r_itemq)) { 2168 /* we need to catch log corru 2168 /* we need to catch log corruptions here */ 2169 if (*(uint *)dp != XFS_TRANS_ 2169 if (*(uint *)dp != XFS_TRANS_HEADER_MAGIC) { 2170 xfs_warn(log->l_mp, " 2170 xfs_warn(log->l_mp, "%s: bad header magic number", 2171 __func__); 2171 __func__); 2172 ASSERT(0); 2172 ASSERT(0); 2173 return -EFSCORRUPTED; 2173 return -EFSCORRUPTED; 2174 } 2174 } 2175 2175 2176 if (len > sizeof(struct xfs_t 2176 if (len > sizeof(struct xfs_trans_header)) { 2177 xfs_warn(log->l_mp, " 2177 xfs_warn(log->l_mp, "%s: bad header length", __func__); 2178 ASSERT(0); 2178 ASSERT(0); 2179 return -EFSCORRUPTED; 2179 return -EFSCORRUPTED; 2180 } 2180 } 2181 2181 2182 /* 2182 /* 2183 * The transaction header can 2183 * The transaction header can be arbitrarily split across op 2184 * records. If we don't have 2184 * records. If we don't have the whole thing here, copy what we 2185 * do have and handle the res 2185 * do have and handle the rest in the next record. 2186 */ 2186 */ 2187 if (len == sizeof(struct xfs_ 2187 if (len == sizeof(struct xfs_trans_header)) 2188 xlog_recover_add_item 2188 xlog_recover_add_item(&trans->r_itemq); 2189 memcpy(&trans->r_theader, dp, 2189 memcpy(&trans->r_theader, dp, len); 2190 return 0; 2190 return 0; 2191 } 2191 } 2192 2192 2193 ptr = xlog_kvmalloc(len); 2193 ptr = xlog_kvmalloc(len); 2194 memcpy(ptr, dp, len); 2194 memcpy(ptr, dp, len); 2195 in_f = (struct xfs_inode_log_format * 2195 in_f = (struct xfs_inode_log_format *)ptr; 2196 2196 2197 /* take the tail entry */ 2197 /* take the tail entry */ 2198 item = list_entry(trans->r_itemq.prev 2198 item = list_entry(trans->r_itemq.prev, struct xlog_recover_item, 2199 ri_list); 2199 ri_list); 2200 if (item->ri_total != 0 && 2200 if (item->ri_total != 0 && 2201 item->ri_total == item->ri_cnt) 2201 item->ri_total == item->ri_cnt) { 2202 /* tail item is in use, get a 2202 /* tail item is in use, get a new one */ 2203 xlog_recover_add_item(&trans- 2203 xlog_recover_add_item(&trans->r_itemq); 2204 item = list_entry(trans->r_it 2204 item = list_entry(trans->r_itemq.prev, 2205 struc 2205 struct xlog_recover_item, ri_list); 2206 } 2206 } 2207 2207 2208 if (item->ri_total == 0) { 2208 if (item->ri_total == 0) { /* first region to be added */ 2209 if (in_f->ilf_size == 0 || 2209 if (in_f->ilf_size == 0 || 2210 in_f->ilf_size > XLOG_MAX 2210 in_f->ilf_size > XLOG_MAX_REGIONS_IN_ITEM) { 2211 xfs_warn(log->l_mp, 2211 xfs_warn(log->l_mp, 2212 "bad number of regions (%d) i 2212 "bad number of regions (%d) in inode log format", 2213 in_f->ilf_s 2213 in_f->ilf_size); 2214 ASSERT(0); 2214 ASSERT(0); 2215 kvfree(ptr); 2215 kvfree(ptr); 2216 return -EFSCORRUPTED; 2216 return -EFSCORRUPTED; 2217 } 2217 } 2218 2218 2219 item->ri_total = in_f->ilf_si 2219 item->ri_total = in_f->ilf_size; 2220 item->ri_buf = kzalloc(item-> 2220 item->ri_buf = kzalloc(item->ri_total * sizeof(xfs_log_iovec_t), 2221 GFP_KERNEL | 2221 GFP_KERNEL | __GFP_NOFAIL); 2222 } 2222 } 2223 2223 2224 if (item->ri_total <= item->ri_cnt) { 2224 if (item->ri_total <= item->ri_cnt) { 2225 xfs_warn(log->l_mp, 2225 xfs_warn(log->l_mp, 2226 "log item region count (%d) overflowe 2226 "log item region count (%d) overflowed size (%d)", 2227 item->ri_cnt, 2227 item->ri_cnt, item->ri_total); 2228 ASSERT(0); 2228 ASSERT(0); 2229 kvfree(ptr); 2229 kvfree(ptr); 2230 return -EFSCORRUPTED; 2230 return -EFSCORRUPTED; 2231 } 2231 } 2232 2232 2233 /* Description region is ri_buf[0] */ 2233 /* Description region is ri_buf[0] */ 2234 item->ri_buf[item->ri_cnt].i_addr = p 2234 item->ri_buf[item->ri_cnt].i_addr = ptr; 2235 item->ri_buf[item->ri_cnt].i_len = l 2235 item->ri_buf[item->ri_cnt].i_len = len; 2236 item->ri_cnt++; 2236 item->ri_cnt++; 2237 trace_xfs_log_recover_item_add(log, t 2237 trace_xfs_log_recover_item_add(log, trans, item, 0); 2238 return 0; 2238 return 0; 2239 } 2239 } 2240 2240 2241 /* 2241 /* 2242 * Free up any resources allocated by the tra 2242 * Free up any resources allocated by the transaction 2243 * 2243 * 2244 * Remember that EFIs, EFDs, and IUNLINKs are 2244 * Remember that EFIs, EFDs, and IUNLINKs are handled later. 2245 */ 2245 */ 2246 STATIC void 2246 STATIC void 2247 xlog_recover_free_trans( 2247 xlog_recover_free_trans( 2248 struct xlog_recover *trans) 2248 struct xlog_recover *trans) 2249 { 2249 { 2250 struct xlog_recover_item *item, *n; 2250 struct xlog_recover_item *item, *n; 2251 int i; 2251 int i; 2252 2252 2253 hlist_del_init(&trans->r_list); 2253 hlist_del_init(&trans->r_list); 2254 2254 2255 list_for_each_entry_safe(item, n, &tr 2255 list_for_each_entry_safe(item, n, &trans->r_itemq, ri_list) { 2256 /* Free the regions in the it 2256 /* Free the regions in the item. */ 2257 list_del(&item->ri_list); 2257 list_del(&item->ri_list); 2258 for (i = 0; i < item->ri_cnt; 2258 for (i = 0; i < item->ri_cnt; i++) 2259 kvfree(item->ri_buf[i 2259 kvfree(item->ri_buf[i].i_addr); 2260 /* Free the item itself */ 2260 /* Free the item itself */ 2261 kfree(item->ri_buf); 2261 kfree(item->ri_buf); 2262 kfree(item); 2262 kfree(item); 2263 } 2263 } 2264 /* Free the transaction recover struc 2264 /* Free the transaction recover structure */ 2265 kfree(trans); 2265 kfree(trans); 2266 } 2266 } 2267 2267 2268 /* 2268 /* 2269 * On error or completion, trans is freed. 2269 * On error or completion, trans is freed. 2270 */ 2270 */ 2271 STATIC int 2271 STATIC int 2272 xlog_recovery_process_trans( 2272 xlog_recovery_process_trans( 2273 struct xlog *log, 2273 struct xlog *log, 2274 struct xlog_recover *trans, 2274 struct xlog_recover *trans, 2275 char *dp, 2275 char *dp, 2276 unsigned int len, 2276 unsigned int len, 2277 unsigned int flags, 2277 unsigned int flags, 2278 int pass, 2278 int pass, 2279 struct list_head *buffer_list) 2279 struct list_head *buffer_list) 2280 { 2280 { 2281 int error = 0; 2281 int error = 0; 2282 bool freeit = fals 2282 bool freeit = false; 2283 2283 2284 /* mask off ophdr transaction contain 2284 /* mask off ophdr transaction container flags */ 2285 flags &= ~XLOG_END_TRANS; 2285 flags &= ~XLOG_END_TRANS; 2286 if (flags & XLOG_WAS_CONT_TRANS) 2286 if (flags & XLOG_WAS_CONT_TRANS) 2287 flags &= ~XLOG_CONTINUE_TRANS 2287 flags &= ~XLOG_CONTINUE_TRANS; 2288 2288 2289 /* 2289 /* 2290 * Callees must not free the trans st 2290 * Callees must not free the trans structure. We'll decide if we need to 2291 * free it or not based on the operat 2291 * free it or not based on the operation being done and it's result. 2292 */ 2292 */ 2293 switch (flags) { 2293 switch (flags) { 2294 /* expected flag values */ 2294 /* expected flag values */ 2295 case 0: 2295 case 0: 2296 case XLOG_CONTINUE_TRANS: 2296 case XLOG_CONTINUE_TRANS: 2297 error = xlog_recover_add_to_t 2297 error = xlog_recover_add_to_trans(log, trans, dp, len); 2298 break; 2298 break; 2299 case XLOG_WAS_CONT_TRANS: 2299 case XLOG_WAS_CONT_TRANS: 2300 error = xlog_recover_add_to_c 2300 error = xlog_recover_add_to_cont_trans(log, trans, dp, len); 2301 break; 2301 break; 2302 case XLOG_COMMIT_TRANS: 2302 case XLOG_COMMIT_TRANS: 2303 error = xlog_recover_commit_t 2303 error = xlog_recover_commit_trans(log, trans, pass, 2304 2304 buffer_list); 2305 /* success or fail, we are no 2305 /* success or fail, we are now done with this transaction. */ 2306 freeit = true; 2306 freeit = true; 2307 break; 2307 break; 2308 2308 2309 /* unexpected flag values */ 2309 /* unexpected flag values */ 2310 case XLOG_UNMOUNT_TRANS: 2310 case XLOG_UNMOUNT_TRANS: 2311 /* just skip trans */ 2311 /* just skip trans */ 2312 xfs_warn(log->l_mp, "%s: Unmo 2312 xfs_warn(log->l_mp, "%s: Unmount LR", __func__); 2313 freeit = true; 2313 freeit = true; 2314 break; 2314 break; 2315 case XLOG_START_TRANS: 2315 case XLOG_START_TRANS: 2316 default: 2316 default: 2317 xfs_warn(log->l_mp, "%s: bad 2317 xfs_warn(log->l_mp, "%s: bad flag 0x%x", __func__, flags); 2318 ASSERT(0); 2318 ASSERT(0); 2319 error = -EFSCORRUPTED; 2319 error = -EFSCORRUPTED; 2320 break; 2320 break; 2321 } 2321 } 2322 if (error || freeit) 2322 if (error || freeit) 2323 xlog_recover_free_trans(trans 2323 xlog_recover_free_trans(trans); 2324 return error; 2324 return error; 2325 } 2325 } 2326 2326 2327 /* 2327 /* 2328 * Lookup the transaction recovery structure 2328 * Lookup the transaction recovery structure associated with the ID in the 2329 * current ophdr. If the transaction doesn't 2329 * current ophdr. If the transaction doesn't exist and the start flag is set in 2330 * the ophdr, then allocate a new transaction 2330 * the ophdr, then allocate a new transaction for future ID matches to find. 2331 * Either way, return what we found during th 2331 * Either way, return what we found during the lookup - an existing transaction 2332 * or nothing. 2332 * or nothing. 2333 */ 2333 */ 2334 STATIC struct xlog_recover * 2334 STATIC struct xlog_recover * 2335 xlog_recover_ophdr_to_trans( 2335 xlog_recover_ophdr_to_trans( 2336 struct hlist_head rhash[], 2336 struct hlist_head rhash[], 2337 struct xlog_rec_header *rhead, 2337 struct xlog_rec_header *rhead, 2338 struct xlog_op_header *ohead) 2338 struct xlog_op_header *ohead) 2339 { 2339 { 2340 struct xlog_recover *trans; 2340 struct xlog_recover *trans; 2341 xlog_tid_t tid; 2341 xlog_tid_t tid; 2342 struct hlist_head *rhp; 2342 struct hlist_head *rhp; 2343 2343 2344 tid = be32_to_cpu(ohead->oh_tid); 2344 tid = be32_to_cpu(ohead->oh_tid); 2345 rhp = &rhash[XLOG_RHASH(tid)]; 2345 rhp = &rhash[XLOG_RHASH(tid)]; 2346 hlist_for_each_entry(trans, rhp, r_li 2346 hlist_for_each_entry(trans, rhp, r_list) { 2347 if (trans->r_log_tid == tid) 2347 if (trans->r_log_tid == tid) 2348 return trans; 2348 return trans; 2349 } 2349 } 2350 2350 2351 /* 2351 /* 2352 * skip over non-start transaction he 2352 * skip over non-start transaction headers - we could be 2353 * processing slack space before the 2353 * processing slack space before the next transaction starts 2354 */ 2354 */ 2355 if (!(ohead->oh_flags & XLOG_START_TR 2355 if (!(ohead->oh_flags & XLOG_START_TRANS)) 2356 return NULL; 2356 return NULL; 2357 2357 2358 ASSERT(be32_to_cpu(ohead->oh_len) == 2358 ASSERT(be32_to_cpu(ohead->oh_len) == 0); 2359 2359 2360 /* 2360 /* 2361 * This is a new transaction so alloc 2361 * This is a new transaction so allocate a new recovery container to 2362 * hold the recovery ops that will fo 2362 * hold the recovery ops that will follow. 2363 */ 2363 */ 2364 trans = kzalloc(sizeof(struct xlog_re 2364 trans = kzalloc(sizeof(struct xlog_recover), GFP_KERNEL | __GFP_NOFAIL); 2365 trans->r_log_tid = tid; 2365 trans->r_log_tid = tid; 2366 trans->r_lsn = be64_to_cpu(rhead->h_l 2366 trans->r_lsn = be64_to_cpu(rhead->h_lsn); 2367 INIT_LIST_HEAD(&trans->r_itemq); 2367 INIT_LIST_HEAD(&trans->r_itemq); 2368 INIT_HLIST_NODE(&trans->r_list); 2368 INIT_HLIST_NODE(&trans->r_list); 2369 hlist_add_head(&trans->r_list, rhp); 2369 hlist_add_head(&trans->r_list, rhp); 2370 2370 2371 /* 2371 /* 2372 * Nothing more to do for this ophdr. 2372 * Nothing more to do for this ophdr. Items to be added to this new 2373 * transaction will be in subsequent 2373 * transaction will be in subsequent ophdr containers. 2374 */ 2374 */ 2375 return NULL; 2375 return NULL; 2376 } 2376 } 2377 2377 2378 STATIC int 2378 STATIC int 2379 xlog_recover_process_ophdr( 2379 xlog_recover_process_ophdr( 2380 struct xlog *log, 2380 struct xlog *log, 2381 struct hlist_head rhash[], 2381 struct hlist_head rhash[], 2382 struct xlog_rec_header *rhead, 2382 struct xlog_rec_header *rhead, 2383 struct xlog_op_header *ohead, 2383 struct xlog_op_header *ohead, 2384 char *dp, 2384 char *dp, 2385 char *end, 2385 char *end, 2386 int pass, 2386 int pass, 2387 struct list_head *buffer_list) 2387 struct list_head *buffer_list) 2388 { 2388 { 2389 struct xlog_recover *trans; 2389 struct xlog_recover *trans; 2390 unsigned int len; 2390 unsigned int len; 2391 int error; 2391 int error; 2392 2392 2393 /* Do we understand who wrote this op 2393 /* Do we understand who wrote this op? */ 2394 if (ohead->oh_clientid != XFS_TRANSAC 2394 if (ohead->oh_clientid != XFS_TRANSACTION && 2395 ohead->oh_clientid != XFS_LOG) { 2395 ohead->oh_clientid != XFS_LOG) { 2396 xfs_warn(log->l_mp, "%s: bad 2396 xfs_warn(log->l_mp, "%s: bad clientid 0x%x", 2397 __func__, ohead->oh_c 2397 __func__, ohead->oh_clientid); 2398 ASSERT(0); 2398 ASSERT(0); 2399 return -EFSCORRUPTED; 2399 return -EFSCORRUPTED; 2400 } 2400 } 2401 2401 2402 /* 2402 /* 2403 * Check the ophdr contains all the d 2403 * Check the ophdr contains all the data it is supposed to contain. 2404 */ 2404 */ 2405 len = be32_to_cpu(ohead->oh_len); 2405 len = be32_to_cpu(ohead->oh_len); 2406 if (dp + len > end) { 2406 if (dp + len > end) { 2407 xfs_warn(log->l_mp, "%s: bad 2407 xfs_warn(log->l_mp, "%s: bad length 0x%x", __func__, len); 2408 WARN_ON(1); 2408 WARN_ON(1); 2409 return -EFSCORRUPTED; 2409 return -EFSCORRUPTED; 2410 } 2410 } 2411 2411 2412 trans = xlog_recover_ophdr_to_trans(r 2412 trans = xlog_recover_ophdr_to_trans(rhash, rhead, ohead); 2413 if (!trans) { 2413 if (!trans) { 2414 /* nothing to do, so skip ove 2414 /* nothing to do, so skip over this ophdr */ 2415 return 0; 2415 return 0; 2416 } 2416 } 2417 2417 2418 /* 2418 /* 2419 * The recovered buffer queue is drai 2419 * The recovered buffer queue is drained only once we know that all 2420 * recovery items for the current LSN 2420 * recovery items for the current LSN have been processed. This is 2421 * required because: 2421 * required because: 2422 * 2422 * 2423 * - Buffer write submission updates 2423 * - Buffer write submission updates the metadata LSN of the buffer. 2424 * - Log recovery skips items with a 2424 * - Log recovery skips items with a metadata LSN >= the current LSN of 2425 * the recovery item. 2425 * the recovery item. 2426 * - Separate recovery items against 2426 * - Separate recovery items against the same metadata buffer can share 2427 * a current LSN. I.e., consider th 2427 * a current LSN. I.e., consider that the LSN of a recovery item is 2428 * defined as the starting LSN of t 2428 * defined as the starting LSN of the first record in which its 2429 * transaction appears, that a reco 2429 * transaction appears, that a record can hold multiple transactions, 2430 * and/or that a transaction can sp 2430 * and/or that a transaction can span multiple records. 2431 * 2431 * 2432 * In other words, we are allowed to 2432 * In other words, we are allowed to submit a buffer from log recovery 2433 * once per current LSN. Otherwise, w 2433 * once per current LSN. Otherwise, we may incorrectly skip recovery 2434 * items and cause corruption. 2434 * items and cause corruption. 2435 * 2435 * 2436 * We don't know up front whether buf 2436 * We don't know up front whether buffers are updated multiple times per 2437 * LSN. Therefore, track the current 2437 * LSN. Therefore, track the current LSN of each commit log record as it 2438 * is processed and drain the queue w 2438 * is processed and drain the queue when it changes. Use commit records 2439 * because they are ordered correctly 2439 * because they are ordered correctly by the logging code. 2440 */ 2440 */ 2441 if (log->l_recovery_lsn != trans->r_l 2441 if (log->l_recovery_lsn != trans->r_lsn && 2442 ohead->oh_flags & XLOG_COMMIT_TRA 2442 ohead->oh_flags & XLOG_COMMIT_TRANS) { 2443 error = xfs_buf_delwri_submit 2443 error = xfs_buf_delwri_submit(buffer_list); 2444 if (error) 2444 if (error) 2445 return error; 2445 return error; 2446 log->l_recovery_lsn = trans-> 2446 log->l_recovery_lsn = trans->r_lsn; 2447 } 2447 } 2448 2448 2449 return xlog_recovery_process_trans(lo 2449 return xlog_recovery_process_trans(log, trans, dp, len, 2450 oh 2450 ohead->oh_flags, pass, buffer_list); 2451 } 2451 } 2452 2452 2453 /* 2453 /* 2454 * There are two valid states of the r_state 2454 * There are two valid states of the r_state field. 0 indicates that the 2455 * transaction structure is in a normal state 2455 * transaction structure is in a normal state. We have either seen the 2456 * start of the transaction or the last opera 2456 * start of the transaction or the last operation we added was not a partial 2457 * operation. If the last operation we added 2457 * operation. If the last operation we added to the transaction was a 2458 * partial operation, we need to mark r_state 2458 * partial operation, we need to mark r_state with XLOG_WAS_CONT_TRANS. 2459 * 2459 * 2460 * NOTE: skip LRs with 0 data length. 2460 * NOTE: skip LRs with 0 data length. 2461 */ 2461 */ 2462 STATIC int 2462 STATIC int 2463 xlog_recover_process_data( 2463 xlog_recover_process_data( 2464 struct xlog *log, 2464 struct xlog *log, 2465 struct hlist_head rhash[], 2465 struct hlist_head rhash[], 2466 struct xlog_rec_header *rhead, 2466 struct xlog_rec_header *rhead, 2467 char *dp, 2467 char *dp, 2468 int pass, 2468 int pass, 2469 struct list_head *buffer_list) 2469 struct list_head *buffer_list) 2470 { 2470 { 2471 struct xlog_op_header *ohead; 2471 struct xlog_op_header *ohead; 2472 char *end; 2472 char *end; 2473 int num_logops; 2473 int num_logops; 2474 int error; 2474 int error; 2475 2475 2476 end = dp + be32_to_cpu(rhead->h_len); 2476 end = dp + be32_to_cpu(rhead->h_len); 2477 num_logops = be32_to_cpu(rhead->h_num 2477 num_logops = be32_to_cpu(rhead->h_num_logops); 2478 2478 2479 /* check the log format matches our o 2479 /* check the log format matches our own - else we can't recover */ 2480 if (xlog_header_check_recover(log->l_ 2480 if (xlog_header_check_recover(log->l_mp, rhead)) 2481 return -EIO; 2481 return -EIO; 2482 2482 2483 trace_xfs_log_recover_record(log, rhe 2483 trace_xfs_log_recover_record(log, rhead, pass); 2484 while ((dp < end) && num_logops) { 2484 while ((dp < end) && num_logops) { 2485 2485 2486 ohead = (struct xlog_op_heade 2486 ohead = (struct xlog_op_header *)dp; 2487 dp += sizeof(*ohead); 2487 dp += sizeof(*ohead); 2488 if (dp > end) { 2488 if (dp > end) { 2489 xfs_warn(log->l_mp, " 2489 xfs_warn(log->l_mp, "%s: op header overrun", __func__); 2490 return -EFSCORRUPTED; 2490 return -EFSCORRUPTED; 2491 } 2491 } 2492 2492 2493 /* errors will abort recovery 2493 /* errors will abort recovery */ 2494 error = xlog_recover_process_ 2494 error = xlog_recover_process_ophdr(log, rhash, rhead, ohead, 2495 2495 dp, end, pass, buffer_list); 2496 if (error) 2496 if (error) 2497 return error; 2497 return error; 2498 2498 2499 dp += be32_to_cpu(ohead->oh_l 2499 dp += be32_to_cpu(ohead->oh_len); 2500 num_logops--; 2500 num_logops--; 2501 } 2501 } 2502 return 0; 2502 return 0; 2503 } 2503 } 2504 2504 2505 /* Take all the collected deferred ops and fi 2505 /* Take all the collected deferred ops and finish them in order. */ 2506 static int 2506 static int 2507 xlog_finish_defer_ops( 2507 xlog_finish_defer_ops( 2508 struct xfs_mount *mp, 2508 struct xfs_mount *mp, 2509 struct list_head *capture_list 2509 struct list_head *capture_list) 2510 { 2510 { 2511 struct xfs_defer_capture *dfc, *next; 2511 struct xfs_defer_capture *dfc, *next; 2512 struct xfs_trans *tp; 2512 struct xfs_trans *tp; 2513 int error = 0; 2513 int error = 0; 2514 2514 2515 list_for_each_entry_safe(dfc, next, c 2515 list_for_each_entry_safe(dfc, next, capture_list, dfc_list) { 2516 struct xfs_trans_res resv; 2516 struct xfs_trans_res resv; 2517 struct xfs_defer_resources dr 2517 struct xfs_defer_resources dres; 2518 2518 2519 /* 2519 /* 2520 * Create a new transaction r 2520 * Create a new transaction reservation from the captured 2521 * information. Set logcount 2521 * information. Set logcount to 1 to force the new transaction 2522 * to regrant every roll so t 2522 * to regrant every roll so that we can make forward progress 2523 * in recovery no matter how 2523 * in recovery no matter how full the log might be. 2524 */ 2524 */ 2525 resv.tr_logres = dfc->dfc_log 2525 resv.tr_logres = dfc->dfc_logres; 2526 resv.tr_logcount = 1; 2526 resv.tr_logcount = 1; 2527 resv.tr_logflags = XFS_TRANS_ 2527 resv.tr_logflags = XFS_TRANS_PERM_LOG_RES; 2528 2528 2529 error = xfs_trans_alloc(mp, & 2529 error = xfs_trans_alloc(mp, &resv, dfc->dfc_blkres, 2530 dfc->dfc_rtxr 2530 dfc->dfc_rtxres, XFS_TRANS_RESERVE, &tp); 2531 if (error) { 2531 if (error) { 2532 xlog_force_shutdown(m 2532 xlog_force_shutdown(mp->m_log, SHUTDOWN_LOG_IO_ERROR); 2533 return error; 2533 return error; 2534 } 2534 } 2535 2535 2536 /* 2536 /* 2537 * Transfer to this new trans 2537 * Transfer to this new transaction all the dfops we captured 2538 * from recovering a single i 2538 * from recovering a single intent item. 2539 */ 2539 */ 2540 list_del_init(&dfc->dfc_list) 2540 list_del_init(&dfc->dfc_list); 2541 xfs_defer_ops_continue(dfc, t 2541 xfs_defer_ops_continue(dfc, tp, &dres); 2542 error = xfs_trans_commit(tp); 2542 error = xfs_trans_commit(tp); 2543 xfs_defer_resources_rele(&dre 2543 xfs_defer_resources_rele(&dres); 2544 if (error) 2544 if (error) 2545 return error; 2545 return error; 2546 } 2546 } 2547 2547 2548 ASSERT(list_empty(capture_list)); 2548 ASSERT(list_empty(capture_list)); 2549 return 0; 2549 return 0; 2550 } 2550 } 2551 2551 2552 /* Release all the captured defer ops and cap 2552 /* Release all the captured defer ops and capture structures in this list. */ 2553 static void 2553 static void 2554 xlog_abort_defer_ops( 2554 xlog_abort_defer_ops( 2555 struct xfs_mount *mp, 2555 struct xfs_mount *mp, 2556 struct list_head *capt 2556 struct list_head *capture_list) 2557 { 2557 { 2558 struct xfs_defer_capture *dfc; 2558 struct xfs_defer_capture *dfc; 2559 struct xfs_defer_capture *next 2559 struct xfs_defer_capture *next; 2560 2560 2561 list_for_each_entry_safe(dfc, next, c 2561 list_for_each_entry_safe(dfc, next, capture_list, dfc_list) { 2562 list_del_init(&dfc->dfc_list) 2562 list_del_init(&dfc->dfc_list); 2563 xfs_defer_ops_capture_abort(m 2563 xfs_defer_ops_capture_abort(mp, dfc); 2564 } 2564 } 2565 } 2565 } 2566 2566 2567 /* 2567 /* 2568 * When this is called, all of the log intent 2568 * When this is called, all of the log intent items which did not have 2569 * corresponding log done items should be in 2569 * corresponding log done items should be in the AIL. What we do now is update 2570 * the data structures associated with each o 2570 * the data structures associated with each one. 2571 * 2571 * 2572 * Since we process the log intent items in n 2572 * Since we process the log intent items in normal transactions, they will be 2573 * removed at some point after the commit. T 2573 * removed at some point after the commit. This prevents us from just walking 2574 * down the list processing each one. We'll 2574 * down the list processing each one. We'll use a flag in the intent item to 2575 * skip those that we've already processed an 2575 * skip those that we've already processed and use the AIL iteration mechanism's 2576 * generation count to try to speed this up a 2576 * generation count to try to speed this up at least a bit. 2577 * 2577 * 2578 * When we start, we know that the intents ar 2578 * When we start, we know that the intents are the only things in the AIL. As we 2579 * process them, however, other items are add 2579 * process them, however, other items are added to the AIL. Hence we know we 2580 * have started recovery on all the pending i 2580 * have started recovery on all the pending intents when we find an non-intent 2581 * item in the AIL. 2581 * item in the AIL. 2582 */ 2582 */ 2583 STATIC int 2583 STATIC int 2584 xlog_recover_process_intents( 2584 xlog_recover_process_intents( 2585 struct xlog *log) 2585 struct xlog *log) 2586 { 2586 { 2587 LIST_HEAD(capture_list); 2587 LIST_HEAD(capture_list); 2588 struct xfs_defer_pending *dfp, 2588 struct xfs_defer_pending *dfp, *n; 2589 int error 2589 int error = 0; 2590 #if defined(DEBUG) || defined(XFS_WARN) 2590 #if defined(DEBUG) || defined(XFS_WARN) 2591 xfs_lsn_t last_ 2591 xfs_lsn_t last_lsn; 2592 2592 2593 last_lsn = xlog_assign_lsn(log->l_cur 2593 last_lsn = xlog_assign_lsn(log->l_curr_cycle, log->l_curr_block); 2594 #endif 2594 #endif 2595 2595 2596 list_for_each_entry_safe(dfp, n, &log 2596 list_for_each_entry_safe(dfp, n, &log->r_dfops, dfp_list) { 2597 ASSERT(xlog_item_is_intent(df 2597 ASSERT(xlog_item_is_intent(dfp->dfp_intent)); 2598 2598 2599 /* 2599 /* 2600 * We should never see a redo 2600 * We should never see a redo item with a LSN higher than 2601 * the last transaction we fo 2601 * the last transaction we found in the log at the start 2602 * of recovery. 2602 * of recovery. 2603 */ 2603 */ 2604 ASSERT(XFS_LSN_CMP(last_lsn, 2604 ASSERT(XFS_LSN_CMP(last_lsn, dfp->dfp_intent->li_lsn) >= 0); 2605 2605 2606 /* 2606 /* 2607 * NOTE: If your intent proce 2607 * NOTE: If your intent processing routine can create more 2608 * deferred ops, you /must/ a 2608 * deferred ops, you /must/ attach them to the capture list in 2609 * the recover routine or els 2609 * the recover routine or else those subsequent intents will be 2610 * replayed in the wrong orde 2610 * replayed in the wrong order! 2611 * 2611 * 2612 * The recovery function can 2612 * The recovery function can free the log item, so we must not 2613 * access dfp->dfp_intent aft 2613 * access dfp->dfp_intent after it returns. It must dispose of 2614 * @dfp if it returns 0. 2614 * @dfp if it returns 0. 2615 */ 2615 */ 2616 error = xfs_defer_finish_reco 2616 error = xfs_defer_finish_recovery(log->l_mp, dfp, 2617 &capture_list 2617 &capture_list); 2618 if (error) 2618 if (error) 2619 break; 2619 break; 2620 } 2620 } 2621 if (error) 2621 if (error) 2622 goto err; 2622 goto err; 2623 2623 2624 error = xlog_finish_defer_ops(log->l_ 2624 error = xlog_finish_defer_ops(log->l_mp, &capture_list); 2625 if (error) 2625 if (error) 2626 goto err; 2626 goto err; 2627 2627 2628 return 0; 2628 return 0; 2629 err: 2629 err: 2630 xlog_abort_defer_ops(log->l_mp, &capt 2630 xlog_abort_defer_ops(log->l_mp, &capture_list); 2631 return error; 2631 return error; 2632 } 2632 } 2633 2633 2634 /* 2634 /* 2635 * A cancel occurs when the mount has failed 2635 * A cancel occurs when the mount has failed and we're bailing out. Release all 2636 * pending log intent items that we haven't s 2636 * pending log intent items that we haven't started recovery on so they don't 2637 * pin the AIL. 2637 * pin the AIL. 2638 */ 2638 */ 2639 STATIC void 2639 STATIC void 2640 xlog_recover_cancel_intents( 2640 xlog_recover_cancel_intents( 2641 struct xlog *log) 2641 struct xlog *log) 2642 { 2642 { 2643 struct xfs_defer_pending *dfp, 2643 struct xfs_defer_pending *dfp, *n; 2644 2644 2645 list_for_each_entry_safe(dfp, n, &log 2645 list_for_each_entry_safe(dfp, n, &log->r_dfops, dfp_list) { 2646 ASSERT(xlog_item_is_intent(df 2646 ASSERT(xlog_item_is_intent(dfp->dfp_intent)); 2647 2647 2648 xfs_defer_cancel_recovery(log 2648 xfs_defer_cancel_recovery(log->l_mp, dfp); 2649 } 2649 } 2650 } 2650 } 2651 2651 2652 /* 2652 /* 2653 * Transfer ownership of the recovered pendin 2653 * Transfer ownership of the recovered pending work to the recovery transaction 2654 * and try to finish the work. If there is m 2654 * and try to finish the work. If there is more work to be done, the dfp will 2655 * remain attached to the transaction. If no 2655 * remain attached to the transaction. If not, the dfp is freed. 2656 */ 2656 */ 2657 int 2657 int 2658 xlog_recover_finish_intent( 2658 xlog_recover_finish_intent( 2659 struct xfs_trans *tp, 2659 struct xfs_trans *tp, 2660 struct xfs_defer_pending *dfp) 2660 struct xfs_defer_pending *dfp) 2661 { 2661 { 2662 int error 2662 int error; 2663 2663 2664 list_move(&dfp->dfp_list, &tp->t_dfop 2664 list_move(&dfp->dfp_list, &tp->t_dfops); 2665 error = xfs_defer_finish_one(tp, dfp) 2665 error = xfs_defer_finish_one(tp, dfp); 2666 if (error == -EAGAIN) 2666 if (error == -EAGAIN) 2667 return 0; 2667 return 0; 2668 return error; 2668 return error; 2669 } 2669 } 2670 2670 2671 /* 2671 /* 2672 * This routine performs a transaction to nul 2672 * This routine performs a transaction to null out a bad inode pointer 2673 * in an agi unlinked inode hash bucket. 2673 * in an agi unlinked inode hash bucket. 2674 */ 2674 */ 2675 STATIC void 2675 STATIC void 2676 xlog_recover_clear_agi_bucket( 2676 xlog_recover_clear_agi_bucket( 2677 struct xfs_perag *pag, 2677 struct xfs_perag *pag, 2678 int bucket) 2678 int bucket) 2679 { 2679 { 2680 struct xfs_mount *mp = pag->pa 2680 struct xfs_mount *mp = pag->pag_mount; 2681 struct xfs_trans *tp; 2681 struct xfs_trans *tp; 2682 struct xfs_agi *agi; 2682 struct xfs_agi *agi; 2683 struct xfs_buf *agibp; 2683 struct xfs_buf *agibp; 2684 int offset; 2684 int offset; 2685 int error; 2685 int error; 2686 2686 2687 error = xfs_trans_alloc(mp, &M_RES(mp 2687 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_clearagi, 0, 0, 0, &tp); 2688 if (error) 2688 if (error) 2689 goto out_error; 2689 goto out_error; 2690 2690 2691 error = xfs_read_agi(pag, tp, 0, &agi 2691 error = xfs_read_agi(pag, tp, 0, &agibp); 2692 if (error) 2692 if (error) 2693 goto out_abort; 2693 goto out_abort; 2694 2694 2695 agi = agibp->b_addr; 2695 agi = agibp->b_addr; 2696 agi->agi_unlinked[bucket] = cpu_to_be 2696 agi->agi_unlinked[bucket] = cpu_to_be32(NULLAGINO); 2697 offset = offsetof(xfs_agi_t, agi_unli 2697 offset = offsetof(xfs_agi_t, agi_unlinked) + 2698 (sizeof(xfs_agino_t) * bucke 2698 (sizeof(xfs_agino_t) * bucket); 2699 xfs_trans_log_buf(tp, agibp, offset, 2699 xfs_trans_log_buf(tp, agibp, offset, 2700 (offset + sizeof(xf 2700 (offset + sizeof(xfs_agino_t) - 1)); 2701 2701 2702 error = xfs_trans_commit(tp); 2702 error = xfs_trans_commit(tp); 2703 if (error) 2703 if (error) 2704 goto out_error; 2704 goto out_error; 2705 return; 2705 return; 2706 2706 2707 out_abort: 2707 out_abort: 2708 xfs_trans_cancel(tp); 2708 xfs_trans_cancel(tp); 2709 out_error: 2709 out_error: 2710 xfs_warn(mp, "%s: failed to clear agi 2710 xfs_warn(mp, "%s: failed to clear agi %d. Continuing.", __func__, 2711 pag->pag_agno); 2711 pag->pag_agno); 2712 return; 2712 return; 2713 } 2713 } 2714 2714 2715 static int 2715 static int 2716 xlog_recover_iunlink_bucket( 2716 xlog_recover_iunlink_bucket( 2717 struct xfs_perag *pag, 2717 struct xfs_perag *pag, 2718 struct xfs_agi *agi, 2718 struct xfs_agi *agi, 2719 int bucket) 2719 int bucket) 2720 { 2720 { 2721 struct xfs_mount *mp = pag->pa 2721 struct xfs_mount *mp = pag->pag_mount; 2722 struct xfs_inode *prev_ip = NU 2722 struct xfs_inode *prev_ip = NULL; 2723 struct xfs_inode *ip; 2723 struct xfs_inode *ip; 2724 xfs_agino_t prev_agino, a 2724 xfs_agino_t prev_agino, agino; 2725 int error = 0; 2725 int error = 0; 2726 2726 2727 agino = be32_to_cpu(agi->agi_unlinked 2727 agino = be32_to_cpu(agi->agi_unlinked[bucket]); 2728 while (agino != NULLAGINO) { 2728 while (agino != NULLAGINO) { 2729 error = xfs_iget(mp, NULL, 2729 error = xfs_iget(mp, NULL, 2730 XFS_AGINO_TO_ 2730 XFS_AGINO_TO_INO(mp, pag->pag_agno, agino), 2731 0, 0, &ip); 2731 0, 0, &ip); 2732 if (error) 2732 if (error) 2733 break; 2733 break; 2734 2734 2735 ASSERT(VFS_I(ip)->i_nlink == 2735 ASSERT(VFS_I(ip)->i_nlink == 0); 2736 ASSERT(VFS_I(ip)->i_mode != 0 2736 ASSERT(VFS_I(ip)->i_mode != 0); 2737 xfs_iflags_clear(ip, XFS_IREC 2737 xfs_iflags_clear(ip, XFS_IRECOVERY); 2738 agino = ip->i_next_unlinked; 2738 agino = ip->i_next_unlinked; 2739 2739 2740 if (prev_ip) { 2740 if (prev_ip) { 2741 ip->i_prev_unlinked = 2741 ip->i_prev_unlinked = prev_agino; 2742 xfs_irele(prev_ip); 2742 xfs_irele(prev_ip); 2743 2743 2744 /* 2744 /* 2745 * Ensure the inode i 2745 * Ensure the inode is removed from the unlinked list 2746 * before we continue 2746 * before we continue so that it won't race with 2747 * building the in-me 2747 * building the in-memory list here. This could be 2748 * serialised with th 2748 * serialised with the agibp lock, but that just 2749 * serialises via loc 2749 * serialises via lockstepping and it's much simpler 2750 * just to flush the 2750 * just to flush the inodegc queue and wait for it to 2751 * complete. 2751 * complete. 2752 */ 2752 */ 2753 error = xfs_inodegc_f 2753 error = xfs_inodegc_flush(mp); 2754 if (error) 2754 if (error) 2755 break; 2755 break; 2756 } 2756 } 2757 2757 2758 prev_agino = agino; 2758 prev_agino = agino; 2759 prev_ip = ip; 2759 prev_ip = ip; 2760 } 2760 } 2761 2761 2762 if (prev_ip) { 2762 if (prev_ip) { 2763 int error2; 2763 int error2; 2764 2764 2765 ip->i_prev_unlinked = prev_ag 2765 ip->i_prev_unlinked = prev_agino; 2766 xfs_irele(prev_ip); 2766 xfs_irele(prev_ip); 2767 2767 2768 error2 = xfs_inodegc_flush(mp 2768 error2 = xfs_inodegc_flush(mp); 2769 if (error2 && !error) 2769 if (error2 && !error) 2770 return error2; 2770 return error2; 2771 } 2771 } 2772 return error; 2772 return error; 2773 } 2773 } 2774 2774 2775 /* 2775 /* 2776 * Recover AGI unlinked lists 2776 * Recover AGI unlinked lists 2777 * 2777 * 2778 * This is called during recovery to process 2778 * This is called during recovery to process any inodes which we unlinked but 2779 * not freed when the system crashed. These 2779 * not freed when the system crashed. These inodes will be on the lists in the 2780 * AGI blocks. What we do here is scan all th 2780 * AGI blocks. What we do here is scan all the AGIs and fully truncate and free 2781 * any inodes found on the lists. Each inode 2781 * any inodes found on the lists. Each inode is removed from the lists when it 2782 * has been fully truncated and is freed. The 2782 * has been fully truncated and is freed. The freeing of the inode and its 2783 * removal from the list must be atomic. 2783 * removal from the list must be atomic. 2784 * 2784 * 2785 * If everything we touch in the agi processi 2785 * If everything we touch in the agi processing loop is already in memory, this 2786 * loop can hold the cpu for a long time. It 2786 * loop can hold the cpu for a long time. It runs without lock contention, 2787 * memory allocation contention, the need wai 2787 * memory allocation contention, the need wait for IO, etc, and so will run 2788 * until we either run out of inodes to proce 2788 * until we either run out of inodes to process, run low on memory or we run out 2789 * of log space. 2789 * of log space. 2790 * 2790 * 2791 * This behaviour is bad for latency on singl 2791 * This behaviour is bad for latency on single CPU and non-preemptible kernels, 2792 * and can prevent other filesystem work (suc 2792 * and can prevent other filesystem work (such as CIL pushes) from running. This 2793 * can lead to deadlocks if the recovery proc 2793 * can lead to deadlocks if the recovery process runs out of log reservation 2794 * space. Hence we need to yield the CPU when 2794 * space. Hence we need to yield the CPU when there is other kernel work 2795 * scheduled on this CPU to ensure other sche 2795 * scheduled on this CPU to ensure other scheduled work can run without undue 2796 * latency. 2796 * latency. 2797 */ 2797 */ 2798 static void 2798 static void 2799 xlog_recover_iunlink_ag( 2799 xlog_recover_iunlink_ag( 2800 struct xfs_perag *pag) 2800 struct xfs_perag *pag) 2801 { 2801 { 2802 struct xfs_agi *agi; 2802 struct xfs_agi *agi; 2803 struct xfs_buf *agibp; 2803 struct xfs_buf *agibp; 2804 int bucket; 2804 int bucket; 2805 int error; 2805 int error; 2806 2806 2807 error = xfs_read_agi(pag, NULL, 0, &a 2807 error = xfs_read_agi(pag, NULL, 0, &agibp); 2808 if (error) { 2808 if (error) { 2809 /* 2809 /* 2810 * AGI is b0rked. Don't proce 2810 * AGI is b0rked. Don't process it. 2811 * 2811 * 2812 * We should probably mark th 2812 * We should probably mark the filesystem as corrupt after we've 2813 * recovered all the ag's we 2813 * recovered all the ag's we can.... 2814 */ 2814 */ 2815 return; 2815 return; 2816 } 2816 } 2817 2817 2818 /* 2818 /* 2819 * Unlock the buffer so that it can b 2819 * Unlock the buffer so that it can be acquired in the normal course of 2820 * the transaction to truncate and fr 2820 * the transaction to truncate and free each inode. Because we are not 2821 * racing with anyone else here for t 2821 * racing with anyone else here for the AGI buffer, we don't even need 2822 * to hold it locked to read the init 2822 * to hold it locked to read the initial unlinked bucket entries out of 2823 * the buffer. We keep buffer referen 2823 * the buffer. We keep buffer reference though, so that it stays pinned 2824 * in memory while we need the buffer 2824 * in memory while we need the buffer. 2825 */ 2825 */ 2826 agi = agibp->b_addr; 2826 agi = agibp->b_addr; 2827 xfs_buf_unlock(agibp); 2827 xfs_buf_unlock(agibp); 2828 2828 2829 for (bucket = 0; bucket < XFS_AGI_UNL 2829 for (bucket = 0; bucket < XFS_AGI_UNLINKED_BUCKETS; bucket++) { 2830 error = xlog_recover_iunlink_ 2830 error = xlog_recover_iunlink_bucket(pag, agi, bucket); 2831 if (error) { 2831 if (error) { 2832 /* 2832 /* 2833 * Bucket is unrecove 2833 * Bucket is unrecoverable, so only a repair scan can 2834 * free the remaining 2834 * free the remaining unlinked inodes. Just empty the 2835 * bucket and remaini 2835 * bucket and remaining inodes on it unreferenced and 2836 * unfreeable. 2836 * unfreeable. 2837 */ 2837 */ 2838 xlog_recover_clear_ag 2838 xlog_recover_clear_agi_bucket(pag, bucket); 2839 } 2839 } 2840 } 2840 } 2841 2841 2842 xfs_buf_rele(agibp); 2842 xfs_buf_rele(agibp); 2843 } 2843 } 2844 2844 2845 static void 2845 static void 2846 xlog_recover_process_iunlinks( 2846 xlog_recover_process_iunlinks( 2847 struct xlog *log) 2847 struct xlog *log) 2848 { 2848 { 2849 struct xfs_perag *pag; 2849 struct xfs_perag *pag; 2850 xfs_agnumber_t agno; 2850 xfs_agnumber_t agno; 2851 2851 2852 for_each_perag(log->l_mp, agno, pag) 2852 for_each_perag(log->l_mp, agno, pag) 2853 xlog_recover_iunlink_ag(pag); 2853 xlog_recover_iunlink_ag(pag); 2854 } 2854 } 2855 2855 2856 STATIC void 2856 STATIC void 2857 xlog_unpack_data( 2857 xlog_unpack_data( 2858 struct xlog_rec_header *rhead, 2858 struct xlog_rec_header *rhead, 2859 char *dp, 2859 char *dp, 2860 struct xlog *log) 2860 struct xlog *log) 2861 { 2861 { 2862 int i, j, k; 2862 int i, j, k; 2863 2863 2864 for (i = 0; i < BTOBB(be32_to_cpu(rhe 2864 for (i = 0; i < BTOBB(be32_to_cpu(rhead->h_len)) && 2865 i < (XLOG_HEADER_CYCLE_SIZE 2865 i < (XLOG_HEADER_CYCLE_SIZE / BBSIZE); i++) { 2866 *(__be32 *)dp = *(__be32 *)&r 2866 *(__be32 *)dp = *(__be32 *)&rhead->h_cycle_data[i]; 2867 dp += BBSIZE; 2867 dp += BBSIZE; 2868 } 2868 } 2869 2869 2870 if (xfs_has_logv2(log->l_mp)) { 2870 if (xfs_has_logv2(log->l_mp)) { 2871 xlog_in_core_2_t *xhdr = (xlo 2871 xlog_in_core_2_t *xhdr = (xlog_in_core_2_t *)rhead; 2872 for ( ; i < BTOBB(be32_to_cpu 2872 for ( ; i < BTOBB(be32_to_cpu(rhead->h_len)); i++) { 2873 j = i / (XLOG_HEADER_ 2873 j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE); 2874 k = i % (XLOG_HEADER_ 2874 k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE); 2875 *(__be32 *)dp = xhdr[ 2875 *(__be32 *)dp = xhdr[j].hic_xheader.xh_cycle_data[k]; 2876 dp += BBSIZE; 2876 dp += BBSIZE; 2877 } 2877 } 2878 } 2878 } 2879 } 2879 } 2880 2880 2881 /* 2881 /* 2882 * CRC check, unpack and process a log record 2882 * CRC check, unpack and process a log record. 2883 */ 2883 */ 2884 STATIC int 2884 STATIC int 2885 xlog_recover_process( 2885 xlog_recover_process( 2886 struct xlog *log, 2886 struct xlog *log, 2887 struct hlist_head rhash[], 2887 struct hlist_head rhash[], 2888 struct xlog_rec_header *rhead, 2888 struct xlog_rec_header *rhead, 2889 char *dp, 2889 char *dp, 2890 int pass, 2890 int pass, 2891 struct list_head *buffer_list) 2891 struct list_head *buffer_list) 2892 { 2892 { 2893 __le32 old_crc = rhe 2893 __le32 old_crc = rhead->h_crc; 2894 __le32 crc; 2894 __le32 crc; 2895 2895 2896 crc = xlog_cksum(log, rhead, dp, be32 2896 crc = xlog_cksum(log, rhead, dp, be32_to_cpu(rhead->h_len)); 2897 2897 2898 /* 2898 /* 2899 * Nothing else to do if this is a CR 2899 * Nothing else to do if this is a CRC verification pass. Just return 2900 * if this a record with a non-zero c 2900 * if this a record with a non-zero crc. Unfortunately, mkfs always 2901 * sets old_crc to 0 so we must consi 2901 * sets old_crc to 0 so we must consider this valid even on v5 supers. 2902 * Otherwise, return EFSBADCRC on fai 2902 * Otherwise, return EFSBADCRC on failure so the callers up the stack 2903 * know precisely what failed. 2903 * know precisely what failed. 2904 */ 2904 */ 2905 if (pass == XLOG_RECOVER_CRCPASS) { 2905 if (pass == XLOG_RECOVER_CRCPASS) { 2906 if (old_crc && crc != old_crc 2906 if (old_crc && crc != old_crc) 2907 return -EFSBADCRC; 2907 return -EFSBADCRC; 2908 return 0; 2908 return 0; 2909 } 2909 } 2910 2910 2911 /* 2911 /* 2912 * We're in the normal recovery path. 2912 * We're in the normal recovery path. Issue a warning if and only if the 2913 * CRC in the header is non-zero. Thi 2913 * CRC in the header is non-zero. This is an advisory warning and the 2914 * zero CRC check prevents warnings f 2914 * zero CRC check prevents warnings from being emitted when upgrading 2915 * the kernel from one that does not 2915 * the kernel from one that does not add CRCs by default. 2916 */ 2916 */ 2917 if (crc != old_crc) { 2917 if (crc != old_crc) { 2918 if (old_crc || xfs_has_crc(lo 2918 if (old_crc || xfs_has_crc(log->l_mp)) { 2919 xfs_alert(log->l_mp, 2919 xfs_alert(log->l_mp, 2920 "log record CRC mismatch: fou 2920 "log record CRC mismatch: found 0x%x, expected 0x%x.", 2921 le32_ 2921 le32_to_cpu(old_crc), 2922 le32_ 2922 le32_to_cpu(crc)); 2923 xfs_hex_dump(dp, 32); 2923 xfs_hex_dump(dp, 32); 2924 } 2924 } 2925 2925 2926 /* 2926 /* 2927 * If the filesystem is CRC e 2927 * If the filesystem is CRC enabled, this mismatch becomes a 2928 * fatal log corruption failu 2928 * fatal log corruption failure. 2929 */ 2929 */ 2930 if (xfs_has_crc(log->l_mp)) { 2930 if (xfs_has_crc(log->l_mp)) { 2931 XFS_ERROR_REPORT(__fu 2931 XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_LOW, log->l_mp); 2932 return -EFSCORRUPTED; 2932 return -EFSCORRUPTED; 2933 } 2933 } 2934 } 2934 } 2935 2935 2936 xlog_unpack_data(rhead, dp, log); 2936 xlog_unpack_data(rhead, dp, log); 2937 2937 2938 return xlog_recover_process_data(log, 2938 return xlog_recover_process_data(log, rhash, rhead, dp, pass, 2939 buff 2939 buffer_list); 2940 } 2940 } 2941 2941 2942 STATIC int 2942 STATIC int 2943 xlog_valid_rec_header( 2943 xlog_valid_rec_header( 2944 struct xlog *log, 2944 struct xlog *log, 2945 struct xlog_rec_header *rhead, 2945 struct xlog_rec_header *rhead, 2946 xfs_daddr_t blkno, 2946 xfs_daddr_t blkno, 2947 int bufsize) 2947 int bufsize) 2948 { 2948 { 2949 int hlen; 2949 int hlen; 2950 2950 2951 if (XFS_IS_CORRUPT(log->l_mp, 2951 if (XFS_IS_CORRUPT(log->l_mp, 2952 rhead->h_magicno ! 2952 rhead->h_magicno != cpu_to_be32(XLOG_HEADER_MAGIC_NUM))) 2953 return -EFSCORRUPTED; 2953 return -EFSCORRUPTED; 2954 if (XFS_IS_CORRUPT(log->l_mp, 2954 if (XFS_IS_CORRUPT(log->l_mp, 2955 (!rhead->h_version 2955 (!rhead->h_version || 2956 (be32_to_cpu(rhead 2956 (be32_to_cpu(rhead->h_version) & 2957 (~XLOG_VERSION_OK 2957 (~XLOG_VERSION_OKBITS))))) { 2958 xfs_warn(log->l_mp, "%s: unre 2958 xfs_warn(log->l_mp, "%s: unrecognised log version (%d).", 2959 __func__, be32_to_cpu 2959 __func__, be32_to_cpu(rhead->h_version)); 2960 return -EFSCORRUPTED; 2960 return -EFSCORRUPTED; 2961 } 2961 } 2962 2962 2963 /* 2963 /* 2964 * LR body must have data (or it woul 2964 * LR body must have data (or it wouldn't have been written) 2965 * and h_len must not be greater than 2965 * and h_len must not be greater than LR buffer size. 2966 */ 2966 */ 2967 hlen = be32_to_cpu(rhead->h_len); 2967 hlen = be32_to_cpu(rhead->h_len); 2968 if (XFS_IS_CORRUPT(log->l_mp, hlen <= 2968 if (XFS_IS_CORRUPT(log->l_mp, hlen <= 0 || hlen > bufsize)) 2969 return -EFSCORRUPTED; 2969 return -EFSCORRUPTED; 2970 2970 2971 if (XFS_IS_CORRUPT(log->l_mp, 2971 if (XFS_IS_CORRUPT(log->l_mp, 2972 blkno > log->l_log 2972 blkno > log->l_logBBsize || blkno > INT_MAX)) 2973 return -EFSCORRUPTED; 2973 return -EFSCORRUPTED; 2974 return 0; 2974 return 0; 2975 } 2975 } 2976 2976 2977 /* 2977 /* 2978 * Read the log from tail to head and process 2978 * Read the log from tail to head and process the log records found. 2979 * Handle the two cases where the tail and he 2979 * Handle the two cases where the tail and head are in the same cycle 2980 * and where the active portion of the log wr 2980 * and where the active portion of the log wraps around the end of 2981 * the physical log separately. The pass par 2981 * the physical log separately. The pass parameter is passed through 2982 * to the routines called to process the data 2982 * to the routines called to process the data and is not looked at 2983 * here. 2983 * here. 2984 */ 2984 */ 2985 STATIC int 2985 STATIC int 2986 xlog_do_recovery_pass( 2986 xlog_do_recovery_pass( 2987 struct xlog *log, 2987 struct xlog *log, 2988 xfs_daddr_t head_blk, 2988 xfs_daddr_t head_blk, 2989 xfs_daddr_t tail_blk, 2989 xfs_daddr_t tail_blk, 2990 int pass, 2990 int pass, 2991 xfs_daddr_t *first_bad) 2991 xfs_daddr_t *first_bad) /* out: first bad log rec */ 2992 { 2992 { 2993 xlog_rec_header_t *rhead; 2993 xlog_rec_header_t *rhead; 2994 xfs_daddr_t blk_no, rblk_ 2994 xfs_daddr_t blk_no, rblk_no; 2995 xfs_daddr_t rhead_blk; 2995 xfs_daddr_t rhead_blk; 2996 char *offset; 2996 char *offset; 2997 char *hbp, *dbp; 2997 char *hbp, *dbp; 2998 int error = 0, h_ 2998 int error = 0, h_size, h_len; 2999 int error2 = 0; 2999 int error2 = 0; 3000 int bblks, split_ 3000 int bblks, split_bblks; 3001 int hblks = 1, sp 3001 int hblks = 1, split_hblks, wrapped_hblks; 3002 int i; 3002 int i; 3003 struct hlist_head rhash[XLOG_RH 3003 struct hlist_head rhash[XLOG_RHASH_SIZE]; 3004 LIST_HEAD (buffer_list) 3004 LIST_HEAD (buffer_list); 3005 3005 3006 ASSERT(head_blk != tail_blk); 3006 ASSERT(head_blk != tail_blk); 3007 blk_no = rhead_blk = tail_blk; 3007 blk_no = rhead_blk = tail_blk; 3008 3008 3009 for (i = 0; i < XLOG_RHASH_SIZE; i++) 3009 for (i = 0; i < XLOG_RHASH_SIZE; i++) 3010 INIT_HLIST_HEAD(&rhash[i]); 3010 INIT_HLIST_HEAD(&rhash[i]); 3011 3011 3012 hbp = xlog_alloc_buffer(log, hblks); 3012 hbp = xlog_alloc_buffer(log, hblks); 3013 if (!hbp) 3013 if (!hbp) 3014 return -ENOMEM; 3014 return -ENOMEM; 3015 3015 3016 /* 3016 /* 3017 * Read the header of the tail block 3017 * Read the header of the tail block and get the iclog buffer size from 3018 * h_size. Use this to tell how many 3018 * h_size. Use this to tell how many sectors make up the log header. 3019 */ 3019 */ 3020 if (xfs_has_logv2(log->l_mp)) { 3020 if (xfs_has_logv2(log->l_mp)) { 3021 /* 3021 /* 3022 * When using variable length 3022 * When using variable length iclogs, read first sector of 3023 * iclog header and extract t 3023 * iclog header and extract the header size from it. Get a 3024 * new hbp that is the correc 3024 * new hbp that is the correct size. 3025 */ 3025 */ 3026 error = xlog_bread(log, tail_ 3026 error = xlog_bread(log, tail_blk, 1, hbp, &offset); 3027 if (error) 3027 if (error) 3028 goto bread_err1; 3028 goto bread_err1; 3029 3029 3030 rhead = (xlog_rec_header_t *) 3030 rhead = (xlog_rec_header_t *)offset; 3031 3031 3032 /* 3032 /* 3033 * xfsprogs has a bug where r 3033 * xfsprogs has a bug where record length is based on lsunit but 3034 * h_size (iclog size) is har 3034 * h_size (iclog size) is hardcoded to 32k. Now that we 3035 * unconditionally CRC verify 3035 * unconditionally CRC verify the unmount record, this means the 3036 * log buffer can be too smal 3036 * log buffer can be too small for the record and cause an 3037 * overrun. 3037 * overrun. 3038 * 3038 * 3039 * Detect this condition here 3039 * Detect this condition here. Use lsunit for the buffer size as 3040 * long as this looks like th 3040 * long as this looks like the mkfs case. Otherwise, return an 3041 * error to avoid a buffer ov 3041 * error to avoid a buffer overrun. 3042 */ 3042 */ 3043 h_size = be32_to_cpu(rhead->h 3043 h_size = be32_to_cpu(rhead->h_size); 3044 h_len = be32_to_cpu(rhead->h_ 3044 h_len = be32_to_cpu(rhead->h_len); 3045 if (h_len > h_size && h_len < 3045 if (h_len > h_size && h_len <= log->l_mp->m_logbsize && 3046 rhead->h_num_logops == cp 3046 rhead->h_num_logops == cpu_to_be32(1)) { 3047 xfs_warn(log->l_mp, 3047 xfs_warn(log->l_mp, 3048 "invalid iclog size (%d bytes 3048 "invalid iclog size (%d bytes), using lsunit (%d bytes)", 3049 h_size, log- 3049 h_size, log->l_mp->m_logbsize); 3050 h_size = log->l_mp->m 3050 h_size = log->l_mp->m_logbsize; 3051 } 3051 } 3052 3052 3053 error = xlog_valid_rec_header 3053 error = xlog_valid_rec_header(log, rhead, tail_blk, h_size); 3054 if (error) 3054 if (error) 3055 goto bread_err1; 3055 goto bread_err1; 3056 3056 3057 /* 3057 /* 3058 * This open codes xlog_logre 3058 * This open codes xlog_logrec_hblks so that we can reuse the 3059 * fixed up h_size value calc 3059 * fixed up h_size value calculated above. Without that we'd 3060 * still allocate the buffer 3060 * still allocate the buffer based on the incorrect on-disk 3061 * size. 3061 * size. 3062 */ 3062 */ 3063 if (h_size > XLOG_HEADER_CYCL 3063 if (h_size > XLOG_HEADER_CYCLE_SIZE && 3064 (rhead->h_version & cpu_t 3064 (rhead->h_version & cpu_to_be32(XLOG_VERSION_2))) { 3065 hblks = DIV_ROUND_UP( 3065 hblks = DIV_ROUND_UP(h_size, XLOG_HEADER_CYCLE_SIZE); 3066 if (hblks > 1) { 3066 if (hblks > 1) { 3067 kvfree(hbp); 3067 kvfree(hbp); 3068 hbp = xlog_al 3068 hbp = xlog_alloc_buffer(log, hblks); 3069 if (!hbp) 3069 if (!hbp) 3070 retur 3070 return -ENOMEM; 3071 } 3071 } 3072 } 3072 } 3073 } else { 3073 } else { 3074 ASSERT(log->l_sectBBsize == 1 3074 ASSERT(log->l_sectBBsize == 1); 3075 h_size = XLOG_BIG_RECORD_BSIZ 3075 h_size = XLOG_BIG_RECORD_BSIZE; 3076 } 3076 } 3077 3077 3078 dbp = xlog_alloc_buffer(log, BTOBB(h_ 3078 dbp = xlog_alloc_buffer(log, BTOBB(h_size)); 3079 if (!dbp) { 3079 if (!dbp) { 3080 kvfree(hbp); 3080 kvfree(hbp); 3081 return -ENOMEM; 3081 return -ENOMEM; 3082 } 3082 } 3083 3083 3084 memset(rhash, 0, sizeof(rhash)); 3084 memset(rhash, 0, sizeof(rhash)); 3085 if (tail_blk > head_blk) { 3085 if (tail_blk > head_blk) { 3086 /* 3086 /* 3087 * Perform recovery around th 3087 * Perform recovery around the end of the physical log. 3088 * When the head is not on th 3088 * When the head is not on the same cycle number as the tail, 3089 * we can't do a sequential r 3089 * we can't do a sequential recovery. 3090 */ 3090 */ 3091 while (blk_no < log->l_logBBs 3091 while (blk_no < log->l_logBBsize) { 3092 /* 3092 /* 3093 * Check for header w 3093 * Check for header wrapping around physical end-of-log 3094 */ 3094 */ 3095 offset = hbp; 3095 offset = hbp; 3096 split_hblks = 0; 3096 split_hblks = 0; 3097 wrapped_hblks = 0; 3097 wrapped_hblks = 0; 3098 if (blk_no + hblks <= 3098 if (blk_no + hblks <= log->l_logBBsize) { 3099 /* Read heade 3099 /* Read header in one read */ 3100 error = xlog_ 3100 error = xlog_bread(log, blk_no, hblks, hbp, 3101 3101 &offset); 3102 if (error) 3102 if (error) 3103 goto 3103 goto bread_err2; 3104 } else { 3104 } else { 3105 /* This LR is 3105 /* This LR is split across physical log end */ 3106 if (blk_no != 3106 if (blk_no != log->l_logBBsize) { 3107 /* so 3107 /* some data before physical log end */ 3108 ASSER 3108 ASSERT(blk_no <= INT_MAX); 3109 split 3109 split_hblks = log->l_logBBsize - (int)blk_no; 3110 ASSER 3110 ASSERT(split_hblks > 0); 3111 error 3111 error = xlog_bread(log, blk_no, 3112 3112 split_hblks, hbp, 3113 3113 &offset); 3114 if (e 3114 if (error) 3115 3115 goto bread_err2; 3116 } 3116 } 3117 3117 3118 /* 3118 /* 3119 * Note: this 3119 * Note: this black magic still works with 3120 * large sect 3120 * large sector sizes (non-512) only because: 3121 * - we incre 3121 * - we increased the buffer size originally 3122 * by 1 sec 3122 * by 1 sector giving us enough extra space 3123 * for the 3123 * for the second read; 3124 * - the log 3124 * - the log start is guaranteed to be sector 3125 * aligned; 3125 * aligned; 3126 * - we read 3126 * - we read the log end (LR header start) 3127 * _first_, 3127 * _first_, then the log start (LR header end) 3128 * - order 3128 * - order is important. 3129 */ 3129 */ 3130 wrapped_hblks 3130 wrapped_hblks = hblks - split_hblks; 3131 error = xlog_ 3131 error = xlog_bread_noalign(log, 0, 3132 3132 wrapped_hblks, 3133 3133 offset + BBTOB(split_hblks)); 3134 if (error) 3134 if (error) 3135 goto 3135 goto bread_err2; 3136 } 3136 } 3137 rhead = (xlog_rec_hea 3137 rhead = (xlog_rec_header_t *)offset; 3138 error = xlog_valid_re 3138 error = xlog_valid_rec_header(log, rhead, 3139 split 3139 split_hblks ? blk_no : 0, h_size); 3140 if (error) 3140 if (error) 3141 goto bread_er 3141 goto bread_err2; 3142 3142 3143 bblks = (int)BTOBB(be 3143 bblks = (int)BTOBB(be32_to_cpu(rhead->h_len)); 3144 blk_no += hblks; 3144 blk_no += hblks; 3145 3145 3146 /* 3146 /* 3147 * Read the log recor 3147 * Read the log record data in multiple reads if it 3148 * wraps around the e 3148 * wraps around the end of the log. Note that if the 3149 * header already wra 3149 * header already wrapped, blk_no could point past the 3150 * end of the log. Th 3150 * end of the log. The record data is contiguous in 3151 * that case. 3151 * that case. 3152 */ 3152 */ 3153 if (blk_no + bblks <= 3153 if (blk_no + bblks <= log->l_logBBsize || 3154 blk_no >= log->l_ 3154 blk_no >= log->l_logBBsize) { 3155 rblk_no = xlo 3155 rblk_no = xlog_wrap_logbno(log, blk_no); 3156 error = xlog_ 3156 error = xlog_bread(log, rblk_no, bblks, dbp, 3157 3157 &offset); 3158 if (error) 3158 if (error) 3159 goto 3159 goto bread_err2; 3160 } else { 3160 } else { 3161 /* This log r 3161 /* This log record is split across the 3162 * physical e 3162 * physical end of log */ 3163 offset = dbp; 3163 offset = dbp; 3164 split_bblks = 3164 split_bblks = 0; 3165 if (blk_no != 3165 if (blk_no != log->l_logBBsize) { 3166 /* so 3166 /* some data is before the physical 3167 * en 3167 * end of log */ 3168 ASSER 3168 ASSERT(!wrapped_hblks); 3169 ASSER 3169 ASSERT(blk_no <= INT_MAX); 3170 split 3170 split_bblks = 3171 3171 log->l_logBBsize - (int)blk_no; 3172 ASSER 3172 ASSERT(split_bblks > 0); 3173 error 3173 error = xlog_bread(log, blk_no, 3174 3174 split_bblks, dbp, 3175 3175 &offset); 3176 if (e 3176 if (error) 3177 3177 goto bread_err2; 3178 } 3178 } 3179 3179 3180 /* 3180 /* 3181 * Note: this 3181 * Note: this black magic still works with 3182 * large sect 3182 * large sector sizes (non-512) only because: 3183 * - we incre 3183 * - we increased the buffer size originally 3184 * by 1 sec 3184 * by 1 sector giving us enough extra space 3185 * for the 3185 * for the second read; 3186 * - the log 3186 * - the log start is guaranteed to be sector 3187 * aligned; 3187 * aligned; 3188 * - we read 3188 * - we read the log end (LR header start) 3189 * _first_, 3189 * _first_, then the log start (LR header end) 3190 * - order 3190 * - order is important. 3191 */ 3191 */ 3192 error = xlog_ 3192 error = xlog_bread_noalign(log, 0, 3193 3193 bblks - split_bblks, 3194 3194 offset + BBTOB(split_bblks)); 3195 if (error) 3195 if (error) 3196 goto 3196 goto bread_err2; 3197 } 3197 } 3198 3198 3199 error = xlog_recover_ 3199 error = xlog_recover_process(log, rhash, rhead, offset, 3200 3200 pass, &buffer_list); 3201 if (error) 3201 if (error) 3202 goto bread_er 3202 goto bread_err2; 3203 3203 3204 blk_no += bblks; 3204 blk_no += bblks; 3205 rhead_blk = blk_no; 3205 rhead_blk = blk_no; 3206 } 3206 } 3207 3207 3208 ASSERT(blk_no >= log->l_logBB 3208 ASSERT(blk_no >= log->l_logBBsize); 3209 blk_no -= log->l_logBBsize; 3209 blk_no -= log->l_logBBsize; 3210 rhead_blk = blk_no; 3210 rhead_blk = blk_no; 3211 } 3211 } 3212 3212 3213 /* read first part of physical log */ 3213 /* read first part of physical log */ 3214 while (blk_no < head_blk) { 3214 while (blk_no < head_blk) { 3215 error = xlog_bread(log, blk_n 3215 error = xlog_bread(log, blk_no, hblks, hbp, &offset); 3216 if (error) 3216 if (error) 3217 goto bread_err2; 3217 goto bread_err2; 3218 3218 3219 rhead = (xlog_rec_header_t *) 3219 rhead = (xlog_rec_header_t *)offset; 3220 error = xlog_valid_rec_header 3220 error = xlog_valid_rec_header(log, rhead, blk_no, h_size); 3221 if (error) 3221 if (error) 3222 goto bread_err2; 3222 goto bread_err2; 3223 3223 3224 /* blocks in data section */ 3224 /* blocks in data section */ 3225 bblks = (int)BTOBB(be32_to_cp 3225 bblks = (int)BTOBB(be32_to_cpu(rhead->h_len)); 3226 error = xlog_bread(log, blk_n 3226 error = xlog_bread(log, blk_no+hblks, bblks, dbp, 3227 &offset); 3227 &offset); 3228 if (error) 3228 if (error) 3229 goto bread_err2; 3229 goto bread_err2; 3230 3230 3231 error = xlog_recover_process( 3231 error = xlog_recover_process(log, rhash, rhead, offset, pass, 3232 3232 &buffer_list); 3233 if (error) 3233 if (error) 3234 goto bread_err2; 3234 goto bread_err2; 3235 3235 3236 blk_no += bblks + hblks; 3236 blk_no += bblks + hblks; 3237 rhead_blk = blk_no; 3237 rhead_blk = blk_no; 3238 } 3238 } 3239 3239 3240 bread_err2: 3240 bread_err2: 3241 kvfree(dbp); 3241 kvfree(dbp); 3242 bread_err1: 3242 bread_err1: 3243 kvfree(hbp); 3243 kvfree(hbp); 3244 3244 3245 /* 3245 /* 3246 * Submit buffers that have been dirt 3246 * Submit buffers that have been dirtied by the last record recovered. 3247 */ 3247 */ 3248 if (!list_empty(&buffer_list)) { 3248 if (!list_empty(&buffer_list)) { 3249 if (error) { 3249 if (error) { 3250 /* 3250 /* 3251 * If there has been 3251 * If there has been an item recovery error then we 3252 * cannot allow parti 3252 * cannot allow partial checkpoint writeback to 3253 * occur. We might h 3253 * occur. We might have multiple checkpoints with the 3254 * same start LSN in 3254 * same start LSN in this buffer list, and partial 3255 * writeback of a che 3255 * writeback of a checkpoint in this situation can 3256 * prevent future rec 3256 * prevent future recovery of all the changes in the 3257 * checkpoints at thi 3257 * checkpoints at this start LSN. 3258 * 3258 * 3259 * Note: Shutting dow 3259 * Note: Shutting down the filesystem will result in the 3260 * delwri submission 3260 * delwri submission marking all the buffers stale, 3261 * completing them an 3261 * completing them and cleaning up _XBF_LOGRECOVERY 3262 * state without doin 3262 * state without doing any IO. 3263 */ 3263 */ 3264 xlog_force_shutdown(l 3264 xlog_force_shutdown(log, SHUTDOWN_LOG_IO_ERROR); 3265 } 3265 } 3266 error2 = xfs_buf_delwri_submi 3266 error2 = xfs_buf_delwri_submit(&buffer_list); 3267 } 3267 } 3268 3268 3269 if (error && first_bad) 3269 if (error && first_bad) 3270 *first_bad = rhead_blk; 3270 *first_bad = rhead_blk; 3271 3271 3272 /* 3272 /* 3273 * Transactions are freed at commit t 3273 * Transactions are freed at commit time but transactions without commit 3274 * records on disk are never committe 3274 * records on disk are never committed. Free any that may be left in the 3275 * hash table. 3275 * hash table. 3276 */ 3276 */ 3277 for (i = 0; i < XLOG_RHASH_SIZE; i++) 3277 for (i = 0; i < XLOG_RHASH_SIZE; i++) { 3278 struct hlist_node *tmp; 3278 struct hlist_node *tmp; 3279 struct xlog_recover *tran 3279 struct xlog_recover *trans; 3280 3280 3281 hlist_for_each_entry_safe(tra 3281 hlist_for_each_entry_safe(trans, tmp, &rhash[i], r_list) 3282 xlog_recover_free_tra 3282 xlog_recover_free_trans(trans); 3283 } 3283 } 3284 3284 3285 return error ? error : error2; 3285 return error ? error : error2; 3286 } 3286 } 3287 3287 3288 /* 3288 /* 3289 * Do the recovery of the log. We actually d 3289 * Do the recovery of the log. We actually do this in two phases. 3290 * The two passes are necessary in order to i 3290 * The two passes are necessary in order to implement the function 3291 * of cancelling a record written into the lo 3291 * of cancelling a record written into the log. The first pass 3292 * determines those things which have been ca 3292 * determines those things which have been cancelled, and the 3293 * second pass replays log items normally exc 3293 * second pass replays log items normally except for those which 3294 * have been cancelled. The handling of the 3294 * have been cancelled. The handling of the replay and cancellations 3295 * takes place in the log item type specific 3295 * takes place in the log item type specific routines. 3296 * 3296 * 3297 * The table of items which have cancel recor 3297 * The table of items which have cancel records in the log is allocated 3298 * and freed at this level, since only here d 3298 * and freed at this level, since only here do we know when all of 3299 * the log recovery has been completed. 3299 * the log recovery has been completed. 3300 */ 3300 */ 3301 STATIC int 3301 STATIC int 3302 xlog_do_log_recovery( 3302 xlog_do_log_recovery( 3303 struct xlog *log, 3303 struct xlog *log, 3304 xfs_daddr_t head_blk, 3304 xfs_daddr_t head_blk, 3305 xfs_daddr_t tail_blk) 3305 xfs_daddr_t tail_blk) 3306 { 3306 { 3307 int error; 3307 int error; 3308 3308 3309 ASSERT(head_blk != tail_blk); 3309 ASSERT(head_blk != tail_blk); 3310 3310 3311 /* 3311 /* 3312 * First do a pass to find all of the 3312 * First do a pass to find all of the cancelled buf log items. 3313 * Store them in the buf_cancel_table 3313 * Store them in the buf_cancel_table for use in the second pass. 3314 */ 3314 */ 3315 error = xlog_alloc_buf_cancel_table(l 3315 error = xlog_alloc_buf_cancel_table(log); 3316 if (error) 3316 if (error) 3317 return error; 3317 return error; 3318 3318 3319 error = xlog_do_recovery_pass(log, he 3319 error = xlog_do_recovery_pass(log, head_blk, tail_blk, 3320 XLOG_RE 3320 XLOG_RECOVER_PASS1, NULL); 3321 if (error != 0) 3321 if (error != 0) 3322 goto out_cancel; 3322 goto out_cancel; 3323 3323 3324 /* 3324 /* 3325 * Then do a second pass to actually 3325 * Then do a second pass to actually recover the items in the log. 3326 * When it is complete free the table 3326 * When it is complete free the table of buf cancel items. 3327 */ 3327 */ 3328 error = xlog_do_recovery_pass(log, he 3328 error = xlog_do_recovery_pass(log, head_blk, tail_blk, 3329 XLOG_RE 3329 XLOG_RECOVER_PASS2, NULL); 3330 if (!error) 3330 if (!error) 3331 xlog_check_buf_cancel_table(l 3331 xlog_check_buf_cancel_table(log); 3332 out_cancel: 3332 out_cancel: 3333 xlog_free_buf_cancel_table(log); 3333 xlog_free_buf_cancel_table(log); 3334 return error; 3334 return error; 3335 } 3335 } 3336 3336 3337 /* 3337 /* 3338 * Do the actual recovery 3338 * Do the actual recovery 3339 */ 3339 */ 3340 STATIC int 3340 STATIC int 3341 xlog_do_recover( 3341 xlog_do_recover( 3342 struct xlog *log, 3342 struct xlog *log, 3343 xfs_daddr_t head_blk, 3343 xfs_daddr_t head_blk, 3344 xfs_daddr_t tail_blk) 3344 xfs_daddr_t tail_blk) 3345 { 3345 { 3346 struct xfs_mount *mp = log->l_ 3346 struct xfs_mount *mp = log->l_mp; 3347 struct xfs_buf *bp = mp->m_s 3347 struct xfs_buf *bp = mp->m_sb_bp; 3348 struct xfs_sb *sbp = &mp->m 3348 struct xfs_sb *sbp = &mp->m_sb; 3349 int error; 3349 int error; 3350 3350 3351 trace_xfs_log_recover(log, head_blk, 3351 trace_xfs_log_recover(log, head_blk, tail_blk); 3352 3352 3353 /* 3353 /* 3354 * First replay the images in the log 3354 * First replay the images in the log. 3355 */ 3355 */ 3356 error = xlog_do_log_recovery(log, hea 3356 error = xlog_do_log_recovery(log, head_blk, tail_blk); 3357 if (error) 3357 if (error) 3358 return error; 3358 return error; 3359 3359 3360 if (xlog_is_shutdown(log)) 3360 if (xlog_is_shutdown(log)) 3361 return -EIO; 3361 return -EIO; 3362 3362 3363 /* 3363 /* 3364 * We now update the tail_lsn since m 3364 * We now update the tail_lsn since much of the recovery has completed 3365 * and there may be space available t 3365 * and there may be space available to use. If there were no extent or 3366 * iunlinks, we can free up the entir 3366 * iunlinks, we can free up the entire log. This was set in 3367 * xlog_find_tail to be the lsn of th 3367 * xlog_find_tail to be the lsn of the last known good LR on disk. If 3368 * there are extent frees or iunlinks 3368 * there are extent frees or iunlinks they will have some entries in the 3369 * AIL; so we look at the AIL to dete 3369 * AIL; so we look at the AIL to determine how to set the tail_lsn. 3370 */ 3370 */ 3371 xfs_ail_assign_tail_lsn(log->l_ailp); 3371 xfs_ail_assign_tail_lsn(log->l_ailp); 3372 3372 3373 /* 3373 /* 3374 * Now that we've finished replaying 3374 * Now that we've finished replaying all buffer and inode updates, 3375 * re-read the superblock and reverif 3375 * re-read the superblock and reverify it. 3376 */ 3376 */ 3377 xfs_buf_lock(bp); 3377 xfs_buf_lock(bp); 3378 xfs_buf_hold(bp); 3378 xfs_buf_hold(bp); 3379 error = _xfs_buf_read(bp, XBF_READ); 3379 error = _xfs_buf_read(bp, XBF_READ); 3380 if (error) { 3380 if (error) { 3381 if (!xlog_is_shutdown(log)) { 3381 if (!xlog_is_shutdown(log)) { 3382 xfs_buf_ioerror_alert 3382 xfs_buf_ioerror_alert(bp, __this_address); 3383 ASSERT(0); 3383 ASSERT(0); 3384 } 3384 } 3385 xfs_buf_relse(bp); 3385 xfs_buf_relse(bp); 3386 return error; 3386 return error; 3387 } 3387 } 3388 3388 3389 /* Convert superblock from on-disk fo 3389 /* Convert superblock from on-disk format */ 3390 xfs_sb_from_disk(sbp, bp->b_addr); 3390 xfs_sb_from_disk(sbp, bp->b_addr); 3391 xfs_buf_relse(bp); 3391 xfs_buf_relse(bp); 3392 3392 3393 /* re-initialise in-core superblock a 3393 /* re-initialise in-core superblock and geometry structures */ 3394 mp->m_features |= xfs_sb_version_to_f 3394 mp->m_features |= xfs_sb_version_to_features(sbp); 3395 xfs_reinit_percpu_counters(mp); 3395 xfs_reinit_percpu_counters(mp); 3396 3396 3397 /* Normal transactions can now occur 3397 /* Normal transactions can now occur */ 3398 clear_bit(XLOG_ACTIVE_RECOVERY, &log- 3398 clear_bit(XLOG_ACTIVE_RECOVERY, &log->l_opstate); 3399 return 0; 3399 return 0; 3400 } 3400 } 3401 3401 3402 /* 3402 /* 3403 * Perform recovery and re-initialize some lo 3403 * Perform recovery and re-initialize some log variables in xlog_find_tail. 3404 * 3404 * 3405 * Return error or zero. 3405 * Return error or zero. 3406 */ 3406 */ 3407 int 3407 int 3408 xlog_recover( 3408 xlog_recover( 3409 struct xlog *log) 3409 struct xlog *log) 3410 { 3410 { 3411 xfs_daddr_t head_blk, tail_blk; 3411 xfs_daddr_t head_blk, tail_blk; 3412 int error; 3412 int error; 3413 3413 3414 /* find the tail of the log */ 3414 /* find the tail of the log */ 3415 error = xlog_find_tail(log, &head_blk 3415 error = xlog_find_tail(log, &head_blk, &tail_blk); 3416 if (error) 3416 if (error) 3417 return error; 3417 return error; 3418 3418 3419 /* 3419 /* 3420 * The superblock was read before the 3420 * The superblock was read before the log was available and thus the LSN 3421 * could not be verified. Check the s 3421 * could not be verified. Check the superblock LSN against the current 3422 * LSN now that it's known. 3422 * LSN now that it's known. 3423 */ 3423 */ 3424 if (xfs_has_crc(log->l_mp) && 3424 if (xfs_has_crc(log->l_mp) && 3425 !xfs_log_check_lsn(log->l_mp, log 3425 !xfs_log_check_lsn(log->l_mp, log->l_mp->m_sb.sb_lsn)) 3426 return -EINVAL; 3426 return -EINVAL; 3427 3427 3428 if (tail_blk != head_blk) { 3428 if (tail_blk != head_blk) { 3429 /* There used to be a comment 3429 /* There used to be a comment here: 3430 * 3430 * 3431 * disallow recovery on read- 3431 * disallow recovery on read-only mounts. note -- mount 3432 * checks for ENOSPC and turn 3432 * checks for ENOSPC and turns it into an intelligent 3433 * error message. 3433 * error message. 3434 * ...but this is no longer t 3434 * ...but this is no longer true. Now, unless you specify 3435 * NORECOVERY (in which case 3435 * NORECOVERY (in which case this function would never be 3436 * called), we just go ahead 3436 * called), we just go ahead and recover. We do this all 3437 * under the vfs layer, so we 3437 * under the vfs layer, so we can get away with it unless 3438 * the device itself is read- 3438 * the device itself is read-only, in which case we fail. 3439 */ 3439 */ 3440 if ((error = xfs_dev_is_read_ 3440 if ((error = xfs_dev_is_read_only(log->l_mp, "recovery"))) { 3441 return error; 3441 return error; 3442 } 3442 } 3443 3443 3444 /* 3444 /* 3445 * Version 5 superblock log f 3445 * Version 5 superblock log feature mask validation. We know the 3446 * log is dirty so check if t 3446 * log is dirty so check if there are any unknown log features 3447 * in what we need to recover 3447 * in what we need to recover. If there are unknown features 3448 * (e.g. unsupported transact 3448 * (e.g. unsupported transactions, then simply reject the 3449 * attempt at recovery before 3449 * attempt at recovery before touching anything. 3450 */ 3450 */ 3451 if (xfs_sb_is_v5(&log->l_mp-> 3451 if (xfs_sb_is_v5(&log->l_mp->m_sb) && 3452 xfs_sb_has_incompat_log_f 3452 xfs_sb_has_incompat_log_feature(&log->l_mp->m_sb, 3453 XFS_S 3453 XFS_SB_FEAT_INCOMPAT_LOG_UNKNOWN)) { 3454 xfs_warn(log->l_mp, 3454 xfs_warn(log->l_mp, 3455 "Superblock has unknown incompatible log feat 3455 "Superblock has unknown incompatible log features (0x%x) enabled.", 3456 (log->l_mp->m 3456 (log->l_mp->m_sb.sb_features_log_incompat & 3457 XFS_S 3457 XFS_SB_FEAT_INCOMPAT_LOG_UNKNOWN)); 3458 xfs_warn(log->l_mp, 3458 xfs_warn(log->l_mp, 3459 "The log can not be fully and/or safely recov 3459 "The log can not be fully and/or safely recovered by this kernel."); 3460 xfs_warn(log->l_mp, 3460 xfs_warn(log->l_mp, 3461 "Please recover the log on a kernel that supp 3461 "Please recover the log on a kernel that supports the unknown features."); 3462 return -EINVAL; 3462 return -EINVAL; 3463 } 3463 } 3464 3464 3465 /* 3465 /* 3466 * Delay log recovery if the 3466 * Delay log recovery if the debug hook is set. This is debug 3467 * instrumentation to coordin 3467 * instrumentation to coordinate simulation of I/O failures with 3468 * log recovery. 3468 * log recovery. 3469 */ 3469 */ 3470 if (xfs_globals.log_recovery_ 3470 if (xfs_globals.log_recovery_delay) { 3471 xfs_notice(log->l_mp, 3471 xfs_notice(log->l_mp, 3472 "Delaying log 3472 "Delaying log recovery for %d seconds.", 3473 xfs_globals.l 3473 xfs_globals.log_recovery_delay); 3474 msleep(xfs_globals.lo 3474 msleep(xfs_globals.log_recovery_delay * 1000); 3475 } 3475 } 3476 3476 3477 xfs_notice(log->l_mp, "Starti 3477 xfs_notice(log->l_mp, "Starting recovery (logdev: %s)", 3478 log->l_mp->m_ 3478 log->l_mp->m_logname ? log->l_mp->m_logname 3479 3479 : "internal"); 3480 3480 3481 error = xlog_do_recover(log, 3481 error = xlog_do_recover(log, head_blk, tail_blk); 3482 set_bit(XLOG_RECOVERY_NEEDED, 3482 set_bit(XLOG_RECOVERY_NEEDED, &log->l_opstate); 3483 } 3483 } 3484 return error; 3484 return error; 3485 } 3485 } 3486 3486 3487 /* 3487 /* 3488 * In the first part of recovery we replay in 3488 * In the first part of recovery we replay inodes and buffers and build up the 3489 * list of intents which need to be processed 3489 * list of intents which need to be processed. Here we process the intents and 3490 * clean up the on disk unlinked inode lists. 3490 * clean up the on disk unlinked inode lists. This is separated from the first 3491 * part of recovery so that the root and real 3491 * part of recovery so that the root and real-time bitmap inodes can be read in 3492 * from disk in between the two stages. This 3492 * from disk in between the two stages. This is necessary so that we can free 3493 * space in the real-time portion of the file 3493 * space in the real-time portion of the file system. 3494 * 3494 * 3495 * We run this whole process under GFP_NOFS a 3495 * We run this whole process under GFP_NOFS allocation context. We do a 3496 * combination of non-transactional and trans 3496 * combination of non-transactional and transactional work, yet we really don't 3497 * want to recurse into the filesystem from d 3497 * want to recurse into the filesystem from direct reclaim during any of this 3498 * processing. This allows all the recovery c 3498 * processing. This allows all the recovery code run here not to care about the 3499 * memory allocation context it is running in 3499 * memory allocation context it is running in. 3500 */ 3500 */ 3501 int 3501 int 3502 xlog_recover_finish( 3502 xlog_recover_finish( 3503 struct xlog *log) 3503 struct xlog *log) 3504 { 3504 { 3505 unsigned int nofs_flags = memalloc 3505 unsigned int nofs_flags = memalloc_nofs_save(); 3506 int error; 3506 int error; 3507 3507 3508 error = xlog_recover_process_intents( 3508 error = xlog_recover_process_intents(log); 3509 if (error) { 3509 if (error) { 3510 /* 3510 /* 3511 * Cancel all the unprocessed 3511 * Cancel all the unprocessed intent items now so that we don't 3512 * leave them pinned in the A 3512 * leave them pinned in the AIL. This can cause the AIL to 3513 * livelock on the pinned ite 3513 * livelock on the pinned item if anyone tries to push the AIL 3514 * (inode reclaim does this) 3514 * (inode reclaim does this) before we get around to 3515 * xfs_log_mount_cancel. 3515 * xfs_log_mount_cancel. 3516 */ 3516 */ 3517 xlog_recover_cancel_intents(l 3517 xlog_recover_cancel_intents(log); 3518 xfs_alert(log->l_mp, "Failed 3518 xfs_alert(log->l_mp, "Failed to recover intents"); 3519 xlog_force_shutdown(log, SHUT 3519 xlog_force_shutdown(log, SHUTDOWN_LOG_IO_ERROR); 3520 goto out_error; 3520 goto out_error; 3521 } 3521 } 3522 3522 3523 /* 3523 /* 3524 * Sync the log to get all the intent 3524 * Sync the log to get all the intents out of the AIL. This isn't 3525 * absolutely necessary, but it helps 3525 * absolutely necessary, but it helps in case the unlink transactions 3526 * would have problems pushing the in 3526 * would have problems pushing the intents out of the way. 3527 */ 3527 */ 3528 xfs_log_force(log->l_mp, XFS_LOG_SYNC 3528 xfs_log_force(log->l_mp, XFS_LOG_SYNC); 3529 3529 3530 xlog_recover_process_iunlinks(log); 3530 xlog_recover_process_iunlinks(log); 3531 3531 3532 /* 3532 /* 3533 * Recover any CoW staging blocks tha 3533 * Recover any CoW staging blocks that are still referenced by the 3534 * ondisk refcount metadata. During 3534 * ondisk refcount metadata. During mount there cannot be any live 3535 * staging extents as we have not per 3535 * staging extents as we have not permitted any user modifications. 3536 * Therefore, it is safe to free them 3536 * Therefore, it is safe to free them all right now, even on a 3537 * read-only mount. 3537 * read-only mount. 3538 */ 3538 */ 3539 error = xfs_reflink_recover_cow(log-> 3539 error = xfs_reflink_recover_cow(log->l_mp); 3540 if (error) { 3540 if (error) { 3541 xfs_alert(log->l_mp, 3541 xfs_alert(log->l_mp, 3542 "Failed to recover leftover CoW stagi 3542 "Failed to recover leftover CoW staging extents, err %d.", 3543 error); 3543 error); 3544 /* 3544 /* 3545 * If we get an error here, m 3545 * If we get an error here, make sure the log is shut down 3546 * but return zero so that an 3546 * but return zero so that any log items committed since the 3547 * end of intents processing 3547 * end of intents processing can be pushed through the CIL 3548 * and AIL. 3548 * and AIL. 3549 */ 3549 */ 3550 xlog_force_shutdown(log, SHUT 3550 xlog_force_shutdown(log, SHUTDOWN_LOG_IO_ERROR); 3551 error = 0; 3551 error = 0; 3552 goto out_error; 3552 goto out_error; 3553 } 3553 } 3554 3554 3555 out_error: 3555 out_error: 3556 memalloc_nofs_restore(nofs_flags); 3556 memalloc_nofs_restore(nofs_flags); 3557 return error; 3557 return error; 3558 } 3558 } 3559 3559 3560 void 3560 void 3561 xlog_recover_cancel( 3561 xlog_recover_cancel( 3562 struct xlog *log) 3562 struct xlog *log) 3563 { 3563 { 3564 if (xlog_recovery_needed(log)) 3564 if (xlog_recovery_needed(log)) 3565 xlog_recover_cancel_intents(l 3565 xlog_recover_cancel_intents(log); 3566 } 3566 } 3567 3567 3568 3568
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.