~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/include/crypto/gf128mul.h

Version: ~ [ linux-6.11.5 ] ~ [ linux-6.10.14 ] ~ [ linux-6.9.12 ] ~ [ linux-6.8.12 ] ~ [ linux-6.7.12 ] ~ [ linux-6.6.58 ] ~ [ linux-6.5.13 ] ~ [ linux-6.4.16 ] ~ [ linux-6.3.13 ] ~ [ linux-6.2.16 ] ~ [ linux-6.1.114 ] ~ [ linux-6.0.19 ] ~ [ linux-5.19.17 ] ~ [ linux-5.18.19 ] ~ [ linux-5.17.15 ] ~ [ linux-5.16.20 ] ~ [ linux-5.15.169 ] ~ [ linux-5.14.21 ] ~ [ linux-5.13.19 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.228 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.284 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.322 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.336 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.337 ] ~ [ linux-4.4.302 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.9 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

Diff markup

Differences between /include/crypto/gf128mul.h (Version linux-6.11.5) and /include/crypto/gf128mul.h (Version linux-4.11.12)


  1 /* gf128mul.h - GF(2^128) multiplication funct      1 /* gf128mul.h - GF(2^128) multiplication functions
  2  *                                                  2  *
  3  * Copyright (c) 2003, Dr Brian Gladman, Worce      3  * Copyright (c) 2003, Dr Brian Gladman, Worcester, UK.
  4  * Copyright (c) 2006 Rik Snel <rsnel@cube.dyn      4  * Copyright (c) 2006 Rik Snel <rsnel@cube.dyndns.org>
  5  *                                                  5  *
  6  * Based on Dr Brian Gladman's (GPL'd) work pu      6  * Based on Dr Brian Gladman's (GPL'd) work published at
  7  * http://fp.gladman.plus.com/cryptography_tec      7  * http://fp.gladman.plus.com/cryptography_technology/index.htm
  8  * See the original copyright notice below.         8  * See the original copyright notice below.
  9  *                                                  9  *
 10  * This program is free software; you can redi     10  * This program is free software; you can redistribute it and/or modify it
 11  * under the terms of the GNU General Public L     11  * under the terms of the GNU General Public License as published by the Free
 12  * Software Foundation; either version 2 of th     12  * Software Foundation; either version 2 of the License, or (at your option)
 13  * any later version.                              13  * any later version.
 14  */                                                14  */
 15 /*                                                 15 /*
 16  ---------------------------------------------     16  ---------------------------------------------------------------------------
 17  Copyright (c) 2003, Dr Brian Gladman, Worcest     17  Copyright (c) 2003, Dr Brian Gladman, Worcester, UK.   All rights reserved.
 18                                                    18 
 19  LICENSE TERMS                                     19  LICENSE TERMS
 20                                                    20 
 21  The free distribution and use of this softwar     21  The free distribution and use of this software in both source and binary
 22  form is allowed (with or without changes) pro     22  form is allowed (with or without changes) provided that:
 23                                                    23 
 24    1. distributions of this source code includ     24    1. distributions of this source code include the above copyright
 25       notice, this list of conditions and the      25       notice, this list of conditions and the following disclaimer;
 26                                                    26 
 27    2. distributions in binary form include the     27    2. distributions in binary form include the above copyright
 28       notice, this list of conditions and the      28       notice, this list of conditions and the following disclaimer
 29       in the documentation and/or other associ     29       in the documentation and/or other associated materials;
 30                                                    30 
 31    3. the copyright holder's name is not used      31    3. the copyright holder's name is not used to endorse products
 32       built using this software without specif     32       built using this software without specific written permission.
 33                                                    33 
 34  ALTERNATIVELY, provided that this notice is r     34  ALTERNATIVELY, provided that this notice is retained in full, this product
 35  may be distributed under the terms of the GNU     35  may be distributed under the terms of the GNU General Public License (GPL),
 36  in which case the provisions of the GPL apply     36  in which case the provisions of the GPL apply INSTEAD OF those given above.
 37                                                    37 
 38  DISCLAIMER                                        38  DISCLAIMER
 39                                                    39 
 40  This software is provided 'as is' with no exp     40  This software is provided 'as is' with no explicit or implied warranties
 41  in respect of its properties, including, but      41  in respect of its properties, including, but not limited to, correctness
 42  and/or fitness for purpose.                       42  and/or fitness for purpose.
 43  ---------------------------------------------     43  ---------------------------------------------------------------------------
 44  Issue Date: 31/01/2006                            44  Issue Date: 31/01/2006
 45                                                    45 
 46  An implementation of field multiplication in  !!  46  An implementation of field multiplication in Galois Field GF(128)
 47 */                                                 47 */
 48                                                    48 
 49 #ifndef _CRYPTO_GF128MUL_H                         49 #ifndef _CRYPTO_GF128MUL_H
 50 #define _CRYPTO_GF128MUL_H                         50 #define _CRYPTO_GF128MUL_H
 51                                                    51 
 52 #include <asm/byteorder.h>                     << 
 53 #include <crypto/b128ops.h>                        52 #include <crypto/b128ops.h>
 54 #include <linux/slab.h>                            53 #include <linux/slab.h>
 55                                                    54 
 56 /* Comment by Rik:                                 55 /* Comment by Rik:
 57  *                                                 56  *
 58  * For some background on GF(2^128) see for ex     57  * For some background on GF(2^128) see for example: 
 59  * http://csrc.nist.gov/groups/ST/toolkit/BCM/     58  * http://csrc.nist.gov/groups/ST/toolkit/BCM/documents/proposedmodes/gcm/gcm-revised-spec.pdf 
 60  *                                                 59  *
 61  * The elements of GF(2^128) := GF(2)[X]/(X^12     60  * The elements of GF(2^128) := GF(2)[X]/(X^128-X^7-X^2-X^1-1) can
 62  * be mapped to computer memory in a variety o     61  * be mapped to computer memory in a variety of ways. Let's examine
 63  * three common cases.                             62  * three common cases.
 64  *                                                 63  *
 65  * Take a look at the 16 binary octets below i     64  * Take a look at the 16 binary octets below in memory order. The msb's
 66  * are left and the lsb's are right. char b[16     65  * are left and the lsb's are right. char b[16] is an array and b[0] is
 67  * the first octet.                                66  * the first octet.
 68  *                                                 67  *
 69  * 10000000 00000000 00000000 00000000 .... 00 !!  68  * 80000000 00000000 00000000 00000000 .... 00000000 00000000 00000000
 70  *   b[0]     b[1]     b[2]     b[3]               69  *   b[0]     b[1]     b[2]     b[3]          b[13]    b[14]    b[15]
 71  *                                                 70  *
 72  * Every bit is a coefficient of some power of     71  * Every bit is a coefficient of some power of X. We can store the bits
 73  * in every byte in little-endian order and th     72  * in every byte in little-endian order and the bytes themselves also in
 74  * little endian order. I will call this lle (     73  * little endian order. I will call this lle (little-little-endian).
 75  * The above buffer represents the polynomial      74  * The above buffer represents the polynomial 1, and X^7+X^2+X^1+1 looks
 76  * like 11100001 00000000 .... 00000000 = { 0x     75  * like 11100001 00000000 .... 00000000 = { 0xE1, 0x00, }.
 77  * This format was originally implemented in g     76  * This format was originally implemented in gf128mul and is used
 78  * in GCM (Galois/Counter mode) and in ABL (Ar     77  * in GCM (Galois/Counter mode) and in ABL (Arbitrary Block Length).
 79  *                                                 78  *
 80  * Another convention says: store the bits in      79  * Another convention says: store the bits in bigendian order and the
 81  * bytes also. This is bbe (big-big-endian). N     80  * bytes also. This is bbe (big-big-endian). Now the buffer above
 82  * represents X^127. X^7+X^2+X^1+1 looks like      81  * represents X^127. X^7+X^2+X^1+1 looks like 00000000 .... 10000111,
 83  * b[15] = 0x87 and the rest is 0. LRW uses th     82  * b[15] = 0x87 and the rest is 0. LRW uses this convention and bbe
 84  * is partly implemented.                          83  * is partly implemented.
 85  *                                                 84  *
 86  * Both of the above formats are easy to imple     85  * Both of the above formats are easy to implement on big-endian
 87  * machines.                                       86  * machines.
 88  *                                                 87  *
 89  * XTS and EME (the latter of which is patent  !!  88  * EME (which is patent encumbered) uses the ble format (bits are stored
 90  * format (bits are stored in big endian order !!  89  * in big endian order and the bytes in little endian). The above buffer
 91  * endian). The above buffer represents X^7 in !!  90  * represents X^7 in this case and the primitive polynomial is b[0] = 0x87.
 92  * primitive polynomial is b[0] = 0x87.        << 
 93  *                                                 91  *
 94  * The common machine word-size is smaller tha     92  * The common machine word-size is smaller than 128 bits, so to make
 95  * an efficient implementation we must split i     93  * an efficient implementation we must split into machine word sizes.
 96  * This implementation uses 64-bit words for t !!  94  * This file uses one 32bit for the moment. Machine endianness comes into
 97  * endianness comes into play. The lle format  !!  95  * play. The lle format in relation to machine endianness is discussed
 98  * endianness is discussed below by the origin !!  96  * below by the original author of gf128mul Dr Brian Gladman.
 99  * Brian Gladman.                              << 
100  *                                                 97  *
101  * Let's look at the bbe and ble format on a l     98  * Let's look at the bbe and ble format on a little endian machine.
102  *                                                 99  *
103  * bbe on a little endian machine u32 x[4]:       100  * bbe on a little endian machine u32 x[4]:
104  *                                                101  *
105  *  MS            x[0]           LS  MS           102  *  MS            x[0]           LS  MS            x[1]           LS
106  *  ms   ls ms   ls ms   ls ms   ls  ms   ls m    103  *  ms   ls ms   ls ms   ls ms   ls  ms   ls ms   ls ms   ls ms   ls
107  *  103..96 111.104 119.112 127.120  71...64 7    104  *  103..96 111.104 119.112 127.120  71...64 79...72 87...80 95...88
108  *                                                105  *
109  *  MS            x[2]           LS  MS           106  *  MS            x[2]           LS  MS            x[3]           LS
110  *  ms   ls ms   ls ms   ls ms   ls  ms   ls m    107  *  ms   ls ms   ls ms   ls ms   ls  ms   ls ms   ls ms   ls ms   ls
111  *  39...32 47...40 55...48 63...56  07...00 1    108  *  39...32 47...40 55...48 63...56  07...00 15...08 23...16 31...24
112  *                                                109  *
113  * ble on a little endian machine                 110  * ble on a little endian machine
114  *                                                111  *
115  *  MS            x[0]           LS  MS           112  *  MS            x[0]           LS  MS            x[1]           LS
116  *  ms   ls ms   ls ms   ls ms   ls  ms   ls m    113  *  ms   ls ms   ls ms   ls ms   ls  ms   ls ms   ls ms   ls ms   ls
117  *  31...24 23...16 15...08 07...00  63...56 5    114  *  31...24 23...16 15...08 07...00  63...56 55...48 47...40 39...32
118  *                                                115  *
119  *  MS            x[2]           LS  MS           116  *  MS            x[2]           LS  MS            x[3]           LS
120  *  ms   ls ms   ls ms   ls ms   ls  ms   ls m    117  *  ms   ls ms   ls ms   ls ms   ls  ms   ls ms   ls ms   ls ms   ls
121  *  95...88 87...80 79...72 71...64  127.120 1    118  *  95...88 87...80 79...72 71...64  127.120 199.112 111.104 103..96
122  *                                                119  *
123  * Multiplications in GF(2^128) are mostly bit    120  * Multiplications in GF(2^128) are mostly bit-shifts, so you see why
124  * ble (and lbe also) are easier to implement     121  * ble (and lbe also) are easier to implement on a little-endian
125  * machine than on a big-endian machine. The c    122  * machine than on a big-endian machine. The converse holds for bbe
126  * and lle.                                       123  * and lle.
127  *                                                124  *
128  * Note: to have good alignment, it seems to m    125  * Note: to have good alignment, it seems to me that it is sufficient
129  * to keep elements of GF(2^128) in type u64[2    126  * to keep elements of GF(2^128) in type u64[2]. On 32-bit wordsize
130  * machines this will automatically aligned to    127  * machines this will automatically aligned to wordsize and on a 64-bit
131  * machine also.                                  128  * machine also.
132  */                                               129  */
133 /*      Multiply a GF(2^128) field element by  !! 130 /*      Multiply a GF128 field element by x. Field elements are held in arrays
134     held in arrays of bytes in which field bit !! 131     of bytes in which field bits 8n..8n + 7 are held in byte[n], with lower
135     byte[n], with lower indexed bits placed in !! 132     indexed bits placed in the more numerically significant bit positions
136     significant bit positions within bytes.    !! 133     within bytes.
137                                                   134 
138     On little endian machines the bit indexes     135     On little endian machines the bit indexes translate into the bit
139     positions within four 32-bit words in the     136     positions within four 32-bit words in the following way
140                                                   137 
141     MS            x[0]           LS  MS           138     MS            x[0]           LS  MS            x[1]           LS
142     ms   ls ms   ls ms   ls ms   ls  ms   ls m    139     ms   ls ms   ls ms   ls ms   ls  ms   ls ms   ls ms   ls ms   ls
143     24...31 16...23 08...15 00...07  56...63 4    140     24...31 16...23 08...15 00...07  56...63 48...55 40...47 32...39
144                                                   141 
145     MS            x[2]           LS  MS           142     MS            x[2]           LS  MS            x[3]           LS
146     ms   ls ms   ls ms   ls ms   ls  ms   ls m    143     ms   ls ms   ls ms   ls ms   ls  ms   ls ms   ls ms   ls ms   ls
147     88...95 80...87 72...79 64...71  120.127 1    144     88...95 80...87 72...79 64...71  120.127 112.119 104.111 96..103
148                                                   145 
149     On big endian machines the bit indexes tra    146     On big endian machines the bit indexes translate into the bit
150     positions within four 32-bit words in the     147     positions within four 32-bit words in the following way
151                                                   148 
152     MS            x[0]           LS  MS           149     MS            x[0]           LS  MS            x[1]           LS
153     ms   ls ms   ls ms   ls ms   ls  ms   ls m    150     ms   ls ms   ls ms   ls ms   ls  ms   ls ms   ls ms   ls ms   ls
154     00...07 08...15 16...23 24...31  32...39 4    151     00...07 08...15 16...23 24...31  32...39 40...47 48...55 56...63
155                                                   152 
156     MS            x[2]           LS  MS           153     MS            x[2]           LS  MS            x[3]           LS
157     ms   ls ms   ls ms   ls ms   ls  ms   ls m    154     ms   ls ms   ls ms   ls ms   ls  ms   ls ms   ls ms   ls ms   ls
158     64...71 72...79 80...87 88...95  96..103 1    155     64...71 72...79 80...87 88...95  96..103 104.111 112.119 120.127
159 */                                                156 */
160                                                   157 
161 /*      A slow generic version of gf_mul, impl    158 /*      A slow generic version of gf_mul, implemented for lle and bbe
162  *      It multiplies a and b and puts the res    159  *      It multiplies a and b and puts the result in a */
163 void gf128mul_lle(be128 *a, const be128 *b);      160 void gf128mul_lle(be128 *a, const be128 *b);
164                                                   161 
165 void gf128mul_bbe(be128 *a, const be128 *b);      162 void gf128mul_bbe(be128 *a, const be128 *b);
166                                                   163 
167 /*                                             !! 164 /* multiply by x in ble format, needed by XTS */
168  * The following functions multiply a field el !! 165 void gf128mul_x_ble(be128 *a, const be128 *b);
169  * the polynomial field representation.  They  << 
170  * to gain speed but compensate for machine en << 
171  * correctly on both styles of machine.        << 
172  *                                             << 
173  * They are defined here for performance.      << 
174  */                                            << 
175                                                << 
176 static inline u64 gf128mul_mask_from_bit(u64 x << 
177 {                                              << 
178         /* a constant-time version of 'x & ((u << 
179         return ((s64)(x << (63 - which)) >> 63 << 
180 }                                              << 
181                                                << 
182 static inline void gf128mul_x_lle(be128 *r, co << 
183 {                                              << 
184         u64 a = be64_to_cpu(x->a);             << 
185         u64 b = be64_to_cpu(x->b);             << 
186                                                << 
187         /* equivalent to gf128mul_table_le[(b  << 
188          * (see crypto/gf128mul.c): */         << 
189         u64 _tt = gf128mul_mask_from_bit(b, 0) << 
190                                                << 
191         r->b = cpu_to_be64((b >> 1) | (a << 63 << 
192         r->a = cpu_to_be64((a >> 1) ^ _tt);    << 
193 }                                              << 
194                                                << 
195 static inline void gf128mul_x_bbe(be128 *r, co << 
196 {                                              << 
197         u64 a = be64_to_cpu(x->a);             << 
198         u64 b = be64_to_cpu(x->b);             << 
199                                                << 
200         /* equivalent to gf128mul_table_be[a > << 
201         u64 _tt = gf128mul_mask_from_bit(a, 63 << 
202                                                << 
203         r->a = cpu_to_be64((a << 1) | (b >> 63 << 
204         r->b = cpu_to_be64((b << 1) ^ _tt);    << 
205 }                                              << 
206                                                << 
207 /* needed by XTS */                            << 
208 static inline void gf128mul_x_ble(le128 *r, co << 
209 {                                              << 
210         u64 a = le64_to_cpu(x->a);             << 
211         u64 b = le64_to_cpu(x->b);             << 
212                                                << 
213         /* equivalent to gf128mul_table_be[b > << 
214         u64 _tt = gf128mul_mask_from_bit(a, 63 << 
215                                                << 
216         r->a = cpu_to_le64((a << 1) | (b >> 63 << 
217         r->b = cpu_to_le64((b << 1) ^ _tt);    << 
218 }                                              << 
219                                                   166 
220 /* 4k table optimization */                       167 /* 4k table optimization */
221                                                   168 
222 struct gf128mul_4k {                              169 struct gf128mul_4k {
223         be128 t[256];                             170         be128 t[256];
224 };                                                171 };
225                                                   172 
226 struct gf128mul_4k *gf128mul_init_4k_lle(const    173 struct gf128mul_4k *gf128mul_init_4k_lle(const be128 *g);
227 struct gf128mul_4k *gf128mul_init_4k_bbe(const    174 struct gf128mul_4k *gf128mul_init_4k_bbe(const be128 *g);
228 void gf128mul_4k_lle(be128 *a, const struct gf !! 175 void gf128mul_4k_lle(be128 *a, struct gf128mul_4k *t);
229 void gf128mul_4k_bbe(be128 *a, const struct gf !! 176 void gf128mul_4k_bbe(be128 *a, struct gf128mul_4k *t);
230 void gf128mul_x8_ble(le128 *r, const le128 *x) !! 177 
231 static inline void gf128mul_free_4k(struct gf1    178 static inline void gf128mul_free_4k(struct gf128mul_4k *t)
232 {                                                 179 {
233         kfree_sensitive(t);                    !! 180         kzfree(t);
234 }                                                 181 }
235                                                   182 
236                                                   183 
237 /* 64k table optimization, implemented for bbe    184 /* 64k table optimization, implemented for bbe */
238                                                   185 
239 struct gf128mul_64k {                             186 struct gf128mul_64k {
240         struct gf128mul_4k *t[16];                187         struct gf128mul_4k *t[16];
241 };                                                188 };
242                                                   189 
243 /* First initialize with the constant factor w    190 /* First initialize with the constant factor with which you
244  * want to multiply and then call gf128mul_64k    191  * want to multiply and then call gf128mul_64k_bbe with the other
245  * factor in the first argument, and the table    192  * factor in the first argument, and the table in the second.
246  * Afterwards, the result is stored in *a.        193  * Afterwards, the result is stored in *a.
247  */                                               194  */
248 struct gf128mul_64k *gf128mul_init_64k_bbe(con    195 struct gf128mul_64k *gf128mul_init_64k_bbe(const be128 *g);
249 void gf128mul_free_64k(struct gf128mul_64k *t)    196 void gf128mul_free_64k(struct gf128mul_64k *t);
250 void gf128mul_64k_bbe(be128 *a, const struct g !! 197 void gf128mul_64k_bbe(be128 *a, struct gf128mul_64k *t);
251                                                   198 
252 #endif /* _CRYPTO_GF128MUL_H */                   199 #endif /* _CRYPTO_GF128MUL_H */
253                                                   200 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

sflogo.php