1 /* gf128mul.h - GF(2^128) multiplication funct 1 /* gf128mul.h - GF(2^128) multiplication functions 2 * 2 * 3 * Copyright (c) 2003, Dr Brian Gladman, Worce 3 * Copyright (c) 2003, Dr Brian Gladman, Worcester, UK. 4 * Copyright (c) 2006 Rik Snel <rsnel@cube.dyn 4 * Copyright (c) 2006 Rik Snel <rsnel@cube.dyndns.org> 5 * 5 * 6 * Based on Dr Brian Gladman's (GPL'd) work pu 6 * Based on Dr Brian Gladman's (GPL'd) work published at 7 * http://fp.gladman.plus.com/cryptography_tec 7 * http://fp.gladman.plus.com/cryptography_technology/index.htm 8 * See the original copyright notice below. 8 * See the original copyright notice below. 9 * 9 * 10 * This program is free software; you can redi 10 * This program is free software; you can redistribute it and/or modify it 11 * under the terms of the GNU General Public L 11 * under the terms of the GNU General Public License as published by the Free 12 * Software Foundation; either version 2 of th 12 * Software Foundation; either version 2 of the License, or (at your option) 13 * any later version. 13 * any later version. 14 */ 14 */ 15 /* 15 /* 16 --------------------------------------------- 16 --------------------------------------------------------------------------- 17 Copyright (c) 2003, Dr Brian Gladman, Worcest 17 Copyright (c) 2003, Dr Brian Gladman, Worcester, UK. All rights reserved. 18 18 19 LICENSE TERMS 19 LICENSE TERMS 20 20 21 The free distribution and use of this softwar 21 The free distribution and use of this software in both source and binary 22 form is allowed (with or without changes) pro 22 form is allowed (with or without changes) provided that: 23 23 24 1. distributions of this source code includ 24 1. distributions of this source code include the above copyright 25 notice, this list of conditions and the 25 notice, this list of conditions and the following disclaimer; 26 26 27 2. distributions in binary form include the 27 2. distributions in binary form include the above copyright 28 notice, this list of conditions and the 28 notice, this list of conditions and the following disclaimer 29 in the documentation and/or other associ 29 in the documentation and/or other associated materials; 30 30 31 3. the copyright holder's name is not used 31 3. the copyright holder's name is not used to endorse products 32 built using this software without specif 32 built using this software without specific written permission. 33 33 34 ALTERNATIVELY, provided that this notice is r 34 ALTERNATIVELY, provided that this notice is retained in full, this product 35 may be distributed under the terms of the GNU 35 may be distributed under the terms of the GNU General Public License (GPL), 36 in which case the provisions of the GPL apply 36 in which case the provisions of the GPL apply INSTEAD OF those given above. 37 37 38 DISCLAIMER 38 DISCLAIMER 39 39 40 This software is provided 'as is' with no exp 40 This software is provided 'as is' with no explicit or implied warranties 41 in respect of its properties, including, but 41 in respect of its properties, including, but not limited to, correctness 42 and/or fitness for purpose. 42 and/or fitness for purpose. 43 --------------------------------------------- 43 --------------------------------------------------------------------------- 44 Issue Date: 31/01/2006 44 Issue Date: 31/01/2006 45 45 46 An implementation of field multiplication in 46 An implementation of field multiplication in Galois Field GF(2^128) 47 */ 47 */ 48 48 49 #ifndef _CRYPTO_GF128MUL_H 49 #ifndef _CRYPTO_GF128MUL_H 50 #define _CRYPTO_GF128MUL_H 50 #define _CRYPTO_GF128MUL_H 51 51 52 #include <asm/byteorder.h> 52 #include <asm/byteorder.h> 53 #include <crypto/b128ops.h> 53 #include <crypto/b128ops.h> 54 #include <linux/slab.h> 54 #include <linux/slab.h> 55 55 56 /* Comment by Rik: 56 /* Comment by Rik: 57 * 57 * 58 * For some background on GF(2^128) see for ex 58 * For some background on GF(2^128) see for example: 59 * http://csrc.nist.gov/groups/ST/toolkit/BCM/ 59 * http://csrc.nist.gov/groups/ST/toolkit/BCM/documents/proposedmodes/gcm/gcm-revised-spec.pdf 60 * 60 * 61 * The elements of GF(2^128) := GF(2)[X]/(X^12 61 * The elements of GF(2^128) := GF(2)[X]/(X^128-X^7-X^2-X^1-1) can 62 * be mapped to computer memory in a variety o 62 * be mapped to computer memory in a variety of ways. Let's examine 63 * three common cases. 63 * three common cases. 64 * 64 * 65 * Take a look at the 16 binary octets below i 65 * Take a look at the 16 binary octets below in memory order. The msb's 66 * are left and the lsb's are right. char b[16 66 * are left and the lsb's are right. char b[16] is an array and b[0] is 67 * the first octet. 67 * the first octet. 68 * 68 * 69 * 10000000 00000000 00000000 00000000 .... 00 69 * 10000000 00000000 00000000 00000000 .... 00000000 00000000 00000000 70 * b[0] b[1] b[2] b[3] 70 * b[0] b[1] b[2] b[3] b[13] b[14] b[15] 71 * 71 * 72 * Every bit is a coefficient of some power of 72 * Every bit is a coefficient of some power of X. We can store the bits 73 * in every byte in little-endian order and th 73 * in every byte in little-endian order and the bytes themselves also in 74 * little endian order. I will call this lle ( 74 * little endian order. I will call this lle (little-little-endian). 75 * The above buffer represents the polynomial 75 * The above buffer represents the polynomial 1, and X^7+X^2+X^1+1 looks 76 * like 11100001 00000000 .... 00000000 = { 0x 76 * like 11100001 00000000 .... 00000000 = { 0xE1, 0x00, }. 77 * This format was originally implemented in g 77 * This format was originally implemented in gf128mul and is used 78 * in GCM (Galois/Counter mode) and in ABL (Ar 78 * in GCM (Galois/Counter mode) and in ABL (Arbitrary Block Length). 79 * 79 * 80 * Another convention says: store the bits in 80 * Another convention says: store the bits in bigendian order and the 81 * bytes also. This is bbe (big-big-endian). N 81 * bytes also. This is bbe (big-big-endian). Now the buffer above 82 * represents X^127. X^7+X^2+X^1+1 looks like 82 * represents X^127. X^7+X^2+X^1+1 looks like 00000000 .... 10000111, 83 * b[15] = 0x87 and the rest is 0. LRW uses th 83 * b[15] = 0x87 and the rest is 0. LRW uses this convention and bbe 84 * is partly implemented. 84 * is partly implemented. 85 * 85 * 86 * Both of the above formats are easy to imple 86 * Both of the above formats are easy to implement on big-endian 87 * machines. 87 * machines. 88 * 88 * 89 * XTS and EME (the latter of which is patent 89 * XTS and EME (the latter of which is patent encumbered) use the ble 90 * format (bits are stored in big endian order 90 * format (bits are stored in big endian order and the bytes in little 91 * endian). The above buffer represents X^7 in 91 * endian). The above buffer represents X^7 in this case and the 92 * primitive polynomial is b[0] = 0x87. 92 * primitive polynomial is b[0] = 0x87. 93 * 93 * 94 * The common machine word-size is smaller tha 94 * The common machine word-size is smaller than 128 bits, so to make 95 * an efficient implementation we must split i 95 * an efficient implementation we must split into machine word sizes. 96 * This implementation uses 64-bit words for t 96 * This implementation uses 64-bit words for the moment. Machine 97 * endianness comes into play. The lle format 97 * endianness comes into play. The lle format in relation to machine 98 * endianness is discussed below by the origin 98 * endianness is discussed below by the original author of gf128mul Dr 99 * Brian Gladman. 99 * Brian Gladman. 100 * 100 * 101 * Let's look at the bbe and ble format on a l 101 * Let's look at the bbe and ble format on a little endian machine. 102 * 102 * 103 * bbe on a little endian machine u32 x[4]: 103 * bbe on a little endian machine u32 x[4]: 104 * 104 * 105 * MS x[0] LS MS 105 * MS x[0] LS MS x[1] LS 106 * ms ls ms ls ms ls ms ls ms ls m 106 * ms ls ms ls ms ls ms ls ms ls ms ls ms ls ms ls 107 * 103..96 111.104 119.112 127.120 71...64 7 107 * 103..96 111.104 119.112 127.120 71...64 79...72 87...80 95...88 108 * 108 * 109 * MS x[2] LS MS 109 * MS x[2] LS MS x[3] LS 110 * ms ls ms ls ms ls ms ls ms ls m 110 * ms ls ms ls ms ls ms ls ms ls ms ls ms ls ms ls 111 * 39...32 47...40 55...48 63...56 07...00 1 111 * 39...32 47...40 55...48 63...56 07...00 15...08 23...16 31...24 112 * 112 * 113 * ble on a little endian machine 113 * ble on a little endian machine 114 * 114 * 115 * MS x[0] LS MS 115 * MS x[0] LS MS x[1] LS 116 * ms ls ms ls ms ls ms ls ms ls m 116 * ms ls ms ls ms ls ms ls ms ls ms ls ms ls ms ls 117 * 31...24 23...16 15...08 07...00 63...56 5 117 * 31...24 23...16 15...08 07...00 63...56 55...48 47...40 39...32 118 * 118 * 119 * MS x[2] LS MS 119 * MS x[2] LS MS x[3] LS 120 * ms ls ms ls ms ls ms ls ms ls m 120 * ms ls ms ls ms ls ms ls ms ls ms ls ms ls ms ls 121 * 95...88 87...80 79...72 71...64 127.120 1 121 * 95...88 87...80 79...72 71...64 127.120 199.112 111.104 103..96 122 * 122 * 123 * Multiplications in GF(2^128) are mostly bit 123 * Multiplications in GF(2^128) are mostly bit-shifts, so you see why 124 * ble (and lbe also) are easier to implement 124 * ble (and lbe also) are easier to implement on a little-endian 125 * machine than on a big-endian machine. The c 125 * machine than on a big-endian machine. The converse holds for bbe 126 * and lle. 126 * and lle. 127 * 127 * 128 * Note: to have good alignment, it seems to m 128 * Note: to have good alignment, it seems to me that it is sufficient 129 * to keep elements of GF(2^128) in type u64[2 129 * to keep elements of GF(2^128) in type u64[2]. On 32-bit wordsize 130 * machines this will automatically aligned to 130 * machines this will automatically aligned to wordsize and on a 64-bit 131 * machine also. 131 * machine also. 132 */ 132 */ 133 /* Multiply a GF(2^128) field element by 133 /* Multiply a GF(2^128) field element by x. Field elements are 134 held in arrays of bytes in which field bit 134 held in arrays of bytes in which field bits 8n..8n + 7 are held in 135 byte[n], with lower indexed bits placed in 135 byte[n], with lower indexed bits placed in the more numerically 136 significant bit positions within bytes. 136 significant bit positions within bytes. 137 137 138 On little endian machines the bit indexes 138 On little endian machines the bit indexes translate into the bit 139 positions within four 32-bit words in the 139 positions within four 32-bit words in the following way 140 140 141 MS x[0] LS MS 141 MS x[0] LS MS x[1] LS 142 ms ls ms ls ms ls ms ls ms ls m 142 ms ls ms ls ms ls ms ls ms ls ms ls ms ls ms ls 143 24...31 16...23 08...15 00...07 56...63 4 143 24...31 16...23 08...15 00...07 56...63 48...55 40...47 32...39 144 144 145 MS x[2] LS MS 145 MS x[2] LS MS x[3] LS 146 ms ls ms ls ms ls ms ls ms ls m 146 ms ls ms ls ms ls ms ls ms ls ms ls ms ls ms ls 147 88...95 80...87 72...79 64...71 120.127 1 147 88...95 80...87 72...79 64...71 120.127 112.119 104.111 96..103 148 148 149 On big endian machines the bit indexes tra 149 On big endian machines the bit indexes translate into the bit 150 positions within four 32-bit words in the 150 positions within four 32-bit words in the following way 151 151 152 MS x[0] LS MS 152 MS x[0] LS MS x[1] LS 153 ms ls ms ls ms ls ms ls ms ls m 153 ms ls ms ls ms ls ms ls ms ls ms ls ms ls ms ls 154 00...07 08...15 16...23 24...31 32...39 4 154 00...07 08...15 16...23 24...31 32...39 40...47 48...55 56...63 155 155 156 MS x[2] LS MS 156 MS x[2] LS MS x[3] LS 157 ms ls ms ls ms ls ms ls ms ls m 157 ms ls ms ls ms ls ms ls ms ls ms ls ms ls ms ls 158 64...71 72...79 80...87 88...95 96..103 1 158 64...71 72...79 80...87 88...95 96..103 104.111 112.119 120.127 159 */ 159 */ 160 160 161 /* A slow generic version of gf_mul, impl 161 /* A slow generic version of gf_mul, implemented for lle and bbe 162 * It multiplies a and b and puts the res 162 * It multiplies a and b and puts the result in a */ 163 void gf128mul_lle(be128 *a, const be128 *b); 163 void gf128mul_lle(be128 *a, const be128 *b); 164 164 165 void gf128mul_bbe(be128 *a, const be128 *b); 165 void gf128mul_bbe(be128 *a, const be128 *b); 166 166 167 /* 167 /* 168 * The following functions multiply a field el 168 * The following functions multiply a field element by x in 169 * the polynomial field representation. They 169 * the polynomial field representation. They use 64-bit word operations 170 * to gain speed but compensate for machine en 170 * to gain speed but compensate for machine endianness and hence work 171 * correctly on both styles of machine. 171 * correctly on both styles of machine. 172 * 172 * 173 * They are defined here for performance. 173 * They are defined here for performance. 174 */ 174 */ 175 175 176 static inline u64 gf128mul_mask_from_bit(u64 x 176 static inline u64 gf128mul_mask_from_bit(u64 x, int which) 177 { 177 { 178 /* a constant-time version of 'x & ((u 178 /* a constant-time version of 'x & ((u64)1 << which) ? (u64)-1 : 0' */ 179 return ((s64)(x << (63 - which)) >> 63 179 return ((s64)(x << (63 - which)) >> 63); 180 } 180 } 181 181 182 static inline void gf128mul_x_lle(be128 *r, co 182 static inline void gf128mul_x_lle(be128 *r, const be128 *x) 183 { 183 { 184 u64 a = be64_to_cpu(x->a); 184 u64 a = be64_to_cpu(x->a); 185 u64 b = be64_to_cpu(x->b); 185 u64 b = be64_to_cpu(x->b); 186 186 187 /* equivalent to gf128mul_table_le[(b 187 /* equivalent to gf128mul_table_le[(b << 7) & 0xff] << 48 188 * (see crypto/gf128mul.c): */ 188 * (see crypto/gf128mul.c): */ 189 u64 _tt = gf128mul_mask_from_bit(b, 0) 189 u64 _tt = gf128mul_mask_from_bit(b, 0) & ((u64)0xe1 << 56); 190 190 191 r->b = cpu_to_be64((b >> 1) | (a << 63 191 r->b = cpu_to_be64((b >> 1) | (a << 63)); 192 r->a = cpu_to_be64((a >> 1) ^ _tt); 192 r->a = cpu_to_be64((a >> 1) ^ _tt); 193 } 193 } 194 194 195 static inline void gf128mul_x_bbe(be128 *r, co 195 static inline void gf128mul_x_bbe(be128 *r, const be128 *x) 196 { 196 { 197 u64 a = be64_to_cpu(x->a); 197 u64 a = be64_to_cpu(x->a); 198 u64 b = be64_to_cpu(x->b); 198 u64 b = be64_to_cpu(x->b); 199 199 200 /* equivalent to gf128mul_table_be[a > 200 /* equivalent to gf128mul_table_be[a >> 63] (see crypto/gf128mul.c): */ 201 u64 _tt = gf128mul_mask_from_bit(a, 63 201 u64 _tt = gf128mul_mask_from_bit(a, 63) & 0x87; 202 202 203 r->a = cpu_to_be64((a << 1) | (b >> 63 203 r->a = cpu_to_be64((a << 1) | (b >> 63)); 204 r->b = cpu_to_be64((b << 1) ^ _tt); 204 r->b = cpu_to_be64((b << 1) ^ _tt); 205 } 205 } 206 206 207 /* needed by XTS */ 207 /* needed by XTS */ 208 static inline void gf128mul_x_ble(le128 *r, co 208 static inline void gf128mul_x_ble(le128 *r, const le128 *x) 209 { 209 { 210 u64 a = le64_to_cpu(x->a); 210 u64 a = le64_to_cpu(x->a); 211 u64 b = le64_to_cpu(x->b); 211 u64 b = le64_to_cpu(x->b); 212 212 213 /* equivalent to gf128mul_table_be[b > 213 /* equivalent to gf128mul_table_be[b >> 63] (see crypto/gf128mul.c): */ 214 u64 _tt = gf128mul_mask_from_bit(a, 63 214 u64 _tt = gf128mul_mask_from_bit(a, 63) & 0x87; 215 215 216 r->a = cpu_to_le64((a << 1) | (b >> 63 216 r->a = cpu_to_le64((a << 1) | (b >> 63)); 217 r->b = cpu_to_le64((b << 1) ^ _tt); 217 r->b = cpu_to_le64((b << 1) ^ _tt); 218 } 218 } 219 219 220 /* 4k table optimization */ 220 /* 4k table optimization */ 221 221 222 struct gf128mul_4k { 222 struct gf128mul_4k { 223 be128 t[256]; 223 be128 t[256]; 224 }; 224 }; 225 225 226 struct gf128mul_4k *gf128mul_init_4k_lle(const 226 struct gf128mul_4k *gf128mul_init_4k_lle(const be128 *g); 227 struct gf128mul_4k *gf128mul_init_4k_bbe(const 227 struct gf128mul_4k *gf128mul_init_4k_bbe(const be128 *g); 228 void gf128mul_4k_lle(be128 *a, const struct gf 228 void gf128mul_4k_lle(be128 *a, const struct gf128mul_4k *t); 229 void gf128mul_4k_bbe(be128 *a, const struct gf 229 void gf128mul_4k_bbe(be128 *a, const struct gf128mul_4k *t); 230 void gf128mul_x8_ble(le128 *r, const le128 *x) 230 void gf128mul_x8_ble(le128 *r, const le128 *x); 231 static inline void gf128mul_free_4k(struct gf1 231 static inline void gf128mul_free_4k(struct gf128mul_4k *t) 232 { 232 { 233 kfree_sensitive(t); !! 233 kzfree(t); 234 } 234 } 235 235 236 236 237 /* 64k table optimization, implemented for bbe 237 /* 64k table optimization, implemented for bbe */ 238 238 239 struct gf128mul_64k { 239 struct gf128mul_64k { 240 struct gf128mul_4k *t[16]; 240 struct gf128mul_4k *t[16]; 241 }; 241 }; 242 242 243 /* First initialize with the constant factor w 243 /* First initialize with the constant factor with which you 244 * want to multiply and then call gf128mul_64k 244 * want to multiply and then call gf128mul_64k_bbe with the other 245 * factor in the first argument, and the table 245 * factor in the first argument, and the table in the second. 246 * Afterwards, the result is stored in *a. 246 * Afterwards, the result is stored in *a. 247 */ 247 */ 248 struct gf128mul_64k *gf128mul_init_64k_bbe(con 248 struct gf128mul_64k *gf128mul_init_64k_bbe(const be128 *g); 249 void gf128mul_free_64k(struct gf128mul_64k *t) 249 void gf128mul_free_64k(struct gf128mul_64k *t); 250 void gf128mul_64k_bbe(be128 *a, const struct g 250 void gf128mul_64k_bbe(be128 *a, const struct gf128mul_64k *t); 251 251 252 #endif /* _CRYPTO_GF128MUL_H */ 252 #endif /* _CRYPTO_GF128MUL_H */ 253 253
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.