1 /* gf128mul.h - GF(2^128) multiplication funct 1 2 * 3 * Copyright (c) 2003, Dr Brian Gladman, Worce 4 * Copyright (c) 2006 Rik Snel <rsnel@cube.dyn 5 * 6 * Based on Dr Brian Gladman's (GPL'd) work pu 7 * http://fp.gladman.plus.com/cryptography_tec 8 * See the original copyright notice below. 9 * 10 * This program is free software; you can redi 11 * under the terms of the GNU General Public L 12 * Software Foundation; either version 2 of th 13 * any later version. 14 */ 15 /* 16 --------------------------------------------- 17 Copyright (c) 2003, Dr Brian Gladman, Worcest 18 19 LICENSE TERMS 20 21 The free distribution and use of this softwar 22 form is allowed (with or without changes) pro 23 24 1. distributions of this source code includ 25 notice, this list of conditions and the 26 27 2. distributions in binary form include the 28 notice, this list of conditions and the 29 in the documentation and/or other associ 30 31 3. the copyright holder's name is not used 32 built using this software without specif 33 34 ALTERNATIVELY, provided that this notice is r 35 may be distributed under the terms of the GNU 36 in which case the provisions of the GPL apply 37 38 DISCLAIMER 39 40 This software is provided 'as is' with no exp 41 in respect of its properties, including, but 42 and/or fitness for purpose. 43 --------------------------------------------- 44 Issue Date: 31/01/2006 45 46 An implementation of field multiplication in 47 */ 48 49 #ifndef _CRYPTO_GF128MUL_H 50 #define _CRYPTO_GF128MUL_H 51 52 #include <asm/byteorder.h> 53 #include <crypto/b128ops.h> 54 #include <linux/slab.h> 55 56 /* Comment by Rik: 57 * 58 * For some background on GF(2^128) see for ex 59 * http://csrc.nist.gov/groups/ST/toolkit/BCM/ 60 * 61 * The elements of GF(2^128) := GF(2)[X]/(X^12 62 * be mapped to computer memory in a variety o 63 * three common cases. 64 * 65 * Take a look at the 16 binary octets below i 66 * are left and the lsb's are right. char b[16 67 * the first octet. 68 * 69 * 10000000 00000000 00000000 00000000 .... 00 70 * b[0] b[1] b[2] b[3] 71 * 72 * Every bit is a coefficient of some power of 73 * in every byte in little-endian order and th 74 * little endian order. I will call this lle ( 75 * The above buffer represents the polynomial 76 * like 11100001 00000000 .... 00000000 = { 0x 77 * This format was originally implemented in g 78 * in GCM (Galois/Counter mode) and in ABL (Ar 79 * 80 * Another convention says: store the bits in 81 * bytes also. This is bbe (big-big-endian). N 82 * represents X^127. X^7+X^2+X^1+1 looks like 83 * b[15] = 0x87 and the rest is 0. LRW uses th 84 * is partly implemented. 85 * 86 * Both of the above formats are easy to imple 87 * machines. 88 * 89 * XTS and EME (the latter of which is patent 90 * format (bits are stored in big endian order 91 * endian). The above buffer represents X^7 in 92 * primitive polynomial is b[0] = 0x87. 93 * 94 * The common machine word-size is smaller tha 95 * an efficient implementation we must split i 96 * This implementation uses 64-bit words for t 97 * endianness comes into play. The lle format 98 * endianness is discussed below by the origin 99 * Brian Gladman. 100 * 101 * Let's look at the bbe and ble format on a l 102 * 103 * bbe on a little endian machine u32 x[4]: 104 * 105 * MS x[0] LS MS 106 * ms ls ms ls ms ls ms ls ms ls m 107 * 103..96 111.104 119.112 127.120 71...64 7 108 * 109 * MS x[2] LS MS 110 * ms ls ms ls ms ls ms ls ms ls m 111 * 39...32 47...40 55...48 63...56 07...00 1 112 * 113 * ble on a little endian machine 114 * 115 * MS x[0] LS MS 116 * ms ls ms ls ms ls ms ls ms ls m 117 * 31...24 23...16 15...08 07...00 63...56 5 118 * 119 * MS x[2] LS MS 120 * ms ls ms ls ms ls ms ls ms ls m 121 * 95...88 87...80 79...72 71...64 127.120 1 122 * 123 * Multiplications in GF(2^128) are mostly bit 124 * ble (and lbe also) are easier to implement 125 * machine than on a big-endian machine. The c 126 * and lle. 127 * 128 * Note: to have good alignment, it seems to m 129 * to keep elements of GF(2^128) in type u64[2 130 * machines this will automatically aligned to 131 * machine also. 132 */ 133 /* Multiply a GF(2^128) field element by 134 held in arrays of bytes in which field bit 135 byte[n], with lower indexed bits placed in 136 significant bit positions within bytes. 137 138 On little endian machines the bit indexes 139 positions within four 32-bit words in the 140 141 MS x[0] LS MS 142 ms ls ms ls ms ls ms ls ms ls m 143 24...31 16...23 08...15 00...07 56...63 4 144 145 MS x[2] LS MS 146 ms ls ms ls ms ls ms ls ms ls m 147 88...95 80...87 72...79 64...71 120.127 1 148 149 On big endian machines the bit indexes tra 150 positions within four 32-bit words in the 151 152 MS x[0] LS MS 153 ms ls ms ls ms ls ms ls ms ls m 154 00...07 08...15 16...23 24...31 32...39 4 155 156 MS x[2] LS MS 157 ms ls ms ls ms ls ms ls ms ls m 158 64...71 72...79 80...87 88...95 96..103 1 159 */ 160 161 /* A slow generic version of gf_mul, impl 162 * It multiplies a and b and puts the res 163 void gf128mul_lle(be128 *a, const be128 *b); 164 165 void gf128mul_bbe(be128 *a, const be128 *b); 166 167 /* 168 * The following functions multiply a field el 169 * the polynomial field representation. They 170 * to gain speed but compensate for machine en 171 * correctly on both styles of machine. 172 * 173 * They are defined here for performance. 174 */ 175 176 static inline u64 gf128mul_mask_from_bit(u64 x 177 { 178 /* a constant-time version of 'x & ((u 179 return ((s64)(x << (63 - which)) >> 63 180 } 181 182 static inline void gf128mul_x_lle(be128 *r, co 183 { 184 u64 a = be64_to_cpu(x->a); 185 u64 b = be64_to_cpu(x->b); 186 187 /* equivalent to gf128mul_table_le[(b 188 * (see crypto/gf128mul.c): */ 189 u64 _tt = gf128mul_mask_from_bit(b, 0) 190 191 r->b = cpu_to_be64((b >> 1) | (a << 63 192 r->a = cpu_to_be64((a >> 1) ^ _tt); 193 } 194 195 static inline void gf128mul_x_bbe(be128 *r, co 196 { 197 u64 a = be64_to_cpu(x->a); 198 u64 b = be64_to_cpu(x->b); 199 200 /* equivalent to gf128mul_table_be[a > 201 u64 _tt = gf128mul_mask_from_bit(a, 63 202 203 r->a = cpu_to_be64((a << 1) | (b >> 63 204 r->b = cpu_to_be64((b << 1) ^ _tt); 205 } 206 207 /* needed by XTS */ 208 static inline void gf128mul_x_ble(le128 *r, co 209 { 210 u64 a = le64_to_cpu(x->a); 211 u64 b = le64_to_cpu(x->b); 212 213 /* equivalent to gf128mul_table_be[b > 214 u64 _tt = gf128mul_mask_from_bit(a, 63 215 216 r->a = cpu_to_le64((a << 1) | (b >> 63 217 r->b = cpu_to_le64((b << 1) ^ _tt); 218 } 219 220 /* 4k table optimization */ 221 222 struct gf128mul_4k { 223 be128 t[256]; 224 }; 225 226 struct gf128mul_4k *gf128mul_init_4k_lle(const 227 struct gf128mul_4k *gf128mul_init_4k_bbe(const 228 void gf128mul_4k_lle(be128 *a, const struct gf 229 void gf128mul_4k_bbe(be128 *a, const struct gf 230 void gf128mul_x8_ble(le128 *r, const le128 *x) 231 static inline void gf128mul_free_4k(struct gf1 232 { 233 kfree_sensitive(t); 234 } 235 236 237 /* 64k table optimization, implemented for bbe 238 239 struct gf128mul_64k { 240 struct gf128mul_4k *t[16]; 241 }; 242 243 /* First initialize with the constant factor w 244 * want to multiply and then call gf128mul_64k 245 * factor in the first argument, and the table 246 * Afterwards, the result is stored in *a. 247 */ 248 struct gf128mul_64k *gf128mul_init_64k_bbe(con 249 void gf128mul_free_64k(struct gf128mul_64k *t) 250 void gf128mul_64k_bbe(be128 *a, const struct g 251 252 #endif /* _CRYPTO_GF128MUL_H */ 253
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.