1 /* SPDX-License-Identifier: GPL-2.0 */ 1 /* SPDX-License-Identifier: GPL-2.0 */ 2 /* << 3 * Internals of the DMA direct mapping impleme << 4 * DMA mapping code and IOMMU drivers. << 5 */ << 6 #ifndef _LINUX_DMA_DIRECT_H 2 #ifndef _LINUX_DMA_DIRECT_H 7 #define _LINUX_DMA_DIRECT_H 1 3 #define _LINUX_DMA_DIRECT_H 1 8 4 9 #include <linux/dma-mapping.h> 5 #include <linux/dma-mapping.h> 10 #include <linux/dma-map-ops.h> << 11 #include <linux/memblock.h> /* for min_low_pfn 6 #include <linux/memblock.h> /* for min_low_pfn */ 12 #include <linux/mem_encrypt.h> 7 #include <linux/mem_encrypt.h> 13 #include <linux/swiotlb.h> << 14 8 15 extern unsigned int zone_dma_bits; 9 extern unsigned int zone_dma_bits; 16 10 17 /* !! 11 #ifdef CONFIG_ARCH_HAS_PHYS_TO_DMA 18 * Record the mapping of CPU physical to DMA a !! 12 #include <asm/dma-direct.h> 19 */ !! 13 #else 20 struct bus_dma_region { !! 14 static inline dma_addr_t __phys_to_dma(struct device *dev, phys_addr_t paddr) 21 phys_addr_t cpu_start; << 22 dma_addr_t dma_start; << 23 u64 size; << 24 }; << 25 << 26 static inline dma_addr_t translate_phys_to_dma << 27 phys_addr_t paddr) << 28 { << 29 const struct bus_dma_region *m; << 30 << 31 for (m = dev->dma_range_map; m->size; << 32 u64 offset = paddr - m->cpu_st << 33 << 34 if (paddr >= m->cpu_start && o << 35 return m->dma_start + << 36 } << 37 << 38 /* make sure dma_capable fails when no << 39 return DMA_MAPPING_ERROR; << 40 } << 41 << 42 static inline phys_addr_t translate_dma_to_phy << 43 dma_addr_t dma_addr) << 44 { << 45 const struct bus_dma_region *m; << 46 << 47 for (m = dev->dma_range_map; m->size; << 48 u64 offset = dma_addr - m->dma << 49 << 50 if (dma_addr >= m->dma_start & << 51 return m->cpu_start + << 52 } << 53 << 54 return (phys_addr_t)-1; << 55 } << 56 << 57 static inline dma_addr_t dma_range_map_min(con << 58 { 15 { 59 dma_addr_t ret = (dma_addr_t)U64_MAX; !! 16 dma_addr_t dev_addr = (dma_addr_t)paddr; 60 17 61 for (; map->size; map++) !! 18 return dev_addr - ((dma_addr_t)dev->dma_pfn_offset << PAGE_SHIFT); 62 ret = min(ret, map->dma_start) << 63 return ret; << 64 } 19 } 65 20 66 static inline dma_addr_t dma_range_map_max(con !! 21 static inline phys_addr_t __dma_to_phys(struct device *dev, dma_addr_t dev_addr) 67 { 22 { 68 dma_addr_t ret = 0; !! 23 phys_addr_t paddr = (phys_addr_t)dev_addr; 69 24 70 for (; map->size; map++) !! 25 return paddr + ((phys_addr_t)dev->dma_pfn_offset << PAGE_SHIFT); 71 ret = max(ret, map->dma_start << 72 return ret; << 73 } 26 } >> 27 #endif /* !CONFIG_ARCH_HAS_PHYS_TO_DMA */ 74 28 75 #ifdef CONFIG_ARCH_HAS_PHYS_TO_DMA !! 29 #ifdef CONFIG_ARCH_HAS_FORCE_DMA_UNENCRYPTED 76 #include <asm/dma-direct.h> !! 30 bool force_dma_unencrypted(struct device *dev); 77 #ifndef phys_to_dma_unencrypted << 78 #define phys_to_dma_unencrypted phys_t << 79 #endif << 80 #else 31 #else 81 static inline dma_addr_t phys_to_dma_unencrypt !! 32 static inline bool force_dma_unencrypted(struct device *dev) 82 phys_addr_t paddr) << 83 { 33 { 84 if (dev->dma_range_map) !! 34 return false; 85 return translate_phys_to_dma(d << 86 return paddr; << 87 } 35 } >> 36 #endif /* CONFIG_ARCH_HAS_FORCE_DMA_UNENCRYPTED */ 88 37 89 /* 38 /* 90 * If memory encryption is supported, phys_to_ 39 * If memory encryption is supported, phys_to_dma will set the memory encryption 91 * bit in the DMA address, and dma_to_phys wil !! 40 * bit in the DMA address, and dma_to_phys will clear it. The raw __phys_to_dma 92 * phys_to_dma_unencrypted is for use on speci !! 41 * and __dma_to_phys versions should only be used on non-encrypted memory for 93 * buffers. !! 42 * special occasions like DMA coherent buffers. 94 */ 43 */ 95 static inline dma_addr_t phys_to_dma(struct de 44 static inline dma_addr_t phys_to_dma(struct device *dev, phys_addr_t paddr) 96 { 45 { 97 return __sme_set(phys_to_dma_unencrypt !! 46 return __sme_set(__phys_to_dma(dev, paddr)); 98 } << 99 << 100 static inline phys_addr_t dma_to_phys(struct d << 101 { << 102 phys_addr_t paddr; << 103 << 104 if (dev->dma_range_map) << 105 paddr = translate_dma_to_phys( << 106 else << 107 paddr = dma_addr; << 108 << 109 return __sme_clr(paddr); << 110 } 47 } 111 #endif /* !CONFIG_ARCH_HAS_PHYS_TO_DMA */ << 112 48 113 #ifdef CONFIG_ARCH_HAS_FORCE_DMA_UNENCRYPTED !! 49 static inline phys_addr_t dma_to_phys(struct device *dev, dma_addr_t daddr) 114 bool force_dma_unencrypted(struct device *dev) << 115 #else << 116 static inline bool force_dma_unencrypted(struc << 117 { 50 { 118 return false; !! 51 return __sme_clr(__dma_to_phys(dev, daddr)); 119 } 52 } 120 #endif /* CONFIG_ARCH_HAS_FORCE_DMA_UNENCRYPTE << 121 53 122 static inline bool dma_capable(struct device * 54 static inline bool dma_capable(struct device *dev, dma_addr_t addr, size_t size, 123 bool is_ram) 55 bool is_ram) 124 { 56 { 125 dma_addr_t end = addr + size - 1; 57 dma_addr_t end = addr + size - 1; 126 58 127 if (addr == DMA_MAPPING_ERROR) !! 59 if (!dev->dma_mask) 128 return false; 60 return false; >> 61 129 if (is_ram && !IS_ENABLED(CONFIG_ARCH_ 62 if (is_ram && !IS_ENABLED(CONFIG_ARCH_DMA_ADDR_T_64BIT) && 130 min(addr, end) < phys_to_dma(dev, 63 min(addr, end) < phys_to_dma(dev, PFN_PHYS(min_low_pfn))) 131 return false; 64 return false; 132 65 133 return end <= min_not_zero(*dev->dma_m 66 return end <= min_not_zero(*dev->dma_mask, dev->bus_dma_limit); 134 } 67 } 135 68 136 u64 dma_direct_get_required_mask(struct device 69 u64 dma_direct_get_required_mask(struct device *dev); 137 void *dma_direct_alloc(struct device *dev, siz 70 void *dma_direct_alloc(struct device *dev, size_t size, dma_addr_t *dma_handle, 138 gfp_t gfp, unsigned long attrs 71 gfp_t gfp, unsigned long attrs); 139 void dma_direct_free(struct device *dev, size_ 72 void dma_direct_free(struct device *dev, size_t size, void *cpu_addr, 140 dma_addr_t dma_addr, unsigned 73 dma_addr_t dma_addr, unsigned long attrs); 141 struct page *dma_direct_alloc_pages(struct dev !! 74 void *dma_direct_alloc_pages(struct device *dev, size_t size, 142 dma_addr_t *dma_handle, enum d !! 75 dma_addr_t *dma_handle, gfp_t gfp, unsigned long attrs); 143 void dma_direct_free_pages(struct device *dev, !! 76 void dma_direct_free_pages(struct device *dev, size_t size, void *cpu_addr, 144 struct page *page, dma_addr_t !! 77 dma_addr_t dma_addr, unsigned long attrs); 145 enum dma_data_direction dir); !! 78 struct page *__dma_direct_alloc_pages(struct device *dev, size_t size, >> 79 gfp_t gfp, unsigned long attrs); >> 80 int dma_direct_get_sgtable(struct device *dev, struct sg_table *sgt, >> 81 void *cpu_addr, dma_addr_t dma_addr, size_t size, >> 82 unsigned long attrs); >> 83 bool dma_direct_can_mmap(struct device *dev); >> 84 int dma_direct_mmap(struct device *dev, struct vm_area_struct *vma, >> 85 void *cpu_addr, dma_addr_t dma_addr, size_t size, >> 86 unsigned long attrs); 146 int dma_direct_supported(struct device *dev, u 87 int dma_direct_supported(struct device *dev, u64 mask); 147 dma_addr_t dma_direct_map_resource(struct devi << 148 size_t size, enum dma_data_dir << 149 << 150 #endif /* _LINUX_DMA_DIRECT_H */ 88 #endif /* _LINUX_DMA_DIRECT_H */ 151 89
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.