1 /* SPDX-License-Identifier: GPL-2.0 */ 1 /* SPDX-License-Identifier: GPL-2.0 */ 2 /* 2 /* 3 * Copyright (c) 2016-2017 Micron Technology, 3 * Copyright (c) 2016-2017 Micron Technology, Inc. 4 * 4 * 5 * Authors: 5 * Authors: 6 * Peter Pan <peterpandong@micron.com> 6 * Peter Pan <peterpandong@micron.com> 7 */ 7 */ 8 #ifndef __LINUX_MTD_SPINAND_H 8 #ifndef __LINUX_MTD_SPINAND_H 9 #define __LINUX_MTD_SPINAND_H 9 #define __LINUX_MTD_SPINAND_H 10 10 11 #include <linux/mutex.h> 11 #include <linux/mutex.h> 12 #include <linux/bitops.h> 12 #include <linux/bitops.h> 13 #include <linux/device.h> 13 #include <linux/device.h> 14 #include <linux/mtd/mtd.h> 14 #include <linux/mtd/mtd.h> 15 #include <linux/mtd/nand.h> 15 #include <linux/mtd/nand.h> 16 #include <linux/spi/spi.h> 16 #include <linux/spi/spi.h> 17 #include <linux/spi/spi-mem.h> 17 #include <linux/spi/spi-mem.h> 18 18 19 /** 19 /** 20 * Standard SPI NAND flash operations 20 * Standard SPI NAND flash operations 21 */ 21 */ 22 22 23 #define SPINAND_RESET_OP 23 #define SPINAND_RESET_OP \ 24 SPI_MEM_OP(SPI_MEM_OP_CMD(0xff, 1), 24 SPI_MEM_OP(SPI_MEM_OP_CMD(0xff, 1), \ 25 SPI_MEM_OP_NO_ADDR, 25 SPI_MEM_OP_NO_ADDR, \ 26 SPI_MEM_OP_NO_DUMMY, 26 SPI_MEM_OP_NO_DUMMY, \ 27 SPI_MEM_OP_NO_DATA) 27 SPI_MEM_OP_NO_DATA) 28 28 29 #define SPINAND_WR_EN_DIS_OP(enable) 29 #define SPINAND_WR_EN_DIS_OP(enable) \ 30 SPI_MEM_OP(SPI_MEM_OP_CMD((enable) ? 0 30 SPI_MEM_OP(SPI_MEM_OP_CMD((enable) ? 0x06 : 0x04, 1), \ 31 SPI_MEM_OP_NO_ADDR, 31 SPI_MEM_OP_NO_ADDR, \ 32 SPI_MEM_OP_NO_DUMMY, 32 SPI_MEM_OP_NO_DUMMY, \ 33 SPI_MEM_OP_NO_DATA) 33 SPI_MEM_OP_NO_DATA) 34 34 35 #define SPINAND_READID_OP(naddr, ndummy, buf, !! 35 #define SPINAND_READID_OP(ndummy, buf, len) \ 36 SPI_MEM_OP(SPI_MEM_OP_CMD(0x9f, 1), 36 SPI_MEM_OP(SPI_MEM_OP_CMD(0x9f, 1), \ 37 SPI_MEM_OP_ADDR(naddr, 0, 1 !! 37 SPI_MEM_OP_NO_ADDR, \ 38 SPI_MEM_OP_DUMMY(ndummy, 1) 38 SPI_MEM_OP_DUMMY(ndummy, 1), \ 39 SPI_MEM_OP_DATA_IN(len, buf 39 SPI_MEM_OP_DATA_IN(len, buf, 1)) 40 40 41 #define SPINAND_SET_FEATURE_OP(reg, valptr) 41 #define SPINAND_SET_FEATURE_OP(reg, valptr) \ 42 SPI_MEM_OP(SPI_MEM_OP_CMD(0x1f, 1), 42 SPI_MEM_OP(SPI_MEM_OP_CMD(0x1f, 1), \ 43 SPI_MEM_OP_ADDR(1, reg, 1), 43 SPI_MEM_OP_ADDR(1, reg, 1), \ 44 SPI_MEM_OP_NO_DUMMY, 44 SPI_MEM_OP_NO_DUMMY, \ 45 SPI_MEM_OP_DATA_OUT(1, valp 45 SPI_MEM_OP_DATA_OUT(1, valptr, 1)) 46 46 47 #define SPINAND_GET_FEATURE_OP(reg, valptr) 47 #define SPINAND_GET_FEATURE_OP(reg, valptr) \ 48 SPI_MEM_OP(SPI_MEM_OP_CMD(0x0f, 1), 48 SPI_MEM_OP(SPI_MEM_OP_CMD(0x0f, 1), \ 49 SPI_MEM_OP_ADDR(1, reg, 1), 49 SPI_MEM_OP_ADDR(1, reg, 1), \ 50 SPI_MEM_OP_NO_DUMMY, 50 SPI_MEM_OP_NO_DUMMY, \ 51 SPI_MEM_OP_DATA_IN(1, valpt 51 SPI_MEM_OP_DATA_IN(1, valptr, 1)) 52 52 53 #define SPINAND_BLK_ERASE_OP(addr) 53 #define SPINAND_BLK_ERASE_OP(addr) \ 54 SPI_MEM_OP(SPI_MEM_OP_CMD(0xd8, 1), 54 SPI_MEM_OP(SPI_MEM_OP_CMD(0xd8, 1), \ 55 SPI_MEM_OP_ADDR(3, addr, 1) 55 SPI_MEM_OP_ADDR(3, addr, 1), \ 56 SPI_MEM_OP_NO_DUMMY, 56 SPI_MEM_OP_NO_DUMMY, \ 57 SPI_MEM_OP_NO_DATA) 57 SPI_MEM_OP_NO_DATA) 58 58 59 #define SPINAND_PAGE_READ_OP(addr) 59 #define SPINAND_PAGE_READ_OP(addr) \ 60 SPI_MEM_OP(SPI_MEM_OP_CMD(0x13, 1), 60 SPI_MEM_OP(SPI_MEM_OP_CMD(0x13, 1), \ 61 SPI_MEM_OP_ADDR(3, addr, 1) 61 SPI_MEM_OP_ADDR(3, addr, 1), \ 62 SPI_MEM_OP_NO_DUMMY, 62 SPI_MEM_OP_NO_DUMMY, \ 63 SPI_MEM_OP_NO_DATA) 63 SPI_MEM_OP_NO_DATA) 64 64 65 #define SPINAND_PAGE_READ_FROM_CACHE_OP(fast, 65 #define SPINAND_PAGE_READ_FROM_CACHE_OP(fast, addr, ndummy, buf, len) \ 66 SPI_MEM_OP(SPI_MEM_OP_CMD(fast ? 0x0b 66 SPI_MEM_OP(SPI_MEM_OP_CMD(fast ? 0x0b : 0x03, 1), \ 67 SPI_MEM_OP_ADDR(2, addr, 1) 67 SPI_MEM_OP_ADDR(2, addr, 1), \ 68 SPI_MEM_OP_DUMMY(ndummy, 1) 68 SPI_MEM_OP_DUMMY(ndummy, 1), \ 69 SPI_MEM_OP_DATA_IN(len, buf 69 SPI_MEM_OP_DATA_IN(len, buf, 1)) 70 70 71 #define SPINAND_PAGE_READ_FROM_CACHE_OP_3A(fas << 72 SPI_MEM_OP(SPI_MEM_OP_CMD(fast ? 0x0b << 73 SPI_MEM_OP_ADDR(3, addr, 1) << 74 SPI_MEM_OP_DUMMY(ndummy, 1) << 75 SPI_MEM_OP_DATA_IN(len, buf << 76 << 77 #define SPINAND_PAGE_READ_FROM_CACHE_X2_OP(add 71 #define SPINAND_PAGE_READ_FROM_CACHE_X2_OP(addr, ndummy, buf, len) \ 78 SPI_MEM_OP(SPI_MEM_OP_CMD(0x3b, 1), 72 SPI_MEM_OP(SPI_MEM_OP_CMD(0x3b, 1), \ 79 SPI_MEM_OP_ADDR(2, addr, 1) 73 SPI_MEM_OP_ADDR(2, addr, 1), \ 80 SPI_MEM_OP_DUMMY(ndummy, 1) 74 SPI_MEM_OP_DUMMY(ndummy, 1), \ 81 SPI_MEM_OP_DATA_IN(len, buf 75 SPI_MEM_OP_DATA_IN(len, buf, 2)) 82 76 83 #define SPINAND_PAGE_READ_FROM_CACHE_X2_OP_3A( << 84 SPI_MEM_OP(SPI_MEM_OP_CMD(0x3b, 1), << 85 SPI_MEM_OP_ADDR(3, addr, 1) << 86 SPI_MEM_OP_DUMMY(ndummy, 1) << 87 SPI_MEM_OP_DATA_IN(len, buf << 88 << 89 #define SPINAND_PAGE_READ_FROM_CACHE_X4_OP(add 77 #define SPINAND_PAGE_READ_FROM_CACHE_X4_OP(addr, ndummy, buf, len) \ 90 SPI_MEM_OP(SPI_MEM_OP_CMD(0x6b, 1), 78 SPI_MEM_OP(SPI_MEM_OP_CMD(0x6b, 1), \ 91 SPI_MEM_OP_ADDR(2, addr, 1) 79 SPI_MEM_OP_ADDR(2, addr, 1), \ 92 SPI_MEM_OP_DUMMY(ndummy, 1) 80 SPI_MEM_OP_DUMMY(ndummy, 1), \ 93 SPI_MEM_OP_DATA_IN(len, buf 81 SPI_MEM_OP_DATA_IN(len, buf, 4)) 94 82 95 #define SPINAND_PAGE_READ_FROM_CACHE_X4_OP_3A( << 96 SPI_MEM_OP(SPI_MEM_OP_CMD(0x6b, 1), << 97 SPI_MEM_OP_ADDR(3, addr, 1) << 98 SPI_MEM_OP_DUMMY(ndummy, 1) << 99 SPI_MEM_OP_DATA_IN(len, buf << 100 << 101 #define SPINAND_PAGE_READ_FROM_CACHE_DUALIO_OP 83 #define SPINAND_PAGE_READ_FROM_CACHE_DUALIO_OP(addr, ndummy, buf, len) \ 102 SPI_MEM_OP(SPI_MEM_OP_CMD(0xbb, 1), 84 SPI_MEM_OP(SPI_MEM_OP_CMD(0xbb, 1), \ 103 SPI_MEM_OP_ADDR(2, addr, 2) 85 SPI_MEM_OP_ADDR(2, addr, 2), \ 104 SPI_MEM_OP_DUMMY(ndummy, 2) 86 SPI_MEM_OP_DUMMY(ndummy, 2), \ 105 SPI_MEM_OP_DATA_IN(len, buf 87 SPI_MEM_OP_DATA_IN(len, buf, 2)) 106 88 107 #define SPINAND_PAGE_READ_FROM_CACHE_DUALIO_OP << 108 SPI_MEM_OP(SPI_MEM_OP_CMD(0xbb, 1), << 109 SPI_MEM_OP_ADDR(3, addr, 2) << 110 SPI_MEM_OP_DUMMY(ndummy, 2) << 111 SPI_MEM_OP_DATA_IN(len, buf << 112 << 113 #define SPINAND_PAGE_READ_FROM_CACHE_QUADIO_OP 89 #define SPINAND_PAGE_READ_FROM_CACHE_QUADIO_OP(addr, ndummy, buf, len) \ 114 SPI_MEM_OP(SPI_MEM_OP_CMD(0xeb, 1), 90 SPI_MEM_OP(SPI_MEM_OP_CMD(0xeb, 1), \ 115 SPI_MEM_OP_ADDR(2, addr, 4) 91 SPI_MEM_OP_ADDR(2, addr, 4), \ 116 SPI_MEM_OP_DUMMY(ndummy, 4) 92 SPI_MEM_OP_DUMMY(ndummy, 4), \ 117 SPI_MEM_OP_DATA_IN(len, buf 93 SPI_MEM_OP_DATA_IN(len, buf, 4)) 118 94 119 #define SPINAND_PAGE_READ_FROM_CACHE_QUADIO_OP << 120 SPI_MEM_OP(SPI_MEM_OP_CMD(0xeb, 1), << 121 SPI_MEM_OP_ADDR(3, addr, 4) << 122 SPI_MEM_OP_DUMMY(ndummy, 4) << 123 SPI_MEM_OP_DATA_IN(len, buf << 124 << 125 #define SPINAND_PROG_EXEC_OP(addr) 95 #define SPINAND_PROG_EXEC_OP(addr) \ 126 SPI_MEM_OP(SPI_MEM_OP_CMD(0x10, 1), 96 SPI_MEM_OP(SPI_MEM_OP_CMD(0x10, 1), \ 127 SPI_MEM_OP_ADDR(3, addr, 1) 97 SPI_MEM_OP_ADDR(3, addr, 1), \ 128 SPI_MEM_OP_NO_DUMMY, 98 SPI_MEM_OP_NO_DUMMY, \ 129 SPI_MEM_OP_NO_DATA) 99 SPI_MEM_OP_NO_DATA) 130 100 131 #define SPINAND_PROG_LOAD(reset, addr, buf, le 101 #define SPINAND_PROG_LOAD(reset, addr, buf, len) \ 132 SPI_MEM_OP(SPI_MEM_OP_CMD(reset ? 0x02 102 SPI_MEM_OP(SPI_MEM_OP_CMD(reset ? 0x02 : 0x84, 1), \ 133 SPI_MEM_OP_ADDR(2, addr, 1) 103 SPI_MEM_OP_ADDR(2, addr, 1), \ 134 SPI_MEM_OP_NO_DUMMY, 104 SPI_MEM_OP_NO_DUMMY, \ 135 SPI_MEM_OP_DATA_OUT(len, bu 105 SPI_MEM_OP_DATA_OUT(len, buf, 1)) 136 106 137 #define SPINAND_PROG_LOAD_X4(reset, addr, buf, 107 #define SPINAND_PROG_LOAD_X4(reset, addr, buf, len) \ 138 SPI_MEM_OP(SPI_MEM_OP_CMD(reset ? 0x32 108 SPI_MEM_OP(SPI_MEM_OP_CMD(reset ? 0x32 : 0x34, 1), \ 139 SPI_MEM_OP_ADDR(2, addr, 1) 109 SPI_MEM_OP_ADDR(2, addr, 1), \ 140 SPI_MEM_OP_NO_DUMMY, 110 SPI_MEM_OP_NO_DUMMY, \ 141 SPI_MEM_OP_DATA_OUT(len, bu 111 SPI_MEM_OP_DATA_OUT(len, buf, 4)) 142 112 143 /** 113 /** 144 * Standard SPI NAND flash commands 114 * Standard SPI NAND flash commands 145 */ 115 */ 146 #define SPINAND_CMD_PROG_LOAD_X4 116 #define SPINAND_CMD_PROG_LOAD_X4 0x32 147 #define SPINAND_CMD_PROG_LOAD_RDM_DATA_X4 117 #define SPINAND_CMD_PROG_LOAD_RDM_DATA_X4 0x34 148 118 149 /* feature register */ 119 /* feature register */ 150 #define REG_BLOCK_LOCK 0xa0 120 #define REG_BLOCK_LOCK 0xa0 151 #define BL_ALL_UNLOCKED 0x00 121 #define BL_ALL_UNLOCKED 0x00 152 122 153 /* configuration register */ 123 /* configuration register */ 154 #define REG_CFG 0xb0 124 #define REG_CFG 0xb0 155 #define CFG_OTP_ENABLE BIT(6) 125 #define CFG_OTP_ENABLE BIT(6) 156 #define CFG_ECC_ENABLE BIT(4) 126 #define CFG_ECC_ENABLE BIT(4) 157 #define CFG_QUAD_ENABLE BIT(0) 127 #define CFG_QUAD_ENABLE BIT(0) 158 128 159 /* status register */ 129 /* status register */ 160 #define REG_STATUS 0xc0 130 #define REG_STATUS 0xc0 161 #define STATUS_BUSY BIT(0) 131 #define STATUS_BUSY BIT(0) 162 #define STATUS_ERASE_FAILED BIT(2) 132 #define STATUS_ERASE_FAILED BIT(2) 163 #define STATUS_PROG_FAILED BIT(3) 133 #define STATUS_PROG_FAILED BIT(3) 164 #define STATUS_ECC_MASK GENMASK(5, 4) 134 #define STATUS_ECC_MASK GENMASK(5, 4) 165 #define STATUS_ECC_NO_BITFLIPS (0 << 4) 135 #define STATUS_ECC_NO_BITFLIPS (0 << 4) 166 #define STATUS_ECC_HAS_BITFLIPS (1 << 4) 136 #define STATUS_ECC_HAS_BITFLIPS (1 << 4) 167 #define STATUS_ECC_UNCOR_ERROR (2 << 4) 137 #define STATUS_ECC_UNCOR_ERROR (2 << 4) 168 138 169 struct spinand_op; 139 struct spinand_op; 170 struct spinand_device; 140 struct spinand_device; 171 141 172 #define SPINAND_MAX_ID_LEN 5 !! 142 #define SPINAND_MAX_ID_LEN 4 173 /* << 174 * For erase, write and read operation, we got << 175 * tBERS (erase) 1ms to 4ms << 176 * tPROG 300us to 400us << 177 * tREAD 25us to 100us << 178 * In order to minimize latency, the min value << 179 * initial delay, and dividing by 20 for the p << 180 * For reset, 5us/10us/500us if the device is << 181 * reading/programming/erasing when the RESET << 182 * issue a RESET when the device is IDLE, 5us << 183 * and poll delay. << 184 */ << 185 #define SPINAND_READ_INITIAL_DELAY_US 6 << 186 #define SPINAND_READ_POLL_DELAY_US 5 << 187 #define SPINAND_RESET_INITIAL_DELAY_US 5 << 188 #define SPINAND_RESET_POLL_DELAY_US 5 << 189 #define SPINAND_WRITE_INITIAL_DELAY_US 75 << 190 #define SPINAND_WRITE_POLL_DELAY_US 15 << 191 #define SPINAND_ERASE_INITIAL_DELAY_US 250 << 192 #define SPINAND_ERASE_POLL_DELAY_US 50 << 193 << 194 #define SPINAND_WAITRDY_TIMEOUT_MS 400 << 195 143 196 /** 144 /** 197 * struct spinand_id - SPI NAND id structure 145 * struct spinand_id - SPI NAND id structure 198 * @data: buffer containing the id bytes. Curr 146 * @data: buffer containing the id bytes. Currently 4 bytes large, but can 199 * be extended if required 147 * be extended if required 200 * @len: ID length 148 * @len: ID length >> 149 * >> 150 * struct_spinand_id->data contains all bytes returned after a READ_ID command, >> 151 * including dummy bytes if the chip does not emit ID bytes right after the >> 152 * READ_ID command. The responsibility to extract real ID bytes is left to >> 153 * struct_manufacurer_ops->detect(). 201 */ 154 */ 202 struct spinand_id { 155 struct spinand_id { 203 u8 data[SPINAND_MAX_ID_LEN]; 156 u8 data[SPINAND_MAX_ID_LEN]; 204 int len; 157 int len; 205 }; 158 }; 206 159 207 enum spinand_readid_method { << 208 SPINAND_READID_METHOD_OPCODE, << 209 SPINAND_READID_METHOD_OPCODE_ADDR, << 210 SPINAND_READID_METHOD_OPCODE_DUMMY, << 211 }; << 212 << 213 /** << 214 * struct spinand_devid - SPI NAND device id s << 215 * @id: device id of current chip << 216 * @len: number of bytes in device id << 217 * @method: method to read chip id << 218 * There are 3 possible variants: << 219 * SPINAND_READID_METHOD_OPCODE: chip << 220 * after read_id opcode. << 221 * SPINAND_READID_METHOD_OPCODE_ADDR: << 222 * read_id opcode + 1-byte address. << 223 * SPINAND_READID_METHOD_OPCODE_DUMMY << 224 * read_id opcode + 1 dummy byte. << 225 */ << 226 struct spinand_devid { << 227 const u8 *id; << 228 const u8 len; << 229 const enum spinand_readid_method metho << 230 }; << 231 << 232 /** 160 /** 233 * struct manufacurer_ops - SPI NAND manufactu 161 * struct manufacurer_ops - SPI NAND manufacturer specific operations >> 162 * @detect: detect a SPI NAND device. Every time a SPI NAND device is probed >> 163 * the core calls the struct_manufacurer_ops->detect() hook of each >> 164 * registered manufacturer until one of them return 1. Note that >> 165 * the first thing to check in this hook is that the manufacturer ID >> 166 * in struct_spinand_device->id matches the manufacturer whose >> 167 * ->detect() hook has been called. Should return 1 if there's a >> 168 * match, 0 if the manufacturer ID does not match and a negative >> 169 * error code otherwise. When true is returned, the core assumes >> 170 * that properties of the NAND chip (spinand->base.memorg and >> 171 * spinand->base.eccreq) have been filled 234 * @init: initialize a SPI NAND device 172 * @init: initialize a SPI NAND device 235 * @cleanup: cleanup a SPI NAND device 173 * @cleanup: cleanup a SPI NAND device 236 * 174 * 237 * Each SPI NAND manufacturer driver should im 175 * Each SPI NAND manufacturer driver should implement this interface so that 238 * NAND chips coming from this vendor can be i !! 176 * NAND chips coming from this vendor can be detected and initialized properly. 239 */ 177 */ 240 struct spinand_manufacturer_ops { 178 struct spinand_manufacturer_ops { >> 179 int (*detect)(struct spinand_device *spinand); 241 int (*init)(struct spinand_device *spi 180 int (*init)(struct spinand_device *spinand); 242 void (*cleanup)(struct spinand_device 181 void (*cleanup)(struct spinand_device *spinand); 243 }; 182 }; 244 183 245 /** 184 /** 246 * struct spinand_manufacturer - SPI NAND manu 185 * struct spinand_manufacturer - SPI NAND manufacturer instance 247 * @id: manufacturer ID 186 * @id: manufacturer ID 248 * @name: manufacturer name 187 * @name: manufacturer name 249 * @devid_len: number of bytes in device ID << 250 * @chips: supported SPI NANDs under current m << 251 * @nchips: number of SPI NANDs available in c << 252 * @ops: manufacturer operations 188 * @ops: manufacturer operations 253 */ 189 */ 254 struct spinand_manufacturer { 190 struct spinand_manufacturer { 255 u8 id; 191 u8 id; 256 char *name; 192 char *name; 257 const struct spinand_info *chips; << 258 const size_t nchips; << 259 const struct spinand_manufacturer_ops 193 const struct spinand_manufacturer_ops *ops; 260 }; 194 }; 261 195 262 /* SPI NAND manufacturers */ 196 /* SPI NAND manufacturers */ 263 extern const struct spinand_manufacturer allia << 264 extern const struct spinand_manufacturer ato_s << 265 extern const struct spinand_manufacturer esmt_ << 266 extern const struct spinand_manufacturer fores << 267 extern const struct spinand_manufacturer gigad 197 extern const struct spinand_manufacturer gigadevice_spinand_manufacturer; 268 extern const struct spinand_manufacturer macro 198 extern const struct spinand_manufacturer macronix_spinand_manufacturer; 269 extern const struct spinand_manufacturer micro 199 extern const struct spinand_manufacturer micron_spinand_manufacturer; 270 extern const struct spinand_manufacturer parag << 271 extern const struct spinand_manufacturer toshi 200 extern const struct spinand_manufacturer toshiba_spinand_manufacturer; 272 extern const struct spinand_manufacturer winbo 201 extern const struct spinand_manufacturer winbond_spinand_manufacturer; 273 extern const struct spinand_manufacturer xtx_s << 274 202 275 /** 203 /** 276 * struct spinand_op_variants - SPI NAND opera 204 * struct spinand_op_variants - SPI NAND operation variants 277 * @ops: the list of variants for a given oper 205 * @ops: the list of variants for a given operation 278 * @nops: the number of variants 206 * @nops: the number of variants 279 * 207 * 280 * Some operations like read-from-cache/write- 208 * Some operations like read-from-cache/write-to-cache have several variants 281 * depending on the number of IO lines you use 209 * depending on the number of IO lines you use to transfer data or address 282 * cycles. This structure is a way to describe 210 * cycles. This structure is a way to describe the different variants supported 283 * by a chip and let the core pick the best on 211 * by a chip and let the core pick the best one based on the SPI mem controller 284 * capabilities. 212 * capabilities. 285 */ 213 */ 286 struct spinand_op_variants { 214 struct spinand_op_variants { 287 const struct spi_mem_op *ops; 215 const struct spi_mem_op *ops; 288 unsigned int nops; 216 unsigned int nops; 289 }; 217 }; 290 218 291 #define SPINAND_OP_VARIANTS(name, ...) 219 #define SPINAND_OP_VARIANTS(name, ...) \ 292 const struct spinand_op_variants name 220 const struct spinand_op_variants name = { \ 293 .ops = (struct spi_mem_op[]) { 221 .ops = (struct spi_mem_op[]) { __VA_ARGS__ }, \ 294 .nops = sizeof((struct spi_mem 222 .nops = sizeof((struct spi_mem_op[]){ __VA_ARGS__ }) / \ 295 sizeof(struct spi_mem_ 223 sizeof(struct spi_mem_op), \ 296 } 224 } 297 225 298 /** 226 /** 299 * spinand_ecc_info - description of the on-di 227 * spinand_ecc_info - description of the on-die ECC implemented by a SPI NAND 300 * chip 228 * chip 301 * @get_status: get the ECC status. Should ret 229 * @get_status: get the ECC status. Should return a positive number encoding 302 * the number of corrected bitfli 230 * the number of corrected bitflips if correction was possible or 303 * -EBADMSG if there are uncorrec 231 * -EBADMSG if there are uncorrectable errors. I can also return 304 * other negative error codes if 232 * other negative error codes if the error is not caused by 305 * uncorrectable bitflips 233 * uncorrectable bitflips 306 * @ooblayout: the OOB layout used by the on-d 234 * @ooblayout: the OOB layout used by the on-die ECC implementation 307 */ 235 */ 308 struct spinand_ecc_info { 236 struct spinand_ecc_info { 309 int (*get_status)(struct spinand_devic 237 int (*get_status)(struct spinand_device *spinand, u8 status); 310 const struct mtd_ooblayout_ops *ooblay 238 const struct mtd_ooblayout_ops *ooblayout; 311 }; 239 }; 312 240 313 #define SPINAND_HAS_QE_BIT BIT(0) 241 #define SPINAND_HAS_QE_BIT BIT(0) 314 #define SPINAND_HAS_CR_FEAT_BIT BIT(1) << 315 << 316 /** << 317 * struct spinand_ondie_ecc_conf - private SPI << 318 * @status: status of the last wait operation << 319 * ->get_status() is not populated by << 320 */ << 321 struct spinand_ondie_ecc_conf { << 322 u8 status; << 323 }; << 324 242 325 /** 243 /** 326 * struct spinand_info - Structure used to des 244 * struct spinand_info - Structure used to describe SPI NAND chips 327 * @model: model name 245 * @model: model name 328 * @devid: device ID 246 * @devid: device ID 329 * @flags: OR-ing of the SPINAND_XXX flags 247 * @flags: OR-ing of the SPINAND_XXX flags 330 * @memorg: memory organization 248 * @memorg: memory organization 331 * @eccreq: ECC requirements 249 * @eccreq: ECC requirements 332 * @eccinfo: on-die ECC info 250 * @eccinfo: on-die ECC info 333 * @op_variants: operations variants 251 * @op_variants: operations variants 334 * @op_variants.read_cache: variants of the re 252 * @op_variants.read_cache: variants of the read-cache operation 335 * @op_variants.write_cache: variants of the w 253 * @op_variants.write_cache: variants of the write-cache operation 336 * @op_variants.update_cache: variants of the 254 * @op_variants.update_cache: variants of the update-cache operation 337 * @select_target: function used to select a t 255 * @select_target: function used to select a target/die. Required only for 338 * multi-die chips 256 * multi-die chips 339 * 257 * 340 * Each SPI NAND manufacturer driver should ha 258 * Each SPI NAND manufacturer driver should have a spinand_info table 341 * describing all the chips supported by the d 259 * describing all the chips supported by the driver. 342 */ 260 */ 343 struct spinand_info { 261 struct spinand_info { 344 const char *model; 262 const char *model; 345 struct spinand_devid devid; !! 263 u8 devid; 346 u32 flags; 264 u32 flags; 347 struct nand_memory_organization memorg 265 struct nand_memory_organization memorg; 348 struct nand_ecc_props eccreq; !! 266 struct nand_ecc_req eccreq; 349 struct spinand_ecc_info eccinfo; 267 struct spinand_ecc_info eccinfo; 350 struct { 268 struct { 351 const struct spinand_op_varian 269 const struct spinand_op_variants *read_cache; 352 const struct spinand_op_varian 270 const struct spinand_op_variants *write_cache; 353 const struct spinand_op_varian 271 const struct spinand_op_variants *update_cache; 354 } op_variants; 272 } op_variants; 355 int (*select_target)(struct spinand_de 273 int (*select_target)(struct spinand_device *spinand, 356 unsigned int targ 274 unsigned int target); 357 }; 275 }; 358 276 359 #define SPINAND_ID(__method, ...) << 360 { << 361 .id = (const u8[]){ __VA_ARGS_ << 362 .len = sizeof((u8[]){ __VA_ARG << 363 .method = __method, << 364 } << 365 << 366 #define SPINAND_INFO_OP_VARIANTS(__read, __wri 277 #define SPINAND_INFO_OP_VARIANTS(__read, __write, __update) \ 367 { 278 { \ 368 .read_cache = __read, 279 .read_cache = __read, \ 369 .write_cache = __write, 280 .write_cache = __write, \ 370 .update_cache = __update, 281 .update_cache = __update, \ 371 } 282 } 372 283 373 #define SPINAND_ECCINFO(__ooblayout, __get_sta 284 #define SPINAND_ECCINFO(__ooblayout, __get_status) \ 374 .eccinfo = { 285 .eccinfo = { \ 375 .ooblayout = __ooblayout, 286 .ooblayout = __ooblayout, \ 376 .get_status = __get_status, 287 .get_status = __get_status, \ 377 } 288 } 378 289 379 #define SPINAND_SELECT_TARGET(__func) 290 #define SPINAND_SELECT_TARGET(__func) \ 380 .select_target = __func, 291 .select_target = __func, 381 292 382 #define SPINAND_INFO(__model, __id, __memorg, 293 #define SPINAND_INFO(__model, __id, __memorg, __eccreq, __op_variants, \ 383 __flags, ...) 294 __flags, ...) \ 384 { 295 { \ 385 .model = __model, 296 .model = __model, \ 386 .devid = __id, 297 .devid = __id, \ 387 .memorg = __memorg, 298 .memorg = __memorg, \ 388 .eccreq = __eccreq, 299 .eccreq = __eccreq, \ 389 .op_variants = __op_variants, 300 .op_variants = __op_variants, \ 390 .flags = __flags, 301 .flags = __flags, \ 391 __VA_ARGS__ 302 __VA_ARGS__ \ 392 } 303 } 393 304 394 struct spinand_dirmap { << 395 struct spi_mem_dirmap_desc *wdesc; << 396 struct spi_mem_dirmap_desc *rdesc; << 397 struct spi_mem_dirmap_desc *wdesc_ecc; << 398 struct spi_mem_dirmap_desc *rdesc_ecc; << 399 }; << 400 << 401 /** 305 /** 402 * struct spinand_device - SPI NAND device ins 306 * struct spinand_device - SPI NAND device instance 403 * @base: NAND device instance 307 * @base: NAND device instance 404 * @spimem: pointer to the SPI mem object 308 * @spimem: pointer to the SPI mem object 405 * @lock: lock used to serialize accesses to t 309 * @lock: lock used to serialize accesses to the NAND 406 * @id: NAND ID as returned by READ_ID 310 * @id: NAND ID as returned by READ_ID 407 * @flags: NAND flags 311 * @flags: NAND flags 408 * @op_templates: various SPI mem op templates 312 * @op_templates: various SPI mem op templates 409 * @op_templates.read_cache: read cache op tem 313 * @op_templates.read_cache: read cache op template 410 * @op_templates.write_cache: write cache op t 314 * @op_templates.write_cache: write cache op template 411 * @op_templates.update_cache: update cache op 315 * @op_templates.update_cache: update cache op template 412 * @select_target: select a specific target/di 316 * @select_target: select a specific target/die. Usually called before sending 413 * a command addressing a page 317 * a command addressing a page or an eraseblock embedded in 414 * this die. Only required if 318 * this die. Only required if your chip exposes several dies 415 * @cur_target: currently selected target/die 319 * @cur_target: currently selected target/die 416 * @eccinfo: on-die ECC information 320 * @eccinfo: on-die ECC information 417 * @cfg_cache: config register cache. One entr 321 * @cfg_cache: config register cache. One entry per die 418 * @databuf: bounce buffer for data 322 * @databuf: bounce buffer for data 419 * @oobbuf: bounce buffer for OOB data 323 * @oobbuf: bounce buffer for OOB data 420 * @scratchbuf: buffer used for everything but 324 * @scratchbuf: buffer used for everything but page accesses. This is needed 421 * because the spi-mem interface 325 * because the spi-mem interface explicitly requests that buffers 422 * passed in spi_mem_op be DMA-ab 326 * passed in spi_mem_op be DMA-able, so we can't based the bufs on 423 * the stack 327 * the stack 424 * @manufacturer: SPI NAND manufacturer inform 328 * @manufacturer: SPI NAND manufacturer information 425 * @priv: manufacturer private data 329 * @priv: manufacturer private data 426 */ 330 */ 427 struct spinand_device { 331 struct spinand_device { 428 struct nand_device base; 332 struct nand_device base; 429 struct spi_mem *spimem; 333 struct spi_mem *spimem; 430 struct mutex lock; 334 struct mutex lock; 431 struct spinand_id id; 335 struct spinand_id id; 432 u32 flags; 336 u32 flags; 433 337 434 struct { 338 struct { 435 const struct spi_mem_op *read_ 339 const struct spi_mem_op *read_cache; 436 const struct spi_mem_op *write 340 const struct spi_mem_op *write_cache; 437 const struct spi_mem_op *updat 341 const struct spi_mem_op *update_cache; 438 } op_templates; 342 } op_templates; 439 343 440 struct spinand_dirmap *dirmaps; << 441 << 442 int (*select_target)(struct spinand_de 344 int (*select_target)(struct spinand_device *spinand, 443 unsigned int targ 345 unsigned int target); 444 unsigned int cur_target; 346 unsigned int cur_target; 445 347 446 struct spinand_ecc_info eccinfo; 348 struct spinand_ecc_info eccinfo; 447 349 448 u8 *cfg_cache; 350 u8 *cfg_cache; 449 u8 *databuf; 351 u8 *databuf; 450 u8 *oobbuf; 352 u8 *oobbuf; 451 u8 *scratchbuf; 353 u8 *scratchbuf; 452 const struct spinand_manufacturer *man 354 const struct spinand_manufacturer *manufacturer; 453 void *priv; 355 void *priv; 454 }; 356 }; 455 357 456 /** 358 /** 457 * mtd_to_spinand() - Get the SPI NAND device 359 * mtd_to_spinand() - Get the SPI NAND device attached to an MTD instance 458 * @mtd: MTD instance 360 * @mtd: MTD instance 459 * 361 * 460 * Return: the SPI NAND device attached to @mt 362 * Return: the SPI NAND device attached to @mtd. 461 */ 363 */ 462 static inline struct spinand_device *mtd_to_sp 364 static inline struct spinand_device *mtd_to_spinand(struct mtd_info *mtd) 463 { 365 { 464 return container_of(mtd_to_nanddev(mtd 366 return container_of(mtd_to_nanddev(mtd), struct spinand_device, base); 465 } 367 } 466 368 467 /** 369 /** 468 * spinand_to_mtd() - Get the MTD device embed 370 * spinand_to_mtd() - Get the MTD device embedded in a SPI NAND device 469 * @spinand: SPI NAND device 371 * @spinand: SPI NAND device 470 * 372 * 471 * Return: the MTD device embedded in @spinand 373 * Return: the MTD device embedded in @spinand. 472 */ 374 */ 473 static inline struct mtd_info *spinand_to_mtd( 375 static inline struct mtd_info *spinand_to_mtd(struct spinand_device *spinand) 474 { 376 { 475 return nanddev_to_mtd(&spinand->base); 377 return nanddev_to_mtd(&spinand->base); 476 } 378 } 477 379 478 /** 380 /** 479 * nand_to_spinand() - Get the SPI NAND device 381 * nand_to_spinand() - Get the SPI NAND device embedding an NAND object 480 * @nand: NAND object 382 * @nand: NAND object 481 * 383 * 482 * Return: the SPI NAND device embedding @nand 384 * Return: the SPI NAND device embedding @nand. 483 */ 385 */ 484 static inline struct spinand_device *nand_to_s 386 static inline struct spinand_device *nand_to_spinand(struct nand_device *nand) 485 { 387 { 486 return container_of(nand, struct spina 388 return container_of(nand, struct spinand_device, base); 487 } 389 } 488 390 489 /** 391 /** 490 * spinand_to_nand() - Get the NAND device emb 392 * spinand_to_nand() - Get the NAND device embedded in a SPI NAND object 491 * @spinand: SPI NAND device 393 * @spinand: SPI NAND device 492 * 394 * 493 * Return: the NAND device embedded in @spinan 395 * Return: the NAND device embedded in @spinand. 494 */ 396 */ 495 static inline struct nand_device * 397 static inline struct nand_device * 496 spinand_to_nand(struct spinand_device *spinand 398 spinand_to_nand(struct spinand_device *spinand) 497 { 399 { 498 return &spinand->base; 400 return &spinand->base; 499 } 401 } 500 402 501 /** 403 /** 502 * spinand_set_of_node - Attach a DT node to a 404 * spinand_set_of_node - Attach a DT node to a SPI NAND device 503 * @spinand: SPI NAND device 405 * @spinand: SPI NAND device 504 * @np: DT node 406 * @np: DT node 505 * 407 * 506 * Attach a DT node to a SPI NAND device. 408 * Attach a DT node to a SPI NAND device. 507 */ 409 */ 508 static inline void spinand_set_of_node(struct 410 static inline void spinand_set_of_node(struct spinand_device *spinand, 509 struct 411 struct device_node *np) 510 { 412 { 511 nanddev_set_of_node(&spinand->base, np 413 nanddev_set_of_node(&spinand->base, np); 512 } 414 } 513 415 514 int spinand_match_and_init(struct spinand_devi !! 416 int spinand_match_and_init(struct spinand_device *dev, 515 const struct spinan 417 const struct spinand_info *table, 516 unsigned int table_ !! 418 unsigned int table_size, u8 devid); 517 enum spinand_readid << 518 419 519 int spinand_upd_cfg(struct spinand_device *spi 420 int spinand_upd_cfg(struct spinand_device *spinand, u8 mask, u8 val); 520 int spinand_select_target(struct spinand_devic 421 int spinand_select_target(struct spinand_device *spinand, unsigned int target); 521 422 522 #endif /* __LINUX_MTD_SPINAND_H */ 423 #endif /* __LINUX_MTD_SPINAND_H */ 523 424
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.