1 /* SPDX-License-Identifier: GPL-2.0 */ 1 /* SPDX-License-Identifier: GPL-2.0 */ 2 #ifndef _LINUX_PGTABLE_H 2 #ifndef _LINUX_PGTABLE_H 3 #define _LINUX_PGTABLE_H 3 #define _LINUX_PGTABLE_H 4 4 5 #include <linux/pfn.h> 5 #include <linux/pfn.h> 6 #include <asm/pgtable.h> 6 #include <asm/pgtable.h> 7 7 8 #define PMD_ORDER (PMD_SHIFT - PAGE_SHIF 8 #define PMD_ORDER (PMD_SHIFT - PAGE_SHIFT) 9 #define PUD_ORDER (PUD_SHIFT - PAGE_SHIF 9 #define PUD_ORDER (PUD_SHIFT - PAGE_SHIFT) 10 10 11 #ifndef __ASSEMBLY__ 11 #ifndef __ASSEMBLY__ 12 #ifdef CONFIG_MMU 12 #ifdef CONFIG_MMU 13 13 14 #include <linux/mm_types.h> 14 #include <linux/mm_types.h> 15 #include <linux/bug.h> 15 #include <linux/bug.h> 16 #include <linux/errno.h> 16 #include <linux/errno.h> 17 #include <asm-generic/pgtable_uffd.h> 17 #include <asm-generic/pgtable_uffd.h> 18 #include <linux/page_table_check.h> 18 #include <linux/page_table_check.h> 19 19 20 #if 5 - defined(__PAGETABLE_P4D_FOLDED) - defi 20 #if 5 - defined(__PAGETABLE_P4D_FOLDED) - defined(__PAGETABLE_PUD_FOLDED) - \ 21 defined(__PAGETABLE_PMD_FOLDED) != CON 21 defined(__PAGETABLE_PMD_FOLDED) != CONFIG_PGTABLE_LEVELS 22 #error CONFIG_PGTABLE_LEVELS is not consistent 22 #error CONFIG_PGTABLE_LEVELS is not consistent with __PAGETABLE_{P4D,PUD,PMD}_FOLDED 23 #endif 23 #endif 24 24 25 /* 25 /* 26 * On almost all architectures and configurati 26 * On almost all architectures and configurations, 0 can be used as the 27 * upper ceiling to free_pgtables(): on many a 27 * upper ceiling to free_pgtables(): on many architectures it has the same 28 * effect as using TASK_SIZE. However, there 28 * effect as using TASK_SIZE. However, there is one configuration which 29 * must impose a more careful limit, to avoid 29 * must impose a more careful limit, to avoid freeing kernel pgtables. 30 */ 30 */ 31 #ifndef USER_PGTABLES_CEILING 31 #ifndef USER_PGTABLES_CEILING 32 #define USER_PGTABLES_CEILING 0UL 32 #define USER_PGTABLES_CEILING 0UL 33 #endif 33 #endif 34 34 35 /* 35 /* 36 * This defines the first usable user address. 36 * This defines the first usable user address. Platforms 37 * can override its value with custom FIRST_US 37 * can override its value with custom FIRST_USER_ADDRESS 38 * defined in their respective <asm/pgtable.h> 38 * defined in their respective <asm/pgtable.h>. 39 */ 39 */ 40 #ifndef FIRST_USER_ADDRESS 40 #ifndef FIRST_USER_ADDRESS 41 #define FIRST_USER_ADDRESS 0UL 41 #define FIRST_USER_ADDRESS 0UL 42 #endif 42 #endif 43 43 44 /* 44 /* 45 * This defines the generic helper for accessi 45 * This defines the generic helper for accessing PMD page 46 * table page. Although platforms can still ov 46 * table page. Although platforms can still override this 47 * via their respective <asm/pgtable.h>. 47 * via their respective <asm/pgtable.h>. 48 */ 48 */ 49 #ifndef pmd_pgtable 49 #ifndef pmd_pgtable 50 #define pmd_pgtable(pmd) pmd_page(pmd) 50 #define pmd_pgtable(pmd) pmd_page(pmd) 51 #endif 51 #endif 52 52 53 #define pmd_folio(pmd) page_folio(pmd_page(pmd << 54 << 55 /* 53 /* 56 * A page table page can be thought of an arra 54 * A page table page can be thought of an array like this: pXd_t[PTRS_PER_PxD] 57 * 55 * 58 * The pXx_index() functions return the index 56 * The pXx_index() functions return the index of the entry in the page 59 * table page which would control the given vi 57 * table page which would control the given virtual address 60 * 58 * 61 * As these functions may be used by the same 59 * As these functions may be used by the same code for different levels of 62 * the page table folding, they are always ava 60 * the page table folding, they are always available, regardless of 63 * CONFIG_PGTABLE_LEVELS value. For the folded 61 * CONFIG_PGTABLE_LEVELS value. For the folded levels they simply return 0 64 * because in such cases PTRS_PER_PxD equals 1 62 * because in such cases PTRS_PER_PxD equals 1. 65 */ 63 */ 66 64 67 static inline unsigned long pte_index(unsigned 65 static inline unsigned long pte_index(unsigned long address) 68 { 66 { 69 return (address >> PAGE_SHIFT) & (PTRS 67 return (address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1); 70 } 68 } 71 69 72 #ifndef pmd_index 70 #ifndef pmd_index 73 static inline unsigned long pmd_index(unsigned 71 static inline unsigned long pmd_index(unsigned long address) 74 { 72 { 75 return (address >> PMD_SHIFT) & (PTRS_ 73 return (address >> PMD_SHIFT) & (PTRS_PER_PMD - 1); 76 } 74 } 77 #define pmd_index pmd_index 75 #define pmd_index pmd_index 78 #endif 76 #endif 79 77 80 #ifndef pud_index 78 #ifndef pud_index 81 static inline unsigned long pud_index(unsigned 79 static inline unsigned long pud_index(unsigned long address) 82 { 80 { 83 return (address >> PUD_SHIFT) & (PTRS_ 81 return (address >> PUD_SHIFT) & (PTRS_PER_PUD - 1); 84 } 82 } 85 #define pud_index pud_index 83 #define pud_index pud_index 86 #endif 84 #endif 87 85 88 #ifndef pgd_index 86 #ifndef pgd_index 89 /* Must be a compile-time constant, so impleme 87 /* Must be a compile-time constant, so implement it as a macro */ 90 #define pgd_index(a) (((a) >> PGDIR_SHIFT) & 88 #define pgd_index(a) (((a) >> PGDIR_SHIFT) & (PTRS_PER_PGD - 1)) 91 #endif 89 #endif 92 90 93 #ifndef pte_offset_kernel 91 #ifndef pte_offset_kernel 94 static inline pte_t *pte_offset_kernel(pmd_t * 92 static inline pte_t *pte_offset_kernel(pmd_t *pmd, unsigned long address) 95 { 93 { 96 return (pte_t *)pmd_page_vaddr(*pmd) + 94 return (pte_t *)pmd_page_vaddr(*pmd) + pte_index(address); 97 } 95 } 98 #define pte_offset_kernel pte_offset_kernel 96 #define pte_offset_kernel pte_offset_kernel 99 #endif 97 #endif 100 98 101 #ifdef CONFIG_HIGHPTE 99 #ifdef CONFIG_HIGHPTE 102 #define __pte_map(pmd, address) \ 100 #define __pte_map(pmd, address) \ 103 ((pte_t *)kmap_local_page(pmd_page(*(p 101 ((pte_t *)kmap_local_page(pmd_page(*(pmd))) + pte_index((address))) 104 #define pte_unmap(pte) do { \ 102 #define pte_unmap(pte) do { \ 105 kunmap_local((pte)); \ 103 kunmap_local((pte)); \ 106 rcu_read_unlock(); \ 104 rcu_read_unlock(); \ 107 } while (0) 105 } while (0) 108 #else 106 #else 109 static inline pte_t *__pte_map(pmd_t *pmd, uns 107 static inline pte_t *__pte_map(pmd_t *pmd, unsigned long address) 110 { 108 { 111 return pte_offset_kernel(pmd, address) 109 return pte_offset_kernel(pmd, address); 112 } 110 } 113 static inline void pte_unmap(pte_t *pte) 111 static inline void pte_unmap(pte_t *pte) 114 { 112 { 115 rcu_read_unlock(); 113 rcu_read_unlock(); 116 } 114 } 117 #endif 115 #endif 118 116 119 void pte_free_defer(struct mm_struct *mm, pgta 117 void pte_free_defer(struct mm_struct *mm, pgtable_t pgtable); 120 118 121 /* Find an entry in the second-level page tabl 119 /* Find an entry in the second-level page table.. */ 122 #ifndef pmd_offset 120 #ifndef pmd_offset 123 static inline pmd_t *pmd_offset(pud_t *pud, un 121 static inline pmd_t *pmd_offset(pud_t *pud, unsigned long address) 124 { 122 { 125 return pud_pgtable(*pud) + pmd_index(a 123 return pud_pgtable(*pud) + pmd_index(address); 126 } 124 } 127 #define pmd_offset pmd_offset 125 #define pmd_offset pmd_offset 128 #endif 126 #endif 129 127 130 #ifndef pud_offset 128 #ifndef pud_offset 131 static inline pud_t *pud_offset(p4d_t *p4d, un 129 static inline pud_t *pud_offset(p4d_t *p4d, unsigned long address) 132 { 130 { 133 return p4d_pgtable(*p4d) + pud_index(a 131 return p4d_pgtable(*p4d) + pud_index(address); 134 } 132 } 135 #define pud_offset pud_offset 133 #define pud_offset pud_offset 136 #endif 134 #endif 137 135 138 static inline pgd_t *pgd_offset_pgd(pgd_t *pgd 136 static inline pgd_t *pgd_offset_pgd(pgd_t *pgd, unsigned long address) 139 { 137 { 140 return (pgd + pgd_index(address)); 138 return (pgd + pgd_index(address)); 141 }; 139 }; 142 140 143 /* 141 /* 144 * a shortcut to get a pgd_t in a given mm 142 * a shortcut to get a pgd_t in a given mm 145 */ 143 */ 146 #ifndef pgd_offset 144 #ifndef pgd_offset 147 #define pgd_offset(mm, address) pgd_of 145 #define pgd_offset(mm, address) pgd_offset_pgd((mm)->pgd, (address)) 148 #endif 146 #endif 149 147 150 /* 148 /* 151 * a shortcut which implies the use of the ker 149 * a shortcut which implies the use of the kernel's pgd, instead 152 * of a process's 150 * of a process's 153 */ 151 */ >> 152 #ifndef pgd_offset_k 154 #define pgd_offset_k(address) pgd_of 153 #define pgd_offset_k(address) pgd_offset(&init_mm, (address)) >> 154 #endif 155 155 156 /* 156 /* 157 * In many cases it is known that a virtual ad 157 * In many cases it is known that a virtual address is mapped at PMD or PTE 158 * level, so instead of traversing all the pag 158 * level, so instead of traversing all the page table levels, we can get a 159 * pointer to the PMD entry in user or kernel 159 * pointer to the PMD entry in user or kernel page table or translate a virtual 160 * address to the pointer in the PTE in the ke 160 * address to the pointer in the PTE in the kernel page tables with simple 161 * helpers. 161 * helpers. 162 */ 162 */ 163 static inline pmd_t *pmd_off(struct mm_struct 163 static inline pmd_t *pmd_off(struct mm_struct *mm, unsigned long va) 164 { 164 { 165 return pmd_offset(pud_offset(p4d_offse 165 return pmd_offset(pud_offset(p4d_offset(pgd_offset(mm, va), va), va), va); 166 } 166 } 167 167 168 static inline pmd_t *pmd_off_k(unsigned long v 168 static inline pmd_t *pmd_off_k(unsigned long va) 169 { 169 { 170 return pmd_offset(pud_offset(p4d_offse 170 return pmd_offset(pud_offset(p4d_offset(pgd_offset_k(va), va), va), va); 171 } 171 } 172 172 173 static inline pte_t *virt_to_kpte(unsigned lon 173 static inline pte_t *virt_to_kpte(unsigned long vaddr) 174 { 174 { 175 pmd_t *pmd = pmd_off_k(vaddr); 175 pmd_t *pmd = pmd_off_k(vaddr); 176 176 177 return pmd_none(*pmd) ? NULL : pte_off 177 return pmd_none(*pmd) ? NULL : pte_offset_kernel(pmd, vaddr); 178 } 178 } 179 179 180 #ifndef pmd_young 180 #ifndef pmd_young 181 static inline int pmd_young(pmd_t pmd) 181 static inline int pmd_young(pmd_t pmd) 182 { 182 { 183 return 0; 183 return 0; 184 } 184 } 185 #endif 185 #endif 186 186 187 #ifndef pmd_dirty 187 #ifndef pmd_dirty 188 static inline int pmd_dirty(pmd_t pmd) 188 static inline int pmd_dirty(pmd_t pmd) 189 { 189 { 190 return 0; 190 return 0; 191 } 191 } 192 #endif 192 #endif 193 193 194 /* 194 /* 195 * A facility to provide lazy MMU batching. T 195 * A facility to provide lazy MMU batching. This allows PTE updates and 196 * page invalidations to be delayed until a ca 196 * page invalidations to be delayed until a call to leave lazy MMU mode 197 * is issued. Some architectures may benefit 197 * is issued. Some architectures may benefit from doing this, and it is 198 * beneficial for both shadow and direct mode 198 * beneficial for both shadow and direct mode hypervisors, which may batch 199 * the PTE updates which happen during this wi 199 * the PTE updates which happen during this window. Note that using this 200 * interface requires that read hazards be rem 200 * interface requires that read hazards be removed from the code. A read 201 * hazard could result in the direct mode hype 201 * hazard could result in the direct mode hypervisor case, since the actual 202 * write to the page tables may not yet have t 202 * write to the page tables may not yet have taken place, so reads though 203 * a raw PTE pointer after it has been modifie 203 * a raw PTE pointer after it has been modified are not guaranteed to be 204 * up to date. This mode can only be entered 204 * up to date. This mode can only be entered and left under the protection of 205 * the page table locks for all page tables wh 205 * the page table locks for all page tables which may be modified. In the UP 206 * case, this is required so that preemption i 206 * case, this is required so that preemption is disabled, and in the SMP case, 207 * it must synchronize the delayed page table 207 * it must synchronize the delayed page table writes properly on other CPUs. 208 */ 208 */ 209 #ifndef __HAVE_ARCH_ENTER_LAZY_MMU_MODE 209 #ifndef __HAVE_ARCH_ENTER_LAZY_MMU_MODE 210 #define arch_enter_lazy_mmu_mode() do {} 210 #define arch_enter_lazy_mmu_mode() do {} while (0) 211 #define arch_leave_lazy_mmu_mode() do {} 211 #define arch_leave_lazy_mmu_mode() do {} while (0) 212 #define arch_flush_lazy_mmu_mode() do {} 212 #define arch_flush_lazy_mmu_mode() do {} while (0) 213 #endif 213 #endif 214 214 215 #ifndef pte_batch_hint 215 #ifndef pte_batch_hint 216 /** 216 /** 217 * pte_batch_hint - Number of pages that can b 217 * pte_batch_hint - Number of pages that can be added to batch without scanning. 218 * @ptep: Page table pointer for the entry. 218 * @ptep: Page table pointer for the entry. 219 * @pte: Page table entry. 219 * @pte: Page table entry. 220 * 220 * 221 * Some architectures know that a set of conti 221 * Some architectures know that a set of contiguous ptes all map the same 222 * contiguous memory with the same permissions 222 * contiguous memory with the same permissions. In this case, it can provide a 223 * hint to aid pte batching without the core c 223 * hint to aid pte batching without the core code needing to scan every pte. 224 * 224 * 225 * An architecture implementation may ignore t 225 * An architecture implementation may ignore the PTE accessed state. Further, 226 * the dirty state must apply atomically to al 226 * the dirty state must apply atomically to all the PTEs described by the hint. 227 * 227 * 228 * May be overridden by the architecture, else 228 * May be overridden by the architecture, else pte_batch_hint is always 1. 229 */ 229 */ 230 static inline unsigned int pte_batch_hint(pte_ 230 static inline unsigned int pte_batch_hint(pte_t *ptep, pte_t pte) 231 { 231 { 232 return 1; 232 return 1; 233 } 233 } 234 #endif 234 #endif 235 235 236 #ifndef pte_advance_pfn 236 #ifndef pte_advance_pfn 237 static inline pte_t pte_advance_pfn(pte_t pte, 237 static inline pte_t pte_advance_pfn(pte_t pte, unsigned long nr) 238 { 238 { 239 return __pte(pte_val(pte) + (nr << PFN 239 return __pte(pte_val(pte) + (nr << PFN_PTE_SHIFT)); 240 } 240 } 241 #endif 241 #endif 242 242 243 #define pte_next_pfn(pte) pte_advance_pfn(pte, 243 #define pte_next_pfn(pte) pte_advance_pfn(pte, 1) 244 244 245 #ifndef set_ptes 245 #ifndef set_ptes 246 /** 246 /** 247 * set_ptes - Map consecutive pages to a conti 247 * set_ptes - Map consecutive pages to a contiguous range of addresses. 248 * @mm: Address space to map the pages into. 248 * @mm: Address space to map the pages into. 249 * @addr: Address to map the first page at. 249 * @addr: Address to map the first page at. 250 * @ptep: Page table pointer for the first ent 250 * @ptep: Page table pointer for the first entry. 251 * @pte: Page table entry for the first page. 251 * @pte: Page table entry for the first page. 252 * @nr: Number of pages to map. 252 * @nr: Number of pages to map. 253 * 253 * 254 * When nr==1, initial state of pte may be pre 254 * When nr==1, initial state of pte may be present or not present, and new state 255 * may be present or not present. When nr>1, i 255 * may be present or not present. When nr>1, initial state of all ptes must be 256 * not present, and new state must be present. 256 * not present, and new state must be present. 257 * 257 * 258 * May be overridden by the architecture, or t 258 * May be overridden by the architecture, or the architecture can define 259 * set_pte() and PFN_PTE_SHIFT. 259 * set_pte() and PFN_PTE_SHIFT. 260 * 260 * 261 * Context: The caller holds the page table lo 261 * Context: The caller holds the page table lock. The pages all belong 262 * to the same folio. The PTEs are all in the 262 * to the same folio. The PTEs are all in the same PMD. 263 */ 263 */ 264 static inline void set_ptes(struct mm_struct * 264 static inline void set_ptes(struct mm_struct *mm, unsigned long addr, 265 pte_t *ptep, pte_t pte, unsign 265 pte_t *ptep, pte_t pte, unsigned int nr) 266 { 266 { 267 page_table_check_ptes_set(mm, ptep, pt 267 page_table_check_ptes_set(mm, ptep, pte, nr); 268 268 269 arch_enter_lazy_mmu_mode(); 269 arch_enter_lazy_mmu_mode(); 270 for (;;) { 270 for (;;) { 271 set_pte(ptep, pte); 271 set_pte(ptep, pte); 272 if (--nr == 0) 272 if (--nr == 0) 273 break; 273 break; 274 ptep++; 274 ptep++; 275 pte = pte_next_pfn(pte); 275 pte = pte_next_pfn(pte); 276 } 276 } 277 arch_leave_lazy_mmu_mode(); 277 arch_leave_lazy_mmu_mode(); 278 } 278 } 279 #endif 279 #endif 280 #define set_pte_at(mm, addr, ptep, pte) set_pt 280 #define set_pte_at(mm, addr, ptep, pte) set_ptes(mm, addr, ptep, pte, 1) 281 281 282 #ifndef __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS 282 #ifndef __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS 283 extern int ptep_set_access_flags(struct vm_are 283 extern int ptep_set_access_flags(struct vm_area_struct *vma, 284 unsigned long 284 unsigned long address, pte_t *ptep, 285 pte_t entry, 285 pte_t entry, int dirty); 286 #endif 286 #endif 287 287 288 #ifndef __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS 288 #ifndef __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS 289 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 289 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 290 extern int pmdp_set_access_flags(struct vm_are 290 extern int pmdp_set_access_flags(struct vm_area_struct *vma, 291 unsigned long 291 unsigned long address, pmd_t *pmdp, 292 pmd_t entry, 292 pmd_t entry, int dirty); 293 extern int pudp_set_access_flags(struct vm_are 293 extern int pudp_set_access_flags(struct vm_area_struct *vma, 294 unsigned long 294 unsigned long address, pud_t *pudp, 295 pud_t entry, 295 pud_t entry, int dirty); 296 #else 296 #else 297 static inline int pmdp_set_access_flags(struct 297 static inline int pmdp_set_access_flags(struct vm_area_struct *vma, 298 unsign 298 unsigned long address, pmd_t *pmdp, 299 pmd_t 299 pmd_t entry, int dirty) 300 { 300 { 301 BUILD_BUG(); 301 BUILD_BUG(); 302 return 0; 302 return 0; 303 } 303 } 304 static inline int pudp_set_access_flags(struct 304 static inline int pudp_set_access_flags(struct vm_area_struct *vma, 305 unsign 305 unsigned long address, pud_t *pudp, 306 pud_t 306 pud_t entry, int dirty) 307 { 307 { 308 BUILD_BUG(); 308 BUILD_BUG(); 309 return 0; 309 return 0; 310 } 310 } 311 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 311 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 312 #endif 312 #endif 313 313 314 #ifndef ptep_get 314 #ifndef ptep_get 315 static inline pte_t ptep_get(pte_t *ptep) 315 static inline pte_t ptep_get(pte_t *ptep) 316 { 316 { 317 return READ_ONCE(*ptep); 317 return READ_ONCE(*ptep); 318 } 318 } 319 #endif 319 #endif 320 320 321 #ifndef pmdp_get 321 #ifndef pmdp_get 322 static inline pmd_t pmdp_get(pmd_t *pmdp) 322 static inline pmd_t pmdp_get(pmd_t *pmdp) 323 { 323 { 324 return READ_ONCE(*pmdp); 324 return READ_ONCE(*pmdp); 325 } 325 } 326 #endif 326 #endif 327 327 328 #ifndef pudp_get 328 #ifndef pudp_get 329 static inline pud_t pudp_get(pud_t *pudp) 329 static inline pud_t pudp_get(pud_t *pudp) 330 { 330 { 331 return READ_ONCE(*pudp); 331 return READ_ONCE(*pudp); 332 } 332 } 333 #endif 333 #endif 334 334 335 #ifndef p4dp_get 335 #ifndef p4dp_get 336 static inline p4d_t p4dp_get(p4d_t *p4dp) 336 static inline p4d_t p4dp_get(p4d_t *p4dp) 337 { 337 { 338 return READ_ONCE(*p4dp); 338 return READ_ONCE(*p4dp); 339 } 339 } 340 #endif 340 #endif 341 341 342 #ifndef pgdp_get 342 #ifndef pgdp_get 343 static inline pgd_t pgdp_get(pgd_t *pgdp) 343 static inline pgd_t pgdp_get(pgd_t *pgdp) 344 { 344 { 345 return READ_ONCE(*pgdp); 345 return READ_ONCE(*pgdp); 346 } 346 } 347 #endif 347 #endif 348 348 349 #ifndef __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG 349 #ifndef __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG 350 static inline int ptep_test_and_clear_young(st 350 static inline int ptep_test_and_clear_young(struct vm_area_struct *vma, 351 un 351 unsigned long address, 352 pt 352 pte_t *ptep) 353 { 353 { 354 pte_t pte = ptep_get(ptep); 354 pte_t pte = ptep_get(ptep); 355 int r = 1; 355 int r = 1; 356 if (!pte_young(pte)) 356 if (!pte_young(pte)) 357 r = 0; 357 r = 0; 358 else 358 else 359 set_pte_at(vma->vm_mm, address 359 set_pte_at(vma->vm_mm, address, ptep, pte_mkold(pte)); 360 return r; 360 return r; 361 } 361 } 362 #endif 362 #endif 363 363 364 #ifndef __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG 364 #ifndef __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG 365 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || de 365 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_ARCH_HAS_NONLEAF_PMD_YOUNG) 366 static inline int pmdp_test_and_clear_young(st 366 static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma, 367 un 367 unsigned long address, 368 pm 368 pmd_t *pmdp) 369 { 369 { 370 pmd_t pmd = *pmdp; 370 pmd_t pmd = *pmdp; 371 int r = 1; 371 int r = 1; 372 if (!pmd_young(pmd)) 372 if (!pmd_young(pmd)) 373 r = 0; 373 r = 0; 374 else 374 else 375 set_pmd_at(vma->vm_mm, address 375 set_pmd_at(vma->vm_mm, address, pmdp, pmd_mkold(pmd)); 376 return r; 376 return r; 377 } 377 } 378 #else 378 #else 379 static inline int pmdp_test_and_clear_young(st 379 static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma, 380 un 380 unsigned long address, 381 pm 381 pmd_t *pmdp) 382 { 382 { 383 BUILD_BUG(); 383 BUILD_BUG(); 384 return 0; 384 return 0; 385 } 385 } 386 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFI 386 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_ARCH_HAS_NONLEAF_PMD_YOUNG */ 387 #endif 387 #endif 388 388 389 #ifndef __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH 389 #ifndef __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH 390 int ptep_clear_flush_young(struct vm_area_stru 390 int ptep_clear_flush_young(struct vm_area_struct *vma, 391 unsigned long addre 391 unsigned long address, pte_t *ptep); 392 #endif 392 #endif 393 393 394 #ifndef __HAVE_ARCH_PMDP_CLEAR_YOUNG_FLUSH 394 #ifndef __HAVE_ARCH_PMDP_CLEAR_YOUNG_FLUSH 395 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 395 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 396 extern int pmdp_clear_flush_young(struct vm_ar 396 extern int pmdp_clear_flush_young(struct vm_area_struct *vma, 397 unsigned lon 397 unsigned long address, pmd_t *pmdp); 398 #else 398 #else 399 /* 399 /* 400 * Despite relevant to THP only, this API is c 400 * Despite relevant to THP only, this API is called from generic rmap code 401 * under PageTransHuge(), hence needs a dummy 401 * under PageTransHuge(), hence needs a dummy implementation for !THP 402 */ 402 */ 403 static inline int pmdp_clear_flush_young(struc 403 static inline int pmdp_clear_flush_young(struct vm_area_struct *vma, 404 unsig 404 unsigned long address, pmd_t *pmdp) 405 { 405 { 406 BUILD_BUG(); 406 BUILD_BUG(); 407 return 0; 407 return 0; 408 } 408 } 409 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 409 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 410 #endif 410 #endif 411 411 412 #ifndef arch_has_hw_nonleaf_pmd_young 412 #ifndef arch_has_hw_nonleaf_pmd_young 413 /* 413 /* 414 * Return whether the accessed bit in non-leaf 414 * Return whether the accessed bit in non-leaf PMD entries is supported on the 415 * local CPU. 415 * local CPU. 416 */ 416 */ 417 static inline bool arch_has_hw_nonleaf_pmd_you 417 static inline bool arch_has_hw_nonleaf_pmd_young(void) 418 { 418 { 419 return IS_ENABLED(CONFIG_ARCH_HAS_NONL 419 return IS_ENABLED(CONFIG_ARCH_HAS_NONLEAF_PMD_YOUNG); 420 } 420 } 421 #endif 421 #endif 422 422 423 #ifndef arch_has_hw_pte_young 423 #ifndef arch_has_hw_pte_young 424 /* 424 /* 425 * Return whether the accessed bit is supporte 425 * Return whether the accessed bit is supported on the local CPU. 426 * 426 * 427 * This stub assumes accessing through an old 427 * This stub assumes accessing through an old PTE triggers a page fault. 428 * Architectures that automatically set the ac 428 * Architectures that automatically set the access bit should overwrite it. 429 */ 429 */ 430 static inline bool arch_has_hw_pte_young(void) 430 static inline bool arch_has_hw_pte_young(void) 431 { 431 { 432 return IS_ENABLED(CONFIG_ARCH_HAS_HW_P 432 return IS_ENABLED(CONFIG_ARCH_HAS_HW_PTE_YOUNG); 433 } 433 } 434 #endif 434 #endif 435 435 436 #ifndef arch_check_zapped_pte 436 #ifndef arch_check_zapped_pte 437 static inline void arch_check_zapped_pte(struc 437 static inline void arch_check_zapped_pte(struct vm_area_struct *vma, 438 pte_t 438 pte_t pte) 439 { 439 { 440 } 440 } 441 #endif 441 #endif 442 442 443 #ifndef arch_check_zapped_pmd 443 #ifndef arch_check_zapped_pmd 444 static inline void arch_check_zapped_pmd(struc 444 static inline void arch_check_zapped_pmd(struct vm_area_struct *vma, 445 pmd_t 445 pmd_t pmd) 446 { 446 { 447 } 447 } 448 #endif 448 #endif 449 449 450 #ifndef arch_check_zapped_pud << 451 static inline void arch_check_zapped_pud(struc << 452 { << 453 } << 454 #endif << 455 << 456 #ifndef __HAVE_ARCH_PTEP_GET_AND_CLEAR 450 #ifndef __HAVE_ARCH_PTEP_GET_AND_CLEAR 457 static inline pte_t ptep_get_and_clear(struct 451 static inline pte_t ptep_get_and_clear(struct mm_struct *mm, 458 unsigne 452 unsigned long address, 459 pte_t * 453 pte_t *ptep) 460 { 454 { 461 pte_t pte = ptep_get(ptep); 455 pte_t pte = ptep_get(ptep); 462 pte_clear(mm, address, ptep); 456 pte_clear(mm, address, ptep); 463 page_table_check_pte_clear(mm, pte); 457 page_table_check_pte_clear(mm, pte); 464 return pte; 458 return pte; 465 } 459 } 466 #endif 460 #endif 467 461 468 #ifndef clear_young_dirty_ptes << 469 /** << 470 * clear_young_dirty_ptes - Mark PTEs that map << 471 * same folio as old/clean. << 472 * @mm: Address space the pages are mapped int << 473 * @addr: Address the first page is mapped at. << 474 * @ptep: Page table pointer for the first ent << 475 * @nr: Number of entries to mark old/clean. << 476 * @flags: Flags to modify the PTE batch seman << 477 * << 478 * May be overridden by the architecture; othe << 479 * get_and_clear/modify/set for each pte in th << 480 * << 481 * Note that PTE bits in the PTE range besides << 482 * some PTEs might be write-protected. << 483 * << 484 * Context: The caller holds the page table lo << 485 * pages that belong to the same folio. The P << 486 */ << 487 static inline void clear_young_dirty_ptes(stru << 488 unsi << 489 unsi << 490 { << 491 pte_t pte; << 492 << 493 for (;;) { << 494 if (flags == CYDP_CLEAR_YOUNG) << 495 ptep_test_and_clear_yo << 496 else { << 497 pte = ptep_get_and_cle << 498 if (flags & CYDP_CLEAR << 499 pte = pte_mkol << 500 if (flags & CYDP_CLEAR << 501 pte = pte_mkcl << 502 set_pte_at(vma->vm_mm, << 503 } << 504 if (--nr == 0) << 505 break; << 506 ptep++; << 507 addr += PAGE_SIZE; << 508 } << 509 } << 510 #endif << 511 << 512 static inline void ptep_clear(struct mm_struct 462 static inline void ptep_clear(struct mm_struct *mm, unsigned long addr, 513 pte_t *ptep) 463 pte_t *ptep) 514 { 464 { 515 ptep_get_and_clear(mm, addr, ptep); 465 ptep_get_and_clear(mm, addr, ptep); 516 } 466 } 517 467 518 #ifdef CONFIG_GUP_GET_PXX_LOW_HIGH 468 #ifdef CONFIG_GUP_GET_PXX_LOW_HIGH 519 /* 469 /* 520 * For walking the pagetables without holding 470 * For walking the pagetables without holding any locks. Some architectures 521 * (eg x86-32 PAE) cannot load the entries ato 471 * (eg x86-32 PAE) cannot load the entries atomically without using expensive 522 * instructions. We are guaranteed that a PTE 472 * instructions. We are guaranteed that a PTE will only either go from not 523 * present to present, or present to not prese 473 * present to present, or present to not present -- it will not switch to a 524 * completely different present page without a 474 * completely different present page without a TLB flush inbetween; which we 525 * are blocking by holding interrupts off. 475 * are blocking by holding interrupts off. 526 * 476 * 527 * Setting ptes from not present to present go 477 * Setting ptes from not present to present goes: 528 * 478 * 529 * ptep->pte_high = h; 479 * ptep->pte_high = h; 530 * smp_wmb(); 480 * smp_wmb(); 531 * ptep->pte_low = l; 481 * ptep->pte_low = l; 532 * 482 * 533 * And present to not present goes: 483 * And present to not present goes: 534 * 484 * 535 * ptep->pte_low = 0; 485 * ptep->pte_low = 0; 536 * smp_wmb(); 486 * smp_wmb(); 537 * ptep->pte_high = 0; 487 * ptep->pte_high = 0; 538 * 488 * 539 * We must ensure here that the load of pte_lo 489 * We must ensure here that the load of pte_low sees 'l' IFF pte_high sees 'h'. 540 * We load pte_high *after* loading pte_low, w 490 * We load pte_high *after* loading pte_low, which ensures we don't see an older 541 * value of pte_high. *Then* we recheck pte_l 491 * value of pte_high. *Then* we recheck pte_low, which ensures that we haven't 542 * picked up a changed pte high. We might have 492 * picked up a changed pte high. We might have gotten rubbish values from 543 * pte_low and pte_high, but we are guaranteed 493 * pte_low and pte_high, but we are guaranteed that pte_low will not have the 544 * present bit set *unless* it is 'l'. Because 494 * present bit set *unless* it is 'l'. Because get_user_pages_fast() only 545 * operates on present ptes we're safe. 495 * operates on present ptes we're safe. 546 */ 496 */ 547 static inline pte_t ptep_get_lockless(pte_t *p 497 static inline pte_t ptep_get_lockless(pte_t *ptep) 548 { 498 { 549 pte_t pte; 499 pte_t pte; 550 500 551 do { 501 do { 552 pte.pte_low = ptep->pte_low; 502 pte.pte_low = ptep->pte_low; 553 smp_rmb(); 503 smp_rmb(); 554 pte.pte_high = ptep->pte_high; 504 pte.pte_high = ptep->pte_high; 555 smp_rmb(); 505 smp_rmb(); 556 } while (unlikely(pte.pte_low != ptep- 506 } while (unlikely(pte.pte_low != ptep->pte_low)); 557 507 558 return pte; 508 return pte; 559 } 509 } 560 #define ptep_get_lockless ptep_get_lockless 510 #define ptep_get_lockless ptep_get_lockless 561 511 562 #if CONFIG_PGTABLE_LEVELS > 2 512 #if CONFIG_PGTABLE_LEVELS > 2 563 static inline pmd_t pmdp_get_lockless(pmd_t *p 513 static inline pmd_t pmdp_get_lockless(pmd_t *pmdp) 564 { 514 { 565 pmd_t pmd; 515 pmd_t pmd; 566 516 567 do { 517 do { 568 pmd.pmd_low = pmdp->pmd_low; 518 pmd.pmd_low = pmdp->pmd_low; 569 smp_rmb(); 519 smp_rmb(); 570 pmd.pmd_high = pmdp->pmd_high; 520 pmd.pmd_high = pmdp->pmd_high; 571 smp_rmb(); 521 smp_rmb(); 572 } while (unlikely(pmd.pmd_low != pmdp- 522 } while (unlikely(pmd.pmd_low != pmdp->pmd_low)); 573 523 574 return pmd; 524 return pmd; 575 } 525 } 576 #define pmdp_get_lockless pmdp_get_lockless 526 #define pmdp_get_lockless pmdp_get_lockless 577 #define pmdp_get_lockless_sync() tlb_remove_ta 527 #define pmdp_get_lockless_sync() tlb_remove_table_sync_one() 578 #endif /* CONFIG_PGTABLE_LEVELS > 2 */ 528 #endif /* CONFIG_PGTABLE_LEVELS > 2 */ 579 #endif /* CONFIG_GUP_GET_PXX_LOW_HIGH */ 529 #endif /* CONFIG_GUP_GET_PXX_LOW_HIGH */ 580 530 581 /* 531 /* 582 * We require that the PTE can be read atomica 532 * We require that the PTE can be read atomically. 583 */ 533 */ 584 #ifndef ptep_get_lockless 534 #ifndef ptep_get_lockless 585 static inline pte_t ptep_get_lockless(pte_t *p 535 static inline pte_t ptep_get_lockless(pte_t *ptep) 586 { 536 { 587 return ptep_get(ptep); 537 return ptep_get(ptep); 588 } 538 } 589 #endif 539 #endif 590 540 591 #ifndef pmdp_get_lockless 541 #ifndef pmdp_get_lockless 592 static inline pmd_t pmdp_get_lockless(pmd_t *p 542 static inline pmd_t pmdp_get_lockless(pmd_t *pmdp) 593 { 543 { 594 return pmdp_get(pmdp); 544 return pmdp_get(pmdp); 595 } 545 } 596 static inline void pmdp_get_lockless_sync(void 546 static inline void pmdp_get_lockless_sync(void) 597 { 547 { 598 } 548 } 599 #endif 549 #endif 600 550 601 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 551 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 602 #ifndef __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR 552 #ifndef __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR 603 static inline pmd_t pmdp_huge_get_and_clear(st 553 static inline pmd_t pmdp_huge_get_and_clear(struct mm_struct *mm, 604 un 554 unsigned long address, 605 pm 555 pmd_t *pmdp) 606 { 556 { 607 pmd_t pmd = *pmdp; 557 pmd_t pmd = *pmdp; 608 558 609 pmd_clear(pmdp); 559 pmd_clear(pmdp); 610 page_table_check_pmd_clear(mm, pmd); 560 page_table_check_pmd_clear(mm, pmd); 611 561 612 return pmd; 562 return pmd; 613 } 563 } 614 #endif /* __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR 564 #endif /* __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR */ 615 #ifndef __HAVE_ARCH_PUDP_HUGE_GET_AND_CLEAR 565 #ifndef __HAVE_ARCH_PUDP_HUGE_GET_AND_CLEAR 616 static inline pud_t pudp_huge_get_and_clear(st 566 static inline pud_t pudp_huge_get_and_clear(struct mm_struct *mm, 617 un 567 unsigned long address, 618 pu 568 pud_t *pudp) 619 { 569 { 620 pud_t pud = *pudp; 570 pud_t pud = *pudp; 621 571 622 pud_clear(pudp); 572 pud_clear(pudp); 623 page_table_check_pud_clear(mm, pud); 573 page_table_check_pud_clear(mm, pud); 624 574 625 return pud; 575 return pud; 626 } 576 } 627 #endif /* __HAVE_ARCH_PUDP_HUGE_GET_AND_CLEAR 577 #endif /* __HAVE_ARCH_PUDP_HUGE_GET_AND_CLEAR */ 628 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 578 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 629 579 630 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 580 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 631 #ifndef __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR_FU 581 #ifndef __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR_FULL 632 static inline pmd_t pmdp_huge_get_and_clear_fu 582 static inline pmd_t pmdp_huge_get_and_clear_full(struct vm_area_struct *vma, 633 un 583 unsigned long address, pmd_t *pmdp, 634 in 584 int full) 635 { 585 { 636 return pmdp_huge_get_and_clear(vma->vm 586 return pmdp_huge_get_and_clear(vma->vm_mm, address, pmdp); 637 } 587 } 638 #endif 588 #endif 639 589 640 #ifndef __HAVE_ARCH_PUDP_HUGE_GET_AND_CLEAR_FU 590 #ifndef __HAVE_ARCH_PUDP_HUGE_GET_AND_CLEAR_FULL 641 static inline pud_t pudp_huge_get_and_clear_fu 591 static inline pud_t pudp_huge_get_and_clear_full(struct vm_area_struct *vma, 642 un 592 unsigned long address, pud_t *pudp, 643 in 593 int full) 644 { 594 { 645 return pudp_huge_get_and_clear(vma->vm 595 return pudp_huge_get_and_clear(vma->vm_mm, address, pudp); 646 } 596 } 647 #endif 597 #endif 648 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 598 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 649 599 650 #ifndef __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL 600 #ifndef __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL 651 static inline pte_t ptep_get_and_clear_full(st 601 static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm, 652 un 602 unsigned long address, pte_t *ptep, 653 in 603 int full) 654 { 604 { 655 return ptep_get_and_clear(mm, address, 605 return ptep_get_and_clear(mm, address, ptep); 656 } 606 } 657 #endif 607 #endif 658 608 659 #ifndef get_and_clear_full_ptes 609 #ifndef get_and_clear_full_ptes 660 /** 610 /** 661 * get_and_clear_full_ptes - Clear present PTE 611 * get_and_clear_full_ptes - Clear present PTEs that map consecutive pages of 662 * the same folio, c 612 * the same folio, collecting dirty/accessed bits. 663 * @mm: Address space the pages are mapped int 613 * @mm: Address space the pages are mapped into. 664 * @addr: Address the first page is mapped at. 614 * @addr: Address the first page is mapped at. 665 * @ptep: Page table pointer for the first ent 615 * @ptep: Page table pointer for the first entry. 666 * @nr: Number of entries to clear. 616 * @nr: Number of entries to clear. 667 * @full: Whether we are clearing a full mm. 617 * @full: Whether we are clearing a full mm. 668 * 618 * 669 * May be overridden by the architecture; othe 619 * May be overridden by the architecture; otherwise, implemented as a simple 670 * loop over ptep_get_and_clear_full(), mergin 620 * loop over ptep_get_and_clear_full(), merging dirty/accessed bits into the 671 * returned PTE. 621 * returned PTE. 672 * 622 * 673 * Note that PTE bits in the PTE range besides 623 * Note that PTE bits in the PTE range besides the PFN can differ. For example, 674 * some PTEs might be write-protected. 624 * some PTEs might be write-protected. 675 * 625 * 676 * Context: The caller holds the page table lo 626 * Context: The caller holds the page table lock. The PTEs map consecutive 677 * pages that belong to the same folio. The P 627 * pages that belong to the same folio. The PTEs are all in the same PMD. 678 */ 628 */ 679 static inline pte_t get_and_clear_full_ptes(st 629 static inline pte_t get_and_clear_full_ptes(struct mm_struct *mm, 680 unsigned long addr, pte_t *pte 630 unsigned long addr, pte_t *ptep, unsigned int nr, int full) 681 { 631 { 682 pte_t pte, tmp_pte; 632 pte_t pte, tmp_pte; 683 633 684 pte = ptep_get_and_clear_full(mm, addr 634 pte = ptep_get_and_clear_full(mm, addr, ptep, full); 685 while (--nr) { 635 while (--nr) { 686 ptep++; 636 ptep++; 687 addr += PAGE_SIZE; 637 addr += PAGE_SIZE; 688 tmp_pte = ptep_get_and_clear_f 638 tmp_pte = ptep_get_and_clear_full(mm, addr, ptep, full); 689 if (pte_dirty(tmp_pte)) 639 if (pte_dirty(tmp_pte)) 690 pte = pte_mkdirty(pte) 640 pte = pte_mkdirty(pte); 691 if (pte_young(tmp_pte)) 641 if (pte_young(tmp_pte)) 692 pte = pte_mkyoung(pte) 642 pte = pte_mkyoung(pte); 693 } 643 } 694 return pte; 644 return pte; 695 } 645 } 696 #endif 646 #endif 697 647 698 #ifndef clear_full_ptes 648 #ifndef clear_full_ptes 699 /** 649 /** 700 * clear_full_ptes - Clear present PTEs that m 650 * clear_full_ptes - Clear present PTEs that map consecutive pages of the same 701 * folio. 651 * folio. 702 * @mm: Address space the pages are mapped int 652 * @mm: Address space the pages are mapped into. 703 * @addr: Address the first page is mapped at. 653 * @addr: Address the first page is mapped at. 704 * @ptep: Page table pointer for the first ent 654 * @ptep: Page table pointer for the first entry. 705 * @nr: Number of entries to clear. 655 * @nr: Number of entries to clear. 706 * @full: Whether we are clearing a full mm. 656 * @full: Whether we are clearing a full mm. 707 * 657 * 708 * May be overridden by the architecture; othe 658 * May be overridden by the architecture; otherwise, implemented as a simple 709 * loop over ptep_get_and_clear_full(). 659 * loop over ptep_get_and_clear_full(). 710 * 660 * 711 * Note that PTE bits in the PTE range besides 661 * Note that PTE bits in the PTE range besides the PFN can differ. For example, 712 * some PTEs might be write-protected. 662 * some PTEs might be write-protected. 713 * 663 * 714 * Context: The caller holds the page table lo 664 * Context: The caller holds the page table lock. The PTEs map consecutive 715 * pages that belong to the same folio. The P 665 * pages that belong to the same folio. The PTEs are all in the same PMD. 716 */ 666 */ 717 static inline void clear_full_ptes(struct mm_s 667 static inline void clear_full_ptes(struct mm_struct *mm, unsigned long addr, 718 pte_t *ptep, unsigned int nr, 668 pte_t *ptep, unsigned int nr, int full) 719 { 669 { 720 for (;;) { 670 for (;;) { 721 ptep_get_and_clear_full(mm, ad 671 ptep_get_and_clear_full(mm, addr, ptep, full); 722 if (--nr == 0) 672 if (--nr == 0) 723 break; 673 break; 724 ptep++; 674 ptep++; 725 addr += PAGE_SIZE; 675 addr += PAGE_SIZE; 726 } 676 } 727 } 677 } 728 #endif 678 #endif 729 679 730 /* 680 /* 731 * If two threads concurrently fault at the sa 681 * If two threads concurrently fault at the same page, the thread that 732 * won the race updates the PTE and its local 682 * won the race updates the PTE and its local TLB/Cache. The other thread 733 * gives up, simply does nothing, and continue 683 * gives up, simply does nothing, and continues; on architectures where 734 * software can update TLB, local TLB can be 684 * software can update TLB, local TLB can be updated here to avoid next page 735 * fault. This function updates TLB only, do n 685 * fault. This function updates TLB only, do nothing with cache or others. 736 * It is the difference with function update_m 686 * It is the difference with function update_mmu_cache. 737 */ 687 */ 738 #ifndef update_mmu_tlb_range !! 688 #ifndef __HAVE_ARCH_UPDATE_MMU_TLB 739 static inline void update_mmu_tlb_range(struct << 740 unsigned long << 741 { << 742 } << 743 #endif << 744 << 745 static inline void update_mmu_tlb(struct vm_ar 689 static inline void update_mmu_tlb(struct vm_area_struct *vma, 746 unsigned long 690 unsigned long address, pte_t *ptep) 747 { 691 { 748 update_mmu_tlb_range(vma, address, pte << 749 } 692 } >> 693 #define __HAVE_ARCH_UPDATE_MMU_TLB >> 694 #endif 750 695 751 /* 696 /* 752 * Some architectures may be able to avoid exp 697 * Some architectures may be able to avoid expensive synchronization 753 * primitives when modifications are made to P 698 * primitives when modifications are made to PTE's which are already 754 * not present, or in the process of an addres 699 * not present, or in the process of an address space destruction. 755 */ 700 */ 756 #ifndef __HAVE_ARCH_PTE_CLEAR_NOT_PRESENT_FULL 701 #ifndef __HAVE_ARCH_PTE_CLEAR_NOT_PRESENT_FULL 757 static inline void pte_clear_not_present_full( 702 static inline void pte_clear_not_present_full(struct mm_struct *mm, 758 703 unsigned long address, 759 704 pte_t *ptep, 760 705 int full) 761 { 706 { 762 pte_clear(mm, address, ptep); 707 pte_clear(mm, address, ptep); 763 } 708 } 764 #endif 709 #endif 765 710 766 #ifndef clear_not_present_full_ptes << 767 /** << 768 * clear_not_present_full_ptes - Clear multipl << 769 * consecutive i << 770 * @mm: Address space the ptes represent. << 771 * @addr: Address of the first pte. << 772 * @ptep: Page table pointer for the first ent << 773 * @nr: Number of entries to clear. << 774 * @full: Whether we are clearing a full mm. << 775 * << 776 * May be overridden by the architecture; othe << 777 * loop over pte_clear_not_present_full(). << 778 * << 779 * Context: The caller holds the page table lo << 780 * The PTEs are all in the same PMD. << 781 */ << 782 static inline void clear_not_present_full_ptes << 783 unsigned long addr, pte_t *pte << 784 { << 785 for (;;) { << 786 pte_clear_not_present_full(mm, << 787 if (--nr == 0) << 788 break; << 789 ptep++; << 790 addr += PAGE_SIZE; << 791 } << 792 } << 793 #endif << 794 << 795 #ifndef __HAVE_ARCH_PTEP_CLEAR_FLUSH 711 #ifndef __HAVE_ARCH_PTEP_CLEAR_FLUSH 796 extern pte_t ptep_clear_flush(struct vm_area_s 712 extern pte_t ptep_clear_flush(struct vm_area_struct *vma, 797 unsigned long ad 713 unsigned long address, 798 pte_t *ptep); 714 pte_t *ptep); 799 #endif 715 #endif 800 716 801 #ifndef __HAVE_ARCH_PMDP_HUGE_CLEAR_FLUSH 717 #ifndef __HAVE_ARCH_PMDP_HUGE_CLEAR_FLUSH 802 extern pmd_t pmdp_huge_clear_flush(struct vm_a 718 extern pmd_t pmdp_huge_clear_flush(struct vm_area_struct *vma, 803 unsigned long ad 719 unsigned long address, 804 pmd_t *pmdp); 720 pmd_t *pmdp); 805 extern pud_t pudp_huge_clear_flush(struct vm_a 721 extern pud_t pudp_huge_clear_flush(struct vm_area_struct *vma, 806 unsigned long ad 722 unsigned long address, 807 pud_t *pudp); 723 pud_t *pudp); 808 #endif 724 #endif 809 725 810 #ifndef pte_mkwrite 726 #ifndef pte_mkwrite 811 static inline pte_t pte_mkwrite(pte_t pte, str 727 static inline pte_t pte_mkwrite(pte_t pte, struct vm_area_struct *vma) 812 { 728 { 813 return pte_mkwrite_novma(pte); 729 return pte_mkwrite_novma(pte); 814 } 730 } 815 #endif 731 #endif 816 732 817 #if defined(CONFIG_ARCH_WANT_PMD_MKWRITE) && ! 733 #if defined(CONFIG_ARCH_WANT_PMD_MKWRITE) && !defined(pmd_mkwrite) 818 static inline pmd_t pmd_mkwrite(pmd_t pmd, str 734 static inline pmd_t pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma) 819 { 735 { 820 return pmd_mkwrite_novma(pmd); 736 return pmd_mkwrite_novma(pmd); 821 } 737 } 822 #endif 738 #endif 823 739 824 #ifndef __HAVE_ARCH_PTEP_SET_WRPROTECT 740 #ifndef __HAVE_ARCH_PTEP_SET_WRPROTECT 825 struct mm_struct; 741 struct mm_struct; 826 static inline void ptep_set_wrprotect(struct m 742 static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long address, pte_t *ptep) 827 { 743 { 828 pte_t old_pte = ptep_get(ptep); 744 pte_t old_pte = ptep_get(ptep); 829 set_pte_at(mm, address, ptep, pte_wrpr 745 set_pte_at(mm, address, ptep, pte_wrprotect(old_pte)); 830 } 746 } 831 #endif 747 #endif 832 748 833 #ifndef wrprotect_ptes 749 #ifndef wrprotect_ptes 834 /** 750 /** 835 * wrprotect_ptes - Write-protect PTEs that ma 751 * wrprotect_ptes - Write-protect PTEs that map consecutive pages of the same 836 * folio. 752 * folio. 837 * @mm: Address space the pages are mapped int 753 * @mm: Address space the pages are mapped into. 838 * @addr: Address the first page is mapped at. 754 * @addr: Address the first page is mapped at. 839 * @ptep: Page table pointer for the first ent 755 * @ptep: Page table pointer for the first entry. 840 * @nr: Number of entries to write-protect. 756 * @nr: Number of entries to write-protect. 841 * 757 * 842 * May be overridden by the architecture; othe 758 * May be overridden by the architecture; otherwise, implemented as a simple 843 * loop over ptep_set_wrprotect(). 759 * loop over ptep_set_wrprotect(). 844 * 760 * 845 * Note that PTE bits in the PTE range besides 761 * Note that PTE bits in the PTE range besides the PFN can differ. For example, 846 * some PTEs might be write-protected. 762 * some PTEs might be write-protected. 847 * 763 * 848 * Context: The caller holds the page table lo 764 * Context: The caller holds the page table lock. The PTEs map consecutive 849 * pages that belong to the same folio. The P 765 * pages that belong to the same folio. The PTEs are all in the same PMD. 850 */ 766 */ 851 static inline void wrprotect_ptes(struct mm_st 767 static inline void wrprotect_ptes(struct mm_struct *mm, unsigned long addr, 852 pte_t *ptep, unsigned int nr) 768 pte_t *ptep, unsigned int nr) 853 { 769 { 854 for (;;) { 770 for (;;) { 855 ptep_set_wrprotect(mm, addr, p 771 ptep_set_wrprotect(mm, addr, ptep); 856 if (--nr == 0) 772 if (--nr == 0) 857 break; 773 break; 858 ptep++; 774 ptep++; 859 addr += PAGE_SIZE; 775 addr += PAGE_SIZE; 860 } 776 } 861 } 777 } 862 #endif 778 #endif 863 779 864 /* 780 /* 865 * On some architectures hardware does not set 781 * On some architectures hardware does not set page access bit when accessing 866 * memory page, it is responsibility of softwa 782 * memory page, it is responsibility of software setting this bit. It brings 867 * out extra page fault penalty to track page 783 * out extra page fault penalty to track page access bit. For optimization page 868 * access bit can be set during all page fault 784 * access bit can be set during all page fault flow on these arches. 869 * To be differentiate with macro pte_mkyoung, 785 * To be differentiate with macro pte_mkyoung, this macro is used on platforms 870 * where software maintains page access bit. 786 * where software maintains page access bit. 871 */ 787 */ 872 #ifndef pte_sw_mkyoung 788 #ifndef pte_sw_mkyoung 873 static inline pte_t pte_sw_mkyoung(pte_t pte) 789 static inline pte_t pte_sw_mkyoung(pte_t pte) 874 { 790 { 875 return pte; 791 return pte; 876 } 792 } 877 #define pte_sw_mkyoung pte_sw_mkyoung 793 #define pte_sw_mkyoung pte_sw_mkyoung 878 #endif 794 #endif 879 795 880 #ifndef __HAVE_ARCH_PMDP_SET_WRPROTECT 796 #ifndef __HAVE_ARCH_PMDP_SET_WRPROTECT 881 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 797 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 882 static inline void pmdp_set_wrprotect(struct m 798 static inline void pmdp_set_wrprotect(struct mm_struct *mm, 883 unsigned 799 unsigned long address, pmd_t *pmdp) 884 { 800 { 885 pmd_t old_pmd = *pmdp; 801 pmd_t old_pmd = *pmdp; 886 set_pmd_at(mm, address, pmdp, pmd_wrpr 802 set_pmd_at(mm, address, pmdp, pmd_wrprotect(old_pmd)); 887 } 803 } 888 #else 804 #else 889 static inline void pmdp_set_wrprotect(struct m 805 static inline void pmdp_set_wrprotect(struct mm_struct *mm, 890 unsigned 806 unsigned long address, pmd_t *pmdp) 891 { 807 { 892 BUILD_BUG(); 808 BUILD_BUG(); 893 } 809 } 894 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 810 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 895 #endif 811 #endif 896 #ifndef __HAVE_ARCH_PUDP_SET_WRPROTECT 812 #ifndef __HAVE_ARCH_PUDP_SET_WRPROTECT 897 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_P 813 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD 898 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 814 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 899 static inline void pudp_set_wrprotect(struct m 815 static inline void pudp_set_wrprotect(struct mm_struct *mm, 900 unsigned 816 unsigned long address, pud_t *pudp) 901 { 817 { 902 pud_t old_pud = *pudp; 818 pud_t old_pud = *pudp; 903 819 904 set_pud_at(mm, address, pudp, pud_wrpr 820 set_pud_at(mm, address, pudp, pud_wrprotect(old_pud)); 905 } 821 } 906 #else 822 #else 907 static inline void pudp_set_wrprotect(struct m 823 static inline void pudp_set_wrprotect(struct mm_struct *mm, 908 unsigned 824 unsigned long address, pud_t *pudp) 909 { 825 { 910 BUILD_BUG(); 826 BUILD_BUG(); 911 } 827 } 912 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 828 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 913 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAG 829 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */ 914 #endif 830 #endif 915 831 916 #ifndef pmdp_collapse_flush 832 #ifndef pmdp_collapse_flush 917 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 833 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 918 extern pmd_t pmdp_collapse_flush(struct vm_are 834 extern pmd_t pmdp_collapse_flush(struct vm_area_struct *vma, 919 unsigned long 835 unsigned long address, pmd_t *pmdp); 920 #else 836 #else 921 static inline pmd_t pmdp_collapse_flush(struct 837 static inline pmd_t pmdp_collapse_flush(struct vm_area_struct *vma, 922 unsign 838 unsigned long address, 923 pmd_t 839 pmd_t *pmdp) 924 { 840 { 925 BUILD_BUG(); 841 BUILD_BUG(); 926 return *pmdp; 842 return *pmdp; 927 } 843 } 928 #define pmdp_collapse_flush pmdp_collapse_flus 844 #define pmdp_collapse_flush pmdp_collapse_flush 929 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 845 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 930 #endif 846 #endif 931 847 932 #ifndef __HAVE_ARCH_PGTABLE_DEPOSIT 848 #ifndef __HAVE_ARCH_PGTABLE_DEPOSIT 933 extern void pgtable_trans_huge_deposit(struct 849 extern void pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp, 934 pgtable 850 pgtable_t pgtable); 935 #endif 851 #endif 936 852 937 #ifndef __HAVE_ARCH_PGTABLE_WITHDRAW 853 #ifndef __HAVE_ARCH_PGTABLE_WITHDRAW 938 extern pgtable_t pgtable_trans_huge_withdraw(s 854 extern pgtable_t pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp); 939 #endif 855 #endif 940 856 941 #ifndef arch_needs_pgtable_deposit 857 #ifndef arch_needs_pgtable_deposit 942 #define arch_needs_pgtable_deposit() (false) 858 #define arch_needs_pgtable_deposit() (false) 943 #endif 859 #endif 944 860 945 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 861 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 946 /* 862 /* 947 * This is an implementation of pmdp_establish 863 * This is an implementation of pmdp_establish() that is only suitable for an 948 * architecture that doesn't have hardware dir 864 * architecture that doesn't have hardware dirty/accessed bits. In this case we 949 * can't race with CPU which sets these bits a 865 * can't race with CPU which sets these bits and non-atomic approach is fine. 950 */ 866 */ 951 static inline pmd_t generic_pmdp_establish(str 867 static inline pmd_t generic_pmdp_establish(struct vm_area_struct *vma, 952 unsigned long address, pmd_t * 868 unsigned long address, pmd_t *pmdp, pmd_t pmd) 953 { 869 { 954 pmd_t old_pmd = *pmdp; 870 pmd_t old_pmd = *pmdp; 955 set_pmd_at(vma->vm_mm, address, pmdp, 871 set_pmd_at(vma->vm_mm, address, pmdp, pmd); 956 return old_pmd; 872 return old_pmd; 957 } 873 } 958 #endif 874 #endif 959 875 960 #ifndef __HAVE_ARCH_PMDP_INVALIDATE 876 #ifndef __HAVE_ARCH_PMDP_INVALIDATE 961 extern pmd_t pmdp_invalidate(struct vm_area_st 877 extern pmd_t pmdp_invalidate(struct vm_area_struct *vma, unsigned long address, 962 pmd_t *pmdp); 878 pmd_t *pmdp); 963 #endif 879 #endif 964 880 965 #ifndef __HAVE_ARCH_PMDP_INVALIDATE_AD 881 #ifndef __HAVE_ARCH_PMDP_INVALIDATE_AD 966 882 967 /* 883 /* 968 * pmdp_invalidate_ad() invalidates the PMD wh 884 * pmdp_invalidate_ad() invalidates the PMD while changing a transparent 969 * hugepage mapping in the page tables. This f 885 * hugepage mapping in the page tables. This function is similar to 970 * pmdp_invalidate(), but should only be used 886 * pmdp_invalidate(), but should only be used if the access and dirty bits would 971 * not be cleared by the software in the new P 887 * not be cleared by the software in the new PMD value. The function ensures 972 * that hardware changes of the access and dir 888 * that hardware changes of the access and dirty bits updates would not be lost. 973 * 889 * 974 * Doing so can allow in certain architectures 890 * Doing so can allow in certain architectures to avoid a TLB flush in most 975 * cases. Yet, another TLB flush might be nece 891 * cases. Yet, another TLB flush might be necessary later if the PMD update 976 * itself requires such flush (e.g., if protec 892 * itself requires such flush (e.g., if protection was set to be stricter). Yet, 977 * even when a TLB flush is needed because of 893 * even when a TLB flush is needed because of the update, the caller may be able 978 * to batch these TLB flushing operations, so 894 * to batch these TLB flushing operations, so fewer TLB flush operations are 979 * needed. 895 * needed. 980 */ 896 */ 981 extern pmd_t pmdp_invalidate_ad(struct vm_area 897 extern pmd_t pmdp_invalidate_ad(struct vm_area_struct *vma, 982 unsigned long 898 unsigned long address, pmd_t *pmdp); 983 #endif 899 #endif 984 900 985 #ifndef __HAVE_ARCH_PTE_SAME 901 #ifndef __HAVE_ARCH_PTE_SAME 986 static inline int pte_same(pte_t pte_a, pte_t 902 static inline int pte_same(pte_t pte_a, pte_t pte_b) 987 { 903 { 988 return pte_val(pte_a) == pte_val(pte_b 904 return pte_val(pte_a) == pte_val(pte_b); 989 } 905 } 990 #endif 906 #endif 991 907 992 #ifndef __HAVE_ARCH_PTE_UNUSED 908 #ifndef __HAVE_ARCH_PTE_UNUSED 993 /* 909 /* 994 * Some architectures provide facilities to vi 910 * Some architectures provide facilities to virtualization guests 995 * so that they can flag allocated pages as un 911 * so that they can flag allocated pages as unused. This allows the 996 * host to transparently reclaim unused pages. 912 * host to transparently reclaim unused pages. This function returns 997 * whether the pte's page is unused. 913 * whether the pte's page is unused. 998 */ 914 */ 999 static inline int pte_unused(pte_t pte) 915 static inline int pte_unused(pte_t pte) 1000 { 916 { 1001 return 0; 917 return 0; 1002 } 918 } 1003 #endif 919 #endif 1004 920 1005 #ifndef pte_access_permitted 921 #ifndef pte_access_permitted 1006 #define pte_access_permitted(pte, write) \ 922 #define pte_access_permitted(pte, write) \ 1007 (pte_present(pte) && (!(write) || pte 923 (pte_present(pte) && (!(write) || pte_write(pte))) 1008 #endif 924 #endif 1009 925 1010 #ifndef pmd_access_permitted 926 #ifndef pmd_access_permitted 1011 #define pmd_access_permitted(pmd, write) \ 927 #define pmd_access_permitted(pmd, write) \ 1012 (pmd_present(pmd) && (!(write) || pmd 928 (pmd_present(pmd) && (!(write) || pmd_write(pmd))) 1013 #endif 929 #endif 1014 930 1015 #ifndef pud_access_permitted 931 #ifndef pud_access_permitted 1016 #define pud_access_permitted(pud, write) \ 932 #define pud_access_permitted(pud, write) \ 1017 (pud_present(pud) && (!(write) || pud 933 (pud_present(pud) && (!(write) || pud_write(pud))) 1018 #endif 934 #endif 1019 935 1020 #ifndef p4d_access_permitted 936 #ifndef p4d_access_permitted 1021 #define p4d_access_permitted(p4d, write) \ 937 #define p4d_access_permitted(p4d, write) \ 1022 (p4d_present(p4d) && (!(write) || p4d 938 (p4d_present(p4d) && (!(write) || p4d_write(p4d))) 1023 #endif 939 #endif 1024 940 1025 #ifndef pgd_access_permitted 941 #ifndef pgd_access_permitted 1026 #define pgd_access_permitted(pgd, write) \ 942 #define pgd_access_permitted(pgd, write) \ 1027 (pgd_present(pgd) && (!(write) || pgd 943 (pgd_present(pgd) && (!(write) || pgd_write(pgd))) 1028 #endif 944 #endif 1029 945 1030 #ifndef __HAVE_ARCH_PMD_SAME 946 #ifndef __HAVE_ARCH_PMD_SAME 1031 static inline int pmd_same(pmd_t pmd_a, pmd_t 947 static inline int pmd_same(pmd_t pmd_a, pmd_t pmd_b) 1032 { 948 { 1033 return pmd_val(pmd_a) == pmd_val(pmd_ 949 return pmd_val(pmd_a) == pmd_val(pmd_b); 1034 } 950 } 1035 #endif 951 #endif 1036 952 1037 #ifndef pud_same 953 #ifndef pud_same 1038 static inline int pud_same(pud_t pud_a, pud_t 954 static inline int pud_same(pud_t pud_a, pud_t pud_b) 1039 { 955 { 1040 return pud_val(pud_a) == pud_val(pud_ 956 return pud_val(pud_a) == pud_val(pud_b); 1041 } 957 } 1042 #define pud_same pud_same 958 #define pud_same pud_same 1043 #endif 959 #endif 1044 960 1045 #ifndef __HAVE_ARCH_P4D_SAME 961 #ifndef __HAVE_ARCH_P4D_SAME 1046 static inline int p4d_same(p4d_t p4d_a, p4d_t 962 static inline int p4d_same(p4d_t p4d_a, p4d_t p4d_b) 1047 { 963 { 1048 return p4d_val(p4d_a) == p4d_val(p4d_ 964 return p4d_val(p4d_a) == p4d_val(p4d_b); 1049 } 965 } 1050 #endif 966 #endif 1051 967 1052 #ifndef __HAVE_ARCH_PGD_SAME 968 #ifndef __HAVE_ARCH_PGD_SAME 1053 static inline int pgd_same(pgd_t pgd_a, pgd_t 969 static inline int pgd_same(pgd_t pgd_a, pgd_t pgd_b) 1054 { 970 { 1055 return pgd_val(pgd_a) == pgd_val(pgd_ 971 return pgd_val(pgd_a) == pgd_val(pgd_b); 1056 } 972 } 1057 #endif 973 #endif 1058 974 1059 /* 975 /* 1060 * Use set_p*_safe(), and elide TLB flushing, 976 * Use set_p*_safe(), and elide TLB flushing, when confident that *no* 1061 * TLB flush will be required as a result of 977 * TLB flush will be required as a result of the "set". For example, use 1062 * in scenarios where it is known ahead of ti 978 * in scenarios where it is known ahead of time that the routine is 1063 * setting non-present entries, or re-setting 979 * setting non-present entries, or re-setting an existing entry to the 1064 * same value. Otherwise, use the typical "se 980 * same value. Otherwise, use the typical "set" helpers and flush the 1065 * TLB. 981 * TLB. 1066 */ 982 */ 1067 #define set_pte_safe(ptep, pte) \ 983 #define set_pte_safe(ptep, pte) \ 1068 ({ \ 984 ({ \ 1069 WARN_ON_ONCE(pte_present(*ptep) && !p 985 WARN_ON_ONCE(pte_present(*ptep) && !pte_same(*ptep, pte)); \ 1070 set_pte(ptep, pte); \ 986 set_pte(ptep, pte); \ 1071 }) 987 }) 1072 988 1073 #define set_pmd_safe(pmdp, pmd) \ 989 #define set_pmd_safe(pmdp, pmd) \ 1074 ({ \ 990 ({ \ 1075 WARN_ON_ONCE(pmd_present(*pmdp) && !p 991 WARN_ON_ONCE(pmd_present(*pmdp) && !pmd_same(*pmdp, pmd)); \ 1076 set_pmd(pmdp, pmd); \ 992 set_pmd(pmdp, pmd); \ 1077 }) 993 }) 1078 994 1079 #define set_pud_safe(pudp, pud) \ 995 #define set_pud_safe(pudp, pud) \ 1080 ({ \ 996 ({ \ 1081 WARN_ON_ONCE(pud_present(*pudp) && !p 997 WARN_ON_ONCE(pud_present(*pudp) && !pud_same(*pudp, pud)); \ 1082 set_pud(pudp, pud); \ 998 set_pud(pudp, pud); \ 1083 }) 999 }) 1084 1000 1085 #define set_p4d_safe(p4dp, p4d) \ 1001 #define set_p4d_safe(p4dp, p4d) \ 1086 ({ \ 1002 ({ \ 1087 WARN_ON_ONCE(p4d_present(*p4dp) && !p 1003 WARN_ON_ONCE(p4d_present(*p4dp) && !p4d_same(*p4dp, p4d)); \ 1088 set_p4d(p4dp, p4d); \ 1004 set_p4d(p4dp, p4d); \ 1089 }) 1005 }) 1090 1006 1091 #define set_pgd_safe(pgdp, pgd) \ 1007 #define set_pgd_safe(pgdp, pgd) \ 1092 ({ \ 1008 ({ \ 1093 WARN_ON_ONCE(pgd_present(*pgdp) && !p 1009 WARN_ON_ONCE(pgd_present(*pgdp) && !pgd_same(*pgdp, pgd)); \ 1094 set_pgd(pgdp, pgd); \ 1010 set_pgd(pgdp, pgd); \ 1095 }) 1011 }) 1096 1012 1097 #ifndef __HAVE_ARCH_DO_SWAP_PAGE 1013 #ifndef __HAVE_ARCH_DO_SWAP_PAGE 1098 static inline void arch_do_swap_page_nr(struc << 1099 struct v << 1100 unsigned << 1101 pte_t pt << 1102 int nr) << 1103 { << 1104 << 1105 } << 1106 #else << 1107 /* 1014 /* 1108 * Some architectures support metadata associ 1015 * Some architectures support metadata associated with a page. When a 1109 * page is being swapped out, this metadata m 1016 * page is being swapped out, this metadata must be saved so it can be 1110 * restored when the page is swapped back in. 1017 * restored when the page is swapped back in. SPARC M7 and newer 1111 * processors support an ADI (Application Dat 1018 * processors support an ADI (Application Data Integrity) tag for the 1112 * page as metadata for the page. arch_do_swa 1019 * page as metadata for the page. arch_do_swap_page() can restore this 1113 * metadata when a page is swapped back in. 1020 * metadata when a page is swapped back in. 1114 */ 1021 */ 1115 static inline void arch_do_swap_page_nr(struc !! 1022 static inline void arch_do_swap_page(struct mm_struct *mm, 1116 struc !! 1023 struct vm_area_struct *vma, 1117 unsig !! 1024 unsigned long addr, 1118 pte_t !! 1025 pte_t pte, pte_t oldpte) 1119 int n !! 1026 { 1120 { !! 1027 1121 for (int i = 0; i < nr; i++) { << 1122 arch_do_swap_page(vma->vm_mm, << 1123 pte_advance_p << 1124 pte_advance_p << 1125 } << 1126 } 1028 } 1127 #endif 1029 #endif 1128 1030 1129 #ifndef __HAVE_ARCH_UNMAP_ONE 1031 #ifndef __HAVE_ARCH_UNMAP_ONE 1130 /* 1032 /* 1131 * Some architectures support metadata associ 1033 * Some architectures support metadata associated with a page. When a 1132 * page is being swapped out, this metadata m 1034 * page is being swapped out, this metadata must be saved so it can be 1133 * restored when the page is swapped back in. 1035 * restored when the page is swapped back in. SPARC M7 and newer 1134 * processors support an ADI (Application Dat 1036 * processors support an ADI (Application Data Integrity) tag for the 1135 * page as metadata for the page. arch_unmap_ 1037 * page as metadata for the page. arch_unmap_one() can save this 1136 * metadata on a swap-out of a page. 1038 * metadata on a swap-out of a page. 1137 */ 1039 */ 1138 static inline int arch_unmap_one(struct mm_st 1040 static inline int arch_unmap_one(struct mm_struct *mm, 1139 struct vm_a 1041 struct vm_area_struct *vma, 1140 unsigned lo 1042 unsigned long addr, 1141 pte_t orig_ 1043 pte_t orig_pte) 1142 { 1044 { 1143 return 0; 1045 return 0; 1144 } 1046 } 1145 #endif 1047 #endif 1146 1048 1147 /* 1049 /* 1148 * Allow architectures to preserve additional 1050 * Allow architectures to preserve additional metadata associated with 1149 * swapped-out pages. The corresponding __HAV 1051 * swapped-out pages. The corresponding __HAVE_ARCH_SWAP_* macros and function 1150 * prototypes must be defined in the arch-spe 1052 * prototypes must be defined in the arch-specific asm/pgtable.h file. 1151 */ 1053 */ 1152 #ifndef __HAVE_ARCH_PREPARE_TO_SWAP 1054 #ifndef __HAVE_ARCH_PREPARE_TO_SWAP 1153 static inline int arch_prepare_to_swap(struct !! 1055 static inline int arch_prepare_to_swap(struct page *page) 1154 { 1056 { 1155 return 0; 1057 return 0; 1156 } 1058 } 1157 #endif 1059 #endif 1158 1060 1159 #ifndef __HAVE_ARCH_SWAP_INVALIDATE 1061 #ifndef __HAVE_ARCH_SWAP_INVALIDATE 1160 static inline void arch_swap_invalidate_page( 1062 static inline void arch_swap_invalidate_page(int type, pgoff_t offset) 1161 { 1063 { 1162 } 1064 } 1163 1065 1164 static inline void arch_swap_invalidate_area( 1066 static inline void arch_swap_invalidate_area(int type) 1165 { 1067 { 1166 } 1068 } 1167 #endif 1069 #endif 1168 1070 1169 #ifndef __HAVE_ARCH_SWAP_RESTORE 1071 #ifndef __HAVE_ARCH_SWAP_RESTORE 1170 static inline void arch_swap_restore(swp_entr 1072 static inline void arch_swap_restore(swp_entry_t entry, struct folio *folio) 1171 { 1073 { 1172 } 1074 } 1173 #endif 1075 #endif 1174 1076 1175 #ifndef __HAVE_ARCH_PGD_OFFSET_GATE 1077 #ifndef __HAVE_ARCH_PGD_OFFSET_GATE 1176 #define pgd_offset_gate(mm, addr) pgd_o 1078 #define pgd_offset_gate(mm, addr) pgd_offset(mm, addr) 1177 #endif 1079 #endif 1178 1080 1179 #ifndef __HAVE_ARCH_MOVE_PTE 1081 #ifndef __HAVE_ARCH_MOVE_PTE 1180 #define move_pte(pte, old_addr, new_addr) !! 1082 #define move_pte(pte, prot, old_addr, new_addr) (pte) 1181 #endif 1083 #endif 1182 1084 1183 #ifndef pte_accessible 1085 #ifndef pte_accessible 1184 # define pte_accessible(mm, pte) ((voi 1086 # define pte_accessible(mm, pte) ((void)(pte), 1) 1185 #endif 1087 #endif 1186 1088 1187 #ifndef flush_tlb_fix_spurious_fault 1089 #ifndef flush_tlb_fix_spurious_fault 1188 #define flush_tlb_fix_spurious_fault(vma, add 1090 #define flush_tlb_fix_spurious_fault(vma, address, ptep) flush_tlb_page(vma, address) 1189 #endif 1091 #endif 1190 1092 1191 /* 1093 /* 1192 * When walking page tables, get the address 1094 * When walking page tables, get the address of the next boundary, 1193 * or the end address of the range if that co 1095 * or the end address of the range if that comes earlier. Although no 1194 * vma end wraps to 0, rounded up __boundary 1096 * vma end wraps to 0, rounded up __boundary may wrap to 0 throughout. 1195 */ 1097 */ 1196 1098 1197 #define pgd_addr_end(addr, end) 1099 #define pgd_addr_end(addr, end) \ 1198 ({ unsigned long __boundary = ((addr) + 1100 ({ unsigned long __boundary = ((addr) + PGDIR_SIZE) & PGDIR_MASK; \ 1199 (__boundary - 1 < (end) - 1)? __bound 1101 (__boundary - 1 < (end) - 1)? __boundary: (end); \ 1200 }) 1102 }) 1201 1103 1202 #ifndef p4d_addr_end 1104 #ifndef p4d_addr_end 1203 #define p4d_addr_end(addr, end) 1105 #define p4d_addr_end(addr, end) \ 1204 ({ unsigned long __boundary = ((addr) + 1106 ({ unsigned long __boundary = ((addr) + P4D_SIZE) & P4D_MASK; \ 1205 (__boundary - 1 < (end) - 1)? __bound 1107 (__boundary - 1 < (end) - 1)? __boundary: (end); \ 1206 }) 1108 }) 1207 #endif 1109 #endif 1208 1110 1209 #ifndef pud_addr_end 1111 #ifndef pud_addr_end 1210 #define pud_addr_end(addr, end) 1112 #define pud_addr_end(addr, end) \ 1211 ({ unsigned long __boundary = ((addr) + 1113 ({ unsigned long __boundary = ((addr) + PUD_SIZE) & PUD_MASK; \ 1212 (__boundary - 1 < (end) - 1)? __bound 1114 (__boundary - 1 < (end) - 1)? __boundary: (end); \ 1213 }) 1115 }) 1214 #endif 1116 #endif 1215 1117 1216 #ifndef pmd_addr_end 1118 #ifndef pmd_addr_end 1217 #define pmd_addr_end(addr, end) 1119 #define pmd_addr_end(addr, end) \ 1218 ({ unsigned long __boundary = ((addr) + 1120 ({ unsigned long __boundary = ((addr) + PMD_SIZE) & PMD_MASK; \ 1219 (__boundary - 1 < (end) - 1)? __bound 1121 (__boundary - 1 < (end) - 1)? __boundary: (end); \ 1220 }) 1122 }) 1221 #endif 1123 #endif 1222 1124 1223 /* 1125 /* 1224 * When walking page tables, we usually want 1126 * When walking page tables, we usually want to skip any p?d_none entries; 1225 * and any p?d_bad entries - reporting the er 1127 * and any p?d_bad entries - reporting the error before resetting to none. 1226 * Do the tests inline, but report and clear 1128 * Do the tests inline, but report and clear the bad entry in mm/memory.c. 1227 */ 1129 */ 1228 void pgd_clear_bad(pgd_t *); 1130 void pgd_clear_bad(pgd_t *); 1229 1131 1230 #ifndef __PAGETABLE_P4D_FOLDED 1132 #ifndef __PAGETABLE_P4D_FOLDED 1231 void p4d_clear_bad(p4d_t *); 1133 void p4d_clear_bad(p4d_t *); 1232 #else 1134 #else 1233 #define p4d_clear_bad(p4d) do { } whil 1135 #define p4d_clear_bad(p4d) do { } while (0) 1234 #endif 1136 #endif 1235 1137 1236 #ifndef __PAGETABLE_PUD_FOLDED 1138 #ifndef __PAGETABLE_PUD_FOLDED 1237 void pud_clear_bad(pud_t *); 1139 void pud_clear_bad(pud_t *); 1238 #else 1140 #else 1239 #define pud_clear_bad(p4d) do { } whil 1141 #define pud_clear_bad(p4d) do { } while (0) 1240 #endif 1142 #endif 1241 1143 1242 void pmd_clear_bad(pmd_t *); 1144 void pmd_clear_bad(pmd_t *); 1243 1145 1244 static inline int pgd_none_or_clear_bad(pgd_t 1146 static inline int pgd_none_or_clear_bad(pgd_t *pgd) 1245 { 1147 { 1246 if (pgd_none(*pgd)) 1148 if (pgd_none(*pgd)) 1247 return 1; 1149 return 1; 1248 if (unlikely(pgd_bad(*pgd))) { 1150 if (unlikely(pgd_bad(*pgd))) { 1249 pgd_clear_bad(pgd); 1151 pgd_clear_bad(pgd); 1250 return 1; 1152 return 1; 1251 } 1153 } 1252 return 0; 1154 return 0; 1253 } 1155 } 1254 1156 1255 static inline int p4d_none_or_clear_bad(p4d_t 1157 static inline int p4d_none_or_clear_bad(p4d_t *p4d) 1256 { 1158 { 1257 if (p4d_none(*p4d)) 1159 if (p4d_none(*p4d)) 1258 return 1; 1160 return 1; 1259 if (unlikely(p4d_bad(*p4d))) { 1161 if (unlikely(p4d_bad(*p4d))) { 1260 p4d_clear_bad(p4d); 1162 p4d_clear_bad(p4d); 1261 return 1; 1163 return 1; 1262 } 1164 } 1263 return 0; 1165 return 0; 1264 } 1166 } 1265 1167 1266 static inline int pud_none_or_clear_bad(pud_t 1168 static inline int pud_none_or_clear_bad(pud_t *pud) 1267 { 1169 { 1268 if (pud_none(*pud)) 1170 if (pud_none(*pud)) 1269 return 1; 1171 return 1; 1270 if (unlikely(pud_bad(*pud))) { 1172 if (unlikely(pud_bad(*pud))) { 1271 pud_clear_bad(pud); 1173 pud_clear_bad(pud); 1272 return 1; 1174 return 1; 1273 } 1175 } 1274 return 0; 1176 return 0; 1275 } 1177 } 1276 1178 1277 static inline int pmd_none_or_clear_bad(pmd_t 1179 static inline int pmd_none_or_clear_bad(pmd_t *pmd) 1278 { 1180 { 1279 if (pmd_none(*pmd)) 1181 if (pmd_none(*pmd)) 1280 return 1; 1182 return 1; 1281 if (unlikely(pmd_bad(*pmd))) { 1183 if (unlikely(pmd_bad(*pmd))) { 1282 pmd_clear_bad(pmd); 1184 pmd_clear_bad(pmd); 1283 return 1; 1185 return 1; 1284 } 1186 } 1285 return 0; 1187 return 0; 1286 } 1188 } 1287 1189 1288 static inline pte_t __ptep_modify_prot_start( 1190 static inline pte_t __ptep_modify_prot_start(struct vm_area_struct *vma, 1289 1191 unsigned long addr, 1290 1192 pte_t *ptep) 1291 { 1193 { 1292 /* 1194 /* 1293 * Get the current pte state, but zer 1195 * Get the current pte state, but zero it out to make it 1294 * non-present, preventing the hardwa 1196 * non-present, preventing the hardware from asynchronously 1295 * updating it. 1197 * updating it. 1296 */ 1198 */ 1297 return ptep_get_and_clear(vma->vm_mm, 1199 return ptep_get_and_clear(vma->vm_mm, addr, ptep); 1298 } 1200 } 1299 1201 1300 static inline void __ptep_modify_prot_commit( 1202 static inline void __ptep_modify_prot_commit(struct vm_area_struct *vma, 1301 1203 unsigned long addr, 1302 1204 pte_t *ptep, pte_t pte) 1303 { 1205 { 1304 /* 1206 /* 1305 * The pte is non-present, so there's 1207 * The pte is non-present, so there's no hardware state to 1306 * preserve. 1208 * preserve. 1307 */ 1209 */ 1308 set_pte_at(vma->vm_mm, addr, ptep, pt 1210 set_pte_at(vma->vm_mm, addr, ptep, pte); 1309 } 1211 } 1310 1212 1311 #ifndef __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACT 1213 #ifndef __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION 1312 /* 1214 /* 1313 * Start a pte protection read-modify-write t 1215 * Start a pte protection read-modify-write transaction, which 1314 * protects against asynchronous hardware mod 1216 * protects against asynchronous hardware modifications to the pte. 1315 * The intention is not to prevent the hardwa 1217 * The intention is not to prevent the hardware from making pte 1316 * updates, but to prevent any updates it may 1218 * updates, but to prevent any updates it may make from being lost. 1317 * 1219 * 1318 * This does not protect against other softwa 1220 * This does not protect against other software modifications of the 1319 * pte; the appropriate pte lock must be held 1221 * pte; the appropriate pte lock must be held over the transaction. 1320 * 1222 * 1321 * Note that this interface is intended to be 1223 * Note that this interface is intended to be batchable, meaning that 1322 * ptep_modify_prot_commit may not actually u 1224 * ptep_modify_prot_commit may not actually update the pte, but merely 1323 * queue the update to be done at some later 1225 * queue the update to be done at some later time. The update must be 1324 * actually committed before the pte lock is 1226 * actually committed before the pte lock is released, however. 1325 */ 1227 */ 1326 static inline pte_t ptep_modify_prot_start(st 1228 static inline pte_t ptep_modify_prot_start(struct vm_area_struct *vma, 1327 un 1229 unsigned long addr, 1328 pt 1230 pte_t *ptep) 1329 { 1231 { 1330 return __ptep_modify_prot_start(vma, 1232 return __ptep_modify_prot_start(vma, addr, ptep); 1331 } 1233 } 1332 1234 1333 /* 1235 /* 1334 * Commit an update to a pte, leaving any har 1236 * Commit an update to a pte, leaving any hardware-controlled bits in 1335 * the PTE unmodified. 1237 * the PTE unmodified. 1336 */ 1238 */ 1337 static inline void ptep_modify_prot_commit(st 1239 static inline void ptep_modify_prot_commit(struct vm_area_struct *vma, 1338 un 1240 unsigned long addr, 1339 pt 1241 pte_t *ptep, pte_t old_pte, pte_t pte) 1340 { 1242 { 1341 __ptep_modify_prot_commit(vma, addr, 1243 __ptep_modify_prot_commit(vma, addr, ptep, pte); 1342 } 1244 } 1343 #endif /* __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSA 1245 #endif /* __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION */ 1344 #endif /* CONFIG_MMU */ 1246 #endif /* CONFIG_MMU */ 1345 1247 1346 /* 1248 /* 1347 * No-op macros that just return the current 1249 * No-op macros that just return the current protection value. Defined here 1348 * because these macros can be used even if C 1250 * because these macros can be used even if CONFIG_MMU is not defined. 1349 */ 1251 */ 1350 1252 1351 #ifndef pgprot_nx 1253 #ifndef pgprot_nx 1352 #define pgprot_nx(prot) (prot) 1254 #define pgprot_nx(prot) (prot) 1353 #endif 1255 #endif 1354 1256 1355 #ifndef pgprot_noncached 1257 #ifndef pgprot_noncached 1356 #define pgprot_noncached(prot) (prot) 1258 #define pgprot_noncached(prot) (prot) 1357 #endif 1259 #endif 1358 1260 1359 #ifndef pgprot_writecombine 1261 #ifndef pgprot_writecombine 1360 #define pgprot_writecombine pgprot_noncached 1262 #define pgprot_writecombine pgprot_noncached 1361 #endif 1263 #endif 1362 1264 1363 #ifndef pgprot_writethrough 1265 #ifndef pgprot_writethrough 1364 #define pgprot_writethrough pgprot_noncached 1266 #define pgprot_writethrough pgprot_noncached 1365 #endif 1267 #endif 1366 1268 1367 #ifndef pgprot_device 1269 #ifndef pgprot_device 1368 #define pgprot_device pgprot_noncached 1270 #define pgprot_device pgprot_noncached 1369 #endif 1271 #endif 1370 1272 1371 #ifndef pgprot_mhp 1273 #ifndef pgprot_mhp 1372 #define pgprot_mhp(prot) (prot) 1274 #define pgprot_mhp(prot) (prot) 1373 #endif 1275 #endif 1374 1276 1375 #ifdef CONFIG_MMU 1277 #ifdef CONFIG_MMU 1376 #ifndef pgprot_modify 1278 #ifndef pgprot_modify 1377 #define pgprot_modify pgprot_modify 1279 #define pgprot_modify pgprot_modify 1378 static inline pgprot_t pgprot_modify(pgprot_t 1280 static inline pgprot_t pgprot_modify(pgprot_t oldprot, pgprot_t newprot) 1379 { 1281 { 1380 if (pgprot_val(oldprot) == pgprot_val 1282 if (pgprot_val(oldprot) == pgprot_val(pgprot_noncached(oldprot))) 1381 newprot = pgprot_noncached(ne 1283 newprot = pgprot_noncached(newprot); 1382 if (pgprot_val(oldprot) == pgprot_val 1284 if (pgprot_val(oldprot) == pgprot_val(pgprot_writecombine(oldprot))) 1383 newprot = pgprot_writecombine 1285 newprot = pgprot_writecombine(newprot); 1384 if (pgprot_val(oldprot) == pgprot_val 1286 if (pgprot_val(oldprot) == pgprot_val(pgprot_device(oldprot))) 1385 newprot = pgprot_device(newpr 1287 newprot = pgprot_device(newprot); 1386 return newprot; 1288 return newprot; 1387 } 1289 } 1388 #endif 1290 #endif 1389 #endif /* CONFIG_MMU */ 1291 #endif /* CONFIG_MMU */ 1390 1292 1391 #ifndef pgprot_encrypted 1293 #ifndef pgprot_encrypted 1392 #define pgprot_encrypted(prot) (prot) 1294 #define pgprot_encrypted(prot) (prot) 1393 #endif 1295 #endif 1394 1296 1395 #ifndef pgprot_decrypted 1297 #ifndef pgprot_decrypted 1396 #define pgprot_decrypted(prot) (prot) 1298 #define pgprot_decrypted(prot) (prot) 1397 #endif 1299 #endif 1398 1300 1399 /* 1301 /* 1400 * A facility to provide batching of the relo 1302 * A facility to provide batching of the reload of page tables and 1401 * other process state with the actual contex 1303 * other process state with the actual context switch code for 1402 * paravirtualized guests. By convention, on 1304 * paravirtualized guests. By convention, only one of the batched 1403 * update (lazy) modes (CPU, MMU) should be a 1305 * update (lazy) modes (CPU, MMU) should be active at any given time, 1404 * entry should never be nested, and entry an 1306 * entry should never be nested, and entry and exits should always be 1405 * paired. This is for sanity of maintaining 1307 * paired. This is for sanity of maintaining and reasoning about the 1406 * kernel code. In this case, the exit (end 1308 * kernel code. In this case, the exit (end of the context switch) is 1407 * in architecture-specific code, and so does 1309 * in architecture-specific code, and so doesn't need a generic 1408 * definition. 1310 * definition. 1409 */ 1311 */ 1410 #ifndef __HAVE_ARCH_START_CONTEXT_SWITCH 1312 #ifndef __HAVE_ARCH_START_CONTEXT_SWITCH 1411 #define arch_start_context_switch(prev) do {} 1313 #define arch_start_context_switch(prev) do {} while (0) 1412 #endif 1314 #endif 1413 1315 1414 #ifdef CONFIG_HAVE_ARCH_SOFT_DIRTY 1316 #ifdef CONFIG_HAVE_ARCH_SOFT_DIRTY 1415 #ifndef CONFIG_ARCH_ENABLE_THP_MIGRATION 1317 #ifndef CONFIG_ARCH_ENABLE_THP_MIGRATION 1416 static inline pmd_t pmd_swp_mksoft_dirty(pmd_ 1318 static inline pmd_t pmd_swp_mksoft_dirty(pmd_t pmd) 1417 { 1319 { 1418 return pmd; 1320 return pmd; 1419 } 1321 } 1420 1322 1421 static inline int pmd_swp_soft_dirty(pmd_t pm 1323 static inline int pmd_swp_soft_dirty(pmd_t pmd) 1422 { 1324 { 1423 return 0; 1325 return 0; 1424 } 1326 } 1425 1327 1426 static inline pmd_t pmd_swp_clear_soft_dirty( 1328 static inline pmd_t pmd_swp_clear_soft_dirty(pmd_t pmd) 1427 { 1329 { 1428 return pmd; 1330 return pmd; 1429 } 1331 } 1430 #endif 1332 #endif 1431 #else /* !CONFIG_HAVE_ARCH_SOFT_DIRTY */ 1333 #else /* !CONFIG_HAVE_ARCH_SOFT_DIRTY */ 1432 static inline int pte_soft_dirty(pte_t pte) 1334 static inline int pte_soft_dirty(pte_t pte) 1433 { 1335 { 1434 return 0; 1336 return 0; 1435 } 1337 } 1436 1338 1437 static inline int pmd_soft_dirty(pmd_t pmd) 1339 static inline int pmd_soft_dirty(pmd_t pmd) 1438 { 1340 { 1439 return 0; 1341 return 0; 1440 } 1342 } 1441 1343 1442 static inline pte_t pte_mksoft_dirty(pte_t pt 1344 static inline pte_t pte_mksoft_dirty(pte_t pte) 1443 { 1345 { 1444 return pte; 1346 return pte; 1445 } 1347 } 1446 1348 1447 static inline pmd_t pmd_mksoft_dirty(pmd_t pm 1349 static inline pmd_t pmd_mksoft_dirty(pmd_t pmd) 1448 { 1350 { 1449 return pmd; 1351 return pmd; 1450 } 1352 } 1451 1353 1452 static inline pte_t pte_clear_soft_dirty(pte_ 1354 static inline pte_t pte_clear_soft_dirty(pte_t pte) 1453 { 1355 { 1454 return pte; 1356 return pte; 1455 } 1357 } 1456 1358 1457 static inline pmd_t pmd_clear_soft_dirty(pmd_ 1359 static inline pmd_t pmd_clear_soft_dirty(pmd_t pmd) 1458 { 1360 { 1459 return pmd; 1361 return pmd; 1460 } 1362 } 1461 1363 1462 static inline pte_t pte_swp_mksoft_dirty(pte_ 1364 static inline pte_t pte_swp_mksoft_dirty(pte_t pte) 1463 { 1365 { 1464 return pte; 1366 return pte; 1465 } 1367 } 1466 1368 1467 static inline int pte_swp_soft_dirty(pte_t pt 1369 static inline int pte_swp_soft_dirty(pte_t pte) 1468 { 1370 { 1469 return 0; 1371 return 0; 1470 } 1372 } 1471 1373 1472 static inline pte_t pte_swp_clear_soft_dirty( 1374 static inline pte_t pte_swp_clear_soft_dirty(pte_t pte) 1473 { 1375 { 1474 return pte; 1376 return pte; 1475 } 1377 } 1476 1378 1477 static inline pmd_t pmd_swp_mksoft_dirty(pmd_ 1379 static inline pmd_t pmd_swp_mksoft_dirty(pmd_t pmd) 1478 { 1380 { 1479 return pmd; 1381 return pmd; 1480 } 1382 } 1481 1383 1482 static inline int pmd_swp_soft_dirty(pmd_t pm 1384 static inline int pmd_swp_soft_dirty(pmd_t pmd) 1483 { 1385 { 1484 return 0; 1386 return 0; 1485 } 1387 } 1486 1388 1487 static inline pmd_t pmd_swp_clear_soft_dirty( 1389 static inline pmd_t pmd_swp_clear_soft_dirty(pmd_t pmd) 1488 { 1390 { 1489 return pmd; 1391 return pmd; 1490 } 1392 } 1491 #endif 1393 #endif 1492 1394 1493 #ifndef __HAVE_PFNMAP_TRACKING 1395 #ifndef __HAVE_PFNMAP_TRACKING 1494 /* 1396 /* 1495 * Interfaces that can be used by architectur 1397 * Interfaces that can be used by architecture code to keep track of 1496 * memory type of pfn mappings specified by t 1398 * memory type of pfn mappings specified by the remap_pfn_range, 1497 * vmf_insert_pfn. 1399 * vmf_insert_pfn. 1498 */ 1400 */ 1499 1401 1500 /* 1402 /* 1501 * track_pfn_remap is called when a _new_ pfn 1403 * track_pfn_remap is called when a _new_ pfn mapping is being established 1502 * by remap_pfn_range() for physical range in 1404 * by remap_pfn_range() for physical range indicated by pfn and size. 1503 */ 1405 */ 1504 static inline int track_pfn_remap(struct vm_a 1406 static inline int track_pfn_remap(struct vm_area_struct *vma, pgprot_t *prot, 1505 unsigned lo 1407 unsigned long pfn, unsigned long addr, 1506 unsigned lo 1408 unsigned long size) 1507 { 1409 { 1508 return 0; 1410 return 0; 1509 } 1411 } 1510 1412 1511 /* 1413 /* 1512 * track_pfn_insert is called when a _new_ si 1414 * track_pfn_insert is called when a _new_ single pfn is established 1513 * by vmf_insert_pfn(). 1415 * by vmf_insert_pfn(). 1514 */ 1416 */ 1515 static inline void track_pfn_insert(struct vm 1417 static inline void track_pfn_insert(struct vm_area_struct *vma, pgprot_t *prot, 1516 pfn_t pfn 1418 pfn_t pfn) 1517 { 1419 { 1518 } 1420 } 1519 1421 1520 /* 1422 /* 1521 * track_pfn_copy is called when vma that is 1423 * track_pfn_copy is called when vma that is covering the pfnmap gets 1522 * copied through copy_page_range(). 1424 * copied through copy_page_range(). 1523 */ 1425 */ 1524 static inline int track_pfn_copy(struct vm_ar 1426 static inline int track_pfn_copy(struct vm_area_struct *vma) 1525 { 1427 { 1526 return 0; 1428 return 0; 1527 } 1429 } 1528 1430 1529 /* 1431 /* 1530 * untrack_pfn is called while unmapping a pf 1432 * untrack_pfn is called while unmapping a pfnmap for a region. 1531 * untrack can be called for a specific regio 1433 * untrack can be called for a specific region indicated by pfn and size or 1532 * can be for the entire vma (in which case p 1434 * can be for the entire vma (in which case pfn, size are zero). 1533 */ 1435 */ 1534 static inline void untrack_pfn(struct vm_area 1436 static inline void untrack_pfn(struct vm_area_struct *vma, 1535 unsigned long 1437 unsigned long pfn, unsigned long size, 1536 bool mm_wr_loc 1438 bool mm_wr_locked) 1537 { 1439 { 1538 } 1440 } 1539 1441 1540 /* 1442 /* 1541 * untrack_pfn_clear is called while mremappi 1443 * untrack_pfn_clear is called while mremapping a pfnmap for a new region 1542 * or fails to copy pgtable during duplicate 1444 * or fails to copy pgtable during duplicate vm area. 1543 */ 1445 */ 1544 static inline void untrack_pfn_clear(struct v 1446 static inline void untrack_pfn_clear(struct vm_area_struct *vma) 1545 { 1447 { 1546 } 1448 } 1547 #else 1449 #else 1548 extern int track_pfn_remap(struct vm_area_str 1450 extern int track_pfn_remap(struct vm_area_struct *vma, pgprot_t *prot, 1549 unsigned long pfn, 1451 unsigned long pfn, unsigned long addr, 1550 unsigned long size 1452 unsigned long size); 1551 extern void track_pfn_insert(struct vm_area_s 1453 extern void track_pfn_insert(struct vm_area_struct *vma, pgprot_t *prot, 1552 pfn_t pfn); 1454 pfn_t pfn); 1553 extern int track_pfn_copy(struct vm_area_stru 1455 extern int track_pfn_copy(struct vm_area_struct *vma); 1554 extern void untrack_pfn(struct vm_area_struct 1456 extern void untrack_pfn(struct vm_area_struct *vma, unsigned long pfn, 1555 unsigned long size, b 1457 unsigned long size, bool mm_wr_locked); 1556 extern void untrack_pfn_clear(struct vm_area_ 1458 extern void untrack_pfn_clear(struct vm_area_struct *vma); 1557 #endif 1459 #endif 1558 1460 1559 #ifdef CONFIG_MMU 1461 #ifdef CONFIG_MMU 1560 #ifdef __HAVE_COLOR_ZERO_PAGE 1462 #ifdef __HAVE_COLOR_ZERO_PAGE 1561 static inline int is_zero_pfn(unsigned long p 1463 static inline int is_zero_pfn(unsigned long pfn) 1562 { 1464 { 1563 extern unsigned long zero_pfn; 1465 extern unsigned long zero_pfn; 1564 unsigned long offset_from_zero_pfn = 1466 unsigned long offset_from_zero_pfn = pfn - zero_pfn; 1565 return offset_from_zero_pfn <= (zero_ 1467 return offset_from_zero_pfn <= (zero_page_mask >> PAGE_SHIFT); 1566 } 1468 } 1567 1469 1568 #define my_zero_pfn(addr) page_to_pfn(Z 1470 #define my_zero_pfn(addr) page_to_pfn(ZERO_PAGE(addr)) 1569 1471 1570 #else 1472 #else 1571 static inline int is_zero_pfn(unsigned long p 1473 static inline int is_zero_pfn(unsigned long pfn) 1572 { 1474 { 1573 extern unsigned long zero_pfn; 1475 extern unsigned long zero_pfn; 1574 return pfn == zero_pfn; 1476 return pfn == zero_pfn; 1575 } 1477 } 1576 1478 1577 static inline unsigned long my_zero_pfn(unsig 1479 static inline unsigned long my_zero_pfn(unsigned long addr) 1578 { 1480 { 1579 extern unsigned long zero_pfn; 1481 extern unsigned long zero_pfn; 1580 return zero_pfn; 1482 return zero_pfn; 1581 } 1483 } 1582 #endif 1484 #endif 1583 #else 1485 #else 1584 static inline int is_zero_pfn(unsigned long p 1486 static inline int is_zero_pfn(unsigned long pfn) 1585 { 1487 { 1586 return 0; 1488 return 0; 1587 } 1489 } 1588 1490 1589 static inline unsigned long my_zero_pfn(unsig 1491 static inline unsigned long my_zero_pfn(unsigned long addr) 1590 { 1492 { 1591 return 0; 1493 return 0; 1592 } 1494 } 1593 #endif /* CONFIG_MMU */ 1495 #endif /* CONFIG_MMU */ 1594 1496 1595 #ifdef CONFIG_MMU 1497 #ifdef CONFIG_MMU 1596 1498 1597 #ifndef CONFIG_TRANSPARENT_HUGEPAGE 1499 #ifndef CONFIG_TRANSPARENT_HUGEPAGE 1598 static inline int pmd_trans_huge(pmd_t pmd) 1500 static inline int pmd_trans_huge(pmd_t pmd) 1599 { 1501 { 1600 return 0; 1502 return 0; 1601 } 1503 } 1602 #ifndef pmd_write 1504 #ifndef pmd_write 1603 static inline int pmd_write(pmd_t pmd) 1505 static inline int pmd_write(pmd_t pmd) 1604 { 1506 { 1605 BUG(); 1507 BUG(); 1606 return 0; 1508 return 0; 1607 } 1509 } 1608 #endif /* pmd_write */ 1510 #endif /* pmd_write */ 1609 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 1511 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 1610 1512 1611 #ifndef pud_write 1513 #ifndef pud_write 1612 static inline int pud_write(pud_t pud) 1514 static inline int pud_write(pud_t pud) 1613 { 1515 { 1614 BUG(); 1516 BUG(); 1615 return 0; 1517 return 0; 1616 } 1518 } 1617 #endif /* pud_write */ 1519 #endif /* pud_write */ 1618 1520 1619 #if !defined(CONFIG_ARCH_HAS_PTE_DEVMAP) || ! 1521 #if !defined(CONFIG_ARCH_HAS_PTE_DEVMAP) || !defined(CONFIG_TRANSPARENT_HUGEPAGE) 1620 static inline int pmd_devmap(pmd_t pmd) 1522 static inline int pmd_devmap(pmd_t pmd) 1621 { 1523 { 1622 return 0; 1524 return 0; 1623 } 1525 } 1624 static inline int pud_devmap(pud_t pud) 1526 static inline int pud_devmap(pud_t pud) 1625 { 1527 { 1626 return 0; 1528 return 0; 1627 } 1529 } 1628 static inline int pgd_devmap(pgd_t pgd) 1530 static inline int pgd_devmap(pgd_t pgd) 1629 { 1531 { 1630 return 0; 1532 return 0; 1631 } 1533 } 1632 #endif 1534 #endif 1633 1535 1634 #if !defined(CONFIG_TRANSPARENT_HUGEPAGE) || 1536 #if !defined(CONFIG_TRANSPARENT_HUGEPAGE) || \ 1635 !defined(CONFIG_HAVE_ARCH_TRANSPARENT 1537 !defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD) 1636 static inline int pud_trans_huge(pud_t pud) 1538 static inline int pud_trans_huge(pud_t pud) 1637 { 1539 { 1638 return 0; 1540 return 0; 1639 } 1541 } 1640 #endif 1542 #endif 1641 1543 1642 static inline int pud_trans_unstable(pud_t *p 1544 static inline int pud_trans_unstable(pud_t *pud) 1643 { 1545 { 1644 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && \ 1546 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && \ 1645 defined(CONFIG_HAVE_ARCH_TRANSPARENT_ 1547 defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD) 1646 pud_t pudval = READ_ONCE(*pud); 1548 pud_t pudval = READ_ONCE(*pud); 1647 1549 1648 if (pud_none(pudval) || pud_trans_hug 1550 if (pud_none(pudval) || pud_trans_huge(pudval) || pud_devmap(pudval)) 1649 return 1; 1551 return 1; 1650 if (unlikely(pud_bad(pudval))) { 1552 if (unlikely(pud_bad(pudval))) { 1651 pud_clear_bad(pud); 1553 pud_clear_bad(pud); 1652 return 1; 1554 return 1; 1653 } 1555 } 1654 #endif 1556 #endif 1655 return 0; 1557 return 0; 1656 } 1558 } 1657 1559 1658 #ifndef CONFIG_NUMA_BALANCING 1560 #ifndef CONFIG_NUMA_BALANCING 1659 /* 1561 /* 1660 * In an inaccessible (PROT_NONE) VMA, pte_pr 1562 * In an inaccessible (PROT_NONE) VMA, pte_protnone() may indicate "yes". It is 1661 * perfectly valid to indicate "no" in that c 1563 * perfectly valid to indicate "no" in that case, which is why our default 1662 * implementation defaults to "always no". 1564 * implementation defaults to "always no". 1663 * 1565 * 1664 * In an accessible VMA, however, pte_protnon 1566 * In an accessible VMA, however, pte_protnone() reliably indicates PROT_NONE 1665 * page protection due to NUMA hinting. NUMA 1567 * page protection due to NUMA hinting. NUMA hinting faults only apply in 1666 * accessible VMAs. 1568 * accessible VMAs. 1667 * 1569 * 1668 * So, to reliably identify PROT_NONE PTEs th 1570 * So, to reliably identify PROT_NONE PTEs that require a NUMA hinting fault, 1669 * looking at the VMA accessibility is suffic 1571 * looking at the VMA accessibility is sufficient. 1670 */ 1572 */ 1671 static inline int pte_protnone(pte_t pte) 1573 static inline int pte_protnone(pte_t pte) 1672 { 1574 { 1673 return 0; 1575 return 0; 1674 } 1576 } 1675 1577 1676 static inline int pmd_protnone(pmd_t pmd) 1578 static inline int pmd_protnone(pmd_t pmd) 1677 { 1579 { 1678 return 0; 1580 return 0; 1679 } 1581 } 1680 #endif /* CONFIG_NUMA_BALANCING */ 1582 #endif /* CONFIG_NUMA_BALANCING */ 1681 1583 1682 #endif /* CONFIG_MMU */ 1584 #endif /* CONFIG_MMU */ 1683 1585 1684 #ifdef CONFIG_HAVE_ARCH_HUGE_VMAP 1586 #ifdef CONFIG_HAVE_ARCH_HUGE_VMAP 1685 1587 1686 #ifndef __PAGETABLE_P4D_FOLDED 1588 #ifndef __PAGETABLE_P4D_FOLDED 1687 int p4d_set_huge(p4d_t *p4d, phys_addr_t addr 1589 int p4d_set_huge(p4d_t *p4d, phys_addr_t addr, pgprot_t prot); 1688 void p4d_clear_huge(p4d_t *p4d); 1590 void p4d_clear_huge(p4d_t *p4d); 1689 #else 1591 #else 1690 static inline int p4d_set_huge(p4d_t *p4d, ph 1592 static inline int p4d_set_huge(p4d_t *p4d, phys_addr_t addr, pgprot_t prot) 1691 { 1593 { 1692 return 0; 1594 return 0; 1693 } 1595 } 1694 static inline void p4d_clear_huge(p4d_t *p4d) 1596 static inline void p4d_clear_huge(p4d_t *p4d) { } 1695 #endif /* !__PAGETABLE_P4D_FOLDED */ 1597 #endif /* !__PAGETABLE_P4D_FOLDED */ 1696 1598 1697 int pud_set_huge(pud_t *pud, phys_addr_t addr 1599 int pud_set_huge(pud_t *pud, phys_addr_t addr, pgprot_t prot); 1698 int pmd_set_huge(pmd_t *pmd, phys_addr_t addr 1600 int pmd_set_huge(pmd_t *pmd, phys_addr_t addr, pgprot_t prot); 1699 int pud_clear_huge(pud_t *pud); 1601 int pud_clear_huge(pud_t *pud); 1700 int pmd_clear_huge(pmd_t *pmd); 1602 int pmd_clear_huge(pmd_t *pmd); 1701 int p4d_free_pud_page(p4d_t *p4d, unsigned lo 1603 int p4d_free_pud_page(p4d_t *p4d, unsigned long addr); 1702 int pud_free_pmd_page(pud_t *pud, unsigned lo 1604 int pud_free_pmd_page(pud_t *pud, unsigned long addr); 1703 int pmd_free_pte_page(pmd_t *pmd, unsigned lo 1605 int pmd_free_pte_page(pmd_t *pmd, unsigned long addr); 1704 #else /* !CONFIG_HAVE_ARCH_HUGE_VMAP */ 1606 #else /* !CONFIG_HAVE_ARCH_HUGE_VMAP */ 1705 static inline int p4d_set_huge(p4d_t *p4d, ph 1607 static inline int p4d_set_huge(p4d_t *p4d, phys_addr_t addr, pgprot_t prot) 1706 { 1608 { 1707 return 0; 1609 return 0; 1708 } 1610 } 1709 static inline int pud_set_huge(pud_t *pud, ph 1611 static inline int pud_set_huge(pud_t *pud, phys_addr_t addr, pgprot_t prot) 1710 { 1612 { 1711 return 0; 1613 return 0; 1712 } 1614 } 1713 static inline int pmd_set_huge(pmd_t *pmd, ph 1615 static inline int pmd_set_huge(pmd_t *pmd, phys_addr_t addr, pgprot_t prot) 1714 { 1616 { 1715 return 0; 1617 return 0; 1716 } 1618 } 1717 static inline void p4d_clear_huge(p4d_t *p4d) 1619 static inline void p4d_clear_huge(p4d_t *p4d) { } 1718 static inline int pud_clear_huge(pud_t *pud) 1620 static inline int pud_clear_huge(pud_t *pud) 1719 { 1621 { 1720 return 0; 1622 return 0; 1721 } 1623 } 1722 static inline int pmd_clear_huge(pmd_t *pmd) 1624 static inline int pmd_clear_huge(pmd_t *pmd) 1723 { 1625 { 1724 return 0; 1626 return 0; 1725 } 1627 } 1726 static inline int p4d_free_pud_page(p4d_t *p4 1628 static inline int p4d_free_pud_page(p4d_t *p4d, unsigned long addr) 1727 { 1629 { 1728 return 0; 1630 return 0; 1729 } 1631 } 1730 static inline int pud_free_pmd_page(pud_t *pu 1632 static inline int pud_free_pmd_page(pud_t *pud, unsigned long addr) 1731 { 1633 { 1732 return 0; 1634 return 0; 1733 } 1635 } 1734 static inline int pmd_free_pte_page(pmd_t *pm 1636 static inline int pmd_free_pte_page(pmd_t *pmd, unsigned long addr) 1735 { 1637 { 1736 return 0; 1638 return 0; 1737 } 1639 } 1738 #endif /* CONFIG_HAVE_ARCH_HUGE_VMAP */ 1640 #endif /* CONFIG_HAVE_ARCH_HUGE_VMAP */ 1739 1641 1740 #ifndef __HAVE_ARCH_FLUSH_PMD_TLB_RANGE 1642 #ifndef __HAVE_ARCH_FLUSH_PMD_TLB_RANGE 1741 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1643 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1742 /* 1644 /* 1743 * ARCHes with special requirements for evict 1645 * ARCHes with special requirements for evicting THP backing TLB entries can 1744 * implement this. Otherwise also, it can hel 1646 * implement this. Otherwise also, it can help optimize normal TLB flush in 1745 * THP regime. Stock flush_tlb_range() typica 1647 * THP regime. Stock flush_tlb_range() typically has optimization to nuke the 1746 * entire TLB if flush span is greater than a 1648 * entire TLB if flush span is greater than a threshold, which will 1747 * likely be true for a single huge page. Thu 1649 * likely be true for a single huge page. Thus a single THP flush will 1748 * invalidate the entire TLB which is not des 1650 * invalidate the entire TLB which is not desirable. 1749 * e.g. see arch/arc: flush_pmd_tlb_range 1651 * e.g. see arch/arc: flush_pmd_tlb_range 1750 */ 1652 */ 1751 #define flush_pmd_tlb_range(vma, addr, end) 1653 #define flush_pmd_tlb_range(vma, addr, end) flush_tlb_range(vma, addr, end) 1752 #define flush_pud_tlb_range(vma, addr, end) 1654 #define flush_pud_tlb_range(vma, addr, end) flush_tlb_range(vma, addr, end) 1753 #else 1655 #else 1754 #define flush_pmd_tlb_range(vma, addr, end) 1656 #define flush_pmd_tlb_range(vma, addr, end) BUILD_BUG() 1755 #define flush_pud_tlb_range(vma, addr, end) 1657 #define flush_pud_tlb_range(vma, addr, end) BUILD_BUG() 1756 #endif 1658 #endif 1757 #endif 1659 #endif 1758 1660 1759 struct file; 1661 struct file; 1760 int phys_mem_access_prot_allowed(struct file 1662 int phys_mem_access_prot_allowed(struct file *file, unsigned long pfn, 1761 unsigned long size, p 1663 unsigned long size, pgprot_t *vma_prot); 1762 1664 1763 #ifndef CONFIG_X86_ESPFIX64 1665 #ifndef CONFIG_X86_ESPFIX64 1764 static inline void init_espfix_bsp(void) { } 1666 static inline void init_espfix_bsp(void) { } 1765 #endif 1667 #endif 1766 1668 1767 extern void __init pgtable_cache_init(void); 1669 extern void __init pgtable_cache_init(void); 1768 1670 1769 #ifndef __HAVE_ARCH_PFN_MODIFY_ALLOWED 1671 #ifndef __HAVE_ARCH_PFN_MODIFY_ALLOWED 1770 static inline bool pfn_modify_allowed(unsigne 1672 static inline bool pfn_modify_allowed(unsigned long pfn, pgprot_t prot) 1771 { 1673 { 1772 return true; 1674 return true; 1773 } 1675 } 1774 1676 1775 static inline bool arch_has_pfn_modify_check( 1677 static inline bool arch_has_pfn_modify_check(void) 1776 { 1678 { 1777 return false; 1679 return false; 1778 } 1680 } 1779 #endif /* !_HAVE_ARCH_PFN_MODIFY_ALLOWED */ 1681 #endif /* !_HAVE_ARCH_PFN_MODIFY_ALLOWED */ 1780 1682 1781 /* 1683 /* 1782 * Architecture PAGE_KERNEL_* fallbacks 1684 * Architecture PAGE_KERNEL_* fallbacks 1783 * 1685 * 1784 * Some architectures don't define certain PA 1686 * Some architectures don't define certain PAGE_KERNEL_* flags. This is either 1785 * because they really don't support them, or 1687 * because they really don't support them, or the port needs to be updated to 1786 * reflect the required functionality. Below 1688 * reflect the required functionality. Below are a set of relatively safe 1787 * fallbacks, as best effort, which we can co 1689 * fallbacks, as best effort, which we can count on in lieu of the architectures 1788 * not defining them on their own yet. 1690 * not defining them on their own yet. 1789 */ 1691 */ 1790 1692 1791 #ifndef PAGE_KERNEL_RO 1693 #ifndef PAGE_KERNEL_RO 1792 # define PAGE_KERNEL_RO PAGE_KERNEL 1694 # define PAGE_KERNEL_RO PAGE_KERNEL 1793 #endif 1695 #endif 1794 1696 1795 #ifndef PAGE_KERNEL_EXEC 1697 #ifndef PAGE_KERNEL_EXEC 1796 # define PAGE_KERNEL_EXEC PAGE_KERNEL 1698 # define PAGE_KERNEL_EXEC PAGE_KERNEL 1797 #endif 1699 #endif 1798 1700 1799 /* 1701 /* 1800 * Page Table Modification bits for pgtbl_mod 1702 * Page Table Modification bits for pgtbl_mod_mask. 1801 * 1703 * 1802 * These are used by the p?d_alloc_track*() s 1704 * These are used by the p?d_alloc_track*() set of functions an in the generic 1803 * vmalloc/ioremap code to track at which pag 1705 * vmalloc/ioremap code to track at which page-table levels entries have been 1804 * modified. Based on that the code can bette 1706 * modified. Based on that the code can better decide when vmalloc and ioremap 1805 * mapping changes need to be synchronized to 1707 * mapping changes need to be synchronized to other page-tables in the system. 1806 */ 1708 */ 1807 #define __PGTBL_PGD_MODIFIED 0 1709 #define __PGTBL_PGD_MODIFIED 0 1808 #define __PGTBL_P4D_MODIFIED 1 1710 #define __PGTBL_P4D_MODIFIED 1 1809 #define __PGTBL_PUD_MODIFIED 2 1711 #define __PGTBL_PUD_MODIFIED 2 1810 #define __PGTBL_PMD_MODIFIED 3 1712 #define __PGTBL_PMD_MODIFIED 3 1811 #define __PGTBL_PTE_MODIFIED 4 1713 #define __PGTBL_PTE_MODIFIED 4 1812 1714 1813 #define PGTBL_PGD_MODIFIED BIT(_ 1715 #define PGTBL_PGD_MODIFIED BIT(__PGTBL_PGD_MODIFIED) 1814 #define PGTBL_P4D_MODIFIED BIT(_ 1716 #define PGTBL_P4D_MODIFIED BIT(__PGTBL_P4D_MODIFIED) 1815 #define PGTBL_PUD_MODIFIED BIT(_ 1717 #define PGTBL_PUD_MODIFIED BIT(__PGTBL_PUD_MODIFIED) 1816 #define PGTBL_PMD_MODIFIED BIT(_ 1718 #define PGTBL_PMD_MODIFIED BIT(__PGTBL_PMD_MODIFIED) 1817 #define PGTBL_PTE_MODIFIED BIT(_ 1719 #define PGTBL_PTE_MODIFIED BIT(__PGTBL_PTE_MODIFIED) 1818 1720 1819 /* Page-Table Modification Mask */ 1721 /* Page-Table Modification Mask */ 1820 typedef unsigned int pgtbl_mod_mask; 1722 typedef unsigned int pgtbl_mod_mask; 1821 1723 1822 #endif /* !__ASSEMBLY__ */ 1724 #endif /* !__ASSEMBLY__ */ 1823 1725 1824 #if !defined(MAX_POSSIBLE_PHYSMEM_BITS) && !d 1726 #if !defined(MAX_POSSIBLE_PHYSMEM_BITS) && !defined(CONFIG_64BIT) 1825 #ifdef CONFIG_PHYS_ADDR_T_64BIT 1727 #ifdef CONFIG_PHYS_ADDR_T_64BIT 1826 /* 1728 /* 1827 * ZSMALLOC needs to know the highest PFN on 1729 * ZSMALLOC needs to know the highest PFN on 32-bit architectures 1828 * with physical address space extension, but 1730 * with physical address space extension, but falls back to 1829 * BITS_PER_LONG otherwise. 1731 * BITS_PER_LONG otherwise. 1830 */ 1732 */ 1831 #error Missing MAX_POSSIBLE_PHYSMEM_BITS defi 1733 #error Missing MAX_POSSIBLE_PHYSMEM_BITS definition 1832 #else 1734 #else 1833 #define MAX_POSSIBLE_PHYSMEM_BITS 32 1735 #define MAX_POSSIBLE_PHYSMEM_BITS 32 1834 #endif 1736 #endif 1835 #endif 1737 #endif 1836 1738 1837 #ifndef has_transparent_hugepage 1739 #ifndef has_transparent_hugepage 1838 #define has_transparent_hugepage() IS_BUILTIN 1740 #define has_transparent_hugepage() IS_BUILTIN(CONFIG_TRANSPARENT_HUGEPAGE) 1839 #endif 1741 #endif 1840 1742 1841 #ifndef has_transparent_pud_hugepage 1743 #ifndef has_transparent_pud_hugepage 1842 #define has_transparent_pud_hugepage() IS_BUI 1744 #define has_transparent_pud_hugepage() IS_BUILTIN(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD) 1843 #endif 1745 #endif 1844 /* 1746 /* 1845 * On some architectures it depends on the mm 1747 * On some architectures it depends on the mm if the p4d/pud or pmd 1846 * layer of the page table hierarchy is folde 1748 * layer of the page table hierarchy is folded or not. 1847 */ 1749 */ 1848 #ifndef mm_p4d_folded 1750 #ifndef mm_p4d_folded 1849 #define mm_p4d_folded(mm) __is_defined( 1751 #define mm_p4d_folded(mm) __is_defined(__PAGETABLE_P4D_FOLDED) 1850 #endif 1752 #endif 1851 1753 1852 #ifndef mm_pud_folded 1754 #ifndef mm_pud_folded 1853 #define mm_pud_folded(mm) __is_defined( 1755 #define mm_pud_folded(mm) __is_defined(__PAGETABLE_PUD_FOLDED) 1854 #endif 1756 #endif 1855 1757 1856 #ifndef mm_pmd_folded 1758 #ifndef mm_pmd_folded 1857 #define mm_pmd_folded(mm) __is_defined( 1759 #define mm_pmd_folded(mm) __is_defined(__PAGETABLE_PMD_FOLDED) 1858 #endif 1760 #endif 1859 1761 1860 #ifndef p4d_offset_lockless 1762 #ifndef p4d_offset_lockless 1861 #define p4d_offset_lockless(pgdp, pgd, addres 1763 #define p4d_offset_lockless(pgdp, pgd, address) p4d_offset(&(pgd), address) 1862 #endif 1764 #endif 1863 #ifndef pud_offset_lockless 1765 #ifndef pud_offset_lockless 1864 #define pud_offset_lockless(p4dp, p4d, addres 1766 #define pud_offset_lockless(p4dp, p4d, address) pud_offset(&(p4d), address) 1865 #endif 1767 #endif 1866 #ifndef pmd_offset_lockless 1768 #ifndef pmd_offset_lockless 1867 #define pmd_offset_lockless(pudp, pud, addres 1769 #define pmd_offset_lockless(pudp, pud, address) pmd_offset(&(pud), address) 1868 #endif 1770 #endif 1869 1771 1870 /* 1772 /* 1871 * pXd_leaf() is the API to check whether a p !! 1773 * p?d_leaf() - true if this entry is a final mapping to a physical address. 1872 * mapping. It should work globally across a !! 1774 * This differs from p?d_huge() by the fact that they are always available (if 1873 * dependency on CONFIG_* options. For archi !! 1775 * the architecture supports large pages at the appropriate level) even 1874 * huge mappings on specific levels, below fa !! 1776 * if CONFIG_HUGETLB_PAGE is not defined. 1875 * !! 1777 * Only meaningful when called on a valid entry. 1876 * A leaf pgtable entry should always imply t << 1877 * << 1878 * - It is a "present" entry. IOW, before us << 1879 * with pXd_present() first. NOTE: it may n << 1880 * bit" is set. For example, PROT_NONE ent << 1881 * << 1882 * - It should _never_ be a swap entry of any << 1883 * should have guarded this, but let's be c << 1884 * << 1885 * - It should contain a huge PFN, which poin << 1886 * PAGE_SIZE of the platform. The PFN form << 1887 * << 1888 * - It should cover all kinds of huge mappin << 1889 * pXd_devmap(), or hugetlb mappings). << 1890 */ 1778 */ 1891 #ifndef pgd_leaf 1779 #ifndef pgd_leaf 1892 #define pgd_leaf(x) false 1780 #define pgd_leaf(x) false 1893 #endif 1781 #endif 1894 #ifndef p4d_leaf 1782 #ifndef p4d_leaf 1895 #define p4d_leaf(x) false 1783 #define p4d_leaf(x) false 1896 #endif 1784 #endif 1897 #ifndef pud_leaf 1785 #ifndef pud_leaf 1898 #define pud_leaf(x) false 1786 #define pud_leaf(x) false 1899 #endif 1787 #endif 1900 #ifndef pmd_leaf 1788 #ifndef pmd_leaf 1901 #define pmd_leaf(x) false 1789 #define pmd_leaf(x) false 1902 #endif 1790 #endif 1903 1791 1904 #ifndef pgd_leaf_size 1792 #ifndef pgd_leaf_size 1905 #define pgd_leaf_size(x) (1ULL << PGDIR_SHIFT 1793 #define pgd_leaf_size(x) (1ULL << PGDIR_SHIFT) 1906 #endif 1794 #endif 1907 #ifndef p4d_leaf_size 1795 #ifndef p4d_leaf_size 1908 #define p4d_leaf_size(x) P4D_SIZE 1796 #define p4d_leaf_size(x) P4D_SIZE 1909 #endif 1797 #endif 1910 #ifndef pud_leaf_size 1798 #ifndef pud_leaf_size 1911 #define pud_leaf_size(x) PUD_SIZE 1799 #define pud_leaf_size(x) PUD_SIZE 1912 #endif 1800 #endif 1913 #ifndef pmd_leaf_size 1801 #ifndef pmd_leaf_size 1914 #define pmd_leaf_size(x) PMD_SIZE 1802 #define pmd_leaf_size(x) PMD_SIZE 1915 #endif 1803 #endif 1916 #ifndef __pte_leaf_size << 1917 #ifndef pte_leaf_size 1804 #ifndef pte_leaf_size 1918 #define pte_leaf_size(x) PAGE_SIZE 1805 #define pte_leaf_size(x) PAGE_SIZE 1919 #endif 1806 #endif 1920 #define __pte_leaf_size(x,y) pte_leaf_size(y) << 1921 #endif << 1922 << 1923 /* << 1924 * We always define pmd_pfn for all archs as << 1925 * code. Now it happens too for pud_pfn (and << 1926 * mappings too in the future; we're not ther << 1927 * it for all archs (like pmd_pfn), provide a << 1928 * << 1929 * Note that returning 0 here means any arch << 1930 * get severely wrong when it hits a real pud << 1931 * responsibility to properly define it when << 1932 */ << 1933 #ifndef pud_pfn << 1934 #define pud_pfn(x) 0 << 1935 #endif << 1936 1807 1937 /* 1808 /* 1938 * Some architectures have MMUs that are conf 1809 * Some architectures have MMUs that are configurable or selectable at boot 1939 * time. These lead to variable PTRS_PER_x. F 1810 * time. These lead to variable PTRS_PER_x. For statically allocated arrays it 1940 * helps to have a static maximum value. 1811 * helps to have a static maximum value. 1941 */ 1812 */ 1942 1813 1943 #ifndef MAX_PTRS_PER_PTE 1814 #ifndef MAX_PTRS_PER_PTE 1944 #define MAX_PTRS_PER_PTE PTRS_PER_PTE 1815 #define MAX_PTRS_PER_PTE PTRS_PER_PTE 1945 #endif 1816 #endif 1946 1817 1947 #ifndef MAX_PTRS_PER_PMD 1818 #ifndef MAX_PTRS_PER_PMD 1948 #define MAX_PTRS_PER_PMD PTRS_PER_PMD 1819 #define MAX_PTRS_PER_PMD PTRS_PER_PMD 1949 #endif 1820 #endif 1950 1821 1951 #ifndef MAX_PTRS_PER_PUD 1822 #ifndef MAX_PTRS_PER_PUD 1952 #define MAX_PTRS_PER_PUD PTRS_PER_PUD 1823 #define MAX_PTRS_PER_PUD PTRS_PER_PUD 1953 #endif 1824 #endif 1954 1825 1955 #ifndef MAX_PTRS_PER_P4D 1826 #ifndef MAX_PTRS_PER_P4D 1956 #define MAX_PTRS_PER_P4D PTRS_PER_P4D 1827 #define MAX_PTRS_PER_P4D PTRS_PER_P4D 1957 #endif << 1958 << 1959 #ifndef pte_pgprot << 1960 #define pte_pgprot(x) ((pgprot_t) {0}) << 1961 #endif << 1962 << 1963 #ifndef pmd_pgprot << 1964 #define pmd_pgprot(x) ((pgprot_t) {0}) << 1965 #endif << 1966 << 1967 #ifndef pud_pgprot << 1968 #define pud_pgprot(x) ((pgprot_t) {0}) << 1969 #endif 1828 #endif 1970 1829 1971 /* description of effects of mapping type and 1830 /* description of effects of mapping type and prot in current implementation. 1972 * this is due to the limited x86 page protec 1831 * this is due to the limited x86 page protection hardware. The expected 1973 * behavior is in parens: 1832 * behavior is in parens: 1974 * 1833 * 1975 * map_type prot 1834 * map_type prot 1976 * PROT_NONE PROT_READ 1835 * PROT_NONE PROT_READ PROT_WRITE PROT_EXEC 1977 * MAP_SHARED r: (no) no r: (yes) yes 1836 * MAP_SHARED r: (no) no r: (yes) yes r: (no) yes r: (no) yes 1978 * w: (no) no w: (no) no 1837 * w: (no) no w: (no) no w: (yes) yes w: (no) no 1979 * x: (no) no x: (no) yes 1838 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes 1980 * 1839 * 1981 * MAP_PRIVATE r: (no) no r: (yes) yes 1840 * MAP_PRIVATE r: (no) no r: (yes) yes r: (no) yes r: (no) yes 1982 * w: (no) no w: (no) no 1841 * w: (no) no w: (no) no w: (copy) copy w: (no) no 1983 * x: (no) no x: (no) yes 1842 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes 1984 * 1843 * 1985 * On arm64, PROT_EXEC has the following beha 1844 * On arm64, PROT_EXEC has the following behaviour for both MAP_SHARED and 1986 * MAP_PRIVATE (with Enhanced PAN supported): 1845 * MAP_PRIVATE (with Enhanced PAN supported): 1987 * 1846 * r: (no) no 1988 * 1847 * w: (no) no 1989 * 1848 * x: (yes) yes 1990 */ 1849 */ 1991 #define DECLARE_VM_GET_PAGE_PROT 1850 #define DECLARE_VM_GET_PAGE_PROT \ 1992 pgprot_t vm_get_page_prot(unsigned long vm_fl 1851 pgprot_t vm_get_page_prot(unsigned long vm_flags) \ 1993 { 1852 { \ 1994 return protection_map[vm_flag 1853 return protection_map[vm_flags & \ 1995 (VM_READ | VM_WRITE | 1854 (VM_READ | VM_WRITE | VM_EXEC | VM_SHARED)]; \ 1996 } 1855 } \ 1997 EXPORT_SYMBOL(vm_get_page_prot); 1856 EXPORT_SYMBOL(vm_get_page_prot); 1998 1857 1999 #endif /* _LINUX_PGTABLE_H */ 1858 #endif /* _LINUX_PGTABLE_H */ 2000 1859
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.