1 /* SPDX-License-Identifier: GPL-2.0 */ << 2 /* 1 /* 3 * Written by Mark Hemment, 1996 (markhe@nextd !! 2 * linux/mm/slab.h 4 * !! 3 * Written by Mark Hemment, 1996. 5 * (C) SGI 2006, Christoph Lameter !! 4 * (markhe@nextd.demon.co.uk) 6 * Cleaned up and restructured to ease th << 7 * implementations of SLAB allocators. << 8 * (C) Linux Foundation 2008-2013 << 9 * Unified interface for all slab allocat << 10 */ 5 */ 11 6 12 #ifndef _LINUX_SLAB_H !! 7 #if !defined(_LINUX_SLAB_H) 13 #define _LINUX_SLAB_H 8 #define _LINUX_SLAB_H 14 9 15 #include <linux/cache.h> !! 10 #if defined(__KERNEL__) 16 #include <linux/gfp.h> << 17 #include <linux/overflow.h> << 18 #include <linux/types.h> << 19 #include <linux/workqueue.h> << 20 #include <linux/percpu-refcount.h> << 21 #include <linux/cleanup.h> << 22 #include <linux/hash.h> << 23 11 24 enum _slab_flag_bits { !! 12 typedef struct kmem_cache_s kmem_cache_t; 25 _SLAB_CONSISTENCY_CHECKS, << 26 _SLAB_RED_ZONE, << 27 _SLAB_POISON, << 28 _SLAB_KMALLOC, << 29 _SLAB_HWCACHE_ALIGN, << 30 _SLAB_CACHE_DMA, << 31 _SLAB_CACHE_DMA32, << 32 _SLAB_STORE_USER, << 33 _SLAB_PANIC, << 34 _SLAB_TYPESAFE_BY_RCU, << 35 _SLAB_TRACE, << 36 #ifdef CONFIG_DEBUG_OBJECTS << 37 _SLAB_DEBUG_OBJECTS, << 38 #endif << 39 _SLAB_NOLEAKTRACE, << 40 _SLAB_NO_MERGE, << 41 #ifdef CONFIG_FAILSLAB << 42 _SLAB_FAILSLAB, << 43 #endif << 44 #ifdef CONFIG_MEMCG << 45 _SLAB_ACCOUNT, << 46 #endif << 47 #ifdef CONFIG_KASAN_GENERIC << 48 _SLAB_KASAN, << 49 #endif << 50 _SLAB_NO_USER_FLAGS, << 51 #ifdef CONFIG_KFENCE << 52 _SLAB_SKIP_KFENCE, << 53 #endif << 54 #ifndef CONFIG_SLUB_TINY << 55 _SLAB_RECLAIM_ACCOUNT, << 56 #endif << 57 _SLAB_OBJECT_POISON, << 58 _SLAB_CMPXCHG_DOUBLE, << 59 #ifdef CONFIG_SLAB_OBJ_EXT << 60 _SLAB_NO_OBJ_EXT, << 61 #endif << 62 _SLAB_FLAGS_LAST_BIT << 63 }; << 64 13 65 #define __SLAB_FLAG_BIT(nr) ((slab_flags_t !! 14 #include <linux/mm.h> 66 #define __SLAB_FLAG_UNUSED ((slab_flags_t !! 15 #include <linux/cache.h> 67 16 68 /* !! 17 /* flags for kmem_cache_alloc() */ 69 * Flags to pass to kmem_cache_create(). !! 18 #define SLAB_NOFS GFP_NOFS 70 * The ones marked DEBUG need CONFIG_SLUB_DEBU !! 19 #define SLAB_NOIO GFP_NOIO 71 */ !! 20 #define SLAB_NOHIGHIO GFP_NOHIGHIO 72 /* DEBUG: Perform (expensive) checks on alloc/ !! 21 #define SLAB_ATOMIC GFP_ATOMIC 73 #define SLAB_CONSISTENCY_CHECKS __SLAB_FLAG_BI !! 22 #define SLAB_USER GFP_USER 74 /* DEBUG: Red zone objs in a cache */ !! 23 #define SLAB_KERNEL GFP_KERNEL 75 #define SLAB_RED_ZONE __SLAB_FLAG_BI !! 24 #define SLAB_NFS GFP_NFS 76 /* DEBUG: Poison objects */ !! 25 #define SLAB_DMA GFP_DMA 77 #define SLAB_POISON __SLAB_FLAG_BI !! 26 78 /* Indicate a kmalloc slab */ !! 27 #define SLAB_LEVEL_MASK (__GFP_WAIT|__GFP_HIGH|__GFP_IO|__GFP_HIGHIO|__GFP_FS) 79 #define SLAB_KMALLOC __SLAB_FLAG_BI !! 28 #define SLAB_NO_GROW 0x00001000UL /* don't grow a cache */ 80 /* Align objs on cache lines */ !! 29 81 #define SLAB_HWCACHE_ALIGN __SLAB_FLAG_BI !! 30 /* flags to pass to kmem_cache_create(). 82 /* Use GFP_DMA memory */ !! 31 * The first 3 are only valid when the allocator as been build 83 #define SLAB_CACHE_DMA __SLAB_FLAG_BI !! 32 * SLAB_DEBUG_SUPPORT. 84 /* Use GFP_DMA32 memory */ !! 33 */ 85 #define SLAB_CACHE_DMA32 __SLAB_FLAG_BI !! 34 #define SLAB_DEBUG_FREE 0x00000100UL /* Peform (expensive) checks on free */ 86 /* DEBUG: Store the last owner for bug hunting !! 35 #define SLAB_DEBUG_INITIAL 0x00000200UL /* Call constructor (as verifier) */ 87 #define SLAB_STORE_USER __SLAB_FLAG_BI !! 36 #define SLAB_RED_ZONE 0x00000400UL /* Red zone objs in a cache */ 88 /* Panic if kmem_cache_create() fails */ !! 37 #define SLAB_POISON 0x00000800UL /* Poison objects */ 89 #define SLAB_PANIC __SLAB_FLAG_BI !! 38 #define SLAB_NO_REAP 0x00001000UL /* never reap from the cache */ 90 /* !! 39 #define SLAB_HWCACHE_ALIGN 0x00002000UL /* align objs on a h/w cache lines */ 91 * SLAB_TYPESAFE_BY_RCU - **WARNING** READ THI !! 40 #define SLAB_CACHE_DMA 0x00004000UL /* use GFP_DMA memory */ 92 * !! 41 #define SLAB_MUST_HWCACHE_ALIGN 0x00008000UL /* force alignment */ 93 * This delays freeing the SLAB page by a grac !! 42 94 * delay object freeing. This means that if yo !! 43 /* flags passed to a constructor func */ 95 * that memory location is free to be reused a !! 44 #define SLAB_CTOR_CONSTRUCTOR 0x001UL /* if not set, then deconstructor */ 96 * be possible to see another object there in !! 45 #define SLAB_CTOR_ATOMIC 0x002UL /* tell constructor it can't sleep */ 97 * !! 46 #define SLAB_CTOR_VERIFY 0x004UL /* tell constructor it's a verify call */ 98 * This feature only ensures the memory locati !! 47 99 * stays valid, the trick to using this is rel !! 48 /* prototypes */ 100 * object validation pass. Something like: !! 49 extern void kmem_cache_init(void); 101 * !! 50 extern void kmem_cache_sizes_init(void); 102 * begin: !! 51 103 * rcu_read_lock(); !! 52 extern kmem_cache_t *kmem_find_general_cachep(size_t, int gfpflags); 104 * obj = lockless_lookup(key); !! 53 extern kmem_cache_t *kmem_cache_create(const char *, size_t, size_t, unsigned long, 105 * if (obj) { !! 54 void (*)(void *, kmem_cache_t *, unsigned long), 106 * if (!try_get_ref(obj)) // might fail for !! 55 void (*)(void *, kmem_cache_t *, unsigned long)); 107 * rcu_read_unlock(); !! 56 extern int kmem_cache_destroy(kmem_cache_t *); 108 * goto begin; !! 57 extern int kmem_cache_shrink(kmem_cache_t *); 109 * !! 58 extern void *kmem_cache_alloc(kmem_cache_t *, int); 110 * if (obj->key != key) { // not the object !! 59 extern void kmem_cache_free(kmem_cache_t *, void *); 111 * put_ref(obj); !! 60 extern unsigned int kmem_cache_size(kmem_cache_t *); 112 * rcu_read_unlock(); !! 61 113 * goto begin; !! 62 extern void *kmalloc(size_t, int); 114 * } !! 63 extern void kfree(const void *); 115 * } !! 64 116 * rcu_read_unlock(); !! 65 extern int FASTCALL(kmem_cache_reap(int)); 117 * !! 66 118 * This is useful if we need to approach a ker !! 67 /* System wide caches */ 119 * from its address obtained without the usual !! 68 extern kmem_cache_t *vm_area_cachep; 120 * the structure to stabilize it and check it' !! 69 extern kmem_cache_t *mm_cachep; 121 * only if we can be sure that the memory has !! 70 extern kmem_cache_t *names_cachep; 122 * for some other kind of object (which our su !! 71 extern kmem_cache_t *files_cachep; 123 * !! 72 extern kmem_cache_t *filp_cachep; 124 * rcu_read_lock before reading the address, t !! 73 extern kmem_cache_t *dquot_cachep; 125 * taking the spinlock within the structure ex !! 74 extern kmem_cache_t *bh_cachep; 126 * !! 75 extern kmem_cache_t *fs_cachep; 127 * Note that it is not possible to acquire a l !! 76 extern kmem_cache_t *sigact_cachep; 128 * allocated with SLAB_TYPESAFE_BY_RCU without << 129 * as described above. The reason is that SLA << 130 * are not zeroed before being given to the sl << 131 * locks must be initialized after each and ev << 132 * Alternatively, make the ctor passed to kmem << 133 * the locks at page-allocation time, as is do << 134 * sighand_ctor(), and anon_vma_ctor(). Such << 135 * to safely acquire those ctor-initialized lo << 136 * protection. << 137 * << 138 * Note that SLAB_TYPESAFE_BY_RCU was original << 139 */ << 140 /* Defer freeing slabs to RCU */ << 141 #define SLAB_TYPESAFE_BY_RCU __SLAB_FLAG_BI << 142 /* Trace allocations and frees */ << 143 #define SLAB_TRACE __SLAB_FLAG_BI << 144 << 145 /* Flag to prevent checks on free */ << 146 #ifdef CONFIG_DEBUG_OBJECTS << 147 # define SLAB_DEBUG_OBJECTS __SLAB_FLAG_BI << 148 #else << 149 # define SLAB_DEBUG_OBJECTS __SLAB_FLAG_UN << 150 #endif << 151 << 152 /* Avoid kmemleak tracing */ << 153 #define SLAB_NOLEAKTRACE __SLAB_FLAG_BI << 154 << 155 /* << 156 * Prevent merging with compatible kmem caches << 157 * cautiously. Valid use cases: << 158 * << 159 * - caches created for self-tests (e.g. kunit << 160 * - general caches created and used by a subs << 161 * (subsystem-specific) debug option is enab << 162 * - performance critical caches, should be ve << 163 * maintainers, and not used together with C << 164 */ << 165 #define SLAB_NO_MERGE __SLAB_FLAG_BI << 166 << 167 /* Fault injection mark */ << 168 #ifdef CONFIG_FAILSLAB << 169 # define SLAB_FAILSLAB __SLAB_FLAG_BI << 170 #else << 171 # define SLAB_FAILSLAB __SLAB_FLAG_UN << 172 #endif << 173 /* Account to memcg */ << 174 #ifdef CONFIG_MEMCG << 175 # define SLAB_ACCOUNT __SLAB_FLAG_BI << 176 #else << 177 # define SLAB_ACCOUNT __SLAB_FLAG_UN << 178 #endif << 179 << 180 #ifdef CONFIG_KASAN_GENERIC << 181 #define SLAB_KASAN __SLAB_FLAG_BI << 182 #else << 183 #define SLAB_KASAN __SLAB_FLAG_UN << 184 #endif << 185 << 186 /* << 187 * Ignore user specified debugging flags. << 188 * Intended for caches created for self-tests << 189 * specified in the code and other flags are i << 190 */ << 191 #define SLAB_NO_USER_FLAGS __SLAB_FLAG_BI << 192 << 193 #ifdef CONFIG_KFENCE << 194 #define SLAB_SKIP_KFENCE __SLAB_FLAG_BI << 195 #else << 196 #define SLAB_SKIP_KFENCE __SLAB_FLAG_UN << 197 #endif << 198 << 199 /* The following flags affect the page allocat << 200 /* Objects are reclaimable */ << 201 #ifndef CONFIG_SLUB_TINY << 202 #define SLAB_RECLAIM_ACCOUNT __SLAB_FLAG_BI << 203 #else << 204 #define SLAB_RECLAIM_ACCOUNT __SLAB_FLAG_UN << 205 #endif << 206 #define SLAB_TEMPORARY SLAB_RECLAIM_A << 207 << 208 /* Slab created using create_boot_cache */ << 209 #ifdef CONFIG_SLAB_OBJ_EXT << 210 #define SLAB_NO_OBJ_EXT __SLAB_FLAG_BI << 211 #else << 212 #define SLAB_NO_OBJ_EXT __SLAB_FLAG_UN << 213 #endif << 214 << 215 /* << 216 * freeptr_t represents a SLUB freelist pointe << 217 * and not dereferenceable if CONFIG_SLAB_FREE << 218 */ << 219 typedef struct { unsigned long v; } freeptr_t; << 220 << 221 /* << 222 * ZERO_SIZE_PTR will be returned for zero siz << 223 * << 224 * Dereferencing ZERO_SIZE_PTR will lead to a << 225 * << 226 * ZERO_SIZE_PTR can be passed to kfree though << 227 * Both make kfree a no-op. << 228 */ << 229 #define ZERO_SIZE_PTR ((void *)16) << 230 << 231 #define ZERO_OR_NULL_PTR(x) ((unsigned long)(x << 232 (unsigned long << 233 << 234 #include <linux/kasan.h> << 235 << 236 struct list_lru; << 237 struct mem_cgroup; << 238 /* << 239 * struct kmem_cache related prototypes << 240 */ << 241 bool slab_is_available(void); << 242 << 243 /** << 244 * struct kmem_cache_args - Less common argume << 245 * << 246 * Any uninitialized fields of the structure a << 247 * exception is @freeptr_offset where %0 is a << 248 * @use_freeptr_offset must be also set to %tr << 249 * as used. For @useroffset %0 is also valid, << 250 * @usersize. << 251 * << 252 * When %NULL args is passed to kmem_cache_cre << 253 * fields unused. << 254 */ << 255 struct kmem_cache_args { << 256 /** << 257 * @align: The required alignment for << 258 * << 259 * %0 means no specific alignment is r << 260 */ << 261 unsigned int align; << 262 /** << 263 * @useroffset: Usercopy region offset << 264 * << 265 * %0 is a valid offset, when @usersiz << 266 */ << 267 unsigned int useroffset; << 268 /** << 269 * @usersize: Usercopy region size. << 270 * << 271 * %0 means no usercopy region is spec << 272 */ << 273 unsigned int usersize; << 274 /** << 275 * @freeptr_offset: Custom offset for << 276 * in &SLAB_TYPESAFE_BY_RCU caches << 277 * << 278 * By default &SLAB_TYPESAFE_BY_RCU ca << 279 * outside of the object. This might c << 280 * Cache creators that have a reason t << 281 * free pointer offset in their struct << 282 * placed. << 283 * << 284 * Note that placing the free pointer << 285 * caller to ensure that no fields are << 286 * guard against object recycling (See << 287 * details). << 288 * << 289 * Using %0 as a value for @freeptr_of << 290 * is specified, %use_freeptr_offset m << 291 * << 292 * Note that @ctor currently isn't sup << 293 * as a @ctor requires an external fre << 294 */ << 295 unsigned int freeptr_offset; << 296 /** << 297 * @use_freeptr_offset: Whether a @fre << 298 */ << 299 bool use_freeptr_offset; << 300 /** << 301 * @ctor: A constructor for the object << 302 * << 303 * The constructor is invoked for each << 304 * page. It is the cache user's respon << 305 * same state as after calling the con << 306 * with any differences between a fres << 307 * object. << 308 * << 309 * %NULL means no constructor. << 310 */ << 311 void (*ctor)(void *); << 312 }; << 313 << 314 struct kmem_cache *__kmem_cache_create_args(co << 315 un << 316 st << 317 sl << 318 static inline struct kmem_cache * << 319 __kmem_cache_create(const char *name, unsigned << 320 slab_flags_t flags, void ( << 321 { << 322 struct kmem_cache_args kmem_args = { << 323 .align = align, << 324 .ctor = ctor, << 325 }; << 326 << 327 return __kmem_cache_create_args(name, << 328 } << 329 << 330 /** << 331 * kmem_cache_create_usercopy - Create a kmem << 332 * for copying to userspace. << 333 * @name: A string which is used in /proc/slab << 334 * @size: The size of objects to be created in << 335 * @align: The required alignment for the obje << 336 * @flags: SLAB flags << 337 * @useroffset: Usercopy region offset << 338 * @usersize: Usercopy region size << 339 * @ctor: A constructor for the objects, or %N << 340 * << 341 * This is a legacy wrapper, new code should u << 342 * if whitelisting a single field is sufficien << 343 * the necessary parameters passed via the arg << 344 * &struct kmem_cache_args) << 345 * << 346 * Return: a pointer to the cache on success, << 347 */ << 348 static inline struct kmem_cache * << 349 kmem_cache_create_usercopy(const char *name, u << 350 unsigned int align, << 351 unsigned int userof << 352 void (*ctor)(void * << 353 { << 354 struct kmem_cache_args kmem_args = { << 355 .align = align, << 356 .ctor = ctor, << 357 .useroffset = useroffset, << 358 .usersize = usersize, << 359 }; << 360 << 361 return __kmem_cache_create_args(name, << 362 } << 363 << 364 /* If NULL is passed for @args, use this varia << 365 static inline struct kmem_cache * << 366 __kmem_cache_default_args(const char *name, un << 367 struct kmem_cache_ar << 368 slab_flags_t flags) << 369 { << 370 struct kmem_cache_args kmem_default_ar << 371 << 372 /* Make sure we don't get passed garba << 373 if (WARN_ON_ONCE(args)) << 374 return ERR_PTR(-EINVAL); << 375 << 376 return __kmem_cache_create_args(name, << 377 } << 378 << 379 /** << 380 * kmem_cache_create - Create a kmem cache. << 381 * @__name: A string which is used in /proc/sl << 382 * @__object_size: The size of objects to be c << 383 * @__args: Optional arguments, see &struct km << 384 * means defaults will be used for al << 385 * << 386 * This is currently implemented as a macro us << 387 * either the new variant of the function, or << 388 * << 389 * The new variant has 4 parameters: << 390 * ``kmem_cache_create(name, object_size, args << 391 * << 392 * See __kmem_cache_create_args() which implem << 393 * << 394 * The legacy variant has 5 parameters: << 395 * ``kmem_cache_create(name, object_size, alig << 396 * << 397 * The align and ctor parameters map to the re << 398 * &struct kmem_cache_args << 399 * << 400 * Context: Cannot be called within a interrup << 401 * << 402 * Return: a pointer to the cache on success, << 403 */ << 404 #define kmem_cache_create(__name, __object_siz << 405 _Generic((__args), << 406 struct kmem_cache_args *: __km << 407 void *: __kmem_cache_default_a << 408 default: __kmem_cache_create)( << 409 << 410 void kmem_cache_destroy(struct kmem_cache *s); << 411 int kmem_cache_shrink(struct kmem_cache *s); << 412 << 413 /* << 414 * Please use this macro to create slab caches << 415 * name of the structure and maybe some flags << 416 * << 417 * The alignment of the struct determines obje << 418 * f.e. add ____cacheline_aligned_in_smp to th << 419 * then the objects will be properly aligned i << 420 */ << 421 #define KMEM_CACHE(__struct, __flags) << 422 __kmem_cache_create_args(#__struct, si << 423 &(struct kmem_cache_ar << 424 .align = __al << 425 }, (__flags)) << 426 << 427 /* << 428 * To whitelist a single field for copying to/ << 429 * macro instead for KMEM_CACHE() above. << 430 */ << 431 #define KMEM_CACHE_USERCOPY(__struct, __flags, << 432 __kmem_cache_create_args(#__struct, si << 433 &(struct kmem_cache_ar << 434 .align << 435 .useroffset << 436 .usersize << 437 }, (__flags)) << 438 << 439 /* << 440 * Common kmalloc functions provided by all al << 441 */ << 442 void * __must_check krealloc_noprof(const void << 443 gfp_t flag << 444 #define krealloc(...) << 445 << 446 void kfree(const void *objp); << 447 void kfree_sensitive(const void *objp); << 448 size_t __ksize(const void *objp); << 449 << 450 DEFINE_FREE(kfree, void *, if (!IS_ERR_OR_NULL << 451 << 452 /** << 453 * ksize - Report actual allocation size of as << 454 * << 455 * @objp: Pointer returned from a prior kmallo << 456 * << 457 * This should not be used for writing beyond << 458 * allocation size. Either use krealloc() or r << 459 * with kmalloc_size_roundup() prior to alloca << 460 * access beyond the originally requested allo << 461 * and/or FORTIFY_SOURCE may trip, since they << 462 * originally allocated size via the __alloc_s << 463 */ << 464 size_t ksize(const void *objp); << 465 << 466 #ifdef CONFIG_PRINTK << 467 bool kmem_dump_obj(void *object); << 468 #else << 469 static inline bool kmem_dump_obj(void *object) << 470 #endif << 471 << 472 /* << 473 * Some archs want to perform DMA into kmalloc << 474 * alignment larger than the alignment of a 64 << 475 * Setting ARCH_DMA_MINALIGN in arch headers a << 476 */ << 477 #ifdef ARCH_HAS_DMA_MINALIGN << 478 #if ARCH_DMA_MINALIGN > 8 && !defined(ARCH_KMA << 479 #define ARCH_KMALLOC_MINALIGN ARCH_DMA_MINALIG << 480 #endif << 481 #endif << 482 << 483 #ifndef ARCH_KMALLOC_MINALIGN << 484 #define ARCH_KMALLOC_MINALIGN __alignof__(unsi << 485 #elif ARCH_KMALLOC_MINALIGN > 8 << 486 #define KMALLOC_MIN_SIZE ARCH_KMALLOC_MINALIGN << 487 #define KMALLOC_SHIFT_LOW ilog2(KMALLOC_MIN_SI << 488 #endif << 489 << 490 /* << 491 * Setting ARCH_SLAB_MINALIGN in arch headers << 492 * Intended for arches that get misalignment f << 493 * aligned buffers. << 494 */ << 495 #ifndef ARCH_SLAB_MINALIGN << 496 #define ARCH_SLAB_MINALIGN __alignof__(unsigne << 497 #endif << 498 << 499 /* << 500 * Arches can define this function if they wan << 501 * alignment at runtime. The value returned by << 502 * of two and >= ARCH_SLAB_MINALIGN. << 503 */ << 504 #ifndef arch_slab_minalign << 505 static inline unsigned int arch_slab_minalign( << 506 { << 507 return ARCH_SLAB_MINALIGN; << 508 } << 509 #endif << 510 << 511 /* << 512 * kmem_cache_alloc and friends return pointer << 513 * kmalloc and friends return pointers aligned << 514 * and ARCH_SLAB_MINALIGN, but here we only as << 515 */ << 516 #define __assume_kmalloc_alignment __assume_al << 517 #define __assume_slab_alignment __assume_align << 518 #define __assume_page_alignment __assume_align << 519 << 520 /* << 521 * Kmalloc array related definitions << 522 */ << 523 << 524 /* << 525 * SLUB directly allocates requests fitting in << 526 * (PAGE_SIZE*2). Larger requests are passed << 527 */ << 528 #define KMALLOC_SHIFT_HIGH (PAGE_SHIFT + << 529 #define KMALLOC_SHIFT_MAX (MAX_PAGE_ORDE << 530 #ifndef KMALLOC_SHIFT_LOW << 531 #define KMALLOC_SHIFT_LOW 3 << 532 #endif << 533 << 534 /* Maximum allocatable size */ << 535 #define KMALLOC_MAX_SIZE (1UL << KMALLO << 536 /* Maximum size for which we actually use a sl << 537 #define KMALLOC_MAX_CACHE_SIZE (1UL << KMALLO << 538 /* Maximum order allocatable via the slab allo << 539 #define KMALLOC_MAX_ORDER (KMALLOC_SHIFT << 540 << 541 /* << 542 * Kmalloc subsystem. << 543 */ << 544 #ifndef KMALLOC_MIN_SIZE << 545 #define KMALLOC_MIN_SIZE (1 << KMALLOC_SHIFT_L << 546 #endif << 547 << 548 /* << 549 * This restriction comes from byte sized inde << 550 * Page size is normally 2^12 bytes and, in th << 551 * byte sized index which can represent 2^8 en << 552 * should be equal or greater to 2^12 / 2^8 = << 553 * If minimum size of kmalloc is less than 16, << 554 * size and give up to use byte sized index. << 555 */ << 556 #define SLAB_OBJ_MIN_SIZE (KMALLOC_MIN_SI << 557 (KMALLOC_MIN_SI << 558 << 559 #ifdef CONFIG_RANDOM_KMALLOC_CACHES << 560 #define RANDOM_KMALLOC_CACHES_NR 15 // << 561 #else << 562 #define RANDOM_KMALLOC_CACHES_NR 0 << 563 #endif << 564 << 565 /* << 566 * Whenever changing this, take care of that k << 567 * create_kmalloc_caches() still work as inten << 568 * << 569 * KMALLOC_NORMAL can contain only unaccounted << 570 * is for accounted but unreclaimable and non- << 571 * kmem caches can have both accounted and una << 572 */ << 573 enum kmalloc_cache_type { << 574 KMALLOC_NORMAL = 0, << 575 #ifndef CONFIG_ZONE_DMA << 576 KMALLOC_DMA = KMALLOC_NORMAL, << 577 #endif << 578 #ifndef CONFIG_MEMCG << 579 KMALLOC_CGROUP = KMALLOC_NORMAL, << 580 #endif << 581 KMALLOC_RANDOM_START = KMALLOC_NORMAL, << 582 KMALLOC_RANDOM_END = KMALLOC_RANDOM_ST << 583 #ifdef CONFIG_SLUB_TINY << 584 KMALLOC_RECLAIM = KMALLOC_NORMAL, << 585 #else << 586 KMALLOC_RECLAIM, << 587 #endif << 588 #ifdef CONFIG_ZONE_DMA << 589 KMALLOC_DMA, << 590 #endif << 591 #ifdef CONFIG_MEMCG << 592 KMALLOC_CGROUP, << 593 #endif << 594 NR_KMALLOC_TYPES << 595 }; << 596 << 597 typedef struct kmem_cache * kmem_buckets[KMALL << 598 << 599 extern kmem_buckets kmalloc_caches[NR_KMALLOC_ << 600 << 601 /* << 602 * Define gfp bits that should not be set for << 603 */ << 604 #define KMALLOC_NOT_NORMAL_BITS << 605 (__GFP_RECLAIMABLE | << 606 (IS_ENABLED(CONFIG_ZONE_DMA) ? __GFP << 607 (IS_ENABLED(CONFIG_MEMCG) ? __GFP_ACCO << 608 << 609 extern unsigned long random_kmalloc_seed; << 610 << 611 static __always_inline enum kmalloc_cache_type << 612 { << 613 /* << 614 * The most common case is KMALLOC_NOR << 615 * with a single branch for all the re << 616 */ << 617 if (likely((flags & KMALLOC_NOT_NORMAL << 618 #ifdef CONFIG_RANDOM_KMALLOC_CACHES << 619 /* RANDOM_KMALLOC_CACHES_NR (= << 620 return KMALLOC_RANDOM_START + << 621 << 622 #else << 623 return KMALLOC_NORMAL; << 624 #endif << 625 << 626 /* << 627 * At least one of the flags has to be << 628 * decreasing order are: << 629 * 1) __GFP_DMA << 630 * 2) __GFP_RECLAIMABLE << 631 * 3) __GFP_ACCOUNT << 632 */ << 633 if (IS_ENABLED(CONFIG_ZONE_DMA) && (fl << 634 return KMALLOC_DMA; << 635 if (!IS_ENABLED(CONFIG_MEMCG) || (flag << 636 return KMALLOC_RECLAIM; << 637 else << 638 return KMALLOC_CGROUP; << 639 } << 640 << 641 /* << 642 * Figure out which kmalloc slab an allocation << 643 * belongs to. << 644 * 0 = zero alloc << 645 * 1 = 65 .. 96 bytes << 646 * 2 = 129 .. 192 bytes << 647 * n = 2^(n-1)+1 .. 2^n << 648 * << 649 * Note: __kmalloc_index() is compile-time opt << 650 * typical usage is via kmalloc_index() and th << 651 * Callers where !size_is_constant should only << 652 * overheads of __kmalloc_index() can be toler << 653 */ << 654 static __always_inline unsigned int __kmalloc_ << 655 << 656 { << 657 if (!size) << 658 return 0; << 659 << 660 if (size <= KMALLOC_MIN_SIZE) << 661 return KMALLOC_SHIFT_LOW; << 662 << 663 if (KMALLOC_MIN_SIZE <= 32 && size > 6 << 664 return 1; << 665 if (KMALLOC_MIN_SIZE <= 64 && size > 1 << 666 return 2; << 667 if (size <= 8) return 3; << 668 if (size <= 16) return 4; << 669 if (size <= 32) return 5; << 670 if (size <= 64) return 6; << 671 if (size <= 128) return 7; << 672 if (size <= 256) return 8; << 673 if (size <= 512) return 9; << 674 if (size <= 1024) return 10; << 675 if (size <= 2 * 1024) return 11; << 676 if (size <= 4 * 1024) return 12; << 677 if (size <= 8 * 1024) return 13; << 678 if (size <= 16 * 1024) return 14; << 679 if (size <= 32 * 1024) return 15; << 680 if (size <= 64 * 1024) return 16; << 681 if (size <= 128 * 1024) return 17; << 682 if (size <= 256 * 1024) return 18; << 683 if (size <= 512 * 1024) return 19; << 684 if (size <= 1024 * 1024) return 20; << 685 if (size <= 2 * 1024 * 1024) return 2 << 686 << 687 if (!IS_ENABLED(CONFIG_PROFILE_ALL_BRA << 688 BUILD_BUG_ON_MSG(1, "unexpecte << 689 else << 690 BUG(); << 691 << 692 /* Will never be reached. Needed becau << 693 return -1; << 694 } << 695 static_assert(PAGE_SHIFT <= 20); << 696 #define kmalloc_index(s) __kmalloc_index(s, tr << 697 << 698 #include <linux/alloc_tag.h> << 699 << 700 /** << 701 * kmem_cache_alloc - Allocate an object << 702 * @cachep: The cache to allocate from. << 703 * @flags: See kmalloc(). << 704 * << 705 * Allocate an object from this cache. << 706 * See kmem_cache_zalloc() for a shortcut of a << 707 * << 708 * Return: pointer to the new object or %NULL << 709 */ << 710 void *kmem_cache_alloc_noprof(struct kmem_cach << 711 gfp_t flags) __a << 712 #define kmem_cache_alloc(...) << 713 << 714 void *kmem_cache_alloc_lru_noprof(struct kmem_ << 715 gfp_t gfpflags) __ << 716 #define kmem_cache_alloc_lru(...) alloc_ << 717 << 718 /** << 719 * kmem_cache_charge - memcg charge an already << 720 * @objp: address of the slab object to memcg << 721 * @gfpflags: describe the allocation context << 722 * << 723 * kmem_cache_charge allows charging a slab ob << 724 * primarily in cases where charging at alloca << 725 * because the target memcg is not known (i.e. << 726 * << 727 * The objp should be pointer returned by the << 728 * kmalloc (with __GFP_ACCOUNT in flags) or km << 729 * behavior can be controlled through gfpflags << 730 * necessary internal metadata can be allocate << 731 * that overcharging is requested instead of f << 732 * internal metadata allocation. << 733 * << 734 * There are several cases where it will retur << 735 * not done: << 736 * More specifically: << 737 * << 738 * 1. For !CONFIG_MEMCG or cgroup_disable=memo << 739 * 2. Already charged slab objects. << 740 * 3. For slab objects from KMALLOC_NORMAL cac << 741 * without __GFP_ACCOUNT << 742 * 4. Allocating internal metadata has failed << 743 * << 744 * Return: true if charge was successful other << 745 */ << 746 bool kmem_cache_charge(void *objp, gfp_t gfpfl << 747 void kmem_cache_free(struct kmem_cache *s, voi << 748 << 749 kmem_buckets *kmem_buckets_create(const char * << 750 unsigned int << 751 void (*ctor) << 752 << 753 /* << 754 * Bulk allocation and freeing operations. The << 755 * allocator specific way to avoid taking lock << 756 * metadata structures unnecessarily. << 757 * << 758 * Note that interrupts must be enabled when c << 759 */ << 760 void kmem_cache_free_bulk(struct kmem_cache *s << 761 << 762 int kmem_cache_alloc_bulk_noprof(struct kmem_c << 763 #define kmem_cache_alloc_bulk(...) alloc_ << 764 << 765 static __always_inline void kfree_bulk(size_t << 766 { << 767 kmem_cache_free_bulk(NULL, size, p); << 768 } << 769 << 770 void *kmem_cache_alloc_node_noprof(struct kmem << 771 int node) _ << 772 #define kmem_cache_alloc_node(...) alloc_ << 773 << 774 /* << 775 * These macros allow declaring a kmem_buckets << 776 * can be compiled out with CONFIG_SLAB_BUCKET << 777 * sites don't have to pass NULL. << 778 */ << 779 #ifdef CONFIG_SLAB_BUCKETS << 780 #define DECL_BUCKET_PARAMS(_size, _b) size_t << 781 #define PASS_BUCKET_PARAMS(_size, _b) (_size << 782 #define PASS_BUCKET_PARAM(_b) (_b) << 783 #else << 784 #define DECL_BUCKET_PARAMS(_size, _b) size_t << 785 #define PASS_BUCKET_PARAMS(_size, _b) (_size << 786 #define PASS_BUCKET_PARAM(_b) NULL << 787 #endif << 788 << 789 /* << 790 * The following functions are not to be used << 791 * for internal use from kmalloc() and kmalloc << 792 * with the exception of kunit tests << 793 */ << 794 << 795 void *__kmalloc_noprof(size_t size, gfp_t flag << 796 __assume_kmall << 797 << 798 void *__kmalloc_node_noprof(DECL_BUCKET_PARAMS << 799 __assume_kmall << 800 << 801 void *__kmalloc_cache_noprof(struct kmem_cache << 802 __assume_kmall << 803 << 804 void *__kmalloc_cache_node_noprof(struct kmem_ << 805 int node, si << 806 __assume_kmall << 807 << 808 void *__kmalloc_large_noprof(size_t size, gfp_ << 809 __assume_page_ << 810 << 811 void *__kmalloc_large_node_noprof(size_t size, << 812 __assume_page_ << 813 << 814 /** << 815 * kmalloc - allocate kernel memory << 816 * @size: how many bytes of memory are require << 817 * @flags: describe the allocation context << 818 * << 819 * kmalloc is the normal method of allocating << 820 * for objects smaller than page size in the k << 821 * << 822 * The allocated object address is aligned to << 823 * bytes. For @size of power of two bytes, the << 824 * to be at least to the size. For other sizes << 825 * be at least the largest power-of-two diviso << 826 * << 827 * The @flags argument may be one of the GFP f << 828 * include/linux/gfp_types.h and described at << 829 * :ref:`Documentation/core-api/mm-api.rst <mm << 830 * << 831 * The recommended usage of the @flags is desc << 832 * :ref:`Documentation/core-api/memory-allocat << 833 * << 834 * Below is a brief outline of the most useful << 835 * << 836 * %GFP_KERNEL << 837 * Allocate normal kernel ram. May sleep. << 838 * << 839 * %GFP_NOWAIT << 840 * Allocation will not sleep. << 841 * << 842 * %GFP_ATOMIC << 843 * Allocation will not sleep. May use em << 844 * << 845 * Also it is possible to set different flags << 846 * in one or more of the following additional << 847 * << 848 * %__GFP_ZERO << 849 * Zero the allocated memory before retur << 850 * << 851 * %__GFP_HIGH << 852 * This allocation has high priority and << 853 * << 854 * %__GFP_NOFAIL << 855 * Indicate that this allocation is in no << 856 * (think twice before using). << 857 * << 858 * %__GFP_NORETRY << 859 * If memory is not immediately available << 860 * then give up at once. << 861 * << 862 * %__GFP_NOWARN << 863 * If allocation fails, don't issue any w << 864 * << 865 * %__GFP_RETRY_MAYFAIL << 866 * Try really hard to succeed the allocat << 867 * eventually. << 868 */ << 869 static __always_inline __alloc_size(1) void *k << 870 { << 871 if (__builtin_constant_p(size) && size << 872 unsigned int index; << 873 << 874 if (size > KMALLOC_MAX_CACHE_S << 875 return __kmalloc_large << 876 << 877 index = kmalloc_index(size); << 878 return __kmalloc_cache_noprof( << 879 kmalloc_caches << 880 flags, size); << 881 } << 882 return __kmalloc_noprof(size, flags); << 883 } << 884 #define kmalloc(...) << 885 << 886 #define kmem_buckets_alloc(_b, _size, _flags) << 887 alloc_hooks(__kmalloc_node_noprof(PASS << 888 << 889 #define kmem_buckets_alloc_track_caller(_b, _s << 890 alloc_hooks(__kmalloc_node_track_calle << 891 << 892 static __always_inline __alloc_size(1) void *k << 893 { << 894 if (__builtin_constant_p(size) && size << 895 unsigned int index; << 896 << 897 if (size > KMALLOC_MAX_CACHE_S << 898 return __kmalloc_large << 899 << 900 index = kmalloc_index(size); << 901 return __kmalloc_cache_node_no << 902 kmalloc_caches << 903 flags, node, s << 904 } << 905 return __kmalloc_node_noprof(PASS_BUCK << 906 } << 907 #define kmalloc_node(...) << 908 << 909 /** << 910 * kmalloc_array - allocate memory for an arra << 911 * @n: number of elements. << 912 * @size: element size. << 913 * @flags: the type of memory to allocate (see << 914 */ << 915 static inline __alloc_size(1, 2) void *kmalloc << 916 { << 917 size_t bytes; << 918 << 919 if (unlikely(check_mul_overflow(n, siz << 920 return NULL; << 921 if (__builtin_constant_p(n) && __built << 922 return kmalloc_noprof(bytes, f << 923 return kmalloc_noprof(bytes, flags); << 924 } << 925 #define kmalloc_array(...) << 926 << 927 /** << 928 * krealloc_array - reallocate memory for an a << 929 * @p: pointer to the memory chunk to realloca << 930 * @new_n: new number of elements to alloc << 931 * @new_size: new size of a single member of t << 932 * @flags: the type of memory to allocate (see << 933 * << 934 * If __GFP_ZERO logic is requested, callers m << 935 * initial memory allocation, every subsequent << 936 * memory allocation is flagged with __GFP_ZER << 937 * __GFP_ZERO is not fully honored by this API << 938 * << 939 * See krealloc_noprof() for further details. << 940 * << 941 * In any case, the contents of the object poi << 942 * lesser of the new and old sizes. << 943 */ << 944 static inline __realloc_size(2, 3) void * __mu << 945 << 946 << 947 << 948 { << 949 size_t bytes; << 950 << 951 if (unlikely(check_mul_overflow(new_n, << 952 return NULL; << 953 << 954 return krealloc_noprof(p, bytes, flags << 955 } << 956 #define krealloc_array(...) << 957 << 958 /** << 959 * kcalloc - allocate memory for an array. The << 960 * @n: number of elements. << 961 * @size: element size. << 962 * @flags: the type of memory to allocate (see << 963 */ << 964 #define kcalloc(n, size, flags) kmallo << 965 << 966 void *__kmalloc_node_track_caller_noprof(DECL_ << 967 unsig << 968 #define kmalloc_node_track_caller_noprof(size, << 969 __kmalloc_node_track_caller_noprof(PAS << 970 #define kmalloc_node_track_caller(...) << 971 alloc_hooks(kmalloc_node_track_caller_ << 972 << 973 /* << 974 * kmalloc_track_caller is a special version o << 975 * calling function of the routine calling it << 976 * of just the calling function (confusing, eh << 977 * It's useful when the call to kmalloc comes << 978 * allocator where we care about the real plac << 979 * request comes from. << 980 */ << 981 #define kmalloc_track_caller(...) << 982 << 983 #define kmalloc_track_caller_noprof(...) << 984 kmalloc_node_track_caller_nopr << 985 << 986 static inline __alloc_size(1, 2) void *kmalloc << 987 << 988 { << 989 size_t bytes; << 990 << 991 if (unlikely(check_mul_overflow(n, siz << 992 return NULL; << 993 if (__builtin_constant_p(n) && __built << 994 return kmalloc_node_noprof(byt << 995 return __kmalloc_node_noprof(PASS_BUCK << 996 } << 997 #define kmalloc_array_node(...) << 998 << 999 #define kcalloc_node(_n, _size, _flags, _node) << 1000 kmalloc_array_node(_n, _size, (_flags << 1001 << 1002 /* << 1003 * Shortcuts << 1004 */ << 1005 #define kmem_cache_zalloc(_k, _flags) << 1006 << 1007 /** << 1008 * kzalloc - allocate memory. The memory is s << 1009 * @size: how many bytes of memory are requir << 1010 * @flags: the type of memory to allocate (se << 1011 */ << 1012 static inline __alloc_size(1) void *kzalloc_n << 1013 { << 1014 return kmalloc_noprof(size, flags | _ << 1015 } << 1016 #define kzalloc(...) << 1017 #define kzalloc_node(_size, _flags, _node) << 1018 << 1019 void *__kvmalloc_node_noprof(DECL_BUCKET_PARA << 1020 #define kvmalloc_node_noprof(size, flags, nod << 1021 __kvmalloc_node_noprof(PASS_BUCKET_PA << 1022 #define kvmalloc_node(...) << 1023 << 1024 #define kvmalloc(_size, _flags) << 1025 #define kvmalloc_noprof(_size, _flags) << 1026 #define kvzalloc(_size, _flags) << 1027 << 1028 #define kvzalloc_node(_size, _flags, _node) << 1029 #define kmem_buckets_valloc(_b, _size, _flags << 1030 alloc_hooks(__kvmalloc_node_noprof(PA << 1031 << 1032 static inline __alloc_size(1, 2) void * << 1033 kvmalloc_array_node_noprof(size_t n, size_t s << 1034 { << 1035 size_t bytes; << 1036 << 1037 if (unlikely(check_mul_overflow(n, si << 1038 return NULL; << 1039 << 1040 return kvmalloc_node_noprof(bytes, fl << 1041 } << 1042 << 1043 #define kvmalloc_array_noprof(...) << 1044 #define kvcalloc_node_noprof(_n,_s,_f,_node) << 1045 #define kvcalloc_noprof(...) << 1046 << 1047 #define kvmalloc_array(...) << 1048 #define kvcalloc_node(...) << 1049 #define kvcalloc(...) << 1050 << 1051 void *kvrealloc_noprof(const void *p, size_t << 1052 __realloc_size(2); << 1053 #define kvrealloc(...) << 1054 << 1055 extern void kvfree(const void *addr); << 1056 DEFINE_FREE(kvfree, void *, if (!IS_ERR_OR_NU << 1057 << 1058 extern void kvfree_sensitive(const void *addr << 1059 << 1060 unsigned int kmem_cache_size(struct kmem_cach << 1061 << 1062 /** << 1063 * kmalloc_size_roundup - Report allocation b << 1064 * << 1065 * @size: Number of bytes to round up from. << 1066 * << 1067 * This returns the number of bytes that woul << 1068 * allocation of @size bytes. For example, a << 1069 * rounded up to the next sized kmalloc bucke << 1070 * for the general-purpose kmalloc()-based al << 1071 * pre-sized kmem_cache_alloc()-based allocat << 1072 * << 1073 * Use this to kmalloc() the full bucket size << 1074 * ksize() to query the size after an allocat << 1075 */ << 1076 size_t kmalloc_size_roundup(size_t size); << 1077 77 1078 void __init kmem_cache_init_late(void); !! 78 #endif /* __KERNEL__ */ 1079 79 1080 #endif /* _LINUX_SLAB_H */ 80 #endif /* _LINUX_SLAB_H */ 1081 81
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.