1 /* SPDX-License-Identifier: GPL-2.0 */ 1 /* SPDX-License-Identifier: GPL-2.0 */ 2 /* 2 /* 3 * Written by Mark Hemment, 1996 (markhe@nextd 3 * Written by Mark Hemment, 1996 (markhe@nextd.demon.co.uk). 4 * 4 * 5 * (C) SGI 2006, Christoph Lameter 5 * (C) SGI 2006, Christoph Lameter 6 * Cleaned up and restructured to ease th 6 * Cleaned up and restructured to ease the addition of alternative 7 * implementations of SLAB allocators. 7 * implementations of SLAB allocators. 8 * (C) Linux Foundation 2008-2013 8 * (C) Linux Foundation 2008-2013 9 * Unified interface for all slab allocat 9 * Unified interface for all slab allocators 10 */ 10 */ 11 11 12 #ifndef _LINUX_SLAB_H 12 #ifndef _LINUX_SLAB_H 13 #define _LINUX_SLAB_H 13 #define _LINUX_SLAB_H 14 14 15 #include <linux/cache.h> 15 #include <linux/cache.h> 16 #include <linux/gfp.h> 16 #include <linux/gfp.h> 17 #include <linux/overflow.h> 17 #include <linux/overflow.h> 18 #include <linux/types.h> 18 #include <linux/types.h> 19 #include <linux/workqueue.h> 19 #include <linux/workqueue.h> 20 #include <linux/percpu-refcount.h> 20 #include <linux/percpu-refcount.h> 21 #include <linux/cleanup.h> 21 #include <linux/cleanup.h> 22 #include <linux/hash.h> << 23 22 24 enum _slab_flag_bits { << 25 _SLAB_CONSISTENCY_CHECKS, << 26 _SLAB_RED_ZONE, << 27 _SLAB_POISON, << 28 _SLAB_KMALLOC, << 29 _SLAB_HWCACHE_ALIGN, << 30 _SLAB_CACHE_DMA, << 31 _SLAB_CACHE_DMA32, << 32 _SLAB_STORE_USER, << 33 _SLAB_PANIC, << 34 _SLAB_TYPESAFE_BY_RCU, << 35 _SLAB_TRACE, << 36 #ifdef CONFIG_DEBUG_OBJECTS << 37 _SLAB_DEBUG_OBJECTS, << 38 #endif << 39 _SLAB_NOLEAKTRACE, << 40 _SLAB_NO_MERGE, << 41 #ifdef CONFIG_FAILSLAB << 42 _SLAB_FAILSLAB, << 43 #endif << 44 #ifdef CONFIG_MEMCG << 45 _SLAB_ACCOUNT, << 46 #endif << 47 #ifdef CONFIG_KASAN_GENERIC << 48 _SLAB_KASAN, << 49 #endif << 50 _SLAB_NO_USER_FLAGS, << 51 #ifdef CONFIG_KFENCE << 52 _SLAB_SKIP_KFENCE, << 53 #endif << 54 #ifndef CONFIG_SLUB_TINY << 55 _SLAB_RECLAIM_ACCOUNT, << 56 #endif << 57 _SLAB_OBJECT_POISON, << 58 _SLAB_CMPXCHG_DOUBLE, << 59 #ifdef CONFIG_SLAB_OBJ_EXT << 60 _SLAB_NO_OBJ_EXT, << 61 #endif << 62 _SLAB_FLAGS_LAST_BIT << 63 }; << 64 << 65 #define __SLAB_FLAG_BIT(nr) ((slab_flags_t << 66 #define __SLAB_FLAG_UNUSED ((slab_flags_t << 67 23 68 /* 24 /* 69 * Flags to pass to kmem_cache_create(). 25 * Flags to pass to kmem_cache_create(). 70 * The ones marked DEBUG need CONFIG_SLUB_DEBU !! 26 * The ones marked DEBUG are only valid if CONFIG_DEBUG_SLAB is set. 71 */ 27 */ 72 /* DEBUG: Perform (expensive) checks on alloc/ 28 /* DEBUG: Perform (expensive) checks on alloc/free */ 73 #define SLAB_CONSISTENCY_CHECKS __SLAB_FLAG_BI !! 29 #define SLAB_CONSISTENCY_CHECKS ((slab_flags_t __force)0x00000100U) 74 /* DEBUG: Red zone objs in a cache */ 30 /* DEBUG: Red zone objs in a cache */ 75 #define SLAB_RED_ZONE __SLAB_FLAG_BI !! 31 #define SLAB_RED_ZONE ((slab_flags_t __force)0x00000400U) 76 /* DEBUG: Poison objects */ 32 /* DEBUG: Poison objects */ 77 #define SLAB_POISON __SLAB_FLAG_BI !! 33 #define SLAB_POISON ((slab_flags_t __force)0x00000800U) 78 /* Indicate a kmalloc slab */ 34 /* Indicate a kmalloc slab */ 79 #define SLAB_KMALLOC __SLAB_FLAG_BI !! 35 #define SLAB_KMALLOC ((slab_flags_t __force)0x00001000U) 80 /* Align objs on cache lines */ 36 /* Align objs on cache lines */ 81 #define SLAB_HWCACHE_ALIGN __SLAB_FLAG_BI !! 37 #define SLAB_HWCACHE_ALIGN ((slab_flags_t __force)0x00002000U) 82 /* Use GFP_DMA memory */ 38 /* Use GFP_DMA memory */ 83 #define SLAB_CACHE_DMA __SLAB_FLAG_BI !! 39 #define SLAB_CACHE_DMA ((slab_flags_t __force)0x00004000U) 84 /* Use GFP_DMA32 memory */ 40 /* Use GFP_DMA32 memory */ 85 #define SLAB_CACHE_DMA32 __SLAB_FLAG_BI !! 41 #define SLAB_CACHE_DMA32 ((slab_flags_t __force)0x00008000U) 86 /* DEBUG: Store the last owner for bug hunting 42 /* DEBUG: Store the last owner for bug hunting */ 87 #define SLAB_STORE_USER __SLAB_FLAG_BI !! 43 #define SLAB_STORE_USER ((slab_flags_t __force)0x00010000U) 88 /* Panic if kmem_cache_create() fails */ 44 /* Panic if kmem_cache_create() fails */ 89 #define SLAB_PANIC __SLAB_FLAG_BI !! 45 #define SLAB_PANIC ((slab_flags_t __force)0x00040000U) 90 /* 46 /* 91 * SLAB_TYPESAFE_BY_RCU - **WARNING** READ THI 47 * SLAB_TYPESAFE_BY_RCU - **WARNING** READ THIS! 92 * 48 * 93 * This delays freeing the SLAB page by a grac 49 * This delays freeing the SLAB page by a grace period, it does _NOT_ 94 * delay object freeing. This means that if yo 50 * delay object freeing. This means that if you do kmem_cache_free() 95 * that memory location is free to be reused a 51 * that memory location is free to be reused at any time. Thus it may 96 * be possible to see another object there in 52 * be possible to see another object there in the same RCU grace period. 97 * 53 * 98 * This feature only ensures the memory locati 54 * This feature only ensures the memory location backing the object 99 * stays valid, the trick to using this is rel 55 * stays valid, the trick to using this is relying on an independent 100 * object validation pass. Something like: 56 * object validation pass. Something like: 101 * 57 * 102 * begin: 58 * begin: 103 * rcu_read_lock(); 59 * rcu_read_lock(); 104 * obj = lockless_lookup(key); 60 * obj = lockless_lookup(key); 105 * if (obj) { 61 * if (obj) { 106 * if (!try_get_ref(obj)) // might fail for 62 * if (!try_get_ref(obj)) // might fail for free objects 107 * rcu_read_unlock(); 63 * rcu_read_unlock(); 108 * goto begin; 64 * goto begin; 109 * 65 * 110 * if (obj->key != key) { // not the object 66 * if (obj->key != key) { // not the object we expected 111 * put_ref(obj); 67 * put_ref(obj); 112 * rcu_read_unlock(); 68 * rcu_read_unlock(); 113 * goto begin; 69 * goto begin; 114 * } 70 * } 115 * } 71 * } 116 * rcu_read_unlock(); 72 * rcu_read_unlock(); 117 * 73 * 118 * This is useful if we need to approach a ker 74 * This is useful if we need to approach a kernel structure obliquely, 119 * from its address obtained without the usual 75 * from its address obtained without the usual locking. We can lock 120 * the structure to stabilize it and check it' 76 * the structure to stabilize it and check it's still at the given address, 121 * only if we can be sure that the memory has 77 * only if we can be sure that the memory has not been meanwhile reused 122 * for some other kind of object (which our su 78 * for some other kind of object (which our subsystem's lock might corrupt). 123 * 79 * 124 * rcu_read_lock before reading the address, t 80 * rcu_read_lock before reading the address, then rcu_read_unlock after 125 * taking the spinlock within the structure ex 81 * taking the spinlock within the structure expected at that address. 126 * 82 * 127 * Note that it is not possible to acquire a l 83 * Note that it is not possible to acquire a lock within a structure 128 * allocated with SLAB_TYPESAFE_BY_RCU without 84 * allocated with SLAB_TYPESAFE_BY_RCU without first acquiring a reference 129 * as described above. The reason is that SLA 85 * as described above. The reason is that SLAB_TYPESAFE_BY_RCU pages 130 * are not zeroed before being given to the sl 86 * are not zeroed before being given to the slab, which means that any 131 * locks must be initialized after each and ev 87 * locks must be initialized after each and every kmem_struct_alloc(). 132 * Alternatively, make the ctor passed to kmem 88 * Alternatively, make the ctor passed to kmem_cache_create() initialize 133 * the locks at page-allocation time, as is do 89 * the locks at page-allocation time, as is done in __i915_request_ctor(), 134 * sighand_ctor(), and anon_vma_ctor(). Such 90 * sighand_ctor(), and anon_vma_ctor(). Such a ctor permits readers 135 * to safely acquire those ctor-initialized lo 91 * to safely acquire those ctor-initialized locks under rcu_read_lock() 136 * protection. 92 * protection. 137 * 93 * 138 * Note that SLAB_TYPESAFE_BY_RCU was original 94 * Note that SLAB_TYPESAFE_BY_RCU was originally named SLAB_DESTROY_BY_RCU. 139 */ 95 */ 140 /* Defer freeing slabs to RCU */ 96 /* Defer freeing slabs to RCU */ 141 #define SLAB_TYPESAFE_BY_RCU __SLAB_FLAG_BI !! 97 #define SLAB_TYPESAFE_BY_RCU ((slab_flags_t __force)0x00080000U) >> 98 /* Spread some memory over cpuset */ >> 99 #define SLAB_MEM_SPREAD ((slab_flags_t __force)0x00100000U) 142 /* Trace allocations and frees */ 100 /* Trace allocations and frees */ 143 #define SLAB_TRACE __SLAB_FLAG_BI !! 101 #define SLAB_TRACE ((slab_flags_t __force)0x00200000U) 144 102 145 /* Flag to prevent checks on free */ 103 /* Flag to prevent checks on free */ 146 #ifdef CONFIG_DEBUG_OBJECTS 104 #ifdef CONFIG_DEBUG_OBJECTS 147 # define SLAB_DEBUG_OBJECTS __SLAB_FLAG_BI !! 105 # define SLAB_DEBUG_OBJECTS ((slab_flags_t __force)0x00400000U) 148 #else 106 #else 149 # define SLAB_DEBUG_OBJECTS __SLAB_FLAG_UN !! 107 # define SLAB_DEBUG_OBJECTS 0 150 #endif 108 #endif 151 109 152 /* Avoid kmemleak tracing */ 110 /* Avoid kmemleak tracing */ 153 #define SLAB_NOLEAKTRACE __SLAB_FLAG_BI !! 111 #define SLAB_NOLEAKTRACE ((slab_flags_t __force)0x00800000U) 154 112 155 /* 113 /* 156 * Prevent merging with compatible kmem caches 114 * Prevent merging with compatible kmem caches. This flag should be used 157 * cautiously. Valid use cases: 115 * cautiously. Valid use cases: 158 * 116 * 159 * - caches created for self-tests (e.g. kunit 117 * - caches created for self-tests (e.g. kunit) 160 * - general caches created and used by a subs 118 * - general caches created and used by a subsystem, only when a 161 * (subsystem-specific) debug option is enab 119 * (subsystem-specific) debug option is enabled 162 * - performance critical caches, should be ve 120 * - performance critical caches, should be very rare and consulted with slab 163 * maintainers, and not used together with C 121 * maintainers, and not used together with CONFIG_SLUB_TINY 164 */ 122 */ 165 #define SLAB_NO_MERGE __SLAB_FLAG_BI !! 123 #define SLAB_NO_MERGE ((slab_flags_t __force)0x01000000U) 166 124 167 /* Fault injection mark */ 125 /* Fault injection mark */ 168 #ifdef CONFIG_FAILSLAB 126 #ifdef CONFIG_FAILSLAB 169 # define SLAB_FAILSLAB __SLAB_FLAG_BI !! 127 # define SLAB_FAILSLAB ((slab_flags_t __force)0x02000000U) 170 #else 128 #else 171 # define SLAB_FAILSLAB __SLAB_FLAG_UN !! 129 # define SLAB_FAILSLAB 0 172 #endif 130 #endif 173 /* Account to memcg */ 131 /* Account to memcg */ 174 #ifdef CONFIG_MEMCG !! 132 #ifdef CONFIG_MEMCG_KMEM 175 # define SLAB_ACCOUNT __SLAB_FLAG_BI !! 133 # define SLAB_ACCOUNT ((slab_flags_t __force)0x04000000U) 176 #else 134 #else 177 # define SLAB_ACCOUNT __SLAB_FLAG_UN !! 135 # define SLAB_ACCOUNT 0 178 #endif 136 #endif 179 137 180 #ifdef CONFIG_KASAN_GENERIC 138 #ifdef CONFIG_KASAN_GENERIC 181 #define SLAB_KASAN __SLAB_FLAG_BI !! 139 #define SLAB_KASAN ((slab_flags_t __force)0x08000000U) 182 #else 140 #else 183 #define SLAB_KASAN __SLAB_FLAG_UN !! 141 #define SLAB_KASAN 0 184 #endif 142 #endif 185 143 186 /* 144 /* 187 * Ignore user specified debugging flags. 145 * Ignore user specified debugging flags. 188 * Intended for caches created for self-tests 146 * Intended for caches created for self-tests so they have only flags 189 * specified in the code and other flags are i 147 * specified in the code and other flags are ignored. 190 */ 148 */ 191 #define SLAB_NO_USER_FLAGS __SLAB_FLAG_BI !! 149 #define SLAB_NO_USER_FLAGS ((slab_flags_t __force)0x10000000U) 192 150 193 #ifdef CONFIG_KFENCE 151 #ifdef CONFIG_KFENCE 194 #define SLAB_SKIP_KFENCE __SLAB_FLAG_BI !! 152 #define SLAB_SKIP_KFENCE ((slab_flags_t __force)0x20000000U) 195 #else 153 #else 196 #define SLAB_SKIP_KFENCE __SLAB_FLAG_UN !! 154 #define SLAB_SKIP_KFENCE 0 197 #endif 155 #endif 198 156 199 /* The following flags affect the page allocat 157 /* The following flags affect the page allocator grouping pages by mobility */ 200 /* Objects are reclaimable */ 158 /* Objects are reclaimable */ 201 #ifndef CONFIG_SLUB_TINY 159 #ifndef CONFIG_SLUB_TINY 202 #define SLAB_RECLAIM_ACCOUNT __SLAB_FLAG_BI !! 160 #define SLAB_RECLAIM_ACCOUNT ((slab_flags_t __force)0x00020000U) 203 #else 161 #else 204 #define SLAB_RECLAIM_ACCOUNT __SLAB_FLAG_UN !! 162 #define SLAB_RECLAIM_ACCOUNT ((slab_flags_t __force)0) 205 #endif 163 #endif 206 #define SLAB_TEMPORARY SLAB_RECLAIM_A 164 #define SLAB_TEMPORARY SLAB_RECLAIM_ACCOUNT /* Objects are short-lived */ 207 165 208 /* Slab created using create_boot_cache */ << 209 #ifdef CONFIG_SLAB_OBJ_EXT << 210 #define SLAB_NO_OBJ_EXT __SLAB_FLAG_BI << 211 #else << 212 #define SLAB_NO_OBJ_EXT __SLAB_FLAG_UN << 213 #endif << 214 << 215 /* << 216 * freeptr_t represents a SLUB freelist pointe << 217 * and not dereferenceable if CONFIG_SLAB_FREE << 218 */ << 219 typedef struct { unsigned long v; } freeptr_t; << 220 << 221 /* 166 /* 222 * ZERO_SIZE_PTR will be returned for zero siz 167 * ZERO_SIZE_PTR will be returned for zero sized kmalloc requests. 223 * 168 * 224 * Dereferencing ZERO_SIZE_PTR will lead to a 169 * Dereferencing ZERO_SIZE_PTR will lead to a distinct access fault. 225 * 170 * 226 * ZERO_SIZE_PTR can be passed to kfree though 171 * ZERO_SIZE_PTR can be passed to kfree though in the same way that NULL can. 227 * Both make kfree a no-op. 172 * Both make kfree a no-op. 228 */ 173 */ 229 #define ZERO_SIZE_PTR ((void *)16) 174 #define ZERO_SIZE_PTR ((void *)16) 230 175 231 #define ZERO_OR_NULL_PTR(x) ((unsigned long)(x 176 #define ZERO_OR_NULL_PTR(x) ((unsigned long)(x) <= \ 232 (unsigned long 177 (unsigned long)ZERO_SIZE_PTR) 233 178 234 #include <linux/kasan.h> 179 #include <linux/kasan.h> 235 180 236 struct list_lru; 181 struct list_lru; 237 struct mem_cgroup; 182 struct mem_cgroup; 238 /* 183 /* 239 * struct kmem_cache related prototypes 184 * struct kmem_cache related prototypes 240 */ 185 */ 241 bool slab_is_available(void); 186 bool slab_is_available(void); 242 187 243 /** !! 188 struct kmem_cache *kmem_cache_create(const char *name, unsigned int size, 244 * struct kmem_cache_args - Less common argume !! 189 unsigned int align, slab_flags_t flags, 245 * !! 190 void (*ctor)(void *)); 246 * Any uninitialized fields of the structure a !! 191 struct kmem_cache *kmem_cache_create_usercopy(const char *name, 247 * exception is @freeptr_offset where %0 is a !! 192 unsigned int size, unsigned int align, 248 * @use_freeptr_offset must be also set to %tr !! 193 slab_flags_t flags, 249 * as used. For @useroffset %0 is also valid, !! 194 unsigned int useroffset, unsigned int usersize, 250 * @usersize. !! 195 void (*ctor)(void *)); 251 * << 252 * When %NULL args is passed to kmem_cache_cre << 253 * fields unused. << 254 */ << 255 struct kmem_cache_args { << 256 /** << 257 * @align: The required alignment for << 258 * << 259 * %0 means no specific alignment is r << 260 */ << 261 unsigned int align; << 262 /** << 263 * @useroffset: Usercopy region offset << 264 * << 265 * %0 is a valid offset, when @usersiz << 266 */ << 267 unsigned int useroffset; << 268 /** << 269 * @usersize: Usercopy region size. << 270 * << 271 * %0 means no usercopy region is spec << 272 */ << 273 unsigned int usersize; << 274 /** << 275 * @freeptr_offset: Custom offset for << 276 * in &SLAB_TYPESAFE_BY_RCU caches << 277 * << 278 * By default &SLAB_TYPESAFE_BY_RCU ca << 279 * outside of the object. This might c << 280 * Cache creators that have a reason t << 281 * free pointer offset in their struct << 282 * placed. << 283 * << 284 * Note that placing the free pointer << 285 * caller to ensure that no fields are << 286 * guard against object recycling (See << 287 * details). << 288 * << 289 * Using %0 as a value for @freeptr_of << 290 * is specified, %use_freeptr_offset m << 291 * << 292 * Note that @ctor currently isn't sup << 293 * as a @ctor requires an external fre << 294 */ << 295 unsigned int freeptr_offset; << 296 /** << 297 * @use_freeptr_offset: Whether a @fre << 298 */ << 299 bool use_freeptr_offset; << 300 /** << 301 * @ctor: A constructor for the object << 302 * << 303 * The constructor is invoked for each << 304 * page. It is the cache user's respon << 305 * same state as after calling the con << 306 * with any differences between a fres << 307 * object. << 308 * << 309 * %NULL means no constructor. << 310 */ << 311 void (*ctor)(void *); << 312 }; << 313 << 314 struct kmem_cache *__kmem_cache_create_args(co << 315 un << 316 st << 317 sl << 318 static inline struct kmem_cache * << 319 __kmem_cache_create(const char *name, unsigned << 320 slab_flags_t flags, void ( << 321 { << 322 struct kmem_cache_args kmem_args = { << 323 .align = align, << 324 .ctor = ctor, << 325 }; << 326 << 327 return __kmem_cache_create_args(name, << 328 } << 329 << 330 /** << 331 * kmem_cache_create_usercopy - Create a kmem << 332 * for copying to userspace. << 333 * @name: A string which is used in /proc/slab << 334 * @size: The size of objects to be created in << 335 * @align: The required alignment for the obje << 336 * @flags: SLAB flags << 337 * @useroffset: Usercopy region offset << 338 * @usersize: Usercopy region size << 339 * @ctor: A constructor for the objects, or %N << 340 * << 341 * This is a legacy wrapper, new code should u << 342 * if whitelisting a single field is sufficien << 343 * the necessary parameters passed via the arg << 344 * &struct kmem_cache_args) << 345 * << 346 * Return: a pointer to the cache on success, << 347 */ << 348 static inline struct kmem_cache * << 349 kmem_cache_create_usercopy(const char *name, u << 350 unsigned int align, << 351 unsigned int userof << 352 void (*ctor)(void * << 353 { << 354 struct kmem_cache_args kmem_args = { << 355 .align = align, << 356 .ctor = ctor, << 357 .useroffset = useroffset, << 358 .usersize = usersize, << 359 }; << 360 << 361 return __kmem_cache_create_args(name, << 362 } << 363 << 364 /* If NULL is passed for @args, use this varia << 365 static inline struct kmem_cache * << 366 __kmem_cache_default_args(const char *name, un << 367 struct kmem_cache_ar << 368 slab_flags_t flags) << 369 { << 370 struct kmem_cache_args kmem_default_ar << 371 << 372 /* Make sure we don't get passed garba << 373 if (WARN_ON_ONCE(args)) << 374 return ERR_PTR(-EINVAL); << 375 << 376 return __kmem_cache_create_args(name, << 377 } << 378 << 379 /** << 380 * kmem_cache_create - Create a kmem cache. << 381 * @__name: A string which is used in /proc/sl << 382 * @__object_size: The size of objects to be c << 383 * @__args: Optional arguments, see &struct km << 384 * means defaults will be used for al << 385 * << 386 * This is currently implemented as a macro us << 387 * either the new variant of the function, or << 388 * << 389 * The new variant has 4 parameters: << 390 * ``kmem_cache_create(name, object_size, args << 391 * << 392 * See __kmem_cache_create_args() which implem << 393 * << 394 * The legacy variant has 5 parameters: << 395 * ``kmem_cache_create(name, object_size, alig << 396 * << 397 * The align and ctor parameters map to the re << 398 * &struct kmem_cache_args << 399 * << 400 * Context: Cannot be called within a interrup << 401 * << 402 * Return: a pointer to the cache on success, << 403 */ << 404 #define kmem_cache_create(__name, __object_siz << 405 _Generic((__args), << 406 struct kmem_cache_args *: __km << 407 void *: __kmem_cache_default_a << 408 default: __kmem_cache_create)( << 409 << 410 void kmem_cache_destroy(struct kmem_cache *s); 196 void kmem_cache_destroy(struct kmem_cache *s); 411 int kmem_cache_shrink(struct kmem_cache *s); 197 int kmem_cache_shrink(struct kmem_cache *s); 412 198 413 /* 199 /* 414 * Please use this macro to create slab caches 200 * Please use this macro to create slab caches. Simply specify the 415 * name of the structure and maybe some flags 201 * name of the structure and maybe some flags that are listed above. 416 * 202 * 417 * The alignment of the struct determines obje 203 * The alignment of the struct determines object alignment. If you 418 * f.e. add ____cacheline_aligned_in_smp to th 204 * f.e. add ____cacheline_aligned_in_smp to the struct declaration 419 * then the objects will be properly aligned i 205 * then the objects will be properly aligned in SMP configurations. 420 */ 206 */ 421 #define KMEM_CACHE(__struct, __flags) !! 207 #define KMEM_CACHE(__struct, __flags) \ 422 __kmem_cache_create_args(#__struct, si !! 208 kmem_cache_create(#__struct, sizeof(struct __struct), \ 423 &(struct kmem_cache_ar !! 209 __alignof__(struct __struct), (__flags), NULL) 424 .align = __al << 425 }, (__flags)) << 426 210 427 /* 211 /* 428 * To whitelist a single field for copying to/ 212 * To whitelist a single field for copying to/from usercopy, use this 429 * macro instead for KMEM_CACHE() above. 213 * macro instead for KMEM_CACHE() above. 430 */ 214 */ 431 #define KMEM_CACHE_USERCOPY(__struct, __flags, !! 215 #define KMEM_CACHE_USERCOPY(__struct, __flags, __field) \ 432 __kmem_cache_create_args(#__struct, si !! 216 kmem_cache_create_usercopy(#__struct, \ 433 &(struct kmem_cache_ar !! 217 sizeof(struct __struct), \ 434 .align !! 218 __alignof__(struct __struct), (__flags), \ 435 .useroffset !! 219 offsetof(struct __struct, __field), \ 436 .usersize !! 220 sizeof_field(struct __struct, __field), NULL) 437 }, (__flags)) << 438 221 439 /* 222 /* 440 * Common kmalloc functions provided by all al 223 * Common kmalloc functions provided by all allocators 441 */ 224 */ 442 void * __must_check krealloc_noprof(const void !! 225 void * __must_check krealloc(const void *objp, size_t new_size, gfp_t flags) __realloc_size(2); 443 gfp_t flag << 444 #define krealloc(...) << 445 << 446 void kfree(const void *objp); 226 void kfree(const void *objp); 447 void kfree_sensitive(const void *objp); 227 void kfree_sensitive(const void *objp); 448 size_t __ksize(const void *objp); 228 size_t __ksize(const void *objp); 449 229 450 DEFINE_FREE(kfree, void *, if (!IS_ERR_OR_NULL !! 230 DEFINE_FREE(kfree, void *, if (_T) kfree(_T)) 451 231 452 /** 232 /** 453 * ksize - Report actual allocation size of as 233 * ksize - Report actual allocation size of associated object 454 * 234 * 455 * @objp: Pointer returned from a prior kmallo 235 * @objp: Pointer returned from a prior kmalloc()-family allocation. 456 * 236 * 457 * This should not be used for writing beyond 237 * This should not be used for writing beyond the originally requested 458 * allocation size. Either use krealloc() or r 238 * allocation size. Either use krealloc() or round up the allocation size 459 * with kmalloc_size_roundup() prior to alloca 239 * with kmalloc_size_roundup() prior to allocation. If this is used to 460 * access beyond the originally requested allo 240 * access beyond the originally requested allocation size, UBSAN_BOUNDS 461 * and/or FORTIFY_SOURCE may trip, since they 241 * and/or FORTIFY_SOURCE may trip, since they only know about the 462 * originally allocated size via the __alloc_s 242 * originally allocated size via the __alloc_size attribute. 463 */ 243 */ 464 size_t ksize(const void *objp); 244 size_t ksize(const void *objp); 465 245 466 #ifdef CONFIG_PRINTK 246 #ifdef CONFIG_PRINTK 467 bool kmem_dump_obj(void *object); !! 247 bool kmem_valid_obj(void *object); 468 #else !! 248 void kmem_dump_obj(void *object); 469 static inline bool kmem_dump_obj(void *object) << 470 #endif 249 #endif 471 250 472 /* 251 /* 473 * Some archs want to perform DMA into kmalloc 252 * Some archs want to perform DMA into kmalloc caches and need a guaranteed 474 * alignment larger than the alignment of a 64 253 * alignment larger than the alignment of a 64-bit integer. 475 * Setting ARCH_DMA_MINALIGN in arch headers a 254 * Setting ARCH_DMA_MINALIGN in arch headers allows that. 476 */ 255 */ 477 #ifdef ARCH_HAS_DMA_MINALIGN 256 #ifdef ARCH_HAS_DMA_MINALIGN 478 #if ARCH_DMA_MINALIGN > 8 && !defined(ARCH_KMA 257 #if ARCH_DMA_MINALIGN > 8 && !defined(ARCH_KMALLOC_MINALIGN) 479 #define ARCH_KMALLOC_MINALIGN ARCH_DMA_MINALIG 258 #define ARCH_KMALLOC_MINALIGN ARCH_DMA_MINALIGN 480 #endif 259 #endif 481 #endif 260 #endif 482 261 483 #ifndef ARCH_KMALLOC_MINALIGN 262 #ifndef ARCH_KMALLOC_MINALIGN 484 #define ARCH_KMALLOC_MINALIGN __alignof__(unsi 263 #define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long) 485 #elif ARCH_KMALLOC_MINALIGN > 8 264 #elif ARCH_KMALLOC_MINALIGN > 8 486 #define KMALLOC_MIN_SIZE ARCH_KMALLOC_MINALIGN 265 #define KMALLOC_MIN_SIZE ARCH_KMALLOC_MINALIGN 487 #define KMALLOC_SHIFT_LOW ilog2(KMALLOC_MIN_SI 266 #define KMALLOC_SHIFT_LOW ilog2(KMALLOC_MIN_SIZE) 488 #endif 267 #endif 489 268 490 /* 269 /* 491 * Setting ARCH_SLAB_MINALIGN in arch headers 270 * Setting ARCH_SLAB_MINALIGN in arch headers allows a different alignment. 492 * Intended for arches that get misalignment f 271 * Intended for arches that get misalignment faults even for 64 bit integer 493 * aligned buffers. 272 * aligned buffers. 494 */ 273 */ 495 #ifndef ARCH_SLAB_MINALIGN 274 #ifndef ARCH_SLAB_MINALIGN 496 #define ARCH_SLAB_MINALIGN __alignof__(unsigne 275 #define ARCH_SLAB_MINALIGN __alignof__(unsigned long long) 497 #endif 276 #endif 498 277 499 /* 278 /* 500 * Arches can define this function if they wan 279 * Arches can define this function if they want to decide the minimum slab 501 * alignment at runtime. The value returned by 280 * alignment at runtime. The value returned by the function must be a power 502 * of two and >= ARCH_SLAB_MINALIGN. 281 * of two and >= ARCH_SLAB_MINALIGN. 503 */ 282 */ 504 #ifndef arch_slab_minalign 283 #ifndef arch_slab_minalign 505 static inline unsigned int arch_slab_minalign( 284 static inline unsigned int arch_slab_minalign(void) 506 { 285 { 507 return ARCH_SLAB_MINALIGN; 286 return ARCH_SLAB_MINALIGN; 508 } 287 } 509 #endif 288 #endif 510 289 511 /* 290 /* 512 * kmem_cache_alloc and friends return pointer 291 * kmem_cache_alloc and friends return pointers aligned to ARCH_SLAB_MINALIGN. 513 * kmalloc and friends return pointers aligned 292 * kmalloc and friends return pointers aligned to both ARCH_KMALLOC_MINALIGN 514 * and ARCH_SLAB_MINALIGN, but here we only as 293 * and ARCH_SLAB_MINALIGN, but here we only assume the former alignment. 515 */ 294 */ 516 #define __assume_kmalloc_alignment __assume_al 295 #define __assume_kmalloc_alignment __assume_aligned(ARCH_KMALLOC_MINALIGN) 517 #define __assume_slab_alignment __assume_align 296 #define __assume_slab_alignment __assume_aligned(ARCH_SLAB_MINALIGN) 518 #define __assume_page_alignment __assume_align 297 #define __assume_page_alignment __assume_aligned(PAGE_SIZE) 519 298 520 /* 299 /* 521 * Kmalloc array related definitions 300 * Kmalloc array related definitions 522 */ 301 */ 523 302 >> 303 #ifdef CONFIG_SLAB 524 /* 304 /* 525 * SLUB directly allocates requests fitting in !! 305 * SLAB and SLUB directly allocates requests fitting in to an order-1 page 526 * (PAGE_SIZE*2). Larger requests are passed 306 * (PAGE_SIZE*2). Larger requests are passed to the page allocator. 527 */ 307 */ 528 #define KMALLOC_SHIFT_HIGH (PAGE_SHIFT + 308 #define KMALLOC_SHIFT_HIGH (PAGE_SHIFT + 1) 529 #define KMALLOC_SHIFT_MAX (MAX_PAGE_ORDE !! 309 #define KMALLOC_SHIFT_MAX (MAX_ORDER + PAGE_SHIFT) >> 310 #ifndef KMALLOC_SHIFT_LOW >> 311 #define KMALLOC_SHIFT_LOW 5 >> 312 #endif >> 313 #endif >> 314 >> 315 #ifdef CONFIG_SLUB >> 316 #define KMALLOC_SHIFT_HIGH (PAGE_SHIFT + 1) >> 317 #define KMALLOC_SHIFT_MAX (MAX_ORDER + PAGE_SHIFT) 530 #ifndef KMALLOC_SHIFT_LOW 318 #ifndef KMALLOC_SHIFT_LOW 531 #define KMALLOC_SHIFT_LOW 3 319 #define KMALLOC_SHIFT_LOW 3 532 #endif 320 #endif >> 321 #endif 533 322 534 /* Maximum allocatable size */ 323 /* Maximum allocatable size */ 535 #define KMALLOC_MAX_SIZE (1UL << KMALLO 324 #define KMALLOC_MAX_SIZE (1UL << KMALLOC_SHIFT_MAX) 536 /* Maximum size for which we actually use a sl 325 /* Maximum size for which we actually use a slab cache */ 537 #define KMALLOC_MAX_CACHE_SIZE (1UL << KMALLO 326 #define KMALLOC_MAX_CACHE_SIZE (1UL << KMALLOC_SHIFT_HIGH) 538 /* Maximum order allocatable via the slab allo 327 /* Maximum order allocatable via the slab allocator */ 539 #define KMALLOC_MAX_ORDER (KMALLOC_SHIFT 328 #define KMALLOC_MAX_ORDER (KMALLOC_SHIFT_MAX - PAGE_SHIFT) 540 329 541 /* 330 /* 542 * Kmalloc subsystem. 331 * Kmalloc subsystem. 543 */ 332 */ 544 #ifndef KMALLOC_MIN_SIZE 333 #ifndef KMALLOC_MIN_SIZE 545 #define KMALLOC_MIN_SIZE (1 << KMALLOC_SHIFT_L 334 #define KMALLOC_MIN_SIZE (1 << KMALLOC_SHIFT_LOW) 546 #endif 335 #endif 547 336 548 /* 337 /* 549 * This restriction comes from byte sized inde 338 * This restriction comes from byte sized index implementation. 550 * Page size is normally 2^12 bytes and, in th 339 * Page size is normally 2^12 bytes and, in this case, if we want to use 551 * byte sized index which can represent 2^8 en 340 * byte sized index which can represent 2^8 entries, the size of the object 552 * should be equal or greater to 2^12 / 2^8 = 341 * should be equal or greater to 2^12 / 2^8 = 2^4 = 16. 553 * If minimum size of kmalloc is less than 16, 342 * If minimum size of kmalloc is less than 16, we use it as minimum object 554 * size and give up to use byte sized index. 343 * size and give up to use byte sized index. 555 */ 344 */ 556 #define SLAB_OBJ_MIN_SIZE (KMALLOC_MIN_SI 345 #define SLAB_OBJ_MIN_SIZE (KMALLOC_MIN_SIZE < 16 ? \ 557 (KMALLOC_MIN_SI 346 (KMALLOC_MIN_SIZE) : 16) 558 347 559 #ifdef CONFIG_RANDOM_KMALLOC_CACHES << 560 #define RANDOM_KMALLOC_CACHES_NR 15 // << 561 #else << 562 #define RANDOM_KMALLOC_CACHES_NR 0 << 563 #endif << 564 << 565 /* 348 /* 566 * Whenever changing this, take care of that k 349 * Whenever changing this, take care of that kmalloc_type() and 567 * create_kmalloc_caches() still work as inten 350 * create_kmalloc_caches() still work as intended. 568 * 351 * 569 * KMALLOC_NORMAL can contain only unaccounted 352 * KMALLOC_NORMAL can contain only unaccounted objects whereas KMALLOC_CGROUP 570 * is for accounted but unreclaimable and non- 353 * is for accounted but unreclaimable and non-dma objects. All the other 571 * kmem caches can have both accounted and una 354 * kmem caches can have both accounted and unaccounted objects. 572 */ 355 */ 573 enum kmalloc_cache_type { 356 enum kmalloc_cache_type { 574 KMALLOC_NORMAL = 0, 357 KMALLOC_NORMAL = 0, 575 #ifndef CONFIG_ZONE_DMA 358 #ifndef CONFIG_ZONE_DMA 576 KMALLOC_DMA = KMALLOC_NORMAL, 359 KMALLOC_DMA = KMALLOC_NORMAL, 577 #endif 360 #endif 578 #ifndef CONFIG_MEMCG !! 361 #ifndef CONFIG_MEMCG_KMEM 579 KMALLOC_CGROUP = KMALLOC_NORMAL, 362 KMALLOC_CGROUP = KMALLOC_NORMAL, 580 #endif 363 #endif 581 KMALLOC_RANDOM_START = KMALLOC_NORMAL, << 582 KMALLOC_RANDOM_END = KMALLOC_RANDOM_ST << 583 #ifdef CONFIG_SLUB_TINY 364 #ifdef CONFIG_SLUB_TINY 584 KMALLOC_RECLAIM = KMALLOC_NORMAL, 365 KMALLOC_RECLAIM = KMALLOC_NORMAL, 585 #else 366 #else 586 KMALLOC_RECLAIM, 367 KMALLOC_RECLAIM, 587 #endif 368 #endif 588 #ifdef CONFIG_ZONE_DMA 369 #ifdef CONFIG_ZONE_DMA 589 KMALLOC_DMA, 370 KMALLOC_DMA, 590 #endif 371 #endif 591 #ifdef CONFIG_MEMCG !! 372 #ifdef CONFIG_MEMCG_KMEM 592 KMALLOC_CGROUP, 373 KMALLOC_CGROUP, 593 #endif 374 #endif 594 NR_KMALLOC_TYPES 375 NR_KMALLOC_TYPES 595 }; 376 }; 596 377 597 typedef struct kmem_cache * kmem_buckets[KMALL !! 378 extern struct kmem_cache * 598 !! 379 kmalloc_caches[NR_KMALLOC_TYPES][KMALLOC_SHIFT_HIGH + 1]; 599 extern kmem_buckets kmalloc_caches[NR_KMALLOC_ << 600 380 601 /* 381 /* 602 * Define gfp bits that should not be set for 382 * Define gfp bits that should not be set for KMALLOC_NORMAL. 603 */ 383 */ 604 #define KMALLOC_NOT_NORMAL_BITS 384 #define KMALLOC_NOT_NORMAL_BITS \ 605 (__GFP_RECLAIMABLE | 385 (__GFP_RECLAIMABLE | \ 606 (IS_ENABLED(CONFIG_ZONE_DMA) ? __GFP 386 (IS_ENABLED(CONFIG_ZONE_DMA) ? __GFP_DMA : 0) | \ 607 (IS_ENABLED(CONFIG_MEMCG) ? __GFP_ACCO !! 387 (IS_ENABLED(CONFIG_MEMCG_KMEM) ? __GFP_ACCOUNT : 0)) 608 << 609 extern unsigned long random_kmalloc_seed; << 610 388 611 static __always_inline enum kmalloc_cache_type !! 389 static __always_inline enum kmalloc_cache_type kmalloc_type(gfp_t flags) 612 { 390 { 613 /* 391 /* 614 * The most common case is KMALLOC_NOR 392 * The most common case is KMALLOC_NORMAL, so test for it 615 * with a single branch for all the re 393 * with a single branch for all the relevant flags. 616 */ 394 */ 617 if (likely((flags & KMALLOC_NOT_NORMAL 395 if (likely((flags & KMALLOC_NOT_NORMAL_BITS) == 0)) 618 #ifdef CONFIG_RANDOM_KMALLOC_CACHES << 619 /* RANDOM_KMALLOC_CACHES_NR (= << 620 return KMALLOC_RANDOM_START + << 621 << 622 #else << 623 return KMALLOC_NORMAL; 396 return KMALLOC_NORMAL; 624 #endif << 625 397 626 /* 398 /* 627 * At least one of the flags has to be 399 * At least one of the flags has to be set. Their priorities in 628 * decreasing order are: 400 * decreasing order are: 629 * 1) __GFP_DMA 401 * 1) __GFP_DMA 630 * 2) __GFP_RECLAIMABLE 402 * 2) __GFP_RECLAIMABLE 631 * 3) __GFP_ACCOUNT 403 * 3) __GFP_ACCOUNT 632 */ 404 */ 633 if (IS_ENABLED(CONFIG_ZONE_DMA) && (fl 405 if (IS_ENABLED(CONFIG_ZONE_DMA) && (flags & __GFP_DMA)) 634 return KMALLOC_DMA; 406 return KMALLOC_DMA; 635 if (!IS_ENABLED(CONFIG_MEMCG) || (flag !! 407 if (!IS_ENABLED(CONFIG_MEMCG_KMEM) || (flags & __GFP_RECLAIMABLE)) 636 return KMALLOC_RECLAIM; 408 return KMALLOC_RECLAIM; 637 else 409 else 638 return KMALLOC_CGROUP; 410 return KMALLOC_CGROUP; 639 } 411 } 640 412 641 /* 413 /* 642 * Figure out which kmalloc slab an allocation 414 * Figure out which kmalloc slab an allocation of a certain size 643 * belongs to. 415 * belongs to. 644 * 0 = zero alloc 416 * 0 = zero alloc 645 * 1 = 65 .. 96 bytes 417 * 1 = 65 .. 96 bytes 646 * 2 = 129 .. 192 bytes 418 * 2 = 129 .. 192 bytes 647 * n = 2^(n-1)+1 .. 2^n 419 * n = 2^(n-1)+1 .. 2^n 648 * 420 * 649 * Note: __kmalloc_index() is compile-time opt 421 * Note: __kmalloc_index() is compile-time optimized, and not runtime optimized; 650 * typical usage is via kmalloc_index() and th 422 * typical usage is via kmalloc_index() and therefore evaluated at compile-time. 651 * Callers where !size_is_constant should only 423 * Callers where !size_is_constant should only be test modules, where runtime 652 * overheads of __kmalloc_index() can be toler 424 * overheads of __kmalloc_index() can be tolerated. Also see kmalloc_slab(). 653 */ 425 */ 654 static __always_inline unsigned int __kmalloc_ 426 static __always_inline unsigned int __kmalloc_index(size_t size, 655 427 bool size_is_constant) 656 { 428 { 657 if (!size) 429 if (!size) 658 return 0; 430 return 0; 659 431 660 if (size <= KMALLOC_MIN_SIZE) 432 if (size <= KMALLOC_MIN_SIZE) 661 return KMALLOC_SHIFT_LOW; 433 return KMALLOC_SHIFT_LOW; 662 434 663 if (KMALLOC_MIN_SIZE <= 32 && size > 6 435 if (KMALLOC_MIN_SIZE <= 32 && size > 64 && size <= 96) 664 return 1; 436 return 1; 665 if (KMALLOC_MIN_SIZE <= 64 && size > 1 437 if (KMALLOC_MIN_SIZE <= 64 && size > 128 && size <= 192) 666 return 2; 438 return 2; 667 if (size <= 8) return 3; 439 if (size <= 8) return 3; 668 if (size <= 16) return 4; 440 if (size <= 16) return 4; 669 if (size <= 32) return 5; 441 if (size <= 32) return 5; 670 if (size <= 64) return 6; 442 if (size <= 64) return 6; 671 if (size <= 128) return 7; 443 if (size <= 128) return 7; 672 if (size <= 256) return 8; 444 if (size <= 256) return 8; 673 if (size <= 512) return 9; 445 if (size <= 512) return 9; 674 if (size <= 1024) return 10; 446 if (size <= 1024) return 10; 675 if (size <= 2 * 1024) return 11; 447 if (size <= 2 * 1024) return 11; 676 if (size <= 4 * 1024) return 12; 448 if (size <= 4 * 1024) return 12; 677 if (size <= 8 * 1024) return 13; 449 if (size <= 8 * 1024) return 13; 678 if (size <= 16 * 1024) return 14; 450 if (size <= 16 * 1024) return 14; 679 if (size <= 32 * 1024) return 15; 451 if (size <= 32 * 1024) return 15; 680 if (size <= 64 * 1024) return 16; 452 if (size <= 64 * 1024) return 16; 681 if (size <= 128 * 1024) return 17; 453 if (size <= 128 * 1024) return 17; 682 if (size <= 256 * 1024) return 18; 454 if (size <= 256 * 1024) return 18; 683 if (size <= 512 * 1024) return 19; 455 if (size <= 512 * 1024) return 19; 684 if (size <= 1024 * 1024) return 20; 456 if (size <= 1024 * 1024) return 20; 685 if (size <= 2 * 1024 * 1024) return 2 457 if (size <= 2 * 1024 * 1024) return 21; 686 458 687 if (!IS_ENABLED(CONFIG_PROFILE_ALL_BRA 459 if (!IS_ENABLED(CONFIG_PROFILE_ALL_BRANCHES) && size_is_constant) 688 BUILD_BUG_ON_MSG(1, "unexpecte 460 BUILD_BUG_ON_MSG(1, "unexpected size in kmalloc_index()"); 689 else 461 else 690 BUG(); 462 BUG(); 691 463 692 /* Will never be reached. Needed becau 464 /* Will never be reached. Needed because the compiler may complain */ 693 return -1; 465 return -1; 694 } 466 } 695 static_assert(PAGE_SHIFT <= 20); 467 static_assert(PAGE_SHIFT <= 20); 696 #define kmalloc_index(s) __kmalloc_index(s, tr 468 #define kmalloc_index(s) __kmalloc_index(s, true) 697 469 698 #include <linux/alloc_tag.h> !! 470 void *__kmalloc(size_t size, gfp_t flags) __assume_kmalloc_alignment __alloc_size(1); 699 471 700 /** 472 /** 701 * kmem_cache_alloc - Allocate an object 473 * kmem_cache_alloc - Allocate an object 702 * @cachep: The cache to allocate from. 474 * @cachep: The cache to allocate from. 703 * @flags: See kmalloc(). 475 * @flags: See kmalloc(). 704 * 476 * 705 * Allocate an object from this cache. 477 * Allocate an object from this cache. 706 * See kmem_cache_zalloc() for a shortcut of a 478 * See kmem_cache_zalloc() for a shortcut of adding __GFP_ZERO to flags. 707 * 479 * 708 * Return: pointer to the new object or %NULL 480 * Return: pointer to the new object or %NULL in case of error 709 */ 481 */ 710 void *kmem_cache_alloc_noprof(struct kmem_cach !! 482 void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags) __assume_slab_alignment __malloc; 711 gfp_t flags) __a !! 483 void *kmem_cache_alloc_lru(struct kmem_cache *s, struct list_lru *lru, 712 #define kmem_cache_alloc(...) !! 484 gfp_t gfpflags) __assume_slab_alignment __malloc; 713 << 714 void *kmem_cache_alloc_lru_noprof(struct kmem_ << 715 gfp_t gfpflags) __ << 716 #define kmem_cache_alloc_lru(...) alloc_ << 717 << 718 /** << 719 * kmem_cache_charge - memcg charge an already << 720 * @objp: address of the slab object to memcg << 721 * @gfpflags: describe the allocation context << 722 * << 723 * kmem_cache_charge allows charging a slab ob << 724 * primarily in cases where charging at alloca << 725 * because the target memcg is not known (i.e. << 726 * << 727 * The objp should be pointer returned by the << 728 * kmalloc (with __GFP_ACCOUNT in flags) or km << 729 * behavior can be controlled through gfpflags << 730 * necessary internal metadata can be allocate << 731 * that overcharging is requested instead of f << 732 * internal metadata allocation. << 733 * << 734 * There are several cases where it will retur << 735 * not done: << 736 * More specifically: << 737 * << 738 * 1. For !CONFIG_MEMCG or cgroup_disable=memo << 739 * 2. Already charged slab objects. << 740 * 3. For slab objects from KMALLOC_NORMAL cac << 741 * without __GFP_ACCOUNT << 742 * 4. Allocating internal metadata has failed << 743 * << 744 * Return: true if charge was successful other << 745 */ << 746 bool kmem_cache_charge(void *objp, gfp_t gfpfl << 747 void kmem_cache_free(struct kmem_cache *s, voi 485 void kmem_cache_free(struct kmem_cache *s, void *objp); 748 486 749 kmem_buckets *kmem_buckets_create(const char * << 750 unsigned int << 751 void (*ctor) << 752 << 753 /* 487 /* 754 * Bulk allocation and freeing operations. The 488 * Bulk allocation and freeing operations. These are accelerated in an 755 * allocator specific way to avoid taking lock 489 * allocator specific way to avoid taking locks repeatedly or building 756 * metadata structures unnecessarily. 490 * metadata structures unnecessarily. 757 * 491 * 758 * Note that interrupts must be enabled when c 492 * Note that interrupts must be enabled when calling these functions. 759 */ 493 */ 760 void kmem_cache_free_bulk(struct kmem_cache *s 494 void kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p); 761 !! 495 int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size, void **p); 762 int kmem_cache_alloc_bulk_noprof(struct kmem_c << 763 #define kmem_cache_alloc_bulk(...) alloc_ << 764 496 765 static __always_inline void kfree_bulk(size_t 497 static __always_inline void kfree_bulk(size_t size, void **p) 766 { 498 { 767 kmem_cache_free_bulk(NULL, size, p); 499 kmem_cache_free_bulk(NULL, size, p); 768 } 500 } 769 501 770 void *kmem_cache_alloc_node_noprof(struct kmem !! 502 void *__kmalloc_node(size_t size, gfp_t flags, int node) __assume_kmalloc_alignment 771 int node) _ !! 503 __alloc_size(1); 772 #define kmem_cache_alloc_node(...) alloc_ !! 504 void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t flags, int node) __assume_slab_alignment 773 !! 505 __malloc; 774 /* !! 506 775 * These macros allow declaring a kmem_buckets !! 507 void *kmalloc_trace(struct kmem_cache *s, gfp_t flags, size_t size) 776 * can be compiled out with CONFIG_SLAB_BUCKET !! 508 __assume_kmalloc_alignment __alloc_size(3); 777 * sites don't have to pass NULL. !! 509 778 */ !! 510 void *kmalloc_node_trace(struct kmem_cache *s, gfp_t gfpflags, 779 #ifdef CONFIG_SLAB_BUCKETS !! 511 int node, size_t size) __assume_kmalloc_alignment 780 #define DECL_BUCKET_PARAMS(_size, _b) size_t !! 512 __alloc_size(4); 781 #define PASS_BUCKET_PARAMS(_size, _b) (_size !! 513 void *kmalloc_large(size_t size, gfp_t flags) __assume_page_alignment 782 #define PASS_BUCKET_PARAM(_b) (_b) !! 514 __alloc_size(1); 783 #else << 784 #define DECL_BUCKET_PARAMS(_size, _b) size_t << 785 #define PASS_BUCKET_PARAMS(_size, _b) (_size << 786 #define PASS_BUCKET_PARAM(_b) NULL << 787 #endif << 788 << 789 /* << 790 * The following functions are not to be used << 791 * for internal use from kmalloc() and kmalloc << 792 * with the exception of kunit tests << 793 */ << 794 << 795 void *__kmalloc_noprof(size_t size, gfp_t flag << 796 __assume_kmall << 797 << 798 void *__kmalloc_node_noprof(DECL_BUCKET_PARAMS << 799 __assume_kmall << 800 << 801 void *__kmalloc_cache_noprof(struct kmem_cache << 802 __assume_kmall << 803 515 804 void *__kmalloc_cache_node_noprof(struct kmem_ !! 516 void *kmalloc_large_node(size_t size, gfp_t flags, int node) __assume_page_alignment 805 int node, si !! 517 __alloc_size(1); 806 __assume_kmall << 807 << 808 void *__kmalloc_large_noprof(size_t size, gfp_ << 809 __assume_page_ << 810 << 811 void *__kmalloc_large_node_noprof(size_t size, << 812 __assume_page_ << 813 518 814 /** 519 /** 815 * kmalloc - allocate kernel memory 520 * kmalloc - allocate kernel memory 816 * @size: how many bytes of memory are require 521 * @size: how many bytes of memory are required. 817 * @flags: describe the allocation context 522 * @flags: describe the allocation context 818 * 523 * 819 * kmalloc is the normal method of allocating 524 * kmalloc is the normal method of allocating memory 820 * for objects smaller than page size in the k 525 * for objects smaller than page size in the kernel. 821 * 526 * 822 * The allocated object address is aligned to 527 * The allocated object address is aligned to at least ARCH_KMALLOC_MINALIGN 823 * bytes. For @size of power of two bytes, the 528 * bytes. For @size of power of two bytes, the alignment is also guaranteed 824 * to be at least to the size. For other sizes !! 529 * to be at least to the size. 825 * be at least the largest power-of-two diviso << 826 * 530 * 827 * The @flags argument may be one of the GFP f 531 * The @flags argument may be one of the GFP flags defined at 828 * include/linux/gfp_types.h and described at 532 * include/linux/gfp_types.h and described at 829 * :ref:`Documentation/core-api/mm-api.rst <mm 533 * :ref:`Documentation/core-api/mm-api.rst <mm-api-gfp-flags>` 830 * 534 * 831 * The recommended usage of the @flags is desc 535 * The recommended usage of the @flags is described at 832 * :ref:`Documentation/core-api/memory-allocat 536 * :ref:`Documentation/core-api/memory-allocation.rst <memory_allocation>` 833 * 537 * 834 * Below is a brief outline of the most useful 538 * Below is a brief outline of the most useful GFP flags 835 * 539 * 836 * %GFP_KERNEL 540 * %GFP_KERNEL 837 * Allocate normal kernel ram. May sleep. 541 * Allocate normal kernel ram. May sleep. 838 * 542 * 839 * %GFP_NOWAIT 543 * %GFP_NOWAIT 840 * Allocation will not sleep. 544 * Allocation will not sleep. 841 * 545 * 842 * %GFP_ATOMIC 546 * %GFP_ATOMIC 843 * Allocation will not sleep. May use em 547 * Allocation will not sleep. May use emergency pools. 844 * 548 * 845 * Also it is possible to set different flags 549 * Also it is possible to set different flags by OR'ing 846 * in one or more of the following additional 550 * in one or more of the following additional @flags: 847 * 551 * 848 * %__GFP_ZERO 552 * %__GFP_ZERO 849 * Zero the allocated memory before retur 553 * Zero the allocated memory before returning. Also see kzalloc(). 850 * 554 * 851 * %__GFP_HIGH 555 * %__GFP_HIGH 852 * This allocation has high priority and 556 * This allocation has high priority and may use emergency pools. 853 * 557 * 854 * %__GFP_NOFAIL 558 * %__GFP_NOFAIL 855 * Indicate that this allocation is in no 559 * Indicate that this allocation is in no way allowed to fail 856 * (think twice before using). 560 * (think twice before using). 857 * 561 * 858 * %__GFP_NORETRY 562 * %__GFP_NORETRY 859 * If memory is not immediately available 563 * If memory is not immediately available, 860 * then give up at once. 564 * then give up at once. 861 * 565 * 862 * %__GFP_NOWARN 566 * %__GFP_NOWARN 863 * If allocation fails, don't issue any w 567 * If allocation fails, don't issue any warnings. 864 * 568 * 865 * %__GFP_RETRY_MAYFAIL 569 * %__GFP_RETRY_MAYFAIL 866 * Try really hard to succeed the allocat 570 * Try really hard to succeed the allocation but fail 867 * eventually. 571 * eventually. 868 */ 572 */ 869 static __always_inline __alloc_size(1) void *k !! 573 static __always_inline __alloc_size(1) void *kmalloc(size_t size, gfp_t flags) 870 { 574 { 871 if (__builtin_constant_p(size) && size 575 if (__builtin_constant_p(size) && size) { 872 unsigned int index; 576 unsigned int index; 873 577 874 if (size > KMALLOC_MAX_CACHE_S 578 if (size > KMALLOC_MAX_CACHE_SIZE) 875 return __kmalloc_large !! 579 return kmalloc_large(size, flags); 876 580 877 index = kmalloc_index(size); 581 index = kmalloc_index(size); 878 return __kmalloc_cache_noprof( !! 582 return kmalloc_trace( 879 kmalloc_caches !! 583 kmalloc_caches[kmalloc_type(flags)][index], 880 flags, size); 584 flags, size); 881 } 585 } 882 return __kmalloc_noprof(size, flags); !! 586 return __kmalloc(size, flags); 883 } 587 } 884 #define kmalloc(...) << 885 << 886 #define kmem_buckets_alloc(_b, _size, _flags) << 887 alloc_hooks(__kmalloc_node_noprof(PASS << 888 588 889 #define kmem_buckets_alloc_track_caller(_b, _s !! 589 static __always_inline __alloc_size(1) void *kmalloc_node(size_t size, gfp_t flags, int node) 890 alloc_hooks(__kmalloc_node_track_calle << 891 << 892 static __always_inline __alloc_size(1) void *k << 893 { 590 { 894 if (__builtin_constant_p(size) && size 591 if (__builtin_constant_p(size) && size) { 895 unsigned int index; 592 unsigned int index; 896 593 897 if (size > KMALLOC_MAX_CACHE_S 594 if (size > KMALLOC_MAX_CACHE_SIZE) 898 return __kmalloc_large !! 595 return kmalloc_large_node(size, flags, node); 899 596 900 index = kmalloc_index(size); 597 index = kmalloc_index(size); 901 return __kmalloc_cache_node_no !! 598 return kmalloc_node_trace( 902 kmalloc_caches !! 599 kmalloc_caches[kmalloc_type(flags)][index], 903 flags, node, s 600 flags, node, size); 904 } 601 } 905 return __kmalloc_node_noprof(PASS_BUCK !! 602 return __kmalloc_node(size, flags, node); 906 } 603 } 907 #define kmalloc_node(...) << 908 604 909 /** 605 /** 910 * kmalloc_array - allocate memory for an arra 606 * kmalloc_array - allocate memory for an array. 911 * @n: number of elements. 607 * @n: number of elements. 912 * @size: element size. 608 * @size: element size. 913 * @flags: the type of memory to allocate (see 609 * @flags: the type of memory to allocate (see kmalloc). 914 */ 610 */ 915 static inline __alloc_size(1, 2) void *kmalloc !! 611 static inline __alloc_size(1, 2) void *kmalloc_array(size_t n, size_t size, gfp_t flags) 916 { 612 { 917 size_t bytes; 613 size_t bytes; 918 614 919 if (unlikely(check_mul_overflow(n, siz 615 if (unlikely(check_mul_overflow(n, size, &bytes))) 920 return NULL; 616 return NULL; 921 if (__builtin_constant_p(n) && __built 617 if (__builtin_constant_p(n) && __builtin_constant_p(size)) 922 return kmalloc_noprof(bytes, f !! 618 return kmalloc(bytes, flags); 923 return kmalloc_noprof(bytes, flags); !! 619 return __kmalloc(bytes, flags); 924 } 620 } 925 #define kmalloc_array(...) << 926 621 927 /** 622 /** 928 * krealloc_array - reallocate memory for an a 623 * krealloc_array - reallocate memory for an array. 929 * @p: pointer to the memory chunk to realloca 624 * @p: pointer to the memory chunk to reallocate 930 * @new_n: new number of elements to alloc 625 * @new_n: new number of elements to alloc 931 * @new_size: new size of a single member of t 626 * @new_size: new size of a single member of the array 932 * @flags: the type of memory to allocate (see 627 * @flags: the type of memory to allocate (see kmalloc) 933 * !! 628 */ 934 * If __GFP_ZERO logic is requested, callers m !! 629 static inline __realloc_size(2, 3) void * __must_check krealloc_array(void *p, 935 * initial memory allocation, every subsequent !! 630 size_t new_n, 936 * memory allocation is flagged with __GFP_ZER !! 631 size_t new_size, 937 * __GFP_ZERO is not fully honored by this API !! 632 gfp_t flags) 938 * << 939 * See krealloc_noprof() for further details. << 940 * << 941 * In any case, the contents of the object poi << 942 * lesser of the new and old sizes. << 943 */ << 944 static inline __realloc_size(2, 3) void * __mu << 945 << 946 << 947 << 948 { 633 { 949 size_t bytes; 634 size_t bytes; 950 635 951 if (unlikely(check_mul_overflow(new_n, 636 if (unlikely(check_mul_overflow(new_n, new_size, &bytes))) 952 return NULL; 637 return NULL; 953 638 954 return krealloc_noprof(p, bytes, flags !! 639 return krealloc(p, bytes, flags); 955 } 640 } 956 #define krealloc_array(...) << 957 641 958 /** 642 /** 959 * kcalloc - allocate memory for an array. The 643 * kcalloc - allocate memory for an array. The memory is set to zero. 960 * @n: number of elements. 644 * @n: number of elements. 961 * @size: element size. 645 * @size: element size. 962 * @flags: the type of memory to allocate (see 646 * @flags: the type of memory to allocate (see kmalloc). 963 */ 647 */ 964 #define kcalloc(n, size, flags) kmallo !! 648 static inline __alloc_size(1, 2) void *kcalloc(size_t n, size_t size, gfp_t flags) >> 649 { >> 650 return kmalloc_array(n, size, flags | __GFP_ZERO); >> 651 } 965 652 966 void *__kmalloc_node_track_caller_noprof(DECL_ !! 653 void *__kmalloc_node_track_caller(size_t size, gfp_t flags, int node, 967 unsig !! 654 unsigned long caller) __alloc_size(1); 968 #define kmalloc_node_track_caller_noprof(size, !! 655 #define kmalloc_node_track_caller(size, flags, node) \ 969 __kmalloc_node_track_caller_noprof(PAS !! 656 __kmalloc_node_track_caller(size, flags, node, \ 970 #define kmalloc_node_track_caller(...) !! 657 _RET_IP_) 971 alloc_hooks(kmalloc_node_track_caller_ << 972 658 973 /* 659 /* 974 * kmalloc_track_caller is a special version o 660 * kmalloc_track_caller is a special version of kmalloc that records the 975 * calling function of the routine calling it 661 * calling function of the routine calling it for slab leak tracking instead 976 * of just the calling function (confusing, eh 662 * of just the calling function (confusing, eh?). 977 * It's useful when the call to kmalloc comes 663 * It's useful when the call to kmalloc comes from a widely-used standard 978 * allocator where we care about the real plac 664 * allocator where we care about the real place the memory allocation 979 * request comes from. 665 * request comes from. 980 */ 666 */ 981 #define kmalloc_track_caller(...) !! 667 #define kmalloc_track_caller(size, flags) \ 982 !! 668 __kmalloc_node_track_caller(size, flags, \ 983 #define kmalloc_track_caller_noprof(...) !! 669 NUMA_NO_NODE, _RET_IP_) 984 kmalloc_node_track_caller_nopr << 985 670 986 static inline __alloc_size(1, 2) void *kmalloc !! 671 static inline __alloc_size(1, 2) void *kmalloc_array_node(size_t n, size_t size, gfp_t flags, 987 672 int node) 988 { 673 { 989 size_t bytes; 674 size_t bytes; 990 675 991 if (unlikely(check_mul_overflow(n, siz 676 if (unlikely(check_mul_overflow(n, size, &bytes))) 992 return NULL; 677 return NULL; 993 if (__builtin_constant_p(n) && __built 678 if (__builtin_constant_p(n) && __builtin_constant_p(size)) 994 return kmalloc_node_noprof(byt !! 679 return kmalloc_node(bytes, flags, node); 995 return __kmalloc_node_noprof(PASS_BUCK !! 680 return __kmalloc_node(bytes, flags, node); 996 } 681 } 997 #define kmalloc_array_node(...) << 998 682 999 #define kcalloc_node(_n, _size, _flags, _node) !! 683 static inline __alloc_size(1, 2) void *kcalloc_node(size_t n, size_t size, gfp_t flags, int node) 1000 kmalloc_array_node(_n, _size, (_flags !! 684 { >> 685 return kmalloc_array_node(n, size, flags | __GFP_ZERO, node); >> 686 } 1001 687 1002 /* 688 /* 1003 * Shortcuts 689 * Shortcuts 1004 */ 690 */ 1005 #define kmem_cache_zalloc(_k, _flags) !! 691 static inline void *kmem_cache_zalloc(struct kmem_cache *k, gfp_t flags) >> 692 { >> 693 return kmem_cache_alloc(k, flags | __GFP_ZERO); >> 694 } 1006 695 1007 /** 696 /** 1008 * kzalloc - allocate memory. The memory is s 697 * kzalloc - allocate memory. The memory is set to zero. 1009 * @size: how many bytes of memory are requir 698 * @size: how many bytes of memory are required. 1010 * @flags: the type of memory to allocate (se 699 * @flags: the type of memory to allocate (see kmalloc). 1011 */ 700 */ 1012 static inline __alloc_size(1) void *kzalloc_n !! 701 static inline __alloc_size(1) void *kzalloc(size_t size, gfp_t flags) 1013 { 702 { 1014 return kmalloc_noprof(size, flags | _ !! 703 return kmalloc(size, flags | __GFP_ZERO); 1015 } 704 } 1016 #define kzalloc(...) << 1017 #define kzalloc_node(_size, _flags, _node) << 1018 705 1019 void *__kvmalloc_node_noprof(DECL_BUCKET_PARA !! 706 /** 1020 #define kvmalloc_node_noprof(size, flags, nod !! 707 * kzalloc_node - allocate zeroed memory from a particular memory node. 1021 __kvmalloc_node_noprof(PASS_BUCKET_PA !! 708 * @size: how many bytes of memory are required. 1022 #define kvmalloc_node(...) !! 709 * @flags: the type of memory to allocate (see kmalloc). 1023 !! 710 * @node: memory node from which to allocate 1024 #define kvmalloc(_size, _flags) !! 711 */ 1025 #define kvmalloc_noprof(_size, _flags) !! 712 static inline __alloc_size(1) void *kzalloc_node(size_t size, gfp_t flags, int node) 1026 #define kvzalloc(_size, _flags) !! 713 { 1027 !! 714 return kmalloc_node(size, flags | __GFP_ZERO, node); 1028 #define kvzalloc_node(_size, _flags, _node) !! 715 } 1029 #define kmem_buckets_valloc(_b, _size, _flags !! 716 1030 alloc_hooks(__kvmalloc_node_noprof(PA !! 717 extern void *kvmalloc_node(size_t size, gfp_t flags, int node) __alloc_size(1); >> 718 static inline __alloc_size(1) void *kvmalloc(size_t size, gfp_t flags) >> 719 { >> 720 return kvmalloc_node(size, flags, NUMA_NO_NODE); >> 721 } >> 722 static inline __alloc_size(1) void *kvzalloc_node(size_t size, gfp_t flags, int node) >> 723 { >> 724 return kvmalloc_node(size, flags | __GFP_ZERO, node); >> 725 } >> 726 static inline __alloc_size(1) void *kvzalloc(size_t size, gfp_t flags) >> 727 { >> 728 return kvmalloc(size, flags | __GFP_ZERO); >> 729 } 1031 730 1032 static inline __alloc_size(1, 2) void * !! 731 static inline __alloc_size(1, 2) void *kvmalloc_array(size_t n, size_t size, gfp_t flags) 1033 kvmalloc_array_node_noprof(size_t n, size_t s << 1034 { 732 { 1035 size_t bytes; 733 size_t bytes; 1036 734 1037 if (unlikely(check_mul_overflow(n, si 735 if (unlikely(check_mul_overflow(n, size, &bytes))) 1038 return NULL; 736 return NULL; 1039 737 1040 return kvmalloc_node_noprof(bytes, fl !! 738 return kvmalloc(bytes, flags); 1041 } 739 } 1042 740 1043 #define kvmalloc_array_noprof(...) !! 741 static inline __alloc_size(1, 2) void *kvcalloc(size_t n, size_t size, gfp_t flags) 1044 #define kvcalloc_node_noprof(_n,_s,_f,_node) !! 742 { 1045 #define kvcalloc_noprof(...) !! 743 return kvmalloc_array(n, size, flags | __GFP_ZERO); 1046 !! 744 } 1047 #define kvmalloc_array(...) << 1048 #define kvcalloc_node(...) << 1049 #define kvcalloc(...) << 1050 << 1051 void *kvrealloc_noprof(const void *p, size_t << 1052 __realloc_size(2); << 1053 #define kvrealloc(...) << 1054 745 >> 746 extern void *kvrealloc(const void *p, size_t oldsize, size_t newsize, gfp_t flags) >> 747 __realloc_size(3); 1055 extern void kvfree(const void *addr); 748 extern void kvfree(const void *addr); 1056 DEFINE_FREE(kvfree, void *, if (!IS_ERR_OR_NU << 1057 << 1058 extern void kvfree_sensitive(const void *addr 749 extern void kvfree_sensitive(const void *addr, size_t len); 1059 750 1060 unsigned int kmem_cache_size(struct kmem_cach 751 unsigned int kmem_cache_size(struct kmem_cache *s); 1061 752 1062 /** 753 /** 1063 * kmalloc_size_roundup - Report allocation b 754 * kmalloc_size_roundup - Report allocation bucket size for the given size 1064 * 755 * 1065 * @size: Number of bytes to round up from. 756 * @size: Number of bytes to round up from. 1066 * 757 * 1067 * This returns the number of bytes that woul 758 * This returns the number of bytes that would be available in a kmalloc() 1068 * allocation of @size bytes. For example, a 759 * allocation of @size bytes. For example, a 126 byte request would be 1069 * rounded up to the next sized kmalloc bucke 760 * rounded up to the next sized kmalloc bucket, 128 bytes. (This is strictly 1070 * for the general-purpose kmalloc()-based al 761 * for the general-purpose kmalloc()-based allocations, and is not for the 1071 * pre-sized kmem_cache_alloc()-based allocat 762 * pre-sized kmem_cache_alloc()-based allocations.) 1072 * 763 * 1073 * Use this to kmalloc() the full bucket size 764 * Use this to kmalloc() the full bucket size ahead of time instead of using 1074 * ksize() to query the size after an allocat 765 * ksize() to query the size after an allocation. 1075 */ 766 */ 1076 size_t kmalloc_size_roundup(size_t size); 767 size_t kmalloc_size_roundup(size_t size); 1077 768 1078 void __init kmem_cache_init_late(void); 769 void __init kmem_cache_init_late(void); >> 770 >> 771 #if defined(CONFIG_SMP) && defined(CONFIG_SLAB) >> 772 int slab_prepare_cpu(unsigned int cpu); >> 773 int slab_dead_cpu(unsigned int cpu); >> 774 #else >> 775 #define slab_prepare_cpu NULL >> 776 #define slab_dead_cpu NULL >> 777 #endif 1079 778 1080 #endif /* _LINUX_SLAB_H */ 779 #endif /* _LINUX_SLAB_H */ 1081 780
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.