1 /* Software floating-point emulation. Common o 1 /* Software floating-point emulation. Common operations. 2 Copyright (C) 1997,1998,1999 Free Software 2 Copyright (C) 1997,1998,1999 Free Software Foundation, Inc. 3 This file is part of the GNU C Library. 3 This file is part of the GNU C Library. 4 Contributed by Richard Henderson (rth@cygnu 4 Contributed by Richard Henderson (rth@cygnus.com), 5 Jakub Jelinek (jj@ultra.linu 5 Jakub Jelinek (jj@ultra.linux.cz), 6 David S. Miller (davem@redha 6 David S. Miller (davem@redhat.com) and 7 Peter Maydell (pmaydell@chia 7 Peter Maydell (pmaydell@chiark.greenend.org.uk). 8 8 9 The GNU C Library is free software; you can 9 The GNU C Library is free software; you can redistribute it and/or 10 modify it under the terms of the GNU Librar 10 modify it under the terms of the GNU Library General Public License as 11 published by the Free Software Foundation; 11 published by the Free Software Foundation; either version 2 of the 12 License, or (at your option) any later vers 12 License, or (at your option) any later version. 13 13 14 The GNU C Library is distributed in the hop 14 The GNU C Library is distributed in the hope that it will be useful, 15 but WITHOUT ANY WARRANTY; without even the 15 but WITHOUT ANY WARRANTY; without even the implied warranty of 16 MERCHANTABILITY or FITNESS FOR A PARTICULAR 16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 17 Library General Public License for more det 17 Library General Public License for more details. 18 18 19 You should have received a copy of the GNU 19 You should have received a copy of the GNU Library General Public 20 License along with the GNU C Library; see t 20 License along with the GNU C Library; see the file COPYING.LIB. If 21 not, write to the Free Software Foundation, 21 not, write to the Free Software Foundation, Inc., 22 59 Temple Place - Suite 330, Boston, MA 021 22 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ 23 23 24 #ifndef __MATH_EMU_OP_COMMON_H__ 24 #ifndef __MATH_EMU_OP_COMMON_H__ 25 #define __MATH_EMU_OP_COMMON_H__ 25 #define __MATH_EMU_OP_COMMON_H__ 26 26 27 #define _FP_DECL(wc, X) \ 27 #define _FP_DECL(wc, X) \ 28 _FP_I_TYPE X##_c=0, X##_s=0, X##_e=0; \ 28 _FP_I_TYPE X##_c=0, X##_s=0, X##_e=0; \ 29 _FP_FRAC_DECL_##wc(X) 29 _FP_FRAC_DECL_##wc(X) 30 30 31 /* 31 /* 32 * Finish truly unpacking a native fp value by 32 * Finish truly unpacking a native fp value by classifying the kind 33 * of fp value and normalizing both the expone 33 * of fp value and normalizing both the exponent and the fraction. 34 */ 34 */ 35 35 36 #define _FP_UNPACK_CANONICAL(fs, wc, X) 36 #define _FP_UNPACK_CANONICAL(fs, wc, X) \ 37 do { 37 do { \ 38 switch (X##_e) 38 switch (X##_e) \ 39 { 39 { \ 40 default: 40 default: \ 41 _FP_FRAC_HIGH_RAW_##fs(X) |= _FP_IMPLBIT_# 41 _FP_FRAC_HIGH_RAW_##fs(X) |= _FP_IMPLBIT_##fs; \ 42 _FP_FRAC_SLL_##wc(X, _FP_WORKBITS); 42 _FP_FRAC_SLL_##wc(X, _FP_WORKBITS); \ 43 X##_e -= _FP_EXPBIAS_##fs; 43 X##_e -= _FP_EXPBIAS_##fs; \ 44 X##_c = FP_CLS_NORMAL; 44 X##_c = FP_CLS_NORMAL; \ 45 break; 45 break; \ 46 46 \ 47 case 0: 47 case 0: \ 48 if (_FP_FRAC_ZEROP_##wc(X)) 48 if (_FP_FRAC_ZEROP_##wc(X)) \ 49 X##_c = FP_CLS_ZERO; 49 X##_c = FP_CLS_ZERO; \ 50 else 50 else \ 51 { 51 { \ 52 /* a denormalized number */ 52 /* a denormalized number */ \ 53 _FP_I_TYPE _shift; 53 _FP_I_TYPE _shift; \ 54 _FP_FRAC_CLZ_##wc(_shift, X); 54 _FP_FRAC_CLZ_##wc(_shift, X); \ 55 _shift -= _FP_FRACXBITS_##fs; 55 _shift -= _FP_FRACXBITS_##fs; \ 56 _FP_FRAC_SLL_##wc(X, (_shift+_FP_WORKB 56 _FP_FRAC_SLL_##wc(X, (_shift+_FP_WORKBITS)); \ 57 X##_e -= _FP_EXPBIAS_##fs - 1 + _shift 57 X##_e -= _FP_EXPBIAS_##fs - 1 + _shift; \ 58 X##_c = FP_CLS_NORMAL; 58 X##_c = FP_CLS_NORMAL; \ 59 FP_SET_EXCEPTION(FP_EX_DENORM); 59 FP_SET_EXCEPTION(FP_EX_DENORM); \ 60 if (FP_DENORM_ZERO) 60 if (FP_DENORM_ZERO) \ 61 { 61 { \ 62 FP_SET_EXCEPTION(FP_EX_INEXACT); 62 FP_SET_EXCEPTION(FP_EX_INEXACT); \ 63 X##_c = FP_CLS_ZERO; 63 X##_c = FP_CLS_ZERO; \ 64 } 64 } \ 65 } 65 } \ 66 break; 66 break; \ 67 67 \ 68 case _FP_EXPMAX_##fs: 68 case _FP_EXPMAX_##fs: \ 69 if (_FP_FRAC_ZEROP_##wc(X)) 69 if (_FP_FRAC_ZEROP_##wc(X)) \ 70 X##_c = FP_CLS_INF; 70 X##_c = FP_CLS_INF; \ 71 else 71 else \ 72 { 72 { \ 73 X##_c = FP_CLS_NAN; 73 X##_c = FP_CLS_NAN; \ 74 /* Check for signaling NaN */ 74 /* Check for signaling NaN */ \ 75 if (!(_FP_FRAC_HIGH_RAW_##fs(X) & _FP_ 75 if (!(_FP_FRAC_HIGH_RAW_##fs(X) & _FP_QNANBIT_##fs)) \ 76 FP_SET_EXCEPTION(FP_EX_INVALID | FP_ 76 FP_SET_EXCEPTION(FP_EX_INVALID | FP_EX_INVALID_SNAN); \ 77 } 77 } \ 78 break; 78 break; \ 79 } 79 } \ 80 } while (0) 80 } while (0) 81 81 82 /* 82 /* 83 * Before packing the bits back into the nativ 83 * Before packing the bits back into the native fp result, take care 84 * of such mundane things as rounding and over 84 * of such mundane things as rounding and overflow. Also, for some 85 * kinds of fp values, the original parts may 85 * kinds of fp values, the original parts may not have been fully 86 * extracted -- but that is ok, we can regener 86 * extracted -- but that is ok, we can regenerate them now. 87 */ 87 */ 88 88 89 #define _FP_PACK_CANONICAL(fs, wc, X) 89 #define _FP_PACK_CANONICAL(fs, wc, X) \ 90 do { 90 do { \ 91 switch (X##_c) 91 switch (X##_c) \ 92 { 92 { \ 93 case FP_CLS_NORMAL: 93 case FP_CLS_NORMAL: \ 94 X##_e += _FP_EXPBIAS_##fs; 94 X##_e += _FP_EXPBIAS_##fs; \ 95 if (X##_e > 0) 95 if (X##_e > 0) \ 96 { 96 { \ 97 _FP_ROUND(wc, X); 97 _FP_ROUND(wc, X); \ 98 if (_FP_FRAC_OVERP_##wc(fs, X)) 98 if (_FP_FRAC_OVERP_##wc(fs, X)) \ 99 { 99 { \ 100 _FP_FRAC_CLEAR_OVERP_##wc(fs, X); 100 _FP_FRAC_CLEAR_OVERP_##wc(fs, X); \ 101 X##_e++; 101 X##_e++; \ 102 } 102 } \ 103 _FP_FRAC_SRL_##wc(X, _FP_WORKBITS); 103 _FP_FRAC_SRL_##wc(X, _FP_WORKBITS); \ 104 if (X##_e >= _FP_EXPMAX_##fs) 104 if (X##_e >= _FP_EXPMAX_##fs) \ 105 { 105 { \ 106 /* overflow */ 106 /* overflow */ \ 107 switch (FP_ROUNDMODE) 107 switch (FP_ROUNDMODE) \ 108 { 108 { \ 109 case FP_RND_NEAREST: 109 case FP_RND_NEAREST: \ 110 X##_c = FP_CLS_INF; 110 X##_c = FP_CLS_INF; \ 111 break; 111 break; \ 112 case FP_RND_PINF: 112 case FP_RND_PINF: \ 113 if (!X##_s) X##_c = FP_CLS_INF 113 if (!X##_s) X##_c = FP_CLS_INF; \ 114 break; 114 break; \ 115 case FP_RND_MINF: 115 case FP_RND_MINF: \ 116 if (X##_s) X##_c = FP_CLS_INF; 116 if (X##_s) X##_c = FP_CLS_INF; \ 117 break; 117 break; \ 118 } 118 } \ 119 if (X##_c == FP_CLS_INF) 119 if (X##_c == FP_CLS_INF) \ 120 { 120 { \ 121 /* Overflow to infinity */ 121 /* Overflow to infinity */ \ 122 X##_e = _FP_EXPMAX_##fs; 122 X##_e = _FP_EXPMAX_##fs; \ 123 _FP_FRAC_SET_##wc(X, _FP_ZEROF 123 _FP_FRAC_SET_##wc(X, _FP_ZEROFRAC_##wc); \ 124 } 124 } \ 125 else 125 else \ 126 { 126 { \ 127 /* Overflow to maximum normal 127 /* Overflow to maximum normal */ \ 128 X##_e = _FP_EXPMAX_##fs - 1; 128 X##_e = _FP_EXPMAX_##fs - 1; \ 129 _FP_FRAC_SET_##wc(X, _FP_MAXFR 129 _FP_FRAC_SET_##wc(X, _FP_MAXFRAC_##wc); \ 130 } 130 } \ 131 FP_SET_EXCEPTION(FP_EX_OVERFLOW); 131 FP_SET_EXCEPTION(FP_EX_OVERFLOW); \ 132 FP_SET_EXCEPTION(FP_EX_INEXACT); 132 FP_SET_EXCEPTION(FP_EX_INEXACT); \ 133 } 133 } \ 134 } 134 } \ 135 else 135 else \ 136 { 136 { \ 137 /* we've got a denormalized number */ 137 /* we've got a denormalized number */ \ 138 X##_e = -X##_e + 1; 138 X##_e = -X##_e + 1; \ 139 if (X##_e <= _FP_WFRACBITS_##fs) 139 if (X##_e <= _FP_WFRACBITS_##fs) \ 140 { 140 { \ 141 _FP_FRAC_SRS_##wc(X, X##_e, _FP_WF 141 _FP_FRAC_SRS_##wc(X, X##_e, _FP_WFRACBITS_##fs); \ 142 if (_FP_FRAC_HIGH_##fs(X) 142 if (_FP_FRAC_HIGH_##fs(X) \ 143 & (_FP_OVERFLOW_##fs >> 1)) 143 & (_FP_OVERFLOW_##fs >> 1)) \ 144 { 144 { \ 145 X##_e = 1; 145 X##_e = 1; \ 146 _FP_FRAC_SET_##wc(X, _FP_ZEROF 146 _FP_FRAC_SET_##wc(X, _FP_ZEROFRAC_##wc); \ 147 } 147 } \ 148 else 148 else \ 149 { 149 { \ 150 _FP_ROUND(wc, X); 150 _FP_ROUND(wc, X); \ 151 if (_FP_FRAC_HIGH_##fs(X) 151 if (_FP_FRAC_HIGH_##fs(X) \ 152 & (_FP_OVERFLOW_##fs >> 1)) 152 & (_FP_OVERFLOW_##fs >> 1)) \ 153 { 153 { \ 154 X##_e = 1; 154 X##_e = 1; \ 155 _FP_FRAC_SET_##wc(X, _FP_Z 155 _FP_FRAC_SET_##wc(X, _FP_ZEROFRAC_##wc); \ 156 FP_SET_EXCEPTION(FP_EX_INE 156 FP_SET_EXCEPTION(FP_EX_INEXACT); \ 157 } 157 } \ 158 else 158 else \ 159 { 159 { \ 160 X##_e = 0; 160 X##_e = 0; \ 161 _FP_FRAC_SRL_##wc(X, _FP_W 161 _FP_FRAC_SRL_##wc(X, _FP_WORKBITS); \ 162 } 162 } \ 163 } 163 } \ 164 if ((FP_CUR_EXCEPTIONS & FP_EX_INE 164 if ((FP_CUR_EXCEPTIONS & FP_EX_INEXACT) || \ 165 (FP_TRAPPING_EXCEPTIONS & FP_E 165 (FP_TRAPPING_EXCEPTIONS & FP_EX_UNDERFLOW)) \ 166 FP_SET_EXCEPTION(FP_EX_UNDERFL 166 FP_SET_EXCEPTION(FP_EX_UNDERFLOW); \ 167 } 167 } \ 168 else 168 else \ 169 { 169 { \ 170 /* underflow to zero */ 170 /* underflow to zero */ \ 171 X##_e = 0; 171 X##_e = 0; \ 172 if (!_FP_FRAC_ZEROP_##wc(X)) 172 if (!_FP_FRAC_ZEROP_##wc(X)) \ 173 { 173 { \ 174 _FP_FRAC_SET_##wc(X, _FP_MINFR 174 _FP_FRAC_SET_##wc(X, _FP_MINFRAC_##wc); \ 175 _FP_ROUND(wc, X); 175 _FP_ROUND(wc, X); \ 176 _FP_FRAC_LOW_##wc(X) >>= (_FP_ 176 _FP_FRAC_LOW_##wc(X) >>= (_FP_WORKBITS); \ 177 } 177 } \ 178 FP_SET_EXCEPTION(FP_EX_UNDERFLOW); 178 FP_SET_EXCEPTION(FP_EX_UNDERFLOW); \ 179 } 179 } \ 180 } 180 } \ 181 break; 181 break; \ 182 182 \ 183 case FP_CLS_ZERO: 183 case FP_CLS_ZERO: \ 184 X##_e = 0; 184 X##_e = 0; \ 185 _FP_FRAC_SET_##wc(X, _FP_ZEROFRAC_##wc); 185 _FP_FRAC_SET_##wc(X, _FP_ZEROFRAC_##wc); \ 186 break; 186 break; \ 187 187 \ 188 case FP_CLS_INF: 188 case FP_CLS_INF: \ 189 X##_e = _FP_EXPMAX_##fs; 189 X##_e = _FP_EXPMAX_##fs; \ 190 _FP_FRAC_SET_##wc(X, _FP_ZEROFRAC_##wc); 190 _FP_FRAC_SET_##wc(X, _FP_ZEROFRAC_##wc); \ 191 break; 191 break; \ 192 192 \ 193 case FP_CLS_NAN: 193 case FP_CLS_NAN: \ 194 X##_e = _FP_EXPMAX_##fs; 194 X##_e = _FP_EXPMAX_##fs; \ 195 if (!_FP_KEEPNANFRACP) 195 if (!_FP_KEEPNANFRACP) \ 196 { 196 { \ 197 _FP_FRAC_SET_##wc(X, _FP_NANFRAC_##fs) 197 _FP_FRAC_SET_##wc(X, _FP_NANFRAC_##fs); \ 198 X##_s = _FP_NANSIGN_##fs; 198 X##_s = _FP_NANSIGN_##fs; \ 199 } 199 } \ 200 else 200 else \ 201 _FP_FRAC_HIGH_RAW_##fs(X) |= _FP_QNANBIT 201 _FP_FRAC_HIGH_RAW_##fs(X) |= _FP_QNANBIT_##fs; \ 202 break; 202 break; \ 203 } 203 } \ 204 } while (0) 204 } while (0) 205 205 206 /* This one accepts raw argument and not cooke 206 /* This one accepts raw argument and not cooked, returns 207 * 1 if X is a signaling NaN. 207 * 1 if X is a signaling NaN. 208 */ 208 */ 209 #define _FP_ISSIGNAN(fs, wc, X) 209 #define _FP_ISSIGNAN(fs, wc, X) \ 210 ({ 210 ({ \ 211 int __ret = 0; 211 int __ret = 0; \ 212 if (X##_e == _FP_EXPMAX_##fs) 212 if (X##_e == _FP_EXPMAX_##fs) \ 213 { 213 { \ 214 if (!_FP_FRAC_ZEROP_##wc(X) 214 if (!_FP_FRAC_ZEROP_##wc(X) \ 215 && !(_FP_FRAC_HIGH_RAW_##fs(X) & _FP 215 && !(_FP_FRAC_HIGH_RAW_##fs(X) & _FP_QNANBIT_##fs)) \ 216 __ret = 1; 216 __ret = 1; \ 217 } 217 } \ 218 __ret; 218 __ret; \ 219 }) 219 }) 220 220 221 221 222 222 223 223 224 224 225 /* 225 /* 226 * Main addition routine. The input values sh 226 * Main addition routine. The input values should be cooked. 227 */ 227 */ 228 228 229 #define _FP_ADD_INTERNAL(fs, wc, R, X, Y, OP) 229 #define _FP_ADD_INTERNAL(fs, wc, R, X, Y, OP) \ 230 do { 230 do { \ 231 switch (_FP_CLS_COMBINE(X##_c, Y##_c)) 231 switch (_FP_CLS_COMBINE(X##_c, Y##_c)) \ 232 { 232 { \ 233 case _FP_CLS_COMBINE(FP_CLS_NORMAL,FP_CLS_NO 233 case _FP_CLS_COMBINE(FP_CLS_NORMAL,FP_CLS_NORMAL): \ 234 { 234 { \ 235 /* shift the smaller number so that its 235 /* shift the smaller number so that its exponent matches the larger */ \ 236 _FP_I_TYPE diff = X##_e - Y##_e; 236 _FP_I_TYPE diff = X##_e - Y##_e; \ 237 237 \ 238 if (diff < 0) 238 if (diff < 0) \ 239 { 239 { \ 240 diff = -diff; 240 diff = -diff; \ 241 if (diff <= _FP_WFRACBITS_##fs) 241 if (diff <= _FP_WFRACBITS_##fs) \ 242 _FP_FRAC_SRS_##wc(X, diff, _FP_WFR 242 _FP_FRAC_SRS_##wc(X, diff, _FP_WFRACBITS_##fs); \ 243 else if (!_FP_FRAC_ZEROP_##wc(X)) 243 else if (!_FP_FRAC_ZEROP_##wc(X)) \ 244 _FP_FRAC_SET_##wc(X, _FP_MINFRAC_# 244 _FP_FRAC_SET_##wc(X, _FP_MINFRAC_##wc); \ 245 R##_e = Y##_e; 245 R##_e = Y##_e; \ 246 } 246 } \ 247 else 247 else \ 248 { 248 { \ 249 if (diff > 0) 249 if (diff > 0) \ 250 { 250 { \ 251 if (diff <= _FP_WFRACBITS_##fs) 251 if (diff <= _FP_WFRACBITS_##fs) \ 252 _FP_FRAC_SRS_##wc(Y, diff, _FP 252 _FP_FRAC_SRS_##wc(Y, diff, _FP_WFRACBITS_##fs); \ 253 else if (!_FP_FRAC_ZEROP_##wc(Y) 253 else if (!_FP_FRAC_ZEROP_##wc(Y)) \ 254 _FP_FRAC_SET_##wc(Y, _FP_MINFR 254 _FP_FRAC_SET_##wc(Y, _FP_MINFRAC_##wc); \ 255 } 255 } \ 256 R##_e = X##_e; 256 R##_e = X##_e; \ 257 } 257 } \ 258 258 \ 259 R##_c = FP_CLS_NORMAL; 259 R##_c = FP_CLS_NORMAL; \ 260 260 \ 261 if (X##_s == Y##_s) 261 if (X##_s == Y##_s) \ 262 { 262 { \ 263 R##_s = X##_s; 263 R##_s = X##_s; \ 264 _FP_FRAC_ADD_##wc(R, X, Y); 264 _FP_FRAC_ADD_##wc(R, X, Y); \ 265 if (_FP_FRAC_OVERP_##wc(fs, R)) 265 if (_FP_FRAC_OVERP_##wc(fs, R)) \ 266 { 266 { \ 267 _FP_FRAC_SRS_##wc(R, 1, _FP_WFRA 267 _FP_FRAC_SRS_##wc(R, 1, _FP_WFRACBITS_##fs); \ 268 R##_e++; 268 R##_e++; \ 269 } 269 } \ 270 } 270 } \ 271 else 271 else \ 272 { 272 { \ 273 R##_s = X##_s; 273 R##_s = X##_s; \ 274 _FP_FRAC_SUB_##wc(R, X, Y); 274 _FP_FRAC_SUB_##wc(R, X, Y); \ 275 if (_FP_FRAC_ZEROP_##wc(R)) 275 if (_FP_FRAC_ZEROP_##wc(R)) \ 276 { 276 { \ 277 /* return an exact zero */ 277 /* return an exact zero */ \ 278 if (FP_ROUNDMODE == FP_RND_MINF) 278 if (FP_ROUNDMODE == FP_RND_MINF) \ 279 R##_s |= Y##_s; 279 R##_s |= Y##_s; \ 280 else 280 else \ 281 R##_s &= Y##_s; 281 R##_s &= Y##_s; \ 282 R##_c = FP_CLS_ZERO; 282 R##_c = FP_CLS_ZERO; \ 283 } 283 } \ 284 else 284 else \ 285 { 285 { \ 286 if (_FP_FRAC_NEGP_##wc(R)) 286 if (_FP_FRAC_NEGP_##wc(R)) \ 287 { 287 { \ 288 _FP_FRAC_SUB_##wc(R, Y, X); 288 _FP_FRAC_SUB_##wc(R, Y, X); \ 289 R##_s = Y##_s; 289 R##_s = Y##_s; \ 290 } 290 } \ 291 291 \ 292 /* renormalize after subtraction 292 /* renormalize after subtraction */ \ 293 _FP_FRAC_CLZ_##wc(diff, R); 293 _FP_FRAC_CLZ_##wc(diff, R); \ 294 diff -= _FP_WFRACXBITS_##fs; 294 diff -= _FP_WFRACXBITS_##fs; \ 295 if (diff) 295 if (diff) \ 296 { 296 { \ 297 R##_e -= diff; 297 R##_e -= diff; \ 298 _FP_FRAC_SLL_##wc(R, diff); 298 _FP_FRAC_SLL_##wc(R, diff); \ 299 } 299 } \ 300 } 300 } \ 301 } 301 } \ 302 break; 302 break; \ 303 } 303 } \ 304 304 \ 305 case _FP_CLS_COMBINE(FP_CLS_NAN,FP_CLS_NAN): 305 case _FP_CLS_COMBINE(FP_CLS_NAN,FP_CLS_NAN): \ 306 _FP_CHOOSENAN(fs, wc, R, X, Y, OP); 306 _FP_CHOOSENAN(fs, wc, R, X, Y, OP); \ 307 break; 307 break; \ 308 308 \ 309 case _FP_CLS_COMBINE(FP_CLS_NORMAL,FP_CLS_ZE 309 case _FP_CLS_COMBINE(FP_CLS_NORMAL,FP_CLS_ZERO): \ 310 R##_e = X##_e; 310 R##_e = X##_e; \ 311 fallthrough; << 312 case _FP_CLS_COMBINE(FP_CLS_NAN,FP_CLS_NORMA 311 case _FP_CLS_COMBINE(FP_CLS_NAN,FP_CLS_NORMAL): \ 313 case _FP_CLS_COMBINE(FP_CLS_NAN,FP_CLS_INF): 312 case _FP_CLS_COMBINE(FP_CLS_NAN,FP_CLS_INF): \ 314 case _FP_CLS_COMBINE(FP_CLS_NAN,FP_CLS_ZERO) 313 case _FP_CLS_COMBINE(FP_CLS_NAN,FP_CLS_ZERO): \ 315 _FP_FRAC_COPY_##wc(R, X); 314 _FP_FRAC_COPY_##wc(R, X); \ 316 R##_s = X##_s; 315 R##_s = X##_s; \ 317 R##_c = X##_c; 316 R##_c = X##_c; \ 318 break; 317 break; \ 319 318 \ 320 case _FP_CLS_COMBINE(FP_CLS_ZERO,FP_CLS_NORM 319 case _FP_CLS_COMBINE(FP_CLS_ZERO,FP_CLS_NORMAL): \ 321 R##_e = Y##_e; 320 R##_e = Y##_e; \ 322 fallthrough; << 323 case _FP_CLS_COMBINE(FP_CLS_NORMAL,FP_CLS_NA 321 case _FP_CLS_COMBINE(FP_CLS_NORMAL,FP_CLS_NAN): \ 324 case _FP_CLS_COMBINE(FP_CLS_INF,FP_CLS_NAN): 322 case _FP_CLS_COMBINE(FP_CLS_INF,FP_CLS_NAN): \ 325 case _FP_CLS_COMBINE(FP_CLS_ZERO,FP_CLS_NAN) 323 case _FP_CLS_COMBINE(FP_CLS_ZERO,FP_CLS_NAN): \ 326 _FP_FRAC_COPY_##wc(R, Y); 324 _FP_FRAC_COPY_##wc(R, Y); \ 327 R##_s = Y##_s; 325 R##_s = Y##_s; \ 328 R##_c = Y##_c; 326 R##_c = Y##_c; \ 329 break; 327 break; \ 330 328 \ 331 case _FP_CLS_COMBINE(FP_CLS_INF,FP_CLS_INF): 329 case _FP_CLS_COMBINE(FP_CLS_INF,FP_CLS_INF): \ 332 if (X##_s != Y##_s) 330 if (X##_s != Y##_s) \ 333 { 331 { \ 334 /* +INF + -INF => NAN */ 332 /* +INF + -INF => NAN */ \ 335 _FP_FRAC_SET_##wc(R, _FP_NANFRAC_##fs) 333 _FP_FRAC_SET_##wc(R, _FP_NANFRAC_##fs); \ 336 R##_s = _FP_NANSIGN_##fs; 334 R##_s = _FP_NANSIGN_##fs; \ 337 R##_c = FP_CLS_NAN; 335 R##_c = FP_CLS_NAN; \ 338 FP_SET_EXCEPTION(FP_EX_INVALID | FP_EX 336 FP_SET_EXCEPTION(FP_EX_INVALID | FP_EX_INVALID_ISI); \ 339 break; 337 break; \ 340 } 338 } \ 341 fallthrough; !! 339 /* FALLTHRU */ \ 342 340 \ 343 case _FP_CLS_COMBINE(FP_CLS_INF,FP_CLS_NORMA 341 case _FP_CLS_COMBINE(FP_CLS_INF,FP_CLS_NORMAL): \ 344 case _FP_CLS_COMBINE(FP_CLS_INF,FP_CLS_ZERO) 342 case _FP_CLS_COMBINE(FP_CLS_INF,FP_CLS_ZERO): \ 345 R##_s = X##_s; 343 R##_s = X##_s; \ 346 R##_c = FP_CLS_INF; 344 R##_c = FP_CLS_INF; \ 347 break; 345 break; \ 348 346 \ 349 case _FP_CLS_COMBINE(FP_CLS_NORMAL,FP_CLS_IN 347 case _FP_CLS_COMBINE(FP_CLS_NORMAL,FP_CLS_INF): \ 350 case _FP_CLS_COMBINE(FP_CLS_ZERO,FP_CLS_INF) 348 case _FP_CLS_COMBINE(FP_CLS_ZERO,FP_CLS_INF): \ 351 R##_s = Y##_s; 349 R##_s = Y##_s; \ 352 R##_c = FP_CLS_INF; 350 R##_c = FP_CLS_INF; \ 353 break; 351 break; \ 354 352 \ 355 case _FP_CLS_COMBINE(FP_CLS_ZERO,FP_CLS_ZERO 353 case _FP_CLS_COMBINE(FP_CLS_ZERO,FP_CLS_ZERO): \ 356 /* make sure the sign is correct */ 354 /* make sure the sign is correct */ \ 357 if (FP_ROUNDMODE == FP_RND_MINF) 355 if (FP_ROUNDMODE == FP_RND_MINF) \ 358 R##_s = X##_s | Y##_s; 356 R##_s = X##_s | Y##_s; \ 359 else 357 else \ 360 R##_s = X##_s & Y##_s; 358 R##_s = X##_s & Y##_s; \ 361 R##_c = FP_CLS_ZERO; 359 R##_c = FP_CLS_ZERO; \ 362 break; 360 break; \ 363 361 \ 364 default: 362 default: \ 365 abort(); 363 abort(); \ 366 } 364 } \ 367 } while (0) 365 } while (0) 368 366 369 #define _FP_ADD(fs, wc, R, X, Y) _FP_ADD_INTER 367 #define _FP_ADD(fs, wc, R, X, Y) _FP_ADD_INTERNAL(fs, wc, R, X, Y, '+') 370 #define _FP_SUB(fs, wc, R, X, Y) 368 #define _FP_SUB(fs, wc, R, X, Y) \ 371 do { 369 do { \ 372 if (Y##_c != FP_CLS_NAN) Y##_s ^= 1; 370 if (Y##_c != FP_CLS_NAN) Y##_s ^= 1; \ 373 _FP_ADD_INTERNAL(fs, wc, R, X, Y, '-'); 371 _FP_ADD_INTERNAL(fs, wc, R, X, Y, '-'); \ 374 } while (0) 372 } while (0) 375 373 376 374 377 /* 375 /* 378 * Main negation routine. FIXME -- when we ca 376 * Main negation routine. FIXME -- when we care about setting exception 379 * bits reliably, this will not do. We should 377 * bits reliably, this will not do. We should examine all of the fp classes. 380 */ 378 */ 381 379 382 #define _FP_NEG(fs, wc, R, X) \ 380 #define _FP_NEG(fs, wc, R, X) \ 383 do { \ 381 do { \ 384 _FP_FRAC_COPY_##wc(R, X); \ 382 _FP_FRAC_COPY_##wc(R, X); \ 385 R##_c = X##_c; \ 383 R##_c = X##_c; \ 386 R##_e = X##_e; \ 384 R##_e = X##_e; \ 387 R##_s = 1 ^ X##_s; \ 385 R##_s = 1 ^ X##_s; \ 388 } while (0) 386 } while (0) 389 387 390 388 391 /* 389 /* 392 * Main multiplication routine. The input val 390 * Main multiplication routine. The input values should be cooked. 393 */ 391 */ 394 392 395 #define _FP_MUL(fs, wc, R, X, Y) 393 #define _FP_MUL(fs, wc, R, X, Y) \ 396 do { 394 do { \ 397 R##_s = X##_s ^ Y##_s; 395 R##_s = X##_s ^ Y##_s; \ 398 switch (_FP_CLS_COMBINE(X##_c, Y##_c)) 396 switch (_FP_CLS_COMBINE(X##_c, Y##_c)) \ 399 { 397 { \ 400 case _FP_CLS_COMBINE(FP_CLS_NORMAL,FP_CLS_NO 398 case _FP_CLS_COMBINE(FP_CLS_NORMAL,FP_CLS_NORMAL): \ 401 R##_c = FP_CLS_NORMAL; 399 R##_c = FP_CLS_NORMAL; \ 402 R##_e = X##_e + Y##_e + 1; 400 R##_e = X##_e + Y##_e + 1; \ 403 401 \ 404 _FP_MUL_MEAT_##fs(R,X,Y); 402 _FP_MUL_MEAT_##fs(R,X,Y); \ 405 403 \ 406 if (_FP_FRAC_OVERP_##wc(fs, R)) 404 if (_FP_FRAC_OVERP_##wc(fs, R)) \ 407 _FP_FRAC_SRS_##wc(R, 1, _FP_WFRACBITS_## 405 _FP_FRAC_SRS_##wc(R, 1, _FP_WFRACBITS_##fs); \ 408 else 406 else \ 409 R##_e--; 407 R##_e--; \ 410 break; 408 break; \ 411 409 \ 412 case _FP_CLS_COMBINE(FP_CLS_NAN,FP_CLS_NAN): 410 case _FP_CLS_COMBINE(FP_CLS_NAN,FP_CLS_NAN): \ 413 _FP_CHOOSENAN(fs, wc, R, X, Y, '*'); 411 _FP_CHOOSENAN(fs, wc, R, X, Y, '*'); \ 414 break; 412 break; \ 415 413 \ 416 case _FP_CLS_COMBINE(FP_CLS_NAN,FP_CLS_NORMA 414 case _FP_CLS_COMBINE(FP_CLS_NAN,FP_CLS_NORMAL): \ 417 case _FP_CLS_COMBINE(FP_CLS_NAN,FP_CLS_INF): 415 case _FP_CLS_COMBINE(FP_CLS_NAN,FP_CLS_INF): \ 418 case _FP_CLS_COMBINE(FP_CLS_NAN,FP_CLS_ZERO) 416 case _FP_CLS_COMBINE(FP_CLS_NAN,FP_CLS_ZERO): \ 419 R##_s = X##_s; 417 R##_s = X##_s; \ 420 fallthrough; << 421 418 \ 422 case _FP_CLS_COMBINE(FP_CLS_INF,FP_CLS_INF): 419 case _FP_CLS_COMBINE(FP_CLS_INF,FP_CLS_INF): \ 423 case _FP_CLS_COMBINE(FP_CLS_INF,FP_CLS_NORMA 420 case _FP_CLS_COMBINE(FP_CLS_INF,FP_CLS_NORMAL): \ 424 case _FP_CLS_COMBINE(FP_CLS_ZERO,FP_CLS_NORM 421 case _FP_CLS_COMBINE(FP_CLS_ZERO,FP_CLS_NORMAL): \ 425 case _FP_CLS_COMBINE(FP_CLS_ZERO,FP_CLS_ZERO 422 case _FP_CLS_COMBINE(FP_CLS_ZERO,FP_CLS_ZERO): \ 426 _FP_FRAC_COPY_##wc(R, X); 423 _FP_FRAC_COPY_##wc(R, X); \ 427 R##_c = X##_c; 424 R##_c = X##_c; \ 428 break; 425 break; \ 429 426 \ 430 case _FP_CLS_COMBINE(FP_CLS_NORMAL,FP_CLS_NA 427 case _FP_CLS_COMBINE(FP_CLS_NORMAL,FP_CLS_NAN): \ 431 case _FP_CLS_COMBINE(FP_CLS_INF,FP_CLS_NAN): 428 case _FP_CLS_COMBINE(FP_CLS_INF,FP_CLS_NAN): \ 432 case _FP_CLS_COMBINE(FP_CLS_ZERO,FP_CLS_NAN) 429 case _FP_CLS_COMBINE(FP_CLS_ZERO,FP_CLS_NAN): \ 433 R##_s = Y##_s; 430 R##_s = Y##_s; \ 434 fallthrough; << 435 431 \ 436 case _FP_CLS_COMBINE(FP_CLS_NORMAL,FP_CLS_IN 432 case _FP_CLS_COMBINE(FP_CLS_NORMAL,FP_CLS_INF): \ 437 case _FP_CLS_COMBINE(FP_CLS_NORMAL,FP_CLS_ZE 433 case _FP_CLS_COMBINE(FP_CLS_NORMAL,FP_CLS_ZERO): \ 438 _FP_FRAC_COPY_##wc(R, Y); 434 _FP_FRAC_COPY_##wc(R, Y); \ 439 R##_c = Y##_c; 435 R##_c = Y##_c; \ 440 break; 436 break; \ 441 437 \ 442 case _FP_CLS_COMBINE(FP_CLS_INF,FP_CLS_ZERO) 438 case _FP_CLS_COMBINE(FP_CLS_INF,FP_CLS_ZERO): \ 443 case _FP_CLS_COMBINE(FP_CLS_ZERO,FP_CLS_INF) 439 case _FP_CLS_COMBINE(FP_CLS_ZERO,FP_CLS_INF): \ 444 R##_s = _FP_NANSIGN_##fs; 440 R##_s = _FP_NANSIGN_##fs; \ 445 R##_c = FP_CLS_NAN; 441 R##_c = FP_CLS_NAN; \ 446 _FP_FRAC_SET_##wc(R, _FP_NANFRAC_##fs); 442 _FP_FRAC_SET_##wc(R, _FP_NANFRAC_##fs); \ 447 FP_SET_EXCEPTION(FP_EX_INVALID | FP_EX_INV 443 FP_SET_EXCEPTION(FP_EX_INVALID | FP_EX_INVALID_IMZ);\ 448 break; 444 break; \ 449 445 \ 450 default: 446 default: \ 451 abort(); 447 abort(); \ 452 } 448 } \ 453 } while (0) 449 } while (0) 454 450 455 451 456 /* 452 /* 457 * Main division routine. The input values sh 453 * Main division routine. The input values should be cooked. 458 */ 454 */ 459 455 460 #define _FP_DIV(fs, wc, R, X, Y) 456 #define _FP_DIV(fs, wc, R, X, Y) \ 461 do { 457 do { \ 462 R##_s = X##_s ^ Y##_s; 458 R##_s = X##_s ^ Y##_s; \ 463 switch (_FP_CLS_COMBINE(X##_c, Y##_c)) 459 switch (_FP_CLS_COMBINE(X##_c, Y##_c)) \ 464 { 460 { \ 465 case _FP_CLS_COMBINE(FP_CLS_NORMAL,FP_CLS_NO 461 case _FP_CLS_COMBINE(FP_CLS_NORMAL,FP_CLS_NORMAL): \ 466 R##_c = FP_CLS_NORMAL; 462 R##_c = FP_CLS_NORMAL; \ 467 R##_e = X##_e - Y##_e; 463 R##_e = X##_e - Y##_e; \ 468 464 \ 469 _FP_DIV_MEAT_##fs(R,X,Y); 465 _FP_DIV_MEAT_##fs(R,X,Y); \ 470 break; 466 break; \ 471 467 \ 472 case _FP_CLS_COMBINE(FP_CLS_NAN,FP_CLS_NAN): 468 case _FP_CLS_COMBINE(FP_CLS_NAN,FP_CLS_NAN): \ 473 _FP_CHOOSENAN(fs, wc, R, X, Y, '/'); 469 _FP_CHOOSENAN(fs, wc, R, X, Y, '/'); \ 474 break; 470 break; \ 475 471 \ 476 case _FP_CLS_COMBINE(FP_CLS_NAN,FP_CLS_NORMA 472 case _FP_CLS_COMBINE(FP_CLS_NAN,FP_CLS_NORMAL): \ 477 case _FP_CLS_COMBINE(FP_CLS_NAN,FP_CLS_INF): 473 case _FP_CLS_COMBINE(FP_CLS_NAN,FP_CLS_INF): \ 478 case _FP_CLS_COMBINE(FP_CLS_NAN,FP_CLS_ZERO) 474 case _FP_CLS_COMBINE(FP_CLS_NAN,FP_CLS_ZERO): \ 479 R##_s = X##_s; 475 R##_s = X##_s; \ 480 _FP_FRAC_COPY_##wc(R, X); 476 _FP_FRAC_COPY_##wc(R, X); \ 481 R##_c = X##_c; 477 R##_c = X##_c; \ 482 break; 478 break; \ 483 479 \ 484 case _FP_CLS_COMBINE(FP_CLS_NORMAL,FP_CLS_NA 480 case _FP_CLS_COMBINE(FP_CLS_NORMAL,FP_CLS_NAN): \ 485 case _FP_CLS_COMBINE(FP_CLS_INF,FP_CLS_NAN): 481 case _FP_CLS_COMBINE(FP_CLS_INF,FP_CLS_NAN): \ 486 case _FP_CLS_COMBINE(FP_CLS_ZERO,FP_CLS_NAN) 482 case _FP_CLS_COMBINE(FP_CLS_ZERO,FP_CLS_NAN): \ 487 R##_s = Y##_s; 483 R##_s = Y##_s; \ 488 _FP_FRAC_COPY_##wc(R, Y); 484 _FP_FRAC_COPY_##wc(R, Y); \ 489 R##_c = Y##_c; 485 R##_c = Y##_c; \ 490 break; 486 break; \ 491 487 \ 492 case _FP_CLS_COMBINE(FP_CLS_NORMAL,FP_CLS_IN 488 case _FP_CLS_COMBINE(FP_CLS_NORMAL,FP_CLS_INF): \ 493 case _FP_CLS_COMBINE(FP_CLS_ZERO,FP_CLS_INF) 489 case _FP_CLS_COMBINE(FP_CLS_ZERO,FP_CLS_INF): \ 494 case _FP_CLS_COMBINE(FP_CLS_ZERO,FP_CLS_NORM 490 case _FP_CLS_COMBINE(FP_CLS_ZERO,FP_CLS_NORMAL): \ 495 R##_c = FP_CLS_ZERO; 491 R##_c = FP_CLS_ZERO; \ 496 break; 492 break; \ 497 493 \ 498 case _FP_CLS_COMBINE(FP_CLS_NORMAL,FP_CLS_ZE 494 case _FP_CLS_COMBINE(FP_CLS_NORMAL,FP_CLS_ZERO): \ 499 FP_SET_EXCEPTION(FP_EX_DIVZERO); 495 FP_SET_EXCEPTION(FP_EX_DIVZERO); \ 500 fallthrough; << 501 case _FP_CLS_COMBINE(FP_CLS_INF,FP_CLS_ZERO) 496 case _FP_CLS_COMBINE(FP_CLS_INF,FP_CLS_ZERO): \ 502 case _FP_CLS_COMBINE(FP_CLS_INF,FP_CLS_NORMA 497 case _FP_CLS_COMBINE(FP_CLS_INF,FP_CLS_NORMAL): \ 503 R##_c = FP_CLS_INF; 498 R##_c = FP_CLS_INF; \ 504 break; 499 break; \ 505 500 \ 506 case _FP_CLS_COMBINE(FP_CLS_INF,FP_CLS_INF): 501 case _FP_CLS_COMBINE(FP_CLS_INF,FP_CLS_INF): \ 507 R##_s = _FP_NANSIGN_##fs; 502 R##_s = _FP_NANSIGN_##fs; \ 508 R##_c = FP_CLS_NAN; 503 R##_c = FP_CLS_NAN; \ 509 _FP_FRAC_SET_##wc(R, _FP_NANFRAC_##fs); 504 _FP_FRAC_SET_##wc(R, _FP_NANFRAC_##fs); \ 510 FP_SET_EXCEPTION(FP_EX_INVALID | FP_EX_INV 505 FP_SET_EXCEPTION(FP_EX_INVALID | FP_EX_INVALID_IDI);\ 511 break; 506 break; \ 512 507 \ 513 case _FP_CLS_COMBINE(FP_CLS_ZERO,FP_CLS_ZERO 508 case _FP_CLS_COMBINE(FP_CLS_ZERO,FP_CLS_ZERO): \ 514 R##_s = _FP_NANSIGN_##fs; 509 R##_s = _FP_NANSIGN_##fs; \ 515 R##_c = FP_CLS_NAN; 510 R##_c = FP_CLS_NAN; \ 516 _FP_FRAC_SET_##wc(R, _FP_NANFRAC_##fs); 511 _FP_FRAC_SET_##wc(R, _FP_NANFRAC_##fs); \ 517 FP_SET_EXCEPTION(FP_EX_INVALID | FP_EX_INV 512 FP_SET_EXCEPTION(FP_EX_INVALID | FP_EX_INVALID_ZDZ);\ 518 break; 513 break; \ 519 514 \ 520 default: 515 default: \ 521 abort(); 516 abort(); \ 522 } 517 } \ 523 } while (0) 518 } while (0) 524 519 525 520 526 /* 521 /* 527 * Main differential comparison routine. The 522 * Main differential comparison routine. The inputs should be raw not 528 * cooked. The return is -1,0,1 for normal va 523 * cooked. The return is -1,0,1 for normal values, 2 otherwise. 529 */ 524 */ 530 525 531 #define _FP_CMP(fs, wc, ret, X, Y, un) 526 #define _FP_CMP(fs, wc, ret, X, Y, un) \ 532 do { 527 do { \ 533 /* NANs are unordered */ 528 /* NANs are unordered */ \ 534 if ((X##_e == _FP_EXPMAX_##fs && !_FP_FRAC 529 if ((X##_e == _FP_EXPMAX_##fs && !_FP_FRAC_ZEROP_##wc(X)) \ 535 || (Y##_e == _FP_EXPMAX_##fs && !_FP_F 530 || (Y##_e == _FP_EXPMAX_##fs && !_FP_FRAC_ZEROP_##wc(Y))) \ 536 { 531 { \ 537 ret = un; 532 ret = un; \ 538 } 533 } \ 539 else 534 else \ 540 { 535 { \ 541 int __is_zero_x; 536 int __is_zero_x; \ 542 int __is_zero_y; 537 int __is_zero_y; \ 543 538 \ 544 __is_zero_x = (!X##_e && _FP_FRAC_ZERO 539 __is_zero_x = (!X##_e && _FP_FRAC_ZEROP_##wc(X)) ? 1 : 0; \ 545 __is_zero_y = (!Y##_e && _FP_FRAC_ZERO 540 __is_zero_y = (!Y##_e && _FP_FRAC_ZEROP_##wc(Y)) ? 1 : 0; \ 546 541 \ 547 if (__is_zero_x && __is_zero_y) 542 if (__is_zero_x && __is_zero_y) \ 548 ret = 0; 543 ret = 0; \ 549 else if (__is_zero_x) 544 else if (__is_zero_x) \ 550 ret = Y##_s ? 1 : -1; 545 ret = Y##_s ? 1 : -1; \ 551 else if (__is_zero_y) 546 else if (__is_zero_y) \ 552 ret = X##_s ? -1 : 1; 547 ret = X##_s ? -1 : 1; \ 553 else if (X##_s != Y##_s) 548 else if (X##_s != Y##_s) \ 554 ret = X##_s ? -1 : 1; 549 ret = X##_s ? -1 : 1; \ 555 else if (X##_e > Y##_e) 550 else if (X##_e > Y##_e) \ 556 ret = X##_s ? -1 : 1; 551 ret = X##_s ? -1 : 1; \ 557 else if (X##_e < Y##_e) 552 else if (X##_e < Y##_e) \ 558 ret = X##_s ? 1 : -1; 553 ret = X##_s ? 1 : -1; \ 559 else if (_FP_FRAC_GT_##wc(X, Y)) 554 else if (_FP_FRAC_GT_##wc(X, Y)) \ 560 ret = X##_s ? -1 : 1; 555 ret = X##_s ? -1 : 1; \ 561 else if (_FP_FRAC_GT_##wc(Y, X)) 556 else if (_FP_FRAC_GT_##wc(Y, X)) \ 562 ret = X##_s ? 1 : -1; 557 ret = X##_s ? 1 : -1; \ 563 else 558 else \ 564 ret = 0; 559 ret = 0; \ 565 } 560 } \ 566 } while (0) 561 } while (0) 567 562 568 563 569 /* Simplification for strict equality. */ 564 /* Simplification for strict equality. */ 570 565 571 #define _FP_CMP_EQ(fs, wc, ret, X, Y) 566 #define _FP_CMP_EQ(fs, wc, ret, X, Y) \ 572 do { 567 do { \ 573 /* NANs are unordered */ 568 /* NANs are unordered */ \ 574 if ((X##_e == _FP_EXPMAX_##fs && !_FP_FRAC 569 if ((X##_e == _FP_EXPMAX_##fs && !_FP_FRAC_ZEROP_##wc(X)) \ 575 || (Y##_e == _FP_EXPMAX_##fs && !_FP_F 570 || (Y##_e == _FP_EXPMAX_##fs && !_FP_FRAC_ZEROP_##wc(Y))) \ 576 { 571 { \ 577 ret = 1; 572 ret = 1; \ 578 } 573 } \ 579 else 574 else \ 580 { 575 { \ 581 ret = !(X##_e == Y##_e 576 ret = !(X##_e == Y##_e \ 582 && _FP_FRAC_EQ_##wc(X, Y) 577 && _FP_FRAC_EQ_##wc(X, Y) \ 583 && (X##_s == Y##_s || !X##_e & 578 && (X##_s == Y##_s || !X##_e && _FP_FRAC_ZEROP_##wc(X))); \ 584 } 579 } \ 585 } while (0) 580 } while (0) 586 581 587 /* 582 /* 588 * Main square root routine. The input value 583 * Main square root routine. The input value should be cooked. 589 */ 584 */ 590 585 591 #define _FP_SQRT(fs, wc, R, X) 586 #define _FP_SQRT(fs, wc, R, X) \ 592 do { 587 do { \ 593 _FP_FRAC_DECL_##wc(T); _FP_FRAC_DECL_##wc( 588 _FP_FRAC_DECL_##wc(T); _FP_FRAC_DECL_##wc(S); \ 594 _FP_W_TYPE q; 589 _FP_W_TYPE q; \ 595 switch (X##_c) 590 switch (X##_c) \ 596 { 591 { \ 597 case FP_CLS_NAN: 592 case FP_CLS_NAN: \ 598 _FP_FRAC_COPY_##wc(R, X); 593 _FP_FRAC_COPY_##wc(R, X); \ 599 R##_s = X##_s; 594 R##_s = X##_s; \ 600 R##_c = FP_CLS_NAN; 595 R##_c = FP_CLS_NAN; \ 601 break; 596 break; \ 602 case FP_CLS_INF: 597 case FP_CLS_INF: \ 603 if (X##_s) 598 if (X##_s) \ 604 { 599 { \ 605 R##_s = _FP_NANSIGN_##fs; 600 R##_s = _FP_NANSIGN_##fs; \ 606 R##_c = FP_CLS_NAN; /* NAN */ 601 R##_c = FP_CLS_NAN; /* NAN */ \ 607 _FP_FRAC_SET_##wc(R, _FP_NANFRAC_# 602 _FP_FRAC_SET_##wc(R, _FP_NANFRAC_##fs); \ 608 FP_SET_EXCEPTION(FP_EX_INVALID); 603 FP_SET_EXCEPTION(FP_EX_INVALID); \ 609 } 604 } \ 610 else 605 else \ 611 { 606 { \ 612 R##_s = 0; 607 R##_s = 0; \ 613 R##_c = FP_CLS_INF; /* sqrt(+inf) 608 R##_c = FP_CLS_INF; /* sqrt(+inf) = +inf */ \ 614 } 609 } \ 615 break; 610 break; \ 616 case FP_CLS_ZERO: 611 case FP_CLS_ZERO: \ 617 R##_s = X##_s; 612 R##_s = X##_s; \ 618 R##_c = FP_CLS_ZERO; /* sqrt(+-0) = +- 613 R##_c = FP_CLS_ZERO; /* sqrt(+-0) = +-0 */ \ 619 break; 614 break; \ 620 case FP_CLS_NORMAL: 615 case FP_CLS_NORMAL: \ 621 R##_s = 0; 616 R##_s = 0; \ 622 if (X##_s) 617 if (X##_s) \ 623 { 618 { \ 624 R##_c = FP_CLS_NAN; /* sNAN */ 619 R##_c = FP_CLS_NAN; /* sNAN */ \ 625 R##_s = _FP_NANSIGN_##fs; 620 R##_s = _FP_NANSIGN_##fs; \ 626 _FP_FRAC_SET_##wc(R, _FP_NANFRAC_# 621 _FP_FRAC_SET_##wc(R, _FP_NANFRAC_##fs); \ 627 FP_SET_EXCEPTION(FP_EX_INVALID); 622 FP_SET_EXCEPTION(FP_EX_INVALID); \ 628 break; 623 break; \ 629 } 624 } \ 630 R##_c = FP_CLS_NORMAL; 625 R##_c = FP_CLS_NORMAL; \ 631 if (X##_e & 1) 626 if (X##_e & 1) \ 632 _FP_FRAC_SLL_##wc(X, 1); 627 _FP_FRAC_SLL_##wc(X, 1); \ 633 R##_e = X##_e >> 1; 628 R##_e = X##_e >> 1; \ 634 _FP_FRAC_SET_##wc(S, _FP_ZEROFRAC_##wc 629 _FP_FRAC_SET_##wc(S, _FP_ZEROFRAC_##wc); \ 635 _FP_FRAC_SET_##wc(R, _FP_ZEROFRAC_##wc 630 _FP_FRAC_SET_##wc(R, _FP_ZEROFRAC_##wc); \ 636 q = _FP_OVERFLOW_##fs >> 1; 631 q = _FP_OVERFLOW_##fs >> 1; \ 637 _FP_SQRT_MEAT_##wc(R, S, T, X, q); 632 _FP_SQRT_MEAT_##wc(R, S, T, X, q); \ 638 } 633 } \ 639 } while (0) 634 } while (0) 640 635 641 /* 636 /* 642 * Convert from FP to integer 637 * Convert from FP to integer 643 */ 638 */ 644 639 645 /* RSIGNED can have following values: 640 /* RSIGNED can have following values: 646 * 0: the number is required to be 0..(2^rsiz 641 * 0: the number is required to be 0..(2^rsize)-1, if not, NV is set plus 647 * the result is either 0 or (2^rsize)-1 d 642 * the result is either 0 or (2^rsize)-1 depending on the sign in such case. 648 * 1: the number is required to be -(2^(rsize 643 * 1: the number is required to be -(2^(rsize-1))..(2^(rsize-1))-1, if not, NV is 649 * set plus the result is either -(2^(rsiz 644 * set plus the result is either -(2^(rsize-1)) or (2^(rsize-1))-1 depending 650 * on the sign in such case. 645 * on the sign in such case. 651 * 2: the number is required to be -(2^(rsize 646 * 2: the number is required to be -(2^(rsize-1))..(2^(rsize-1))-1, if not, NV is 652 * set plus the result is truncated to fit 647 * set plus the result is truncated to fit into destination. 653 * -1: the number is required to be -(2^(rsize 648 * -1: the number is required to be -(2^(rsize-1))..(2^rsize)-1, if not, NV is 654 * set plus the result is either -(2^(rsiz 649 * set plus the result is either -(2^(rsize-1)) or (2^(rsize-1))-1 depending 655 * on the sign in such case. 650 * on the sign in such case. 656 */ 651 */ 657 #define _FP_TO_INT(fs, wc, r, X, rsize, rsigne 652 #define _FP_TO_INT(fs, wc, r, X, rsize, rsigned) \ 658 do { 653 do { \ 659 switch (X##_c) 654 switch (X##_c) \ 660 { 655 { \ 661 case FP_CLS_NORMAL: 656 case FP_CLS_NORMAL: \ 662 if (X##_e < 0) 657 if (X##_e < 0) \ 663 { 658 { \ 664 FP_SET_EXCEPTION(FP_EX_INEXACT); 659 FP_SET_EXCEPTION(FP_EX_INEXACT); \ 665 fallthrough; << 666 case FP_CLS_ZERO: 660 case FP_CLS_ZERO: \ 667 r = 0; 661 r = 0; \ 668 } 662 } \ 669 else if (X##_e >= rsize - (rsigned > 0 663 else if (X##_e >= rsize - (rsigned > 0 || X##_s) \ 670 || (!rsigned && X##_s)) 664 || (!rsigned && X##_s)) \ 671 { /* overflow */ 665 { /* overflow */ \ 672 fallthrough; << 673 case FP_CLS_NAN: 666 case FP_CLS_NAN: \ 674 case FP_CLS_INF: 667 case FP_CLS_INF: \ 675 if (rsigned == 2) 668 if (rsigned == 2) \ 676 { 669 { \ 677 if (X##_c != FP_CLS_NORMAL 670 if (X##_c != FP_CLS_NORMAL \ 678 || X##_e >= rsize - 1 + _F 671 || X##_e >= rsize - 1 + _FP_WFRACBITS_##fs) \ 679 r = 0; 672 r = 0; \ 680 else 673 else \ 681 { 674 { \ 682 _FP_FRAC_SLL_##wc(X, (X##_ 675 _FP_FRAC_SLL_##wc(X, (X##_e - _FP_WFRACBITS_##fs + 1)); \ 683 _FP_FRAC_ASSEMBLE_##wc(r, 676 _FP_FRAC_ASSEMBLE_##wc(r, X, rsize); \ 684 } 677 } \ 685 } 678 } \ 686 else if (rsigned) 679 else if (rsigned) \ 687 { 680 { \ 688 r = 1; 681 r = 1; \ 689 r <<= rsize - 1; 682 r <<= rsize - 1; \ 690 r -= 1 - X##_s; 683 r -= 1 - X##_s; \ 691 } 684 } \ 692 else 685 else \ 693 { 686 { \ 694 r = 0; 687 r = 0; \ 695 if (!X##_s) !! 688 if (X##_s) \ 696 r = ~r; 689 r = ~r; \ 697 } 690 } \ 698 FP_SET_EXCEPTION(FP_EX_INVALID); 691 FP_SET_EXCEPTION(FP_EX_INVALID); \ 699 } 692 } \ 700 else 693 else \ 701 { 694 { \ 702 if (_FP_W_TYPE_SIZE*wc < rsize) 695 if (_FP_W_TYPE_SIZE*wc < rsize) \ 703 { 696 { \ 704 _FP_FRAC_ASSEMBLE_##wc(r, X, r 697 _FP_FRAC_ASSEMBLE_##wc(r, X, rsize); \ 705 r <<= X##_e - _FP_WFRACBITS_## 698 r <<= X##_e - _FP_WFRACBITS_##fs; \ 706 } 699 } \ 707 else 700 else \ 708 { 701 { \ 709 if (X##_e >= _FP_WFRACBITS_##f 702 if (X##_e >= _FP_WFRACBITS_##fs) \ 710 _FP_FRAC_SLL_##wc(X, (X##_e 703 _FP_FRAC_SLL_##wc(X, (X##_e - _FP_WFRACBITS_##fs + 1)); \ 711 else if (X##_e < _FP_WFRACBITS 704 else if (X##_e < _FP_WFRACBITS_##fs - 1) \ 712 { 705 { \ 713 _FP_FRAC_SRS_##wc(X, (_FP_ 706 _FP_FRAC_SRS_##wc(X, (_FP_WFRACBITS_##fs - X##_e - 2), \ 714 _FP_WFRA 707 _FP_WFRACBITS_##fs); \ 715 if (_FP_FRAC_LOW_##wc(X) & 708 if (_FP_FRAC_LOW_##wc(X) & 1) \ 716 FP_SET_EXCEPTION(FP_EX_I 709 FP_SET_EXCEPTION(FP_EX_INEXACT); \ 717 _FP_FRAC_SRL_##wc(X, 1); 710 _FP_FRAC_SRL_##wc(X, 1); \ 718 } 711 } \ 719 _FP_FRAC_ASSEMBLE_##wc(r, X, r 712 _FP_FRAC_ASSEMBLE_##wc(r, X, rsize); \ 720 } 713 } \ 721 if (rsigned && X##_s) 714 if (rsigned && X##_s) \ 722 r = -r; 715 r = -r; \ 723 } 716 } \ 724 break; 717 break; \ 725 } 718 } \ 726 } while (0) 719 } while (0) 727 720 728 #define _FP_TO_INT_ROUND(fs, wc, r, X, rsize, 721 #define _FP_TO_INT_ROUND(fs, wc, r, X, rsize, rsigned) \ 729 do { 722 do { \ 730 r = 0; 723 r = 0; \ 731 switch (X##_c) 724 switch (X##_c) \ 732 { 725 { \ 733 case FP_CLS_NORMAL: 726 case FP_CLS_NORMAL: \ 734 if (X##_e >= _FP_FRACBITS_##fs - 1) 727 if (X##_e >= _FP_FRACBITS_##fs - 1) \ 735 { 728 { \ 736 if (X##_e < rsize - 1 + _FP_WFRACB 729 if (X##_e < rsize - 1 + _FP_WFRACBITS_##fs) \ 737 { 730 { \ 738 if (X##_e >= _FP_WFRACBITS_##f 731 if (X##_e >= _FP_WFRACBITS_##fs - 1) \ 739 { 732 { \ 740 _FP_FRAC_ASSEMBLE_##wc(r, 733 _FP_FRAC_ASSEMBLE_##wc(r, X, rsize); \ 741 r <<= X##_e - _FP_WFRACBIT 734 r <<= X##_e - _FP_WFRACBITS_##fs + 1; \ 742 } 735 } \ 743 else 736 else \ 744 { 737 { \ 745 _FP_FRAC_SRL_##wc(X, _FP_W 738 _FP_FRAC_SRL_##wc(X, _FP_WORKBITS - X##_e \ 746 + _FP_FR 739 + _FP_FRACBITS_##fs - 1); \ 747 _FP_FRAC_ASSEMBLE_##wc(r, 740 _FP_FRAC_ASSEMBLE_##wc(r, X, rsize); \ 748 } 741 } \ 749 } 742 } \ 750 } 743 } \ 751 else 744 else \ 752 { 745 { \ 753 int _lz0, _lz1; << 754 if (X##_e <= -_FP_WORKBITS - 1) 746 if (X##_e <= -_FP_WORKBITS - 1) \ 755 _FP_FRAC_SET_##wc(X, _FP_MINFRAC 747 _FP_FRAC_SET_##wc(X, _FP_MINFRAC_##wc); \ 756 else 748 else \ 757 _FP_FRAC_SRS_##wc(X, _FP_FRACBIT 749 _FP_FRAC_SRS_##wc(X, _FP_FRACBITS_##fs - 1 - X##_e, \ 758 _FP_WFRACBITS_ 750 _FP_WFRACBITS_##fs); \ 759 _FP_FRAC_CLZ_##wc(_lz0, X); << 760 _FP_ROUND(wc, X); 751 _FP_ROUND(wc, X); \ 761 _FP_FRAC_CLZ_##wc(_lz1, X); << 762 if (_lz1 < _lz0) << 763 X##_e++; /* For overflow detecti << 764 _FP_FRAC_SRL_##wc(X, _FP_WORKBITS) 752 _FP_FRAC_SRL_##wc(X, _FP_WORKBITS); \ 765 _FP_FRAC_ASSEMBLE_##wc(r, X, rsize 753 _FP_FRAC_ASSEMBLE_##wc(r, X, rsize); \ 766 } 754 } \ 767 if (rsigned && X##_s) 755 if (rsigned && X##_s) \ 768 r = -r; 756 r = -r; \ 769 if (X##_e >= rsize - (rsigned > 0 || X 757 if (X##_e >= rsize - (rsigned > 0 || X##_s) \ 770 || (!rsigned && X##_s)) 758 || (!rsigned && X##_s)) \ 771 { /* overflow */ 759 { /* overflow */ \ 772 fallthrough; << 773 case FP_CLS_NAN: 760 case FP_CLS_NAN: \ 774 case FP_CLS_INF: 761 case FP_CLS_INF: \ 775 if (!rsigned) 762 if (!rsigned) \ 776 { 763 { \ 777 r = 0; 764 r = 0; \ 778 if (!X##_s) !! 765 if (X##_s) \ 779 r = ~r; 766 r = ~r; \ 780 } 767 } \ 781 else if (rsigned != 2) 768 else if (rsigned != 2) \ 782 { 769 { \ 783 r = 1; 770 r = 1; \ 784 r <<= rsize - 1; 771 r <<= rsize - 1; \ 785 r -= 1 - X##_s; 772 r -= 1 - X##_s; \ 786 } 773 } \ 787 FP_SET_EXCEPTION(FP_EX_INVALID); 774 FP_SET_EXCEPTION(FP_EX_INVALID); \ 788 } 775 } \ 789 break; 776 break; \ 790 case FP_CLS_ZERO: 777 case FP_CLS_ZERO: \ 791 break; 778 break; \ 792 } 779 } \ 793 } while (0) 780 } while (0) 794 781 795 #define _FP_FROM_INT(fs, wc, X, r, rsize, rtyp 782 #define _FP_FROM_INT(fs, wc, X, r, rsize, rtype) \ 796 do { 783 do { \ 797 if (r) 784 if (r) \ 798 { 785 { \ 799 unsigned rtype ur_; 786 unsigned rtype ur_; \ 800 X##_c = FP_CLS_NORMAL; 787 X##_c = FP_CLS_NORMAL; \ 801 788 \ 802 if ((X##_s = (r < 0))) 789 if ((X##_s = (r < 0))) \ 803 ur_ = (unsigned rtype) -r; 790 ur_ = (unsigned rtype) -r; \ 804 else 791 else \ 805 ur_ = (unsigned rtype) r; 792 ur_ = (unsigned rtype) r; \ 806 (void) (((rsize) <= _FP_W_TYPE_SIZE) !! 793 if (rsize <= _FP_W_TYPE_SIZE) \ 807 ? ({ __FP_CLZ(X##_e, ur_); }) !! 794 __FP_CLZ(X##_e, ur_); \ 808 : ({ !! 795 else \ 809 __FP_CLZ_2(X##_e, (_FP_W_ !! 796 __FP_CLZ_2(X##_e, (_FP_W_TYPE)(ur_ >> _FP_W_TYPE_SIZE), \ 810 !! 797 (_FP_W_TYPE)ur_); \ 811 })); << 812 if (rsize < _FP_W_TYPE_SIZE) 798 if (rsize < _FP_W_TYPE_SIZE) \ 813 X##_e -= (_FP_W_TYPE_SIZE - rs 799 X##_e -= (_FP_W_TYPE_SIZE - rsize); \ 814 X##_e = rsize - X##_e - 1; 800 X##_e = rsize - X##_e - 1; \ 815 801 \ 816 if (_FP_FRACBITS_##fs < rsize && _FP_W 802 if (_FP_FRACBITS_##fs < rsize && _FP_WFRACBITS_##fs <= X##_e) \ 817 __FP_FRAC_SRS_1(ur_, (X##_e - _FP_WF 803 __FP_FRAC_SRS_1(ur_, (X##_e - _FP_WFRACBITS_##fs + 1), rsize);\ 818 _FP_FRAC_DISASSEMBLE_##wc(X, ur_, rsiz 804 _FP_FRAC_DISASSEMBLE_##wc(X, ur_, rsize); \ 819 if ((_FP_WFRACBITS_##fs - X##_e - 1) > 805 if ((_FP_WFRACBITS_##fs - X##_e - 1) > 0) \ 820 _FP_FRAC_SLL_##wc(X, (_FP_WFRACBITS_ 806 _FP_FRAC_SLL_##wc(X, (_FP_WFRACBITS_##fs - X##_e - 1)); \ 821 } 807 } \ 822 else 808 else \ 823 { 809 { \ 824 X##_c = FP_CLS_ZERO, X##_s = 0; 810 X##_c = FP_CLS_ZERO, X##_s = 0; \ 825 } 811 } \ 826 } while (0) 812 } while (0) 827 813 828 814 829 #define FP_CONV(dfs,sfs,dwc,swc,D,S) 815 #define FP_CONV(dfs,sfs,dwc,swc,D,S) \ 830 do { 816 do { \ 831 _FP_FRAC_CONV_##dwc##_##swc(dfs, sfs, D, S 817 _FP_FRAC_CONV_##dwc##_##swc(dfs, sfs, D, S); \ 832 D##_e = S##_e; 818 D##_e = S##_e; \ 833 D##_c = S##_c; 819 D##_c = S##_c; \ 834 D##_s = S##_s; 820 D##_s = S##_s; \ 835 } while (0) 821 } while (0) 836 822 837 /* 823 /* 838 * Helper primitives. 824 * Helper primitives. 839 */ 825 */ 840 826 841 /* Count leading zeros in a word. */ 827 /* Count leading zeros in a word. */ 842 828 843 #ifndef __FP_CLZ 829 #ifndef __FP_CLZ 844 #if _FP_W_TYPE_SIZE < 64 830 #if _FP_W_TYPE_SIZE < 64 845 /* this is just to shut the compiler up about 831 /* this is just to shut the compiler up about shifts > word length -- PMM 02/1998 */ 846 #define __FP_CLZ(r, x) 832 #define __FP_CLZ(r, x) \ 847 do { 833 do { \ 848 _FP_W_TYPE _t = (x); 834 _FP_W_TYPE _t = (x); \ 849 r = _FP_W_TYPE_SIZE - 1; 835 r = _FP_W_TYPE_SIZE - 1; \ 850 if (_t > 0xffff) r -= 16; 836 if (_t > 0xffff) r -= 16; \ 851 if (_t > 0xffff) _t >>= 16; 837 if (_t > 0xffff) _t >>= 16; \ 852 if (_t > 0xff) r -= 8; 838 if (_t > 0xff) r -= 8; \ 853 if (_t > 0xff) _t >>= 8; 839 if (_t > 0xff) _t >>= 8; \ 854 if (_t & 0xf0) r -= 4; 840 if (_t & 0xf0) r -= 4; \ 855 if (_t & 0xf0) _t >>= 4; 841 if (_t & 0xf0) _t >>= 4; \ 856 if (_t & 0xc) r -= 2; 842 if (_t & 0xc) r -= 2; \ 857 if (_t & 0xc) _t >>= 2; 843 if (_t & 0xc) _t >>= 2; \ 858 if (_t & 0x2) r -= 1; 844 if (_t & 0x2) r -= 1; \ 859 } while (0) 845 } while (0) 860 #else /* not _FP_W_TYPE_SIZE < 64 */ 846 #else /* not _FP_W_TYPE_SIZE < 64 */ 861 #define __FP_CLZ(r, x) 847 #define __FP_CLZ(r, x) \ 862 do { 848 do { \ 863 _FP_W_TYPE _t = (x); 849 _FP_W_TYPE _t = (x); \ 864 r = _FP_W_TYPE_SIZE - 1; 850 r = _FP_W_TYPE_SIZE - 1; \ 865 if (_t > 0xffffffff) r -= 32; 851 if (_t > 0xffffffff) r -= 32; \ 866 if (_t > 0xffffffff) _t >>= 32; 852 if (_t > 0xffffffff) _t >>= 32; \ 867 if (_t > 0xffff) r -= 16; 853 if (_t > 0xffff) r -= 16; \ 868 if (_t > 0xffff) _t >>= 16; 854 if (_t > 0xffff) _t >>= 16; \ 869 if (_t > 0xff) r -= 8; 855 if (_t > 0xff) r -= 8; \ 870 if (_t > 0xff) _t >>= 8; 856 if (_t > 0xff) _t >>= 8; \ 871 if (_t & 0xf0) r -= 4; 857 if (_t & 0xf0) r -= 4; \ 872 if (_t & 0xf0) _t >>= 4; 858 if (_t & 0xf0) _t >>= 4; \ 873 if (_t & 0xc) r -= 2; 859 if (_t & 0xc) r -= 2; \ 874 if (_t & 0xc) _t >>= 2; 860 if (_t & 0xc) _t >>= 2; \ 875 if (_t & 0x2) r -= 1; 861 if (_t & 0x2) r -= 1; \ 876 } while (0) 862 } while (0) 877 #endif /* not _FP_W_TYPE_SIZE < 64 */ 863 #endif /* not _FP_W_TYPE_SIZE < 64 */ 878 #endif /* ndef __FP_CLZ */ 864 #endif /* ndef __FP_CLZ */ 879 865 880 #define _FP_DIV_HELP_imm(q, r, n, d) 866 #define _FP_DIV_HELP_imm(q, r, n, d) \ 881 do { 867 do { \ 882 q = n / d, r = n % d; 868 q = n / d, r = n % d; \ 883 } while (0) 869 } while (0) 884 870 885 #endif /* __MATH_EMU_OP_COMMON_H__ */ 871 #endif /* __MATH_EMU_OP_COMMON_H__ */ 886 872
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.