1 /* Software floating-point emulation. Common o 1 2 Copyright (C) 1997,1998,1999 Free Software 3 This file is part of the GNU C Library. 4 Contributed by Richard Henderson (rth@cygnu 5 Jakub Jelinek (jj@ultra.linu 6 David S. Miller (davem@redha 7 Peter Maydell (pmaydell@chia 8 9 The GNU C Library is free software; you can 10 modify it under the terms of the GNU Librar 11 published by the Free Software Foundation; 12 License, or (at your option) any later vers 13 14 The GNU C Library is distributed in the hop 15 but WITHOUT ANY WARRANTY; without even the 16 MERCHANTABILITY or FITNESS FOR A PARTICULAR 17 Library General Public License for more det 18 19 You should have received a copy of the GNU 20 License along with the GNU C Library; see t 21 not, write to the Free Software Foundation, 22 59 Temple Place - Suite 330, Boston, MA 021 23 24 #ifndef __MATH_EMU_OP_COMMON_H__ 25 #define __MATH_EMU_OP_COMMON_H__ 26 27 #define _FP_DECL(wc, X) \ 28 _FP_I_TYPE X##_c=0, X##_s=0, X##_e=0; \ 29 _FP_FRAC_DECL_##wc(X) 30 31 /* 32 * Finish truly unpacking a native fp value by 33 * of fp value and normalizing both the expone 34 */ 35 36 #define _FP_UNPACK_CANONICAL(fs, wc, X) 37 do { 38 switch (X##_e) 39 { 40 default: 41 _FP_FRAC_HIGH_RAW_##fs(X) |= _FP_IMPLBIT_# 42 _FP_FRAC_SLL_##wc(X, _FP_WORKBITS); 43 X##_e -= _FP_EXPBIAS_##fs; 44 X##_c = FP_CLS_NORMAL; 45 break; 46 47 case 0: 48 if (_FP_FRAC_ZEROP_##wc(X)) 49 X##_c = FP_CLS_ZERO; 50 else 51 { 52 /* a denormalized number */ 53 _FP_I_TYPE _shift; 54 _FP_FRAC_CLZ_##wc(_shift, X); 55 _shift -= _FP_FRACXBITS_##fs; 56 _FP_FRAC_SLL_##wc(X, (_shift+_FP_WORKB 57 X##_e -= _FP_EXPBIAS_##fs - 1 + _shift 58 X##_c = FP_CLS_NORMAL; 59 FP_SET_EXCEPTION(FP_EX_DENORM); 60 if (FP_DENORM_ZERO) 61 { 62 FP_SET_EXCEPTION(FP_EX_INEXACT); 63 X##_c = FP_CLS_ZERO; 64 } 65 } 66 break; 67 68 case _FP_EXPMAX_##fs: 69 if (_FP_FRAC_ZEROP_##wc(X)) 70 X##_c = FP_CLS_INF; 71 else 72 { 73 X##_c = FP_CLS_NAN; 74 /* Check for signaling NaN */ 75 if (!(_FP_FRAC_HIGH_RAW_##fs(X) & _FP_ 76 FP_SET_EXCEPTION(FP_EX_INVALID | FP_ 77 } 78 break; 79 } 80 } while (0) 81 82 /* 83 * Before packing the bits back into the nativ 84 * of such mundane things as rounding and over 85 * kinds of fp values, the original parts may 86 * extracted -- but that is ok, we can regener 87 */ 88 89 #define _FP_PACK_CANONICAL(fs, wc, X) 90 do { 91 switch (X##_c) 92 { 93 case FP_CLS_NORMAL: 94 X##_e += _FP_EXPBIAS_##fs; 95 if (X##_e > 0) 96 { 97 _FP_ROUND(wc, X); 98 if (_FP_FRAC_OVERP_##wc(fs, X)) 99 { 100 _FP_FRAC_CLEAR_OVERP_##wc(fs, X); 101 X##_e++; 102 } 103 _FP_FRAC_SRL_##wc(X, _FP_WORKBITS); 104 if (X##_e >= _FP_EXPMAX_##fs) 105 { 106 /* overflow */ 107 switch (FP_ROUNDMODE) 108 { 109 case FP_RND_NEAREST: 110 X##_c = FP_CLS_INF; 111 break; 112 case FP_RND_PINF: 113 if (!X##_s) X##_c = FP_CLS_INF 114 break; 115 case FP_RND_MINF: 116 if (X##_s) X##_c = FP_CLS_INF; 117 break; 118 } 119 if (X##_c == FP_CLS_INF) 120 { 121 /* Overflow to infinity */ 122 X##_e = _FP_EXPMAX_##fs; 123 _FP_FRAC_SET_##wc(X, _FP_ZEROF 124 } 125 else 126 { 127 /* Overflow to maximum normal 128 X##_e = _FP_EXPMAX_##fs - 1; 129 _FP_FRAC_SET_##wc(X, _FP_MAXFR 130 } 131 FP_SET_EXCEPTION(FP_EX_OVERFLOW); 132 FP_SET_EXCEPTION(FP_EX_INEXACT); 133 } 134 } 135 else 136 { 137 /* we've got a denormalized number */ 138 X##_e = -X##_e + 1; 139 if (X##_e <= _FP_WFRACBITS_##fs) 140 { 141 _FP_FRAC_SRS_##wc(X, X##_e, _FP_WF 142 if (_FP_FRAC_HIGH_##fs(X) 143 & (_FP_OVERFLOW_##fs >> 1)) 144 { 145 X##_e = 1; 146 _FP_FRAC_SET_##wc(X, _FP_ZEROF 147 } 148 else 149 { 150 _FP_ROUND(wc, X); 151 if (_FP_FRAC_HIGH_##fs(X) 152 & (_FP_OVERFLOW_##fs >> 1)) 153 { 154 X##_e = 1; 155 _FP_FRAC_SET_##wc(X, _FP_Z 156 FP_SET_EXCEPTION(FP_EX_INE 157 } 158 else 159 { 160 X##_e = 0; 161 _FP_FRAC_SRL_##wc(X, _FP_W 162 } 163 } 164 if ((FP_CUR_EXCEPTIONS & FP_EX_INE 165 (FP_TRAPPING_EXCEPTIONS & FP_E 166 FP_SET_EXCEPTION(FP_EX_UNDERFL 167 } 168 else 169 { 170 /* underflow to zero */ 171 X##_e = 0; 172 if (!_FP_FRAC_ZEROP_##wc(X)) 173 { 174 _FP_FRAC_SET_##wc(X, _FP_MINFR 175 _FP_ROUND(wc, X); 176 _FP_FRAC_LOW_##wc(X) >>= (_FP_ 177 } 178 FP_SET_EXCEPTION(FP_EX_UNDERFLOW); 179 } 180 } 181 break; 182 183 case FP_CLS_ZERO: 184 X##_e = 0; 185 _FP_FRAC_SET_##wc(X, _FP_ZEROFRAC_##wc); 186 break; 187 188 case FP_CLS_INF: 189 X##_e = _FP_EXPMAX_##fs; 190 _FP_FRAC_SET_##wc(X, _FP_ZEROFRAC_##wc); 191 break; 192 193 case FP_CLS_NAN: 194 X##_e = _FP_EXPMAX_##fs; 195 if (!_FP_KEEPNANFRACP) 196 { 197 _FP_FRAC_SET_##wc(X, _FP_NANFRAC_##fs) 198 X##_s = _FP_NANSIGN_##fs; 199 } 200 else 201 _FP_FRAC_HIGH_RAW_##fs(X) |= _FP_QNANBIT 202 break; 203 } 204 } while (0) 205 206 /* This one accepts raw argument and not cooke 207 * 1 if X is a signaling NaN. 208 */ 209 #define _FP_ISSIGNAN(fs, wc, X) 210 ({ 211 int __ret = 0; 212 if (X##_e == _FP_EXPMAX_##fs) 213 { 214 if (!_FP_FRAC_ZEROP_##wc(X) 215 && !(_FP_FRAC_HIGH_RAW_##fs(X) & _FP 216 __ret = 1; 217 } 218 __ret; 219 }) 220 221 222 223 224 225 /* 226 * Main addition routine. The input values sh 227 */ 228 229 #define _FP_ADD_INTERNAL(fs, wc, R, X, Y, OP) 230 do { 231 switch (_FP_CLS_COMBINE(X##_c, Y##_c)) 232 { 233 case _FP_CLS_COMBINE(FP_CLS_NORMAL,FP_CLS_NO 234 { 235 /* shift the smaller number so that its 236 _FP_I_TYPE diff = X##_e - Y##_e; 237 238 if (diff < 0) 239 { 240 diff = -diff; 241 if (diff <= _FP_WFRACBITS_##fs) 242 _FP_FRAC_SRS_##wc(X, diff, _FP_WFR 243 else if (!_FP_FRAC_ZEROP_##wc(X)) 244 _FP_FRAC_SET_##wc(X, _FP_MINFRAC_# 245 R##_e = Y##_e; 246 } 247 else 248 { 249 if (diff > 0) 250 { 251 if (diff <= _FP_WFRACBITS_##fs) 252 _FP_FRAC_SRS_##wc(Y, diff, _FP 253 else if (!_FP_FRAC_ZEROP_##wc(Y) 254 _FP_FRAC_SET_##wc(Y, _FP_MINFR 255 } 256 R##_e = X##_e; 257 } 258 259 R##_c = FP_CLS_NORMAL; 260 261 if (X##_s == Y##_s) 262 { 263 R##_s = X##_s; 264 _FP_FRAC_ADD_##wc(R, X, Y); 265 if (_FP_FRAC_OVERP_##wc(fs, R)) 266 { 267 _FP_FRAC_SRS_##wc(R, 1, _FP_WFRA 268 R##_e++; 269 } 270 } 271 else 272 { 273 R##_s = X##_s; 274 _FP_FRAC_SUB_##wc(R, X, Y); 275 if (_FP_FRAC_ZEROP_##wc(R)) 276 { 277 /* return an exact zero */ 278 if (FP_ROUNDMODE == FP_RND_MINF) 279 R##_s |= Y##_s; 280 else 281 R##_s &= Y##_s; 282 R##_c = FP_CLS_ZERO; 283 } 284 else 285 { 286 if (_FP_FRAC_NEGP_##wc(R)) 287 { 288 _FP_FRAC_SUB_##wc(R, Y, X); 289 R##_s = Y##_s; 290 } 291 292 /* renormalize after subtraction 293 _FP_FRAC_CLZ_##wc(diff, R); 294 diff -= _FP_WFRACXBITS_##fs; 295 if (diff) 296 { 297 R##_e -= diff; 298 _FP_FRAC_SLL_##wc(R, diff); 299 } 300 } 301 } 302 break; 303 } 304 305 case _FP_CLS_COMBINE(FP_CLS_NAN,FP_CLS_NAN): 306 _FP_CHOOSENAN(fs, wc, R, X, Y, OP); 307 break; 308 309 case _FP_CLS_COMBINE(FP_CLS_NORMAL,FP_CLS_ZE 310 R##_e = X##_e; 311 fallthrough; 312 case _FP_CLS_COMBINE(FP_CLS_NAN,FP_CLS_NORMA 313 case _FP_CLS_COMBINE(FP_CLS_NAN,FP_CLS_INF): 314 case _FP_CLS_COMBINE(FP_CLS_NAN,FP_CLS_ZERO) 315 _FP_FRAC_COPY_##wc(R, X); 316 R##_s = X##_s; 317 R##_c = X##_c; 318 break; 319 320 case _FP_CLS_COMBINE(FP_CLS_ZERO,FP_CLS_NORM 321 R##_e = Y##_e; 322 fallthrough; 323 case _FP_CLS_COMBINE(FP_CLS_NORMAL,FP_CLS_NA 324 case _FP_CLS_COMBINE(FP_CLS_INF,FP_CLS_NAN): 325 case _FP_CLS_COMBINE(FP_CLS_ZERO,FP_CLS_NAN) 326 _FP_FRAC_COPY_##wc(R, Y); 327 R##_s = Y##_s; 328 R##_c = Y##_c; 329 break; 330 331 case _FP_CLS_COMBINE(FP_CLS_INF,FP_CLS_INF): 332 if (X##_s != Y##_s) 333 { 334 /* +INF + -INF => NAN */ 335 _FP_FRAC_SET_##wc(R, _FP_NANFRAC_##fs) 336 R##_s = _FP_NANSIGN_##fs; 337 R##_c = FP_CLS_NAN; 338 FP_SET_EXCEPTION(FP_EX_INVALID | FP_EX 339 break; 340 } 341 fallthrough; 342 343 case _FP_CLS_COMBINE(FP_CLS_INF,FP_CLS_NORMA 344 case _FP_CLS_COMBINE(FP_CLS_INF,FP_CLS_ZERO) 345 R##_s = X##_s; 346 R##_c = FP_CLS_INF; 347 break; 348 349 case _FP_CLS_COMBINE(FP_CLS_NORMAL,FP_CLS_IN 350 case _FP_CLS_COMBINE(FP_CLS_ZERO,FP_CLS_INF) 351 R##_s = Y##_s; 352 R##_c = FP_CLS_INF; 353 break; 354 355 case _FP_CLS_COMBINE(FP_CLS_ZERO,FP_CLS_ZERO 356 /* make sure the sign is correct */ 357 if (FP_ROUNDMODE == FP_RND_MINF) 358 R##_s = X##_s | Y##_s; 359 else 360 R##_s = X##_s & Y##_s; 361 R##_c = FP_CLS_ZERO; 362 break; 363 364 default: 365 abort(); 366 } 367 } while (0) 368 369 #define _FP_ADD(fs, wc, R, X, Y) _FP_ADD_INTER 370 #define _FP_SUB(fs, wc, R, X, Y) 371 do { 372 if (Y##_c != FP_CLS_NAN) Y##_s ^= 1; 373 _FP_ADD_INTERNAL(fs, wc, R, X, Y, '-'); 374 } while (0) 375 376 377 /* 378 * Main negation routine. FIXME -- when we ca 379 * bits reliably, this will not do. We should 380 */ 381 382 #define _FP_NEG(fs, wc, R, X) \ 383 do { \ 384 _FP_FRAC_COPY_##wc(R, X); \ 385 R##_c = X##_c; \ 386 R##_e = X##_e; \ 387 R##_s = 1 ^ X##_s; \ 388 } while (0) 389 390 391 /* 392 * Main multiplication routine. The input val 393 */ 394 395 #define _FP_MUL(fs, wc, R, X, Y) 396 do { 397 R##_s = X##_s ^ Y##_s; 398 switch (_FP_CLS_COMBINE(X##_c, Y##_c)) 399 { 400 case _FP_CLS_COMBINE(FP_CLS_NORMAL,FP_CLS_NO 401 R##_c = FP_CLS_NORMAL; 402 R##_e = X##_e + Y##_e + 1; 403 404 _FP_MUL_MEAT_##fs(R,X,Y); 405 406 if (_FP_FRAC_OVERP_##wc(fs, R)) 407 _FP_FRAC_SRS_##wc(R, 1, _FP_WFRACBITS_## 408 else 409 R##_e--; 410 break; 411 412 case _FP_CLS_COMBINE(FP_CLS_NAN,FP_CLS_NAN): 413 _FP_CHOOSENAN(fs, wc, R, X, Y, '*'); 414 break; 415 416 case _FP_CLS_COMBINE(FP_CLS_NAN,FP_CLS_NORMA 417 case _FP_CLS_COMBINE(FP_CLS_NAN,FP_CLS_INF): 418 case _FP_CLS_COMBINE(FP_CLS_NAN,FP_CLS_ZERO) 419 R##_s = X##_s; 420 fallthrough; 421 422 case _FP_CLS_COMBINE(FP_CLS_INF,FP_CLS_INF): 423 case _FP_CLS_COMBINE(FP_CLS_INF,FP_CLS_NORMA 424 case _FP_CLS_COMBINE(FP_CLS_ZERO,FP_CLS_NORM 425 case _FP_CLS_COMBINE(FP_CLS_ZERO,FP_CLS_ZERO 426 _FP_FRAC_COPY_##wc(R, X); 427 R##_c = X##_c; 428 break; 429 430 case _FP_CLS_COMBINE(FP_CLS_NORMAL,FP_CLS_NA 431 case _FP_CLS_COMBINE(FP_CLS_INF,FP_CLS_NAN): 432 case _FP_CLS_COMBINE(FP_CLS_ZERO,FP_CLS_NAN) 433 R##_s = Y##_s; 434 fallthrough; 435 436 case _FP_CLS_COMBINE(FP_CLS_NORMAL,FP_CLS_IN 437 case _FP_CLS_COMBINE(FP_CLS_NORMAL,FP_CLS_ZE 438 _FP_FRAC_COPY_##wc(R, Y); 439 R##_c = Y##_c; 440 break; 441 442 case _FP_CLS_COMBINE(FP_CLS_INF,FP_CLS_ZERO) 443 case _FP_CLS_COMBINE(FP_CLS_ZERO,FP_CLS_INF) 444 R##_s = _FP_NANSIGN_##fs; 445 R##_c = FP_CLS_NAN; 446 _FP_FRAC_SET_##wc(R, _FP_NANFRAC_##fs); 447 FP_SET_EXCEPTION(FP_EX_INVALID | FP_EX_INV 448 break; 449 450 default: 451 abort(); 452 } 453 } while (0) 454 455 456 /* 457 * Main division routine. The input values sh 458 */ 459 460 #define _FP_DIV(fs, wc, R, X, Y) 461 do { 462 R##_s = X##_s ^ Y##_s; 463 switch (_FP_CLS_COMBINE(X##_c, Y##_c)) 464 { 465 case _FP_CLS_COMBINE(FP_CLS_NORMAL,FP_CLS_NO 466 R##_c = FP_CLS_NORMAL; 467 R##_e = X##_e - Y##_e; 468 469 _FP_DIV_MEAT_##fs(R,X,Y); 470 break; 471 472 case _FP_CLS_COMBINE(FP_CLS_NAN,FP_CLS_NAN): 473 _FP_CHOOSENAN(fs, wc, R, X, Y, '/'); 474 break; 475 476 case _FP_CLS_COMBINE(FP_CLS_NAN,FP_CLS_NORMA 477 case _FP_CLS_COMBINE(FP_CLS_NAN,FP_CLS_INF): 478 case _FP_CLS_COMBINE(FP_CLS_NAN,FP_CLS_ZERO) 479 R##_s = X##_s; 480 _FP_FRAC_COPY_##wc(R, X); 481 R##_c = X##_c; 482 break; 483 484 case _FP_CLS_COMBINE(FP_CLS_NORMAL,FP_CLS_NA 485 case _FP_CLS_COMBINE(FP_CLS_INF,FP_CLS_NAN): 486 case _FP_CLS_COMBINE(FP_CLS_ZERO,FP_CLS_NAN) 487 R##_s = Y##_s; 488 _FP_FRAC_COPY_##wc(R, Y); 489 R##_c = Y##_c; 490 break; 491 492 case _FP_CLS_COMBINE(FP_CLS_NORMAL,FP_CLS_IN 493 case _FP_CLS_COMBINE(FP_CLS_ZERO,FP_CLS_INF) 494 case _FP_CLS_COMBINE(FP_CLS_ZERO,FP_CLS_NORM 495 R##_c = FP_CLS_ZERO; 496 break; 497 498 case _FP_CLS_COMBINE(FP_CLS_NORMAL,FP_CLS_ZE 499 FP_SET_EXCEPTION(FP_EX_DIVZERO); 500 fallthrough; 501 case _FP_CLS_COMBINE(FP_CLS_INF,FP_CLS_ZERO) 502 case _FP_CLS_COMBINE(FP_CLS_INF,FP_CLS_NORMA 503 R##_c = FP_CLS_INF; 504 break; 505 506 case _FP_CLS_COMBINE(FP_CLS_INF,FP_CLS_INF): 507 R##_s = _FP_NANSIGN_##fs; 508 R##_c = FP_CLS_NAN; 509 _FP_FRAC_SET_##wc(R, _FP_NANFRAC_##fs); 510 FP_SET_EXCEPTION(FP_EX_INVALID | FP_EX_INV 511 break; 512 513 case _FP_CLS_COMBINE(FP_CLS_ZERO,FP_CLS_ZERO 514 R##_s = _FP_NANSIGN_##fs; 515 R##_c = FP_CLS_NAN; 516 _FP_FRAC_SET_##wc(R, _FP_NANFRAC_##fs); 517 FP_SET_EXCEPTION(FP_EX_INVALID | FP_EX_INV 518 break; 519 520 default: 521 abort(); 522 } 523 } while (0) 524 525 526 /* 527 * Main differential comparison routine. The 528 * cooked. The return is -1,0,1 for normal va 529 */ 530 531 #define _FP_CMP(fs, wc, ret, X, Y, un) 532 do { 533 /* NANs are unordered */ 534 if ((X##_e == _FP_EXPMAX_##fs && !_FP_FRAC 535 || (Y##_e == _FP_EXPMAX_##fs && !_FP_F 536 { 537 ret = un; 538 } 539 else 540 { 541 int __is_zero_x; 542 int __is_zero_y; 543 544 __is_zero_x = (!X##_e && _FP_FRAC_ZERO 545 __is_zero_y = (!Y##_e && _FP_FRAC_ZERO 546 547 if (__is_zero_x && __is_zero_y) 548 ret = 0; 549 else if (__is_zero_x) 550 ret = Y##_s ? 1 : -1; 551 else if (__is_zero_y) 552 ret = X##_s ? -1 : 1; 553 else if (X##_s != Y##_s) 554 ret = X##_s ? -1 : 1; 555 else if (X##_e > Y##_e) 556 ret = X##_s ? -1 : 1; 557 else if (X##_e < Y##_e) 558 ret = X##_s ? 1 : -1; 559 else if (_FP_FRAC_GT_##wc(X, Y)) 560 ret = X##_s ? -1 : 1; 561 else if (_FP_FRAC_GT_##wc(Y, X)) 562 ret = X##_s ? 1 : -1; 563 else 564 ret = 0; 565 } 566 } while (0) 567 568 569 /* Simplification for strict equality. */ 570 571 #define _FP_CMP_EQ(fs, wc, ret, X, Y) 572 do { 573 /* NANs are unordered */ 574 if ((X##_e == _FP_EXPMAX_##fs && !_FP_FRAC 575 || (Y##_e == _FP_EXPMAX_##fs && !_FP_F 576 { 577 ret = 1; 578 } 579 else 580 { 581 ret = !(X##_e == Y##_e 582 && _FP_FRAC_EQ_##wc(X, Y) 583 && (X##_s == Y##_s || !X##_e & 584 } 585 } while (0) 586 587 /* 588 * Main square root routine. The input value 589 */ 590 591 #define _FP_SQRT(fs, wc, R, X) 592 do { 593 _FP_FRAC_DECL_##wc(T); _FP_FRAC_DECL_##wc( 594 _FP_W_TYPE q; 595 switch (X##_c) 596 { 597 case FP_CLS_NAN: 598 _FP_FRAC_COPY_##wc(R, X); 599 R##_s = X##_s; 600 R##_c = FP_CLS_NAN; 601 break; 602 case FP_CLS_INF: 603 if (X##_s) 604 { 605 R##_s = _FP_NANSIGN_##fs; 606 R##_c = FP_CLS_NAN; /* NAN */ 607 _FP_FRAC_SET_##wc(R, _FP_NANFRAC_# 608 FP_SET_EXCEPTION(FP_EX_INVALID); 609 } 610 else 611 { 612 R##_s = 0; 613 R##_c = FP_CLS_INF; /* sqrt(+inf) 614 } 615 break; 616 case FP_CLS_ZERO: 617 R##_s = X##_s; 618 R##_c = FP_CLS_ZERO; /* sqrt(+-0) = +- 619 break; 620 case FP_CLS_NORMAL: 621 R##_s = 0; 622 if (X##_s) 623 { 624 R##_c = FP_CLS_NAN; /* sNAN */ 625 R##_s = _FP_NANSIGN_##fs; 626 _FP_FRAC_SET_##wc(R, _FP_NANFRAC_# 627 FP_SET_EXCEPTION(FP_EX_INVALID); 628 break; 629 } 630 R##_c = FP_CLS_NORMAL; 631 if (X##_e & 1) 632 _FP_FRAC_SLL_##wc(X, 1); 633 R##_e = X##_e >> 1; 634 _FP_FRAC_SET_##wc(S, _FP_ZEROFRAC_##wc 635 _FP_FRAC_SET_##wc(R, _FP_ZEROFRAC_##wc 636 q = _FP_OVERFLOW_##fs >> 1; 637 _FP_SQRT_MEAT_##wc(R, S, T, X, q); 638 } 639 } while (0) 640 641 /* 642 * Convert from FP to integer 643 */ 644 645 /* RSIGNED can have following values: 646 * 0: the number is required to be 0..(2^rsiz 647 * the result is either 0 or (2^rsize)-1 d 648 * 1: the number is required to be -(2^(rsize 649 * set plus the result is either -(2^(rsiz 650 * on the sign in such case. 651 * 2: the number is required to be -(2^(rsize 652 * set plus the result is truncated to fit 653 * -1: the number is required to be -(2^(rsize 654 * set plus the result is either -(2^(rsiz 655 * on the sign in such case. 656 */ 657 #define _FP_TO_INT(fs, wc, r, X, rsize, rsigne 658 do { 659 switch (X##_c) 660 { 661 case FP_CLS_NORMAL: 662 if (X##_e < 0) 663 { 664 FP_SET_EXCEPTION(FP_EX_INEXACT); 665 fallthrough; 666 case FP_CLS_ZERO: 667 r = 0; 668 } 669 else if (X##_e >= rsize - (rsigned > 0 670 || (!rsigned && X##_s)) 671 { /* overflow */ 672 fallthrough; 673 case FP_CLS_NAN: 674 case FP_CLS_INF: 675 if (rsigned == 2) 676 { 677 if (X##_c != FP_CLS_NORMAL 678 || X##_e >= rsize - 1 + _F 679 r = 0; 680 else 681 { 682 _FP_FRAC_SLL_##wc(X, (X##_ 683 _FP_FRAC_ASSEMBLE_##wc(r, 684 } 685 } 686 else if (rsigned) 687 { 688 r = 1; 689 r <<= rsize - 1; 690 r -= 1 - X##_s; 691 } 692 else 693 { 694 r = 0; 695 if (!X##_s) 696 r = ~r; 697 } 698 FP_SET_EXCEPTION(FP_EX_INVALID); 699 } 700 else 701 { 702 if (_FP_W_TYPE_SIZE*wc < rsize) 703 { 704 _FP_FRAC_ASSEMBLE_##wc(r, X, r 705 r <<= X##_e - _FP_WFRACBITS_## 706 } 707 else 708 { 709 if (X##_e >= _FP_WFRACBITS_##f 710 _FP_FRAC_SLL_##wc(X, (X##_e 711 else if (X##_e < _FP_WFRACBITS 712 { 713 _FP_FRAC_SRS_##wc(X, (_FP_ 714 _FP_WFRA 715 if (_FP_FRAC_LOW_##wc(X) & 716 FP_SET_EXCEPTION(FP_EX_I 717 _FP_FRAC_SRL_##wc(X, 1); 718 } 719 _FP_FRAC_ASSEMBLE_##wc(r, X, r 720 } 721 if (rsigned && X##_s) 722 r = -r; 723 } 724 break; 725 } 726 } while (0) 727 728 #define _FP_TO_INT_ROUND(fs, wc, r, X, rsize, 729 do { 730 r = 0; 731 switch (X##_c) 732 { 733 case FP_CLS_NORMAL: 734 if (X##_e >= _FP_FRACBITS_##fs - 1) 735 { 736 if (X##_e < rsize - 1 + _FP_WFRACB 737 { 738 if (X##_e >= _FP_WFRACBITS_##f 739 { 740 _FP_FRAC_ASSEMBLE_##wc(r, 741 r <<= X##_e - _FP_WFRACBIT 742 } 743 else 744 { 745 _FP_FRAC_SRL_##wc(X, _FP_W 746 + _FP_FR 747 _FP_FRAC_ASSEMBLE_##wc(r, 748 } 749 } 750 } 751 else 752 { 753 int _lz0, _lz1; 754 if (X##_e <= -_FP_WORKBITS - 1) 755 _FP_FRAC_SET_##wc(X, _FP_MINFRAC 756 else 757 _FP_FRAC_SRS_##wc(X, _FP_FRACBIT 758 _FP_WFRACBITS_ 759 _FP_FRAC_CLZ_##wc(_lz0, X); 760 _FP_ROUND(wc, X); 761 _FP_FRAC_CLZ_##wc(_lz1, X); 762 if (_lz1 < _lz0) 763 X##_e++; /* For overflow detecti 764 _FP_FRAC_SRL_##wc(X, _FP_WORKBITS) 765 _FP_FRAC_ASSEMBLE_##wc(r, X, rsize 766 } 767 if (rsigned && X##_s) 768 r = -r; 769 if (X##_e >= rsize - (rsigned > 0 || X 770 || (!rsigned && X##_s)) 771 { /* overflow */ 772 fallthrough; 773 case FP_CLS_NAN: 774 case FP_CLS_INF: 775 if (!rsigned) 776 { 777 r = 0; 778 if (!X##_s) 779 r = ~r; 780 } 781 else if (rsigned != 2) 782 { 783 r = 1; 784 r <<= rsize - 1; 785 r -= 1 - X##_s; 786 } 787 FP_SET_EXCEPTION(FP_EX_INVALID); 788 } 789 break; 790 case FP_CLS_ZERO: 791 break; 792 } 793 } while (0) 794 795 #define _FP_FROM_INT(fs, wc, X, r, rsize, rtyp 796 do { 797 if (r) 798 { 799 unsigned rtype ur_; 800 X##_c = FP_CLS_NORMAL; 801 802 if ((X##_s = (r < 0))) 803 ur_ = (unsigned rtype) -r; 804 else 805 ur_ = (unsigned rtype) r; 806 (void) (((rsize) <= _FP_W_TYPE_SIZE) 807 ? ({ __FP_CLZ(X##_e, ur_); }) 808 : ({ 809 __FP_CLZ_2(X##_e, (_FP_W_ 810 811 })); 812 if (rsize < _FP_W_TYPE_SIZE) 813 X##_e -= (_FP_W_TYPE_SIZE - rs 814 X##_e = rsize - X##_e - 1; 815 816 if (_FP_FRACBITS_##fs < rsize && _FP_W 817 __FP_FRAC_SRS_1(ur_, (X##_e - _FP_WF 818 _FP_FRAC_DISASSEMBLE_##wc(X, ur_, rsiz 819 if ((_FP_WFRACBITS_##fs - X##_e - 1) > 820 _FP_FRAC_SLL_##wc(X, (_FP_WFRACBITS_ 821 } 822 else 823 { 824 X##_c = FP_CLS_ZERO, X##_s = 0; 825 } 826 } while (0) 827 828 829 #define FP_CONV(dfs,sfs,dwc,swc,D,S) 830 do { 831 _FP_FRAC_CONV_##dwc##_##swc(dfs, sfs, D, S 832 D##_e = S##_e; 833 D##_c = S##_c; 834 D##_s = S##_s; 835 } while (0) 836 837 /* 838 * Helper primitives. 839 */ 840 841 /* Count leading zeros in a word. */ 842 843 #ifndef __FP_CLZ 844 #if _FP_W_TYPE_SIZE < 64 845 /* this is just to shut the compiler up about 846 #define __FP_CLZ(r, x) 847 do { 848 _FP_W_TYPE _t = (x); 849 r = _FP_W_TYPE_SIZE - 1; 850 if (_t > 0xffff) r -= 16; 851 if (_t > 0xffff) _t >>= 16; 852 if (_t > 0xff) r -= 8; 853 if (_t > 0xff) _t >>= 8; 854 if (_t & 0xf0) r -= 4; 855 if (_t & 0xf0) _t >>= 4; 856 if (_t & 0xc) r -= 2; 857 if (_t & 0xc) _t >>= 2; 858 if (_t & 0x2) r -= 1; 859 } while (0) 860 #else /* not _FP_W_TYPE_SIZE < 64 */ 861 #define __FP_CLZ(r, x) 862 do { 863 _FP_W_TYPE _t = (x); 864 r = _FP_W_TYPE_SIZE - 1; 865 if (_t > 0xffffffff) r -= 32; 866 if (_t > 0xffffffff) _t >>= 32; 867 if (_t > 0xffff) r -= 16; 868 if (_t > 0xffff) _t >>= 16; 869 if (_t > 0xff) r -= 8; 870 if (_t > 0xff) _t >>= 8; 871 if (_t & 0xf0) r -= 4; 872 if (_t & 0xf0) _t >>= 4; 873 if (_t & 0xc) r -= 2; 874 if (_t & 0xc) _t >>= 2; 875 if (_t & 0x2) r -= 1; 876 } while (0) 877 #endif /* not _FP_W_TYPE_SIZE < 64 */ 878 #endif /* ndef __FP_CLZ */ 879 880 #define _FP_DIV_HELP_imm(q, r, n, d) 881 do { 882 q = n / d, r = n % d; 883 } while (0) 884 885 #endif /* __MATH_EMU_OP_COMMON_H__ */ 886
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.