1 /* 1 /* 2 * Copyright (c) 2016-2017, Mellanox Technolog 2 * Copyright (c) 2016-2017, Mellanox Technologies. All rights reserved. 3 * Copyright (c) 2016-2017, Dave Watson <davej 3 * Copyright (c) 2016-2017, Dave Watson <davejwatson@fb.com>. All rights reserved. 4 * 4 * 5 * This software is available to you under a c 5 * This software is available to you under a choice of one of two 6 * licenses. You may choose to be licensed un 6 * licenses. You may choose to be licensed under the terms of the GNU 7 * General Public License (GPL) Version 2, ava 7 * General Public License (GPL) Version 2, available from the file 8 * COPYING in the main directory of this sourc 8 * COPYING in the main directory of this source tree, or the 9 * OpenIB.org BSD license below: 9 * OpenIB.org BSD license below: 10 * 10 * 11 * Redistribution and use in source and bi 11 * Redistribution and use in source and binary forms, with or 12 * without modification, are permitted pro 12 * without modification, are permitted provided that the following 13 * conditions are met: 13 * conditions are met: 14 * 14 * 15 * - Redistributions of source code must 15 * - Redistributions of source code must retain the above 16 * copyright notice, this list of condi 16 * copyright notice, this list of conditions and the following 17 * disclaimer. 17 * disclaimer. 18 * 18 * 19 * - Redistributions in binary form must 19 * - Redistributions in binary form must reproduce the above 20 * copyright notice, this list of condi 20 * copyright notice, this list of conditions and the following 21 * disclaimer in the documentation and/ 21 * disclaimer in the documentation and/or other materials 22 * provided with the distribution. 22 * provided with the distribution. 23 * 23 * 24 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT W 24 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 25 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMIT 25 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 26 * MERCHANTABILITY, FITNESS FOR A PARTICULAR P 26 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 27 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTH 27 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 28 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER L 28 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 29 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARIS 29 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 30 * CONNECTION WITH THE SOFTWARE OR THE USE OR 30 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 31 * SOFTWARE. 31 * SOFTWARE. 32 */ 32 */ 33 33 34 #ifndef _TLS_OFFLOAD_H 34 #ifndef _TLS_OFFLOAD_H 35 #define _TLS_OFFLOAD_H 35 #define _TLS_OFFLOAD_H 36 36 37 #include <linux/types.h> 37 #include <linux/types.h> 38 #include <asm/byteorder.h> 38 #include <asm/byteorder.h> 39 #include <linux/crypto.h> 39 #include <linux/crypto.h> 40 #include <linux/socket.h> 40 #include <linux/socket.h> 41 #include <linux/tcp.h> 41 #include <linux/tcp.h> >> 42 #include <linux/skmsg.h> 42 #include <linux/mutex.h> 43 #include <linux/mutex.h> 43 #include <linux/netdevice.h> 44 #include <linux/netdevice.h> 44 #include <linux/rcupdate.h> 45 #include <linux/rcupdate.h> 45 46 46 #include <net/net_namespace.h> 47 #include <net/net_namespace.h> 47 #include <net/tcp.h> 48 #include <net/tcp.h> 48 #include <net/strparser.h> 49 #include <net/strparser.h> 49 #include <crypto/aead.h> 50 #include <crypto/aead.h> 50 #include <uapi/linux/tls.h> 51 #include <uapi/linux/tls.h> 51 52 52 struct tls_rec; << 53 53 54 /* Maximum data size carried in a TLS record * 54 /* Maximum data size carried in a TLS record */ 55 #define TLS_MAX_PAYLOAD_SIZE ((size 55 #define TLS_MAX_PAYLOAD_SIZE ((size_t)1 << 14) 56 56 57 #define TLS_HEADER_SIZE 5 57 #define TLS_HEADER_SIZE 5 58 #define TLS_NONCE_OFFSET TLS_HE 58 #define TLS_NONCE_OFFSET TLS_HEADER_SIZE 59 59 60 #define TLS_CRYPTO_INFO_READY(info) ((info 60 #define TLS_CRYPTO_INFO_READY(info) ((info)->cipher_type) 61 61 >> 62 #define TLS_RECORD_TYPE_DATA 0x17 >> 63 62 #define TLS_AAD_SPACE_SIZE 13 64 #define TLS_AAD_SPACE_SIZE 13 63 65 64 #define TLS_MAX_IV_SIZE 16 !! 66 #define MAX_IV_SIZE 16 65 #define TLS_MAX_SALT_SIZE 4 << 66 #define TLS_TAG_SIZE 16 << 67 #define TLS_MAX_REC_SEQ_SIZE 8 67 #define TLS_MAX_REC_SEQ_SIZE 8 68 #define TLS_MAX_AAD_SIZE TLS_AA << 69 68 70 /* For CCM mode, the full 16-bytes of IV is ma !! 69 /* For AES-CCM, the full 16-bytes of IV is made of '4' fields of given sizes. 71 * 70 * 72 * IV[16] = b0[1] || implicit nonce[4] || expl 71 * IV[16] = b0[1] || implicit nonce[4] || explicit nonce[8] || length[3] 73 * 72 * 74 * The field 'length' is encoded in field 'b0' 73 * The field 'length' is encoded in field 'b0' as '(length width - 1)'. 75 * Hence b0 contains (3 - 1) = 2. 74 * Hence b0 contains (3 - 1) = 2. 76 */ 75 */ 77 #define TLS_AES_CCM_IV_B0_BYTE 2 76 #define TLS_AES_CCM_IV_B0_BYTE 2 78 #define TLS_SM4_CCM_IV_B0_BYTE 2 !! 77 >> 78 #define __TLS_INC_STATS(net, field) \ >> 79 __SNMP_INC_STATS((net)->mib.tls_statistics, field) >> 80 #define TLS_INC_STATS(net, field) \ >> 81 SNMP_INC_STATS((net)->mib.tls_statistics, field) >> 82 #define __TLS_DEC_STATS(net, field) \ >> 83 __SNMP_DEC_STATS((net)->mib.tls_statistics, field) >> 84 #define TLS_DEC_STATS(net, field) \ >> 85 SNMP_DEC_STATS((net)->mib.tls_statistics, field) 79 86 80 enum { 87 enum { 81 TLS_BASE, 88 TLS_BASE, 82 TLS_SW, 89 TLS_SW, 83 TLS_HW, 90 TLS_HW, 84 TLS_HW_RECORD, 91 TLS_HW_RECORD, 85 TLS_NUM_CONFIG, 92 TLS_NUM_CONFIG, 86 }; 93 }; 87 94 >> 95 /* TLS records are maintained in 'struct tls_rec'. It stores the memory pages >> 96 * allocated or mapped for each TLS record. After encryption, the records are >> 97 * stores in a linked list. >> 98 */ >> 99 struct tls_rec { >> 100 struct list_head list; >> 101 int tx_ready; >> 102 int tx_flags; >> 103 >> 104 struct sk_msg msg_plaintext; >> 105 struct sk_msg msg_encrypted; >> 106 >> 107 /* AAD | msg_plaintext.sg.data | sg_tag */ >> 108 struct scatterlist sg_aead_in[2]; >> 109 /* AAD | msg_encrypted.sg.data (data contains overhead for hdr & iv & tag) */ >> 110 struct scatterlist sg_aead_out[2]; >> 111 >> 112 char content_type; >> 113 struct scatterlist sg_content_type; >> 114 >> 115 char aad_space[TLS_AAD_SPACE_SIZE]; >> 116 u8 iv_data[MAX_IV_SIZE]; >> 117 struct aead_request aead_req; >> 118 u8 aead_req_ctx[]; >> 119 }; >> 120 >> 121 struct tls_msg { >> 122 struct strp_msg rxm; >> 123 u8 control; >> 124 }; >> 125 88 struct tx_work { 126 struct tx_work { 89 struct delayed_work work; 127 struct delayed_work work; 90 struct sock *sk; 128 struct sock *sk; 91 }; 129 }; 92 130 93 struct tls_sw_context_tx { 131 struct tls_sw_context_tx { 94 struct crypto_aead *aead_send; 132 struct crypto_aead *aead_send; 95 struct crypto_wait async_wait; 133 struct crypto_wait async_wait; 96 struct tx_work tx_work; 134 struct tx_work tx_work; 97 struct tls_rec *open_rec; 135 struct tls_rec *open_rec; 98 struct list_head tx_list; 136 struct list_head tx_list; 99 atomic_t encrypt_pending; 137 atomic_t encrypt_pending; >> 138 /* protect crypto_wait with encrypt_pending */ >> 139 spinlock_t encrypt_compl_lock; >> 140 int async_notify; 100 u8 async_capable:1; 141 u8 async_capable:1; 101 142 102 #define BIT_TX_SCHEDULED 0 143 #define BIT_TX_SCHEDULED 0 103 #define BIT_TX_CLOSING 1 144 #define BIT_TX_CLOSING 1 104 unsigned long tx_bitmask; 145 unsigned long tx_bitmask; 105 }; 146 }; 106 147 107 struct tls_strparser { << 108 struct sock *sk; << 109 << 110 u32 mark : 8; << 111 u32 stopped : 1; << 112 u32 copy_mode : 1; << 113 u32 mixed_decrypted : 1; << 114 << 115 bool msg_ready; << 116 << 117 struct strp_msg stm; << 118 << 119 struct sk_buff *anchor; << 120 struct work_struct work; << 121 }; << 122 << 123 struct tls_sw_context_rx { 148 struct tls_sw_context_rx { 124 struct crypto_aead *aead_recv; 149 struct crypto_aead *aead_recv; 125 struct crypto_wait async_wait; 150 struct crypto_wait async_wait; >> 151 struct strparser strp; 126 struct sk_buff_head rx_list; /* lis 152 struct sk_buff_head rx_list; /* list of decrypted 'data' records */ 127 void (*saved_data_ready)(struct sock * 153 void (*saved_data_ready)(struct sock *sk); 128 154 129 u8 reader_present; !! 155 struct sk_buff *recv_pkt; >> 156 u8 control; 130 u8 async_capable:1; 157 u8 async_capable:1; 131 u8 zc_capable:1; !! 158 u8 decrypted:1; 132 u8 reader_contended:1; << 133 << 134 struct tls_strparser strp; << 135 << 136 atomic_t decrypt_pending; 159 atomic_t decrypt_pending; 137 struct sk_buff_head async_hold; !! 160 /* protect crypto_wait with decrypt_pending*/ 138 struct wait_queue_head wq; !! 161 spinlock_t decrypt_compl_lock; >> 162 bool async_notify; 139 }; 163 }; 140 164 141 struct tls_record_info { 165 struct tls_record_info { 142 struct list_head list; 166 struct list_head list; 143 u32 end_seq; 167 u32 end_seq; 144 int len; 168 int len; 145 int num_frags; 169 int num_frags; 146 skb_frag_t frags[MAX_SKB_FRAGS]; 170 skb_frag_t frags[MAX_SKB_FRAGS]; 147 }; 171 }; 148 172 149 #define TLS_DRIVER_STATE_SIZE_TX 16 << 150 struct tls_offload_context_tx { 173 struct tls_offload_context_tx { 151 struct crypto_aead *aead_send; 174 struct crypto_aead *aead_send; 152 spinlock_t lock; /* protects re 175 spinlock_t lock; /* protects records list */ 153 struct list_head records_list; 176 struct list_head records_list; 154 struct tls_record_info *open_record; 177 struct tls_record_info *open_record; 155 struct tls_record_info *retransmit_hin 178 struct tls_record_info *retransmit_hint; 156 u64 hint_record_sn; 179 u64 hint_record_sn; 157 u64 unacked_record_sn; 180 u64 unacked_record_sn; 158 181 159 struct scatterlist sg_tx_data[MAX_SKB_ 182 struct scatterlist sg_tx_data[MAX_SKB_FRAGS]; 160 void (*sk_destruct)(struct sock *sk); 183 void (*sk_destruct)(struct sock *sk); 161 struct work_struct destruct_work; !! 184 u8 driver_state[] __aligned(8); 162 struct tls_context *ctx; << 163 /* The TLS layer reserves room for dri 185 /* The TLS layer reserves room for driver specific state 164 * Currently the belief is that there 186 * Currently the belief is that there is not enough 165 * driver specific state to justify an 187 * driver specific state to justify another layer of indirection 166 */ 188 */ 167 u8 driver_state[TLS_DRIVER_STATE_SIZE_ !! 189 #define TLS_DRIVER_STATE_SIZE_TX 16 168 }; 190 }; 169 191 >> 192 #define TLS_OFFLOAD_CONTEXT_SIZE_TX \ >> 193 (sizeof(struct tls_offload_context_tx) + TLS_DRIVER_STATE_SIZE_TX) >> 194 170 enum tls_context_flags { 195 enum tls_context_flags { 171 /* tls_device_down was called after th !! 196 TLS_RX_SYNC_RUNNING = 0, 172 * was released, and kTLS works in sof << 173 * still TLS_HW (needed for transition << 174 */ << 175 TLS_RX_DEV_DEGRADED = 0, << 176 /* Unlike RX where resync is driven en 197 /* Unlike RX where resync is driven entirely by the core in TX only 177 * the driver knows when things went o 198 * the driver knows when things went out of sync, so we need the flag 178 * to be atomic. 199 * to be atomic. 179 */ 200 */ 180 TLS_TX_SYNC_SCHED = 1, 201 TLS_TX_SYNC_SCHED = 1, 181 /* tls_dev_del was called for the RX s << 182 * but tls_ctx->netdev might still be << 183 * resources might not be released yet << 184 * tls_dev_del call in tls_device_down << 185 */ << 186 TLS_RX_DEV_CLOSED = 2, << 187 }; 202 }; 188 203 189 struct cipher_context { 204 struct cipher_context { 190 char iv[TLS_MAX_IV_SIZE + TLS_MAX_SALT !! 205 char *iv; 191 char rec_seq[TLS_MAX_REC_SEQ_SIZE]; !! 206 char *rec_seq; 192 }; 207 }; 193 208 194 union tls_crypto_context { 209 union tls_crypto_context { 195 struct tls_crypto_info info; 210 struct tls_crypto_info info; 196 union { 211 union { 197 struct tls12_crypto_info_aes_g 212 struct tls12_crypto_info_aes_gcm_128 aes_gcm_128; 198 struct tls12_crypto_info_aes_g 213 struct tls12_crypto_info_aes_gcm_256 aes_gcm_256; 199 struct tls12_crypto_info_chach << 200 struct tls12_crypto_info_sm4_g << 201 struct tls12_crypto_info_sm4_c << 202 }; 214 }; 203 }; 215 }; 204 216 205 struct tls_prot_info { 217 struct tls_prot_info { 206 u16 version; 218 u16 version; 207 u16 cipher_type; 219 u16 cipher_type; 208 u16 prepend_size; 220 u16 prepend_size; 209 u16 tag_size; 221 u16 tag_size; 210 u16 overhead_size; 222 u16 overhead_size; 211 u16 iv_size; 223 u16 iv_size; 212 u16 salt_size; 224 u16 salt_size; 213 u16 rec_seq_size; 225 u16 rec_seq_size; 214 u16 aad_size; 226 u16 aad_size; 215 u16 tail_size; 227 u16 tail_size; 216 }; 228 }; 217 229 218 struct tls_context { 230 struct tls_context { 219 /* read-only cache line */ 231 /* read-only cache line */ 220 struct tls_prot_info prot_info; 232 struct tls_prot_info prot_info; 221 233 222 u8 tx_conf:3; 234 u8 tx_conf:3; 223 u8 rx_conf:3; 235 u8 rx_conf:3; 224 u8 zerocopy_sendfile:1; << 225 u8 rx_no_pad:1; << 226 236 227 int (*push_pending_record)(struct sock 237 int (*push_pending_record)(struct sock *sk, int flags); 228 void (*sk_write_space)(struct sock *sk 238 void (*sk_write_space)(struct sock *sk); 229 239 230 void *priv_ctx_tx; 240 void *priv_ctx_tx; 231 void *priv_ctx_rx; 241 void *priv_ctx_rx; 232 242 233 struct net_device __rcu *netdev; !! 243 struct net_device *netdev; 234 244 235 /* rw cache line */ 245 /* rw cache line */ 236 struct cipher_context tx; 246 struct cipher_context tx; 237 struct cipher_context rx; 247 struct cipher_context rx; 238 248 239 struct scatterlist *partially_sent_rec 249 struct scatterlist *partially_sent_record; 240 u16 partially_sent_offset; 250 u16 partially_sent_offset; 241 251 242 bool splicing_pages; !! 252 bool in_tcp_sendpages; 243 bool pending_open_record_frags; 253 bool pending_open_record_frags; 244 254 245 struct mutex tx_lock; /* protects part 255 struct mutex tx_lock; /* protects partially_sent_* fields and 246 * per-type TX f 256 * per-type TX fields 247 */ 257 */ 248 unsigned long flags; 258 unsigned long flags; 249 259 250 /* cache cold stuff */ 260 /* cache cold stuff */ 251 struct proto *sk_proto; 261 struct proto *sk_proto; 252 struct sock *sk; << 253 262 254 void (*sk_destruct)(struct sock *sk); 263 void (*sk_destruct)(struct sock *sk); 255 264 256 union tls_crypto_context crypto_send; 265 union tls_crypto_context crypto_send; 257 union tls_crypto_context crypto_recv; 266 union tls_crypto_context crypto_recv; 258 267 259 struct list_head list; 268 struct list_head list; 260 refcount_t refcount; 269 refcount_t refcount; 261 struct rcu_head rcu; 270 struct rcu_head rcu; 262 }; 271 }; 263 272 264 enum tls_offload_ctx_dir { 273 enum tls_offload_ctx_dir { 265 TLS_OFFLOAD_CTX_DIR_RX, 274 TLS_OFFLOAD_CTX_DIR_RX, 266 TLS_OFFLOAD_CTX_DIR_TX, 275 TLS_OFFLOAD_CTX_DIR_TX, 267 }; 276 }; 268 277 269 struct tlsdev_ops { 278 struct tlsdev_ops { 270 int (*tls_dev_add)(struct net_device * 279 int (*tls_dev_add)(struct net_device *netdev, struct sock *sk, 271 enum tls_offload_ct 280 enum tls_offload_ctx_dir direction, 272 struct tls_crypto_i 281 struct tls_crypto_info *crypto_info, 273 u32 start_offload_t 282 u32 start_offload_tcp_sn); 274 void (*tls_dev_del)(struct net_device 283 void (*tls_dev_del)(struct net_device *netdev, 275 struct tls_context 284 struct tls_context *ctx, 276 enum tls_offload_c 285 enum tls_offload_ctx_dir direction); 277 int (*tls_dev_resync)(struct net_devic 286 int (*tls_dev_resync)(struct net_device *netdev, 278 struct sock *sk, 287 struct sock *sk, u32 seq, u8 *rcd_sn, 279 enum tls_offload 288 enum tls_offload_ctx_dir direction); 280 }; 289 }; 281 290 282 enum tls_offload_sync_type { 291 enum tls_offload_sync_type { 283 TLS_OFFLOAD_SYNC_TYPE_DRIVER_REQ = 0, 292 TLS_OFFLOAD_SYNC_TYPE_DRIVER_REQ = 0, 284 TLS_OFFLOAD_SYNC_TYPE_CORE_NEXT_HINT = 293 TLS_OFFLOAD_SYNC_TYPE_CORE_NEXT_HINT = 1, 285 TLS_OFFLOAD_SYNC_TYPE_DRIVER_REQ_ASYNC << 286 }; 294 }; 287 295 288 #define TLS_DEVICE_RESYNC_NH_START_IVAL 296 #define TLS_DEVICE_RESYNC_NH_START_IVAL 2 289 #define TLS_DEVICE_RESYNC_NH_MAX_IVAL 297 #define TLS_DEVICE_RESYNC_NH_MAX_IVAL 128 290 298 291 #define TLS_DEVICE_RESYNC_ASYNC_LOGMAX << 292 struct tls_offload_resync_async { << 293 atomic64_t req; << 294 u16 loglen; << 295 u16 rcd_delta; << 296 u32 log[TLS_DEVICE_RESYNC_ASYNC_LOGMAX << 297 }; << 298 << 299 #define TLS_DRIVER_STATE_SIZE_RX 8 << 300 struct tls_offload_context_rx { 299 struct tls_offload_context_rx { 301 /* sw must be the first member of tls_ 300 /* sw must be the first member of tls_offload_context_rx */ 302 struct tls_sw_context_rx sw; 301 struct tls_sw_context_rx sw; 303 enum tls_offload_sync_type resync_type 302 enum tls_offload_sync_type resync_type; 304 /* this member is set regardless of re 303 /* this member is set regardless of resync_type, to avoid branches */ 305 u8 resync_nh_reset:1; 304 u8 resync_nh_reset:1; 306 /* CORE_NEXT_HINT-only member, but use 305 /* CORE_NEXT_HINT-only member, but use the hole here */ 307 u8 resync_nh_do_now:1; 306 u8 resync_nh_do_now:1; 308 union { 307 union { 309 /* TLS_OFFLOAD_SYNC_TYPE_DRIVE 308 /* TLS_OFFLOAD_SYNC_TYPE_DRIVER_REQ */ 310 struct { 309 struct { 311 atomic64_t resync_req; 310 atomic64_t resync_req; 312 }; 311 }; 313 /* TLS_OFFLOAD_SYNC_TYPE_CORE_ 312 /* TLS_OFFLOAD_SYNC_TYPE_CORE_NEXT_HINT */ 314 struct { 313 struct { 315 u32 decrypted_failed; 314 u32 decrypted_failed; 316 u32 decrypted_tgt; 315 u32 decrypted_tgt; 317 } resync_nh; 316 } resync_nh; 318 /* TLS_OFFLOAD_SYNC_TYPE_DRIVE << 319 struct { << 320 struct tls_offload_res << 321 }; << 322 }; 317 }; >> 318 u8 driver_state[] __aligned(8); 323 /* The TLS layer reserves room for dri 319 /* The TLS layer reserves room for driver specific state 324 * Currently the belief is that there 320 * Currently the belief is that there is not enough 325 * driver specific state to justify an 321 * driver specific state to justify another layer of indirection 326 */ 322 */ 327 u8 driver_state[TLS_DRIVER_STATE_SIZE_ !! 323 #define TLS_DRIVER_STATE_SIZE_RX 8 328 }; 324 }; 329 325 >> 326 #define TLS_OFFLOAD_CONTEXT_SIZE_RX \ >> 327 (sizeof(struct tls_offload_context_rx) + TLS_DRIVER_STATE_SIZE_RX) >> 328 >> 329 struct tls_context *tls_ctx_create(struct sock *sk); >> 330 void tls_ctx_free(struct sock *sk, struct tls_context *ctx); >> 331 void update_sk_prot(struct sock *sk, struct tls_context *ctx); >> 332 >> 333 int wait_on_pending_writer(struct sock *sk, long *timeo); >> 334 int tls_sk_query(struct sock *sk, int optname, char __user *optval, >> 335 int __user *optlen); >> 336 int tls_sk_attach(struct sock *sk, int optname, char __user *optval, >> 337 unsigned int optlen); >> 338 >> 339 int tls_set_sw_offload(struct sock *sk, struct tls_context *ctx, int tx); >> 340 void tls_sw_strparser_arm(struct sock *sk, struct tls_context *ctx); >> 341 void tls_sw_strparser_done(struct tls_context *tls_ctx); >> 342 int tls_sw_sendmsg(struct sock *sk, struct msghdr *msg, size_t size); >> 343 int tls_sw_sendpage_locked(struct sock *sk, struct page *page, >> 344 int offset, size_t size, int flags); >> 345 int tls_sw_sendpage(struct sock *sk, struct page *page, >> 346 int offset, size_t size, int flags); >> 347 void tls_sw_cancel_work_tx(struct tls_context *tls_ctx); >> 348 void tls_sw_release_resources_tx(struct sock *sk); >> 349 void tls_sw_free_ctx_tx(struct tls_context *tls_ctx); >> 350 void tls_sw_free_resources_rx(struct sock *sk); >> 351 void tls_sw_release_resources_rx(struct sock *sk); >> 352 void tls_sw_free_ctx_rx(struct tls_context *tls_ctx); >> 353 int tls_sw_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, >> 354 int nonblock, int flags, int *addr_len); >> 355 bool tls_sw_stream_read(const struct sock *sk); >> 356 ssize_t tls_sw_splice_read(struct socket *sock, loff_t *ppos, >> 357 struct pipe_inode_info *pipe, >> 358 size_t len, unsigned int flags); >> 359 >> 360 int tls_device_sendmsg(struct sock *sk, struct msghdr *msg, size_t size); >> 361 int tls_device_sendpage(struct sock *sk, struct page *page, >> 362 int offset, size_t size, int flags); >> 363 int tls_tx_records(struct sock *sk, int flags); >> 364 330 struct tls_record_info *tls_get_record(struct 365 struct tls_record_info *tls_get_record(struct tls_offload_context_tx *context, 331 u32 seq 366 u32 seq, u64 *p_record_sn); 332 367 333 static inline bool tls_record_is_start_marker( 368 static inline bool tls_record_is_start_marker(struct tls_record_info *rec) 334 { 369 { 335 return rec->len == 0; 370 return rec->len == 0; 336 } 371 } 337 372 338 static inline u32 tls_record_start_seq(struct 373 static inline u32 tls_record_start_seq(struct tls_record_info *rec) 339 { 374 { 340 return rec->end_seq - rec->len; 375 return rec->end_seq - rec->len; 341 } 376 } 342 377 >> 378 int tls_push_sg(struct sock *sk, struct tls_context *ctx, >> 379 struct scatterlist *sg, u16 first_offset, >> 380 int flags); >> 381 int tls_push_partial_record(struct sock *sk, struct tls_context *ctx, >> 382 int flags); >> 383 void tls_free_partial_record(struct sock *sk, struct tls_context *ctx); >> 384 >> 385 static inline struct tls_msg *tls_msg(struct sk_buff *skb) >> 386 { >> 387 return (struct tls_msg *)strp_msg(skb); >> 388 } >> 389 >> 390 static inline bool tls_is_partially_sent_record(struct tls_context *ctx) >> 391 { >> 392 return !!ctx->partially_sent_record; >> 393 } >> 394 >> 395 static inline bool tls_is_pending_open_record(struct tls_context *tls_ctx) >> 396 { >> 397 return tls_ctx->pending_open_record_frags; >> 398 } >> 399 >> 400 static inline bool is_tx_ready(struct tls_sw_context_tx *ctx) >> 401 { >> 402 struct tls_rec *rec; >> 403 >> 404 rec = list_first_entry(&ctx->tx_list, struct tls_rec, list); >> 405 if (!rec) >> 406 return false; >> 407 >> 408 return READ_ONCE(rec->tx_ready); >> 409 } >> 410 >> 411 static inline u16 tls_user_config(struct tls_context *ctx, bool tx) >> 412 { >> 413 u16 config = tx ? ctx->tx_conf : ctx->rx_conf; >> 414 >> 415 switch (config) { >> 416 case TLS_BASE: >> 417 return TLS_CONF_BASE; >> 418 case TLS_SW: >> 419 return TLS_CONF_SW; >> 420 case TLS_HW: >> 421 return TLS_CONF_HW; >> 422 case TLS_HW_RECORD: >> 423 return TLS_CONF_HW_RECORD; >> 424 } >> 425 return 0; >> 426 } >> 427 343 struct sk_buff * 428 struct sk_buff * 344 tls_validate_xmit_skb(struct sock *sk, struct 429 tls_validate_xmit_skb(struct sock *sk, struct net_device *dev, 345 struct sk_buff *skb); 430 struct sk_buff *skb); 346 struct sk_buff * << 347 tls_validate_xmit_skb_sw(struct sock *sk, stru << 348 struct sk_buff *skb); << 349 431 350 static inline bool tls_is_skb_tx_device_offloa !! 432 static inline bool tls_is_sk_tx_device_offloaded(struct sock *sk) 351 { 433 { 352 #ifdef CONFIG_TLS_DEVICE !! 434 #ifdef CONFIG_SOCK_VALIDATE_XMIT 353 struct sock *sk = skb->sk; !! 435 return sk_fullsock(sk) && 354 << 355 return sk && sk_fullsock(sk) && << 356 (smp_load_acquire(&sk->sk_valid 436 (smp_load_acquire(&sk->sk_validate_xmit_skb) == 357 &tls_validate_xmit_skb); 437 &tls_validate_xmit_skb); 358 #else 438 #else 359 return false; 439 return false; 360 #endif 440 #endif 361 } 441 } 362 442 >> 443 static inline void tls_err_abort(struct sock *sk, int err) >> 444 { >> 445 sk->sk_err = err; >> 446 sk->sk_error_report(sk); >> 447 } >> 448 >> 449 static inline bool tls_bigint_increment(unsigned char *seq, int len) >> 450 { >> 451 int i; >> 452 >> 453 for (i = len - 1; i >= 0; i--) { >> 454 ++seq[i]; >> 455 if (seq[i] != 0) >> 456 break; >> 457 } >> 458 >> 459 return (i == -1); >> 460 } >> 461 363 static inline struct tls_context *tls_get_ctx( 462 static inline struct tls_context *tls_get_ctx(const struct sock *sk) 364 { 463 { 365 const struct inet_connection_sock *ics !! 464 struct inet_connection_sock *icsk = inet_csk(sk); 366 465 367 /* Use RCU on icsk_ulp_data only for s 466 /* Use RCU on icsk_ulp_data only for sock diag code, 368 * TLS data path doesn't need rcu_dere 467 * TLS data path doesn't need rcu_dereference(). 369 */ 468 */ 370 return (__force void *)icsk->icsk_ulp_ 469 return (__force void *)icsk->icsk_ulp_data; 371 } 470 } 372 471 >> 472 static inline void tls_advance_record_sn(struct sock *sk, >> 473 struct tls_prot_info *prot, >> 474 struct cipher_context *ctx) >> 475 { >> 476 if (tls_bigint_increment(ctx->rec_seq, prot->rec_seq_size)) >> 477 tls_err_abort(sk, EBADMSG); >> 478 >> 479 if (prot->version != TLS_1_3_VERSION) >> 480 tls_bigint_increment(ctx->iv + TLS_CIPHER_AES_GCM_128_SALT_SIZE, >> 481 prot->iv_size); >> 482 } >> 483 >> 484 static inline void tls_fill_prepend(struct tls_context *ctx, >> 485 char *buf, >> 486 size_t plaintext_len, >> 487 unsigned char record_type, >> 488 int version) >> 489 { >> 490 struct tls_prot_info *prot = &ctx->prot_info; >> 491 size_t pkt_len, iv_size = prot->iv_size; >> 492 >> 493 pkt_len = plaintext_len + prot->tag_size; >> 494 if (version != TLS_1_3_VERSION) { >> 495 pkt_len += iv_size; >> 496 >> 497 memcpy(buf + TLS_NONCE_OFFSET, >> 498 ctx->tx.iv + TLS_CIPHER_AES_GCM_128_SALT_SIZE, iv_size); >> 499 } >> 500 >> 501 /* we cover nonce explicit here as well, so buf should be of >> 502 * size KTLS_DTLS_HEADER_SIZE + KTLS_DTLS_NONCE_EXPLICIT_SIZE >> 503 */ >> 504 buf[0] = version == TLS_1_3_VERSION ? >> 505 TLS_RECORD_TYPE_DATA : record_type; >> 506 /* Note that VERSION must be TLS_1_2 for both TLS1.2 and TLS1.3 */ >> 507 buf[1] = TLS_1_2_VERSION_MINOR; >> 508 buf[2] = TLS_1_2_VERSION_MAJOR; >> 509 /* we can use IV for nonce explicit according to spec */ >> 510 buf[3] = pkt_len >> 8; >> 511 buf[4] = pkt_len & 0xFF; >> 512 } >> 513 >> 514 static inline void tls_make_aad(char *buf, >> 515 size_t size, >> 516 char *record_sequence, >> 517 int record_sequence_size, >> 518 unsigned char record_type, >> 519 int version) >> 520 { >> 521 if (version != TLS_1_3_VERSION) { >> 522 memcpy(buf, record_sequence, record_sequence_size); >> 523 buf += 8; >> 524 } else { >> 525 size += TLS_CIPHER_AES_GCM_128_TAG_SIZE; >> 526 } >> 527 >> 528 buf[0] = version == TLS_1_3_VERSION ? >> 529 TLS_RECORD_TYPE_DATA : record_type; >> 530 buf[1] = TLS_1_2_VERSION_MAJOR; >> 531 buf[2] = TLS_1_2_VERSION_MINOR; >> 532 buf[3] = size >> 8; >> 533 buf[4] = size & 0xFF; >> 534 } >> 535 >> 536 static inline void xor_iv_with_seq(int version, char *iv, char *seq) >> 537 { >> 538 int i; >> 539 >> 540 if (version == TLS_1_3_VERSION) { >> 541 for (i = 0; i < 8; i++) >> 542 iv[i + 4] ^= seq[i]; >> 543 } >> 544 } >> 545 >> 546 373 static inline struct tls_sw_context_rx *tls_sw 547 static inline struct tls_sw_context_rx *tls_sw_ctx_rx( 374 const struct tls_context *tls_ 548 const struct tls_context *tls_ctx) 375 { 549 { 376 return (struct tls_sw_context_rx *)tls 550 return (struct tls_sw_context_rx *)tls_ctx->priv_ctx_rx; 377 } 551 } 378 552 379 static inline struct tls_sw_context_tx *tls_sw 553 static inline struct tls_sw_context_tx *tls_sw_ctx_tx( 380 const struct tls_context *tls_ 554 const struct tls_context *tls_ctx) 381 { 555 { 382 return (struct tls_sw_context_tx *)tls 556 return (struct tls_sw_context_tx *)tls_ctx->priv_ctx_tx; 383 } 557 } 384 558 385 static inline struct tls_offload_context_tx * 559 static inline struct tls_offload_context_tx * 386 tls_offload_ctx_tx(const struct tls_context *t 560 tls_offload_ctx_tx(const struct tls_context *tls_ctx) 387 { 561 { 388 return (struct tls_offload_context_tx 562 return (struct tls_offload_context_tx *)tls_ctx->priv_ctx_tx; 389 } 563 } 390 564 391 static inline bool tls_sw_has_ctx_tx(const str 565 static inline bool tls_sw_has_ctx_tx(const struct sock *sk) 392 { 566 { 393 struct tls_context *ctx = tls_get_ctx( 567 struct tls_context *ctx = tls_get_ctx(sk); 394 568 395 if (!ctx) 569 if (!ctx) 396 return false; 570 return false; 397 return !!tls_sw_ctx_tx(ctx); 571 return !!tls_sw_ctx_tx(ctx); 398 } 572 } 399 573 400 static inline bool tls_sw_has_ctx_rx(const str 574 static inline bool tls_sw_has_ctx_rx(const struct sock *sk) 401 { 575 { 402 struct tls_context *ctx = tls_get_ctx( 576 struct tls_context *ctx = tls_get_ctx(sk); 403 577 404 if (!ctx) 578 if (!ctx) 405 return false; 579 return false; 406 return !!tls_sw_ctx_rx(ctx); 580 return !!tls_sw_ctx_rx(ctx); 407 } 581 } 408 582 >> 583 void tls_sw_write_space(struct sock *sk, struct tls_context *ctx); >> 584 void tls_device_write_space(struct sock *sk, struct tls_context *ctx); >> 585 409 static inline struct tls_offload_context_rx * 586 static inline struct tls_offload_context_rx * 410 tls_offload_ctx_rx(const struct tls_context *t 587 tls_offload_ctx_rx(const struct tls_context *tls_ctx) 411 { 588 { 412 return (struct tls_offload_context_rx 589 return (struct tls_offload_context_rx *)tls_ctx->priv_ctx_rx; 413 } 590 } 414 591 >> 592 #if IS_ENABLED(CONFIG_TLS_DEVICE) 415 static inline void *__tls_driver_ctx(struct tl 593 static inline void *__tls_driver_ctx(struct tls_context *tls_ctx, 416 enum tls_ 594 enum tls_offload_ctx_dir direction) 417 { 595 { 418 if (direction == TLS_OFFLOAD_CTX_DIR_T 596 if (direction == TLS_OFFLOAD_CTX_DIR_TX) 419 return tls_offload_ctx_tx(tls_ 597 return tls_offload_ctx_tx(tls_ctx)->driver_state; 420 else 598 else 421 return tls_offload_ctx_rx(tls_ 599 return tls_offload_ctx_rx(tls_ctx)->driver_state; 422 } 600 } 423 601 424 static inline void * 602 static inline void * 425 tls_driver_ctx(const struct sock *sk, enum tls 603 tls_driver_ctx(const struct sock *sk, enum tls_offload_ctx_dir direction) 426 { 604 { 427 return __tls_driver_ctx(tls_get_ctx(sk 605 return __tls_driver_ctx(tls_get_ctx(sk), direction); 428 } 606 } >> 607 #endif 429 608 430 #define RESYNC_REQ BIT(0) << 431 #define RESYNC_REQ_ASYNC BIT(1) << 432 /* The TLS context is valid until sk_destruct 609 /* The TLS context is valid until sk_destruct is called */ >> 610 #define RESYNC_REQ (1 << 0) >> 611 #define RESYNC_REQ_FORCE (1 << 1) 433 static inline void tls_offload_rx_resync_reque 612 static inline void tls_offload_rx_resync_request(struct sock *sk, __be32 seq) 434 { 613 { 435 struct tls_context *tls_ctx = tls_get_ 614 struct tls_context *tls_ctx = tls_get_ctx(sk); 436 struct tls_offload_context_rx *rx_ctx 615 struct tls_offload_context_rx *rx_ctx = tls_offload_ctx_rx(tls_ctx); 437 616 438 atomic64_set(&rx_ctx->resync_req, ((u6 617 atomic64_set(&rx_ctx->resync_req, ((u64)ntohl(seq) << 32) | RESYNC_REQ); 439 } 618 } 440 619 441 /* Log all TLS record header TCP sequences in !! 620 static inline void tls_offload_rx_force_resync_request(struct sock *sk) 442 static inline void << 443 tls_offload_rx_resync_async_request_start(stru << 444 { 621 { 445 struct tls_context *tls_ctx = tls_get_ 622 struct tls_context *tls_ctx = tls_get_ctx(sk); 446 struct tls_offload_context_rx *rx_ctx 623 struct tls_offload_context_rx *rx_ctx = tls_offload_ctx_rx(tls_ctx); 447 624 448 atomic64_set(&rx_ctx->resync_async->re !! 625 atomic64_set(&rx_ctx->resync_req, RESYNC_REQ | RESYNC_REQ_FORCE); 449 ((u64)len << 16) | RESYNC << 450 rx_ctx->resync_async->loglen = 0; << 451 rx_ctx->resync_async->rcd_delta = 0; << 452 } << 453 << 454 static inline void << 455 tls_offload_rx_resync_async_request_end(struct << 456 { << 457 struct tls_context *tls_ctx = tls_get_ << 458 struct tls_offload_context_rx *rx_ctx << 459 << 460 atomic64_set(&rx_ctx->resync_async->re << 461 ((u64)ntohl(seq) << 32) | << 462 } 626 } 463 627 464 static inline void 628 static inline void 465 tls_offload_rx_resync_set_type(struct sock *sk 629 tls_offload_rx_resync_set_type(struct sock *sk, enum tls_offload_sync_type type) 466 { 630 { 467 struct tls_context *tls_ctx = tls_get_ 631 struct tls_context *tls_ctx = tls_get_ctx(sk); 468 632 469 tls_offload_ctx_rx(tls_ctx)->resync_ty 633 tls_offload_ctx_rx(tls_ctx)->resync_type = type; 470 } 634 } 471 635 472 /* Driver's seq tracking has to be disabled un 636 /* Driver's seq tracking has to be disabled until resync succeeded */ 473 static inline bool tls_offload_tx_resync_pendi 637 static inline bool tls_offload_tx_resync_pending(struct sock *sk) 474 { 638 { 475 struct tls_context *tls_ctx = tls_get_ 639 struct tls_context *tls_ctx = tls_get_ctx(sk); 476 bool ret; 640 bool ret; 477 641 478 ret = test_bit(TLS_TX_SYNC_SCHED, &tls 642 ret = test_bit(TLS_TX_SYNC_SCHED, &tls_ctx->flags); 479 smp_mb__after_atomic(); 643 smp_mb__after_atomic(); 480 return ret; 644 return ret; 481 } 645 } 482 646 >> 647 int __net_init tls_proc_init(struct net *net); >> 648 void __net_exit tls_proc_fini(struct net *net); >> 649 >> 650 int tls_proccess_cmsg(struct sock *sk, struct msghdr *msg, >> 651 unsigned char *record_type); >> 652 int decrypt_skb(struct sock *sk, struct sk_buff *skb, >> 653 struct scatterlist *sgout); 483 struct sk_buff *tls_encrypt_skb(struct sk_buff 654 struct sk_buff *tls_encrypt_skb(struct sk_buff *skb); 484 655 >> 656 struct sk_buff *tls_validate_xmit_skb(struct sock *sk, >> 657 struct net_device *dev, >> 658 struct sk_buff *skb); >> 659 >> 660 int tls_sw_fallback_init(struct sock *sk, >> 661 struct tls_offload_context_tx *offload_ctx, >> 662 struct tls_crypto_info *crypto_info); >> 663 485 #ifdef CONFIG_TLS_DEVICE 664 #ifdef CONFIG_TLS_DEVICE >> 665 void tls_device_init(void); >> 666 void tls_device_cleanup(void); 486 void tls_device_sk_destruct(struct sock *sk); 667 void tls_device_sk_destruct(struct sock *sk); >> 668 int tls_set_device_offload(struct sock *sk, struct tls_context *ctx); >> 669 void tls_device_free_resources_tx(struct sock *sk); >> 670 int tls_set_device_offload_rx(struct sock *sk, struct tls_context *ctx); >> 671 void tls_device_offload_cleanup_rx(struct sock *sk); >> 672 void tls_device_rx_resync_new_rec(struct sock *sk, u32 rcd_len, u32 seq); 487 void tls_offload_tx_resync_request(struct sock 673 void tls_offload_tx_resync_request(struct sock *sk, u32 got_seq, u32 exp_seq); >> 674 int tls_device_decrypted(struct sock *sk, struct tls_context *tls_ctx, >> 675 struct sk_buff *skb, struct strp_msg *rxm); 488 676 489 static inline bool tls_is_sk_rx_device_offload 677 static inline bool tls_is_sk_rx_device_offloaded(struct sock *sk) 490 { 678 { 491 if (!sk_fullsock(sk) || 679 if (!sk_fullsock(sk) || 492 smp_load_acquire(&sk->sk_destruct) 680 smp_load_acquire(&sk->sk_destruct) != tls_device_sk_destruct) 493 return false; 681 return false; 494 return tls_get_ctx(sk)->rx_conf == TLS 682 return tls_get_ctx(sk)->rx_conf == TLS_HW; >> 683 } >> 684 #else >> 685 static inline void tls_device_init(void) {} >> 686 static inline void tls_device_cleanup(void) {} >> 687 >> 688 static inline int >> 689 tls_set_device_offload(struct sock *sk, struct tls_context *ctx) >> 690 { >> 691 return -EOPNOTSUPP; >> 692 } >> 693 >> 694 static inline void tls_device_free_resources_tx(struct sock *sk) {} >> 695 >> 696 static inline int >> 697 tls_set_device_offload_rx(struct sock *sk, struct tls_context *ctx) >> 698 { >> 699 return -EOPNOTSUPP; >> 700 } >> 701 >> 702 static inline void tls_device_offload_cleanup_rx(struct sock *sk) {} >> 703 static inline void >> 704 tls_device_rx_resync_new_rec(struct sock *sk, u32 rcd_len, u32 seq) {} >> 705 >> 706 static inline int >> 707 tls_device_decrypted(struct sock *sk, struct tls_context *tls_ctx, >> 708 struct sk_buff *skb, struct strp_msg *rxm) >> 709 { >> 710 return 0; 495 } 711 } 496 #endif 712 #endif 497 #endif /* _TLS_OFFLOAD_H */ 713 #endif /* _TLS_OFFLOAD_H */ 498 714
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.