~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/kernel/Kconfig.preempt

Version: ~ [ linux-6.12-rc7 ] ~ [ linux-6.11.7 ] ~ [ linux-6.10.14 ] ~ [ linux-6.9.12 ] ~ [ linux-6.8.12 ] ~ [ linux-6.7.12 ] ~ [ linux-6.6.60 ] ~ [ linux-6.5.13 ] ~ [ linux-6.4.16 ] ~ [ linux-6.3.13 ] ~ [ linux-6.2.16 ] ~ [ linux-6.1.116 ] ~ [ linux-6.0.19 ] ~ [ linux-5.19.17 ] ~ [ linux-5.18.19 ] ~ [ linux-5.17.15 ] ~ [ linux-5.16.20 ] ~ [ linux-5.15.171 ] ~ [ linux-5.14.21 ] ~ [ linux-5.13.19 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.229 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.285 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.323 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.336 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.337 ] ~ [ linux-4.4.302 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.12 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

Diff markup

Differences between /kernel/Kconfig.preempt (Version linux-6.12-rc7) and /kernel/Kconfig.preempt (Version linux-5.12.19)


  1 # SPDX-License-Identifier: GPL-2.0-only             1 # SPDX-License-Identifier: GPL-2.0-only
  2                                                     2 
  3 config PREEMPT_NONE_BUILD                      << 
  4         bool                                   << 
  5                                                << 
  6 config PREEMPT_VOLUNTARY_BUILD                 << 
  7         bool                                   << 
  8                                                << 
  9 config PREEMPT_BUILD                           << 
 10         bool                                   << 
 11         select PREEMPTION                      << 
 12         select UNINLINE_SPIN_UNLOCK if !ARCH_I << 
 13                                                << 
 14 choice                                              3 choice
 15         prompt "Preemption Model"                   4         prompt "Preemption Model"
 16         default PREEMPT_NONE                        5         default PREEMPT_NONE
 17                                                     6 
 18 config PREEMPT_NONE                                 7 config PREEMPT_NONE
 19         bool "No Forced Preemption (Server)"        8         bool "No Forced Preemption (Server)"
 20         select PREEMPT_NONE_BUILD if !PREEMPT_ << 
 21         help                                        9         help
 22           This is the traditional Linux preemp     10           This is the traditional Linux preemption model, geared towards
 23           throughput. It will still provide go     11           throughput. It will still provide good latencies most of the
 24           time, but there are no guarantees an     12           time, but there are no guarantees and occasional longer delays
 25           are possible.                            13           are possible.
 26                                                    14 
 27           Select this option if you are buildi     15           Select this option if you are building a kernel for a server or
 28           scientific/computation system, or if     16           scientific/computation system, or if you want to maximize the
 29           raw processing power of the kernel,      17           raw processing power of the kernel, irrespective of scheduling
 30           latencies.                               18           latencies.
 31                                                    19 
 32 config PREEMPT_VOLUNTARY                           20 config PREEMPT_VOLUNTARY
 33         bool "Voluntary Kernel Preemption (Des     21         bool "Voluntary Kernel Preemption (Desktop)"
 34         depends on !ARCH_NO_PREEMPT                22         depends on !ARCH_NO_PREEMPT
 35         select PREEMPT_VOLUNTARY_BUILD if !PRE << 
 36         help                                       23         help
 37           This option reduces the latency of t     24           This option reduces the latency of the kernel by adding more
 38           "explicit preemption points" to the      25           "explicit preemption points" to the kernel code. These new
 39           preemption points have been selected     26           preemption points have been selected to reduce the maximum
 40           latency of rescheduling, providing f     27           latency of rescheduling, providing faster application reactions,
 41           at the cost of slightly lower throug     28           at the cost of slightly lower throughput.
 42                                                    29 
 43           This allows reaction to interactive      30           This allows reaction to interactive events by allowing a
 44           low priority process to voluntarily      31           low priority process to voluntarily preempt itself even if it
 45           is in kernel mode executing a system     32           is in kernel mode executing a system call. This allows
 46           applications to run more 'smoothly'      33           applications to run more 'smoothly' even when the system is
 47           under load.                              34           under load.
 48                                                    35 
 49           Select this if you are building a ke     36           Select this if you are building a kernel for a desktop system.
 50                                                    37 
 51 config PREEMPT                                     38 config PREEMPT
 52         bool "Preemptible Kernel (Low-Latency      39         bool "Preemptible Kernel (Low-Latency Desktop)"
 53         depends on !ARCH_NO_PREEMPT                40         depends on !ARCH_NO_PREEMPT
 54         select PREEMPT_BUILD                   !!  41         select PREEMPTION
                                                   >>  42         select UNINLINE_SPIN_UNLOCK if !ARCH_INLINE_SPIN_UNLOCK
                                                   >>  43         select PREEMPT_DYNAMIC if HAVE_PREEMPT_DYNAMIC
 55         help                                       44         help
 56           This option reduces the latency of t     45           This option reduces the latency of the kernel by making
 57           all kernel code (that is not executi     46           all kernel code (that is not executing in a critical section)
 58           preemptible.  This allows reaction t     47           preemptible.  This allows reaction to interactive events by
 59           permitting a low priority process to     48           permitting a low priority process to be preempted involuntarily
 60           even if it is in kernel mode executi     49           even if it is in kernel mode executing a system call and would
 61           otherwise not be about to reach a na     50           otherwise not be about to reach a natural preemption point.
 62           This allows applications to run more     51           This allows applications to run more 'smoothly' even when the
 63           system is under load, at the cost of     52           system is under load, at the cost of slightly lower throughput
 64           and a slight runtime overhead to ker     53           and a slight runtime overhead to kernel code.
 65                                                    54 
 66           Select this if you are building a ke     55           Select this if you are building a kernel for a desktop or
 67           embedded system with latency require     56           embedded system with latency requirements in the milliseconds
 68           range.                                   57           range.
 69                                                    58 
 70 config PREEMPT_RT                                  59 config PREEMPT_RT
 71         bool "Fully Preemptible Kernel (Real-T     60         bool "Fully Preemptible Kernel (Real-Time)"
 72         depends on EXPERT && ARCH_SUPPORTS_RT      61         depends on EXPERT && ARCH_SUPPORTS_RT
 73         select PREEMPTION                          62         select PREEMPTION
 74         help                                       63         help
 75           This option turns the kernel into a      64           This option turns the kernel into a real-time kernel by replacing
 76           various locking primitives (spinlock     65           various locking primitives (spinlocks, rwlocks, etc.) with
 77           preemptible priority-inheritance awa     66           preemptible priority-inheritance aware variants, enforcing
 78           interrupt threading and introducing      67           interrupt threading and introducing mechanisms to break up long
 79           non-preemptible sections. This makes     68           non-preemptible sections. This makes the kernel, except for very
 80           low level and critical code paths (e     69           low level and critical code paths (entry code, scheduler, low
 81           level interrupt handling) fully pree     70           level interrupt handling) fully preemptible and brings most
 82           execution contexts under scheduler c     71           execution contexts under scheduler control.
 83                                                    72 
 84           Select this if you are building a ke     73           Select this if you are building a kernel for systems which
 85           require real-time guarantees.            74           require real-time guarantees.
 86                                                    75 
 87 endchoice                                          76 endchoice
 88                                                    77 
 89 config PREEMPT_COUNT                               78 config PREEMPT_COUNT
 90        bool                                        79        bool
 91                                                    80 
 92 config PREEMPTION                                  81 config PREEMPTION
 93        bool                                        82        bool
 94        select PREEMPT_COUNT                        83        select PREEMPT_COUNT
 95                                                    84 
 96 config PREEMPT_DYNAMIC                             85 config PREEMPT_DYNAMIC
 97         bool "Preemption behaviour defined on  !!  86         bool
 98         depends on HAVE_PREEMPT_DYNAMIC && !PR << 
 99         select JUMP_LABEL if HAVE_PREEMPT_DYNA << 
100         select PREEMPT_BUILD                   << 
101         default y if HAVE_PREEMPT_DYNAMIC_CALL << 
102         help                                       87         help
103           This option allows to define the pre     88           This option allows to define the preemption model on the kernel
104           command line parameter and thus over     89           command line parameter and thus override the default preemption
105           model defined during compile time.       90           model defined during compile time.
106                                                    91 
107           The feature is primarily interesting     92           The feature is primarily interesting for Linux distributions which
108           provide a pre-built kernel binary to     93           provide a pre-built kernel binary to reduce the number of kernel
109           flavors they offer while still offer     94           flavors they offer while still offering different usecases.
110                                                    95 
111           The runtime overhead is negligible w     96           The runtime overhead is negligible with HAVE_STATIC_CALL_INLINE enabled
112           but if runtime patching is not avail     97           but if runtime patching is not available for the specific architecture
113           then the potential overhead should b     98           then the potential overhead should be considered.
114                                                    99 
115           Interesting if you want the same pre    100           Interesting if you want the same pre-built kernel should be used for
116           both Server and Desktop workloads.      101           both Server and Desktop workloads.
117                                                << 
118 config SCHED_CORE                              << 
119         bool "Core Scheduling for SMT"         << 
120         depends on SCHED_SMT                   << 
121         help                                   << 
122           This option permits Core Scheduling, << 
123           selection across SMT siblings. When  << 
124           prctl(PR_SCHED_CORE) -- task selecti << 
125           will execute a task from the same 'c << 
126           matching task is found.              << 
127                                                << 
128           Use of this feature includes:        << 
129            - mitigation of some (not all) SMT  << 
130            - limiting SMT interference to impr << 
131                                                << 
132           SCHED_CORE is default disabled. When << 
133           which is the likely usage by Linux d << 
134           be no measurable impact on performan << 
135                                                << 
136 config SCHED_CLASS_EXT                         << 
137         bool "Extensible Scheduling Class"     << 
138         depends on BPF_SYSCALL && BPF_JIT && D << 
139         select STACKTRACE if STACKTRACE_SUPPOR << 
140         help                                   << 
141           This option enables a new scheduler  << 
142           allows scheduling policies to be imp << 
143           achieve the following:               << 
144                                                << 
145           - Ease of experimentation and explor << 
146             iteration of new scheduling polici << 
147           - Customization: Building applicatio << 
148             implement policies that are not ap << 
149             schedulers.                        << 
150           - Rapid scheduler deployments: Non-d << 
151             scheduling policies in production  << 
152                                                << 
153           sched_ext leverages BPF struct_ops f << 
154           which exports function callbacks and << 
155           wish to implement scheduling policie << 
156           exported by sched_ext is struct sche << 
157           similar to struct sched_class.       << 
158                                                << 
159           For more information:                << 
160             Documentation/scheduler/sched-ext. << 
161             https://github.com/sched-ext/scx   << 
                                                      

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

sflogo.php