1 // SPDX-License-Identifier: GPL-2.0 1 // SPDX-License-Identifier: GPL-2.0 2 /* 2 /* 3 * linux/kernel/acct.c 3 * linux/kernel/acct.c 4 * 4 * 5 * BSD Process Accounting for Linux 5 * BSD Process Accounting for Linux 6 * 6 * 7 * Author: Marco van Wieringen <mvw@planets.e 7 * Author: Marco van Wieringen <mvw@planets.elm.net> 8 * 8 * 9 * Some code based on ideas and code from: 9 * Some code based on ideas and code from: 10 * Thomas K. Dyas <tdyas@eden.rutgers.edu> 10 * Thomas K. Dyas <tdyas@eden.rutgers.edu> 11 * 11 * 12 * This file implements BSD-style process acc 12 * This file implements BSD-style process accounting. Whenever any 13 * process exits, an accounting record of typ 13 * process exits, an accounting record of type "struct acct" is 14 * written to the file specified with the acc 14 * written to the file specified with the acct() system call. It is 15 * up to user-level programs to do useful thi 15 * up to user-level programs to do useful things with the accounting 16 * log. The kernel just provides the raw acco 16 * log. The kernel just provides the raw accounting information. 17 * 17 * 18 * (C) Copyright 1995 - 1997 Marco van Wiering 18 * (C) Copyright 1995 - 1997 Marco van Wieringen - ELM Consultancy B.V. 19 * 19 * 20 * Plugged two leaks. 1) It didn't return acc 20 * Plugged two leaks. 1) It didn't return acct_file into the free_filps if 21 * the file happened to be read-only. 2) If t 21 * the file happened to be read-only. 2) If the accounting was suspended 22 * due to the lack of space it happily allowe 22 * due to the lack of space it happily allowed to reopen it and completely 23 * lost the old acct_file. 3/10/98, Al Viro. 23 * lost the old acct_file. 3/10/98, Al Viro. 24 * 24 * 25 * Now we silently close acct_file on attempt 25 * Now we silently close acct_file on attempt to reopen. Cleaned sys_acct(). 26 * XTerms and EMACS are manifestations of pur 26 * XTerms and EMACS are manifestations of pure evil. 21/10/98, AV. 27 * 27 * 28 * Fixed a nasty interaction with sys_umount( !! 28 * Fixed a nasty interaction with with sys_umount(). If the accointing 29 * was suspeneded we failed to stop it on umo 29 * was suspeneded we failed to stop it on umount(). Messy. 30 * Another one: remount to readonly didn't st 30 * Another one: remount to readonly didn't stop accounting. 31 * Question: what should we do if we have 31 * Question: what should we do if we have CAP_SYS_ADMIN but not 32 * CAP_SYS_PACCT? Current code does the follo 32 * CAP_SYS_PACCT? Current code does the following: umount returns -EBUSY 33 * unless we are messing with the root. In th 33 * unless we are messing with the root. In that case we are getting a 34 * real mess with do_remount_sb(). 9/11/98, A 34 * real mess with do_remount_sb(). 9/11/98, AV. 35 * 35 * 36 * Fixed a bunch of races (and pair of leaks) 36 * Fixed a bunch of races (and pair of leaks). Probably not the best way, 37 * but this one obviously doesn't introduce d 37 * but this one obviously doesn't introduce deadlocks. Later. BTW, found 38 * one race (and leak) in BSD implementation. 38 * one race (and leak) in BSD implementation. 39 * OK, that's better. ANOTHER race and leak i 39 * OK, that's better. ANOTHER race and leak in BSD variant. There always 40 * is one more bug... 10/11/98, AV. 40 * is one more bug... 10/11/98, AV. 41 * 41 * 42 * Oh, fsck... Oopsable SMP race in do_pr 42 * Oh, fsck... Oopsable SMP race in do_process_acct() - we must hold 43 * ->mmap_lock to walk the vma list of current !! 43 * ->mmap_sem to walk the vma list of current->mm. Nasty, since it leaks 44 * a struct file opened for write. Fixed. 2/6/ 44 * a struct file opened for write. Fixed. 2/6/2000, AV. 45 */ 45 */ 46 46 47 #include <linux/mm.h> 47 #include <linux/mm.h> 48 #include <linux/slab.h> 48 #include <linux/slab.h> 49 #include <linux/acct.h> 49 #include <linux/acct.h> 50 #include <linux/capability.h> 50 #include <linux/capability.h> 51 #include <linux/file.h> 51 #include <linux/file.h> 52 #include <linux/tty.h> 52 #include <linux/tty.h> 53 #include <linux/security.h> 53 #include <linux/security.h> 54 #include <linux/vfs.h> 54 #include <linux/vfs.h> 55 #include <linux/jiffies.h> 55 #include <linux/jiffies.h> 56 #include <linux/times.h> 56 #include <linux/times.h> 57 #include <linux/syscalls.h> 57 #include <linux/syscalls.h> 58 #include <linux/mount.h> 58 #include <linux/mount.h> 59 #include <linux/uaccess.h> 59 #include <linux/uaccess.h> 60 #include <linux/sched/cputime.h> 60 #include <linux/sched/cputime.h> 61 61 62 #include <asm/div64.h> 62 #include <asm/div64.h> >> 63 #include <linux/blkdev.h> /* sector_div */ 63 #include <linux/pid_namespace.h> 64 #include <linux/pid_namespace.h> 64 #include <linux/fs_pin.h> 65 #include <linux/fs_pin.h> 65 66 66 /* 67 /* 67 * These constants control the amount of frees 68 * These constants control the amount of freespace that suspend and 68 * resume the process accounting system, and t 69 * resume the process accounting system, and the time delay between 69 * each check. 70 * each check. 70 * Turned into sysctl-controllable parameters. 71 * Turned into sysctl-controllable parameters. AV, 12/11/98 71 */ 72 */ 72 73 73 static int acct_parm[3] = {4, 2, 30}; !! 74 int acct_parm[3] = {4, 2, 30}; 74 #define RESUME (acct_parm[0]) /* >fo 75 #define RESUME (acct_parm[0]) /* >foo% free space - resume */ 75 #define SUSPEND (acct_parm[1]) /* <fo 76 #define SUSPEND (acct_parm[1]) /* <foo% free space - suspend */ 76 #define ACCT_TIMEOUT (acct_parm[2]) /* foo 77 #define ACCT_TIMEOUT (acct_parm[2]) /* foo second timeout between checks */ 77 78 78 #ifdef CONFIG_SYSCTL << 79 static struct ctl_table kern_acct_table[] = { << 80 { << 81 .procname = "acct", << 82 .data = &acct_parm, << 83 .maxlen = 3*sizeof(int << 84 .mode = 0644, << 85 .proc_handler = proc_dointve << 86 }, << 87 }; << 88 << 89 static __init int kernel_acct_sysctls_init(voi << 90 { << 91 register_sysctl_init("kernel", kern_ac << 92 return 0; << 93 } << 94 late_initcall(kernel_acct_sysctls_init); << 95 #endif /* CONFIG_SYSCTL */ << 96 << 97 /* 79 /* 98 * External references and all of the globals. 80 * External references and all of the globals. 99 */ 81 */ 100 82 101 struct bsd_acct_struct { 83 struct bsd_acct_struct { 102 struct fs_pin pin; 84 struct fs_pin pin; 103 atomic_long_t count; 85 atomic_long_t count; 104 struct rcu_head rcu; 86 struct rcu_head rcu; 105 struct mutex lock; 87 struct mutex lock; 106 int active; 88 int active; 107 unsigned long needcheck; 89 unsigned long needcheck; 108 struct file *file; 90 struct file *file; 109 struct pid_namespace *ns; 91 struct pid_namespace *ns; 110 struct work_struct work; 92 struct work_struct work; 111 struct completion done; 93 struct completion done; 112 }; 94 }; 113 95 114 static void do_acct_process(struct bsd_acct_st 96 static void do_acct_process(struct bsd_acct_struct *acct); 115 97 116 /* 98 /* 117 * Check the amount of free space and suspend/ 99 * Check the amount of free space and suspend/resume accordingly. 118 */ 100 */ 119 static int check_free_space(struct bsd_acct_st 101 static int check_free_space(struct bsd_acct_struct *acct) 120 { 102 { 121 struct kstatfs sbuf; 103 struct kstatfs sbuf; 122 104 123 if (time_is_after_jiffies(acct->needch 105 if (time_is_after_jiffies(acct->needcheck)) 124 goto out; 106 goto out; 125 107 126 /* May block */ 108 /* May block */ 127 if (vfs_statfs(&acct->file->f_path, &s 109 if (vfs_statfs(&acct->file->f_path, &sbuf)) 128 goto out; 110 goto out; 129 111 130 if (acct->active) { 112 if (acct->active) { 131 u64 suspend = sbuf.f_blocks * 113 u64 suspend = sbuf.f_blocks * SUSPEND; 132 do_div(suspend, 100); 114 do_div(suspend, 100); 133 if (sbuf.f_bavail <= suspend) 115 if (sbuf.f_bavail <= suspend) { 134 acct->active = 0; 116 acct->active = 0; 135 pr_info("Process accou 117 pr_info("Process accounting paused\n"); 136 } 118 } 137 } else { 119 } else { 138 u64 resume = sbuf.f_blocks * R 120 u64 resume = sbuf.f_blocks * RESUME; 139 do_div(resume, 100); 121 do_div(resume, 100); 140 if (sbuf.f_bavail >= resume) { 122 if (sbuf.f_bavail >= resume) { 141 acct->active = 1; 123 acct->active = 1; 142 pr_info("Process accou 124 pr_info("Process accounting resumed\n"); 143 } 125 } 144 } 126 } 145 127 146 acct->needcheck = jiffies + ACCT_TIMEO 128 acct->needcheck = jiffies + ACCT_TIMEOUT*HZ; 147 out: 129 out: 148 return acct->active; 130 return acct->active; 149 } 131 } 150 132 151 static void acct_put(struct bsd_acct_struct *p 133 static void acct_put(struct bsd_acct_struct *p) 152 { 134 { 153 if (atomic_long_dec_and_test(&p->count 135 if (atomic_long_dec_and_test(&p->count)) 154 kfree_rcu(p, rcu); 136 kfree_rcu(p, rcu); 155 } 137 } 156 138 157 static inline struct bsd_acct_struct *to_acct( 139 static inline struct bsd_acct_struct *to_acct(struct fs_pin *p) 158 { 140 { 159 return p ? container_of(p, struct bsd_ 141 return p ? container_of(p, struct bsd_acct_struct, pin) : NULL; 160 } 142 } 161 143 162 static struct bsd_acct_struct *acct_get(struct 144 static struct bsd_acct_struct *acct_get(struct pid_namespace *ns) 163 { 145 { 164 struct bsd_acct_struct *res; 146 struct bsd_acct_struct *res; 165 again: 147 again: 166 smp_rmb(); 148 smp_rmb(); 167 rcu_read_lock(); 149 rcu_read_lock(); 168 res = to_acct(READ_ONCE(ns->bacct)); 150 res = to_acct(READ_ONCE(ns->bacct)); 169 if (!res) { 151 if (!res) { 170 rcu_read_unlock(); 152 rcu_read_unlock(); 171 return NULL; 153 return NULL; 172 } 154 } 173 if (!atomic_long_inc_not_zero(&res->co 155 if (!atomic_long_inc_not_zero(&res->count)) { 174 rcu_read_unlock(); 156 rcu_read_unlock(); 175 cpu_relax(); 157 cpu_relax(); 176 goto again; 158 goto again; 177 } 159 } 178 rcu_read_unlock(); 160 rcu_read_unlock(); 179 mutex_lock(&res->lock); 161 mutex_lock(&res->lock); 180 if (res != to_acct(READ_ONCE(ns->bacct 162 if (res != to_acct(READ_ONCE(ns->bacct))) { 181 mutex_unlock(&res->lock); 163 mutex_unlock(&res->lock); 182 acct_put(res); 164 acct_put(res); 183 goto again; 165 goto again; 184 } 166 } 185 return res; 167 return res; 186 } 168 } 187 169 188 static void acct_pin_kill(struct fs_pin *pin) 170 static void acct_pin_kill(struct fs_pin *pin) 189 { 171 { 190 struct bsd_acct_struct *acct = to_acct 172 struct bsd_acct_struct *acct = to_acct(pin); 191 mutex_lock(&acct->lock); 173 mutex_lock(&acct->lock); 192 do_acct_process(acct); 174 do_acct_process(acct); 193 schedule_work(&acct->work); 175 schedule_work(&acct->work); 194 wait_for_completion(&acct->done); 176 wait_for_completion(&acct->done); 195 cmpxchg(&acct->ns->bacct, pin, NULL); 177 cmpxchg(&acct->ns->bacct, pin, NULL); 196 mutex_unlock(&acct->lock); 178 mutex_unlock(&acct->lock); 197 pin_remove(pin); 179 pin_remove(pin); 198 acct_put(acct); 180 acct_put(acct); 199 } 181 } 200 182 201 static void close_work(struct work_struct *wor 183 static void close_work(struct work_struct *work) 202 { 184 { 203 struct bsd_acct_struct *acct = contain 185 struct bsd_acct_struct *acct = container_of(work, struct bsd_acct_struct, work); 204 struct file *file = acct->file; 186 struct file *file = acct->file; 205 if (file->f_op->flush) 187 if (file->f_op->flush) 206 file->f_op->flush(file, NULL); 188 file->f_op->flush(file, NULL); 207 __fput_sync(file); 189 __fput_sync(file); 208 complete(&acct->done); 190 complete(&acct->done); 209 } 191 } 210 192 211 static int acct_on(struct filename *pathname) 193 static int acct_on(struct filename *pathname) 212 { 194 { 213 struct file *file; 195 struct file *file; 214 struct vfsmount *mnt, *internal; 196 struct vfsmount *mnt, *internal; 215 struct pid_namespace *ns = task_active 197 struct pid_namespace *ns = task_active_pid_ns(current); 216 struct bsd_acct_struct *acct; 198 struct bsd_acct_struct *acct; 217 struct fs_pin *old; 199 struct fs_pin *old; 218 int err; 200 int err; 219 201 220 acct = kzalloc(sizeof(struct bsd_acct_ 202 acct = kzalloc(sizeof(struct bsd_acct_struct), GFP_KERNEL); 221 if (!acct) 203 if (!acct) 222 return -ENOMEM; 204 return -ENOMEM; 223 205 224 /* Difference from BSD - they don't do 206 /* Difference from BSD - they don't do O_APPEND */ 225 file = file_open_name(pathname, O_WRON 207 file = file_open_name(pathname, O_WRONLY|O_APPEND|O_LARGEFILE, 0); 226 if (IS_ERR(file)) { 208 if (IS_ERR(file)) { 227 kfree(acct); 209 kfree(acct); 228 return PTR_ERR(file); 210 return PTR_ERR(file); 229 } 211 } 230 212 231 if (!S_ISREG(file_inode(file)->i_mode) 213 if (!S_ISREG(file_inode(file)->i_mode)) { 232 kfree(acct); 214 kfree(acct); 233 filp_close(file, NULL); 215 filp_close(file, NULL); 234 return -EACCES; 216 return -EACCES; 235 } 217 } 236 218 237 if (!(file->f_mode & FMODE_CAN_WRITE)) 219 if (!(file->f_mode & FMODE_CAN_WRITE)) { 238 kfree(acct); 220 kfree(acct); 239 filp_close(file, NULL); 221 filp_close(file, NULL); 240 return -EIO; 222 return -EIO; 241 } 223 } 242 internal = mnt_clone_internal(&file->f 224 internal = mnt_clone_internal(&file->f_path); 243 if (IS_ERR(internal)) { 225 if (IS_ERR(internal)) { 244 kfree(acct); 226 kfree(acct); 245 filp_close(file, NULL); 227 filp_close(file, NULL); 246 return PTR_ERR(internal); 228 return PTR_ERR(internal); 247 } 229 } 248 err = mnt_get_write_access(internal); !! 230 err = mnt_want_write(internal); 249 if (err) { 231 if (err) { 250 mntput(internal); 232 mntput(internal); 251 kfree(acct); 233 kfree(acct); 252 filp_close(file, NULL); 234 filp_close(file, NULL); 253 return err; 235 return err; 254 } 236 } 255 mnt = file->f_path.mnt; 237 mnt = file->f_path.mnt; 256 file->f_path.mnt = internal; 238 file->f_path.mnt = internal; 257 239 258 atomic_long_set(&acct->count, 1); 240 atomic_long_set(&acct->count, 1); 259 init_fs_pin(&acct->pin, acct_pin_kill) 241 init_fs_pin(&acct->pin, acct_pin_kill); 260 acct->file = file; 242 acct->file = file; 261 acct->needcheck = jiffies; 243 acct->needcheck = jiffies; 262 acct->ns = ns; 244 acct->ns = ns; 263 mutex_init(&acct->lock); 245 mutex_init(&acct->lock); 264 INIT_WORK(&acct->work, close_work); 246 INIT_WORK(&acct->work, close_work); 265 init_completion(&acct->done); 247 init_completion(&acct->done); 266 mutex_lock_nested(&acct->lock, 1); 248 mutex_lock_nested(&acct->lock, 1); /* nobody has seen it yet */ 267 pin_insert(&acct->pin, mnt); 249 pin_insert(&acct->pin, mnt); 268 250 269 rcu_read_lock(); 251 rcu_read_lock(); 270 old = xchg(&ns->bacct, &acct->pin); 252 old = xchg(&ns->bacct, &acct->pin); 271 mutex_unlock(&acct->lock); 253 mutex_unlock(&acct->lock); 272 pin_kill(old); 254 pin_kill(old); 273 mnt_put_write_access(mnt); !! 255 mnt_drop_write(mnt); 274 mntput(mnt); 256 mntput(mnt); 275 return 0; 257 return 0; 276 } 258 } 277 259 278 static DEFINE_MUTEX(acct_on_mutex); 260 static DEFINE_MUTEX(acct_on_mutex); 279 261 280 /** 262 /** 281 * sys_acct - enable/disable process accountin 263 * sys_acct - enable/disable process accounting 282 * @name: file name for accounting records or 264 * @name: file name for accounting records or NULL to shutdown accounting 283 * 265 * >> 266 * Returns 0 for success or negative errno values for failure. >> 267 * 284 * sys_acct() is the only system call needed t 268 * sys_acct() is the only system call needed to implement process 285 * accounting. It takes the name of the file w 269 * accounting. It takes the name of the file where accounting records 286 * should be written. If the filename is NULL, 270 * should be written. If the filename is NULL, accounting will be 287 * shutdown. 271 * shutdown. 288 * << 289 * Returns: 0 for success or negative errno va << 290 */ 272 */ 291 SYSCALL_DEFINE1(acct, const char __user *, nam 273 SYSCALL_DEFINE1(acct, const char __user *, name) 292 { 274 { 293 int error = 0; 275 int error = 0; 294 276 295 if (!capable(CAP_SYS_PACCT)) 277 if (!capable(CAP_SYS_PACCT)) 296 return -EPERM; 278 return -EPERM; 297 279 298 if (name) { 280 if (name) { 299 struct filename *tmp = getname 281 struct filename *tmp = getname(name); 300 282 301 if (IS_ERR(tmp)) 283 if (IS_ERR(tmp)) 302 return PTR_ERR(tmp); 284 return PTR_ERR(tmp); 303 mutex_lock(&acct_on_mutex); 285 mutex_lock(&acct_on_mutex); 304 error = acct_on(tmp); 286 error = acct_on(tmp); 305 mutex_unlock(&acct_on_mutex); 287 mutex_unlock(&acct_on_mutex); 306 putname(tmp); 288 putname(tmp); 307 } else { 289 } else { 308 rcu_read_lock(); 290 rcu_read_lock(); 309 pin_kill(task_active_pid_ns(cu 291 pin_kill(task_active_pid_ns(current)->bacct); 310 } 292 } 311 293 312 return error; 294 return error; 313 } 295 } 314 296 315 void acct_exit_ns(struct pid_namespace *ns) 297 void acct_exit_ns(struct pid_namespace *ns) 316 { 298 { 317 rcu_read_lock(); 299 rcu_read_lock(); 318 pin_kill(ns->bacct); 300 pin_kill(ns->bacct); 319 } 301 } 320 302 321 /* 303 /* 322 * encode an u64 into a comp_t !! 304 * encode an unsigned long into a comp_t 323 * 305 * 324 * This routine has been adopted from the enc 306 * This routine has been adopted from the encode_comp_t() function in 325 * the kern_acct.c file of the FreeBSD operat 307 * the kern_acct.c file of the FreeBSD operating system. The encoding 326 * is a 13-bit fraction with a 3-bit (base 8) 308 * is a 13-bit fraction with a 3-bit (base 8) exponent. 327 */ 309 */ 328 310 329 #define MANTSIZE 13 311 #define MANTSIZE 13 /* 13 bit mantissa. */ 330 #define EXPSIZE 3 312 #define EXPSIZE 3 /* Base 8 (3 bit) exponent. */ 331 #define MAXFRACT ((1 << MANTSIZE) - 1) 313 #define MAXFRACT ((1 << MANTSIZE) - 1) /* Maximum fractional value. */ 332 314 333 static comp_t encode_comp_t(u64 value) !! 315 static comp_t encode_comp_t(unsigned long value) 334 { 316 { 335 int exp, rnd; 317 int exp, rnd; 336 318 337 exp = rnd = 0; 319 exp = rnd = 0; 338 while (value > MAXFRACT) { 320 while (value > MAXFRACT) { 339 rnd = value & (1 << (EXPSIZE - 321 rnd = value & (1 << (EXPSIZE - 1)); /* Round up? */ 340 value >>= EXPSIZE; /* Bas 322 value >>= EXPSIZE; /* Base 8 exponent == 3 bit shift. */ 341 exp++; 323 exp++; 342 } 324 } 343 325 344 /* 326 /* 345 * If we need to round up, do it (and 327 * If we need to round up, do it (and handle overflow correctly). 346 */ 328 */ 347 if (rnd && (++value > MAXFRACT)) { 329 if (rnd && (++value > MAXFRACT)) { 348 value >>= EXPSIZE; 330 value >>= EXPSIZE; 349 exp++; 331 exp++; 350 } 332 } 351 333 352 if (exp > (((comp_t) ~0U) >> MANTSIZE) << 353 return (comp_t) ~0U; << 354 /* 334 /* 355 * Clean it up and polish it off. 335 * Clean it up and polish it off. 356 */ 336 */ 357 exp <<= MANTSIZE; /* Shi 337 exp <<= MANTSIZE; /* Shift the exponent into place */ 358 exp += value; /* and 338 exp += value; /* and add on the mantissa. */ 359 return exp; 339 return exp; 360 } 340 } 361 341 362 #if ACCT_VERSION == 1 || ACCT_VERSION == 2 342 #if ACCT_VERSION == 1 || ACCT_VERSION == 2 363 /* 343 /* 364 * encode an u64 into a comp2_t (24 bits) 344 * encode an u64 into a comp2_t (24 bits) 365 * 345 * 366 * Format: 5 bit base 2 exponent, 20 bits mant 346 * Format: 5 bit base 2 exponent, 20 bits mantissa. 367 * The leading bit of the mantissa is not stor 347 * The leading bit of the mantissa is not stored, but implied for 368 * non-zero exponents. 348 * non-zero exponents. 369 * Largest encodable value is 50 bits. 349 * Largest encodable value is 50 bits. 370 */ 350 */ 371 351 372 #define MANTSIZE2 20 352 #define MANTSIZE2 20 /* 20 bit mantissa. */ 373 #define EXPSIZE2 5 353 #define EXPSIZE2 5 /* 5 bit base 2 exponent. */ 374 #define MAXFRACT2 ((1ul << MANTSIZE2) - 354 #define MAXFRACT2 ((1ul << MANTSIZE2) - 1) /* Maximum fractional value. */ 375 #define MAXEXP2 ((1 << EXPSIZE2) - 1) 355 #define MAXEXP2 ((1 << EXPSIZE2) - 1) /* Maximum exponent. */ 376 356 377 static comp2_t encode_comp2_t(u64 value) 357 static comp2_t encode_comp2_t(u64 value) 378 { 358 { 379 int exp, rnd; 359 int exp, rnd; 380 360 381 exp = (value > (MAXFRACT2>>1)); 361 exp = (value > (MAXFRACT2>>1)); 382 rnd = 0; 362 rnd = 0; 383 while (value > MAXFRACT2) { 363 while (value > MAXFRACT2) { 384 rnd = value & 1; 364 rnd = value & 1; 385 value >>= 1; 365 value >>= 1; 386 exp++; 366 exp++; 387 } 367 } 388 368 389 /* 369 /* 390 * If we need to round up, do it (and 370 * If we need to round up, do it (and handle overflow correctly). 391 */ 371 */ 392 if (rnd && (++value > MAXFRACT2)) { 372 if (rnd && (++value > MAXFRACT2)) { 393 value >>= 1; 373 value >>= 1; 394 exp++; 374 exp++; 395 } 375 } 396 376 397 if (exp > MAXEXP2) { 377 if (exp > MAXEXP2) { 398 /* Overflow. Return largest re 378 /* Overflow. Return largest representable number instead. */ 399 return (1ul << (MANTSIZE2+EXPS 379 return (1ul << (MANTSIZE2+EXPSIZE2-1)) - 1; 400 } else { 380 } else { 401 return (value & (MAXFRACT2>>1) 381 return (value & (MAXFRACT2>>1)) | (exp << (MANTSIZE2-1)); 402 } 382 } 403 } 383 } 404 #elif ACCT_VERSION == 3 !! 384 #endif >> 385 >> 386 #if ACCT_VERSION == 3 405 /* 387 /* 406 * encode an u64 into a 32 bit IEEE float 388 * encode an u64 into a 32 bit IEEE float 407 */ 389 */ 408 static u32 encode_float(u64 value) 390 static u32 encode_float(u64 value) 409 { 391 { 410 unsigned exp = 190; 392 unsigned exp = 190; 411 unsigned u; 393 unsigned u; 412 394 413 if (value == 0) 395 if (value == 0) 414 return 0; 396 return 0; 415 while ((s64)value > 0) { 397 while ((s64)value > 0) { 416 value <<= 1; 398 value <<= 1; 417 exp--; 399 exp--; 418 } 400 } 419 u = (u32)(value >> 40) & 0x7fffffu; 401 u = (u32)(value >> 40) & 0x7fffffu; 420 return u | (exp << 23); 402 return u | (exp << 23); 421 } 403 } 422 #endif 404 #endif 423 405 424 /* 406 /* 425 * Write an accounting entry for an exiting p 407 * Write an accounting entry for an exiting process 426 * 408 * 427 * The acct_process() call is the workhorse o 409 * The acct_process() call is the workhorse of the process 428 * accounting system. The struct acct is buil 410 * accounting system. The struct acct is built here and then written 429 * into the accounting file. This function sh 411 * into the accounting file. This function should only be called from 430 * do_exit() or when switching to a different 412 * do_exit() or when switching to a different output file. 431 */ 413 */ 432 414 433 static void fill_ac(acct_t *ac) 415 static void fill_ac(acct_t *ac) 434 { 416 { 435 struct pacct_struct *pacct = ¤t- 417 struct pacct_struct *pacct = ¤t->signal->pacct; 436 u64 elapsed, run_time; 418 u64 elapsed, run_time; 437 time64_t btime; << 438 struct tty_struct *tty; 419 struct tty_struct *tty; 439 420 440 /* 421 /* 441 * Fill the accounting struct with the 422 * Fill the accounting struct with the needed info as recorded 442 * by the different kernel functions. 423 * by the different kernel functions. 443 */ 424 */ 444 memset(ac, 0, sizeof(acct_t)); 425 memset(ac, 0, sizeof(acct_t)); 445 426 446 ac->ac_version = ACCT_VERSION | ACCT_B 427 ac->ac_version = ACCT_VERSION | ACCT_BYTEORDER; 447 strscpy(ac->ac_comm, current->comm, si !! 428 strlcpy(ac->ac_comm, current->comm, sizeof(ac->ac_comm)); 448 429 449 /* calculate run_time in nsec*/ 430 /* calculate run_time in nsec*/ 450 run_time = ktime_get_ns(); 431 run_time = ktime_get_ns(); 451 run_time -= current->group_leader->sta 432 run_time -= current->group_leader->start_time; 452 /* convert nsec -> AHZ */ 433 /* convert nsec -> AHZ */ 453 elapsed = nsec_to_AHZ(run_time); 434 elapsed = nsec_to_AHZ(run_time); 454 #if ACCT_VERSION == 3 435 #if ACCT_VERSION == 3 455 ac->ac_etime = encode_float(elapsed); 436 ac->ac_etime = encode_float(elapsed); 456 #else 437 #else 457 ac->ac_etime = encode_comp_t(elapsed < 438 ac->ac_etime = encode_comp_t(elapsed < (unsigned long) -1l ? 458 (unsigned long 439 (unsigned long) elapsed : (unsigned long) -1l); 459 #endif 440 #endif 460 #if ACCT_VERSION == 1 || ACCT_VERSION == 2 441 #if ACCT_VERSION == 1 || ACCT_VERSION == 2 461 { 442 { 462 /* new enlarged etime field */ 443 /* new enlarged etime field */ 463 comp2_t etime = encode_comp2_t 444 comp2_t etime = encode_comp2_t(elapsed); 464 445 465 ac->ac_etime_hi = etime >> 16; 446 ac->ac_etime_hi = etime >> 16; 466 ac->ac_etime_lo = (u16) etime; 447 ac->ac_etime_lo = (u16) etime; 467 } 448 } 468 #endif 449 #endif 469 do_div(elapsed, AHZ); 450 do_div(elapsed, AHZ); 470 btime = ktime_get_real_seconds() - ela !! 451 ac->ac_btime = get_seconds() - elapsed; 471 ac->ac_btime = clamp_t(time64_t, btime !! 452 #if ACCT_VERSION==2 472 #if ACCT_VERSION == 2 << 473 ac->ac_ahz = AHZ; 453 ac->ac_ahz = AHZ; 474 #endif 454 #endif 475 455 476 spin_lock_irq(¤t->sighand->siglo 456 spin_lock_irq(¤t->sighand->siglock); 477 tty = current->signal->tty; /* Saf 457 tty = current->signal->tty; /* Safe as we hold the siglock */ 478 ac->ac_tty = tty ? old_encode_dev(tty_ 458 ac->ac_tty = tty ? old_encode_dev(tty_devnum(tty)) : 0; 479 ac->ac_utime = encode_comp_t(nsec_to_A 459 ac->ac_utime = encode_comp_t(nsec_to_AHZ(pacct->ac_utime)); 480 ac->ac_stime = encode_comp_t(nsec_to_A 460 ac->ac_stime = encode_comp_t(nsec_to_AHZ(pacct->ac_stime)); 481 ac->ac_flag = pacct->ac_flag; 461 ac->ac_flag = pacct->ac_flag; 482 ac->ac_mem = encode_comp_t(pacct->ac_m 462 ac->ac_mem = encode_comp_t(pacct->ac_mem); 483 ac->ac_minflt = encode_comp_t(pacct->a 463 ac->ac_minflt = encode_comp_t(pacct->ac_minflt); 484 ac->ac_majflt = encode_comp_t(pacct->a 464 ac->ac_majflt = encode_comp_t(pacct->ac_majflt); 485 ac->ac_exitcode = pacct->ac_exitcode; 465 ac->ac_exitcode = pacct->ac_exitcode; 486 spin_unlock_irq(¤t->sighand->sig 466 spin_unlock_irq(¤t->sighand->siglock); 487 } 467 } 488 /* 468 /* 489 * do_acct_process does all actual work. Call 469 * do_acct_process does all actual work. Caller holds the reference to file. 490 */ 470 */ 491 static void do_acct_process(struct bsd_acct_st 471 static void do_acct_process(struct bsd_acct_struct *acct) 492 { 472 { 493 acct_t ac; 473 acct_t ac; 494 unsigned long flim; 474 unsigned long flim; 495 const struct cred *orig_cred; 475 const struct cred *orig_cred; 496 struct file *file = acct->file; 476 struct file *file = acct->file; 497 477 498 /* 478 /* 499 * Accounting records are not subject 479 * Accounting records are not subject to resource limits. 500 */ 480 */ 501 flim = rlimit(RLIMIT_FSIZE); !! 481 flim = current->signal->rlim[RLIMIT_FSIZE].rlim_cur; 502 current->signal->rlim[RLIMIT_FSIZE].rl 482 current->signal->rlim[RLIMIT_FSIZE].rlim_cur = RLIM_INFINITY; 503 /* Perform file operations on behalf o 483 /* Perform file operations on behalf of whoever enabled accounting */ 504 orig_cred = override_creds(file->f_cre 484 orig_cred = override_creds(file->f_cred); 505 485 506 /* 486 /* 507 * First check to see if there is enou 487 * First check to see if there is enough free_space to continue 508 * the process accounting system. 488 * the process accounting system. 509 */ 489 */ 510 if (!check_free_space(acct)) 490 if (!check_free_space(acct)) 511 goto out; 491 goto out; 512 492 513 fill_ac(&ac); 493 fill_ac(&ac); 514 /* we really need to bite the bullet a 494 /* we really need to bite the bullet and change layout */ 515 ac.ac_uid = from_kuid_munged(file->f_c 495 ac.ac_uid = from_kuid_munged(file->f_cred->user_ns, orig_cred->uid); 516 ac.ac_gid = from_kgid_munged(file->f_c 496 ac.ac_gid = from_kgid_munged(file->f_cred->user_ns, orig_cred->gid); 517 #if ACCT_VERSION == 1 || ACCT_VERSION == 2 497 #if ACCT_VERSION == 1 || ACCT_VERSION == 2 518 /* backward-compatible 16 bit fields * 498 /* backward-compatible 16 bit fields */ 519 ac.ac_uid16 = ac.ac_uid; 499 ac.ac_uid16 = ac.ac_uid; 520 ac.ac_gid16 = ac.ac_gid; 500 ac.ac_gid16 = ac.ac_gid; 521 #elif ACCT_VERSION == 3 !! 501 #endif >> 502 #if ACCT_VERSION == 3 522 { 503 { 523 struct pid_namespace *ns = acc 504 struct pid_namespace *ns = acct->ns; 524 505 525 ac.ac_pid = task_tgid_nr_ns(cu 506 ac.ac_pid = task_tgid_nr_ns(current, ns); 526 rcu_read_lock(); 507 rcu_read_lock(); 527 ac.ac_ppid = task_tgid_nr_ns(r 508 ac.ac_ppid = task_tgid_nr_ns(rcu_dereference(current->real_parent), 528 n 509 ns); 529 rcu_read_unlock(); 510 rcu_read_unlock(); 530 } 511 } 531 #endif 512 #endif 532 /* 513 /* 533 * Get freeze protection. If the fs is 514 * Get freeze protection. If the fs is frozen, just skip the write 534 * as we could deadlock the system oth 515 * as we could deadlock the system otherwise. 535 */ 516 */ 536 if (file_start_write_trylock(file)) { 517 if (file_start_write_trylock(file)) { 537 /* it's been opened O_APPEND, 518 /* it's been opened O_APPEND, so position is irrelevant */ 538 loff_t pos = 0; 519 loff_t pos = 0; 539 __kernel_write(file, &ac, size 520 __kernel_write(file, &ac, sizeof(acct_t), &pos); 540 file_end_write(file); 521 file_end_write(file); 541 } 522 } 542 out: 523 out: 543 current->signal->rlim[RLIMIT_FSIZE].rl 524 current->signal->rlim[RLIMIT_FSIZE].rlim_cur = flim; 544 revert_creds(orig_cred); 525 revert_creds(orig_cred); 545 } 526 } 546 527 547 /** 528 /** 548 * acct_collect - collect accounting informati 529 * acct_collect - collect accounting information into pacct_struct 549 * @exitcode: task exit code 530 * @exitcode: task exit code 550 * @group_dead: not 0, if this thread is the l 531 * @group_dead: not 0, if this thread is the last one in the process. 551 */ 532 */ 552 void acct_collect(long exitcode, int group_dea 533 void acct_collect(long exitcode, int group_dead) 553 { 534 { 554 struct pacct_struct *pacct = ¤t- 535 struct pacct_struct *pacct = ¤t->signal->pacct; 555 u64 utime, stime; 536 u64 utime, stime; 556 unsigned long vsize = 0; 537 unsigned long vsize = 0; 557 538 558 if (group_dead && current->mm) { 539 if (group_dead && current->mm) { 559 struct mm_struct *mm = current << 560 VMA_ITERATOR(vmi, mm, 0); << 561 struct vm_area_struct *vma; 540 struct vm_area_struct *vma; 562 541 563 mmap_read_lock(mm); !! 542 down_read(¤t->mm->mmap_sem); 564 for_each_vma(vmi, vma) !! 543 vma = current->mm->mmap; >> 544 while (vma) { 565 vsize += vma->vm_end - 545 vsize += vma->vm_end - vma->vm_start; 566 mmap_read_unlock(mm); !! 546 vma = vma->vm_next; >> 547 } >> 548 up_read(¤t->mm->mmap_sem); 567 } 549 } 568 550 569 spin_lock_irq(¤t->sighand->siglo 551 spin_lock_irq(¤t->sighand->siglock); 570 if (group_dead) 552 if (group_dead) 571 pacct->ac_mem = vsize / 1024; 553 pacct->ac_mem = vsize / 1024; 572 if (thread_group_leader(current)) { 554 if (thread_group_leader(current)) { 573 pacct->ac_exitcode = exitcode; 555 pacct->ac_exitcode = exitcode; 574 if (current->flags & PF_FORKNO 556 if (current->flags & PF_FORKNOEXEC) 575 pacct->ac_flag |= AFOR 557 pacct->ac_flag |= AFORK; 576 } 558 } 577 if (current->flags & PF_SUPERPRIV) 559 if (current->flags & PF_SUPERPRIV) 578 pacct->ac_flag |= ASU; 560 pacct->ac_flag |= ASU; 579 if (current->flags & PF_DUMPCORE) 561 if (current->flags & PF_DUMPCORE) 580 pacct->ac_flag |= ACORE; 562 pacct->ac_flag |= ACORE; 581 if (current->flags & PF_SIGNALED) 563 if (current->flags & PF_SIGNALED) 582 pacct->ac_flag |= AXSIG; 564 pacct->ac_flag |= AXSIG; 583 565 584 task_cputime(current, &utime, &stime); 566 task_cputime(current, &utime, &stime); 585 pacct->ac_utime += utime; 567 pacct->ac_utime += utime; 586 pacct->ac_stime += stime; 568 pacct->ac_stime += stime; 587 pacct->ac_minflt += current->min_flt; 569 pacct->ac_minflt += current->min_flt; 588 pacct->ac_majflt += current->maj_flt; 570 pacct->ac_majflt += current->maj_flt; 589 spin_unlock_irq(¤t->sighand->sig 571 spin_unlock_irq(¤t->sighand->siglock); 590 } 572 } 591 573 592 static void slow_acct_process(struct pid_names 574 static void slow_acct_process(struct pid_namespace *ns) 593 { 575 { 594 for ( ; ns; ns = ns->parent) { 576 for ( ; ns; ns = ns->parent) { 595 struct bsd_acct_struct *acct = 577 struct bsd_acct_struct *acct = acct_get(ns); 596 if (acct) { 578 if (acct) { 597 do_acct_process(acct); 579 do_acct_process(acct); 598 mutex_unlock(&acct->lo 580 mutex_unlock(&acct->lock); 599 acct_put(acct); 581 acct_put(acct); 600 } 582 } 601 } 583 } 602 } 584 } 603 585 604 /** 586 /** 605 * acct_process - handles process accounting f !! 587 * acct_process >> 588 * >> 589 * handles process accounting for an exiting task 606 */ 590 */ 607 void acct_process(void) 591 void acct_process(void) 608 { 592 { 609 struct pid_namespace *ns; 593 struct pid_namespace *ns; 610 594 611 /* 595 /* 612 * This loop is safe lockless, since c 596 * This loop is safe lockless, since current is still 613 * alive and holds its namespace, whic 597 * alive and holds its namespace, which in turn holds 614 * its parent. 598 * its parent. 615 */ 599 */ 616 for (ns = task_active_pid_ns(current); 600 for (ns = task_active_pid_ns(current); ns != NULL; ns = ns->parent) { 617 if (ns->bacct) 601 if (ns->bacct) 618 break; 602 break; 619 } 603 } 620 if (unlikely(ns)) 604 if (unlikely(ns)) 621 slow_acct_process(ns); 605 slow_acct_process(ns); 622 } 606 } 623 607
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.