1 // SPDX-License-Identifier: GPL-2.0-or-later 1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* audit.c -- Auditing support 2 /* audit.c -- Auditing support 3 * Gateway between the kernel (e.g., selinux) 3 * Gateway between the kernel (e.g., selinux) and the user-space audit daemon. 4 * System-call specific features have moved to 4 * System-call specific features have moved to auditsc.c 5 * 5 * 6 * Copyright 2003-2007 Red Hat Inc., Durham, N 6 * Copyright 2003-2007 Red Hat Inc., Durham, North Carolina. 7 * All Rights Reserved. 7 * All Rights Reserved. 8 * 8 * 9 * Written by Rickard E. (Rik) Faith <faith@re 9 * Written by Rickard E. (Rik) Faith <faith@redhat.com> 10 * 10 * 11 * Goals: 1) Integrate fully with Security Mod 11 * Goals: 1) Integrate fully with Security Modules. 12 * 2) Minimal run-time overhead: 12 * 2) Minimal run-time overhead: 13 * a) Minimal when syscall auditing 13 * a) Minimal when syscall auditing is disabled (audit_enable=0). 14 * b) Small when syscall auditing is 14 * b) Small when syscall auditing is enabled and no audit record 15 * is generated (defer as much wo 15 * is generated (defer as much work as possible to record 16 * generation time): 16 * generation time): 17 * i) context is allocated, 17 * i) context is allocated, 18 * ii) names from getname are sto 18 * ii) names from getname are stored without a copy, and 19 * iii) inode information stored 19 * iii) inode information stored from path_lookup. 20 * 3) Ability to disable syscall auditi 20 * 3) Ability to disable syscall auditing at boot time (audit=0). 21 * 4) Usable by other parts of the kern 21 * 4) Usable by other parts of the kernel (if audit_log* is called, 22 * then a syscall record will be gen 22 * then a syscall record will be generated automatically for the 23 * current syscall). 23 * current syscall). 24 * 5) Netlink interface to user-space. 24 * 5) Netlink interface to user-space. 25 * 6) Support low-overhead kernel-based 25 * 6) Support low-overhead kernel-based filtering to minimize the 26 * information that must be passed t 26 * information that must be passed to user-space. 27 * 27 * 28 * Audit userspace, documentation, tests, and 28 * Audit userspace, documentation, tests, and bug/issue trackers: 29 * https://github.com/linux-audit 29 * https://github.com/linux-audit 30 */ 30 */ 31 31 32 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 32 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 33 33 34 #include <linux/file.h> 34 #include <linux/file.h> 35 #include <linux/init.h> 35 #include <linux/init.h> 36 #include <linux/types.h> 36 #include <linux/types.h> 37 #include <linux/atomic.h> 37 #include <linux/atomic.h> 38 #include <linux/mm.h> 38 #include <linux/mm.h> 39 #include <linux/export.h> 39 #include <linux/export.h> 40 #include <linux/slab.h> 40 #include <linux/slab.h> 41 #include <linux/err.h> 41 #include <linux/err.h> 42 #include <linux/kthread.h> 42 #include <linux/kthread.h> 43 #include <linux/kernel.h> 43 #include <linux/kernel.h> 44 #include <linux/syscalls.h> 44 #include <linux/syscalls.h> 45 #include <linux/spinlock.h> 45 #include <linux/spinlock.h> 46 #include <linux/rcupdate.h> 46 #include <linux/rcupdate.h> 47 #include <linux/mutex.h> 47 #include <linux/mutex.h> 48 #include <linux/gfp.h> 48 #include <linux/gfp.h> 49 #include <linux/pid.h> 49 #include <linux/pid.h> 50 50 51 #include <linux/audit.h> 51 #include <linux/audit.h> 52 52 53 #include <net/sock.h> 53 #include <net/sock.h> 54 #include <net/netlink.h> 54 #include <net/netlink.h> 55 #include <linux/skbuff.h> 55 #include <linux/skbuff.h> >> 56 #ifdef CONFIG_SECURITY 56 #include <linux/security.h> 57 #include <linux/security.h> >> 58 #endif 57 #include <linux/freezer.h> 59 #include <linux/freezer.h> 58 #include <linux/pid_namespace.h> 60 #include <linux/pid_namespace.h> 59 #include <net/netns/generic.h> 61 #include <net/netns/generic.h> 60 62 61 #include "audit.h" 63 #include "audit.h" 62 64 63 /* No auditing will take place until audit_ini 65 /* No auditing will take place until audit_initialized == AUDIT_INITIALIZED. 64 * (Initialization happens after skb_init is c 66 * (Initialization happens after skb_init is called.) */ 65 #define AUDIT_DISABLED -1 67 #define AUDIT_DISABLED -1 66 #define AUDIT_UNINITIALIZED 0 68 #define AUDIT_UNINITIALIZED 0 67 #define AUDIT_INITIALIZED 1 69 #define AUDIT_INITIALIZED 1 68 static int audit_initialized = AUDIT_UNIN 70 static int audit_initialized = AUDIT_UNINITIALIZED; 69 71 70 u32 audit_enabled = AUDIT_OFF; 72 u32 audit_enabled = AUDIT_OFF; 71 bool audit_ever_enabled = !!AUDIT_O 73 bool audit_ever_enabled = !!AUDIT_OFF; 72 74 73 EXPORT_SYMBOL_GPL(audit_enabled); 75 EXPORT_SYMBOL_GPL(audit_enabled); 74 76 75 /* Default state when kernel boots without any 77 /* Default state when kernel boots without any parameters. */ 76 static u32 audit_default = AUDIT_OFF; 78 static u32 audit_default = AUDIT_OFF; 77 79 78 /* If auditing cannot proceed, audit_failure s 80 /* If auditing cannot proceed, audit_failure selects what happens. */ 79 static u32 audit_failure = AUDIT_FAIL_PRI 81 static u32 audit_failure = AUDIT_FAIL_PRINTK; 80 82 81 /* private audit network namespace index */ 83 /* private audit network namespace index */ 82 static unsigned int audit_net_id; 84 static unsigned int audit_net_id; 83 85 84 /** 86 /** 85 * struct audit_net - audit private network na 87 * struct audit_net - audit private network namespace data 86 * @sk: communication socket 88 * @sk: communication socket 87 */ 89 */ 88 struct audit_net { 90 struct audit_net { 89 struct sock *sk; 91 struct sock *sk; 90 }; 92 }; 91 93 92 /** 94 /** 93 * struct auditd_connection - kernel/auditd co 95 * struct auditd_connection - kernel/auditd connection state 94 * @pid: auditd PID 96 * @pid: auditd PID 95 * @portid: netlink portid 97 * @portid: netlink portid 96 * @net: the associated network namespace 98 * @net: the associated network namespace 97 * @rcu: RCU head 99 * @rcu: RCU head 98 * 100 * 99 * Description: 101 * Description: 100 * This struct is RCU protected; you must eith 102 * This struct is RCU protected; you must either hold the RCU lock for reading 101 * or the associated spinlock for writing. 103 * or the associated spinlock for writing. 102 */ 104 */ 103 struct auditd_connection { 105 struct auditd_connection { 104 struct pid *pid; 106 struct pid *pid; 105 u32 portid; 107 u32 portid; 106 struct net *net; 108 struct net *net; 107 struct rcu_head rcu; 109 struct rcu_head rcu; 108 }; 110 }; 109 static struct auditd_connection __rcu *auditd_ 111 static struct auditd_connection __rcu *auditd_conn; 110 static DEFINE_SPINLOCK(auditd_conn_lock); 112 static DEFINE_SPINLOCK(auditd_conn_lock); 111 113 112 /* If audit_rate_limit is non-zero, limit the 114 /* If audit_rate_limit is non-zero, limit the rate of sending audit records 113 * to that number per second. This prevents D 115 * to that number per second. This prevents DoS attacks, but results in 114 * audit records being dropped. */ 116 * audit records being dropped. */ 115 static u32 audit_rate_limit; 117 static u32 audit_rate_limit; 116 118 117 /* Number of outstanding audit_buffers allowed 119 /* Number of outstanding audit_buffers allowed. 118 * When set to zero, this means unlimited. */ 120 * When set to zero, this means unlimited. */ 119 static u32 audit_backlog_limit = 64; 121 static u32 audit_backlog_limit = 64; 120 #define AUDIT_BACKLOG_WAIT_TIME (60 * HZ) 122 #define AUDIT_BACKLOG_WAIT_TIME (60 * HZ) 121 static u32 audit_backlog_wait_time = AUDI 123 static u32 audit_backlog_wait_time = AUDIT_BACKLOG_WAIT_TIME; 122 124 123 /* The identity of the user shutting down the 125 /* The identity of the user shutting down the audit system. */ 124 static kuid_t audit_sig_uid = INVALI 126 static kuid_t audit_sig_uid = INVALID_UID; 125 static pid_t audit_sig_pid = -1; 127 static pid_t audit_sig_pid = -1; 126 static u32 audit_sig_sid; 128 static u32 audit_sig_sid; 127 129 128 /* Records can be lost in several ways: 130 /* Records can be lost in several ways: 129 0) [suppressed in audit_alloc] 131 0) [suppressed in audit_alloc] 130 1) out of memory in audit_log_start [kmallo 132 1) out of memory in audit_log_start [kmalloc of struct audit_buffer] 131 2) out of memory in audit_log_move [alloc_s 133 2) out of memory in audit_log_move [alloc_skb] 132 3) suppressed due to audit_rate_limit 134 3) suppressed due to audit_rate_limit 133 4) suppressed due to audit_backlog_limit 135 4) suppressed due to audit_backlog_limit 134 */ 136 */ 135 static atomic_t audit_lost = ATOMIC_INIT(0); 137 static atomic_t audit_lost = ATOMIC_INIT(0); 136 138 137 /* Monotonically increasing sum of time the ke 139 /* Monotonically increasing sum of time the kernel has spent 138 * waiting while the backlog limit is exceeded 140 * waiting while the backlog limit is exceeded. 139 */ 141 */ 140 static atomic_t audit_backlog_wait_time_actual 142 static atomic_t audit_backlog_wait_time_actual = ATOMIC_INIT(0); 141 143 142 /* Hash for inode-based rules */ 144 /* Hash for inode-based rules */ 143 struct list_head audit_inode_hash[AUDIT_INODE_ 145 struct list_head audit_inode_hash[AUDIT_INODE_BUCKETS]; 144 146 145 static struct kmem_cache *audit_buffer_cache; 147 static struct kmem_cache *audit_buffer_cache; 146 148 147 /* queue msgs to send via kauditd_task */ 149 /* queue msgs to send via kauditd_task */ 148 static struct sk_buff_head audit_queue; 150 static struct sk_buff_head audit_queue; 149 /* queue msgs due to temporary unicast send pr 151 /* queue msgs due to temporary unicast send problems */ 150 static struct sk_buff_head audit_retry_queue; 152 static struct sk_buff_head audit_retry_queue; 151 /* queue msgs waiting for new auditd connectio 153 /* queue msgs waiting for new auditd connection */ 152 static struct sk_buff_head audit_hold_queue; 154 static struct sk_buff_head audit_hold_queue; 153 155 154 /* queue servicing thread */ 156 /* queue servicing thread */ 155 static struct task_struct *kauditd_task; 157 static struct task_struct *kauditd_task; 156 static DECLARE_WAIT_QUEUE_HEAD(kauditd_wait); 158 static DECLARE_WAIT_QUEUE_HEAD(kauditd_wait); 157 159 158 /* waitqueue for callers who are blocked on th 160 /* waitqueue for callers who are blocked on the audit backlog */ 159 static DECLARE_WAIT_QUEUE_HEAD(audit_backlog_w 161 static DECLARE_WAIT_QUEUE_HEAD(audit_backlog_wait); 160 162 161 static struct audit_features af = {.vers = AUD 163 static struct audit_features af = {.vers = AUDIT_FEATURE_VERSION, 162 .mask = -1, 164 .mask = -1, 163 .features = 165 .features = 0, 164 .lock = 0,} 166 .lock = 0,}; 165 167 166 static char *audit_feature_names[2] = { 168 static char *audit_feature_names[2] = { 167 "only_unset_loginuid", 169 "only_unset_loginuid", 168 "loginuid_immutable", 170 "loginuid_immutable", 169 }; 171 }; 170 172 171 /** 173 /** 172 * struct audit_ctl_mutex - serialize requests 174 * struct audit_ctl_mutex - serialize requests from userspace 173 * @lock: the mutex used for locking 175 * @lock: the mutex used for locking 174 * @owner: the task which owns the lock 176 * @owner: the task which owns the lock 175 * 177 * 176 * Description: 178 * Description: 177 * This is the lock struct used to ensure we o 179 * This is the lock struct used to ensure we only process userspace requests 178 * in an orderly fashion. We can't simply use 180 * in an orderly fashion. We can't simply use a mutex/lock here because we 179 * need to track lock ownership so we don't en 181 * need to track lock ownership so we don't end up blocking the lock owner in 180 * audit_log_start() or similar. 182 * audit_log_start() or similar. 181 */ 183 */ 182 static struct audit_ctl_mutex { 184 static struct audit_ctl_mutex { 183 struct mutex lock; 185 struct mutex lock; 184 void *owner; 186 void *owner; 185 } audit_cmd_mutex; 187 } audit_cmd_mutex; 186 188 187 /* AUDIT_BUFSIZ is the size of the temporary b 189 /* AUDIT_BUFSIZ is the size of the temporary buffer used for formatting 188 * audit records. Since printk uses a 1024 by 190 * audit records. Since printk uses a 1024 byte buffer, this buffer 189 * should be at least that large. */ 191 * should be at least that large. */ 190 #define AUDIT_BUFSIZ 1024 192 #define AUDIT_BUFSIZ 1024 191 193 192 /* The audit_buffer is used when formatting an 194 /* The audit_buffer is used when formatting an audit record. The caller 193 * locks briefly to get the record off the fre 195 * locks briefly to get the record off the freelist or to allocate the 194 * buffer, and locks briefly to send the buffe 196 * buffer, and locks briefly to send the buffer to the netlink layer or 195 * to place it on a transmit queue. Multiple 197 * to place it on a transmit queue. Multiple audit_buffers can be in 196 * use simultaneously. */ 198 * use simultaneously. */ 197 struct audit_buffer { 199 struct audit_buffer { 198 struct sk_buff *skb; /* for 200 struct sk_buff *skb; /* formatted skb ready to send */ 199 struct audit_context *ctx; /* NUL 201 struct audit_context *ctx; /* NULL or associated context */ 200 gfp_t gfp_mask; 202 gfp_t gfp_mask; 201 }; 203 }; 202 204 203 struct audit_reply { 205 struct audit_reply { 204 __u32 portid; 206 __u32 portid; 205 struct net *net; 207 struct net *net; 206 struct sk_buff *skb; 208 struct sk_buff *skb; 207 }; 209 }; 208 210 209 /** 211 /** 210 * auditd_test_task - Check to see if a given 212 * auditd_test_task - Check to see if a given task is an audit daemon 211 * @task: the task to check 213 * @task: the task to check 212 * 214 * 213 * Description: 215 * Description: 214 * Return 1 if the task is a registered audit 216 * Return 1 if the task is a registered audit daemon, 0 otherwise. 215 */ 217 */ 216 int auditd_test_task(struct task_struct *task) 218 int auditd_test_task(struct task_struct *task) 217 { 219 { 218 int rc; 220 int rc; 219 struct auditd_connection *ac; 221 struct auditd_connection *ac; 220 222 221 rcu_read_lock(); 223 rcu_read_lock(); 222 ac = rcu_dereference(auditd_conn); 224 ac = rcu_dereference(auditd_conn); 223 rc = (ac && ac->pid == task_tgid(task) 225 rc = (ac && ac->pid == task_tgid(task) ? 1 : 0); 224 rcu_read_unlock(); 226 rcu_read_unlock(); 225 227 226 return rc; 228 return rc; 227 } 229 } 228 230 229 /** 231 /** 230 * audit_ctl_lock - Take the audit control loc 232 * audit_ctl_lock - Take the audit control lock 231 */ 233 */ 232 void audit_ctl_lock(void) 234 void audit_ctl_lock(void) 233 { 235 { 234 mutex_lock(&audit_cmd_mutex.lock); 236 mutex_lock(&audit_cmd_mutex.lock); 235 audit_cmd_mutex.owner = current; 237 audit_cmd_mutex.owner = current; 236 } 238 } 237 239 238 /** 240 /** 239 * audit_ctl_unlock - Drop the audit control l 241 * audit_ctl_unlock - Drop the audit control lock 240 */ 242 */ 241 void audit_ctl_unlock(void) 243 void audit_ctl_unlock(void) 242 { 244 { 243 audit_cmd_mutex.owner = NULL; 245 audit_cmd_mutex.owner = NULL; 244 mutex_unlock(&audit_cmd_mutex.lock); 246 mutex_unlock(&audit_cmd_mutex.lock); 245 } 247 } 246 248 247 /** 249 /** 248 * audit_ctl_owner_current - Test to see if th 250 * audit_ctl_owner_current - Test to see if the current task owns the lock 249 * 251 * 250 * Description: 252 * Description: 251 * Return true if the current task owns the au 253 * Return true if the current task owns the audit control lock, false if it 252 * doesn't own the lock. 254 * doesn't own the lock. 253 */ 255 */ 254 static bool audit_ctl_owner_current(void) 256 static bool audit_ctl_owner_current(void) 255 { 257 { 256 return (current == audit_cmd_mutex.own 258 return (current == audit_cmd_mutex.owner); 257 } 259 } 258 260 259 /** 261 /** 260 * auditd_pid_vnr - Return the auditd PID rela 262 * auditd_pid_vnr - Return the auditd PID relative to the namespace 261 * 263 * 262 * Description: 264 * Description: 263 * Returns the PID in relation to the namespac 265 * Returns the PID in relation to the namespace, 0 on failure. 264 */ 266 */ 265 static pid_t auditd_pid_vnr(void) 267 static pid_t auditd_pid_vnr(void) 266 { 268 { 267 pid_t pid; 269 pid_t pid; 268 const struct auditd_connection *ac; 270 const struct auditd_connection *ac; 269 271 270 rcu_read_lock(); 272 rcu_read_lock(); 271 ac = rcu_dereference(auditd_conn); 273 ac = rcu_dereference(auditd_conn); 272 if (!ac || !ac->pid) 274 if (!ac || !ac->pid) 273 pid = 0; 275 pid = 0; 274 else 276 else 275 pid = pid_vnr(ac->pid); 277 pid = pid_vnr(ac->pid); 276 rcu_read_unlock(); 278 rcu_read_unlock(); 277 279 278 return pid; 280 return pid; 279 } 281 } 280 282 281 /** 283 /** 282 * audit_get_sk - Return the audit socket for 284 * audit_get_sk - Return the audit socket for the given network namespace 283 * @net: the destination network namespace 285 * @net: the destination network namespace 284 * 286 * 285 * Description: 287 * Description: 286 * Returns the sock pointer if valid, NULL oth 288 * Returns the sock pointer if valid, NULL otherwise. The caller must ensure 287 * that a reference is held for the network na 289 * that a reference is held for the network namespace while the sock is in use. 288 */ 290 */ 289 static struct sock *audit_get_sk(const struct 291 static struct sock *audit_get_sk(const struct net *net) 290 { 292 { 291 struct audit_net *aunet; 293 struct audit_net *aunet; 292 294 293 if (!net) 295 if (!net) 294 return NULL; 296 return NULL; 295 297 296 aunet = net_generic(net, audit_net_id) 298 aunet = net_generic(net, audit_net_id); 297 return aunet->sk; 299 return aunet->sk; 298 } 300 } 299 301 300 void audit_panic(const char *message) 302 void audit_panic(const char *message) 301 { 303 { 302 switch (audit_failure) { 304 switch (audit_failure) { 303 case AUDIT_FAIL_SILENT: 305 case AUDIT_FAIL_SILENT: 304 break; 306 break; 305 case AUDIT_FAIL_PRINTK: 307 case AUDIT_FAIL_PRINTK: 306 if (printk_ratelimit()) 308 if (printk_ratelimit()) 307 pr_err("%s\n", message 309 pr_err("%s\n", message); 308 break; 310 break; 309 case AUDIT_FAIL_PANIC: 311 case AUDIT_FAIL_PANIC: 310 panic("audit: %s\n", message); 312 panic("audit: %s\n", message); 311 break; 313 break; 312 } 314 } 313 } 315 } 314 316 315 static inline int audit_rate_check(void) 317 static inline int audit_rate_check(void) 316 { 318 { 317 static unsigned long last_check = 0 319 static unsigned long last_check = 0; 318 static int messages = 0 320 static int messages = 0; 319 static DEFINE_SPINLOCK(lock); 321 static DEFINE_SPINLOCK(lock); 320 unsigned long flags; 322 unsigned long flags; 321 unsigned long now; 323 unsigned long now; >> 324 unsigned long elapsed; 322 int retval = 0 325 int retval = 0; 323 326 324 if (!audit_rate_limit) !! 327 if (!audit_rate_limit) return 1; 325 return 1; << 326 328 327 spin_lock_irqsave(&lock, flags); 329 spin_lock_irqsave(&lock, flags); 328 if (++messages < audit_rate_limit) { 330 if (++messages < audit_rate_limit) { 329 retval = 1; 331 retval = 1; 330 } else { 332 } else { 331 now = jiffies; !! 333 now = jiffies; 332 if (time_after(now, last_check !! 334 elapsed = now - last_check; >> 335 if (elapsed > HZ) { 333 last_check = now; 336 last_check = now; 334 messages = 0; 337 messages = 0; 335 retval = 1; 338 retval = 1; 336 } 339 } 337 } 340 } 338 spin_unlock_irqrestore(&lock, flags); 341 spin_unlock_irqrestore(&lock, flags); 339 342 340 return retval; 343 return retval; 341 } 344 } 342 345 343 /** 346 /** 344 * audit_log_lost - conditionally log lost aud 347 * audit_log_lost - conditionally log lost audit message event 345 * @message: the message stating reason for lo 348 * @message: the message stating reason for lost audit message 346 * 349 * 347 * Emit at least 1 message per second, even if 350 * Emit at least 1 message per second, even if audit_rate_check is 348 * throttling. 351 * throttling. 349 * Always increment the lost messages counter. 352 * Always increment the lost messages counter. 350 */ 353 */ 351 void audit_log_lost(const char *message) 354 void audit_log_lost(const char *message) 352 { 355 { 353 static unsigned long last_msg = 0; 356 static unsigned long last_msg = 0; 354 static DEFINE_SPINLOCK(lock); 357 static DEFINE_SPINLOCK(lock); 355 unsigned long flags; 358 unsigned long flags; 356 unsigned long now; 359 unsigned long now; 357 int print; 360 int print; 358 361 359 atomic_inc(&audit_lost); 362 atomic_inc(&audit_lost); 360 363 361 print = (audit_failure == AUDIT_FAIL_P 364 print = (audit_failure == AUDIT_FAIL_PANIC || !audit_rate_limit); 362 365 363 if (!print) { 366 if (!print) { 364 spin_lock_irqsave(&lock, flags 367 spin_lock_irqsave(&lock, flags); 365 now = jiffies; 368 now = jiffies; 366 if (time_after(now, last_msg + !! 369 if (now - last_msg > HZ) { 367 print = 1; 370 print = 1; 368 last_msg = now; 371 last_msg = now; 369 } 372 } 370 spin_unlock_irqrestore(&lock, 373 spin_unlock_irqrestore(&lock, flags); 371 } 374 } 372 375 373 if (print) { 376 if (print) { 374 if (printk_ratelimit()) 377 if (printk_ratelimit()) 375 pr_warn("audit_lost=%u 378 pr_warn("audit_lost=%u audit_rate_limit=%u audit_backlog_limit=%u\n", 376 atomic_read(&a 379 atomic_read(&audit_lost), 377 audit_rate_lim 380 audit_rate_limit, 378 audit_backlog_ 381 audit_backlog_limit); 379 audit_panic(message); 382 audit_panic(message); 380 } 383 } 381 } 384 } 382 385 383 static int audit_log_config_change(char *funct 386 static int audit_log_config_change(char *function_name, u32 new, u32 old, 384 int allow_c 387 int allow_changes) 385 { 388 { 386 struct audit_buffer *ab; 389 struct audit_buffer *ab; 387 int rc = 0; 390 int rc = 0; 388 391 389 ab = audit_log_start(audit_context(), 392 ab = audit_log_start(audit_context(), GFP_KERNEL, AUDIT_CONFIG_CHANGE); 390 if (unlikely(!ab)) 393 if (unlikely(!ab)) 391 return rc; 394 return rc; 392 audit_log_format(ab, "op=set %s=%u old 395 audit_log_format(ab, "op=set %s=%u old=%u ", function_name, new, old); 393 audit_log_session_info(ab); 396 audit_log_session_info(ab); 394 rc = audit_log_task_context(ab); 397 rc = audit_log_task_context(ab); 395 if (rc) 398 if (rc) 396 allow_changes = 0; /* Somethin 399 allow_changes = 0; /* Something weird, deny request */ 397 audit_log_format(ab, " res=%d", allow_ 400 audit_log_format(ab, " res=%d", allow_changes); 398 audit_log_end(ab); 401 audit_log_end(ab); 399 return rc; 402 return rc; 400 } 403 } 401 404 402 static int audit_do_config_change(char *functi 405 static int audit_do_config_change(char *function_name, u32 *to_change, u32 new) 403 { 406 { 404 int allow_changes, rc = 0; 407 int allow_changes, rc = 0; 405 u32 old = *to_change; 408 u32 old = *to_change; 406 409 407 /* check if we are locked */ 410 /* check if we are locked */ 408 if (audit_enabled == AUDIT_LOCKED) 411 if (audit_enabled == AUDIT_LOCKED) 409 allow_changes = 0; 412 allow_changes = 0; 410 else 413 else 411 allow_changes = 1; 414 allow_changes = 1; 412 415 413 if (audit_enabled != AUDIT_OFF) { 416 if (audit_enabled != AUDIT_OFF) { 414 rc = audit_log_config_change(f 417 rc = audit_log_config_change(function_name, new, old, allow_changes); 415 if (rc) 418 if (rc) 416 allow_changes = 0; 419 allow_changes = 0; 417 } 420 } 418 421 419 /* If we are allowed, make the change 422 /* If we are allowed, make the change */ 420 if (allow_changes == 1) 423 if (allow_changes == 1) 421 *to_change = new; 424 *to_change = new; 422 /* Not allowed, update reason */ 425 /* Not allowed, update reason */ 423 else if (rc == 0) 426 else if (rc == 0) 424 rc = -EPERM; 427 rc = -EPERM; 425 return rc; 428 return rc; 426 } 429 } 427 430 428 static int audit_set_rate_limit(u32 limit) 431 static int audit_set_rate_limit(u32 limit) 429 { 432 { 430 return audit_do_config_change("audit_r 433 return audit_do_config_change("audit_rate_limit", &audit_rate_limit, limit); 431 } 434 } 432 435 433 static int audit_set_backlog_limit(u32 limit) 436 static int audit_set_backlog_limit(u32 limit) 434 { 437 { 435 return audit_do_config_change("audit_b 438 return audit_do_config_change("audit_backlog_limit", &audit_backlog_limit, limit); 436 } 439 } 437 440 438 static int audit_set_backlog_wait_time(u32 tim 441 static int audit_set_backlog_wait_time(u32 timeout) 439 { 442 { 440 return audit_do_config_change("audit_b 443 return audit_do_config_change("audit_backlog_wait_time", 441 &audit_b 444 &audit_backlog_wait_time, timeout); 442 } 445 } 443 446 444 static int audit_set_enabled(u32 state) 447 static int audit_set_enabled(u32 state) 445 { 448 { 446 int rc; 449 int rc; 447 if (state > AUDIT_LOCKED) 450 if (state > AUDIT_LOCKED) 448 return -EINVAL; 451 return -EINVAL; 449 452 450 rc = audit_do_config_change("audit_en 453 rc = audit_do_config_change("audit_enabled", &audit_enabled, state); 451 if (!rc) 454 if (!rc) 452 audit_ever_enabled |= !!state; 455 audit_ever_enabled |= !!state; 453 456 454 return rc; 457 return rc; 455 } 458 } 456 459 457 static int audit_set_failure(u32 state) 460 static int audit_set_failure(u32 state) 458 { 461 { 459 if (state != AUDIT_FAIL_SILENT 462 if (state != AUDIT_FAIL_SILENT 460 && state != AUDIT_FAIL_PRINTK 463 && state != AUDIT_FAIL_PRINTK 461 && state != AUDIT_FAIL_PANIC) 464 && state != AUDIT_FAIL_PANIC) 462 return -EINVAL; 465 return -EINVAL; 463 466 464 return audit_do_config_change("audit_f 467 return audit_do_config_change("audit_failure", &audit_failure, state); 465 } 468 } 466 469 467 /** 470 /** 468 * auditd_conn_free - RCU helper to release an 471 * auditd_conn_free - RCU helper to release an auditd connection struct 469 * @rcu: RCU head 472 * @rcu: RCU head 470 * 473 * 471 * Description: 474 * Description: 472 * Drop any references inside the auditd conne 475 * Drop any references inside the auditd connection tracking struct and free 473 * the memory. 476 * the memory. 474 */ 477 */ 475 static void auditd_conn_free(struct rcu_head * 478 static void auditd_conn_free(struct rcu_head *rcu) 476 { 479 { 477 struct auditd_connection *ac; 480 struct auditd_connection *ac; 478 481 479 ac = container_of(rcu, struct auditd_c 482 ac = container_of(rcu, struct auditd_connection, rcu); 480 put_pid(ac->pid); 483 put_pid(ac->pid); 481 put_net(ac->net); 484 put_net(ac->net); 482 kfree(ac); 485 kfree(ac); 483 } 486 } 484 487 485 /** 488 /** 486 * auditd_set - Set/Reset the auditd connectio 489 * auditd_set - Set/Reset the auditd connection state 487 * @pid: auditd PID 490 * @pid: auditd PID 488 * @portid: auditd netlink portid 491 * @portid: auditd netlink portid 489 * @net: auditd network namespace pointer 492 * @net: auditd network namespace pointer 490 * @skb: the netlink command from the audit da 493 * @skb: the netlink command from the audit daemon 491 * @ack: netlink ack flag, cleared if ack'd he 494 * @ack: netlink ack flag, cleared if ack'd here 492 * 495 * 493 * Description: 496 * Description: 494 * This function will obtain and drop network 497 * This function will obtain and drop network namespace references as 495 * necessary. Returns zero on success, negati 498 * necessary. Returns zero on success, negative values on failure. 496 */ 499 */ 497 static int auditd_set(struct pid *pid, u32 por 500 static int auditd_set(struct pid *pid, u32 portid, struct net *net, 498 struct sk_buff *skb, boo 501 struct sk_buff *skb, bool *ack) 499 { 502 { 500 unsigned long flags; 503 unsigned long flags; 501 struct auditd_connection *ac_old, *ac_ 504 struct auditd_connection *ac_old, *ac_new; 502 struct nlmsghdr *nlh; 505 struct nlmsghdr *nlh; 503 506 504 if (!pid || !net) 507 if (!pid || !net) 505 return -EINVAL; 508 return -EINVAL; 506 509 507 ac_new = kzalloc(sizeof(*ac_new), GFP_ 510 ac_new = kzalloc(sizeof(*ac_new), GFP_KERNEL); 508 if (!ac_new) 511 if (!ac_new) 509 return -ENOMEM; 512 return -ENOMEM; 510 ac_new->pid = get_pid(pid); 513 ac_new->pid = get_pid(pid); 511 ac_new->portid = portid; 514 ac_new->portid = portid; 512 ac_new->net = get_net(net); 515 ac_new->net = get_net(net); 513 516 514 /* send the ack now to avoid a race wi 517 /* send the ack now to avoid a race with the queue backlog */ 515 if (*ack) { 518 if (*ack) { 516 nlh = nlmsg_hdr(skb); 519 nlh = nlmsg_hdr(skb); 517 netlink_ack(skb, nlh, 0, NULL) 520 netlink_ack(skb, nlh, 0, NULL); 518 *ack = false; 521 *ack = false; 519 } 522 } 520 523 521 spin_lock_irqsave(&auditd_conn_lock, f 524 spin_lock_irqsave(&auditd_conn_lock, flags); 522 ac_old = rcu_dereference_protected(aud 525 ac_old = rcu_dereference_protected(auditd_conn, 523 loc 526 lockdep_is_held(&auditd_conn_lock)); 524 rcu_assign_pointer(auditd_conn, ac_new 527 rcu_assign_pointer(auditd_conn, ac_new); 525 spin_unlock_irqrestore(&auditd_conn_lo 528 spin_unlock_irqrestore(&auditd_conn_lock, flags); 526 529 527 if (ac_old) 530 if (ac_old) 528 call_rcu(&ac_old->rcu, auditd_ 531 call_rcu(&ac_old->rcu, auditd_conn_free); 529 532 530 return 0; 533 return 0; 531 } 534 } 532 535 533 /** 536 /** 534 * kauditd_printk_skb - Print the audit record 537 * kauditd_printk_skb - Print the audit record to the ring buffer 535 * @skb: audit record 538 * @skb: audit record 536 * 539 * 537 * Whatever the reason, this packet may not ma 540 * Whatever the reason, this packet may not make it to the auditd connection 538 * so write it via printk so the information i 541 * so write it via printk so the information isn't completely lost. 539 */ 542 */ 540 static void kauditd_printk_skb(struct sk_buff 543 static void kauditd_printk_skb(struct sk_buff *skb) 541 { 544 { 542 struct nlmsghdr *nlh = nlmsg_hdr(skb); 545 struct nlmsghdr *nlh = nlmsg_hdr(skb); 543 char *data = nlmsg_data(nlh); 546 char *data = nlmsg_data(nlh); 544 547 545 if (nlh->nlmsg_type != AUDIT_EOE && pr 548 if (nlh->nlmsg_type != AUDIT_EOE && printk_ratelimit()) 546 pr_notice("type=%d %s\n", nlh- 549 pr_notice("type=%d %s\n", nlh->nlmsg_type, data); 547 } 550 } 548 551 549 /** 552 /** 550 * kauditd_rehold_skb - Handle a audit record 553 * kauditd_rehold_skb - Handle a audit record send failure in the hold queue 551 * @skb: audit record 554 * @skb: audit record 552 * @error: error code (unused) 555 * @error: error code (unused) 553 * 556 * 554 * Description: 557 * Description: 555 * This should only be used by the kauditd_thr 558 * This should only be used by the kauditd_thread when it fails to flush the 556 * hold queue. 559 * hold queue. 557 */ 560 */ 558 static void kauditd_rehold_skb(struct sk_buff 561 static void kauditd_rehold_skb(struct sk_buff *skb, __always_unused int error) 559 { 562 { 560 /* put the record back in the queue */ 563 /* put the record back in the queue */ 561 skb_queue_tail(&audit_hold_queue, skb) 564 skb_queue_tail(&audit_hold_queue, skb); 562 } 565 } 563 566 564 /** 567 /** 565 * kauditd_hold_skb - Queue an audit record, w 568 * kauditd_hold_skb - Queue an audit record, waiting for auditd 566 * @skb: audit record 569 * @skb: audit record 567 * @error: error code 570 * @error: error code 568 * 571 * 569 * Description: 572 * Description: 570 * Queue the audit record, waiting for an inst 573 * Queue the audit record, waiting for an instance of auditd. When this 571 * function is called we haven't given up yet 574 * function is called we haven't given up yet on sending the record, but things 572 * are not looking good. The first thing we w 575 * are not looking good. The first thing we want to do is try to write the 573 * record via printk and then see if we want t 576 * record via printk and then see if we want to try and hold on to the record 574 * and queue it, if we have room. If we want 577 * and queue it, if we have room. If we want to hold on to the record, but we 575 * don't have room, record a record lost messa 578 * don't have room, record a record lost message. 576 */ 579 */ 577 static void kauditd_hold_skb(struct sk_buff *s 580 static void kauditd_hold_skb(struct sk_buff *skb, int error) 578 { 581 { 579 /* at this point it is uncertain if we 582 /* at this point it is uncertain if we will ever send this to auditd so 580 * try to send the message via printk 583 * try to send the message via printk before we go any further */ 581 kauditd_printk_skb(skb); 584 kauditd_printk_skb(skb); 582 585 583 /* can we just silently drop the messa 586 /* can we just silently drop the message? */ 584 if (!audit_default) 587 if (!audit_default) 585 goto drop; 588 goto drop; 586 589 587 /* the hold queue is only for when the 590 /* the hold queue is only for when the daemon goes away completely, 588 * not -EAGAIN failures; if we are in 591 * not -EAGAIN failures; if we are in a -EAGAIN state requeue the 589 * record on the retry queue unless it 592 * record on the retry queue unless it's full, in which case drop it 590 */ 593 */ 591 if (error == -EAGAIN) { 594 if (error == -EAGAIN) { 592 if (!audit_backlog_limit || 595 if (!audit_backlog_limit || 593 skb_queue_len(&audit_retry 596 skb_queue_len(&audit_retry_queue) < audit_backlog_limit) { 594 skb_queue_tail(&audit_ 597 skb_queue_tail(&audit_retry_queue, skb); 595 return; 598 return; 596 } 599 } 597 audit_log_lost("kauditd retry 600 audit_log_lost("kauditd retry queue overflow"); 598 goto drop; 601 goto drop; 599 } 602 } 600 603 601 /* if we have room in the hold queue, 604 /* if we have room in the hold queue, queue the message */ 602 if (!audit_backlog_limit || 605 if (!audit_backlog_limit || 603 skb_queue_len(&audit_hold_queue) < 606 skb_queue_len(&audit_hold_queue) < audit_backlog_limit) { 604 skb_queue_tail(&audit_hold_que 607 skb_queue_tail(&audit_hold_queue, skb); 605 return; 608 return; 606 } 609 } 607 610 608 /* we have no other options - drop the 611 /* we have no other options - drop the message */ 609 audit_log_lost("kauditd hold queue ove 612 audit_log_lost("kauditd hold queue overflow"); 610 drop: 613 drop: 611 kfree_skb(skb); 614 kfree_skb(skb); 612 } 615 } 613 616 614 /** 617 /** 615 * kauditd_retry_skb - Queue an audit record, 618 * kauditd_retry_skb - Queue an audit record, attempt to send again to auditd 616 * @skb: audit record 619 * @skb: audit record 617 * @error: error code (unused) 620 * @error: error code (unused) 618 * 621 * 619 * Description: 622 * Description: 620 * Not as serious as kauditd_hold_skb() as we 623 * Not as serious as kauditd_hold_skb() as we still have a connected auditd, 621 * but for some reason we are having problems 624 * but for some reason we are having problems sending it audit records so 622 * queue the given record and attempt to resen 625 * queue the given record and attempt to resend. 623 */ 626 */ 624 static void kauditd_retry_skb(struct sk_buff * 627 static void kauditd_retry_skb(struct sk_buff *skb, __always_unused int error) 625 { 628 { 626 if (!audit_backlog_limit || 629 if (!audit_backlog_limit || 627 skb_queue_len(&audit_retry_queue) 630 skb_queue_len(&audit_retry_queue) < audit_backlog_limit) { 628 skb_queue_tail(&audit_retry_qu 631 skb_queue_tail(&audit_retry_queue, skb); 629 return; 632 return; 630 } 633 } 631 634 632 /* we have to drop the record, send it 635 /* we have to drop the record, send it via printk as a last effort */ 633 kauditd_printk_skb(skb); 636 kauditd_printk_skb(skb); 634 audit_log_lost("kauditd retry queue ov 637 audit_log_lost("kauditd retry queue overflow"); 635 kfree_skb(skb); 638 kfree_skb(skb); 636 } 639 } 637 640 638 /** 641 /** 639 * auditd_reset - Disconnect the auditd connec 642 * auditd_reset - Disconnect the auditd connection 640 * @ac: auditd connection state 643 * @ac: auditd connection state 641 * 644 * 642 * Description: 645 * Description: 643 * Break the auditd/kauditd connection and mov 646 * Break the auditd/kauditd connection and move all the queued records into the 644 * hold queue in case auditd reconnects. It i 647 * hold queue in case auditd reconnects. It is important to note that the @ac 645 * pointer should never be dereferenced inside 648 * pointer should never be dereferenced inside this function as it may be NULL 646 * or invalid, you can only compare the memory 649 * or invalid, you can only compare the memory address! If @ac is NULL then 647 * the connection will always be reset. 650 * the connection will always be reset. 648 */ 651 */ 649 static void auditd_reset(const struct auditd_c 652 static void auditd_reset(const struct auditd_connection *ac) 650 { 653 { 651 unsigned long flags; 654 unsigned long flags; 652 struct sk_buff *skb; 655 struct sk_buff *skb; 653 struct auditd_connection *ac_old; 656 struct auditd_connection *ac_old; 654 657 655 /* if it isn't already broken, break t 658 /* if it isn't already broken, break the connection */ 656 spin_lock_irqsave(&auditd_conn_lock, f 659 spin_lock_irqsave(&auditd_conn_lock, flags); 657 ac_old = rcu_dereference_protected(aud 660 ac_old = rcu_dereference_protected(auditd_conn, 658 loc 661 lockdep_is_held(&auditd_conn_lock)); 659 if (ac && ac != ac_old) { 662 if (ac && ac != ac_old) { 660 /* someone already registered 663 /* someone already registered a new auditd connection */ 661 spin_unlock_irqrestore(&auditd 664 spin_unlock_irqrestore(&auditd_conn_lock, flags); 662 return; 665 return; 663 } 666 } 664 rcu_assign_pointer(auditd_conn, NULL); 667 rcu_assign_pointer(auditd_conn, NULL); 665 spin_unlock_irqrestore(&auditd_conn_lo 668 spin_unlock_irqrestore(&auditd_conn_lock, flags); 666 669 667 if (ac_old) 670 if (ac_old) 668 call_rcu(&ac_old->rcu, auditd_ 671 call_rcu(&ac_old->rcu, auditd_conn_free); 669 672 670 /* flush the retry queue to the hold q 673 /* flush the retry queue to the hold queue, but don't touch the main 671 * queue since we need to process that 674 * queue since we need to process that normally for multicast */ 672 while ((skb = skb_dequeue(&audit_retry 675 while ((skb = skb_dequeue(&audit_retry_queue))) 673 kauditd_hold_skb(skb, -ECONNRE 676 kauditd_hold_skb(skb, -ECONNREFUSED); 674 } 677 } 675 678 676 /** 679 /** 677 * auditd_send_unicast_skb - Send a record via 680 * auditd_send_unicast_skb - Send a record via unicast to auditd 678 * @skb: audit record 681 * @skb: audit record 679 * 682 * 680 * Description: 683 * Description: 681 * Send a skb to the audit daemon, returns pos 684 * Send a skb to the audit daemon, returns positive/zero values on success and 682 * negative values on failure; in all cases th 685 * negative values on failure; in all cases the skb will be consumed by this 683 * function. If the send results in -ECONNREF 686 * function. If the send results in -ECONNREFUSED the connection with auditd 684 * will be reset. This function may sleep so 687 * will be reset. This function may sleep so callers should not hold any locks 685 * where this would cause a problem. 688 * where this would cause a problem. 686 */ 689 */ 687 static int auditd_send_unicast_skb(struct sk_b 690 static int auditd_send_unicast_skb(struct sk_buff *skb) 688 { 691 { 689 int rc; 692 int rc; 690 u32 portid; 693 u32 portid; 691 struct net *net; 694 struct net *net; 692 struct sock *sk; 695 struct sock *sk; 693 struct auditd_connection *ac; 696 struct auditd_connection *ac; 694 697 695 /* NOTE: we can't call netlink_unicast 698 /* NOTE: we can't call netlink_unicast while in the RCU section so 696 * take a reference to the netwo 699 * take a reference to the network namespace and grab local 697 * copies of the namespace, the 700 * copies of the namespace, the sock, and the portid; the 698 * namespace and sock aren't goi 701 * namespace and sock aren't going to go away while we hold a 699 * reference and if the portid d 702 * reference and if the portid does become invalid after the RCU 700 * section netlink_unicast() sho 703 * section netlink_unicast() should safely return an error */ 701 704 702 rcu_read_lock(); 705 rcu_read_lock(); 703 ac = rcu_dereference(auditd_conn); 706 ac = rcu_dereference(auditd_conn); 704 if (!ac) { 707 if (!ac) { 705 rcu_read_unlock(); 708 rcu_read_unlock(); 706 kfree_skb(skb); 709 kfree_skb(skb); 707 rc = -ECONNREFUSED; 710 rc = -ECONNREFUSED; 708 goto err; 711 goto err; 709 } 712 } 710 net = get_net(ac->net); 713 net = get_net(ac->net); 711 sk = audit_get_sk(net); 714 sk = audit_get_sk(net); 712 portid = ac->portid; 715 portid = ac->portid; 713 rcu_read_unlock(); 716 rcu_read_unlock(); 714 717 715 rc = netlink_unicast(sk, skb, portid, 718 rc = netlink_unicast(sk, skb, portid, 0); 716 put_net(net); 719 put_net(net); 717 if (rc < 0) 720 if (rc < 0) 718 goto err; 721 goto err; 719 722 720 return rc; 723 return rc; 721 724 722 err: 725 err: 723 if (ac && rc == -ECONNREFUSED) 726 if (ac && rc == -ECONNREFUSED) 724 auditd_reset(ac); 727 auditd_reset(ac); 725 return rc; 728 return rc; 726 } 729 } 727 730 728 /** 731 /** 729 * kauditd_send_queue - Helper for kauditd_thr 732 * kauditd_send_queue - Helper for kauditd_thread to flush skb queues 730 * @sk: the sending sock 733 * @sk: the sending sock 731 * @portid: the netlink destination 734 * @portid: the netlink destination 732 * @queue: the skb queue to process 735 * @queue: the skb queue to process 733 * @retry_limit: limit on number of netlink un 736 * @retry_limit: limit on number of netlink unicast failures 734 * @skb_hook: per-skb hook for additional proc 737 * @skb_hook: per-skb hook for additional processing 735 * @err_hook: hook called if the skb fails the 738 * @err_hook: hook called if the skb fails the netlink unicast send 736 * 739 * 737 * Description: 740 * Description: 738 * Run through the given queue and attempt to 741 * Run through the given queue and attempt to send the audit records to auditd, 739 * returns zero on success, negative values on 742 * returns zero on success, negative values on failure. It is up to the caller 740 * to ensure that the @sk is valid for the dur 743 * to ensure that the @sk is valid for the duration of this function. 741 * 744 * 742 */ 745 */ 743 static int kauditd_send_queue(struct sock *sk, 746 static int kauditd_send_queue(struct sock *sk, u32 portid, 744 struct sk_buff_h 747 struct sk_buff_head *queue, 745 unsigned int ret 748 unsigned int retry_limit, 746 void (*skb_hook) 749 void (*skb_hook)(struct sk_buff *skb), 747 void (*err_hook) 750 void (*err_hook)(struct sk_buff *skb, int error)) 748 { 751 { 749 int rc = 0; 752 int rc = 0; 750 struct sk_buff *skb = NULL; 753 struct sk_buff *skb = NULL; 751 struct sk_buff *skb_tail; 754 struct sk_buff *skb_tail; 752 unsigned int failed = 0; 755 unsigned int failed = 0; 753 756 754 /* NOTE: kauditd_thread takes care of 757 /* NOTE: kauditd_thread takes care of all our locking, we just use 755 * the netlink info passed to us 758 * the netlink info passed to us (e.g. sk and portid) */ 756 759 757 skb_tail = skb_peek_tail(queue); 760 skb_tail = skb_peek_tail(queue); 758 while ((skb != skb_tail) && (skb = skb 761 while ((skb != skb_tail) && (skb = skb_dequeue(queue))) { 759 /* call the skb_hook for each 762 /* call the skb_hook for each skb we touch */ 760 if (skb_hook) 763 if (skb_hook) 761 (*skb_hook)(skb); 764 (*skb_hook)(skb); 762 765 763 /* can we send to anyone via u 766 /* can we send to anyone via unicast? */ 764 if (!sk) { 767 if (!sk) { 765 if (err_hook) 768 if (err_hook) 766 (*err_hook)(sk 769 (*err_hook)(skb, -ECONNREFUSED); 767 continue; 770 continue; 768 } 771 } 769 772 770 retry: 773 retry: 771 /* grab an extra skb reference 774 /* grab an extra skb reference in case of error */ 772 skb_get(skb); 775 skb_get(skb); 773 rc = netlink_unicast(sk, skb, 776 rc = netlink_unicast(sk, skb, portid, 0); 774 if (rc < 0) { 777 if (rc < 0) { 775 /* send failed - try a 778 /* send failed - try a few times unless fatal error */ 776 if (++failed >= retry_ 779 if (++failed >= retry_limit || 777 rc == -ECONNREFUSE 780 rc == -ECONNREFUSED || rc == -EPERM) { 778 sk = NULL; 781 sk = NULL; 779 if (err_hook) 782 if (err_hook) 780 (*err_ 783 (*err_hook)(skb, rc); 781 if (rc == -EAG 784 if (rc == -EAGAIN) 782 rc = 0 785 rc = 0; 783 /* continue to 786 /* continue to drain the queue */ 784 continue; 787 continue; 785 } else 788 } else 786 goto retry; 789 goto retry; 787 } else { 790 } else { 788 /* skb sent - drop the 791 /* skb sent - drop the extra reference and continue */ 789 consume_skb(skb); 792 consume_skb(skb); 790 failed = 0; 793 failed = 0; 791 } 794 } 792 } 795 } 793 796 794 return (rc >= 0 ? 0 : rc); 797 return (rc >= 0 ? 0 : rc); 795 } 798 } 796 799 797 /* 800 /* 798 * kauditd_send_multicast_skb - Send a record 801 * kauditd_send_multicast_skb - Send a record to any multicast listeners 799 * @skb: audit record 802 * @skb: audit record 800 * 803 * 801 * Description: 804 * Description: 802 * Write a multicast message to anyone listeni 805 * Write a multicast message to anyone listening in the initial network 803 * namespace. This function doesn't consume a 806 * namespace. This function doesn't consume an skb as might be expected since 804 * it has to copy it anyways. 807 * it has to copy it anyways. 805 */ 808 */ 806 static void kauditd_send_multicast_skb(struct 809 static void kauditd_send_multicast_skb(struct sk_buff *skb) 807 { 810 { 808 struct sk_buff *copy; 811 struct sk_buff *copy; 809 struct sock *sock = audit_get_sk(&init 812 struct sock *sock = audit_get_sk(&init_net); 810 struct nlmsghdr *nlh; 813 struct nlmsghdr *nlh; 811 814 812 /* NOTE: we are not taking an addition 815 /* NOTE: we are not taking an additional reference for init_net since 813 * we don't have to worry about 816 * we don't have to worry about it going away */ 814 817 815 if (!netlink_has_listeners(sock, AUDIT 818 if (!netlink_has_listeners(sock, AUDIT_NLGRP_READLOG)) 816 return; 819 return; 817 820 818 /* 821 /* 819 * The seemingly wasteful skb_copy() r 822 * The seemingly wasteful skb_copy() rather than bumping the refcount 820 * using skb_get() is necessary becaus 823 * using skb_get() is necessary because non-standard mods are made to 821 * the skb by the original kaudit unic 824 * the skb by the original kaudit unicast socket send routine. The 822 * existing auditd daemon assumes this 825 * existing auditd daemon assumes this breakage. Fixing this would 823 * require co-ordinating a change in t 826 * require co-ordinating a change in the established protocol between 824 * the kaudit kernel subsystem and the 827 * the kaudit kernel subsystem and the auditd userspace code. There is 825 * no reason for new multicast clients 828 * no reason for new multicast clients to continue with this 826 * non-compliance. 829 * non-compliance. 827 */ 830 */ 828 copy = skb_copy(skb, GFP_KERNEL); 831 copy = skb_copy(skb, GFP_KERNEL); 829 if (!copy) 832 if (!copy) 830 return; 833 return; 831 nlh = nlmsg_hdr(copy); 834 nlh = nlmsg_hdr(copy); 832 nlh->nlmsg_len = skb->len; 835 nlh->nlmsg_len = skb->len; 833 836 834 nlmsg_multicast(sock, copy, 0, AUDIT_N 837 nlmsg_multicast(sock, copy, 0, AUDIT_NLGRP_READLOG, GFP_KERNEL); 835 } 838 } 836 839 837 /** 840 /** 838 * kauditd_thread - Worker thread to send audi 841 * kauditd_thread - Worker thread to send audit records to userspace 839 * @dummy: unused 842 * @dummy: unused 840 */ 843 */ 841 static int kauditd_thread(void *dummy) 844 static int kauditd_thread(void *dummy) 842 { 845 { 843 int rc; 846 int rc; 844 u32 portid = 0; 847 u32 portid = 0; 845 struct net *net = NULL; 848 struct net *net = NULL; 846 struct sock *sk = NULL; 849 struct sock *sk = NULL; 847 struct auditd_connection *ac; 850 struct auditd_connection *ac; 848 851 849 #define UNICAST_RETRIES 5 852 #define UNICAST_RETRIES 5 850 853 851 set_freezable(); 854 set_freezable(); 852 while (!kthread_should_stop()) { 855 while (!kthread_should_stop()) { 853 /* NOTE: see the lock comments 856 /* NOTE: see the lock comments in auditd_send_unicast_skb() */ 854 rcu_read_lock(); 857 rcu_read_lock(); 855 ac = rcu_dereference(auditd_co 858 ac = rcu_dereference(auditd_conn); 856 if (!ac) { 859 if (!ac) { 857 rcu_read_unlock(); 860 rcu_read_unlock(); 858 goto main_queue; 861 goto main_queue; 859 } 862 } 860 net = get_net(ac->net); 863 net = get_net(ac->net); 861 sk = audit_get_sk(net); 864 sk = audit_get_sk(net); 862 portid = ac->portid; 865 portid = ac->portid; 863 rcu_read_unlock(); 866 rcu_read_unlock(); 864 867 865 /* attempt to flush the hold q 868 /* attempt to flush the hold queue */ 866 rc = kauditd_send_queue(sk, po 869 rc = kauditd_send_queue(sk, portid, 867 &audit 870 &audit_hold_queue, UNICAST_RETRIES, 868 NULL, 871 NULL, kauditd_rehold_skb); 869 if (rc < 0) { 872 if (rc < 0) { 870 sk = NULL; 873 sk = NULL; 871 auditd_reset(ac); 874 auditd_reset(ac); 872 goto main_queue; 875 goto main_queue; 873 } 876 } 874 877 875 /* attempt to flush the retry 878 /* attempt to flush the retry queue */ 876 rc = kauditd_send_queue(sk, po 879 rc = kauditd_send_queue(sk, portid, 877 &audit 880 &audit_retry_queue, UNICAST_RETRIES, 878 NULL, 881 NULL, kauditd_hold_skb); 879 if (rc < 0) { 882 if (rc < 0) { 880 sk = NULL; 883 sk = NULL; 881 auditd_reset(ac); 884 auditd_reset(ac); 882 goto main_queue; 885 goto main_queue; 883 } 886 } 884 887 885 main_queue: 888 main_queue: 886 /* process the main queue - do 889 /* process the main queue - do the multicast send and attempt 887 * unicast, dump failed record 890 * unicast, dump failed record sends to the retry queue; if 888 * sk == NULL due to previous 891 * sk == NULL due to previous failures we will just do the 889 * multicast send and move the 892 * multicast send and move the record to the hold queue */ 890 rc = kauditd_send_queue(sk, po 893 rc = kauditd_send_queue(sk, portid, &audit_queue, 1, 891 kaudit 894 kauditd_send_multicast_skb, 892 (sk ? 895 (sk ? 893 kaudi 896 kauditd_retry_skb : kauditd_hold_skb)); 894 if (ac && rc < 0) 897 if (ac && rc < 0) 895 auditd_reset(ac); 898 auditd_reset(ac); 896 sk = NULL; 899 sk = NULL; 897 900 898 /* drop our netns reference, n 901 /* drop our netns reference, no auditd sends past this line */ 899 if (net) { 902 if (net) { 900 put_net(net); 903 put_net(net); 901 net = NULL; 904 net = NULL; 902 } 905 } 903 906 904 /* we have processed all the q 907 /* we have processed all the queues so wake everyone */ 905 wake_up(&audit_backlog_wait); 908 wake_up(&audit_backlog_wait); 906 909 907 /* NOTE: we want to wake up if 910 /* NOTE: we want to wake up if there is anything on the queue, 908 * regardless of if an a 911 * regardless of if an auditd is connected, as we need to 909 * do the multicast send 912 * do the multicast send and rotate records from the 910 * main queue to the ret 913 * main queue to the retry/hold queues */ 911 wait_event_freezable(kauditd_w 914 wait_event_freezable(kauditd_wait, 912 (skb_queu 915 (skb_queue_len(&audit_queue) ? 1 : 0)); 913 } 916 } 914 917 915 return 0; 918 return 0; 916 } 919 } 917 920 918 int audit_send_list_thread(void *_dest) 921 int audit_send_list_thread(void *_dest) 919 { 922 { 920 struct audit_netlink_list *dest = _des 923 struct audit_netlink_list *dest = _dest; 921 struct sk_buff *skb; 924 struct sk_buff *skb; 922 struct sock *sk = audit_get_sk(dest->n 925 struct sock *sk = audit_get_sk(dest->net); 923 926 924 /* wait for parent to finish and send 927 /* wait for parent to finish and send an ACK */ 925 audit_ctl_lock(); 928 audit_ctl_lock(); 926 audit_ctl_unlock(); 929 audit_ctl_unlock(); 927 930 928 while ((skb = __skb_dequeue(&dest->q)) 931 while ((skb = __skb_dequeue(&dest->q)) != NULL) 929 netlink_unicast(sk, skb, dest- 932 netlink_unicast(sk, skb, dest->portid, 0); 930 933 931 put_net(dest->net); 934 put_net(dest->net); 932 kfree(dest); 935 kfree(dest); 933 936 934 return 0; 937 return 0; 935 } 938 } 936 939 937 struct sk_buff *audit_make_reply(int seq, int 940 struct sk_buff *audit_make_reply(int seq, int type, int done, 938 int multi, co 941 int multi, const void *payload, int size) 939 { 942 { 940 struct sk_buff *skb; 943 struct sk_buff *skb; 941 struct nlmsghdr *nlh; 944 struct nlmsghdr *nlh; 942 void *data; 945 void *data; 943 int flags = multi ? NLM_F_ 946 int flags = multi ? NLM_F_MULTI : 0; 944 int t = done ? NLMSG_ 947 int t = done ? NLMSG_DONE : type; 945 948 946 skb = nlmsg_new(size, GFP_KERNEL); 949 skb = nlmsg_new(size, GFP_KERNEL); 947 if (!skb) 950 if (!skb) 948 return NULL; 951 return NULL; 949 952 950 nlh = nlmsg_put(skb, 0, seq, t, si 953 nlh = nlmsg_put(skb, 0, seq, t, size, flags); 951 if (!nlh) 954 if (!nlh) 952 goto out_kfree_skb; 955 goto out_kfree_skb; 953 data = nlmsg_data(nlh); 956 data = nlmsg_data(nlh); 954 memcpy(data, payload, size); 957 memcpy(data, payload, size); 955 return skb; 958 return skb; 956 959 957 out_kfree_skb: 960 out_kfree_skb: 958 kfree_skb(skb); 961 kfree_skb(skb); 959 return NULL; 962 return NULL; 960 } 963 } 961 964 962 static void audit_free_reply(struct audit_repl 965 static void audit_free_reply(struct audit_reply *reply) 963 { 966 { 964 if (!reply) 967 if (!reply) 965 return; 968 return; 966 969 967 kfree_skb(reply->skb); 970 kfree_skb(reply->skb); 968 if (reply->net) 971 if (reply->net) 969 put_net(reply->net); 972 put_net(reply->net); 970 kfree(reply); 973 kfree(reply); 971 } 974 } 972 975 973 static int audit_send_reply_thread(void *arg) 976 static int audit_send_reply_thread(void *arg) 974 { 977 { 975 struct audit_reply *reply = (struct au 978 struct audit_reply *reply = (struct audit_reply *)arg; 976 979 977 audit_ctl_lock(); 980 audit_ctl_lock(); 978 audit_ctl_unlock(); 981 audit_ctl_unlock(); 979 982 980 /* Ignore failure. It'll only happen i 983 /* Ignore failure. It'll only happen if the sender goes away, 981 because our timeout is set to infin 984 because our timeout is set to infinite. */ 982 netlink_unicast(audit_get_sk(reply->ne 985 netlink_unicast(audit_get_sk(reply->net), reply->skb, reply->portid, 0); 983 reply->skb = NULL; 986 reply->skb = NULL; 984 audit_free_reply(reply); 987 audit_free_reply(reply); 985 return 0; 988 return 0; 986 } 989 } 987 990 988 /** 991 /** 989 * audit_send_reply - send an audit reply mess 992 * audit_send_reply - send an audit reply message via netlink 990 * @request_skb: skb of request we are replyin 993 * @request_skb: skb of request we are replying to (used to target the reply) 991 * @seq: sequence number 994 * @seq: sequence number 992 * @type: audit message type 995 * @type: audit message type 993 * @done: done (last) flag 996 * @done: done (last) flag 994 * @multi: multi-part message flag 997 * @multi: multi-part message flag 995 * @payload: payload data 998 * @payload: payload data 996 * @size: payload size 999 * @size: payload size 997 * 1000 * 998 * Allocates a skb, builds the netlink message 1001 * Allocates a skb, builds the netlink message, and sends it to the port id. 999 */ 1002 */ 1000 static void audit_send_reply(struct sk_buff * 1003 static void audit_send_reply(struct sk_buff *request_skb, int seq, int type, int done, 1001 int multi, const 1004 int multi, const void *payload, int size) 1002 { 1005 { 1003 struct task_struct *tsk; 1006 struct task_struct *tsk; 1004 struct audit_reply *reply; 1007 struct audit_reply *reply; 1005 1008 1006 reply = kzalloc(sizeof(*reply), GFP_K 1009 reply = kzalloc(sizeof(*reply), GFP_KERNEL); 1007 if (!reply) 1010 if (!reply) 1008 return; 1011 return; 1009 1012 1010 reply->skb = audit_make_reply(seq, ty 1013 reply->skb = audit_make_reply(seq, type, done, multi, payload, size); 1011 if (!reply->skb) 1014 if (!reply->skb) 1012 goto err; 1015 goto err; 1013 reply->net = get_net(sock_net(NETLINK 1016 reply->net = get_net(sock_net(NETLINK_CB(request_skb).sk)); 1014 reply->portid = NETLINK_CB(request_sk 1017 reply->portid = NETLINK_CB(request_skb).portid; 1015 1018 1016 tsk = kthread_run(audit_send_reply_th 1019 tsk = kthread_run(audit_send_reply_thread, reply, "audit_send_reply"); 1017 if (IS_ERR(tsk)) 1020 if (IS_ERR(tsk)) 1018 goto err; 1021 goto err; 1019 1022 1020 return; 1023 return; 1021 1024 1022 err: 1025 err: 1023 audit_free_reply(reply); 1026 audit_free_reply(reply); 1024 } 1027 } 1025 1028 1026 /* 1029 /* 1027 * Check for appropriate CAP_AUDIT_ capabilit 1030 * Check for appropriate CAP_AUDIT_ capabilities on incoming audit 1028 * control messages. 1031 * control messages. 1029 */ 1032 */ 1030 static int audit_netlink_ok(struct sk_buff *s 1033 static int audit_netlink_ok(struct sk_buff *skb, u16 msg_type) 1031 { 1034 { 1032 int err = 0; 1035 int err = 0; 1033 1036 1034 /* Only support initial user namespac 1037 /* Only support initial user namespace for now. */ 1035 /* 1038 /* 1036 * We return ECONNREFUSED because it 1039 * We return ECONNREFUSED because it tricks userspace into thinking 1037 * that audit was not configured into 1040 * that audit was not configured into the kernel. Lots of users 1038 * configure their PAM stack (because 1041 * configure their PAM stack (because that's what the distro does) 1039 * to reject login if unable to send 1042 * to reject login if unable to send messages to audit. If we return 1040 * ECONNREFUSED the PAM stack thinks 1043 * ECONNREFUSED the PAM stack thinks the kernel does not have audit 1041 * configured in and will let login p 1044 * configured in and will let login proceed. If we return EPERM 1042 * userspace will reject all logins. 1045 * userspace will reject all logins. This should be removed when we 1043 * support non init namespaces!! 1046 * support non init namespaces!! 1044 */ 1047 */ 1045 if (current_user_ns() != &init_user_n 1048 if (current_user_ns() != &init_user_ns) 1046 return -ECONNREFUSED; 1049 return -ECONNREFUSED; 1047 1050 1048 switch (msg_type) { 1051 switch (msg_type) { 1049 case AUDIT_LIST: 1052 case AUDIT_LIST: 1050 case AUDIT_ADD: 1053 case AUDIT_ADD: 1051 case AUDIT_DEL: 1054 case AUDIT_DEL: 1052 return -EOPNOTSUPP; 1055 return -EOPNOTSUPP; 1053 case AUDIT_GET: 1056 case AUDIT_GET: 1054 case AUDIT_SET: 1057 case AUDIT_SET: 1055 case AUDIT_GET_FEATURE: 1058 case AUDIT_GET_FEATURE: 1056 case AUDIT_SET_FEATURE: 1059 case AUDIT_SET_FEATURE: 1057 case AUDIT_LIST_RULES: 1060 case AUDIT_LIST_RULES: 1058 case AUDIT_ADD_RULE: 1061 case AUDIT_ADD_RULE: 1059 case AUDIT_DEL_RULE: 1062 case AUDIT_DEL_RULE: 1060 case AUDIT_SIGNAL_INFO: 1063 case AUDIT_SIGNAL_INFO: 1061 case AUDIT_TTY_GET: 1064 case AUDIT_TTY_GET: 1062 case AUDIT_TTY_SET: 1065 case AUDIT_TTY_SET: 1063 case AUDIT_TRIM: 1066 case AUDIT_TRIM: 1064 case AUDIT_MAKE_EQUIV: 1067 case AUDIT_MAKE_EQUIV: 1065 /* Only support auditd and au 1068 /* Only support auditd and auditctl in initial pid namespace 1066 * for now. */ 1069 * for now. */ 1067 if (task_active_pid_ns(curren 1070 if (task_active_pid_ns(current) != &init_pid_ns) 1068 return -EPERM; 1071 return -EPERM; 1069 1072 1070 if (!netlink_capable(skb, CAP 1073 if (!netlink_capable(skb, CAP_AUDIT_CONTROL)) 1071 err = -EPERM; 1074 err = -EPERM; 1072 break; 1075 break; 1073 case AUDIT_USER: 1076 case AUDIT_USER: 1074 case AUDIT_FIRST_USER_MSG ... AUDIT_L 1077 case AUDIT_FIRST_USER_MSG ... AUDIT_LAST_USER_MSG: 1075 case AUDIT_FIRST_USER_MSG2 ... AUDIT_ 1078 case AUDIT_FIRST_USER_MSG2 ... AUDIT_LAST_USER_MSG2: 1076 if (!netlink_capable(skb, CAP 1079 if (!netlink_capable(skb, CAP_AUDIT_WRITE)) 1077 err = -EPERM; 1080 err = -EPERM; 1078 break; 1081 break; 1079 default: /* bad msg */ 1082 default: /* bad msg */ 1080 err = -EINVAL; 1083 err = -EINVAL; 1081 } 1084 } 1082 1085 1083 return err; 1086 return err; 1084 } 1087 } 1085 1088 1086 static void audit_log_common_recv_msg(struct 1089 static void audit_log_common_recv_msg(struct audit_context *context, 1087 struc 1090 struct audit_buffer **ab, u16 msg_type) 1088 { 1091 { 1089 uid_t uid = from_kuid(&init_user_ns, 1092 uid_t uid = from_kuid(&init_user_ns, current_uid()); 1090 pid_t pid = task_tgid_nr(current); 1093 pid_t pid = task_tgid_nr(current); 1091 1094 1092 if (!audit_enabled && msg_type != AUD 1095 if (!audit_enabled && msg_type != AUDIT_USER_AVC) { 1093 *ab = NULL; 1096 *ab = NULL; 1094 return; 1097 return; 1095 } 1098 } 1096 1099 1097 *ab = audit_log_start(context, GFP_KE 1100 *ab = audit_log_start(context, GFP_KERNEL, msg_type); 1098 if (unlikely(!*ab)) 1101 if (unlikely(!*ab)) 1099 return; 1102 return; 1100 audit_log_format(*ab, "pid=%d uid=%u 1103 audit_log_format(*ab, "pid=%d uid=%u ", pid, uid); 1101 audit_log_session_info(*ab); 1104 audit_log_session_info(*ab); 1102 audit_log_task_context(*ab); 1105 audit_log_task_context(*ab); 1103 } 1106 } 1104 1107 1105 static inline void audit_log_user_recv_msg(st 1108 static inline void audit_log_user_recv_msg(struct audit_buffer **ab, 1106 u1 1109 u16 msg_type) 1107 { 1110 { 1108 audit_log_common_recv_msg(NULL, ab, m 1111 audit_log_common_recv_msg(NULL, ab, msg_type); 1109 } 1112 } 1110 1113 1111 static int is_audit_feature_set(int i) !! 1114 int is_audit_feature_set(int i) 1112 { 1115 { 1113 return af.features & AUDIT_FEATURE_TO 1116 return af.features & AUDIT_FEATURE_TO_MASK(i); 1114 } 1117 } 1115 1118 1116 1119 1117 static int audit_get_feature(struct sk_buff * 1120 static int audit_get_feature(struct sk_buff *skb) 1118 { 1121 { 1119 u32 seq; 1122 u32 seq; 1120 1123 1121 seq = nlmsg_hdr(skb)->nlmsg_seq; 1124 seq = nlmsg_hdr(skb)->nlmsg_seq; 1122 1125 1123 audit_send_reply(skb, seq, AUDIT_GET_ 1126 audit_send_reply(skb, seq, AUDIT_GET_FEATURE, 0, 0, &af, sizeof(af)); 1124 1127 1125 return 0; 1128 return 0; 1126 } 1129 } 1127 1130 1128 static void audit_log_feature_change(int whic 1131 static void audit_log_feature_change(int which, u32 old_feature, u32 new_feature, 1129 u32 old_ 1132 u32 old_lock, u32 new_lock, int res) 1130 { 1133 { 1131 struct audit_buffer *ab; 1134 struct audit_buffer *ab; 1132 1135 1133 if (audit_enabled == AUDIT_OFF) 1136 if (audit_enabled == AUDIT_OFF) 1134 return; 1137 return; 1135 1138 1136 ab = audit_log_start(audit_context(), 1139 ab = audit_log_start(audit_context(), GFP_KERNEL, AUDIT_FEATURE_CHANGE); 1137 if (!ab) 1140 if (!ab) 1138 return; 1141 return; 1139 audit_log_task_info(ab); 1142 audit_log_task_info(ab); 1140 audit_log_format(ab, " feature=%s old 1143 audit_log_format(ab, " feature=%s old=%u new=%u old_lock=%u new_lock=%u res=%d", 1141 audit_feature_names[ 1144 audit_feature_names[which], !!old_feature, !!new_feature, 1142 !!old_lock, !!new_lo 1145 !!old_lock, !!new_lock, res); 1143 audit_log_end(ab); 1146 audit_log_end(ab); 1144 } 1147 } 1145 1148 1146 static int audit_set_feature(struct audit_fea 1149 static int audit_set_feature(struct audit_features *uaf) 1147 { 1150 { 1148 int i; 1151 int i; 1149 1152 1150 BUILD_BUG_ON(AUDIT_LAST_FEATURE + 1 > 1153 BUILD_BUG_ON(AUDIT_LAST_FEATURE + 1 > ARRAY_SIZE(audit_feature_names)); 1151 1154 1152 /* if there is ever a version 2 we sh 1155 /* if there is ever a version 2 we should handle that here */ 1153 1156 1154 for (i = 0; i <= AUDIT_LAST_FEATURE; 1157 for (i = 0; i <= AUDIT_LAST_FEATURE; i++) { 1155 u32 feature = AUDIT_FEATURE_T 1158 u32 feature = AUDIT_FEATURE_TO_MASK(i); 1156 u32 old_feature, new_feature, 1159 u32 old_feature, new_feature, old_lock, new_lock; 1157 1160 1158 /* if we are not changing thi 1161 /* if we are not changing this feature, move along */ 1159 if (!(feature & uaf->mask)) 1162 if (!(feature & uaf->mask)) 1160 continue; 1163 continue; 1161 1164 1162 old_feature = af.features & f 1165 old_feature = af.features & feature; 1163 new_feature = uaf->features & 1166 new_feature = uaf->features & feature; 1164 new_lock = (uaf->lock | af.lo 1167 new_lock = (uaf->lock | af.lock) & feature; 1165 old_lock = af.lock & feature; 1168 old_lock = af.lock & feature; 1166 1169 1167 /* are we changing a locked f 1170 /* are we changing a locked feature? */ 1168 if (old_lock && (new_feature 1171 if (old_lock && (new_feature != old_feature)) { 1169 audit_log_feature_cha 1172 audit_log_feature_change(i, old_feature, new_feature, 1170 1173 old_lock, new_lock, 0); 1171 return -EPERM; 1174 return -EPERM; 1172 } 1175 } 1173 } 1176 } 1174 /* nothing invalid, do the changes */ 1177 /* nothing invalid, do the changes */ 1175 for (i = 0; i <= AUDIT_LAST_FEATURE; 1178 for (i = 0; i <= AUDIT_LAST_FEATURE; i++) { 1176 u32 feature = AUDIT_FEATURE_T 1179 u32 feature = AUDIT_FEATURE_TO_MASK(i); 1177 u32 old_feature, new_feature, 1180 u32 old_feature, new_feature, old_lock, new_lock; 1178 1181 1179 /* if we are not changing thi 1182 /* if we are not changing this feature, move along */ 1180 if (!(feature & uaf->mask)) 1183 if (!(feature & uaf->mask)) 1181 continue; 1184 continue; 1182 1185 1183 old_feature = af.features & f 1186 old_feature = af.features & feature; 1184 new_feature = uaf->features & 1187 new_feature = uaf->features & feature; 1185 old_lock = af.lock & feature; 1188 old_lock = af.lock & feature; 1186 new_lock = (uaf->lock | af.lo 1189 new_lock = (uaf->lock | af.lock) & feature; 1187 1190 1188 if (new_feature != old_featur 1191 if (new_feature != old_feature) 1189 audit_log_feature_cha 1192 audit_log_feature_change(i, old_feature, new_feature, 1190 1193 old_lock, new_lock, 1); 1191 1194 1192 if (new_feature) 1195 if (new_feature) 1193 af.features |= featur 1196 af.features |= feature; 1194 else 1197 else 1195 af.features &= ~featu 1198 af.features &= ~feature; 1196 af.lock |= new_lock; 1199 af.lock |= new_lock; 1197 } 1200 } 1198 1201 1199 return 0; 1202 return 0; 1200 } 1203 } 1201 1204 1202 static int audit_replace(struct pid *pid) 1205 static int audit_replace(struct pid *pid) 1203 { 1206 { 1204 pid_t pvnr; 1207 pid_t pvnr; 1205 struct sk_buff *skb; 1208 struct sk_buff *skb; 1206 1209 1207 pvnr = pid_vnr(pid); 1210 pvnr = pid_vnr(pid); 1208 skb = audit_make_reply(0, AUDIT_REPLA 1211 skb = audit_make_reply(0, AUDIT_REPLACE, 0, 0, &pvnr, sizeof(pvnr)); 1209 if (!skb) 1212 if (!skb) 1210 return -ENOMEM; 1213 return -ENOMEM; 1211 return auditd_send_unicast_skb(skb); 1214 return auditd_send_unicast_skb(skb); 1212 } 1215 } 1213 1216 1214 static int audit_receive_msg(struct sk_buff * 1217 static int audit_receive_msg(struct sk_buff *skb, struct nlmsghdr *nlh, 1215 bool *ack) 1218 bool *ack) 1216 { 1219 { 1217 u32 seq; 1220 u32 seq; 1218 void *data; 1221 void *data; 1219 int data_len; 1222 int data_len; 1220 int err; 1223 int err; 1221 struct audit_buffer *ab; 1224 struct audit_buffer *ab; 1222 u16 msg_type = nl 1225 u16 msg_type = nlh->nlmsg_type; 1223 struct audit_sig_info *sig_data; 1226 struct audit_sig_info *sig_data; 1224 char *ctx = NULL; 1227 char *ctx = NULL; 1225 u32 len; 1228 u32 len; 1226 1229 1227 err = audit_netlink_ok(skb, msg_type) 1230 err = audit_netlink_ok(skb, msg_type); 1228 if (err) 1231 if (err) 1229 return err; 1232 return err; 1230 1233 1231 seq = nlh->nlmsg_seq; 1234 seq = nlh->nlmsg_seq; 1232 data = nlmsg_data(nlh); 1235 data = nlmsg_data(nlh); 1233 data_len = nlmsg_len(nlh); 1236 data_len = nlmsg_len(nlh); 1234 1237 1235 switch (msg_type) { 1238 switch (msg_type) { 1236 case AUDIT_GET: { 1239 case AUDIT_GET: { 1237 struct audit_status s; 1240 struct audit_status s; 1238 memset(&s, 0, sizeof(s)); 1241 memset(&s, 0, sizeof(s)); 1239 s.enabled = 1242 s.enabled = audit_enabled; 1240 s.failure = 1243 s.failure = audit_failure; 1241 /* NOTE: use pid_vnr() so the 1244 /* NOTE: use pid_vnr() so the PID is relative to the current 1242 * namespace */ 1245 * namespace */ 1243 s.pid = 1246 s.pid = auditd_pid_vnr(); 1244 s.rate_limit = 1247 s.rate_limit = audit_rate_limit; 1245 s.backlog_limit = 1248 s.backlog_limit = audit_backlog_limit; 1246 s.lost = 1249 s.lost = atomic_read(&audit_lost); 1247 s.backlog = 1250 s.backlog = skb_queue_len(&audit_queue); 1248 s.feature_bitmap = 1251 s.feature_bitmap = AUDIT_FEATURE_BITMAP_ALL; 1249 s.backlog_wait_time = 1252 s.backlog_wait_time = audit_backlog_wait_time; 1250 s.backlog_wait_time_actual = 1253 s.backlog_wait_time_actual = atomic_read(&audit_backlog_wait_time_actual); 1251 audit_send_reply(skb, seq, AU 1254 audit_send_reply(skb, seq, AUDIT_GET, 0, 0, &s, sizeof(s)); 1252 break; 1255 break; 1253 } 1256 } 1254 case AUDIT_SET: { 1257 case AUDIT_SET: { 1255 struct audit_status s; 1258 struct audit_status s; 1256 memset(&s, 0, sizeof(s)); 1259 memset(&s, 0, sizeof(s)); 1257 /* guard against past and fut 1260 /* guard against past and future API changes */ 1258 memcpy(&s, data, min_t(size_t 1261 memcpy(&s, data, min_t(size_t, sizeof(s), data_len)); 1259 if (s.mask & AUDIT_STATUS_ENA 1262 if (s.mask & AUDIT_STATUS_ENABLED) { 1260 err = audit_set_enabl 1263 err = audit_set_enabled(s.enabled); 1261 if (err < 0) 1264 if (err < 0) 1262 return err; 1265 return err; 1263 } 1266 } 1264 if (s.mask & AUDIT_STATUS_FAI 1267 if (s.mask & AUDIT_STATUS_FAILURE) { 1265 err = audit_set_failu 1268 err = audit_set_failure(s.failure); 1266 if (err < 0) 1269 if (err < 0) 1267 return err; 1270 return err; 1268 } 1271 } 1269 if (s.mask & AUDIT_STATUS_PID 1272 if (s.mask & AUDIT_STATUS_PID) { 1270 /* NOTE: we are using 1273 /* NOTE: we are using the vnr PID functions below 1271 * because the 1274 * because the s.pid value is relative to the 1272 * namespace of 1275 * namespace of the caller; at present this 1273 * doesn't matt 1276 * doesn't matter much since you can really only 1274 * run auditd f 1277 * run auditd from the initial pid namespace, but 1275 * something to 1278 * something to keep in mind if this changes */ 1276 pid_t new_pid = s.pid 1279 pid_t new_pid = s.pid; 1277 pid_t auditd_pid; 1280 pid_t auditd_pid; 1278 struct pid *req_pid = 1281 struct pid *req_pid = task_tgid(current); 1279 1282 1280 /* Sanity check - PID 1283 /* Sanity check - PID values must match. Setting 1281 * pid to 0 is how au 1284 * pid to 0 is how auditd ends auditing. */ 1282 if (new_pid && (new_p 1285 if (new_pid && (new_pid != pid_vnr(req_pid))) 1283 return -EINVA 1286 return -EINVAL; 1284 1287 1285 /* test the auditd co 1288 /* test the auditd connection */ 1286 audit_replace(req_pid 1289 audit_replace(req_pid); 1287 1290 1288 auditd_pid = auditd_p 1291 auditd_pid = auditd_pid_vnr(); 1289 if (auditd_pid) { 1292 if (auditd_pid) { 1290 /* replacing 1293 /* replacing a healthy auditd is not allowed */ 1291 if (new_pid) 1294 if (new_pid) { 1292 audit 1295 audit_log_config_change("audit_pid", 1293 1296 new_pid, auditd_pid, 0); 1294 retur 1297 return -EEXIST; 1295 } 1298 } 1296 /* only curre 1299 /* only current auditd can unregister itself */ 1297 if (pid_vnr(r 1300 if (pid_vnr(req_pid) != auditd_pid) { 1298 audit 1301 audit_log_config_change("audit_pid", 1299 1302 new_pid, auditd_pid, 0); 1300 retur 1303 return -EACCES; 1301 } 1304 } 1302 } 1305 } 1303 1306 1304 if (new_pid) { 1307 if (new_pid) { 1305 /* register a 1308 /* register a new auditd connection */ 1306 err = auditd_ 1309 err = auditd_set(req_pid, 1307 1310 NETLINK_CB(skb).portid, 1308 1311 sock_net(NETLINK_CB(skb).sk), 1309 1312 skb, ack); 1310 if (audit_ena 1313 if (audit_enabled != AUDIT_OFF) 1311 audit 1314 audit_log_config_change("audit_pid", 1312 1315 new_pid, 1313 1316 auditd_pid, 1314 1317 err ? 0 : 1); 1315 if (err) 1318 if (err) 1316 retur 1319 return err; 1317 1320 1318 /* try to pro 1321 /* try to process any backlog */ 1319 wake_up_inter 1322 wake_up_interruptible(&kauditd_wait); 1320 } else { 1323 } else { 1321 if (audit_ena 1324 if (audit_enabled != AUDIT_OFF) 1322 audit 1325 audit_log_config_change("audit_pid", 1323 1326 new_pid, 1324 1327 auditd_pid, 1); 1325 1328 1326 /* unregister 1329 /* unregister the auditd connection */ 1327 auditd_reset( 1330 auditd_reset(NULL); 1328 } 1331 } 1329 } 1332 } 1330 if (s.mask & AUDIT_STATUS_RAT 1333 if (s.mask & AUDIT_STATUS_RATE_LIMIT) { 1331 err = audit_set_rate_ 1334 err = audit_set_rate_limit(s.rate_limit); 1332 if (err < 0) 1335 if (err < 0) 1333 return err; 1336 return err; 1334 } 1337 } 1335 if (s.mask & AUDIT_STATUS_BAC 1338 if (s.mask & AUDIT_STATUS_BACKLOG_LIMIT) { 1336 err = audit_set_backl 1339 err = audit_set_backlog_limit(s.backlog_limit); 1337 if (err < 0) 1340 if (err < 0) 1338 return err; 1341 return err; 1339 } 1342 } 1340 if (s.mask & AUDIT_STATUS_BAC 1343 if (s.mask & AUDIT_STATUS_BACKLOG_WAIT_TIME) { 1341 if (sizeof(s) > (size 1344 if (sizeof(s) > (size_t)nlh->nlmsg_len) 1342 return -EINVA 1345 return -EINVAL; 1343 if (s.backlog_wait_ti 1346 if (s.backlog_wait_time > 10*AUDIT_BACKLOG_WAIT_TIME) 1344 return -EINVA 1347 return -EINVAL; 1345 err = audit_set_backl 1348 err = audit_set_backlog_wait_time(s.backlog_wait_time); 1346 if (err < 0) 1349 if (err < 0) 1347 return err; 1350 return err; 1348 } 1351 } 1349 if (s.mask == AUDIT_STATUS_LO 1352 if (s.mask == AUDIT_STATUS_LOST) { 1350 u32 lost = atomic_xch 1353 u32 lost = atomic_xchg(&audit_lost, 0); 1351 1354 1352 audit_log_config_chan 1355 audit_log_config_change("lost", 0, lost, 1); 1353 return lost; 1356 return lost; 1354 } 1357 } 1355 if (s.mask == AUDIT_STATUS_BA 1358 if (s.mask == AUDIT_STATUS_BACKLOG_WAIT_TIME_ACTUAL) { 1356 u32 actual = atomic_x 1359 u32 actual = atomic_xchg(&audit_backlog_wait_time_actual, 0); 1357 1360 1358 audit_log_config_chan 1361 audit_log_config_change("backlog_wait_time_actual", 0, actual, 1); 1359 return actual; 1362 return actual; 1360 } 1363 } 1361 break; 1364 break; 1362 } 1365 } 1363 case AUDIT_GET_FEATURE: 1366 case AUDIT_GET_FEATURE: 1364 err = audit_get_feature(skb); 1367 err = audit_get_feature(skb); 1365 if (err) 1368 if (err) 1366 return err; 1369 return err; 1367 break; 1370 break; 1368 case AUDIT_SET_FEATURE: 1371 case AUDIT_SET_FEATURE: 1369 if (data_len < sizeof(struct 1372 if (data_len < sizeof(struct audit_features)) 1370 return -EINVAL; 1373 return -EINVAL; 1371 err = audit_set_feature(data) 1374 err = audit_set_feature(data); 1372 if (err) 1375 if (err) 1373 return err; 1376 return err; 1374 break; 1377 break; 1375 case AUDIT_USER: 1378 case AUDIT_USER: 1376 case AUDIT_FIRST_USER_MSG ... AUDIT_L 1379 case AUDIT_FIRST_USER_MSG ... AUDIT_LAST_USER_MSG: 1377 case AUDIT_FIRST_USER_MSG2 ... AUDIT_ 1380 case AUDIT_FIRST_USER_MSG2 ... AUDIT_LAST_USER_MSG2: 1378 if (!audit_enabled && msg_typ 1381 if (!audit_enabled && msg_type != AUDIT_USER_AVC) 1379 return 0; 1382 return 0; 1380 /* exit early if there isn't 1383 /* exit early if there isn't at least one character to print */ 1381 if (data_len < 2) 1384 if (data_len < 2) 1382 return -EINVAL; 1385 return -EINVAL; 1383 1386 1384 err = audit_filter(msg_type, 1387 err = audit_filter(msg_type, AUDIT_FILTER_USER); 1385 if (err == 1) { /* match or e 1388 if (err == 1) { /* match or error */ 1386 char *str = data; 1389 char *str = data; 1387 1390 1388 err = 0; 1391 err = 0; 1389 if (msg_type == AUDIT 1392 if (msg_type == AUDIT_USER_TTY) { 1390 err = tty_aud 1393 err = tty_audit_push(); 1391 if (err) 1394 if (err) 1392 break 1395 break; 1393 } 1396 } 1394 audit_log_user_recv_m 1397 audit_log_user_recv_msg(&ab, msg_type); 1395 if (msg_type != AUDIT 1398 if (msg_type != AUDIT_USER_TTY) { 1396 /* ensure NUL 1399 /* ensure NULL termination */ 1397 str[data_len 1400 str[data_len - 1] = '\0'; 1398 audit_log_for 1401 audit_log_format(ab, " msg='%.*s'", 1399 1402 AUDIT_MESSAGE_TEXT_MAX, 1400 1403 str); 1401 } else { 1404 } else { 1402 audit_log_for 1405 audit_log_format(ab, " data="); 1403 if (str[data_ !! 1406 if (data_len > 0 && str[data_len - 1] == '\0') 1404 data_ 1407 data_len--; 1405 audit_log_n_u 1408 audit_log_n_untrustedstring(ab, str, data_len); 1406 } 1409 } 1407 audit_log_end(ab); 1410 audit_log_end(ab); 1408 } 1411 } 1409 break; 1412 break; 1410 case AUDIT_ADD_RULE: 1413 case AUDIT_ADD_RULE: 1411 case AUDIT_DEL_RULE: 1414 case AUDIT_DEL_RULE: 1412 if (data_len < sizeof(struct 1415 if (data_len < sizeof(struct audit_rule_data)) 1413 return -EINVAL; 1416 return -EINVAL; 1414 if (audit_enabled == AUDIT_LO 1417 if (audit_enabled == AUDIT_LOCKED) { 1415 audit_log_common_recv 1418 audit_log_common_recv_msg(audit_context(), &ab, 1416 1419 AUDIT_CONFIG_CHANGE); 1417 audit_log_format(ab, 1420 audit_log_format(ab, " op=%s audit_enabled=%d res=0", 1418 msg_ 1421 msg_type == AUDIT_ADD_RULE ? 1419 1422 "add_rule" : "remove_rule", 1420 audi 1423 audit_enabled); 1421 audit_log_end(ab); 1424 audit_log_end(ab); 1422 return -EPERM; 1425 return -EPERM; 1423 } 1426 } 1424 err = audit_rule_change(msg_t 1427 err = audit_rule_change(msg_type, seq, data, data_len); 1425 break; 1428 break; 1426 case AUDIT_LIST_RULES: 1429 case AUDIT_LIST_RULES: 1427 err = audit_list_rules_send(s 1430 err = audit_list_rules_send(skb, seq); 1428 break; 1431 break; 1429 case AUDIT_TRIM: 1432 case AUDIT_TRIM: 1430 audit_trim_trees(); 1433 audit_trim_trees(); 1431 audit_log_common_recv_msg(aud 1434 audit_log_common_recv_msg(audit_context(), &ab, 1432 AUD 1435 AUDIT_CONFIG_CHANGE); 1433 audit_log_format(ab, " op=tri 1436 audit_log_format(ab, " op=trim res=1"); 1434 audit_log_end(ab); 1437 audit_log_end(ab); 1435 break; 1438 break; 1436 case AUDIT_MAKE_EQUIV: { 1439 case AUDIT_MAKE_EQUIV: { 1437 void *bufp = data; 1440 void *bufp = data; 1438 u32 sizes[2]; 1441 u32 sizes[2]; 1439 size_t msglen = data_len; 1442 size_t msglen = data_len; 1440 char *old, *new; 1443 char *old, *new; 1441 1444 1442 err = -EINVAL; 1445 err = -EINVAL; 1443 if (msglen < 2 * sizeof(u32)) 1446 if (msglen < 2 * sizeof(u32)) 1444 break; 1447 break; 1445 memcpy(sizes, bufp, 2 * sizeo 1448 memcpy(sizes, bufp, 2 * sizeof(u32)); 1446 bufp += 2 * sizeof(u32); 1449 bufp += 2 * sizeof(u32); 1447 msglen -= 2 * sizeof(u32); 1450 msglen -= 2 * sizeof(u32); 1448 old = audit_unpack_string(&bu 1451 old = audit_unpack_string(&bufp, &msglen, sizes[0]); 1449 if (IS_ERR(old)) { 1452 if (IS_ERR(old)) { 1450 err = PTR_ERR(old); 1453 err = PTR_ERR(old); 1451 break; 1454 break; 1452 } 1455 } 1453 new = audit_unpack_string(&bu 1456 new = audit_unpack_string(&bufp, &msglen, sizes[1]); 1454 if (IS_ERR(new)) { 1457 if (IS_ERR(new)) { 1455 err = PTR_ERR(new); 1458 err = PTR_ERR(new); 1456 kfree(old); 1459 kfree(old); 1457 break; 1460 break; 1458 } 1461 } 1459 /* OK, here comes... */ 1462 /* OK, here comes... */ 1460 err = audit_tag_tree(old, new 1463 err = audit_tag_tree(old, new); 1461 1464 1462 audit_log_common_recv_msg(aud 1465 audit_log_common_recv_msg(audit_context(), &ab, 1463 AUD 1466 AUDIT_CONFIG_CHANGE); 1464 audit_log_format(ab, " op=mak 1467 audit_log_format(ab, " op=make_equiv old="); 1465 audit_log_untrustedstring(ab, 1468 audit_log_untrustedstring(ab, old); 1466 audit_log_format(ab, " new=") 1469 audit_log_format(ab, " new="); 1467 audit_log_untrustedstring(ab, 1470 audit_log_untrustedstring(ab, new); 1468 audit_log_format(ab, " res=%d 1471 audit_log_format(ab, " res=%d", !err); 1469 audit_log_end(ab); 1472 audit_log_end(ab); 1470 kfree(old); 1473 kfree(old); 1471 kfree(new); 1474 kfree(new); 1472 break; 1475 break; 1473 } 1476 } 1474 case AUDIT_SIGNAL_INFO: 1477 case AUDIT_SIGNAL_INFO: 1475 len = 0; 1478 len = 0; 1476 if (audit_sig_sid) { 1479 if (audit_sig_sid) { 1477 err = security_secid_ 1480 err = security_secid_to_secctx(audit_sig_sid, &ctx, &len); 1478 if (err) 1481 if (err) 1479 return err; 1482 return err; 1480 } 1483 } 1481 sig_data = kmalloc(struct_siz !! 1484 sig_data = kmalloc(sizeof(*sig_data) + len, GFP_KERNEL); 1482 if (!sig_data) { 1485 if (!sig_data) { 1483 if (audit_sig_sid) 1486 if (audit_sig_sid) 1484 security_rele 1487 security_release_secctx(ctx, len); 1485 return -ENOMEM; 1488 return -ENOMEM; 1486 } 1489 } 1487 sig_data->uid = from_kuid(&in 1490 sig_data->uid = from_kuid(&init_user_ns, audit_sig_uid); 1488 sig_data->pid = audit_sig_pid 1491 sig_data->pid = audit_sig_pid; 1489 if (audit_sig_sid) { 1492 if (audit_sig_sid) { 1490 memcpy(sig_data->ctx, 1493 memcpy(sig_data->ctx, ctx, len); 1491 security_release_secc 1494 security_release_secctx(ctx, len); 1492 } 1495 } 1493 audit_send_reply(skb, seq, AU 1496 audit_send_reply(skb, seq, AUDIT_SIGNAL_INFO, 0, 0, 1494 sig_data, st !! 1497 sig_data, sizeof(*sig_data) + len); 1495 kfree(sig_data); 1498 kfree(sig_data); 1496 break; 1499 break; 1497 case AUDIT_TTY_GET: { 1500 case AUDIT_TTY_GET: { 1498 struct audit_tty_status s; 1501 struct audit_tty_status s; 1499 unsigned int t; 1502 unsigned int t; 1500 1503 1501 t = READ_ONCE(current->signal 1504 t = READ_ONCE(current->signal->audit_tty); 1502 s.enabled = t & AUDIT_TTY_ENA 1505 s.enabled = t & AUDIT_TTY_ENABLE; 1503 s.log_passwd = !!(t & AUDIT_T 1506 s.log_passwd = !!(t & AUDIT_TTY_LOG_PASSWD); 1504 1507 1505 audit_send_reply(skb, seq, AU 1508 audit_send_reply(skb, seq, AUDIT_TTY_GET, 0, 0, &s, sizeof(s)); 1506 break; 1509 break; 1507 } 1510 } 1508 case AUDIT_TTY_SET: { 1511 case AUDIT_TTY_SET: { 1509 struct audit_tty_status s, ol 1512 struct audit_tty_status s, old; 1510 struct audit_buffer *ab; 1513 struct audit_buffer *ab; 1511 unsigned int t; 1514 unsigned int t; 1512 1515 1513 memset(&s, 0, sizeof(s)); 1516 memset(&s, 0, sizeof(s)); 1514 /* guard against past and fut 1517 /* guard against past and future API changes */ 1515 memcpy(&s, data, min_t(size_t 1518 memcpy(&s, data, min_t(size_t, sizeof(s), data_len)); 1516 /* check if new data is valid 1519 /* check if new data is valid */ 1517 if ((s.enabled != 0 && s.enab 1520 if ((s.enabled != 0 && s.enabled != 1) || 1518 (s.log_passwd != 0 && s.l 1521 (s.log_passwd != 0 && s.log_passwd != 1)) 1519 err = -EINVAL; 1522 err = -EINVAL; 1520 1523 1521 if (err) 1524 if (err) 1522 t = READ_ONCE(current 1525 t = READ_ONCE(current->signal->audit_tty); 1523 else { 1526 else { 1524 t = s.enabled | (-s.l 1527 t = s.enabled | (-s.log_passwd & AUDIT_TTY_LOG_PASSWD); 1525 t = xchg(¤t->si 1528 t = xchg(¤t->signal->audit_tty, t); 1526 } 1529 } 1527 old.enabled = t & AUDIT_TTY_E 1530 old.enabled = t & AUDIT_TTY_ENABLE; 1528 old.log_passwd = !!(t & AUDIT 1531 old.log_passwd = !!(t & AUDIT_TTY_LOG_PASSWD); 1529 1532 1530 audit_log_common_recv_msg(aud 1533 audit_log_common_recv_msg(audit_context(), &ab, 1531 AUD 1534 AUDIT_CONFIG_CHANGE); 1532 audit_log_format(ab, " op=tty 1535 audit_log_format(ab, " op=tty_set old-enabled=%d new-enabled=%d" 1533 " old-log_pa 1536 " old-log_passwd=%d new-log_passwd=%d res=%d", 1534 old.enabled, 1537 old.enabled, s.enabled, old.log_passwd, 1535 s.log_passwd 1538 s.log_passwd, !err); 1536 audit_log_end(ab); 1539 audit_log_end(ab); 1537 break; 1540 break; 1538 } 1541 } 1539 default: 1542 default: 1540 err = -EINVAL; 1543 err = -EINVAL; 1541 break; 1544 break; 1542 } 1545 } 1543 1546 1544 return err < 0 ? err : 0; 1547 return err < 0 ? err : 0; 1545 } 1548 } 1546 1549 1547 /** 1550 /** 1548 * audit_receive - receive messages from a ne 1551 * audit_receive - receive messages from a netlink control socket 1549 * @skb: the message buffer 1552 * @skb: the message buffer 1550 * 1553 * 1551 * Parse the provided skb and deal with any m 1554 * Parse the provided skb and deal with any messages that may be present, 1552 * malformed skbs are discarded. 1555 * malformed skbs are discarded. 1553 */ 1556 */ 1554 static void audit_receive(struct sk_buff *skb 1557 static void audit_receive(struct sk_buff *skb) 1555 { 1558 { 1556 struct nlmsghdr *nlh; 1559 struct nlmsghdr *nlh; 1557 bool ack; 1560 bool ack; 1558 /* 1561 /* 1559 * len MUST be signed for nlmsg_next 1562 * len MUST be signed for nlmsg_next to be able to dec it below 0 1560 * if the nlmsg_len was not aligned 1563 * if the nlmsg_len was not aligned 1561 */ 1564 */ 1562 int len; 1565 int len; 1563 int err; 1566 int err; 1564 1567 1565 nlh = nlmsg_hdr(skb); 1568 nlh = nlmsg_hdr(skb); 1566 len = skb->len; 1569 len = skb->len; 1567 1570 1568 audit_ctl_lock(); 1571 audit_ctl_lock(); 1569 while (nlmsg_ok(nlh, len)) { 1572 while (nlmsg_ok(nlh, len)) { 1570 ack = nlh->nlmsg_flags & NLM_ 1573 ack = nlh->nlmsg_flags & NLM_F_ACK; 1571 err = audit_receive_msg(skb, 1574 err = audit_receive_msg(skb, nlh, &ack); 1572 1575 1573 /* send an ack if the user as 1576 /* send an ack if the user asked for one and audit_receive_msg 1574 * didn't already do it, or i 1577 * didn't already do it, or if there was an error. */ 1575 if (ack || err) 1578 if (ack || err) 1576 netlink_ack(skb, nlh, 1579 netlink_ack(skb, nlh, err, NULL); 1577 1580 1578 nlh = nlmsg_next(nlh, &len); 1581 nlh = nlmsg_next(nlh, &len); 1579 } 1582 } 1580 audit_ctl_unlock(); 1583 audit_ctl_unlock(); 1581 1584 1582 /* can't block with the ctrl lock, so 1585 /* can't block with the ctrl lock, so penalize the sender now */ 1583 if (audit_backlog_limit && 1586 if (audit_backlog_limit && 1584 (skb_queue_len(&audit_queue) > au 1587 (skb_queue_len(&audit_queue) > audit_backlog_limit)) { 1585 DECLARE_WAITQUEUE(wait, curre 1588 DECLARE_WAITQUEUE(wait, current); 1586 1589 1587 /* wake kauditd to try and fl 1590 /* wake kauditd to try and flush the queue */ 1588 wake_up_interruptible(&kaudit 1591 wake_up_interruptible(&kauditd_wait); 1589 1592 1590 add_wait_queue_exclusive(&aud 1593 add_wait_queue_exclusive(&audit_backlog_wait, &wait); 1591 set_current_state(TASK_UNINTE 1594 set_current_state(TASK_UNINTERRUPTIBLE); 1592 schedule_timeout(audit_backlo 1595 schedule_timeout(audit_backlog_wait_time); 1593 remove_wait_queue(&audit_back 1596 remove_wait_queue(&audit_backlog_wait, &wait); 1594 } 1597 } 1595 } 1598 } 1596 1599 1597 /* Log information about who is connecting to 1600 /* Log information about who is connecting to the audit multicast socket */ 1598 static void audit_log_multicast(int group, co 1601 static void audit_log_multicast(int group, const char *op, int err) 1599 { 1602 { 1600 const struct cred *cred; 1603 const struct cred *cred; 1601 struct tty_struct *tty; 1604 struct tty_struct *tty; 1602 char comm[sizeof(current->comm)]; 1605 char comm[sizeof(current->comm)]; 1603 struct audit_buffer *ab; 1606 struct audit_buffer *ab; 1604 1607 1605 if (!audit_enabled) 1608 if (!audit_enabled) 1606 return; 1609 return; 1607 1610 1608 ab = audit_log_start(audit_context(), 1611 ab = audit_log_start(audit_context(), GFP_KERNEL, AUDIT_EVENT_LISTENER); 1609 if (!ab) 1612 if (!ab) 1610 return; 1613 return; 1611 1614 1612 cred = current_cred(); 1615 cred = current_cred(); 1613 tty = audit_get_tty(); 1616 tty = audit_get_tty(); 1614 audit_log_format(ab, "pid=%u uid=%u a 1617 audit_log_format(ab, "pid=%u uid=%u auid=%u tty=%s ses=%u", 1615 task_tgid_nr(current !! 1618 task_pid_nr(current), 1616 from_kuid(&init_user 1619 from_kuid(&init_user_ns, cred->uid), 1617 from_kuid(&init_user 1620 from_kuid(&init_user_ns, audit_get_loginuid(current)), 1618 tty ? tty_name(tty) 1621 tty ? tty_name(tty) : "(none)", 1619 audit_get_sessionid( 1622 audit_get_sessionid(current)); 1620 audit_put_tty(tty); 1623 audit_put_tty(tty); 1621 audit_log_task_context(ab); /* subj= 1624 audit_log_task_context(ab); /* subj= */ 1622 audit_log_format(ab, " comm="); 1625 audit_log_format(ab, " comm="); 1623 audit_log_untrustedstring(ab, get_tas 1626 audit_log_untrustedstring(ab, get_task_comm(comm, current)); 1624 audit_log_d_path_exe(ab, current->mm) 1627 audit_log_d_path_exe(ab, current->mm); /* exe= */ 1625 audit_log_format(ab, " nl-mcgrp=%d op 1628 audit_log_format(ab, " nl-mcgrp=%d op=%s res=%d", group, op, !err); 1626 audit_log_end(ab); 1629 audit_log_end(ab); 1627 } 1630 } 1628 1631 1629 /* Run custom bind function on netlink socket 1632 /* Run custom bind function on netlink socket group connect or bind requests. */ 1630 static int audit_multicast_bind(struct net *n 1633 static int audit_multicast_bind(struct net *net, int group) 1631 { 1634 { 1632 int err = 0; 1635 int err = 0; 1633 1636 1634 if (!capable(CAP_AUDIT_READ)) 1637 if (!capable(CAP_AUDIT_READ)) 1635 err = -EPERM; 1638 err = -EPERM; 1636 audit_log_multicast(group, "connect", 1639 audit_log_multicast(group, "connect", err); 1637 return err; 1640 return err; 1638 } 1641 } 1639 1642 1640 static void audit_multicast_unbind(struct net 1643 static void audit_multicast_unbind(struct net *net, int group) 1641 { 1644 { 1642 audit_log_multicast(group, "disconnec 1645 audit_log_multicast(group, "disconnect", 0); 1643 } 1646 } 1644 1647 1645 static int __net_init audit_net_init(struct n 1648 static int __net_init audit_net_init(struct net *net) 1646 { 1649 { 1647 struct netlink_kernel_cfg cfg = { 1650 struct netlink_kernel_cfg cfg = { 1648 .input = audit_receive, 1651 .input = audit_receive, 1649 .bind = audit_multicast_bin 1652 .bind = audit_multicast_bind, 1650 .unbind = audit_multicast_unb 1653 .unbind = audit_multicast_unbind, 1651 .flags = NL_CFG_F_NONROOT_RE 1654 .flags = NL_CFG_F_NONROOT_RECV, 1652 .groups = AUDIT_NLGRP_MAX, 1655 .groups = AUDIT_NLGRP_MAX, 1653 }; 1656 }; 1654 1657 1655 struct audit_net *aunet = net_generic 1658 struct audit_net *aunet = net_generic(net, audit_net_id); 1656 1659 1657 aunet->sk = netlink_kernel_create(net 1660 aunet->sk = netlink_kernel_create(net, NETLINK_AUDIT, &cfg); 1658 if (aunet->sk == NULL) { 1661 if (aunet->sk == NULL) { 1659 audit_panic("cannot initializ 1662 audit_panic("cannot initialize netlink socket in namespace"); 1660 return -ENOMEM; 1663 return -ENOMEM; 1661 } 1664 } 1662 /* limit the timeout in case auditd i 1665 /* limit the timeout in case auditd is blocked/stopped */ 1663 aunet->sk->sk_sndtimeo = HZ / 10; 1666 aunet->sk->sk_sndtimeo = HZ / 10; 1664 1667 1665 return 0; 1668 return 0; 1666 } 1669 } 1667 1670 1668 static void __net_exit audit_net_exit(struct 1671 static void __net_exit audit_net_exit(struct net *net) 1669 { 1672 { 1670 struct audit_net *aunet = net_generic 1673 struct audit_net *aunet = net_generic(net, audit_net_id); 1671 1674 1672 /* NOTE: you would think that we woul 1675 /* NOTE: you would think that we would want to check the auditd 1673 * connection and potentially reset i 1676 * connection and potentially reset it here if it lives in this 1674 * namespace, but since the auditd co 1677 * namespace, but since the auditd connection tracking struct holds a 1675 * reference to this namespace (see a 1678 * reference to this namespace (see auditd_set()) we are only ever 1676 * going to get here after that conne 1679 * going to get here after that connection has been released */ 1677 1680 1678 netlink_kernel_release(aunet->sk); 1681 netlink_kernel_release(aunet->sk); 1679 } 1682 } 1680 1683 1681 static struct pernet_operations audit_net_ops 1684 static struct pernet_operations audit_net_ops __net_initdata = { 1682 .init = audit_net_init, 1685 .init = audit_net_init, 1683 .exit = audit_net_exit, 1686 .exit = audit_net_exit, 1684 .id = &audit_net_id, 1687 .id = &audit_net_id, 1685 .size = sizeof(struct audit_net), 1688 .size = sizeof(struct audit_net), 1686 }; 1689 }; 1687 1690 1688 /* Initialize audit support at boot time. */ 1691 /* Initialize audit support at boot time. */ 1689 static int __init audit_init(void) 1692 static int __init audit_init(void) 1690 { 1693 { 1691 int i; 1694 int i; 1692 1695 1693 if (audit_initialized == AUDIT_DISABL 1696 if (audit_initialized == AUDIT_DISABLED) 1694 return 0; 1697 return 0; 1695 1698 1696 audit_buffer_cache = KMEM_CACHE(audit !! 1699 audit_buffer_cache = kmem_cache_create("audit_buffer", >> 1700 sizeof(struct audit_buffer), >> 1701 0, SLAB_PANIC, NULL); 1697 1702 1698 skb_queue_head_init(&audit_queue); 1703 skb_queue_head_init(&audit_queue); 1699 skb_queue_head_init(&audit_retry_queu 1704 skb_queue_head_init(&audit_retry_queue); 1700 skb_queue_head_init(&audit_hold_queue 1705 skb_queue_head_init(&audit_hold_queue); 1701 1706 1702 for (i = 0; i < AUDIT_INODE_BUCKETS; 1707 for (i = 0; i < AUDIT_INODE_BUCKETS; i++) 1703 INIT_LIST_HEAD(&audit_inode_h 1708 INIT_LIST_HEAD(&audit_inode_hash[i]); 1704 1709 1705 mutex_init(&audit_cmd_mutex.lock); 1710 mutex_init(&audit_cmd_mutex.lock); 1706 audit_cmd_mutex.owner = NULL; 1711 audit_cmd_mutex.owner = NULL; 1707 1712 1708 pr_info("initializing netlink subsys 1713 pr_info("initializing netlink subsys (%s)\n", 1709 str_enabled_disabled(audit_de !! 1714 audit_default ? "enabled" : "disabled"); 1710 register_pernet_subsys(&audit_net_ops 1715 register_pernet_subsys(&audit_net_ops); 1711 1716 1712 audit_initialized = AUDIT_INITIALIZED 1717 audit_initialized = AUDIT_INITIALIZED; 1713 1718 1714 kauditd_task = kthread_run(kauditd_th 1719 kauditd_task = kthread_run(kauditd_thread, NULL, "kauditd"); 1715 if (IS_ERR(kauditd_task)) { 1720 if (IS_ERR(kauditd_task)) { 1716 int err = PTR_ERR(kauditd_tas 1721 int err = PTR_ERR(kauditd_task); 1717 panic("audit: failed to start 1722 panic("audit: failed to start the kauditd thread (%d)\n", err); 1718 } 1723 } 1719 1724 1720 audit_log(NULL, GFP_KERNEL, AUDIT_KER 1725 audit_log(NULL, GFP_KERNEL, AUDIT_KERNEL, 1721 "state=initialized audit_enab 1726 "state=initialized audit_enabled=%u res=1", 1722 audit_enabled); 1727 audit_enabled); 1723 1728 1724 return 0; 1729 return 0; 1725 } 1730 } 1726 postcore_initcall(audit_init); 1731 postcore_initcall(audit_init); 1727 1732 1728 /* 1733 /* 1729 * Process kernel command-line parameter at b 1734 * Process kernel command-line parameter at boot time. 1730 * audit={0|off} or audit={1|on}. 1735 * audit={0|off} or audit={1|on}. 1731 */ 1736 */ 1732 static int __init audit_enable(char *str) 1737 static int __init audit_enable(char *str) 1733 { 1738 { 1734 if (!strcasecmp(str, "off") || !strcm 1739 if (!strcasecmp(str, "off") || !strcmp(str, "")) 1735 audit_default = AUDIT_OFF; 1740 audit_default = AUDIT_OFF; 1736 else if (!strcasecmp(str, "on") || !s 1741 else if (!strcasecmp(str, "on") || !strcmp(str, "1")) 1737 audit_default = AUDIT_ON; 1742 audit_default = AUDIT_ON; 1738 else { 1743 else { 1739 pr_err("audit: invalid 'audit 1744 pr_err("audit: invalid 'audit' parameter value (%s)\n", str); 1740 audit_default = AUDIT_ON; 1745 audit_default = AUDIT_ON; 1741 } 1746 } 1742 1747 1743 if (audit_default == AUDIT_OFF) 1748 if (audit_default == AUDIT_OFF) 1744 audit_initialized = AUDIT_DIS 1749 audit_initialized = AUDIT_DISABLED; 1745 if (audit_set_enabled(audit_default)) 1750 if (audit_set_enabled(audit_default)) 1746 pr_err("audit: error setting 1751 pr_err("audit: error setting audit state (%d)\n", 1747 audit_default); 1752 audit_default); 1748 1753 1749 pr_info("%s\n", audit_default ? 1754 pr_info("%s\n", audit_default ? 1750 "enabled (after initializatio 1755 "enabled (after initialization)" : "disabled (until reboot)"); 1751 1756 1752 return 1; 1757 return 1; 1753 } 1758 } 1754 __setup("audit=", audit_enable); 1759 __setup("audit=", audit_enable); 1755 1760 1756 /* Process kernel command-line parameter at b 1761 /* Process kernel command-line parameter at boot time. 1757 * audit_backlog_limit=<n> */ 1762 * audit_backlog_limit=<n> */ 1758 static int __init audit_backlog_limit_set(cha 1763 static int __init audit_backlog_limit_set(char *str) 1759 { 1764 { 1760 u32 audit_backlog_limit_arg; 1765 u32 audit_backlog_limit_arg; 1761 1766 1762 pr_info("audit_backlog_limit: "); 1767 pr_info("audit_backlog_limit: "); 1763 if (kstrtouint(str, 0, &audit_backlog 1768 if (kstrtouint(str, 0, &audit_backlog_limit_arg)) { 1764 pr_cont("using default of %u, 1769 pr_cont("using default of %u, unable to parse %s\n", 1765 audit_backlog_limit, 1770 audit_backlog_limit, str); 1766 return 1; 1771 return 1; 1767 } 1772 } 1768 1773 1769 audit_backlog_limit = audit_backlog_l 1774 audit_backlog_limit = audit_backlog_limit_arg; 1770 pr_cont("%d\n", audit_backlog_limit); 1775 pr_cont("%d\n", audit_backlog_limit); 1771 1776 1772 return 1; 1777 return 1; 1773 } 1778 } 1774 __setup("audit_backlog_limit=", audit_backlog 1779 __setup("audit_backlog_limit=", audit_backlog_limit_set); 1775 1780 1776 static void audit_buffer_free(struct audit_bu 1781 static void audit_buffer_free(struct audit_buffer *ab) 1777 { 1782 { 1778 if (!ab) 1783 if (!ab) 1779 return; 1784 return; 1780 1785 1781 kfree_skb(ab->skb); 1786 kfree_skb(ab->skb); 1782 kmem_cache_free(audit_buffer_cache, a 1787 kmem_cache_free(audit_buffer_cache, ab); 1783 } 1788 } 1784 1789 1785 static struct audit_buffer *audit_buffer_allo 1790 static struct audit_buffer *audit_buffer_alloc(struct audit_context *ctx, 1786 1791 gfp_t gfp_mask, int type) 1787 { 1792 { 1788 struct audit_buffer *ab; 1793 struct audit_buffer *ab; 1789 1794 1790 ab = kmem_cache_alloc(audit_buffer_ca 1795 ab = kmem_cache_alloc(audit_buffer_cache, gfp_mask); 1791 if (!ab) 1796 if (!ab) 1792 return NULL; 1797 return NULL; 1793 1798 1794 ab->skb = nlmsg_new(AUDIT_BUFSIZ, gfp 1799 ab->skb = nlmsg_new(AUDIT_BUFSIZ, gfp_mask); 1795 if (!ab->skb) 1800 if (!ab->skb) 1796 goto err; 1801 goto err; 1797 if (!nlmsg_put(ab->skb, 0, 0, type, 0 1802 if (!nlmsg_put(ab->skb, 0, 0, type, 0, 0)) 1798 goto err; 1803 goto err; 1799 1804 1800 ab->ctx = ctx; 1805 ab->ctx = ctx; 1801 ab->gfp_mask = gfp_mask; 1806 ab->gfp_mask = gfp_mask; 1802 1807 1803 return ab; 1808 return ab; 1804 1809 1805 err: 1810 err: 1806 audit_buffer_free(ab); 1811 audit_buffer_free(ab); 1807 return NULL; 1812 return NULL; 1808 } 1813 } 1809 1814 1810 /** 1815 /** 1811 * audit_serial - compute a serial number for 1816 * audit_serial - compute a serial number for the audit record 1812 * 1817 * 1813 * Compute a serial number for the audit reco 1818 * Compute a serial number for the audit record. Audit records are 1814 * written to user-space as soon as they are 1819 * written to user-space as soon as they are generated, so a complete 1815 * audit record may be written in several pie 1820 * audit record may be written in several pieces. The timestamp of the 1816 * record and this serial number are used by 1821 * record and this serial number are used by the user-space tools to 1817 * determine which pieces belong to the same 1822 * determine which pieces belong to the same audit record. The 1818 * (timestamp,serial) tuple is unique for eac 1823 * (timestamp,serial) tuple is unique for each syscall and is live from 1819 * syscall entry to syscall exit. 1824 * syscall entry to syscall exit. 1820 * 1825 * 1821 * NOTE: Another possibility is to store the 1826 * NOTE: Another possibility is to store the formatted records off the 1822 * audit context (for those records that have 1827 * audit context (for those records that have a context), and emit them 1823 * all at syscall exit. However, this could 1828 * all at syscall exit. However, this could delay the reporting of 1824 * significant errors until syscall exit (or 1829 * significant errors until syscall exit (or never, if the system 1825 * halts). 1830 * halts). 1826 */ 1831 */ 1827 unsigned int audit_serial(void) 1832 unsigned int audit_serial(void) 1828 { 1833 { 1829 static atomic_t serial = ATOMIC_INIT( 1834 static atomic_t serial = ATOMIC_INIT(0); 1830 1835 1831 return atomic_inc_return(&serial); 1836 return atomic_inc_return(&serial); 1832 } 1837 } 1833 1838 1834 static inline void audit_get_stamp(struct aud 1839 static inline void audit_get_stamp(struct audit_context *ctx, 1835 struct tim 1840 struct timespec64 *t, unsigned int *serial) 1836 { 1841 { 1837 if (!ctx || !auditsc_get_stamp(ctx, t 1842 if (!ctx || !auditsc_get_stamp(ctx, t, serial)) { 1838 ktime_get_coarse_real_ts64(t) 1843 ktime_get_coarse_real_ts64(t); 1839 *serial = audit_serial(); 1844 *serial = audit_serial(); 1840 } 1845 } 1841 } 1846 } 1842 1847 1843 /** 1848 /** 1844 * audit_log_start - obtain an audit buffer 1849 * audit_log_start - obtain an audit buffer 1845 * @ctx: audit_context (may be NULL) 1850 * @ctx: audit_context (may be NULL) 1846 * @gfp_mask: type of allocation 1851 * @gfp_mask: type of allocation 1847 * @type: audit message type 1852 * @type: audit message type 1848 * 1853 * 1849 * Returns audit_buffer pointer on success or 1854 * Returns audit_buffer pointer on success or NULL on error. 1850 * 1855 * 1851 * Obtain an audit buffer. This routine does 1856 * Obtain an audit buffer. This routine does locking to obtain the 1852 * audit buffer, but then no locking is requi 1857 * audit buffer, but then no locking is required for calls to 1853 * audit_log_*format. If the task (ctx) is a 1858 * audit_log_*format. If the task (ctx) is a task that is currently in a 1854 * syscall, then the syscall is marked as aud 1859 * syscall, then the syscall is marked as auditable and an audit record 1855 * will be written at syscall exit. If there 1860 * will be written at syscall exit. If there is no associated task, then 1856 * task context (ctx) should be NULL. 1861 * task context (ctx) should be NULL. 1857 */ 1862 */ 1858 struct audit_buffer *audit_log_start(struct a 1863 struct audit_buffer *audit_log_start(struct audit_context *ctx, gfp_t gfp_mask, 1859 int type 1864 int type) 1860 { 1865 { 1861 struct audit_buffer *ab; 1866 struct audit_buffer *ab; 1862 struct timespec64 t; 1867 struct timespec64 t; 1863 unsigned int serial; 1868 unsigned int serial; 1864 1869 1865 if (audit_initialized != AUDIT_INITIA 1870 if (audit_initialized != AUDIT_INITIALIZED) 1866 return NULL; 1871 return NULL; 1867 1872 1868 if (unlikely(!audit_filter(type, AUDI 1873 if (unlikely(!audit_filter(type, AUDIT_FILTER_EXCLUDE))) 1869 return NULL; 1874 return NULL; 1870 1875 1871 /* NOTE: don't ever fail/sleep on the 1876 /* NOTE: don't ever fail/sleep on these two conditions: 1872 * 1. auditd generated record - since 1877 * 1. auditd generated record - since we need auditd to drain the 1873 * queue; also, when we are checki 1878 * queue; also, when we are checking for auditd, compare PIDs using 1874 * task_tgid_vnr() since auditd_pi 1879 * task_tgid_vnr() since auditd_pid is set in audit_receive_msg() 1875 * using a PID anchored in the cal 1880 * using a PID anchored in the caller's namespace 1876 * 2. generator holding the audit_cmd 1881 * 2. generator holding the audit_cmd_mutex - we don't want to block 1877 * while holding the mutex, althou 1882 * while holding the mutex, although we do penalize the sender 1878 * later in audit_receive() when i 1883 * later in audit_receive() when it is safe to block 1879 */ 1884 */ 1880 if (!(auditd_test_task(current) || au 1885 if (!(auditd_test_task(current) || audit_ctl_owner_current())) { 1881 long stime = audit_backlog_wa 1886 long stime = audit_backlog_wait_time; 1882 1887 1883 while (audit_backlog_limit && 1888 while (audit_backlog_limit && 1884 (skb_queue_len(&audit_ 1889 (skb_queue_len(&audit_queue) > audit_backlog_limit)) { 1885 /* wake kauditd to tr 1890 /* wake kauditd to try and flush the queue */ 1886 wake_up_interruptible 1891 wake_up_interruptible(&kauditd_wait); 1887 1892 1888 /* sleep if we are al 1893 /* sleep if we are allowed and we haven't exhausted our 1889 * backlog wait limit 1894 * backlog wait limit */ 1890 if (gfpflags_allow_bl 1895 if (gfpflags_allow_blocking(gfp_mask) && (stime > 0)) { 1891 long rtime = 1896 long rtime = stime; 1892 1897 1893 DECLARE_WAITQ 1898 DECLARE_WAITQUEUE(wait, current); 1894 1899 1895 add_wait_queu 1900 add_wait_queue_exclusive(&audit_backlog_wait, 1896 1901 &wait); 1897 set_current_s 1902 set_current_state(TASK_UNINTERRUPTIBLE); 1898 stime = sched 1903 stime = schedule_timeout(rtime); 1899 atomic_add(rt 1904 atomic_add(rtime - stime, &audit_backlog_wait_time_actual); 1900 remove_wait_q 1905 remove_wait_queue(&audit_backlog_wait, &wait); 1901 } else { 1906 } else { 1902 if (audit_rat 1907 if (audit_rate_check() && printk_ratelimit()) 1903 pr_wa 1908 pr_warn("audit_backlog=%d > audit_backlog_limit=%d\n", 1904 1909 skb_queue_len(&audit_queue), 1905 1910 audit_backlog_limit); 1906 audit_log_los 1911 audit_log_lost("backlog limit exceeded"); 1907 return NULL; 1912 return NULL; 1908 } 1913 } 1909 } 1914 } 1910 } 1915 } 1911 1916 1912 ab = audit_buffer_alloc(ctx, gfp_mask 1917 ab = audit_buffer_alloc(ctx, gfp_mask, type); 1913 if (!ab) { 1918 if (!ab) { 1914 audit_log_lost("out of memory 1919 audit_log_lost("out of memory in audit_log_start"); 1915 return NULL; 1920 return NULL; 1916 } 1921 } 1917 1922 1918 audit_get_stamp(ab->ctx, &t, &serial) 1923 audit_get_stamp(ab->ctx, &t, &serial); 1919 /* cancel dummy context to enable sup 1924 /* cancel dummy context to enable supporting records */ 1920 if (ctx) 1925 if (ctx) 1921 ctx->dummy = 0; 1926 ctx->dummy = 0; 1922 audit_log_format(ab, "audit(%llu.%03l 1927 audit_log_format(ab, "audit(%llu.%03lu:%u): ", 1923 (unsigned long long) 1928 (unsigned long long)t.tv_sec, t.tv_nsec/1000000, serial); 1924 1929 1925 return ab; 1930 return ab; 1926 } 1931 } 1927 1932 1928 /** 1933 /** 1929 * audit_expand - expand skb in the audit buf 1934 * audit_expand - expand skb in the audit buffer 1930 * @ab: audit_buffer 1935 * @ab: audit_buffer 1931 * @extra: space to add at tail of the skb 1936 * @extra: space to add at tail of the skb 1932 * 1937 * 1933 * Returns 0 (no space) on failed expansion, 1938 * Returns 0 (no space) on failed expansion, or available space if 1934 * successful. 1939 * successful. 1935 */ 1940 */ 1936 static inline int audit_expand(struct audit_b 1941 static inline int audit_expand(struct audit_buffer *ab, int extra) 1937 { 1942 { 1938 struct sk_buff *skb = ab->skb; 1943 struct sk_buff *skb = ab->skb; 1939 int oldtail = skb_tailroom(skb); 1944 int oldtail = skb_tailroom(skb); 1940 int ret = pskb_expand_head(skb, 0, ex 1945 int ret = pskb_expand_head(skb, 0, extra, ab->gfp_mask); 1941 int newtail = skb_tailroom(skb); 1946 int newtail = skb_tailroom(skb); 1942 1947 1943 if (ret < 0) { 1948 if (ret < 0) { 1944 audit_log_lost("out of memory 1949 audit_log_lost("out of memory in audit_expand"); 1945 return 0; 1950 return 0; 1946 } 1951 } 1947 1952 1948 skb->truesize += newtail - oldtail; 1953 skb->truesize += newtail - oldtail; 1949 return newtail; 1954 return newtail; 1950 } 1955 } 1951 1956 1952 /* 1957 /* 1953 * Format an audit message into the audit buf 1958 * Format an audit message into the audit buffer. If there isn't enough 1954 * room in the audit buffer, more room will b 1959 * room in the audit buffer, more room will be allocated and vsnprint 1955 * will be called a second time. Currently, 1960 * will be called a second time. Currently, we assume that a printk 1956 * can't format message larger than 1024 byte 1961 * can't format message larger than 1024 bytes, so we don't either. 1957 */ 1962 */ 1958 static void audit_log_vformat(struct audit_bu 1963 static void audit_log_vformat(struct audit_buffer *ab, const char *fmt, 1959 va_list args) 1964 va_list args) 1960 { 1965 { 1961 int len, avail; 1966 int len, avail; 1962 struct sk_buff *skb; 1967 struct sk_buff *skb; 1963 va_list args2; 1968 va_list args2; 1964 1969 1965 if (!ab) 1970 if (!ab) 1966 return; 1971 return; 1967 1972 1968 BUG_ON(!ab->skb); 1973 BUG_ON(!ab->skb); 1969 skb = ab->skb; 1974 skb = ab->skb; 1970 avail = skb_tailroom(skb); 1975 avail = skb_tailroom(skb); 1971 if (avail == 0) { 1976 if (avail == 0) { 1972 avail = audit_expand(ab, AUDI 1977 avail = audit_expand(ab, AUDIT_BUFSIZ); 1973 if (!avail) 1978 if (!avail) 1974 goto out; 1979 goto out; 1975 } 1980 } 1976 va_copy(args2, args); 1981 va_copy(args2, args); 1977 len = vsnprintf(skb_tail_pointer(skb) 1982 len = vsnprintf(skb_tail_pointer(skb), avail, fmt, args); 1978 if (len >= avail) { 1983 if (len >= avail) { 1979 /* The printk buffer is 1024 1984 /* The printk buffer is 1024 bytes long, so if we get 1980 * here and AUDIT_BUFSIZ is a 1985 * here and AUDIT_BUFSIZ is at least 1024, then we can 1981 * log everything that printk 1986 * log everything that printk could have logged. */ 1982 avail = audit_expand(ab, 1987 avail = audit_expand(ab, 1983 max_t(unsigned, AUDIT 1988 max_t(unsigned, AUDIT_BUFSIZ, 1+len-avail)); 1984 if (!avail) 1989 if (!avail) 1985 goto out_va_end; 1990 goto out_va_end; 1986 len = vsnprintf(skb_tail_poin 1991 len = vsnprintf(skb_tail_pointer(skb), avail, fmt, args2); 1987 } 1992 } 1988 if (len > 0) 1993 if (len > 0) 1989 skb_put(skb, len); 1994 skb_put(skb, len); 1990 out_va_end: 1995 out_va_end: 1991 va_end(args2); 1996 va_end(args2); 1992 out: 1997 out: 1993 return; 1998 return; 1994 } 1999 } 1995 2000 1996 /** 2001 /** 1997 * audit_log_format - format a message into t 2002 * audit_log_format - format a message into the audit buffer. 1998 * @ab: audit_buffer 2003 * @ab: audit_buffer 1999 * @fmt: format string 2004 * @fmt: format string 2000 * @...: optional parameters matching @fmt st 2005 * @...: optional parameters matching @fmt string 2001 * 2006 * 2002 * All the work is done in audit_log_vformat. 2007 * All the work is done in audit_log_vformat. 2003 */ 2008 */ 2004 void audit_log_format(struct audit_buffer *ab 2009 void audit_log_format(struct audit_buffer *ab, const char *fmt, ...) 2005 { 2010 { 2006 va_list args; 2011 va_list args; 2007 2012 2008 if (!ab) 2013 if (!ab) 2009 return; 2014 return; 2010 va_start(args, fmt); 2015 va_start(args, fmt); 2011 audit_log_vformat(ab, fmt, args); 2016 audit_log_vformat(ab, fmt, args); 2012 va_end(args); 2017 va_end(args); 2013 } 2018 } 2014 2019 2015 /** 2020 /** 2016 * audit_log_n_hex - convert a buffer to hex 2021 * audit_log_n_hex - convert a buffer to hex and append it to the audit skb 2017 * @ab: the audit_buffer 2022 * @ab: the audit_buffer 2018 * @buf: buffer to convert to hex 2023 * @buf: buffer to convert to hex 2019 * @len: length of @buf to be converted 2024 * @len: length of @buf to be converted 2020 * 2025 * 2021 * No return value; failure to expand is sile 2026 * No return value; failure to expand is silently ignored. 2022 * 2027 * 2023 * This function will take the passed buf and 2028 * This function will take the passed buf and convert it into a string of 2024 * ascii hex digits. The new string is placed 2029 * ascii hex digits. The new string is placed onto the skb. 2025 */ 2030 */ 2026 void audit_log_n_hex(struct audit_buffer *ab, 2031 void audit_log_n_hex(struct audit_buffer *ab, const unsigned char *buf, 2027 size_t len) 2032 size_t len) 2028 { 2033 { 2029 int i, avail, new_len; 2034 int i, avail, new_len; 2030 unsigned char *ptr; 2035 unsigned char *ptr; 2031 struct sk_buff *skb; 2036 struct sk_buff *skb; 2032 2037 2033 if (!ab) 2038 if (!ab) 2034 return; 2039 return; 2035 2040 2036 BUG_ON(!ab->skb); 2041 BUG_ON(!ab->skb); 2037 skb = ab->skb; 2042 skb = ab->skb; 2038 avail = skb_tailroom(skb); 2043 avail = skb_tailroom(skb); 2039 new_len = len<<1; 2044 new_len = len<<1; 2040 if (new_len >= avail) { 2045 if (new_len >= avail) { 2041 /* Round the buffer request u 2046 /* Round the buffer request up to the next multiple */ 2042 new_len = AUDIT_BUFSIZ*(((new 2047 new_len = AUDIT_BUFSIZ*(((new_len-avail)/AUDIT_BUFSIZ) + 1); 2043 avail = audit_expand(ab, new_ 2048 avail = audit_expand(ab, new_len); 2044 if (!avail) 2049 if (!avail) 2045 return; 2050 return; 2046 } 2051 } 2047 2052 2048 ptr = skb_tail_pointer(skb); 2053 ptr = skb_tail_pointer(skb); 2049 for (i = 0; i < len; i++) 2054 for (i = 0; i < len; i++) 2050 ptr = hex_byte_pack_upper(ptr 2055 ptr = hex_byte_pack_upper(ptr, buf[i]); 2051 *ptr = 0; 2056 *ptr = 0; 2052 skb_put(skb, len << 1); /* new string 2057 skb_put(skb, len << 1); /* new string is twice the old string */ 2053 } 2058 } 2054 2059 2055 /* 2060 /* 2056 * Format a string of no more than slen chara 2061 * Format a string of no more than slen characters into the audit buffer, 2057 * enclosed in quote marks. 2062 * enclosed in quote marks. 2058 */ 2063 */ 2059 void audit_log_n_string(struct audit_buffer * 2064 void audit_log_n_string(struct audit_buffer *ab, const char *string, 2060 size_t slen) 2065 size_t slen) 2061 { 2066 { 2062 int avail, new_len; 2067 int avail, new_len; 2063 unsigned char *ptr; 2068 unsigned char *ptr; 2064 struct sk_buff *skb; 2069 struct sk_buff *skb; 2065 2070 2066 if (!ab) 2071 if (!ab) 2067 return; 2072 return; 2068 2073 2069 BUG_ON(!ab->skb); 2074 BUG_ON(!ab->skb); 2070 skb = ab->skb; 2075 skb = ab->skb; 2071 avail = skb_tailroom(skb); 2076 avail = skb_tailroom(skb); 2072 new_len = slen + 3; /* enclosing 2077 new_len = slen + 3; /* enclosing quotes + null terminator */ 2073 if (new_len > avail) { 2078 if (new_len > avail) { 2074 avail = audit_expand(ab, new_ 2079 avail = audit_expand(ab, new_len); 2075 if (!avail) 2080 if (!avail) 2076 return; 2081 return; 2077 } 2082 } 2078 ptr = skb_tail_pointer(skb); 2083 ptr = skb_tail_pointer(skb); 2079 *ptr++ = '"'; 2084 *ptr++ = '"'; 2080 memcpy(ptr, string, slen); 2085 memcpy(ptr, string, slen); 2081 ptr += slen; 2086 ptr += slen; 2082 *ptr++ = '"'; 2087 *ptr++ = '"'; 2083 *ptr = 0; 2088 *ptr = 0; 2084 skb_put(skb, slen + 2); /* don't incl 2089 skb_put(skb, slen + 2); /* don't include null terminator */ 2085 } 2090 } 2086 2091 2087 /** 2092 /** 2088 * audit_string_contains_control - does a str 2093 * audit_string_contains_control - does a string need to be logged in hex 2089 * @string: string to be checked 2094 * @string: string to be checked 2090 * @len: max length of the string to check 2095 * @len: max length of the string to check 2091 */ 2096 */ 2092 bool audit_string_contains_control(const char 2097 bool audit_string_contains_control(const char *string, size_t len) 2093 { 2098 { 2094 const unsigned char *p; 2099 const unsigned char *p; 2095 for (p = string; p < (const unsigned 2100 for (p = string; p < (const unsigned char *)string + len; p++) { 2096 if (*p == '"' || *p < 0x21 || 2101 if (*p == '"' || *p < 0x21 || *p > 0x7e) 2097 return true; 2102 return true; 2098 } 2103 } 2099 return false; 2104 return false; 2100 } 2105 } 2101 2106 2102 /** 2107 /** 2103 * audit_log_n_untrustedstring - log a string 2108 * audit_log_n_untrustedstring - log a string that may contain random characters 2104 * @ab: audit_buffer 2109 * @ab: audit_buffer 2105 * @len: length of string (not including trai 2110 * @len: length of string (not including trailing null) 2106 * @string: string to be logged 2111 * @string: string to be logged 2107 * 2112 * 2108 * This code will escape a string that is pas 2113 * This code will escape a string that is passed to it if the string 2109 * contains a control character, unprintable 2114 * contains a control character, unprintable character, double quote mark, 2110 * or a space. Unescaped strings will start a 2115 * or a space. Unescaped strings will start and end with a double quote mark. 2111 * Strings that are escaped are printed in he 2116 * Strings that are escaped are printed in hex (2 digits per char). 2112 * 2117 * 2113 * The caller specifies the number of charact 2118 * The caller specifies the number of characters in the string to log, which may 2114 * or may not be the entire string. 2119 * or may not be the entire string. 2115 */ 2120 */ 2116 void audit_log_n_untrustedstring(struct audit 2121 void audit_log_n_untrustedstring(struct audit_buffer *ab, const char *string, 2117 size_t len) 2122 size_t len) 2118 { 2123 { 2119 if (audit_string_contains_control(str 2124 if (audit_string_contains_control(string, len)) 2120 audit_log_n_hex(ab, string, l 2125 audit_log_n_hex(ab, string, len); 2121 else 2126 else 2122 audit_log_n_string(ab, string 2127 audit_log_n_string(ab, string, len); 2123 } 2128 } 2124 2129 2125 /** 2130 /** 2126 * audit_log_untrustedstring - log a string t 2131 * audit_log_untrustedstring - log a string that may contain random characters 2127 * @ab: audit_buffer 2132 * @ab: audit_buffer 2128 * @string: string to be logged 2133 * @string: string to be logged 2129 * 2134 * 2130 * Same as audit_log_n_untrustedstring(), exc 2135 * Same as audit_log_n_untrustedstring(), except that strlen is used to 2131 * determine string length. 2136 * determine string length. 2132 */ 2137 */ 2133 void audit_log_untrustedstring(struct audit_b 2138 void audit_log_untrustedstring(struct audit_buffer *ab, const char *string) 2134 { 2139 { 2135 audit_log_n_untrustedstring(ab, strin 2140 audit_log_n_untrustedstring(ab, string, strlen(string)); 2136 } 2141 } 2137 2142 2138 /* This is a helper-function to print the esc 2143 /* This is a helper-function to print the escaped d_path */ 2139 void audit_log_d_path(struct audit_buffer *ab 2144 void audit_log_d_path(struct audit_buffer *ab, const char *prefix, 2140 const struct path *path 2145 const struct path *path) 2141 { 2146 { 2142 char *p, *pathname; 2147 char *p, *pathname; 2143 2148 2144 if (prefix) 2149 if (prefix) 2145 audit_log_format(ab, "%s", pr 2150 audit_log_format(ab, "%s", prefix); 2146 2151 2147 /* We will allow 11 spaces for ' (del 2152 /* We will allow 11 spaces for ' (deleted)' to be appended */ 2148 pathname = kmalloc(PATH_MAX+11, ab->g 2153 pathname = kmalloc(PATH_MAX+11, ab->gfp_mask); 2149 if (!pathname) { 2154 if (!pathname) { 2150 audit_log_format(ab, "\"<no_m 2155 audit_log_format(ab, "\"<no_memory>\""); 2151 return; 2156 return; 2152 } 2157 } 2153 p = d_path(path, pathname, PATH_MAX+1 2158 p = d_path(path, pathname, PATH_MAX+11); 2154 if (IS_ERR(p)) { /* Should never happ 2159 if (IS_ERR(p)) { /* Should never happen since we send PATH_MAX */ 2155 /* FIXME: can we save some in 2160 /* FIXME: can we save some information here? */ 2156 audit_log_format(ab, "\"<too_ 2161 audit_log_format(ab, "\"<too_long>\""); 2157 } else 2162 } else 2158 audit_log_untrustedstring(ab, 2163 audit_log_untrustedstring(ab, p); 2159 kfree(pathname); 2164 kfree(pathname); 2160 } 2165 } 2161 2166 2162 void audit_log_session_info(struct audit_buff 2167 void audit_log_session_info(struct audit_buffer *ab) 2163 { 2168 { 2164 unsigned int sessionid = audit_get_se 2169 unsigned int sessionid = audit_get_sessionid(current); 2165 uid_t auid = from_kuid(&init_user_ns, 2170 uid_t auid = from_kuid(&init_user_ns, audit_get_loginuid(current)); 2166 2171 2167 audit_log_format(ab, "auid=%u ses=%u" 2172 audit_log_format(ab, "auid=%u ses=%u", auid, sessionid); 2168 } 2173 } 2169 2174 2170 void audit_log_key(struct audit_buffer *ab, c 2175 void audit_log_key(struct audit_buffer *ab, char *key) 2171 { 2176 { 2172 audit_log_format(ab, " key="); 2177 audit_log_format(ab, " key="); 2173 if (key) 2178 if (key) 2174 audit_log_untrustedstring(ab, 2179 audit_log_untrustedstring(ab, key); 2175 else 2180 else 2176 audit_log_format(ab, "(null)" 2181 audit_log_format(ab, "(null)"); 2177 } 2182 } 2178 2183 2179 int audit_log_task_context(struct audit_buffe 2184 int audit_log_task_context(struct audit_buffer *ab) 2180 { 2185 { 2181 char *ctx = NULL; 2186 char *ctx = NULL; 2182 unsigned len; 2187 unsigned len; 2183 int error; 2188 int error; 2184 u32 sid; 2189 u32 sid; 2185 2190 2186 security_current_getsecid_subj(&sid); !! 2191 security_task_getsecid_subj(current, &sid); 2187 if (!sid) 2192 if (!sid) 2188 return 0; 2193 return 0; 2189 2194 2190 error = security_secid_to_secctx(sid, 2195 error = security_secid_to_secctx(sid, &ctx, &len); 2191 if (error) { 2196 if (error) { 2192 if (error != -EINVAL) 2197 if (error != -EINVAL) 2193 goto error_path; 2198 goto error_path; 2194 return 0; 2199 return 0; 2195 } 2200 } 2196 2201 2197 audit_log_format(ab, " subj=%s", ctx) 2202 audit_log_format(ab, " subj=%s", ctx); 2198 security_release_secctx(ctx, len); 2203 security_release_secctx(ctx, len); 2199 return 0; 2204 return 0; 2200 2205 2201 error_path: 2206 error_path: 2202 audit_panic("error in audit_log_task_ 2207 audit_panic("error in audit_log_task_context"); 2203 return error; 2208 return error; 2204 } 2209 } 2205 EXPORT_SYMBOL(audit_log_task_context); 2210 EXPORT_SYMBOL(audit_log_task_context); 2206 2211 2207 void audit_log_d_path_exe(struct audit_buffer 2212 void audit_log_d_path_exe(struct audit_buffer *ab, 2208 struct mm_struct *m 2213 struct mm_struct *mm) 2209 { 2214 { 2210 struct file *exe_file; 2215 struct file *exe_file; 2211 2216 2212 if (!mm) 2217 if (!mm) 2213 goto out_null; 2218 goto out_null; 2214 2219 2215 exe_file = get_mm_exe_file(mm); 2220 exe_file = get_mm_exe_file(mm); 2216 if (!exe_file) 2221 if (!exe_file) 2217 goto out_null; 2222 goto out_null; 2218 2223 2219 audit_log_d_path(ab, " exe=", &exe_fi 2224 audit_log_d_path(ab, " exe=", &exe_file->f_path); 2220 fput(exe_file); 2225 fput(exe_file); 2221 return; 2226 return; 2222 out_null: 2227 out_null: 2223 audit_log_format(ab, " exe=(null)"); 2228 audit_log_format(ab, " exe=(null)"); 2224 } 2229 } 2225 2230 2226 struct tty_struct *audit_get_tty(void) 2231 struct tty_struct *audit_get_tty(void) 2227 { 2232 { 2228 struct tty_struct *tty = NULL; 2233 struct tty_struct *tty = NULL; 2229 unsigned long flags; 2234 unsigned long flags; 2230 2235 2231 spin_lock_irqsave(¤t->sighand-> 2236 spin_lock_irqsave(¤t->sighand->siglock, flags); 2232 if (current->signal) 2237 if (current->signal) 2233 tty = tty_kref_get(current->s 2238 tty = tty_kref_get(current->signal->tty); 2234 spin_unlock_irqrestore(¤t->sigh 2239 spin_unlock_irqrestore(¤t->sighand->siglock, flags); 2235 return tty; 2240 return tty; 2236 } 2241 } 2237 2242 2238 void audit_put_tty(struct tty_struct *tty) 2243 void audit_put_tty(struct tty_struct *tty) 2239 { 2244 { 2240 tty_kref_put(tty); 2245 tty_kref_put(tty); 2241 } 2246 } 2242 2247 2243 void audit_log_task_info(struct audit_buffer 2248 void audit_log_task_info(struct audit_buffer *ab) 2244 { 2249 { 2245 const struct cred *cred; 2250 const struct cred *cred; 2246 char comm[sizeof(current->comm)]; 2251 char comm[sizeof(current->comm)]; 2247 struct tty_struct *tty; 2252 struct tty_struct *tty; 2248 2253 2249 if (!ab) 2254 if (!ab) 2250 return; 2255 return; 2251 2256 2252 cred = current_cred(); 2257 cred = current_cred(); 2253 tty = audit_get_tty(); 2258 tty = audit_get_tty(); 2254 audit_log_format(ab, 2259 audit_log_format(ab, 2255 " ppid=%d pid=%d aui 2260 " ppid=%d pid=%d auid=%u uid=%u gid=%u" 2256 " euid=%u suid=%u fs 2261 " euid=%u suid=%u fsuid=%u" 2257 " egid=%u sgid=%u fs 2262 " egid=%u sgid=%u fsgid=%u tty=%s ses=%u", 2258 task_ppid_nr(current 2263 task_ppid_nr(current), 2259 task_tgid_nr(current 2264 task_tgid_nr(current), 2260 from_kuid(&init_user 2265 from_kuid(&init_user_ns, audit_get_loginuid(current)), 2261 from_kuid(&init_user 2266 from_kuid(&init_user_ns, cred->uid), 2262 from_kgid(&init_user 2267 from_kgid(&init_user_ns, cred->gid), 2263 from_kuid(&init_user 2268 from_kuid(&init_user_ns, cred->euid), 2264 from_kuid(&init_user 2269 from_kuid(&init_user_ns, cred->suid), 2265 from_kuid(&init_user 2270 from_kuid(&init_user_ns, cred->fsuid), 2266 from_kgid(&init_user 2271 from_kgid(&init_user_ns, cred->egid), 2267 from_kgid(&init_user 2272 from_kgid(&init_user_ns, cred->sgid), 2268 from_kgid(&init_user 2273 from_kgid(&init_user_ns, cred->fsgid), 2269 tty ? tty_name(tty) 2274 tty ? tty_name(tty) : "(none)", 2270 audit_get_sessionid( 2275 audit_get_sessionid(current)); 2271 audit_put_tty(tty); 2276 audit_put_tty(tty); 2272 audit_log_format(ab, " comm="); 2277 audit_log_format(ab, " comm="); 2273 audit_log_untrustedstring(ab, get_tas 2278 audit_log_untrustedstring(ab, get_task_comm(comm, current)); 2274 audit_log_d_path_exe(ab, current->mm) 2279 audit_log_d_path_exe(ab, current->mm); 2275 audit_log_task_context(ab); 2280 audit_log_task_context(ab); 2276 } 2281 } 2277 EXPORT_SYMBOL(audit_log_task_info); 2282 EXPORT_SYMBOL(audit_log_task_info); 2278 2283 2279 /** 2284 /** 2280 * audit_log_path_denied - report a path rest 2285 * audit_log_path_denied - report a path restriction denial 2281 * @type: audit message type (AUDIT_ANOM_LINK 2286 * @type: audit message type (AUDIT_ANOM_LINK, AUDIT_ANOM_CREAT, etc) 2282 * @operation: specific operation name 2287 * @operation: specific operation name 2283 */ 2288 */ 2284 void audit_log_path_denied(int type, const ch 2289 void audit_log_path_denied(int type, const char *operation) 2285 { 2290 { 2286 struct audit_buffer *ab; 2291 struct audit_buffer *ab; 2287 2292 2288 if (!audit_enabled || audit_dummy_con 2293 if (!audit_enabled || audit_dummy_context()) 2289 return; 2294 return; 2290 2295 2291 /* Generate log with subject, operati 2296 /* Generate log with subject, operation, outcome. */ 2292 ab = audit_log_start(audit_context(), 2297 ab = audit_log_start(audit_context(), GFP_KERNEL, type); 2293 if (!ab) 2298 if (!ab) 2294 return; 2299 return; 2295 audit_log_format(ab, "op=%s", operati 2300 audit_log_format(ab, "op=%s", operation); 2296 audit_log_task_info(ab); 2301 audit_log_task_info(ab); 2297 audit_log_format(ab, " res=0"); 2302 audit_log_format(ab, " res=0"); 2298 audit_log_end(ab); 2303 audit_log_end(ab); 2299 } 2304 } 2300 2305 2301 /* global counter which is incremented every 2306 /* global counter which is incremented every time something logs in */ 2302 static atomic_t session_id = ATOMIC_INIT(0); 2307 static atomic_t session_id = ATOMIC_INIT(0); 2303 2308 2304 static int audit_set_loginuid_perm(kuid_t log 2309 static int audit_set_loginuid_perm(kuid_t loginuid) 2305 { 2310 { 2306 /* if we are unset, we don't need pri 2311 /* if we are unset, we don't need privs */ 2307 if (!audit_loginuid_set(current)) 2312 if (!audit_loginuid_set(current)) 2308 return 0; 2313 return 0; 2309 /* if AUDIT_FEATURE_LOGINUID_IMMUTABL 2314 /* if AUDIT_FEATURE_LOGINUID_IMMUTABLE means never ever allow a change*/ 2310 if (is_audit_feature_set(AUDIT_FEATUR 2315 if (is_audit_feature_set(AUDIT_FEATURE_LOGINUID_IMMUTABLE)) 2311 return -EPERM; 2316 return -EPERM; 2312 /* it is set, you need permission */ 2317 /* it is set, you need permission */ 2313 if (!capable(CAP_AUDIT_CONTROL)) 2318 if (!capable(CAP_AUDIT_CONTROL)) 2314 return -EPERM; 2319 return -EPERM; 2315 /* reject if this is not an unset and 2320 /* reject if this is not an unset and we don't allow that */ 2316 if (is_audit_feature_set(AUDIT_FEATUR 2321 if (is_audit_feature_set(AUDIT_FEATURE_ONLY_UNSET_LOGINUID) 2317 && uid_valid 2322 && uid_valid(loginuid)) 2318 return -EPERM; 2323 return -EPERM; 2319 return 0; 2324 return 0; 2320 } 2325 } 2321 2326 2322 static void audit_log_set_loginuid(kuid_t kol 2327 static void audit_log_set_loginuid(kuid_t koldloginuid, kuid_t kloginuid, 2323 unsigned i 2328 unsigned int oldsessionid, 2324 unsigned i 2329 unsigned int sessionid, int rc) 2325 { 2330 { 2326 struct audit_buffer *ab; 2331 struct audit_buffer *ab; 2327 uid_t uid, oldloginuid, loginuid; 2332 uid_t uid, oldloginuid, loginuid; 2328 struct tty_struct *tty; 2333 struct tty_struct *tty; 2329 2334 2330 if (!audit_enabled) 2335 if (!audit_enabled) 2331 return; 2336 return; 2332 2337 2333 ab = audit_log_start(audit_context(), 2338 ab = audit_log_start(audit_context(), GFP_KERNEL, AUDIT_LOGIN); 2334 if (!ab) 2339 if (!ab) 2335 return; 2340 return; 2336 2341 2337 uid = from_kuid(&init_user_ns, task_u 2342 uid = from_kuid(&init_user_ns, task_uid(current)); 2338 oldloginuid = from_kuid(&init_user_ns 2343 oldloginuid = from_kuid(&init_user_ns, koldloginuid); 2339 loginuid = from_kuid(&init_user_ns, k 2344 loginuid = from_kuid(&init_user_ns, kloginuid); 2340 tty = audit_get_tty(); 2345 tty = audit_get_tty(); 2341 2346 2342 audit_log_format(ab, "pid=%d uid=%u", 2347 audit_log_format(ab, "pid=%d uid=%u", task_tgid_nr(current), uid); 2343 audit_log_task_context(ab); 2348 audit_log_task_context(ab); 2344 audit_log_format(ab, " old-auid=%u au 2349 audit_log_format(ab, " old-auid=%u auid=%u tty=%s old-ses=%u ses=%u res=%d", 2345 oldloginuid, loginui 2350 oldloginuid, loginuid, tty ? tty_name(tty) : "(none)", 2346 oldsessionid, sessio 2351 oldsessionid, sessionid, !rc); 2347 audit_put_tty(tty); 2352 audit_put_tty(tty); 2348 audit_log_end(ab); 2353 audit_log_end(ab); 2349 } 2354 } 2350 2355 2351 /** 2356 /** 2352 * audit_set_loginuid - set current task's lo 2357 * audit_set_loginuid - set current task's loginuid 2353 * @loginuid: loginuid value 2358 * @loginuid: loginuid value 2354 * 2359 * 2355 * Returns 0. 2360 * Returns 0. 2356 * 2361 * 2357 * Called (set) from fs/proc/base.c::proc_log 2362 * Called (set) from fs/proc/base.c::proc_loginuid_write(). 2358 */ 2363 */ 2359 int audit_set_loginuid(kuid_t loginuid) 2364 int audit_set_loginuid(kuid_t loginuid) 2360 { 2365 { 2361 unsigned int oldsessionid, sessionid 2366 unsigned int oldsessionid, sessionid = AUDIT_SID_UNSET; 2362 kuid_t oldloginuid; 2367 kuid_t oldloginuid; 2363 int rc; 2368 int rc; 2364 2369 2365 oldloginuid = audit_get_loginuid(curr 2370 oldloginuid = audit_get_loginuid(current); 2366 oldsessionid = audit_get_sessionid(cu 2371 oldsessionid = audit_get_sessionid(current); 2367 2372 2368 rc = audit_set_loginuid_perm(loginuid 2373 rc = audit_set_loginuid_perm(loginuid); 2369 if (rc) 2374 if (rc) 2370 goto out; 2375 goto out; 2371 2376 2372 /* are we setting or clearing? */ 2377 /* are we setting or clearing? */ 2373 if (uid_valid(loginuid)) { 2378 if (uid_valid(loginuid)) { 2374 sessionid = (unsigned int)ato 2379 sessionid = (unsigned int)atomic_inc_return(&session_id); 2375 if (unlikely(sessionid == AUD 2380 if (unlikely(sessionid == AUDIT_SID_UNSET)) 2376 sessionid = (unsigned 2381 sessionid = (unsigned int)atomic_inc_return(&session_id); 2377 } 2382 } 2378 2383 2379 current->sessionid = sessionid; 2384 current->sessionid = sessionid; 2380 current->loginuid = loginuid; 2385 current->loginuid = loginuid; 2381 out: 2386 out: 2382 audit_log_set_loginuid(oldloginuid, l 2387 audit_log_set_loginuid(oldloginuid, loginuid, oldsessionid, sessionid, rc); 2383 return rc; 2388 return rc; 2384 } 2389 } 2385 2390 2386 /** 2391 /** 2387 * audit_signal_info - record signal info for 2392 * audit_signal_info - record signal info for shutting down audit subsystem 2388 * @sig: signal value 2393 * @sig: signal value 2389 * @t: task being signaled 2394 * @t: task being signaled 2390 * 2395 * 2391 * If the audit subsystem is being terminated 2396 * If the audit subsystem is being terminated, record the task (pid) 2392 * and uid that is doing that. 2397 * and uid that is doing that. 2393 */ 2398 */ 2394 int audit_signal_info(int sig, struct task_st 2399 int audit_signal_info(int sig, struct task_struct *t) 2395 { 2400 { 2396 kuid_t uid = current_uid(), auid; 2401 kuid_t uid = current_uid(), auid; 2397 2402 2398 if (auditd_test_task(t) && 2403 if (auditd_test_task(t) && 2399 (sig == SIGTERM || sig == SIGHUP 2404 (sig == SIGTERM || sig == SIGHUP || 2400 sig == SIGUSR1 || sig == SIGUSR2 2405 sig == SIGUSR1 || sig == SIGUSR2)) { 2401 audit_sig_pid = task_tgid_nr( 2406 audit_sig_pid = task_tgid_nr(current); 2402 auid = audit_get_loginuid(cur 2407 auid = audit_get_loginuid(current); 2403 if (uid_valid(auid)) 2408 if (uid_valid(auid)) 2404 audit_sig_uid = auid; 2409 audit_sig_uid = auid; 2405 else 2410 else 2406 audit_sig_uid = uid; 2411 audit_sig_uid = uid; 2407 security_current_getsecid_sub !! 2412 security_task_getsecid_subj(current, &audit_sig_sid); 2408 } 2413 } 2409 2414 2410 return audit_signal_info_syscall(t); 2415 return audit_signal_info_syscall(t); 2411 } 2416 } 2412 2417 2413 /** 2418 /** 2414 * audit_log_end - end one audit record 2419 * audit_log_end - end one audit record 2415 * @ab: the audit_buffer 2420 * @ab: the audit_buffer 2416 * 2421 * 2417 * We can not do a netlink send inside an irq 2422 * We can not do a netlink send inside an irq context because it blocks (last 2418 * arg, flags, is not set to MSG_DONTWAIT), s 2423 * arg, flags, is not set to MSG_DONTWAIT), so the audit buffer is placed on a 2419 * queue and a kthread is scheduled to remove 2424 * queue and a kthread is scheduled to remove them from the queue outside the 2420 * irq context. May be called in any context 2425 * irq context. May be called in any context. 2421 */ 2426 */ 2422 void audit_log_end(struct audit_buffer *ab) 2427 void audit_log_end(struct audit_buffer *ab) 2423 { 2428 { 2424 struct sk_buff *skb; 2429 struct sk_buff *skb; 2425 struct nlmsghdr *nlh; 2430 struct nlmsghdr *nlh; 2426 2431 2427 if (!ab) 2432 if (!ab) 2428 return; 2433 return; 2429 2434 2430 if (audit_rate_check()) { 2435 if (audit_rate_check()) { 2431 skb = ab->skb; 2436 skb = ab->skb; 2432 ab->skb = NULL; 2437 ab->skb = NULL; 2433 2438 2434 /* setup the netlink header, 2439 /* setup the netlink header, see the comments in 2435 * kauditd_send_multicast_skb 2440 * kauditd_send_multicast_skb() for length quirks */ 2436 nlh = nlmsg_hdr(skb); 2441 nlh = nlmsg_hdr(skb); 2437 nlh->nlmsg_len = skb->len - N 2442 nlh->nlmsg_len = skb->len - NLMSG_HDRLEN; 2438 2443 2439 /* queue the netlink packet a 2444 /* queue the netlink packet and poke the kauditd thread */ 2440 skb_queue_tail(&audit_queue, 2445 skb_queue_tail(&audit_queue, skb); 2441 wake_up_interruptible(&kaudit 2446 wake_up_interruptible(&kauditd_wait); 2442 } else 2447 } else 2443 audit_log_lost("rate limit ex 2448 audit_log_lost("rate limit exceeded"); 2444 2449 2445 audit_buffer_free(ab); 2450 audit_buffer_free(ab); 2446 } 2451 } 2447 2452 2448 /** 2453 /** 2449 * audit_log - Log an audit record 2454 * audit_log - Log an audit record 2450 * @ctx: audit context 2455 * @ctx: audit context 2451 * @gfp_mask: type of allocation 2456 * @gfp_mask: type of allocation 2452 * @type: audit message type 2457 * @type: audit message type 2453 * @fmt: format string to use 2458 * @fmt: format string to use 2454 * @...: variable parameters matching the for 2459 * @...: variable parameters matching the format string 2455 * 2460 * 2456 * This is a convenience function that calls 2461 * This is a convenience function that calls audit_log_start, 2457 * audit_log_vformat, and audit_log_end. It 2462 * audit_log_vformat, and audit_log_end. It may be called 2458 * in any context. 2463 * in any context. 2459 */ 2464 */ 2460 void audit_log(struct audit_context *ctx, gfp 2465 void audit_log(struct audit_context *ctx, gfp_t gfp_mask, int type, 2461 const char *fmt, ...) 2466 const char *fmt, ...) 2462 { 2467 { 2463 struct audit_buffer *ab; 2468 struct audit_buffer *ab; 2464 va_list args; 2469 va_list args; 2465 2470 2466 ab = audit_log_start(ctx, gfp_mask, t 2471 ab = audit_log_start(ctx, gfp_mask, type); 2467 if (ab) { 2472 if (ab) { 2468 va_start(args, fmt); 2473 va_start(args, fmt); 2469 audit_log_vformat(ab, fmt, ar 2474 audit_log_vformat(ab, fmt, args); 2470 va_end(args); 2475 va_end(args); 2471 audit_log_end(ab); 2476 audit_log_end(ab); 2472 } 2477 } 2473 } 2478 } 2474 2479 2475 EXPORT_SYMBOL(audit_log_start); 2480 EXPORT_SYMBOL(audit_log_start); 2476 EXPORT_SYMBOL(audit_log_end); 2481 EXPORT_SYMBOL(audit_log_end); 2477 EXPORT_SYMBOL(audit_log_format); 2482 EXPORT_SYMBOL(audit_log_format); 2478 EXPORT_SYMBOL(audit_log); 2483 EXPORT_SYMBOL(audit_log); 2479 2484
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.