1 // SPDX-License-Identifier: GPL-2.0-or-later << 2 /* auditsc.c -- System-call auditing support 1 /* auditsc.c -- System-call auditing support 3 * Handles all system-call specific auditing f 2 * Handles all system-call specific auditing features. 4 * 3 * 5 * Copyright 2003-2004 Red Hat Inc., Durham, N 4 * Copyright 2003-2004 Red Hat Inc., Durham, North Carolina. 6 * Copyright 2005 Hewlett-Packard Development 5 * Copyright 2005 Hewlett-Packard Development Company, L.P. 7 * Copyright (C) 2005, 2006 IBM Corporation 6 * Copyright (C) 2005, 2006 IBM Corporation 8 * All Rights Reserved. 7 * All Rights Reserved. 9 * 8 * >> 9 * This program is free software; you can redistribute it and/or modify >> 10 * it under the terms of the GNU General Public License as published by >> 11 * the Free Software Foundation; either version 2 of the License, or >> 12 * (at your option) any later version. >> 13 * >> 14 * This program is distributed in the hope that it will be useful, >> 15 * but WITHOUT ANY WARRANTY; without even the implied warranty of >> 16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the >> 17 * GNU General Public License for more details. >> 18 * >> 19 * You should have received a copy of the GNU General Public License >> 20 * along with this program; if not, write to the Free Software >> 21 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA >> 22 * 10 * Written by Rickard E. (Rik) Faith <faith@re 23 * Written by Rickard E. (Rik) Faith <faith@redhat.com> 11 * 24 * 12 * Many of the ideas implemented here are from 25 * Many of the ideas implemented here are from Stephen C. Tweedie, 13 * especially the idea of avoiding a copy by u 26 * especially the idea of avoiding a copy by using getname. 14 * 27 * 15 * The method for actual interception of sysca 28 * The method for actual interception of syscall entry and exit (not in 16 * this file -- see entry.S) is based on a GPL 29 * this file -- see entry.S) is based on a GPL'd patch written by 17 * okir@suse.de and Copyright 2003 SuSE Linux 30 * okir@suse.de and Copyright 2003 SuSE Linux AG. 18 * 31 * 19 * POSIX message queue support added by George 32 * POSIX message queue support added by George Wilson <ltcgcw@us.ibm.com>, 20 * 2006. 33 * 2006. 21 * 34 * 22 * The support of additional filter rules comp 35 * The support of additional filter rules compares (>, <, >=, <=) was 23 * added by Dustin Kirkland <dustin.kirkland@u 36 * added by Dustin Kirkland <dustin.kirkland@us.ibm.com>, 2005. 24 * 37 * 25 * Modified by Amy Griffis <amy.griffis@hp.com 38 * Modified by Amy Griffis <amy.griffis@hp.com> to collect additional 26 * filesystem information. 39 * filesystem information. 27 * 40 * 28 * Subject and object context labeling support 41 * Subject and object context labeling support added by <danjones@us.ibm.com> 29 * and <dustin.kirkland@us.ibm.com> for LSPP c 42 * and <dustin.kirkland@us.ibm.com> for LSPP certification compliance. 30 */ 43 */ 31 44 32 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 45 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 33 46 34 #include <linux/init.h> 47 #include <linux/init.h> 35 #include <asm/types.h> 48 #include <asm/types.h> 36 #include <linux/atomic.h> 49 #include <linux/atomic.h> 37 #include <linux/fs.h> 50 #include <linux/fs.h> 38 #include <linux/namei.h> 51 #include <linux/namei.h> 39 #include <linux/mm.h> 52 #include <linux/mm.h> 40 #include <linux/export.h> 53 #include <linux/export.h> 41 #include <linux/slab.h> 54 #include <linux/slab.h> 42 #include <linux/mount.h> 55 #include <linux/mount.h> 43 #include <linux/socket.h> 56 #include <linux/socket.h> 44 #include <linux/mqueue.h> 57 #include <linux/mqueue.h> 45 #include <linux/audit.h> 58 #include <linux/audit.h> 46 #include <linux/personality.h> 59 #include <linux/personality.h> 47 #include <linux/time.h> 60 #include <linux/time.h> 48 #include <linux/netlink.h> 61 #include <linux/netlink.h> 49 #include <linux/compiler.h> 62 #include <linux/compiler.h> 50 #include <asm/unistd.h> 63 #include <asm/unistd.h> 51 #include <linux/security.h> 64 #include <linux/security.h> 52 #include <linux/list.h> 65 #include <linux/list.h> 53 #include <linux/binfmts.h> 66 #include <linux/binfmts.h> 54 #include <linux/highmem.h> 67 #include <linux/highmem.h> 55 #include <linux/syscalls.h> 68 #include <linux/syscalls.h> 56 #include <asm/syscall.h> 69 #include <asm/syscall.h> 57 #include <linux/capability.h> 70 #include <linux/capability.h> 58 #include <linux/fs_struct.h> 71 #include <linux/fs_struct.h> 59 #include <linux/compat.h> 72 #include <linux/compat.h> 60 #include <linux/ctype.h> 73 #include <linux/ctype.h> 61 #include <linux/string.h> 74 #include <linux/string.h> 62 #include <linux/uaccess.h> 75 #include <linux/uaccess.h> 63 #include <linux/fsnotify_backend.h> 76 #include <linux/fsnotify_backend.h> 64 #include <uapi/linux/limits.h> 77 #include <uapi/linux/limits.h> 65 #include <uapi/linux/netfilter/nf_tables.h> << 66 #include <uapi/linux/openat2.h> // struct open << 67 #include <uapi/linux/fanotify.h> << 68 78 69 #include "audit.h" 79 #include "audit.h" 70 80 71 /* flags stating the success for a syscall */ 81 /* flags stating the success for a syscall */ 72 #define AUDITSC_INVALID 0 82 #define AUDITSC_INVALID 0 73 #define AUDITSC_SUCCESS 1 83 #define AUDITSC_SUCCESS 1 74 #define AUDITSC_FAILURE 2 84 #define AUDITSC_FAILURE 2 75 85 76 /* no execve audit message should be longer th 86 /* no execve audit message should be longer than this (userspace limits), 77 * see the note near the top of audit_log_exec 87 * see the note near the top of audit_log_execve_info() about this value */ 78 #define MAX_EXECVE_AUDIT_LEN 7500 88 #define MAX_EXECVE_AUDIT_LEN 7500 79 89 80 /* max length to print of cmdline/proctitle va 90 /* max length to print of cmdline/proctitle value during audit */ 81 #define MAX_PROCTITLE_AUDIT_LEN 128 91 #define MAX_PROCTITLE_AUDIT_LEN 128 82 92 83 /* number of audit rules */ 93 /* number of audit rules */ 84 int audit_n_rules; 94 int audit_n_rules; 85 95 86 /* determines whether we collect data for sign 96 /* determines whether we collect data for signals sent */ 87 int audit_signals; 97 int audit_signals; 88 98 89 struct audit_aux_data { 99 struct audit_aux_data { 90 struct audit_aux_data *next; 100 struct audit_aux_data *next; 91 int type; 101 int type; 92 }; 102 }; 93 103 >> 104 #define AUDIT_AUX_IPCPERM 0 >> 105 94 /* Number of target pids per aux struct. */ 106 /* Number of target pids per aux struct. */ 95 #define AUDIT_AUX_PIDS 16 107 #define AUDIT_AUX_PIDS 16 96 108 97 struct audit_aux_data_pids { 109 struct audit_aux_data_pids { 98 struct audit_aux_data d; 110 struct audit_aux_data d; 99 pid_t target_pid[AUD 111 pid_t target_pid[AUDIT_AUX_PIDS]; 100 kuid_t target_auid[AU 112 kuid_t target_auid[AUDIT_AUX_PIDS]; 101 kuid_t target_uid[AUD 113 kuid_t target_uid[AUDIT_AUX_PIDS]; 102 unsigned int target_session 114 unsigned int target_sessionid[AUDIT_AUX_PIDS]; 103 u32 target_sid[AUD 115 u32 target_sid[AUDIT_AUX_PIDS]; 104 char target_comm[AU 116 char target_comm[AUDIT_AUX_PIDS][TASK_COMM_LEN]; 105 int pid_count; 117 int pid_count; 106 }; 118 }; 107 119 108 struct audit_aux_data_bprm_fcaps { 120 struct audit_aux_data_bprm_fcaps { 109 struct audit_aux_data d; 121 struct audit_aux_data d; 110 struct audit_cap_data fcap; 122 struct audit_cap_data fcap; 111 unsigned int fcap_ver; 123 unsigned int fcap_ver; 112 struct audit_cap_data old_pcap; 124 struct audit_cap_data old_pcap; 113 struct audit_cap_data new_pcap; 125 struct audit_cap_data new_pcap; 114 }; 126 }; 115 127 116 struct audit_tree_refs { 128 struct audit_tree_refs { 117 struct audit_tree_refs *next; 129 struct audit_tree_refs *next; 118 struct audit_chunk *c[31]; 130 struct audit_chunk *c[31]; 119 }; 131 }; 120 132 121 struct audit_nfcfgop_tab { << 122 enum audit_nfcfgop op; << 123 const char *s; << 124 }; << 125 << 126 static const struct audit_nfcfgop_tab audit_nf << 127 { AUDIT_XT_OP_REGISTER, << 128 { AUDIT_XT_OP_REPLACE, << 129 { AUDIT_XT_OP_UNREGISTER, << 130 { AUDIT_NFT_OP_TABLE_REGISTER, << 131 { AUDIT_NFT_OP_TABLE_UNREGISTER, << 132 { AUDIT_NFT_OP_CHAIN_REGISTER, << 133 { AUDIT_NFT_OP_CHAIN_UNREGISTER, << 134 { AUDIT_NFT_OP_RULE_REGISTER, << 135 { AUDIT_NFT_OP_RULE_UNREGISTER, << 136 { AUDIT_NFT_OP_SET_REGISTER, << 137 { AUDIT_NFT_OP_SET_UNREGISTER, << 138 { AUDIT_NFT_OP_SETELEM_REGISTER, << 139 { AUDIT_NFT_OP_SETELEM_UNREGISTER, << 140 { AUDIT_NFT_OP_GEN_REGISTER, << 141 { AUDIT_NFT_OP_OBJ_REGISTER, << 142 { AUDIT_NFT_OP_OBJ_UNREGISTER, << 143 { AUDIT_NFT_OP_OBJ_RESET, << 144 { AUDIT_NFT_OP_FLOWTABLE_REGISTER, << 145 { AUDIT_NFT_OP_FLOWTABLE_UNREGISTER, << 146 { AUDIT_NFT_OP_SETELEM_RESET, << 147 { AUDIT_NFT_OP_RULE_RESET, << 148 { AUDIT_NFT_OP_INVALID, << 149 }; << 150 << 151 static int audit_match_perm(struct audit_conte 133 static int audit_match_perm(struct audit_context *ctx, int mask) 152 { 134 { 153 unsigned n; 135 unsigned n; 154 << 155 if (unlikely(!ctx)) 136 if (unlikely(!ctx)) 156 return 0; 137 return 0; 157 n = ctx->major; 138 n = ctx->major; 158 139 159 switch (audit_classify_syscall(ctx->ar 140 switch (audit_classify_syscall(ctx->arch, n)) { 160 case AUDITSC_NATIVE: !! 141 case 0: /* native */ 161 if ((mask & AUDIT_PERM_WRITE) 142 if ((mask & AUDIT_PERM_WRITE) && 162 audit_match_class(AUDIT_C 143 audit_match_class(AUDIT_CLASS_WRITE, n)) 163 return 1; 144 return 1; 164 if ((mask & AUDIT_PERM_READ) & 145 if ((mask & AUDIT_PERM_READ) && 165 audit_match_class(AUDIT_C 146 audit_match_class(AUDIT_CLASS_READ, n)) 166 return 1; 147 return 1; 167 if ((mask & AUDIT_PERM_ATTR) & 148 if ((mask & AUDIT_PERM_ATTR) && 168 audit_match_class(AUDIT_C 149 audit_match_class(AUDIT_CLASS_CHATTR, n)) 169 return 1; 150 return 1; 170 return 0; 151 return 0; 171 case AUDITSC_COMPAT: /* 32bit on biarc !! 152 case 1: /* 32bit on biarch */ 172 if ((mask & AUDIT_PERM_WRITE) 153 if ((mask & AUDIT_PERM_WRITE) && 173 audit_match_class(AUDIT_C 154 audit_match_class(AUDIT_CLASS_WRITE_32, n)) 174 return 1; 155 return 1; 175 if ((mask & AUDIT_PERM_READ) & 156 if ((mask & AUDIT_PERM_READ) && 176 audit_match_class(AUDIT_C 157 audit_match_class(AUDIT_CLASS_READ_32, n)) 177 return 1; 158 return 1; 178 if ((mask & AUDIT_PERM_ATTR) & 159 if ((mask & AUDIT_PERM_ATTR) && 179 audit_match_class(AUDIT_C 160 audit_match_class(AUDIT_CLASS_CHATTR_32, n)) 180 return 1; 161 return 1; 181 return 0; 162 return 0; 182 case AUDITSC_OPEN: !! 163 case 2: /* open */ 183 return mask & ACC_MODE(ctx->ar 164 return mask & ACC_MODE(ctx->argv[1]); 184 case AUDITSC_OPENAT: !! 165 case 3: /* openat */ 185 return mask & ACC_MODE(ctx->ar 166 return mask & ACC_MODE(ctx->argv[2]); 186 case AUDITSC_SOCKETCALL: !! 167 case 4: /* socketcall */ 187 return ((mask & AUDIT_PERM_WRI 168 return ((mask & AUDIT_PERM_WRITE) && ctx->argv[0] == SYS_BIND); 188 case AUDITSC_EXECVE: !! 169 case 5: /* execve */ 189 return mask & AUDIT_PERM_EXEC; 170 return mask & AUDIT_PERM_EXEC; 190 case AUDITSC_OPENAT2: << 191 return mask & ACC_MODE((u32)ct << 192 default: 171 default: 193 return 0; 172 return 0; 194 } 173 } 195 } 174 } 196 175 197 static int audit_match_filetype(struct audit_c 176 static int audit_match_filetype(struct audit_context *ctx, int val) 198 { 177 { 199 struct audit_names *n; 178 struct audit_names *n; 200 umode_t mode = (umode_t)val; 179 umode_t mode = (umode_t)val; 201 180 202 if (unlikely(!ctx)) 181 if (unlikely(!ctx)) 203 return 0; 182 return 0; 204 183 205 list_for_each_entry(n, &ctx->names_lis 184 list_for_each_entry(n, &ctx->names_list, list) { 206 if ((n->ino != AUDIT_INO_UNSET 185 if ((n->ino != AUDIT_INO_UNSET) && 207 ((n->mode & S_IFMT) == mod 186 ((n->mode & S_IFMT) == mode)) 208 return 1; 187 return 1; 209 } 188 } 210 189 211 return 0; 190 return 0; 212 } 191 } 213 192 214 /* 193 /* 215 * We keep a linked list of fixed-sized (31 po 194 * We keep a linked list of fixed-sized (31 pointer) arrays of audit_chunk *; 216 * ->first_trees points to its beginning, ->tr 195 * ->first_trees points to its beginning, ->trees - to the current end of data. 217 * ->tree_count is the number of free entries 196 * ->tree_count is the number of free entries in array pointed to by ->trees. 218 * Original condition is (NULL, NULL, 0); as s 197 * Original condition is (NULL, NULL, 0); as soon as it grows we never revert to NULL, 219 * "empty" becomes (p, p, 31) afterwards. We 198 * "empty" becomes (p, p, 31) afterwards. We don't shrink the list (and seriously, 220 * it's going to remain 1-element for almost a 199 * it's going to remain 1-element for almost any setup) until we free context itself. 221 * References in it _are_ dropped - at the sam 200 * References in it _are_ dropped - at the same time we free/drop aux stuff. 222 */ 201 */ 223 202 >> 203 #ifdef CONFIG_AUDIT_TREE 224 static void audit_set_auditable(struct audit_c 204 static void audit_set_auditable(struct audit_context *ctx) 225 { 205 { 226 if (!ctx->prio) { 206 if (!ctx->prio) { 227 ctx->prio = 1; 207 ctx->prio = 1; 228 ctx->current_state = AUDIT_STA !! 208 ctx->current_state = AUDIT_RECORD_CONTEXT; 229 } 209 } 230 } 210 } 231 211 232 static int put_tree_ref(struct audit_context * 212 static int put_tree_ref(struct audit_context *ctx, struct audit_chunk *chunk) 233 { 213 { 234 struct audit_tree_refs *p = ctx->trees 214 struct audit_tree_refs *p = ctx->trees; 235 int left = ctx->tree_count; 215 int left = ctx->tree_count; 236 << 237 if (likely(left)) { 216 if (likely(left)) { 238 p->c[--left] = chunk; 217 p->c[--left] = chunk; 239 ctx->tree_count = left; 218 ctx->tree_count = left; 240 return 1; 219 return 1; 241 } 220 } 242 if (!p) 221 if (!p) 243 return 0; 222 return 0; 244 p = p->next; 223 p = p->next; 245 if (p) { 224 if (p) { 246 p->c[30] = chunk; 225 p->c[30] = chunk; 247 ctx->trees = p; 226 ctx->trees = p; 248 ctx->tree_count = 30; 227 ctx->tree_count = 30; 249 return 1; 228 return 1; 250 } 229 } 251 return 0; 230 return 0; 252 } 231 } 253 232 254 static int grow_tree_refs(struct audit_context 233 static int grow_tree_refs(struct audit_context *ctx) 255 { 234 { 256 struct audit_tree_refs *p = ctx->trees 235 struct audit_tree_refs *p = ctx->trees; 257 << 258 ctx->trees = kzalloc(sizeof(struct aud 236 ctx->trees = kzalloc(sizeof(struct audit_tree_refs), GFP_KERNEL); 259 if (!ctx->trees) { 237 if (!ctx->trees) { 260 ctx->trees = p; 238 ctx->trees = p; 261 return 0; 239 return 0; 262 } 240 } 263 if (p) 241 if (p) 264 p->next = ctx->trees; 242 p->next = ctx->trees; 265 else 243 else 266 ctx->first_trees = ctx->trees; 244 ctx->first_trees = ctx->trees; 267 ctx->tree_count = 31; 245 ctx->tree_count = 31; 268 return 1; 246 return 1; 269 } 247 } >> 248 #endif 270 249 271 static void unroll_tree_refs(struct audit_cont 250 static void unroll_tree_refs(struct audit_context *ctx, 272 struct audit_tree_refs * 251 struct audit_tree_refs *p, int count) 273 { 252 { >> 253 #ifdef CONFIG_AUDIT_TREE 274 struct audit_tree_refs *q; 254 struct audit_tree_refs *q; 275 int n; 255 int n; 276 << 277 if (!p) { 256 if (!p) { 278 /* we started with empty chain 257 /* we started with empty chain */ 279 p = ctx->first_trees; 258 p = ctx->first_trees; 280 count = 31; 259 count = 31; 281 /* if the very first allocatio 260 /* if the very first allocation has failed, nothing to do */ 282 if (!p) 261 if (!p) 283 return; 262 return; 284 } 263 } 285 n = count; 264 n = count; 286 for (q = p; q != ctx->trees; q = q->ne 265 for (q = p; q != ctx->trees; q = q->next, n = 31) { 287 while (n--) { 266 while (n--) { 288 audit_put_chunk(q->c[n 267 audit_put_chunk(q->c[n]); 289 q->c[n] = NULL; 268 q->c[n] = NULL; 290 } 269 } 291 } 270 } 292 while (n-- > ctx->tree_count) { 271 while (n-- > ctx->tree_count) { 293 audit_put_chunk(q->c[n]); 272 audit_put_chunk(q->c[n]); 294 q->c[n] = NULL; 273 q->c[n] = NULL; 295 } 274 } 296 ctx->trees = p; 275 ctx->trees = p; 297 ctx->tree_count = count; 276 ctx->tree_count = count; >> 277 #endif 298 } 278 } 299 279 300 static void free_tree_refs(struct audit_contex 280 static void free_tree_refs(struct audit_context *ctx) 301 { 281 { 302 struct audit_tree_refs *p, *q; 282 struct audit_tree_refs *p, *q; 303 << 304 for (p = ctx->first_trees; p; p = q) { 283 for (p = ctx->first_trees; p; p = q) { 305 q = p->next; 284 q = p->next; 306 kfree(p); 285 kfree(p); 307 } 286 } 308 } 287 } 309 288 310 static int match_tree_refs(struct audit_contex 289 static int match_tree_refs(struct audit_context *ctx, struct audit_tree *tree) 311 { 290 { >> 291 #ifdef CONFIG_AUDIT_TREE 312 struct audit_tree_refs *p; 292 struct audit_tree_refs *p; 313 int n; 293 int n; 314 << 315 if (!tree) 294 if (!tree) 316 return 0; 295 return 0; 317 /* full ones */ 296 /* full ones */ 318 for (p = ctx->first_trees; p != ctx->t 297 for (p = ctx->first_trees; p != ctx->trees; p = p->next) { 319 for (n = 0; n < 31; n++) 298 for (n = 0; n < 31; n++) 320 if (audit_tree_match(p 299 if (audit_tree_match(p->c[n], tree)) 321 return 1; 300 return 1; 322 } 301 } 323 /* partial */ 302 /* partial */ 324 if (p) { 303 if (p) { 325 for (n = ctx->tree_count; n < 304 for (n = ctx->tree_count; n < 31; n++) 326 if (audit_tree_match(p 305 if (audit_tree_match(p->c[n], tree)) 327 return 1; 306 return 1; 328 } 307 } >> 308 #endif 329 return 0; 309 return 0; 330 } 310 } 331 311 332 static int audit_compare_uid(kuid_t uid, 312 static int audit_compare_uid(kuid_t uid, 333 struct audit_name 313 struct audit_names *name, 334 struct audit_fiel 314 struct audit_field *f, 335 struct audit_cont 315 struct audit_context *ctx) 336 { 316 { 337 struct audit_names *n; 317 struct audit_names *n; 338 int rc; 318 int rc; 339 !! 319 340 if (name) { 320 if (name) { 341 rc = audit_uid_comparator(uid, 321 rc = audit_uid_comparator(uid, f->op, name->uid); 342 if (rc) 322 if (rc) 343 return rc; 323 return rc; 344 } 324 } 345 !! 325 346 if (ctx) { 326 if (ctx) { 347 list_for_each_entry(n, &ctx->n 327 list_for_each_entry(n, &ctx->names_list, list) { 348 rc = audit_uid_compara 328 rc = audit_uid_comparator(uid, f->op, n->uid); 349 if (rc) 329 if (rc) 350 return rc; 330 return rc; 351 } 331 } 352 } 332 } 353 return 0; 333 return 0; 354 } 334 } 355 335 356 static int audit_compare_gid(kgid_t gid, 336 static int audit_compare_gid(kgid_t gid, 357 struct audit_name 337 struct audit_names *name, 358 struct audit_fiel 338 struct audit_field *f, 359 struct audit_cont 339 struct audit_context *ctx) 360 { 340 { 361 struct audit_names *n; 341 struct audit_names *n; 362 int rc; 342 int rc; 363 !! 343 364 if (name) { 344 if (name) { 365 rc = audit_gid_comparator(gid, 345 rc = audit_gid_comparator(gid, f->op, name->gid); 366 if (rc) 346 if (rc) 367 return rc; 347 return rc; 368 } 348 } 369 !! 349 370 if (ctx) { 350 if (ctx) { 371 list_for_each_entry(n, &ctx->n 351 list_for_each_entry(n, &ctx->names_list, list) { 372 rc = audit_gid_compara 352 rc = audit_gid_comparator(gid, f->op, n->gid); 373 if (rc) 353 if (rc) 374 return rc; 354 return rc; 375 } 355 } 376 } 356 } 377 return 0; 357 return 0; 378 } 358 } 379 359 380 static int audit_field_compare(struct task_str 360 static int audit_field_compare(struct task_struct *tsk, 381 const struct cr 361 const struct cred *cred, 382 struct audit_fi 362 struct audit_field *f, 383 struct audit_co 363 struct audit_context *ctx, 384 struct audit_na 364 struct audit_names *name) 385 { 365 { 386 switch (f->val) { 366 switch (f->val) { 387 /* process to file object comparisons 367 /* process to file object comparisons */ 388 case AUDIT_COMPARE_UID_TO_OBJ_UID: 368 case AUDIT_COMPARE_UID_TO_OBJ_UID: 389 return audit_compare_uid(cred- 369 return audit_compare_uid(cred->uid, name, f, ctx); 390 case AUDIT_COMPARE_GID_TO_OBJ_GID: 370 case AUDIT_COMPARE_GID_TO_OBJ_GID: 391 return audit_compare_gid(cred- 371 return audit_compare_gid(cred->gid, name, f, ctx); 392 case AUDIT_COMPARE_EUID_TO_OBJ_UID: 372 case AUDIT_COMPARE_EUID_TO_OBJ_UID: 393 return audit_compare_uid(cred- 373 return audit_compare_uid(cred->euid, name, f, ctx); 394 case AUDIT_COMPARE_EGID_TO_OBJ_GID: 374 case AUDIT_COMPARE_EGID_TO_OBJ_GID: 395 return audit_compare_gid(cred- 375 return audit_compare_gid(cred->egid, name, f, ctx); 396 case AUDIT_COMPARE_AUID_TO_OBJ_UID: 376 case AUDIT_COMPARE_AUID_TO_OBJ_UID: 397 return audit_compare_uid(audit !! 377 return audit_compare_uid(tsk->loginuid, name, f, ctx); 398 case AUDIT_COMPARE_SUID_TO_OBJ_UID: 378 case AUDIT_COMPARE_SUID_TO_OBJ_UID: 399 return audit_compare_uid(cred- 379 return audit_compare_uid(cred->suid, name, f, ctx); 400 case AUDIT_COMPARE_SGID_TO_OBJ_GID: 380 case AUDIT_COMPARE_SGID_TO_OBJ_GID: 401 return audit_compare_gid(cred- 381 return audit_compare_gid(cred->sgid, name, f, ctx); 402 case AUDIT_COMPARE_FSUID_TO_OBJ_UID: 382 case AUDIT_COMPARE_FSUID_TO_OBJ_UID: 403 return audit_compare_uid(cred- 383 return audit_compare_uid(cred->fsuid, name, f, ctx); 404 case AUDIT_COMPARE_FSGID_TO_OBJ_GID: 384 case AUDIT_COMPARE_FSGID_TO_OBJ_GID: 405 return audit_compare_gid(cred- 385 return audit_compare_gid(cred->fsgid, name, f, ctx); 406 /* uid comparisons */ 386 /* uid comparisons */ 407 case AUDIT_COMPARE_UID_TO_AUID: 387 case AUDIT_COMPARE_UID_TO_AUID: 408 return audit_uid_comparator(cr !! 388 return audit_uid_comparator(cred->uid, f->op, tsk->loginuid); 409 au << 410 case AUDIT_COMPARE_UID_TO_EUID: 389 case AUDIT_COMPARE_UID_TO_EUID: 411 return audit_uid_comparator(cr 390 return audit_uid_comparator(cred->uid, f->op, cred->euid); 412 case AUDIT_COMPARE_UID_TO_SUID: 391 case AUDIT_COMPARE_UID_TO_SUID: 413 return audit_uid_comparator(cr 392 return audit_uid_comparator(cred->uid, f->op, cred->suid); 414 case AUDIT_COMPARE_UID_TO_FSUID: 393 case AUDIT_COMPARE_UID_TO_FSUID: 415 return audit_uid_comparator(cr 394 return audit_uid_comparator(cred->uid, f->op, cred->fsuid); 416 /* auid comparisons */ 395 /* auid comparisons */ 417 case AUDIT_COMPARE_AUID_TO_EUID: 396 case AUDIT_COMPARE_AUID_TO_EUID: 418 return audit_uid_comparator(au !! 397 return audit_uid_comparator(tsk->loginuid, f->op, cred->euid); 419 cr << 420 case AUDIT_COMPARE_AUID_TO_SUID: 398 case AUDIT_COMPARE_AUID_TO_SUID: 421 return audit_uid_comparator(au !! 399 return audit_uid_comparator(tsk->loginuid, f->op, cred->suid); 422 cr << 423 case AUDIT_COMPARE_AUID_TO_FSUID: 400 case AUDIT_COMPARE_AUID_TO_FSUID: 424 return audit_uid_comparator(au !! 401 return audit_uid_comparator(tsk->loginuid, f->op, cred->fsuid); 425 cr << 426 /* euid comparisons */ 402 /* euid comparisons */ 427 case AUDIT_COMPARE_EUID_TO_SUID: 403 case AUDIT_COMPARE_EUID_TO_SUID: 428 return audit_uid_comparator(cr 404 return audit_uid_comparator(cred->euid, f->op, cred->suid); 429 case AUDIT_COMPARE_EUID_TO_FSUID: 405 case AUDIT_COMPARE_EUID_TO_FSUID: 430 return audit_uid_comparator(cr 406 return audit_uid_comparator(cred->euid, f->op, cred->fsuid); 431 /* suid comparisons */ 407 /* suid comparisons */ 432 case AUDIT_COMPARE_SUID_TO_FSUID: 408 case AUDIT_COMPARE_SUID_TO_FSUID: 433 return audit_uid_comparator(cr 409 return audit_uid_comparator(cred->suid, f->op, cred->fsuid); 434 /* gid comparisons */ 410 /* gid comparisons */ 435 case AUDIT_COMPARE_GID_TO_EGID: 411 case AUDIT_COMPARE_GID_TO_EGID: 436 return audit_gid_comparator(cr 412 return audit_gid_comparator(cred->gid, f->op, cred->egid); 437 case AUDIT_COMPARE_GID_TO_SGID: 413 case AUDIT_COMPARE_GID_TO_SGID: 438 return audit_gid_comparator(cr 414 return audit_gid_comparator(cred->gid, f->op, cred->sgid); 439 case AUDIT_COMPARE_GID_TO_FSGID: 415 case AUDIT_COMPARE_GID_TO_FSGID: 440 return audit_gid_comparator(cr 416 return audit_gid_comparator(cred->gid, f->op, cred->fsgid); 441 /* egid comparisons */ 417 /* egid comparisons */ 442 case AUDIT_COMPARE_EGID_TO_SGID: 418 case AUDIT_COMPARE_EGID_TO_SGID: 443 return audit_gid_comparator(cr 419 return audit_gid_comparator(cred->egid, f->op, cred->sgid); 444 case AUDIT_COMPARE_EGID_TO_FSGID: 420 case AUDIT_COMPARE_EGID_TO_FSGID: 445 return audit_gid_comparator(cr 421 return audit_gid_comparator(cred->egid, f->op, cred->fsgid); 446 /* sgid comparison */ 422 /* sgid comparison */ 447 case AUDIT_COMPARE_SGID_TO_FSGID: 423 case AUDIT_COMPARE_SGID_TO_FSGID: 448 return audit_gid_comparator(cr 424 return audit_gid_comparator(cred->sgid, f->op, cred->fsgid); 449 default: 425 default: 450 WARN(1, "Missing AUDIT_COMPARE 426 WARN(1, "Missing AUDIT_COMPARE define. Report as a bug\n"); 451 return 0; 427 return 0; 452 } 428 } 453 return 0; 429 return 0; 454 } 430 } 455 431 456 /* Determine if any context name data matches 432 /* Determine if any context name data matches a rule's watch data */ 457 /* Compare a task_struct with an audit_rule. 433 /* Compare a task_struct with an audit_rule. Return 1 on match, 0 458 * otherwise. 434 * otherwise. 459 * 435 * 460 * If task_creation is true, this is an explic 436 * If task_creation is true, this is an explicit indication that we are 461 * filtering a task rule at task creation time 437 * filtering a task rule at task creation time. This and tsk == current are 462 * the only situations where tsk->cred may be 438 * the only situations where tsk->cred may be accessed without an rcu read lock. 463 */ 439 */ 464 static int audit_filter_rules(struct task_stru 440 static int audit_filter_rules(struct task_struct *tsk, 465 struct audit_kru 441 struct audit_krule *rule, 466 struct audit_con 442 struct audit_context *ctx, 467 struct audit_nam 443 struct audit_names *name, 468 enum audit_state 444 enum audit_state *state, 469 bool task_creati 445 bool task_creation) 470 { 446 { 471 const struct cred *cred; 447 const struct cred *cred; 472 int i, need_sid = 1; 448 int i, need_sid = 1; 473 u32 sid; 449 u32 sid; 474 unsigned int sessionid; 450 unsigned int sessionid; 475 451 476 if (ctx && rule->prio <= ctx->prio) << 477 return 0; << 478 << 479 cred = rcu_dereference_check(tsk->cred 452 cred = rcu_dereference_check(tsk->cred, tsk == current || task_creation); 480 453 481 for (i = 0; i < rule->field_count; i++ 454 for (i = 0; i < rule->field_count; i++) { 482 struct audit_field *f = &rule- 455 struct audit_field *f = &rule->fields[i]; 483 struct audit_names *n; 456 struct audit_names *n; 484 int result = 0; 457 int result = 0; 485 pid_t pid; 458 pid_t pid; 486 459 487 switch (f->type) { 460 switch (f->type) { 488 case AUDIT_PID: 461 case AUDIT_PID: 489 pid = task_tgid_nr(tsk 462 pid = task_tgid_nr(tsk); 490 result = audit_compara 463 result = audit_comparator(pid, f->op, f->val); 491 break; 464 break; 492 case AUDIT_PPID: 465 case AUDIT_PPID: 493 if (ctx) { 466 if (ctx) { 494 if (!ctx->ppid 467 if (!ctx->ppid) 495 ctx->p 468 ctx->ppid = task_ppid_nr(tsk); 496 result = audit 469 result = audit_comparator(ctx->ppid, f->op, f->val); 497 } 470 } 498 break; 471 break; 499 case AUDIT_EXE: 472 case AUDIT_EXE: 500 result = audit_exe_com 473 result = audit_exe_compare(tsk, rule->exe); 501 if (f->op == Audit_not 474 if (f->op == Audit_not_equal) 502 result = !resu 475 result = !result; 503 break; 476 break; 504 case AUDIT_UID: 477 case AUDIT_UID: 505 result = audit_uid_com 478 result = audit_uid_comparator(cred->uid, f->op, f->uid); 506 break; 479 break; 507 case AUDIT_EUID: 480 case AUDIT_EUID: 508 result = audit_uid_com 481 result = audit_uid_comparator(cred->euid, f->op, f->uid); 509 break; 482 break; 510 case AUDIT_SUID: 483 case AUDIT_SUID: 511 result = audit_uid_com 484 result = audit_uid_comparator(cred->suid, f->op, f->uid); 512 break; 485 break; 513 case AUDIT_FSUID: 486 case AUDIT_FSUID: 514 result = audit_uid_com 487 result = audit_uid_comparator(cred->fsuid, f->op, f->uid); 515 break; 488 break; 516 case AUDIT_GID: 489 case AUDIT_GID: 517 result = audit_gid_com 490 result = audit_gid_comparator(cred->gid, f->op, f->gid); 518 if (f->op == Audit_equ 491 if (f->op == Audit_equal) { 519 if (!result) 492 if (!result) 520 result !! 493 result = in_group_p(f->gid); 521 } else if (f->op == Au 494 } else if (f->op == Audit_not_equal) { 522 if (result) 495 if (result) 523 result !! 496 result = !in_group_p(f->gid); 524 } 497 } 525 break; 498 break; 526 case AUDIT_EGID: 499 case AUDIT_EGID: 527 result = audit_gid_com 500 result = audit_gid_comparator(cred->egid, f->op, f->gid); 528 if (f->op == Audit_equ 501 if (f->op == Audit_equal) { 529 if (!result) 502 if (!result) 530 result !! 503 result = in_egroup_p(f->gid); 531 } else if (f->op == Au 504 } else if (f->op == Audit_not_equal) { 532 if (result) 505 if (result) 533 result !! 506 result = !in_egroup_p(f->gid); 534 } 507 } 535 break; 508 break; 536 case AUDIT_SGID: 509 case AUDIT_SGID: 537 result = audit_gid_com 510 result = audit_gid_comparator(cred->sgid, f->op, f->gid); 538 break; 511 break; 539 case AUDIT_FSGID: 512 case AUDIT_FSGID: 540 result = audit_gid_com 513 result = audit_gid_comparator(cred->fsgid, f->op, f->gid); 541 break; 514 break; 542 case AUDIT_SESSIONID: 515 case AUDIT_SESSIONID: 543 sessionid = audit_get_ !! 516 sessionid = audit_get_sessionid(current); 544 result = audit_compara 517 result = audit_comparator(sessionid, f->op, f->val); 545 break; 518 break; 546 case AUDIT_PERS: 519 case AUDIT_PERS: 547 result = audit_compara 520 result = audit_comparator(tsk->personality, f->op, f->val); 548 break; 521 break; 549 case AUDIT_ARCH: 522 case AUDIT_ARCH: 550 if (ctx) 523 if (ctx) 551 result = audit 524 result = audit_comparator(ctx->arch, f->op, f->val); 552 break; 525 break; 553 526 554 case AUDIT_EXIT: 527 case AUDIT_EXIT: 555 if (ctx && ctx->return !! 528 if (ctx && ctx->return_valid) 556 result = audit 529 result = audit_comparator(ctx->return_code, f->op, f->val); 557 break; 530 break; 558 case AUDIT_SUCCESS: 531 case AUDIT_SUCCESS: 559 if (ctx && ctx->return !! 532 if (ctx && ctx->return_valid) { 560 if (f->val) 533 if (f->val) 561 result 534 result = audit_comparator(ctx->return_valid, f->op, AUDITSC_SUCCESS); 562 else 535 else 563 result 536 result = audit_comparator(ctx->return_valid, f->op, AUDITSC_FAILURE); 564 } 537 } 565 break; 538 break; 566 case AUDIT_DEVMAJOR: 539 case AUDIT_DEVMAJOR: 567 if (name) { 540 if (name) { 568 if (audit_comp 541 if (audit_comparator(MAJOR(name->dev), f->op, f->val) || 569 audit_comp 542 audit_comparator(MAJOR(name->rdev), f->op, f->val)) 570 ++resu 543 ++result; 571 } else if (ctx) { 544 } else if (ctx) { 572 list_for_each_ 545 list_for_each_entry(n, &ctx->names_list, list) { 573 if (au 546 if (audit_comparator(MAJOR(n->dev), f->op, f->val) || 574 au 547 audit_comparator(MAJOR(n->rdev), f->op, f->val)) { 575 548 ++result; 576 549 break; 577 } 550 } 578 } 551 } 579 } 552 } 580 break; 553 break; 581 case AUDIT_DEVMINOR: 554 case AUDIT_DEVMINOR: 582 if (name) { 555 if (name) { 583 if (audit_comp 556 if (audit_comparator(MINOR(name->dev), f->op, f->val) || 584 audit_comp 557 audit_comparator(MINOR(name->rdev), f->op, f->val)) 585 ++resu 558 ++result; 586 } else if (ctx) { 559 } else if (ctx) { 587 list_for_each_ 560 list_for_each_entry(n, &ctx->names_list, list) { 588 if (au 561 if (audit_comparator(MINOR(n->dev), f->op, f->val) || 589 au 562 audit_comparator(MINOR(n->rdev), f->op, f->val)) { 590 563 ++result; 591 564 break; 592 } 565 } 593 } 566 } 594 } 567 } 595 break; 568 break; 596 case AUDIT_INODE: 569 case AUDIT_INODE: 597 if (name) 570 if (name) 598 result = audit 571 result = audit_comparator(name->ino, f->op, f->val); 599 else if (ctx) { 572 else if (ctx) { 600 list_for_each_ 573 list_for_each_entry(n, &ctx->names_list, list) { 601 if (au 574 if (audit_comparator(n->ino, f->op, f->val)) { 602 575 ++result; 603 576 break; 604 } 577 } 605 } 578 } 606 } 579 } 607 break; 580 break; 608 case AUDIT_OBJ_UID: 581 case AUDIT_OBJ_UID: 609 if (name) { 582 if (name) { 610 result = audit 583 result = audit_uid_comparator(name->uid, f->op, f->uid); 611 } else if (ctx) { 584 } else if (ctx) { 612 list_for_each_ 585 list_for_each_entry(n, &ctx->names_list, list) { 613 if (au 586 if (audit_uid_comparator(n->uid, f->op, f->uid)) { 614 587 ++result; 615 588 break; 616 } 589 } 617 } 590 } 618 } 591 } 619 break; 592 break; 620 case AUDIT_OBJ_GID: 593 case AUDIT_OBJ_GID: 621 if (name) { 594 if (name) { 622 result = audit 595 result = audit_gid_comparator(name->gid, f->op, f->gid); 623 } else if (ctx) { 596 } else if (ctx) { 624 list_for_each_ 597 list_for_each_entry(n, &ctx->names_list, list) { 625 if (au 598 if (audit_gid_comparator(n->gid, f->op, f->gid)) { 626 599 ++result; 627 600 break; 628 } 601 } 629 } 602 } 630 } 603 } 631 break; 604 break; 632 case AUDIT_WATCH: 605 case AUDIT_WATCH: 633 if (name) { !! 606 if (name) 634 result = audit !! 607 result = audit_watch_compare(rule->watch, name->ino, name->dev); 635 << 636 << 637 if (f->op == A << 638 result << 639 } << 640 break; 608 break; 641 case AUDIT_DIR: 609 case AUDIT_DIR: 642 if (ctx) { !! 610 if (ctx) 643 result = match 611 result = match_tree_refs(ctx, rule->tree); 644 if (f->op == A << 645 result << 646 } << 647 break; 612 break; 648 case AUDIT_LOGINUID: 613 case AUDIT_LOGINUID: 649 result = audit_uid_com !! 614 result = audit_uid_comparator(tsk->loginuid, f->op, f->uid); 650 << 651 break; 615 break; 652 case AUDIT_LOGINUID_SET: 616 case AUDIT_LOGINUID_SET: 653 result = audit_compara 617 result = audit_comparator(audit_loginuid_set(tsk), f->op, f->val); 654 break; 618 break; 655 case AUDIT_SADDR_FAM: << 656 if (ctx && ctx->sockad << 657 result = audit << 658 << 659 break; << 660 case AUDIT_SUBJ_USER: 619 case AUDIT_SUBJ_USER: 661 case AUDIT_SUBJ_ROLE: 620 case AUDIT_SUBJ_ROLE: 662 case AUDIT_SUBJ_TYPE: 621 case AUDIT_SUBJ_TYPE: 663 case AUDIT_SUBJ_SEN: 622 case AUDIT_SUBJ_SEN: 664 case AUDIT_SUBJ_CLR: 623 case AUDIT_SUBJ_CLR: 665 /* NOTE: this may retu 624 /* NOTE: this may return negative values indicating 666 a temporary error. 625 a temporary error. We simply treat this as a 667 match for now to av 626 match for now to avoid losing information that 668 may be wanted. An 627 may be wanted. An error message will also be 669 logged upon error * 628 logged upon error */ 670 if (f->lsm_rule) { 629 if (f->lsm_rule) { 671 if (need_sid) 630 if (need_sid) { 672 /* @ts !! 631 security_task_getsecid(tsk, &sid); 673 * @cu << 674 * for << 675 * the << 676 * of << 677 * use << 678 * her << 679 * @cu << 680 */ << 681 securi << 682 need_s 632 need_sid = 0; 683 } 633 } 684 result = secur 634 result = security_audit_rule_match(sid, f->type, 685 !! 635 f->op, 686 !! 636 f->lsm_rule, >> 637 ctx); 687 } 638 } 688 break; 639 break; 689 case AUDIT_OBJ_USER: 640 case AUDIT_OBJ_USER: 690 case AUDIT_OBJ_ROLE: 641 case AUDIT_OBJ_ROLE: 691 case AUDIT_OBJ_TYPE: 642 case AUDIT_OBJ_TYPE: 692 case AUDIT_OBJ_LEV_LOW: 643 case AUDIT_OBJ_LEV_LOW: 693 case AUDIT_OBJ_LEV_HIGH: 644 case AUDIT_OBJ_LEV_HIGH: 694 /* The above note for 645 /* The above note for AUDIT_SUBJ_USER...AUDIT_SUBJ_CLR 695 also applies here * 646 also applies here */ 696 if (f->lsm_rule) { 647 if (f->lsm_rule) { 697 /* Find files 648 /* Find files that match */ 698 if (name) { 649 if (name) { 699 result 650 result = security_audit_rule_match( 700 !! 651 name->osid, f->type, f->op, 701 !! 652 f->lsm_rule, ctx); 702 << 703 << 704 } else if (ctx 653 } else if (ctx) { 705 list_f 654 list_for_each_entry(n, &ctx->names_list, list) { 706 !! 655 if (security_audit_rule_match(n->osid, f->type, 707 !! 656 f->op, f->lsm_rule, 708 !! 657 ctx)) { 709 << 710 << 711 658 ++result; 712 659 break; 713 660 } 714 } 661 } 715 } 662 } 716 /* Find ipc ob 663 /* Find ipc objects that match */ 717 if (!ctx || ct 664 if (!ctx || ctx->type != AUDIT_IPC) 718 break; 665 break; 719 if (security_a 666 if (security_audit_rule_match(ctx->ipc.osid, 720 667 f->type, f->op, 721 !! 668 f->lsm_rule, ctx)) 722 ++resu 669 ++result; 723 } 670 } 724 break; 671 break; 725 case AUDIT_ARG0: 672 case AUDIT_ARG0: 726 case AUDIT_ARG1: 673 case AUDIT_ARG1: 727 case AUDIT_ARG2: 674 case AUDIT_ARG2: 728 case AUDIT_ARG3: 675 case AUDIT_ARG3: 729 if (ctx) 676 if (ctx) 730 result = audit 677 result = audit_comparator(ctx->argv[f->type-AUDIT_ARG0], f->op, f->val); 731 break; 678 break; 732 case AUDIT_FILTERKEY: 679 case AUDIT_FILTERKEY: 733 /* ignore this field f 680 /* ignore this field for filtering */ 734 result = 1; 681 result = 1; 735 break; 682 break; 736 case AUDIT_PERM: 683 case AUDIT_PERM: 737 result = audit_match_p 684 result = audit_match_perm(ctx, f->val); 738 if (f->op == Audit_not << 739 result = !resu << 740 break; 685 break; 741 case AUDIT_FILETYPE: 686 case AUDIT_FILETYPE: 742 result = audit_match_f 687 result = audit_match_filetype(ctx, f->val); 743 if (f->op == Audit_not << 744 result = !resu << 745 break; 688 break; 746 case AUDIT_FIELD_COMPARE: 689 case AUDIT_FIELD_COMPARE: 747 result = audit_field_c 690 result = audit_field_compare(tsk, cred, f, ctx, name); 748 break; 691 break; 749 } 692 } 750 if (!result) 693 if (!result) 751 return 0; 694 return 0; 752 } 695 } 753 696 754 if (ctx) { 697 if (ctx) { >> 698 if (rule->prio <= ctx->prio) >> 699 return 0; 755 if (rule->filterkey) { 700 if (rule->filterkey) { 756 kfree(ctx->filterkey); 701 kfree(ctx->filterkey); 757 ctx->filterkey = kstrd 702 ctx->filterkey = kstrdup(rule->filterkey, GFP_ATOMIC); 758 } 703 } 759 ctx->prio = rule->prio; 704 ctx->prio = rule->prio; 760 } 705 } 761 switch (rule->action) { 706 switch (rule->action) { 762 case AUDIT_NEVER: 707 case AUDIT_NEVER: 763 *state = AUDIT_STATE_DISABLED; !! 708 *state = AUDIT_DISABLED; 764 break; 709 break; 765 case AUDIT_ALWAYS: 710 case AUDIT_ALWAYS: 766 *state = AUDIT_STATE_RECORD; !! 711 *state = AUDIT_RECORD_CONTEXT; 767 break; 712 break; 768 } 713 } 769 return 1; 714 return 1; 770 } 715 } 771 716 772 /* At process creation time, we can determine 717 /* At process creation time, we can determine if system-call auditing is 773 * completely disabled for this task. Since w 718 * completely disabled for this task. Since we only have the task 774 * structure at this point, we can only check 719 * structure at this point, we can only check uid and gid. 775 */ 720 */ 776 static enum audit_state audit_filter_task(stru 721 static enum audit_state audit_filter_task(struct task_struct *tsk, char **key) 777 { 722 { 778 struct audit_entry *e; 723 struct audit_entry *e; 779 enum audit_state state; 724 enum audit_state state; 780 725 781 rcu_read_lock(); 726 rcu_read_lock(); 782 list_for_each_entry_rcu(e, &audit_filt 727 list_for_each_entry_rcu(e, &audit_filter_list[AUDIT_FILTER_TASK], list) { 783 if (audit_filter_rules(tsk, &e 728 if (audit_filter_rules(tsk, &e->rule, NULL, NULL, 784 &state, 729 &state, true)) { 785 if (state == AUDIT_STA !! 730 if (state == AUDIT_RECORD_CONTEXT) 786 *key = kstrdup 731 *key = kstrdup(e->rule.filterkey, GFP_ATOMIC); 787 rcu_read_unlock(); 732 rcu_read_unlock(); 788 return state; 733 return state; 789 } 734 } 790 } 735 } 791 rcu_read_unlock(); 736 rcu_read_unlock(); 792 return AUDIT_STATE_BUILD; !! 737 return AUDIT_BUILD_CONTEXT; 793 } 738 } 794 739 795 static int audit_in_mask(const struct audit_kr 740 static int audit_in_mask(const struct audit_krule *rule, unsigned long val) 796 { 741 { 797 int word, bit; 742 int word, bit; 798 743 799 if (val > 0xffffffff) 744 if (val > 0xffffffff) 800 return false; 745 return false; 801 746 802 word = AUDIT_WORD(val); 747 word = AUDIT_WORD(val); 803 if (word >= AUDIT_BITMASK_SIZE) 748 if (word >= AUDIT_BITMASK_SIZE) 804 return false; 749 return false; 805 750 806 bit = AUDIT_BIT(val); 751 bit = AUDIT_BIT(val); 807 752 808 return rule->mask[word] & bit; 753 return rule->mask[word] & bit; 809 } 754 } 810 755 811 /** !! 756 /* At syscall entry and exit time, this filter is called if the 812 * __audit_filter_op - common filter helper fo !! 757 * audit_state is not low enough that auditing cannot take place, but is 813 * @tsk: associated task !! 758 * also not high enough that we already know we have to write an audit 814 * @ctx: audit context !! 759 * record (i.e., the state is AUDIT_SETUP_CONTEXT or AUDIT_BUILD_CONTEXT). 815 * @list: audit filter list !! 760 */ 816 * @name: audit_name (can be NULL) !! 761 static enum audit_state audit_filter_syscall(struct task_struct *tsk, 817 * @op: current syscall/uring_op !! 762 struct audit_context *ctx, 818 * !! 763 struct list_head *list) 819 * Run the udit filters specified in @list aga << 820 * @name, and @op, as necessary; the caller is << 821 * that the call is made while the RCU read lo << 822 * parameter can be NULL, but all others must << 823 * Returns 1/true if the filter finds a match, << 824 */ << 825 static int __audit_filter_op(struct task_struc << 826 struct audit_contex << 827 struct list_head *l << 828 struct audit_names << 829 unsigned long op) << 830 { 764 { 831 struct audit_entry *e; 765 struct audit_entry *e; 832 enum audit_state state; 766 enum audit_state state; 833 767 834 list_for_each_entry_rcu(e, list, list) << 835 if (audit_in_mask(&e->rule, op << 836 audit_filter_rules(tsk, &e << 837 &state, << 838 ctx->current_state = s << 839 return 1; << 840 } << 841 } << 842 return 0; << 843 } << 844 << 845 /** << 846 * audit_filter_uring - apply filters to an io << 847 * @tsk: associated task << 848 * @ctx: audit context << 849 */ << 850 static void audit_filter_uring(struct task_str << 851 struct audit_co << 852 { << 853 if (auditd_test_task(tsk)) << 854 return; << 855 << 856 rcu_read_lock(); << 857 __audit_filter_op(tsk, ctx, &audit_fil << 858 NULL, ctx->uring_op); << 859 rcu_read_unlock(); << 860 } << 861 << 862 /* At syscall exit time, this filter is called << 863 * not low enough that auditing cannot take pl << 864 * high enough that we already know we have to << 865 * (i.e., the state is AUDIT_STATE_BUILD). << 866 */ << 867 static void audit_filter_syscall(struct task_s << 868 struct audit_ << 869 { << 870 if (auditd_test_task(tsk)) 768 if (auditd_test_task(tsk)) 871 return; !! 769 return AUDIT_DISABLED; 872 770 873 rcu_read_lock(); 771 rcu_read_lock(); 874 __audit_filter_op(tsk, ctx, &audit_fil !! 772 if (!list_empty(list)) { 875 NULL, ctx->major); !! 773 list_for_each_entry_rcu(e, list, list) { >> 774 if (audit_in_mask(&e->rule, ctx->major) && >> 775 audit_filter_rules(tsk, &e->rule, ctx, NULL, >> 776 &state, false)) { >> 777 rcu_read_unlock(); >> 778 ctx->current_state = state; >> 779 return state; >> 780 } >> 781 } >> 782 } 876 rcu_read_unlock(); 783 rcu_read_unlock(); >> 784 return AUDIT_BUILD_CONTEXT; 877 } 785 } 878 786 879 /* 787 /* 880 * Given an audit_name check the inode hash ta 788 * Given an audit_name check the inode hash table to see if they match. 881 * Called holding the rcu read lock to protect 789 * Called holding the rcu read lock to protect the use of audit_inode_hash 882 */ 790 */ 883 static int audit_filter_inode_name(struct task 791 static int audit_filter_inode_name(struct task_struct *tsk, 884 struct audi 792 struct audit_names *n, 885 struct audi !! 793 struct audit_context *ctx) { 886 { << 887 int h = audit_hash_ino((u32)n->ino); 794 int h = audit_hash_ino((u32)n->ino); 888 struct list_head *list = &audit_inode_ 795 struct list_head *list = &audit_inode_hash[h]; >> 796 struct audit_entry *e; >> 797 enum audit_state state; >> 798 >> 799 if (list_empty(list)) >> 800 return 0; 889 801 890 return __audit_filter_op(tsk, ctx, lis !! 802 list_for_each_entry_rcu(e, list, list) { >> 803 if (audit_in_mask(&e->rule, ctx->major) && >> 804 audit_filter_rules(tsk, &e->rule, ctx, n, &state, false)) { >> 805 ctx->current_state = state; >> 806 return 1; >> 807 } >> 808 } >> 809 >> 810 return 0; 891 } 811 } 892 812 893 /* At syscall exit time, this filter is called 813 /* At syscall exit time, this filter is called if any audit_names have been 894 * collected during syscall processing. We on 814 * collected during syscall processing. We only check rules in sublists at hash 895 * buckets applicable to the inode numbers in 815 * buckets applicable to the inode numbers in audit_names. 896 * Regarding audit_state, same rules apply as 816 * Regarding audit_state, same rules apply as for audit_filter_syscall(). 897 */ 817 */ 898 void audit_filter_inodes(struct task_struct *t 818 void audit_filter_inodes(struct task_struct *tsk, struct audit_context *ctx) 899 { 819 { 900 struct audit_names *n; 820 struct audit_names *n; 901 821 902 if (auditd_test_task(tsk)) 822 if (auditd_test_task(tsk)) 903 return; 823 return; 904 824 905 rcu_read_lock(); 825 rcu_read_lock(); 906 826 907 list_for_each_entry(n, &ctx->names_lis 827 list_for_each_entry(n, &ctx->names_list, list) { 908 if (audit_filter_inode_name(ts 828 if (audit_filter_inode_name(tsk, n, ctx)) 909 break; 829 break; 910 } 830 } 911 rcu_read_unlock(); 831 rcu_read_unlock(); 912 } 832 } 913 833 >> 834 /* Transfer the audit context pointer to the caller, clearing it in the tsk's struct */ >> 835 static inline struct audit_context *audit_take_context(struct task_struct *tsk, >> 836 int return_valid, >> 837 long return_code) >> 838 { >> 839 struct audit_context *context = tsk->audit_context; >> 840 >> 841 if (!context) >> 842 return NULL; >> 843 context->return_valid = return_valid; >> 844 >> 845 /* >> 846 * we need to fix up the return code in the audit logs if the actual >> 847 * return codes are later going to be fixed up by the arch specific >> 848 * signal handlers >> 849 * >> 850 * This is actually a test for: >> 851 * (rc == ERESTARTSYS ) || (rc == ERESTARTNOINTR) || >> 852 * (rc == ERESTARTNOHAND) || (rc == ERESTART_RESTARTBLOCK) >> 853 * >> 854 * but is faster than a bunch of || >> 855 */ >> 856 if (unlikely(return_code <= -ERESTARTSYS) && >> 857 (return_code >= -ERESTART_RESTARTBLOCK) && >> 858 (return_code != -ENOIOCTLCMD)) >> 859 context->return_code = -EINTR; >> 860 else >> 861 context->return_code = return_code; >> 862 >> 863 if (context->in_syscall && !context->dummy) { >> 864 audit_filter_syscall(tsk, context, &audit_filter_list[AUDIT_FILTER_EXIT]); >> 865 audit_filter_inodes(tsk, context); >> 866 } >> 867 >> 868 tsk->audit_context = NULL; >> 869 return context; >> 870 } >> 871 914 static inline void audit_proctitle_free(struct 872 static inline void audit_proctitle_free(struct audit_context *context) 915 { 873 { 916 kfree(context->proctitle.value); 874 kfree(context->proctitle.value); 917 context->proctitle.value = NULL; 875 context->proctitle.value = NULL; 918 context->proctitle.len = 0; 876 context->proctitle.len = 0; 919 } 877 } 920 878 921 static inline void audit_free_module(struct au << 922 { << 923 if (context->type == AUDIT_KERN_MODULE << 924 kfree(context->module.name); << 925 context->module.name = NULL; << 926 } << 927 } << 928 static inline void audit_free_names(struct aud 879 static inline void audit_free_names(struct audit_context *context) 929 { 880 { 930 struct audit_names *n, *next; 881 struct audit_names *n, *next; 931 882 932 list_for_each_entry_safe(n, next, &con 883 list_for_each_entry_safe(n, next, &context->names_list, list) { 933 list_del(&n->list); 884 list_del(&n->list); 934 if (n->name) 885 if (n->name) 935 putname(n->name); 886 putname(n->name); 936 if (n->should_free) 887 if (n->should_free) 937 kfree(n); 888 kfree(n); 938 } 889 } 939 context->name_count = 0; 890 context->name_count = 0; 940 path_put(&context->pwd); 891 path_put(&context->pwd); 941 context->pwd.dentry = NULL; 892 context->pwd.dentry = NULL; 942 context->pwd.mnt = NULL; 893 context->pwd.mnt = NULL; 943 } 894 } 944 895 945 static inline void audit_free_aux(struct audit 896 static inline void audit_free_aux(struct audit_context *context) 946 { 897 { 947 struct audit_aux_data *aux; 898 struct audit_aux_data *aux; 948 899 949 while ((aux = context->aux)) { 900 while ((aux = context->aux)) { 950 context->aux = aux->next; 901 context->aux = aux->next; 951 kfree(aux); 902 kfree(aux); 952 } 903 } 953 context->aux = NULL; << 954 while ((aux = context->aux_pids)) { 904 while ((aux = context->aux_pids)) { 955 context->aux_pids = aux->next; 905 context->aux_pids = aux->next; 956 kfree(aux); 906 kfree(aux); 957 } 907 } 958 context->aux_pids = NULL; << 959 } << 960 << 961 /** << 962 * audit_reset_context - reset a audit_context << 963 * @ctx: the audit_context to reset << 964 * << 965 * All fields in the audit_context will be res << 966 * references held by fields will be dropped, << 967 * released. When this function returns the a << 968 * for reuse, so long as the passed context is << 969 */ << 970 static void audit_reset_context(struct audit_c << 971 { << 972 if (!ctx) << 973 return; << 974 << 975 /* if ctx is non-null, reset the "ctx- << 976 ctx->context = AUDIT_CTX_UNUSED; << 977 if (ctx->dummy) << 978 return; << 979 << 980 /* << 981 * NOTE: It shouldn't matter in what o << 982 * release them in the order in << 983 * this gives us some hope of qu << 984 * resetting the audit_context p << 985 * << 986 * Other things worth mentioning << 987 * - we don't reset "dummy" << 988 * - we don't reset "state", we << 989 * - we preserve "filterkey" if << 990 * - much of this is likely over << 991 * - we really need to work on i << 992 */ << 993 << 994 ctx->current_state = ctx->state; << 995 ctx->serial = 0; << 996 ctx->major = 0; << 997 ctx->uring_op = 0; << 998 ctx->ctime = (struct timespec64){ .tv_ << 999 memset(ctx->argv, 0, sizeof(ctx->argv) << 1000 ctx->return_code = 0; << 1001 ctx->prio = (ctx->state == AUDIT_STAT << 1002 ctx->return_valid = AUDITSC_INVALID; << 1003 audit_free_names(ctx); << 1004 if (ctx->state != AUDIT_STATE_RECORD) << 1005 kfree(ctx->filterkey); << 1006 ctx->filterkey = NULL; << 1007 } << 1008 audit_free_aux(ctx); << 1009 kfree(ctx->sockaddr); << 1010 ctx->sockaddr = NULL; << 1011 ctx->sockaddr_len = 0; << 1012 ctx->ppid = 0; << 1013 ctx->uid = ctx->euid = ctx->suid = ct << 1014 ctx->gid = ctx->egid = ctx->sgid = ct << 1015 ctx->personality = 0; << 1016 ctx->arch = 0; << 1017 ctx->target_pid = 0; << 1018 ctx->target_auid = ctx->target_uid = << 1019 ctx->target_sessionid = 0; << 1020 ctx->target_sid = 0; << 1021 ctx->target_comm[0] = '\0'; << 1022 unroll_tree_refs(ctx, NULL, 0); << 1023 WARN_ON(!list_empty(&ctx->killed_tree << 1024 audit_free_module(ctx); << 1025 ctx->fds[0] = -1; << 1026 ctx->type = 0; /* reset last for audi << 1027 } 908 } 1028 909 1029 static inline struct audit_context *audit_all 910 static inline struct audit_context *audit_alloc_context(enum audit_state state) 1030 { 911 { 1031 struct audit_context *context; 912 struct audit_context *context; 1032 913 1033 context = kzalloc(sizeof(*context), G 914 context = kzalloc(sizeof(*context), GFP_KERNEL); 1034 if (!context) 915 if (!context) 1035 return NULL; 916 return NULL; 1036 context->context = AUDIT_CTX_UNUSED; << 1037 context->state = state; 917 context->state = state; 1038 context->prio = state == AUDIT_STATE_ !! 918 context->prio = state == AUDIT_RECORD_CONTEXT ? ~0ULL : 0; 1039 INIT_LIST_HEAD(&context->killed_trees 919 INIT_LIST_HEAD(&context->killed_trees); 1040 INIT_LIST_HEAD(&context->names_list); 920 INIT_LIST_HEAD(&context->names_list); 1041 context->fds[0] = -1; << 1042 context->return_valid = AUDITSC_INVAL << 1043 return context; 921 return context; 1044 } 922 } 1045 923 1046 /** 924 /** 1047 * audit_alloc - allocate an audit context bl 925 * audit_alloc - allocate an audit context block for a task 1048 * @tsk: task 926 * @tsk: task 1049 * 927 * 1050 * Filter on the task information and allocat 928 * Filter on the task information and allocate a per-task audit context 1051 * if necessary. Doing so turns on system ca 929 * if necessary. Doing so turns on system call auditing for the 1052 * specified task. This is called from copy_ 930 * specified task. This is called from copy_process, so no lock is 1053 * needed. 931 * needed. 1054 */ 932 */ 1055 int audit_alloc(struct task_struct *tsk) 933 int audit_alloc(struct task_struct *tsk) 1056 { 934 { 1057 struct audit_context *context; 935 struct audit_context *context; 1058 enum audit_state state; 936 enum audit_state state; 1059 char *key = NULL; 937 char *key = NULL; 1060 938 1061 if (likely(!audit_ever_enabled)) 939 if (likely(!audit_ever_enabled)) 1062 return 0; !! 940 return 0; /* Return if not auditing. */ 1063 941 1064 state = audit_filter_task(tsk, &key); 942 state = audit_filter_task(tsk, &key); 1065 if (state == AUDIT_STATE_DISABLED) { !! 943 if (state == AUDIT_DISABLED) { 1066 clear_task_syscall_work(tsk, !! 944 clear_tsk_thread_flag(tsk, TIF_SYSCALL_AUDIT); 1067 return 0; 945 return 0; 1068 } 946 } 1069 947 1070 context = audit_alloc_context(state); !! 948 if (!(context = audit_alloc_context(state))) { 1071 if (!context) { << 1072 kfree(key); 949 kfree(key); 1073 audit_log_lost("out of memory 950 audit_log_lost("out of memory in audit_alloc"); 1074 return -ENOMEM; 951 return -ENOMEM; 1075 } 952 } 1076 context->filterkey = key; 953 context->filterkey = key; 1077 954 1078 audit_set_context(tsk, context); !! 955 tsk->audit_context = context; 1079 set_task_syscall_work(tsk, SYSCALL_AU !! 956 set_tsk_thread_flag(tsk, TIF_SYSCALL_AUDIT); 1080 return 0; 957 return 0; 1081 } 958 } 1082 959 1083 static inline void audit_free_context(struct 960 static inline void audit_free_context(struct audit_context *context) 1084 { 961 { 1085 /* resetting is extra work, but it is !! 962 audit_free_names(context); 1086 audit_reset_context(context); !! 963 unroll_tree_refs(context, NULL, 0); 1087 audit_proctitle_free(context); << 1088 free_tree_refs(context); 964 free_tree_refs(context); >> 965 audit_free_aux(context); 1089 kfree(context->filterkey); 966 kfree(context->filterkey); >> 967 kfree(context->sockaddr); >> 968 audit_proctitle_free(context); 1090 kfree(context); 969 kfree(context); 1091 } 970 } 1092 971 1093 static int audit_log_pid_context(struct audit 972 static int audit_log_pid_context(struct audit_context *context, pid_t pid, 1094 kuid_t auid, 973 kuid_t auid, kuid_t uid, unsigned int sessionid, 1095 u32 sid, cha 974 u32 sid, char *comm) 1096 { 975 { 1097 struct audit_buffer *ab; 976 struct audit_buffer *ab; 1098 char *ctx = NULL; 977 char *ctx = NULL; 1099 u32 len; 978 u32 len; 1100 int rc = 0; 979 int rc = 0; 1101 980 1102 ab = audit_log_start(context, GFP_KER 981 ab = audit_log_start(context, GFP_KERNEL, AUDIT_OBJ_PID); 1103 if (!ab) 982 if (!ab) 1104 return rc; 983 return rc; 1105 984 1106 audit_log_format(ab, "opid=%d oauid=% 985 audit_log_format(ab, "opid=%d oauid=%d ouid=%d oses=%d", pid, 1107 from_kuid(&init_user 986 from_kuid(&init_user_ns, auid), 1108 from_kuid(&init_user 987 from_kuid(&init_user_ns, uid), sessionid); 1109 if (sid) { 988 if (sid) { 1110 if (security_secid_to_secctx( 989 if (security_secid_to_secctx(sid, &ctx, &len)) { 1111 audit_log_format(ab, 990 audit_log_format(ab, " obj=(none)"); 1112 rc = 1; 991 rc = 1; 1113 } else { 992 } else { 1114 audit_log_format(ab, 993 audit_log_format(ab, " obj=%s", ctx); 1115 security_release_secc 994 security_release_secctx(ctx, len); 1116 } 995 } 1117 } 996 } 1118 audit_log_format(ab, " ocomm="); 997 audit_log_format(ab, " ocomm="); 1119 audit_log_untrustedstring(ab, comm); 998 audit_log_untrustedstring(ab, comm); 1120 audit_log_end(ab); 999 audit_log_end(ab); 1121 1000 1122 return rc; 1001 return rc; 1123 } 1002 } 1124 1003 1125 static void audit_log_execve_info(struct audi 1004 static void audit_log_execve_info(struct audit_context *context, 1126 struct audi 1005 struct audit_buffer **ab) 1127 { 1006 { 1128 long len_max; 1007 long len_max; 1129 long len_rem; 1008 long len_rem; 1130 long len_full; 1009 long len_full; 1131 long len_buf; 1010 long len_buf; 1132 long len_abuf = 0; 1011 long len_abuf = 0; 1133 long len_tmp; 1012 long len_tmp; 1134 bool require_data; 1013 bool require_data; 1135 bool encode; 1014 bool encode; 1136 unsigned int iter; 1015 unsigned int iter; 1137 unsigned int arg; 1016 unsigned int arg; 1138 char *buf_head; 1017 char *buf_head; 1139 char *buf; 1018 char *buf; 1140 const char __user *p = (const char __ 1019 const char __user *p = (const char __user *)current->mm->arg_start; 1141 1020 1142 /* NOTE: this buffer needs to be larg 1021 /* NOTE: this buffer needs to be large enough to hold all the non-arg 1143 * data we put in the audit rec 1022 * data we put in the audit record for this argument (see the 1144 * code below) ... at this poin 1023 * code below) ... at this point in time 96 is plenty */ 1145 char abuf[96]; 1024 char abuf[96]; 1146 1025 1147 /* NOTE: we set MAX_EXECVE_AUDIT_LEN 1026 /* NOTE: we set MAX_EXECVE_AUDIT_LEN to a rather arbitrary limit, the 1148 * current value of 7500 is not 1027 * current value of 7500 is not as important as the fact that it 1149 * is less than 8k, a setting o 1028 * is less than 8k, a setting of 7500 gives us plenty of wiggle 1150 * room if we go over a little 1029 * room if we go over a little bit in the logging below */ 1151 WARN_ON_ONCE(MAX_EXECVE_AUDIT_LEN > 7 1030 WARN_ON_ONCE(MAX_EXECVE_AUDIT_LEN > 7500); 1152 len_max = MAX_EXECVE_AUDIT_LEN; 1031 len_max = MAX_EXECVE_AUDIT_LEN; 1153 1032 1154 /* scratch buffer to hold the userspa 1033 /* scratch buffer to hold the userspace args */ 1155 buf_head = kmalloc(MAX_EXECVE_AUDIT_L 1034 buf_head = kmalloc(MAX_EXECVE_AUDIT_LEN + 1, GFP_KERNEL); 1156 if (!buf_head) { 1035 if (!buf_head) { 1157 audit_panic("out of memory fo 1036 audit_panic("out of memory for argv string"); 1158 return; 1037 return; 1159 } 1038 } 1160 buf = buf_head; 1039 buf = buf_head; 1161 1040 1162 audit_log_format(*ab, "argc=%d", cont 1041 audit_log_format(*ab, "argc=%d", context->execve.argc); 1163 1042 1164 len_rem = len_max; 1043 len_rem = len_max; 1165 len_buf = 0; 1044 len_buf = 0; 1166 len_full = 0; 1045 len_full = 0; 1167 require_data = true; 1046 require_data = true; 1168 encode = false; 1047 encode = false; 1169 iter = 0; 1048 iter = 0; 1170 arg = 0; 1049 arg = 0; 1171 do { 1050 do { 1172 /* NOTE: we don't ever want t 1051 /* NOTE: we don't ever want to trust this value for anything 1173 * serious, but the aud 1052 * serious, but the audit record format insists we 1174 * provide an argument 1053 * provide an argument length for really long arguments, 1175 * e.g. > MAX_EXECVE_AU 1054 * e.g. > MAX_EXECVE_AUDIT_LEN, so we have no choice but 1176 * to use strncpy_from_ 1055 * to use strncpy_from_user() to obtain this value for 1177 * recording in the log 1056 * recording in the log, although we don't use it 1178 * anywhere here to avo 1057 * anywhere here to avoid a double-fetch problem */ 1179 if (len_full == 0) 1058 if (len_full == 0) 1180 len_full = strnlen_us 1059 len_full = strnlen_user(p, MAX_ARG_STRLEN) - 1; 1181 1060 1182 /* read more data from usersp 1061 /* read more data from userspace */ 1183 if (require_data) { 1062 if (require_data) { 1184 /* can we make more r 1063 /* can we make more room in the buffer? */ 1185 if (buf != buf_head) 1064 if (buf != buf_head) { 1186 memmove(buf_h 1065 memmove(buf_head, buf, len_buf); 1187 buf = buf_hea 1066 buf = buf_head; 1188 } 1067 } 1189 1068 1190 /* fetch as much as w 1069 /* fetch as much as we can of the argument */ 1191 len_tmp = strncpy_fro 1070 len_tmp = strncpy_from_user(&buf_head[len_buf], p, 1192 1071 len_max - len_buf); 1193 if (len_tmp == -EFAUL 1072 if (len_tmp == -EFAULT) { 1194 /* unable to 1073 /* unable to copy from userspace */ 1195 send_sig(SIGK 1074 send_sig(SIGKILL, current, 0); 1196 goto out; 1075 goto out; 1197 } else if (len_tmp == 1076 } else if (len_tmp == (len_max - len_buf)) { 1198 /* buffer is 1077 /* buffer is not large enough */ 1199 require_data 1078 require_data = true; 1200 /* NOTE: if w 1079 /* NOTE: if we are going to span multiple 1201 * buff 1080 * buffers force the encoding so we stand 1202 * a ch 1081 * a chance at a sane len_full value and 1203 * cons 1082 * consistent record encoding */ 1204 encode = true 1083 encode = true; 1205 len_full = le 1084 len_full = len_full * 2; 1206 p += len_tmp; 1085 p += len_tmp; 1207 } else { 1086 } else { 1208 require_data 1087 require_data = false; 1209 if (!encode) 1088 if (!encode) 1210 encod 1089 encode = audit_string_contains_control( 1211 1090 buf, len_tmp); 1212 /* try to use 1091 /* try to use a trusted value for len_full */ 1213 if (len_full 1092 if (len_full < len_max) 1214 len_f 1093 len_full = (encode ? 1215 1094 len_tmp * 2 : len_tmp); 1216 p += len_tmp 1095 p += len_tmp + 1; 1217 } 1096 } 1218 len_buf += len_tmp; 1097 len_buf += len_tmp; 1219 buf_head[len_buf] = ' 1098 buf_head[len_buf] = '\0'; 1220 1099 1221 /* length of the buff 1100 /* length of the buffer in the audit record? */ 1222 len_abuf = (encode ? 1101 len_abuf = (encode ? len_buf * 2 : len_buf + 2); 1223 } 1102 } 1224 1103 1225 /* write as much as we can to 1104 /* write as much as we can to the audit log */ 1226 if (len_buf >= 0) { !! 1105 if (len_buf > 0) { 1227 /* NOTE: some magic n 1106 /* NOTE: some magic numbers here - basically if we 1228 * can't fit a 1107 * can't fit a reasonable amount of data into the 1229 * existing aud 1108 * existing audit buffer, flush it and start with 1230 * a new buffer 1109 * a new buffer */ 1231 if ((sizeof(abuf) + 8 1110 if ((sizeof(abuf) + 8) > len_rem) { 1232 len_rem = len 1111 len_rem = len_max; 1233 audit_log_end 1112 audit_log_end(*ab); 1234 *ab = audit_l 1113 *ab = audit_log_start(context, 1235 1114 GFP_KERNEL, AUDIT_EXECVE); 1236 if (!*ab) 1115 if (!*ab) 1237 goto 1116 goto out; 1238 } 1117 } 1239 1118 1240 /* create the non-arg 1119 /* create the non-arg portion of the arg record */ 1241 len_tmp = 0; 1120 len_tmp = 0; 1242 if (require_data || ( 1121 if (require_data || (iter > 0) || 1243 ((len_abuf + size 1122 ((len_abuf + sizeof(abuf)) > len_rem)) { 1244 if (iter == 0 1123 if (iter == 0) { 1245 len_t 1124 len_tmp += snprintf(&abuf[len_tmp], 1246 1125 sizeof(abuf) - len_tmp, 1247 1126 " a%d_len=%lu", 1248 1127 arg, len_full); 1249 } 1128 } 1250 len_tmp += sn 1129 len_tmp += snprintf(&abuf[len_tmp], 1251 1130 sizeof(abuf) - len_tmp, 1252 1131 " a%d[%d]=", arg, iter++); 1253 } else 1132 } else 1254 len_tmp += sn 1133 len_tmp += snprintf(&abuf[len_tmp], 1255 1134 sizeof(abuf) - len_tmp, 1256 1135 " a%d=", arg); 1257 WARN_ON(len_tmp >= si 1136 WARN_ON(len_tmp >= sizeof(abuf)); 1258 abuf[sizeof(abuf) - 1 1137 abuf[sizeof(abuf) - 1] = '\0'; 1259 1138 1260 /* log the arg in the 1139 /* log the arg in the audit record */ 1261 audit_log_format(*ab, 1140 audit_log_format(*ab, "%s", abuf); 1262 len_rem -= len_tmp; 1141 len_rem -= len_tmp; 1263 len_tmp = len_buf; 1142 len_tmp = len_buf; 1264 if (encode) { 1143 if (encode) { 1265 if (len_abuf 1144 if (len_abuf > len_rem) 1266 len_t 1145 len_tmp = len_rem / 2; /* encoding */ 1267 audit_log_n_h 1146 audit_log_n_hex(*ab, buf, len_tmp); 1268 len_rem -= le 1147 len_rem -= len_tmp * 2; 1269 len_abuf -= l 1148 len_abuf -= len_tmp * 2; 1270 } else { 1149 } else { 1271 if (len_abuf 1150 if (len_abuf > len_rem) 1272 len_t 1151 len_tmp = len_rem - 2; /* quotes */ 1273 audit_log_n_s 1152 audit_log_n_string(*ab, buf, len_tmp); 1274 len_rem -= le 1153 len_rem -= len_tmp + 2; 1275 /* don't subt 1154 /* don't subtract the "2" because we still need 1276 * to add quo 1155 * to add quotes to the remaining string */ 1277 len_abuf -= l 1156 len_abuf -= len_tmp; 1278 } 1157 } 1279 len_buf -= len_tmp; 1158 len_buf -= len_tmp; 1280 buf += len_tmp; 1159 buf += len_tmp; 1281 } 1160 } 1282 1161 1283 /* ready to move to the next 1162 /* ready to move to the next argument? */ 1284 if ((len_buf == 0) && !requir 1163 if ((len_buf == 0) && !require_data) { 1285 arg++; 1164 arg++; 1286 iter = 0; 1165 iter = 0; 1287 len_full = 0; 1166 len_full = 0; 1288 require_data = true; 1167 require_data = true; 1289 encode = false; 1168 encode = false; 1290 } 1169 } 1291 } while (arg < context->execve.argc); 1170 } while (arg < context->execve.argc); 1292 1171 1293 /* NOTE: the caller handles the final 1172 /* NOTE: the caller handles the final audit_log_end() call */ 1294 1173 1295 out: 1174 out: 1296 kfree(buf_head); 1175 kfree(buf_head); 1297 } 1176 } 1298 1177 1299 static void audit_log_cap(struct audit_buffer << 1300 kernel_cap_t *cap) << 1301 { << 1302 if (cap_isclear(*cap)) { << 1303 audit_log_format(ab, " %s=0", << 1304 return; << 1305 } << 1306 audit_log_format(ab, " %s=%016llx", p << 1307 } << 1308 << 1309 static void audit_log_fcaps(struct audit_buff << 1310 { << 1311 if (name->fcap_ver == -1) { << 1312 audit_log_format(ab, " cap_fe << 1313 return; << 1314 } << 1315 audit_log_cap(ab, "cap_fp", &name->fc << 1316 audit_log_cap(ab, "cap_fi", &name->fc << 1317 audit_log_format(ab, " cap_fe=%d cap_ << 1318 name->fcap.fE, name- << 1319 from_kuid(&init_user << 1320 } << 1321 << 1322 static void audit_log_time(struct audit_conte << 1323 { << 1324 const struct audit_ntp_data *ntp = &c << 1325 const struct timespec64 *tk = &contex << 1326 static const char * const ntp_name[] << 1327 "offset", << 1328 "freq", << 1329 "status", << 1330 "tai", << 1331 "tick", << 1332 "adjust", << 1333 }; << 1334 int type; << 1335 << 1336 if (context->type == AUDIT_TIME_ADJNT << 1337 for (type = 0; type < AUDIT_N << 1338 if (ntp->vals[type].n << 1339 if (!*ab) { << 1340 *ab = << 1341 << 1342 << 1343 if (! << 1344 << 1345 } << 1346 audit_log_for << 1347 << 1348 << 1349 << 1350 audit_log_end << 1351 *ab = NULL; << 1352 } << 1353 } << 1354 } << 1355 if (tk->tv_sec != 0 || tk->tv_nsec != << 1356 if (!*ab) { << 1357 *ab = audit_log_start << 1358 << 1359 if (!*ab) << 1360 return; << 1361 } << 1362 audit_log_format(*ab, "sec=%l << 1363 (long long)t << 1364 audit_log_end(*ab); << 1365 *ab = NULL; << 1366 } << 1367 } << 1368 << 1369 static void show_special(struct audit_context 1178 static void show_special(struct audit_context *context, int *call_panic) 1370 { 1179 { 1371 struct audit_buffer *ab; 1180 struct audit_buffer *ab; 1372 int i; 1181 int i; 1373 1182 1374 ab = audit_log_start(context, GFP_KER 1183 ab = audit_log_start(context, GFP_KERNEL, context->type); 1375 if (!ab) 1184 if (!ab) 1376 return; 1185 return; 1377 1186 1378 switch (context->type) { 1187 switch (context->type) { 1379 case AUDIT_SOCKETCALL: { 1188 case AUDIT_SOCKETCALL: { 1380 int nargs = context->socketca 1189 int nargs = context->socketcall.nargs; 1381 << 1382 audit_log_format(ab, "nargs=% 1190 audit_log_format(ab, "nargs=%d", nargs); 1383 for (i = 0; i < nargs; i++) 1191 for (i = 0; i < nargs; i++) 1384 audit_log_format(ab, 1192 audit_log_format(ab, " a%d=%lx", i, 1385 context->sock 1193 context->socketcall.args[i]); 1386 break; } 1194 break; } 1387 case AUDIT_IPC: { 1195 case AUDIT_IPC: { 1388 u32 osid = context->ipc.osid; 1196 u32 osid = context->ipc.osid; 1389 1197 1390 audit_log_format(ab, "ouid=%u 1198 audit_log_format(ab, "ouid=%u ogid=%u mode=%#ho", 1391 from_kuid(&i 1199 from_kuid(&init_user_ns, context->ipc.uid), 1392 from_kgid(&i 1200 from_kgid(&init_user_ns, context->ipc.gid), 1393 context->ipc 1201 context->ipc.mode); 1394 if (osid) { 1202 if (osid) { 1395 char *ctx = NULL; 1203 char *ctx = NULL; 1396 u32 len; 1204 u32 len; 1397 << 1398 if (security_secid_to 1205 if (security_secid_to_secctx(osid, &ctx, &len)) { 1399 audit_log_for 1206 audit_log_format(ab, " osid=%u", osid); 1400 *call_panic = 1207 *call_panic = 1; 1401 } else { 1208 } else { 1402 audit_log_for 1209 audit_log_format(ab, " obj=%s", ctx); 1403 security_rele 1210 security_release_secctx(ctx, len); 1404 } 1211 } 1405 } 1212 } 1406 if (context->ipc.has_perm) { 1213 if (context->ipc.has_perm) { 1407 audit_log_end(ab); 1214 audit_log_end(ab); 1408 ab = audit_log_start( 1215 ab = audit_log_start(context, GFP_KERNEL, 1409 1216 AUDIT_IPC_SET_PERM); 1410 if (unlikely(!ab)) 1217 if (unlikely(!ab)) 1411 return; 1218 return; 1412 audit_log_format(ab, 1219 audit_log_format(ab, 1413 "qbytes=%lx o 1220 "qbytes=%lx ouid=%u ogid=%u mode=%#ho", 1414 context->ipc. 1221 context->ipc.qbytes, 1415 context->ipc. 1222 context->ipc.perm_uid, 1416 context->ipc. 1223 context->ipc.perm_gid, 1417 context->ipc. 1224 context->ipc.perm_mode); 1418 } 1225 } 1419 break; } 1226 break; } 1420 case AUDIT_MQ_OPEN: 1227 case AUDIT_MQ_OPEN: 1421 audit_log_format(ab, 1228 audit_log_format(ab, 1422 "oflag=0x%x mode=%#ho 1229 "oflag=0x%x mode=%#ho mq_flags=0x%lx mq_maxmsg=%ld " 1423 "mq_msgsize=%ld mq_cu 1230 "mq_msgsize=%ld mq_curmsgs=%ld", 1424 context->mq_open.ofla 1231 context->mq_open.oflag, context->mq_open.mode, 1425 context->mq_open.attr 1232 context->mq_open.attr.mq_flags, 1426 context->mq_open.attr 1233 context->mq_open.attr.mq_maxmsg, 1427 context->mq_open.attr 1234 context->mq_open.attr.mq_msgsize, 1428 context->mq_open.attr 1235 context->mq_open.attr.mq_curmsgs); 1429 break; 1236 break; 1430 case AUDIT_MQ_SENDRECV: 1237 case AUDIT_MQ_SENDRECV: 1431 audit_log_format(ab, 1238 audit_log_format(ab, 1432 "mqdes=%d msg_len=%zd 1239 "mqdes=%d msg_len=%zd msg_prio=%u " 1433 "abs_timeout_sec=%lld 1240 "abs_timeout_sec=%lld abs_timeout_nsec=%ld", 1434 context->mq_sendrecv. 1241 context->mq_sendrecv.mqdes, 1435 context->mq_sendrecv. 1242 context->mq_sendrecv.msg_len, 1436 context->mq_sendrecv. 1243 context->mq_sendrecv.msg_prio, 1437 (long long) context-> 1244 (long long) context->mq_sendrecv.abs_timeout.tv_sec, 1438 context->mq_sendrecv. 1245 context->mq_sendrecv.abs_timeout.tv_nsec); 1439 break; 1246 break; 1440 case AUDIT_MQ_NOTIFY: 1247 case AUDIT_MQ_NOTIFY: 1441 audit_log_format(ab, "mqdes=% 1248 audit_log_format(ab, "mqdes=%d sigev_signo=%d", 1442 context->mq_n 1249 context->mq_notify.mqdes, 1443 context->mq_n 1250 context->mq_notify.sigev_signo); 1444 break; 1251 break; 1445 case AUDIT_MQ_GETSETATTR: { 1252 case AUDIT_MQ_GETSETATTR: { 1446 struct mq_attr *attr = &conte 1253 struct mq_attr *attr = &context->mq_getsetattr.mqstat; 1447 << 1448 audit_log_format(ab, 1254 audit_log_format(ab, 1449 "mqdes=%d mq_flags=0x 1255 "mqdes=%d mq_flags=0x%lx mq_maxmsg=%ld mq_msgsize=%ld " 1450 "mq_curmsgs=%ld ", 1256 "mq_curmsgs=%ld ", 1451 context->mq_getsetatt 1257 context->mq_getsetattr.mqdes, 1452 attr->mq_flags, attr- 1258 attr->mq_flags, attr->mq_maxmsg, 1453 attr->mq_msgsize, att 1259 attr->mq_msgsize, attr->mq_curmsgs); 1454 break; } 1260 break; } 1455 case AUDIT_CAPSET: 1261 case AUDIT_CAPSET: 1456 audit_log_format(ab, "pid=%d" 1262 audit_log_format(ab, "pid=%d", context->capset.pid); 1457 audit_log_cap(ab, "cap_pi", & 1263 audit_log_cap(ab, "cap_pi", &context->capset.cap.inheritable); 1458 audit_log_cap(ab, "cap_pp", & 1264 audit_log_cap(ab, "cap_pp", &context->capset.cap.permitted); 1459 audit_log_cap(ab, "cap_pe", & 1265 audit_log_cap(ab, "cap_pe", &context->capset.cap.effective); 1460 audit_log_cap(ab, "cap_pa", & 1266 audit_log_cap(ab, "cap_pa", &context->capset.cap.ambient); 1461 break; 1267 break; 1462 case AUDIT_MMAP: 1268 case AUDIT_MMAP: 1463 audit_log_format(ab, "fd=%d f 1269 audit_log_format(ab, "fd=%d flags=0x%x", context->mmap.fd, 1464 context->mma 1270 context->mmap.flags); 1465 break; 1271 break; 1466 case AUDIT_OPENAT2: << 1467 audit_log_format(ab, "oflag=0 << 1468 context->ope << 1469 context->ope << 1470 context->ope << 1471 break; << 1472 case AUDIT_EXECVE: 1272 case AUDIT_EXECVE: 1473 audit_log_execve_info(context 1273 audit_log_execve_info(context, &ab); 1474 break; 1274 break; 1475 case AUDIT_KERN_MODULE: 1275 case AUDIT_KERN_MODULE: 1476 audit_log_format(ab, "name=") 1276 audit_log_format(ab, "name="); 1477 if (context->module.name) { 1277 if (context->module.name) { 1478 audit_log_untrustedst 1278 audit_log_untrustedstring(ab, context->module.name); >> 1279 kfree(context->module.name); 1479 } else 1280 } else 1480 audit_log_format(ab, 1281 audit_log_format(ab, "(null)"); 1481 1282 1482 break; 1283 break; 1483 case AUDIT_TIME_ADJNTPVAL: << 1484 case AUDIT_TIME_INJOFFSET: << 1485 /* this call deviates from th << 1486 audit_log_time(context, &ab); << 1487 break; << 1488 } 1284 } 1489 audit_log_end(ab); 1285 audit_log_end(ab); 1490 } 1286 } 1491 1287 1492 static inline int audit_proctitle_rtrim(char 1288 static inline int audit_proctitle_rtrim(char *proctitle, int len) 1493 { 1289 { 1494 char *end = proctitle + len - 1; 1290 char *end = proctitle + len - 1; 1495 << 1496 while (end > proctitle && !isprint(*e 1291 while (end > proctitle && !isprint(*end)) 1497 end--; 1292 end--; 1498 1293 1499 /* catch the case where proctitle is 1294 /* catch the case where proctitle is only 1 non-print character */ 1500 len = end - proctitle + 1; 1295 len = end - proctitle + 1; 1501 len -= isprint(proctitle[len-1]) == 0 1296 len -= isprint(proctitle[len-1]) == 0; 1502 return len; 1297 return len; 1503 } 1298 } 1504 1299 1505 /* !! 1300 static void audit_log_proctitle(struct task_struct *tsk, 1506 * audit_log_name - produce AUDIT_PATH record !! 1301 struct audit_context *context) 1507 * @context: audit_context for the task << 1508 * @n: audit_names structure with reportable << 1509 * @path: optional path to report instead of << 1510 * @record_num: record number to report when << 1511 * @call_panic: optional pointer to int that << 1512 */ << 1513 static void audit_log_name(struct audit_conte << 1514 const struct path *path, << 1515 { << 1516 struct audit_buffer *ab; << 1517 << 1518 ab = audit_log_start(context, GFP_KER << 1519 if (!ab) << 1520 return; << 1521 << 1522 audit_log_format(ab, "item=%d", recor << 1523 << 1524 if (path) << 1525 audit_log_d_path(ab, " name=" << 1526 else if (n->name) { << 1527 switch (n->name_len) { << 1528 case AUDIT_NAME_FULL: << 1529 /* log the full path << 1530 audit_log_format(ab, << 1531 audit_log_untrustedst << 1532 break; << 1533 case 0: << 1534 /* name was specified << 1535 * directory componen << 1536 */ << 1537 if (context->pwd.dent << 1538 audit_log_d_p << 1539 else << 1540 audit_log_for << 1541 break; << 1542 default: << 1543 /* log the name's dir << 1544 audit_log_format(ab, << 1545 audit_log_n_untrusted << 1546 << 1547 } << 1548 } else << 1549 audit_log_format(ab, " name=( << 1550 << 1551 if (n->ino != AUDIT_INO_UNSET) << 1552 audit_log_format(ab, " inode= << 1553 n->ino, << 1554 MAJOR(n->dev << 1555 MINOR(n->dev << 1556 n->mode, << 1557 from_kuid(&i << 1558 from_kgid(&i << 1559 MAJOR(n->rde << 1560 MINOR(n->rde << 1561 if (n->osid != 0) { << 1562 char *ctx = NULL; << 1563 u32 len; << 1564 << 1565 if (security_secid_to_secctx( << 1566 n->osid, &ctx, &len)) << 1567 audit_log_format(ab, << 1568 if (call_panic) << 1569 *call_panic = << 1570 } else { << 1571 audit_log_format(ab, << 1572 security_release_secc << 1573 } << 1574 } << 1575 << 1576 /* log the audit_names record type */ << 1577 switch (n->type) { << 1578 case AUDIT_TYPE_NORMAL: << 1579 audit_log_format(ab, " namety << 1580 break; << 1581 case AUDIT_TYPE_PARENT: << 1582 audit_log_format(ab, " namety << 1583 break; << 1584 case AUDIT_TYPE_CHILD_DELETE: << 1585 audit_log_format(ab, " namety << 1586 break; << 1587 case AUDIT_TYPE_CHILD_CREATE: << 1588 audit_log_format(ab, " namety << 1589 break; << 1590 default: << 1591 audit_log_format(ab, " namety << 1592 break; << 1593 } << 1594 << 1595 audit_log_fcaps(ab, n); << 1596 audit_log_end(ab); << 1597 } << 1598 << 1599 static void audit_log_proctitle(void) << 1600 { 1302 { 1601 int res; 1303 int res; 1602 char *buf; 1304 char *buf; 1603 char *msg = "(null)"; 1305 char *msg = "(null)"; 1604 int len = strlen(msg); 1306 int len = strlen(msg); 1605 struct audit_context *context = audit << 1606 struct audit_buffer *ab; 1307 struct audit_buffer *ab; 1607 1308 1608 ab = audit_log_start(context, GFP_KER 1309 ab = audit_log_start(context, GFP_KERNEL, AUDIT_PROCTITLE); 1609 if (!ab) 1310 if (!ab) 1610 return; /* audit_panic or bei 1311 return; /* audit_panic or being filtered */ 1611 1312 1612 audit_log_format(ab, "proctitle="); 1313 audit_log_format(ab, "proctitle="); 1613 1314 1614 /* Not cached */ 1315 /* Not cached */ 1615 if (!context->proctitle.value) { 1316 if (!context->proctitle.value) { 1616 buf = kmalloc(MAX_PROCTITLE_A 1317 buf = kmalloc(MAX_PROCTITLE_AUDIT_LEN, GFP_KERNEL); 1617 if (!buf) 1318 if (!buf) 1618 goto out; 1319 goto out; 1619 /* Historically called this f 1320 /* Historically called this from procfs naming */ 1620 res = get_cmdline(current, bu !! 1321 res = get_cmdline(tsk, buf, MAX_PROCTITLE_AUDIT_LEN); 1621 if (res == 0) { 1322 if (res == 0) { 1622 kfree(buf); 1323 kfree(buf); 1623 goto out; 1324 goto out; 1624 } 1325 } 1625 res = audit_proctitle_rtrim(b 1326 res = audit_proctitle_rtrim(buf, res); 1626 if (res == 0) { 1327 if (res == 0) { 1627 kfree(buf); 1328 kfree(buf); 1628 goto out; 1329 goto out; 1629 } 1330 } 1630 context->proctitle.value = bu 1331 context->proctitle.value = buf; 1631 context->proctitle.len = res; 1332 context->proctitle.len = res; 1632 } 1333 } 1633 msg = context->proctitle.value; 1334 msg = context->proctitle.value; 1634 len = context->proctitle.len; 1335 len = context->proctitle.len; 1635 out: 1336 out: 1636 audit_log_n_untrustedstring(ab, msg, 1337 audit_log_n_untrustedstring(ab, msg, len); 1637 audit_log_end(ab); 1338 audit_log_end(ab); 1638 } 1339 } 1639 1340 1640 /** !! 1341 static void audit_log_exit(struct audit_context *context, struct task_struct *tsk) 1641 * audit_log_uring - generate a AUDIT_URINGOP << 1642 * @ctx: the audit context << 1643 */ << 1644 static void audit_log_uring(struct audit_cont << 1645 { << 1646 struct audit_buffer *ab; << 1647 const struct cred *cred; << 1648 << 1649 ab = audit_log_start(ctx, GFP_ATOMIC, << 1650 if (!ab) << 1651 return; << 1652 cred = current_cred(); << 1653 audit_log_format(ab, "uring_op=%d", c << 1654 if (ctx->return_valid != AUDITSC_INVA << 1655 audit_log_format(ab, " succes << 1656 (ctx->return << 1657 "yes" : "no << 1658 ctx->return_ << 1659 audit_log_format(ab, << 1660 " items=%d" << 1661 " ppid=%d pid=%d uid << 1662 " fsuid=%u egid=%u s << 1663 ctx->name_count, << 1664 task_ppid_nr(current << 1665 from_kuid(&init_user << 1666 from_kgid(&init_user << 1667 from_kuid(&init_user << 1668 from_kuid(&init_user << 1669 from_kuid(&init_user << 1670 from_kgid(&init_user << 1671 from_kgid(&init_user << 1672 from_kgid(&init_user << 1673 audit_log_task_context(ab); << 1674 audit_log_key(ab, ctx->filterkey); << 1675 audit_log_end(ab); << 1676 } << 1677 << 1678 static void audit_log_exit(void) << 1679 { 1342 { 1680 int i, call_panic = 0; 1343 int i, call_panic = 0; 1681 struct audit_context *context = audit << 1682 struct audit_buffer *ab; 1344 struct audit_buffer *ab; 1683 struct audit_aux_data *aux; 1345 struct audit_aux_data *aux; 1684 struct audit_names *n; 1346 struct audit_names *n; 1685 1347 1686 context->personality = current->perso !! 1348 /* tsk == current */ >> 1349 context->personality = tsk->personality; 1687 1350 1688 switch (context->context) { !! 1351 ab = audit_log_start(context, GFP_KERNEL, AUDIT_SYSCALL); 1689 case AUDIT_CTX_SYSCALL: !! 1352 if (!ab) 1690 ab = audit_log_start(context, !! 1353 return; /* audit_panic has been called */ 1691 if (!ab) !! 1354 audit_log_format(ab, "arch=%x syscall=%d", 1692 return; !! 1355 context->arch, context->major); 1693 audit_log_format(ab, "arch=%x !! 1356 if (context->personality != PER_LINUX) 1694 context->arc !! 1357 audit_log_format(ab, " per=%lx", context->personality); 1695 if (context->personality != P !! 1358 if (context->return_valid) 1696 audit_log_format(ab, !! 1359 audit_log_format(ab, " success=%s exit=%ld", 1697 if (context->return_valid != !! 1360 (context->return_valid==AUDITSC_SUCCESS)?"yes":"no", 1698 audit_log_format(ab, !! 1361 context->return_code); 1699 (con !! 1362 1700 "ye !! 1363 audit_log_format(ab, 1701 cont !! 1364 " a0=%lx a1=%lx a2=%lx a3=%lx items=%d", 1702 audit_log_format(ab, !! 1365 context->argv[0], 1703 " a0=%lx a1= !! 1366 context->argv[1], 1704 context->arg !! 1367 context->argv[2], 1705 context->arg !! 1368 context->argv[3], 1706 context->arg !! 1369 context->name_count); 1707 context->arg !! 1370 1708 context->nam !! 1371 audit_log_task_info(ab, tsk); 1709 audit_log_task_info(ab); !! 1372 audit_log_key(ab, context->filterkey); 1710 audit_log_key(ab, context->fi !! 1373 audit_log_end(ab); 1711 audit_log_end(ab); << 1712 break; << 1713 case AUDIT_CTX_URING: << 1714 audit_log_uring(context); << 1715 break; << 1716 default: << 1717 BUG(); << 1718 break; << 1719 } << 1720 1374 1721 for (aux = context->aux; aux; aux = a 1375 for (aux = context->aux; aux; aux = aux->next) { 1722 1376 1723 ab = audit_log_start(context, 1377 ab = audit_log_start(context, GFP_KERNEL, aux->type); 1724 if (!ab) 1378 if (!ab) 1725 continue; /* audit_pa 1379 continue; /* audit_panic has been called */ 1726 1380 1727 switch (aux->type) { 1381 switch (aux->type) { 1728 1382 1729 case AUDIT_BPRM_FCAPS: { 1383 case AUDIT_BPRM_FCAPS: { 1730 struct audit_aux_data 1384 struct audit_aux_data_bprm_fcaps *axs = (void *)aux; 1731 << 1732 audit_log_format(ab, 1385 audit_log_format(ab, "fver=%x", axs->fcap_ver); 1733 audit_log_cap(ab, "fp 1386 audit_log_cap(ab, "fp", &axs->fcap.permitted); 1734 audit_log_cap(ab, "fi 1387 audit_log_cap(ab, "fi", &axs->fcap.inheritable); 1735 audit_log_format(ab, 1388 audit_log_format(ab, " fe=%d", axs->fcap.fE); 1736 audit_log_cap(ab, "ol 1389 audit_log_cap(ab, "old_pp", &axs->old_pcap.permitted); 1737 audit_log_cap(ab, "ol 1390 audit_log_cap(ab, "old_pi", &axs->old_pcap.inheritable); 1738 audit_log_cap(ab, "ol 1391 audit_log_cap(ab, "old_pe", &axs->old_pcap.effective); 1739 audit_log_cap(ab, "ol 1392 audit_log_cap(ab, "old_pa", &axs->old_pcap.ambient); 1740 audit_log_cap(ab, "pp 1393 audit_log_cap(ab, "pp", &axs->new_pcap.permitted); 1741 audit_log_cap(ab, "pi 1394 audit_log_cap(ab, "pi", &axs->new_pcap.inheritable); 1742 audit_log_cap(ab, "pe 1395 audit_log_cap(ab, "pe", &axs->new_pcap.effective); 1743 audit_log_cap(ab, "pa 1396 audit_log_cap(ab, "pa", &axs->new_pcap.ambient); 1744 audit_log_format(ab, << 1745 from << 1746 << 1747 break; } 1397 break; } 1748 1398 1749 } 1399 } 1750 audit_log_end(ab); 1400 audit_log_end(ab); 1751 } 1401 } 1752 1402 1753 if (context->type) 1403 if (context->type) 1754 show_special(context, &call_p 1404 show_special(context, &call_panic); 1755 1405 1756 if (context->fds[0] >= 0) { 1406 if (context->fds[0] >= 0) { 1757 ab = audit_log_start(context, 1407 ab = audit_log_start(context, GFP_KERNEL, AUDIT_FD_PAIR); 1758 if (ab) { 1408 if (ab) { 1759 audit_log_format(ab, 1409 audit_log_format(ab, "fd0=%d fd1=%d", 1760 conte 1410 context->fds[0], context->fds[1]); 1761 audit_log_end(ab); 1411 audit_log_end(ab); 1762 } 1412 } 1763 } 1413 } 1764 1414 1765 if (context->sockaddr_len) { 1415 if (context->sockaddr_len) { 1766 ab = audit_log_start(context, 1416 ab = audit_log_start(context, GFP_KERNEL, AUDIT_SOCKADDR); 1767 if (ab) { 1417 if (ab) { 1768 audit_log_format(ab, 1418 audit_log_format(ab, "saddr="); 1769 audit_log_n_hex(ab, ( 1419 audit_log_n_hex(ab, (void *)context->sockaddr, 1770 conte 1420 context->sockaddr_len); 1771 audit_log_end(ab); 1421 audit_log_end(ab); 1772 } 1422 } 1773 } 1423 } 1774 1424 1775 for (aux = context->aux_pids; aux; au 1425 for (aux = context->aux_pids; aux; aux = aux->next) { 1776 struct audit_aux_data_pids *a 1426 struct audit_aux_data_pids *axs = (void *)aux; 1777 1427 1778 for (i = 0; i < axs->pid_coun 1428 for (i = 0; i < axs->pid_count; i++) 1779 if (audit_log_pid_con 1429 if (audit_log_pid_context(context, axs->target_pid[i], 1780 1430 axs->target_auid[i], 1781 1431 axs->target_uid[i], 1782 1432 axs->target_sessionid[i], 1783 1433 axs->target_sid[i], 1784 1434 axs->target_comm[i])) 1785 call_panic = 1435 call_panic = 1; 1786 } 1436 } 1787 1437 1788 if (context->target_pid && 1438 if (context->target_pid && 1789 audit_log_pid_context(context, co 1439 audit_log_pid_context(context, context->target_pid, 1790 context->ta 1440 context->target_auid, context->target_uid, 1791 context->ta 1441 context->target_sessionid, 1792 context->ta 1442 context->target_sid, context->target_comm)) 1793 call_panic = 1; 1443 call_panic = 1; 1794 1444 1795 if (context->pwd.dentry && context->p 1445 if (context->pwd.dentry && context->pwd.mnt) { 1796 ab = audit_log_start(context, 1446 ab = audit_log_start(context, GFP_KERNEL, AUDIT_CWD); 1797 if (ab) { 1447 if (ab) { 1798 audit_log_d_path(ab, 1448 audit_log_d_path(ab, "cwd=", &context->pwd); 1799 audit_log_end(ab); 1449 audit_log_end(ab); 1800 } 1450 } 1801 } 1451 } 1802 1452 1803 i = 0; 1453 i = 0; 1804 list_for_each_entry(n, &context->name 1454 list_for_each_entry(n, &context->names_list, list) { 1805 if (n->hidden) 1455 if (n->hidden) 1806 continue; 1456 continue; 1807 audit_log_name(context, n, NU 1457 audit_log_name(context, n, NULL, i++, &call_panic); 1808 } 1458 } 1809 1459 1810 if (context->context == AUDIT_CTX_SYS !! 1460 audit_log_proctitle(tsk, context); 1811 audit_log_proctitle(); << 1812 1461 1813 /* Send end of event record to help u 1462 /* Send end of event record to help user space know we are finished */ 1814 ab = audit_log_start(context, GFP_KER 1463 ab = audit_log_start(context, GFP_KERNEL, AUDIT_EOE); 1815 if (ab) 1464 if (ab) 1816 audit_log_end(ab); 1465 audit_log_end(ab); 1817 if (call_panic) 1466 if (call_panic) 1818 audit_panic("error in audit_l !! 1467 audit_panic("error converting sid to string"); 1819 } 1468 } 1820 1469 1821 /** 1470 /** 1822 * __audit_free - free a per-task audit conte 1471 * __audit_free - free a per-task audit context 1823 * @tsk: task whose audit context block to fr 1472 * @tsk: task whose audit context block to free 1824 * 1473 * 1825 * Called from copy_process, do_exit, and the !! 1474 * Called from copy_process and do_exit 1826 */ 1475 */ 1827 void __audit_free(struct task_struct *tsk) 1476 void __audit_free(struct task_struct *tsk) 1828 { 1477 { 1829 struct audit_context *context = tsk-> !! 1478 struct audit_context *context; 1830 1479 >> 1480 context = audit_take_context(tsk, 0, 0); 1831 if (!context) 1481 if (!context) 1832 return; 1482 return; 1833 1483 1834 /* this may generate CONFIG_CHANGE re !! 1484 /* Check for system calls that do not go through the exit >> 1485 * function (e.g., exit_group), then free context block. >> 1486 * We use GFP_ATOMIC here because we might be doing this >> 1487 * in the context of the idle thread */ >> 1488 /* that can happen only if we are called from do_exit() */ >> 1489 if (context->in_syscall && context->current_state == AUDIT_RECORD_CONTEXT) >> 1490 audit_log_exit(context, tsk); 1835 if (!list_empty(&context->killed_tree 1491 if (!list_empty(&context->killed_trees)) 1836 audit_kill_trees(context); !! 1492 audit_kill_trees(&context->killed_trees); 1837 << 1838 /* We are called either by do_exit() << 1839 * in the former case tsk == current << 1840 * random task_struct that doesn't ha << 1841 * need to log via audit_log_exit(). << 1842 */ << 1843 if (tsk == current && !context->dummy << 1844 context->return_valid = AUDIT << 1845 context->return_code = 0; << 1846 if (context->context == AUDIT << 1847 audit_filter_syscall( << 1848 audit_filter_inodes(t << 1849 if (context->current_ << 1850 audit_log_exi << 1851 } else if (context->context = << 1852 /* TODO: verify this << 1853 audit_filter_uring(ts << 1854 audit_filter_inodes(t << 1855 if (context->current_ << 1856 audit_log_uri << 1857 } << 1858 } << 1859 1493 1860 audit_set_context(tsk, NULL); << 1861 audit_free_context(context); 1494 audit_free_context(context); 1862 } 1495 } 1863 1496 1864 /** 1497 /** 1865 * audit_return_fixup - fixup the return code << 1866 * @ctx: the audit_context << 1867 * @success: true/false value to indicate if << 1868 * @code: operation return code << 1869 * << 1870 * We need to fixup the return code in the au << 1871 * codes are later going to be fixed by the a << 1872 */ << 1873 static void audit_return_fixup(struct audit_c << 1874 int success, l << 1875 { << 1876 /* << 1877 * This is actually a test for: << 1878 * (rc == ERESTARTSYS ) || (rc == ERE << 1879 * (rc == ERESTARTNOHAND) || (rc == E << 1880 * << 1881 * but is faster than a bunch of || << 1882 */ << 1883 if (unlikely(code <= -ERESTARTSYS) && << 1884 (code >= -ERESTART_RESTARTBLOCK) << 1885 (code != -ENOIOCTLCMD)) << 1886 ctx->return_code = -EINTR; << 1887 else << 1888 ctx->return_code = code; << 1889 ctx->return_valid = (success ? AUDITS << 1890 } << 1891 << 1892 /** << 1893 * __audit_uring_entry - prepare the kernel t << 1894 * @op: the io_uring opcode << 1895 * << 1896 * This is similar to audit_syscall_entry() b << 1897 * operations. This function should only eve << 1898 * audit_uring_entry() as we rely on the audi << 1899 * function. << 1900 */ << 1901 void __audit_uring_entry(u8 op) << 1902 { << 1903 struct audit_context *ctx = audit_con << 1904 << 1905 if (ctx->state == AUDIT_STATE_DISABLE << 1906 return; << 1907 << 1908 /* << 1909 * NOTE: It's possible that we can be << 1910 * before it returns to userspa << 1911 * is called. In this case the << 1912 * the io_uring details and ret << 1913 */ << 1914 ctx->uring_op = op; << 1915 if (ctx->context == AUDIT_CTX_SYSCALL << 1916 return; << 1917 << 1918 ctx->dummy = !audit_n_rules; << 1919 if (!ctx->dummy && ctx->state == AUDI << 1920 ctx->prio = 0; << 1921 << 1922 ctx->context = AUDIT_CTX_URING; << 1923 ctx->current_state = ctx->state; << 1924 ktime_get_coarse_real_ts64(&ctx->ctim << 1925 } << 1926 << 1927 /** << 1928 * __audit_uring_exit - wrap up the kernel ta << 1929 * @success: true/false value to indicate if << 1930 * @code: operation return code << 1931 * << 1932 * This is similar to audit_syscall_exit() bu << 1933 * operations. This function should only eve << 1934 * audit_uring_exit() as we rely on the audit << 1935 * function. << 1936 */ << 1937 void __audit_uring_exit(int success, long cod << 1938 { << 1939 struct audit_context *ctx = audit_con << 1940 << 1941 if (ctx->dummy) { << 1942 if (ctx->context != AUDIT_CTX << 1943 return; << 1944 goto out; << 1945 } << 1946 << 1947 audit_return_fixup(ctx, success, code << 1948 if (ctx->context == AUDIT_CTX_SYSCALL << 1949 /* << 1950 * NOTE: See the note in __au << 1951 * where we may be call << 1952 * return to userspace << 1953 * case we simply emit << 1954 * normal syscall exit << 1955 * everything else. << 1956 * It is also worth men << 1957 * the current process << 1958 * used during the norm << 1959 * in mind if/when we m << 1960 */ << 1961 << 1962 /* << 1963 * We need to filter on the s << 1964 * should emit a URINGOP reco << 1965 * solves the problem where u << 1966 * syscall records in the "ex << 1967 * the behavior here. << 1968 */ << 1969 audit_filter_syscall(current, << 1970 if (ctx->current_state != AUD << 1971 audit_filter_uring(cu << 1972 audit_filter_inodes(current, << 1973 if (ctx->current_state != AUD << 1974 return; << 1975 << 1976 audit_log_uring(ctx); << 1977 return; << 1978 } << 1979 << 1980 /* this may generate CONFIG_CHANGE re << 1981 if (!list_empty(&ctx->killed_trees)) << 1982 audit_kill_trees(ctx); << 1983 << 1984 /* run through both filters to ensure << 1985 audit_filter_uring(current, ctx); << 1986 audit_filter_inodes(current, ctx); << 1987 if (ctx->current_state != AUDIT_STATE << 1988 goto out; << 1989 audit_log_exit(); << 1990 << 1991 out: << 1992 audit_reset_context(ctx); << 1993 } << 1994 << 1995 /** << 1996 * __audit_syscall_entry - fill in an audit r 1498 * __audit_syscall_entry - fill in an audit record at syscall entry 1997 * @major: major syscall type (function) 1499 * @major: major syscall type (function) 1998 * @a1: additional syscall register 1 1500 * @a1: additional syscall register 1 1999 * @a2: additional syscall register 2 1501 * @a2: additional syscall register 2 2000 * @a3: additional syscall register 3 1502 * @a3: additional syscall register 3 2001 * @a4: additional syscall register 4 1503 * @a4: additional syscall register 4 2002 * 1504 * 2003 * Fill in audit context at syscall entry. T 1505 * Fill in audit context at syscall entry. This only happens if the 2004 * audit context was created when the task wa 1506 * audit context was created when the task was created and the state or 2005 * filters demand the audit context be built. 1507 * filters demand the audit context be built. If the state from the 2006 * per-task filter or from the per-syscall fi !! 1508 * per-task filter or from the per-syscall filter is AUDIT_RECORD_CONTEXT, 2007 * then the record will be written at syscall 1509 * then the record will be written at syscall exit time (otherwise, it 2008 * will only be written if another part of th 1510 * will only be written if another part of the kernel requests that it 2009 * be written). 1511 * be written). 2010 */ 1512 */ 2011 void __audit_syscall_entry(int major, unsigne 1513 void __audit_syscall_entry(int major, unsigned long a1, unsigned long a2, 2012 unsigned long a3, 1514 unsigned long a3, unsigned long a4) 2013 { 1515 { 2014 struct audit_context *context = audit !! 1516 struct task_struct *tsk = current; >> 1517 struct audit_context *context = tsk->audit_context; 2015 enum audit_state state; 1518 enum audit_state state; 2016 1519 2017 if (!audit_enabled || !context) 1520 if (!audit_enabled || !context) 2018 return; 1521 return; 2019 1522 2020 WARN_ON(context->context != AUDIT_CTX !! 1523 BUG_ON(context->in_syscall || context->name_count); 2021 WARN_ON(context->name_count); << 2022 if (context->context != AUDIT_CTX_UNU << 2023 audit_panic("unrecoverable er << 2024 return; << 2025 } << 2026 1524 2027 state = context->state; 1525 state = context->state; 2028 if (state == AUDIT_STATE_DISABLED) !! 1526 if (state == AUDIT_DISABLED) 2029 return; 1527 return; 2030 1528 2031 context->dummy = !audit_n_rules; 1529 context->dummy = !audit_n_rules; 2032 if (!context->dummy && state == AUDIT !! 1530 if (!context->dummy && state == AUDIT_BUILD_CONTEXT) { 2033 context->prio = 0; 1531 context->prio = 0; 2034 if (auditd_test_task(current) !! 1532 if (auditd_test_task(tsk)) 2035 return; 1533 return; 2036 } 1534 } 2037 1535 2038 context->arch = syscall_get_arc !! 1536 context->arch = syscall_get_arch(); 2039 context->major = major; 1537 context->major = major; 2040 context->argv[0] = a1; 1538 context->argv[0] = a1; 2041 context->argv[1] = a2; 1539 context->argv[1] = a2; 2042 context->argv[2] = a3; 1540 context->argv[2] = a3; 2043 context->argv[3] = a4; 1541 context->argv[3] = a4; 2044 context->context = AUDIT_CTX_SYSCALL; !! 1542 context->serial = 0; >> 1543 context->ctime = current_kernel_time64(); >> 1544 context->in_syscall = 1; 2045 context->current_state = state; 1545 context->current_state = state; 2046 ktime_get_coarse_real_ts64(&context-> !! 1546 context->ppid = 0; 2047 } 1547 } 2048 1548 2049 /** 1549 /** 2050 * __audit_syscall_exit - deallocate audit co 1550 * __audit_syscall_exit - deallocate audit context after a system call 2051 * @success: success value of the syscall 1551 * @success: success value of the syscall 2052 * @return_code: return value of the syscall 1552 * @return_code: return value of the syscall 2053 * 1553 * 2054 * Tear down after system call. If the audit 1554 * Tear down after system call. If the audit context has been marked as 2055 * auditable (either because of the AUDIT_STA !! 1555 * auditable (either because of the AUDIT_RECORD_CONTEXT state from 2056 * filtering, or because some other part of t 1556 * filtering, or because some other part of the kernel wrote an audit 2057 * message), then write out the syscall infor 1557 * message), then write out the syscall information. In call cases, 2058 * free the names stored from getname(). 1558 * free the names stored from getname(). 2059 */ 1559 */ 2060 void __audit_syscall_exit(int success, long r 1560 void __audit_syscall_exit(int success, long return_code) 2061 { 1561 { 2062 struct audit_context *context = audit !! 1562 struct task_struct *tsk = current; >> 1563 struct audit_context *context; 2063 1564 2064 if (!context || context->dummy || !! 1565 if (success) 2065 context->context != AUDIT_CTX_SYS !! 1566 success = AUDITSC_SUCCESS; 2066 goto out; !! 1567 else >> 1568 success = AUDITSC_FAILURE; 2067 1569 2068 /* this may generate CONFIG_CHANGE re !! 1570 context = audit_take_context(tsk, success, return_code); 2069 if (!list_empty(&context->killed_tree !! 1571 if (!context) 2070 audit_kill_trees(context); !! 1572 return; 2071 1573 2072 audit_return_fixup(context, success, !! 1574 if (context->in_syscall && context->current_state == AUDIT_RECORD_CONTEXT) 2073 /* run through both filters to ensure !! 1575 audit_log_exit(context, tsk); 2074 audit_filter_syscall(current, context << 2075 audit_filter_inodes(current, context) << 2076 if (context->current_state != AUDIT_S << 2077 goto out; << 2078 1576 2079 audit_log_exit(); !! 1577 context->in_syscall = 0; >> 1578 context->prio = context->state == AUDIT_RECORD_CONTEXT ? ~0ULL : 0; 2080 1579 2081 out: !! 1580 if (!list_empty(&context->killed_trees)) 2082 audit_reset_context(context); !! 1581 audit_kill_trees(&context->killed_trees); >> 1582 >> 1583 audit_free_names(context); >> 1584 unroll_tree_refs(context, NULL, 0); >> 1585 audit_free_aux(context); >> 1586 context->aux = NULL; >> 1587 context->aux_pids = NULL; >> 1588 context->target_pid = 0; >> 1589 context->target_sid = 0; >> 1590 context->sockaddr_len = 0; >> 1591 context->type = 0; >> 1592 context->fds[0] = -1; >> 1593 if (context->state != AUDIT_RECORD_CONTEXT) { >> 1594 kfree(context->filterkey); >> 1595 context->filterkey = NULL; >> 1596 } >> 1597 tsk->audit_context = context; 2083 } 1598 } 2084 1599 2085 static inline void handle_one(const struct in 1600 static inline void handle_one(const struct inode *inode) 2086 { 1601 { >> 1602 #ifdef CONFIG_AUDIT_TREE 2087 struct audit_context *context; 1603 struct audit_context *context; 2088 struct audit_tree_refs *p; 1604 struct audit_tree_refs *p; 2089 struct audit_chunk *chunk; 1605 struct audit_chunk *chunk; 2090 int count; 1606 int count; 2091 << 2092 if (likely(!inode->i_fsnotify_marks)) 1607 if (likely(!inode->i_fsnotify_marks)) 2093 return; 1608 return; 2094 context = audit_context(); !! 1609 context = current->audit_context; 2095 p = context->trees; 1610 p = context->trees; 2096 count = context->tree_count; 1611 count = context->tree_count; 2097 rcu_read_lock(); 1612 rcu_read_lock(); 2098 chunk = audit_tree_lookup(inode); 1613 chunk = audit_tree_lookup(inode); 2099 rcu_read_unlock(); 1614 rcu_read_unlock(); 2100 if (!chunk) 1615 if (!chunk) 2101 return; 1616 return; 2102 if (likely(put_tree_ref(context, chun 1617 if (likely(put_tree_ref(context, chunk))) 2103 return; 1618 return; 2104 if (unlikely(!grow_tree_refs(context) 1619 if (unlikely(!grow_tree_refs(context))) { 2105 pr_warn("out of memory, audit 1620 pr_warn("out of memory, audit has lost a tree reference\n"); 2106 audit_set_auditable(context); 1621 audit_set_auditable(context); 2107 audit_put_chunk(chunk); 1622 audit_put_chunk(chunk); 2108 unroll_tree_refs(context, p, 1623 unroll_tree_refs(context, p, count); 2109 return; 1624 return; 2110 } 1625 } 2111 put_tree_ref(context, chunk); 1626 put_tree_ref(context, chunk); >> 1627 #endif 2112 } 1628 } 2113 1629 2114 static void handle_path(const struct dentry * 1630 static void handle_path(const struct dentry *dentry) 2115 { 1631 { >> 1632 #ifdef CONFIG_AUDIT_TREE 2116 struct audit_context *context; 1633 struct audit_context *context; 2117 struct audit_tree_refs *p; 1634 struct audit_tree_refs *p; 2118 const struct dentry *d, *parent; 1635 const struct dentry *d, *parent; 2119 struct audit_chunk *drop; 1636 struct audit_chunk *drop; 2120 unsigned long seq; 1637 unsigned long seq; 2121 int count; 1638 int count; 2122 1639 2123 context = audit_context(); !! 1640 context = current->audit_context; 2124 p = context->trees; 1641 p = context->trees; 2125 count = context->tree_count; 1642 count = context->tree_count; 2126 retry: 1643 retry: 2127 drop = NULL; 1644 drop = NULL; 2128 d = dentry; 1645 d = dentry; 2129 rcu_read_lock(); 1646 rcu_read_lock(); 2130 seq = read_seqbegin(&rename_lock); 1647 seq = read_seqbegin(&rename_lock); 2131 for (;;) { !! 1648 for(;;) { 2132 struct inode *inode = d_backi 1649 struct inode *inode = d_backing_inode(d); 2133 << 2134 if (inode && unlikely(inode-> 1650 if (inode && unlikely(inode->i_fsnotify_marks)) { 2135 struct audit_chunk *c 1651 struct audit_chunk *chunk; 2136 << 2137 chunk = audit_tree_lo 1652 chunk = audit_tree_lookup(inode); 2138 if (chunk) { 1653 if (chunk) { 2139 if (unlikely( 1654 if (unlikely(!put_tree_ref(context, chunk))) { 2140 drop 1655 drop = chunk; 2141 break 1656 break; 2142 } 1657 } 2143 } 1658 } 2144 } 1659 } 2145 parent = d->d_parent; 1660 parent = d->d_parent; 2146 if (parent == d) 1661 if (parent == d) 2147 break; 1662 break; 2148 d = parent; 1663 d = parent; 2149 } 1664 } 2150 if (unlikely(read_seqretry(&rename_lo 1665 if (unlikely(read_seqretry(&rename_lock, seq) || drop)) { /* in this order */ 2151 rcu_read_unlock(); 1666 rcu_read_unlock(); 2152 if (!drop) { 1667 if (!drop) { 2153 /* just a race with r 1668 /* just a race with rename */ 2154 unroll_tree_refs(cont 1669 unroll_tree_refs(context, p, count); 2155 goto retry; 1670 goto retry; 2156 } 1671 } 2157 audit_put_chunk(drop); 1672 audit_put_chunk(drop); 2158 if (grow_tree_refs(context)) 1673 if (grow_tree_refs(context)) { 2159 /* OK, got more space 1674 /* OK, got more space */ 2160 unroll_tree_refs(cont 1675 unroll_tree_refs(context, p, count); 2161 goto retry; 1676 goto retry; 2162 } 1677 } 2163 /* too bad */ 1678 /* too bad */ 2164 pr_warn("out of memory, audit 1679 pr_warn("out of memory, audit has lost a tree reference\n"); 2165 unroll_tree_refs(context, p, 1680 unroll_tree_refs(context, p, count); 2166 audit_set_auditable(context); 1681 audit_set_auditable(context); 2167 return; 1682 return; 2168 } 1683 } 2169 rcu_read_unlock(); 1684 rcu_read_unlock(); >> 1685 #endif 2170 } 1686 } 2171 1687 2172 static struct audit_names *audit_alloc_name(s 1688 static struct audit_names *audit_alloc_name(struct audit_context *context, 2173 1689 unsigned char type) 2174 { 1690 { 2175 struct audit_names *aname; 1691 struct audit_names *aname; 2176 1692 2177 if (context->name_count < AUDIT_NAMES 1693 if (context->name_count < AUDIT_NAMES) { 2178 aname = &context->preallocate 1694 aname = &context->preallocated_names[context->name_count]; 2179 memset(aname, 0, sizeof(*anam 1695 memset(aname, 0, sizeof(*aname)); 2180 } else { 1696 } else { 2181 aname = kzalloc(sizeof(*aname 1697 aname = kzalloc(sizeof(*aname), GFP_NOFS); 2182 if (!aname) 1698 if (!aname) 2183 return NULL; 1699 return NULL; 2184 aname->should_free = true; 1700 aname->should_free = true; 2185 } 1701 } 2186 1702 2187 aname->ino = AUDIT_INO_UNSET; 1703 aname->ino = AUDIT_INO_UNSET; 2188 aname->type = type; 1704 aname->type = type; 2189 list_add_tail(&aname->list, &context- 1705 list_add_tail(&aname->list, &context->names_list); 2190 1706 2191 context->name_count++; 1707 context->name_count++; 2192 if (!context->pwd.dentry) << 2193 get_fs_pwd(current->fs, &cont << 2194 return aname; 1708 return aname; 2195 } 1709 } 2196 1710 2197 /** 1711 /** 2198 * __audit_reusename - fill out filename with 1712 * __audit_reusename - fill out filename with info from existing entry 2199 * @uptr: userland ptr to pathname 1713 * @uptr: userland ptr to pathname 2200 * 1714 * 2201 * Search the audit_names list for the curren 1715 * Search the audit_names list for the current audit context. If there is an 2202 * existing entry with a matching "uptr" then 1716 * existing entry with a matching "uptr" then return the filename 2203 * associated with that audit_name. If not, r 1717 * associated with that audit_name. If not, return NULL. 2204 */ 1718 */ 2205 struct filename * 1719 struct filename * 2206 __audit_reusename(const __user char *uptr) 1720 __audit_reusename(const __user char *uptr) 2207 { 1721 { 2208 struct audit_context *context = audit !! 1722 struct audit_context *context = current->audit_context; 2209 struct audit_names *n; 1723 struct audit_names *n; 2210 1724 2211 list_for_each_entry(n, &context->name 1725 list_for_each_entry(n, &context->names_list, list) { 2212 if (!n->name) 1726 if (!n->name) 2213 continue; 1727 continue; 2214 if (n->name->uptr == uptr) { 1728 if (n->name->uptr == uptr) { 2215 atomic_inc(&n->name-> !! 1729 n->name->refcnt++; 2216 return n->name; 1730 return n->name; 2217 } 1731 } 2218 } 1732 } 2219 return NULL; 1733 return NULL; 2220 } 1734 } 2221 1735 2222 /** 1736 /** 2223 * __audit_getname - add a name to the list 1737 * __audit_getname - add a name to the list 2224 * @name: name to add 1738 * @name: name to add 2225 * 1739 * 2226 * Add a name to the list of audit names for 1740 * Add a name to the list of audit names for this context. 2227 * Called from fs/namei.c:getname(). 1741 * Called from fs/namei.c:getname(). 2228 */ 1742 */ 2229 void __audit_getname(struct filename *name) 1743 void __audit_getname(struct filename *name) 2230 { 1744 { 2231 struct audit_context *context = audit !! 1745 struct audit_context *context = current->audit_context; 2232 struct audit_names *n; 1746 struct audit_names *n; 2233 1747 2234 if (context->context == AUDIT_CTX_UNU !! 1748 if (!context->in_syscall) 2235 return; 1749 return; 2236 1750 2237 n = audit_alloc_name(context, AUDIT_T 1751 n = audit_alloc_name(context, AUDIT_TYPE_UNKNOWN); 2238 if (!n) 1752 if (!n) 2239 return; 1753 return; 2240 1754 2241 n->name = name; 1755 n->name = name; 2242 n->name_len = AUDIT_NAME_FULL; 1756 n->name_len = AUDIT_NAME_FULL; 2243 name->aname = n; 1757 name->aname = n; 2244 atomic_inc(&name->refcnt); !! 1758 name->refcnt++; 2245 } << 2246 << 2247 static inline int audit_copy_fcaps(struct aud << 2248 const stru << 2249 { << 2250 struct cpu_vfs_cap_data caps; << 2251 int rc; << 2252 << 2253 if (!dentry) << 2254 return 0; << 2255 << 2256 rc = get_vfs_caps_from_disk(&nop_mnt_ << 2257 if (rc) << 2258 return rc; << 2259 1759 2260 name->fcap.permitted = caps.permitted !! 1760 if (!context->pwd.dentry) 2261 name->fcap.inheritable = caps.inherit !! 1761 get_fs_pwd(current->fs, &context->pwd); 2262 name->fcap.fE = !!(caps.magic_etc & V << 2263 name->fcap.rootid = caps.rootid; << 2264 name->fcap_ver = (caps.magic_etc & VF << 2265 VFS_CAP_REVIS << 2266 << 2267 return 0; << 2268 } << 2269 << 2270 /* Copy inode data into an audit_names. */ << 2271 static void audit_copy_inode(struct audit_nam << 2272 const struct den << 2273 struct inode *in << 2274 { << 2275 name->ino = inode->i_ino; << 2276 name->dev = inode->i_sb->s_dev; << 2277 name->mode = inode->i_mode; << 2278 name->uid = inode->i_uid; << 2279 name->gid = inode->i_gid; << 2280 name->rdev = inode->i_rdev; << 2281 security_inode_getsecid(inode, &name- << 2282 if (flags & AUDIT_INODE_NOEVAL) { << 2283 name->fcap_ver = -1; << 2284 return; << 2285 } << 2286 audit_copy_fcaps(name, dentry); << 2287 } 1762 } 2288 1763 2289 /** 1764 /** 2290 * __audit_inode - store the inode and device 1765 * __audit_inode - store the inode and device from a lookup 2291 * @name: name being audited 1766 * @name: name being audited 2292 * @dentry: dentry being audited 1767 * @dentry: dentry being audited 2293 * @flags: attributes for this particular ent 1768 * @flags: attributes for this particular entry 2294 */ 1769 */ 2295 void __audit_inode(struct filename *name, con 1770 void __audit_inode(struct filename *name, const struct dentry *dentry, 2296 unsigned int flags) 1771 unsigned int flags) 2297 { 1772 { 2298 struct audit_context *context = audit !! 1773 struct audit_context *context = current->audit_context; 2299 struct inode *inode = d_backing_inode 1774 struct inode *inode = d_backing_inode(dentry); 2300 struct audit_names *n; 1775 struct audit_names *n; 2301 bool parent = flags & AUDIT_INODE_PAR 1776 bool parent = flags & AUDIT_INODE_PARENT; 2302 struct audit_entry *e; << 2303 struct list_head *list = &audit_filte << 2304 int i; << 2305 1777 2306 if (context->context == AUDIT_CTX_UNU !! 1778 if (!context->in_syscall) 2307 return; 1779 return; 2308 1780 2309 rcu_read_lock(); << 2310 list_for_each_entry_rcu(e, list, list << 2311 for (i = 0; i < e->rule.field << 2312 struct audit_field *f << 2313 << 2314 if (f->type == AUDIT_ << 2315 && audit_comparat << 2316 << 2317 && e->rule.action << 2318 rcu_read_unlo << 2319 return; << 2320 } << 2321 } << 2322 } << 2323 rcu_read_unlock(); << 2324 << 2325 if (!name) 1781 if (!name) 2326 goto out_alloc; 1782 goto out_alloc; 2327 1783 2328 /* 1784 /* 2329 * If we have a pointer to an audit_n 1785 * If we have a pointer to an audit_names entry already, then we can 2330 * just use it directly if the type i 1786 * just use it directly if the type is correct. 2331 */ 1787 */ 2332 n = name->aname; 1788 n = name->aname; 2333 if (n) { 1789 if (n) { 2334 if (parent) { 1790 if (parent) { 2335 if (n->type == AUDIT_ 1791 if (n->type == AUDIT_TYPE_PARENT || 2336 n->type == AUDIT_ 1792 n->type == AUDIT_TYPE_UNKNOWN) 2337 goto out; 1793 goto out; 2338 } else { 1794 } else { 2339 if (n->type != AUDIT_ 1795 if (n->type != AUDIT_TYPE_PARENT) 2340 goto out; 1796 goto out; 2341 } 1797 } 2342 } 1798 } 2343 1799 2344 list_for_each_entry_reverse(n, &conte 1800 list_for_each_entry_reverse(n, &context->names_list, list) { 2345 if (n->ino) { 1801 if (n->ino) { 2346 /* valid inode number 1802 /* valid inode number, use that for the comparison */ 2347 if (n->ino != inode-> 1803 if (n->ino != inode->i_ino || 2348 n->dev != inode-> 1804 n->dev != inode->i_sb->s_dev) 2349 continue; 1805 continue; 2350 } else if (n->name) { 1806 } else if (n->name) { 2351 /* inode number has n 1807 /* inode number has not been set, check the name */ 2352 if (strcmp(n->name->n 1808 if (strcmp(n->name->name, name->name)) 2353 continue; 1809 continue; 2354 } else 1810 } else 2355 /* no inode and no na 1811 /* no inode and no name (?!) ... this is odd ... */ 2356 continue; 1812 continue; 2357 1813 2358 /* match the correct record t 1814 /* match the correct record type */ 2359 if (parent) { 1815 if (parent) { 2360 if (n->type == AUDIT_ 1816 if (n->type == AUDIT_TYPE_PARENT || 2361 n->type == AUDIT_ 1817 n->type == AUDIT_TYPE_UNKNOWN) 2362 goto out; 1818 goto out; 2363 } else { 1819 } else { 2364 if (n->type != AUDIT_ 1820 if (n->type != AUDIT_TYPE_PARENT) 2365 goto out; 1821 goto out; 2366 } 1822 } 2367 } 1823 } 2368 1824 2369 out_alloc: 1825 out_alloc: 2370 /* unable to find an entry with both 1826 /* unable to find an entry with both a matching name and type */ 2371 n = audit_alloc_name(context, AUDIT_T 1827 n = audit_alloc_name(context, AUDIT_TYPE_UNKNOWN); 2372 if (!n) 1828 if (!n) 2373 return; 1829 return; 2374 if (name) { 1830 if (name) { 2375 n->name = name; 1831 n->name = name; 2376 atomic_inc(&name->refcnt); !! 1832 name->refcnt++; 2377 } 1833 } 2378 1834 2379 out: 1835 out: 2380 if (parent) { 1836 if (parent) { 2381 n->name_len = n->name ? paren 1837 n->name_len = n->name ? parent_len(n->name->name) : AUDIT_NAME_FULL; 2382 n->type = AUDIT_TYPE_PARENT; 1838 n->type = AUDIT_TYPE_PARENT; 2383 if (flags & AUDIT_INODE_HIDDE 1839 if (flags & AUDIT_INODE_HIDDEN) 2384 n->hidden = true; 1840 n->hidden = true; 2385 } else { 1841 } else { 2386 n->name_len = AUDIT_NAME_FULL 1842 n->name_len = AUDIT_NAME_FULL; 2387 n->type = AUDIT_TYPE_NORMAL; 1843 n->type = AUDIT_TYPE_NORMAL; 2388 } 1844 } 2389 handle_path(dentry); 1845 handle_path(dentry); 2390 audit_copy_inode(n, dentry, inode, fl !! 1846 audit_copy_inode(n, dentry, inode); 2391 } 1847 } 2392 1848 2393 void __audit_file(const struct file *file) 1849 void __audit_file(const struct file *file) 2394 { 1850 { 2395 __audit_inode(NULL, file->f_path.dent 1851 __audit_inode(NULL, file->f_path.dentry, 0); 2396 } 1852 } 2397 1853 2398 /** 1854 /** 2399 * __audit_inode_child - collect inode info f 1855 * __audit_inode_child - collect inode info for created/removed objects 2400 * @parent: inode of dentry parent 1856 * @parent: inode of dentry parent 2401 * @dentry: dentry being audited 1857 * @dentry: dentry being audited 2402 * @type: AUDIT_TYPE_* value that we're loo 1858 * @type: AUDIT_TYPE_* value that we're looking for 2403 * 1859 * 2404 * For syscalls that create or remove filesys 1860 * For syscalls that create or remove filesystem objects, audit_inode 2405 * can only collect information for the files 1861 * can only collect information for the filesystem object's parent. 2406 * This call updates the audit context with t 1862 * This call updates the audit context with the child's information. 2407 * Syscalls that create a new filesystem obje 1863 * Syscalls that create a new filesystem object must be hooked after 2408 * the object is created. Syscalls that remo 1864 * the object is created. Syscalls that remove a filesystem object 2409 * must be hooked prior, in order to capture 1865 * must be hooked prior, in order to capture the target inode during 2410 * unsuccessful attempts. 1866 * unsuccessful attempts. 2411 */ 1867 */ 2412 void __audit_inode_child(struct inode *parent 1868 void __audit_inode_child(struct inode *parent, 2413 const struct dentry 1869 const struct dentry *dentry, 2414 const unsigned char 1870 const unsigned char type) 2415 { 1871 { 2416 struct audit_context *context = audit !! 1872 struct audit_context *context = current->audit_context; 2417 struct inode *inode = d_backing_inode 1873 struct inode *inode = d_backing_inode(dentry); 2418 const struct qstr *dname = &dentry->d !! 1874 const char *dname = dentry->d_name.name; 2419 struct audit_names *n, *found_parent 1875 struct audit_names *n, *found_parent = NULL, *found_child = NULL; 2420 struct audit_entry *e; 1876 struct audit_entry *e; 2421 struct list_head *list = &audit_filte 1877 struct list_head *list = &audit_filter_list[AUDIT_FILTER_FS]; 2422 int i; 1878 int i; 2423 1879 2424 if (context->context == AUDIT_CTX_UNU !! 1880 if (!context->in_syscall) 2425 return; 1881 return; 2426 1882 2427 rcu_read_lock(); 1883 rcu_read_lock(); 2428 list_for_each_entry_rcu(e, list, list !! 1884 if (!list_empty(list)) { 2429 for (i = 0; i < e->rule.field !! 1885 list_for_each_entry_rcu(e, list, list) { 2430 struct audit_field *f !! 1886 for (i = 0; i < e->rule.field_count; i++) { 2431 !! 1887 struct audit_field *f = &e->rule.fields[i]; 2432 if (f->type == AUDIT_ !! 1888 2433 && audit_comparat !! 1889 if (f->type == AUDIT_FSTYPE) { 2434 !! 1890 if (audit_comparator(parent->i_sb->s_magic, 2435 && e->rule.action !! 1891 f->op, f->val)) { 2436 rcu_read_unlo !! 1892 if (e->rule.action == AUDIT_NEVER) { 2437 return; !! 1893 rcu_read_unlock(); >> 1894 return; >> 1895 } >> 1896 } >> 1897 } 2438 } 1898 } 2439 } 1899 } 2440 } 1900 } 2441 rcu_read_unlock(); 1901 rcu_read_unlock(); 2442 1902 2443 if (inode) 1903 if (inode) 2444 handle_one(inode); 1904 handle_one(inode); 2445 1905 2446 /* look for a parent entry first */ 1906 /* look for a parent entry first */ 2447 list_for_each_entry(n, &context->name 1907 list_for_each_entry(n, &context->names_list, list) { 2448 if (!n->name || 1908 if (!n->name || 2449 (n->type != AUDIT_TYPE_PA 1909 (n->type != AUDIT_TYPE_PARENT && 2450 n->type != AUDIT_TYPE_UN 1910 n->type != AUDIT_TYPE_UNKNOWN)) 2451 continue; 1911 continue; 2452 1912 2453 if (n->ino == parent->i_ino & 1913 if (n->ino == parent->i_ino && n->dev == parent->i_sb->s_dev && 2454 !audit_compare_dname_path 1914 !audit_compare_dname_path(dname, 2455 1915 n->name->name, n->name_len)) { 2456 if (n->type == AUDIT_ 1916 if (n->type == AUDIT_TYPE_UNKNOWN) 2457 n->type = AUD 1917 n->type = AUDIT_TYPE_PARENT; 2458 found_parent = n; 1918 found_parent = n; 2459 break; 1919 break; 2460 } 1920 } 2461 } 1921 } 2462 1922 2463 cond_resched(); << 2464 << 2465 /* is there a matching child entry? * 1923 /* is there a matching child entry? */ 2466 list_for_each_entry(n, &context->name 1924 list_for_each_entry(n, &context->names_list, list) { 2467 /* can only match entries tha 1925 /* can only match entries that have a name */ 2468 if (!n->name || 1926 if (!n->name || 2469 (n->type != type && n->ty 1927 (n->type != type && n->type != AUDIT_TYPE_UNKNOWN)) 2470 continue; 1928 continue; 2471 1929 2472 if (!strcmp(dname->name, n->n !! 1930 if (!strcmp(dname, n->name->name) || 2473 !audit_compare_dname_path 1931 !audit_compare_dname_path(dname, n->name->name, 2474 1932 found_parent ? 2475 1933 found_parent->name_len : 2476 1934 AUDIT_NAME_FULL)) { 2477 if (n->type == AUDIT_ 1935 if (n->type == AUDIT_TYPE_UNKNOWN) 2478 n->type = typ 1936 n->type = type; 2479 found_child = n; 1937 found_child = n; 2480 break; 1938 break; 2481 } 1939 } 2482 } 1940 } 2483 1941 2484 if (!found_parent) { 1942 if (!found_parent) { 2485 /* create a new, "anonymous" 1943 /* create a new, "anonymous" parent record */ 2486 n = audit_alloc_name(context, 1944 n = audit_alloc_name(context, AUDIT_TYPE_PARENT); 2487 if (!n) 1945 if (!n) 2488 return; 1946 return; 2489 audit_copy_inode(n, NULL, par !! 1947 audit_copy_inode(n, NULL, parent); 2490 } 1948 } 2491 1949 2492 if (!found_child) { 1950 if (!found_child) { 2493 found_child = audit_alloc_nam 1951 found_child = audit_alloc_name(context, type); 2494 if (!found_child) 1952 if (!found_child) 2495 return; 1953 return; 2496 1954 2497 /* Re-use the name belonging 1955 /* Re-use the name belonging to the slot for a matching parent 2498 * directory. All names for t 1956 * directory. All names for this context are relinquished in 2499 * audit_free_names() */ 1957 * audit_free_names() */ 2500 if (found_parent) { 1958 if (found_parent) { 2501 found_child->name = f 1959 found_child->name = found_parent->name; 2502 found_child->name_len 1960 found_child->name_len = AUDIT_NAME_FULL; 2503 atomic_inc(&found_chi !! 1961 found_child->name->refcnt++; 2504 } 1962 } 2505 } 1963 } 2506 1964 2507 if (inode) 1965 if (inode) 2508 audit_copy_inode(found_child, !! 1966 audit_copy_inode(found_child, dentry, inode); 2509 else 1967 else 2510 found_child->ino = AUDIT_INO_ 1968 found_child->ino = AUDIT_INO_UNSET; 2511 } 1969 } 2512 EXPORT_SYMBOL_GPL(__audit_inode_child); 1970 EXPORT_SYMBOL_GPL(__audit_inode_child); 2513 1971 2514 /** 1972 /** 2515 * auditsc_get_stamp - get local copies of au 1973 * auditsc_get_stamp - get local copies of audit_context values 2516 * @ctx: audit_context for the task 1974 * @ctx: audit_context for the task 2517 * @t: timespec64 to store time recorded in t 1975 * @t: timespec64 to store time recorded in the audit_context 2518 * @serial: serial value that is recorded in 1976 * @serial: serial value that is recorded in the audit_context 2519 * 1977 * 2520 * Also sets the context as auditable. 1978 * Also sets the context as auditable. 2521 */ 1979 */ 2522 int auditsc_get_stamp(struct audit_context *c 1980 int auditsc_get_stamp(struct audit_context *ctx, 2523 struct timespec64 *t, 1981 struct timespec64 *t, unsigned int *serial) 2524 { 1982 { 2525 if (ctx->context == AUDIT_CTX_UNUSED) !! 1983 if (!ctx->in_syscall) 2526 return 0; 1984 return 0; 2527 if (!ctx->serial) 1985 if (!ctx->serial) 2528 ctx->serial = audit_serial(); 1986 ctx->serial = audit_serial(); 2529 t->tv_sec = ctx->ctime.tv_sec; 1987 t->tv_sec = ctx->ctime.tv_sec; 2530 t->tv_nsec = ctx->ctime.tv_nsec; 1988 t->tv_nsec = ctx->ctime.tv_nsec; 2531 *serial = ctx->serial; 1989 *serial = ctx->serial; 2532 if (!ctx->prio) { 1990 if (!ctx->prio) { 2533 ctx->prio = 1; 1991 ctx->prio = 1; 2534 ctx->current_state = AUDIT_ST !! 1992 ctx->current_state = AUDIT_RECORD_CONTEXT; 2535 } 1993 } 2536 return 1; 1994 return 1; 2537 } 1995 } 2538 1996 >> 1997 /* global counter which is incremented every time something logs in */ >> 1998 static atomic_t session_id = ATOMIC_INIT(0); >> 1999 >> 2000 static int audit_set_loginuid_perm(kuid_t loginuid) >> 2001 { >> 2002 /* if we are unset, we don't need privs */ >> 2003 if (!audit_loginuid_set(current)) >> 2004 return 0; >> 2005 /* if AUDIT_FEATURE_LOGINUID_IMMUTABLE means never ever allow a change*/ >> 2006 if (is_audit_feature_set(AUDIT_FEATURE_LOGINUID_IMMUTABLE)) >> 2007 return -EPERM; >> 2008 /* it is set, you need permission */ >> 2009 if (!capable(CAP_AUDIT_CONTROL)) >> 2010 return -EPERM; >> 2011 /* reject if this is not an unset and we don't allow that */ >> 2012 if (is_audit_feature_set(AUDIT_FEATURE_ONLY_UNSET_LOGINUID) && uid_valid(loginuid)) >> 2013 return -EPERM; >> 2014 return 0; >> 2015 } >> 2016 >> 2017 static void audit_log_set_loginuid(kuid_t koldloginuid, kuid_t kloginuid, >> 2018 unsigned int oldsessionid, unsigned int sessionid, >> 2019 int rc) >> 2020 { >> 2021 struct audit_buffer *ab; >> 2022 uid_t uid, oldloginuid, loginuid; >> 2023 struct tty_struct *tty; >> 2024 >> 2025 if (!audit_enabled) >> 2026 return; >> 2027 >> 2028 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_LOGIN); >> 2029 if (!ab) >> 2030 return; >> 2031 >> 2032 uid = from_kuid(&init_user_ns, task_uid(current)); >> 2033 oldloginuid = from_kuid(&init_user_ns, koldloginuid); >> 2034 loginuid = from_kuid(&init_user_ns, kloginuid), >> 2035 tty = audit_get_tty(current); >> 2036 >> 2037 audit_log_format(ab, "pid=%d uid=%u", task_tgid_nr(current), uid); >> 2038 audit_log_task_context(ab); >> 2039 audit_log_format(ab, " old-auid=%u auid=%u tty=%s old-ses=%u ses=%u res=%d", >> 2040 oldloginuid, loginuid, tty ? tty_name(tty) : "(none)", >> 2041 oldsessionid, sessionid, !rc); >> 2042 audit_put_tty(tty); >> 2043 audit_log_end(ab); >> 2044 } >> 2045 >> 2046 /** >> 2047 * audit_set_loginuid - set current task's audit_context loginuid >> 2048 * @loginuid: loginuid value >> 2049 * >> 2050 * Returns 0. >> 2051 * >> 2052 * Called (set) from fs/proc/base.c::proc_loginuid_write(). >> 2053 */ >> 2054 int audit_set_loginuid(kuid_t loginuid) >> 2055 { >> 2056 struct task_struct *task = current; >> 2057 unsigned int oldsessionid, sessionid = (unsigned int)-1; >> 2058 kuid_t oldloginuid; >> 2059 int rc; >> 2060 >> 2061 oldloginuid = audit_get_loginuid(current); >> 2062 oldsessionid = audit_get_sessionid(current); >> 2063 >> 2064 rc = audit_set_loginuid_perm(loginuid); >> 2065 if (rc) >> 2066 goto out; >> 2067 >> 2068 /* are we setting or clearing? */ >> 2069 if (uid_valid(loginuid)) { >> 2070 sessionid = (unsigned int)atomic_inc_return(&session_id); >> 2071 if (unlikely(sessionid == (unsigned int)-1)) >> 2072 sessionid = (unsigned int)atomic_inc_return(&session_id); >> 2073 } >> 2074 >> 2075 task->sessionid = sessionid; >> 2076 task->loginuid = loginuid; >> 2077 out: >> 2078 audit_log_set_loginuid(oldloginuid, loginuid, oldsessionid, sessionid, rc); >> 2079 return rc; >> 2080 } >> 2081 2539 /** 2082 /** 2540 * __audit_mq_open - record audit data for a 2083 * __audit_mq_open - record audit data for a POSIX MQ open 2541 * @oflag: open flag 2084 * @oflag: open flag 2542 * @mode: mode bits 2085 * @mode: mode bits 2543 * @attr: queue attributes 2086 * @attr: queue attributes 2544 * 2087 * 2545 */ 2088 */ 2546 void __audit_mq_open(int oflag, umode_t mode, 2089 void __audit_mq_open(int oflag, umode_t mode, struct mq_attr *attr) 2547 { 2090 { 2548 struct audit_context *context = audit !! 2091 struct audit_context *context = current->audit_context; 2549 2092 2550 if (attr) 2093 if (attr) 2551 memcpy(&context->mq_open.attr 2094 memcpy(&context->mq_open.attr, attr, sizeof(struct mq_attr)); 2552 else 2095 else 2553 memset(&context->mq_open.attr 2096 memset(&context->mq_open.attr, 0, sizeof(struct mq_attr)); 2554 2097 2555 context->mq_open.oflag = oflag; 2098 context->mq_open.oflag = oflag; 2556 context->mq_open.mode = mode; 2099 context->mq_open.mode = mode; 2557 2100 2558 context->type = AUDIT_MQ_OPEN; 2101 context->type = AUDIT_MQ_OPEN; 2559 } 2102 } 2560 2103 2561 /** 2104 /** 2562 * __audit_mq_sendrecv - record audit data fo 2105 * __audit_mq_sendrecv - record audit data for a POSIX MQ timed send/receive 2563 * @mqdes: MQ descriptor 2106 * @mqdes: MQ descriptor 2564 * @msg_len: Message length 2107 * @msg_len: Message length 2565 * @msg_prio: Message priority 2108 * @msg_prio: Message priority 2566 * @abs_timeout: Message timeout in absolute 2109 * @abs_timeout: Message timeout in absolute time 2567 * 2110 * 2568 */ 2111 */ 2569 void __audit_mq_sendrecv(mqd_t mqdes, size_t 2112 void __audit_mq_sendrecv(mqd_t mqdes, size_t msg_len, unsigned int msg_prio, 2570 const struct timespec 2113 const struct timespec64 *abs_timeout) 2571 { 2114 { 2572 struct audit_context *context = audit !! 2115 struct audit_context *context = current->audit_context; 2573 struct timespec64 *p = &context->mq_s 2116 struct timespec64 *p = &context->mq_sendrecv.abs_timeout; 2574 2117 2575 if (abs_timeout) 2118 if (abs_timeout) 2576 memcpy(p, abs_timeout, sizeof 2119 memcpy(p, abs_timeout, sizeof(*p)); 2577 else 2120 else 2578 memset(p, 0, sizeof(*p)); 2121 memset(p, 0, sizeof(*p)); 2579 2122 2580 context->mq_sendrecv.mqdes = mqdes; 2123 context->mq_sendrecv.mqdes = mqdes; 2581 context->mq_sendrecv.msg_len = msg_le 2124 context->mq_sendrecv.msg_len = msg_len; 2582 context->mq_sendrecv.msg_prio = msg_p 2125 context->mq_sendrecv.msg_prio = msg_prio; 2583 2126 2584 context->type = AUDIT_MQ_SENDRECV; 2127 context->type = AUDIT_MQ_SENDRECV; 2585 } 2128 } 2586 2129 2587 /** 2130 /** 2588 * __audit_mq_notify - record audit data for 2131 * __audit_mq_notify - record audit data for a POSIX MQ notify 2589 * @mqdes: MQ descriptor 2132 * @mqdes: MQ descriptor 2590 * @notification: Notification event 2133 * @notification: Notification event 2591 * 2134 * 2592 */ 2135 */ 2593 2136 2594 void __audit_mq_notify(mqd_t mqdes, const str 2137 void __audit_mq_notify(mqd_t mqdes, const struct sigevent *notification) 2595 { 2138 { 2596 struct audit_context *context = audit !! 2139 struct audit_context *context = current->audit_context; 2597 2140 2598 if (notification) 2141 if (notification) 2599 context->mq_notify.sigev_sign 2142 context->mq_notify.sigev_signo = notification->sigev_signo; 2600 else 2143 else 2601 context->mq_notify.sigev_sign 2144 context->mq_notify.sigev_signo = 0; 2602 2145 2603 context->mq_notify.mqdes = mqdes; 2146 context->mq_notify.mqdes = mqdes; 2604 context->type = AUDIT_MQ_NOTIFY; 2147 context->type = AUDIT_MQ_NOTIFY; 2605 } 2148 } 2606 2149 2607 /** 2150 /** 2608 * __audit_mq_getsetattr - record audit data 2151 * __audit_mq_getsetattr - record audit data for a POSIX MQ get/set attribute 2609 * @mqdes: MQ descriptor 2152 * @mqdes: MQ descriptor 2610 * @mqstat: MQ flags 2153 * @mqstat: MQ flags 2611 * 2154 * 2612 */ 2155 */ 2613 void __audit_mq_getsetattr(mqd_t mqdes, struc 2156 void __audit_mq_getsetattr(mqd_t mqdes, struct mq_attr *mqstat) 2614 { 2157 { 2615 struct audit_context *context = audit !! 2158 struct audit_context *context = current->audit_context; 2616 << 2617 context->mq_getsetattr.mqdes = mqdes; 2159 context->mq_getsetattr.mqdes = mqdes; 2618 context->mq_getsetattr.mqstat = *mqst 2160 context->mq_getsetattr.mqstat = *mqstat; 2619 context->type = AUDIT_MQ_GETSETATTR; 2161 context->type = AUDIT_MQ_GETSETATTR; 2620 } 2162 } 2621 2163 2622 /** 2164 /** 2623 * __audit_ipc_obj - record audit data for ip 2165 * __audit_ipc_obj - record audit data for ipc object 2624 * @ipcp: ipc permissions 2166 * @ipcp: ipc permissions 2625 * 2167 * 2626 */ 2168 */ 2627 void __audit_ipc_obj(struct kern_ipc_perm *ip 2169 void __audit_ipc_obj(struct kern_ipc_perm *ipcp) 2628 { 2170 { 2629 struct audit_context *context = audit !! 2171 struct audit_context *context = current->audit_context; 2630 << 2631 context->ipc.uid = ipcp->uid; 2172 context->ipc.uid = ipcp->uid; 2632 context->ipc.gid = ipcp->gid; 2173 context->ipc.gid = ipcp->gid; 2633 context->ipc.mode = ipcp->mode; 2174 context->ipc.mode = ipcp->mode; 2634 context->ipc.has_perm = 0; 2175 context->ipc.has_perm = 0; 2635 security_ipc_getsecid(ipcp, &context- 2176 security_ipc_getsecid(ipcp, &context->ipc.osid); 2636 context->type = AUDIT_IPC; 2177 context->type = AUDIT_IPC; 2637 } 2178 } 2638 2179 2639 /** 2180 /** 2640 * __audit_ipc_set_perm - record audit data f 2181 * __audit_ipc_set_perm - record audit data for new ipc permissions 2641 * @qbytes: msgq bytes 2182 * @qbytes: msgq bytes 2642 * @uid: msgq user id 2183 * @uid: msgq user id 2643 * @gid: msgq group id 2184 * @gid: msgq group id 2644 * @mode: msgq mode (permissions) 2185 * @mode: msgq mode (permissions) 2645 * 2186 * 2646 * Called only after audit_ipc_obj(). 2187 * Called only after audit_ipc_obj(). 2647 */ 2188 */ 2648 void __audit_ipc_set_perm(unsigned long qbyte 2189 void __audit_ipc_set_perm(unsigned long qbytes, uid_t uid, gid_t gid, umode_t mode) 2649 { 2190 { 2650 struct audit_context *context = audit !! 2191 struct audit_context *context = current->audit_context; 2651 2192 2652 context->ipc.qbytes = qbytes; 2193 context->ipc.qbytes = qbytes; 2653 context->ipc.perm_uid = uid; 2194 context->ipc.perm_uid = uid; 2654 context->ipc.perm_gid = gid; 2195 context->ipc.perm_gid = gid; 2655 context->ipc.perm_mode = mode; 2196 context->ipc.perm_mode = mode; 2656 context->ipc.has_perm = 1; 2197 context->ipc.has_perm = 1; 2657 } 2198 } 2658 2199 2659 void __audit_bprm(struct linux_binprm *bprm) 2200 void __audit_bprm(struct linux_binprm *bprm) 2660 { 2201 { 2661 struct audit_context *context = audit !! 2202 struct audit_context *context = current->audit_context; 2662 2203 2663 context->type = AUDIT_EXECVE; 2204 context->type = AUDIT_EXECVE; 2664 context->execve.argc = bprm->argc; 2205 context->execve.argc = bprm->argc; 2665 } 2206 } 2666 2207 2667 2208 2668 /** 2209 /** 2669 * __audit_socketcall - record audit data for 2210 * __audit_socketcall - record audit data for sys_socketcall 2670 * @nargs: number of args, which should not b 2211 * @nargs: number of args, which should not be more than AUDITSC_ARGS. 2671 * @args: args array 2212 * @args: args array 2672 * 2213 * 2673 */ 2214 */ 2674 int __audit_socketcall(int nargs, unsigned lo 2215 int __audit_socketcall(int nargs, unsigned long *args) 2675 { 2216 { 2676 struct audit_context *context = audit !! 2217 struct audit_context *context = current->audit_context; 2677 2218 2678 if (nargs <= 0 || nargs > AUDITSC_ARG 2219 if (nargs <= 0 || nargs > AUDITSC_ARGS || !args) 2679 return -EINVAL; 2220 return -EINVAL; 2680 context->type = AUDIT_SOCKETCALL; 2221 context->type = AUDIT_SOCKETCALL; 2681 context->socketcall.nargs = nargs; 2222 context->socketcall.nargs = nargs; 2682 memcpy(context->socketcall.args, args 2223 memcpy(context->socketcall.args, args, nargs * sizeof(unsigned long)); 2683 return 0; 2224 return 0; 2684 } 2225 } 2685 2226 2686 /** 2227 /** 2687 * __audit_fd_pair - record audit data for pi 2228 * __audit_fd_pair - record audit data for pipe and socketpair 2688 * @fd1: the first file descriptor 2229 * @fd1: the first file descriptor 2689 * @fd2: the second file descriptor 2230 * @fd2: the second file descriptor 2690 * 2231 * 2691 */ 2232 */ 2692 void __audit_fd_pair(int fd1, int fd2) 2233 void __audit_fd_pair(int fd1, int fd2) 2693 { 2234 { 2694 struct audit_context *context = audit !! 2235 struct audit_context *context = current->audit_context; 2695 << 2696 context->fds[0] = fd1; 2236 context->fds[0] = fd1; 2697 context->fds[1] = fd2; 2237 context->fds[1] = fd2; 2698 } 2238 } 2699 2239 2700 /** 2240 /** 2701 * __audit_sockaddr - record audit data for s 2241 * __audit_sockaddr - record audit data for sys_bind, sys_connect, sys_sendto 2702 * @len: data length in user space 2242 * @len: data length in user space 2703 * @a: data address in kernel space 2243 * @a: data address in kernel space 2704 * 2244 * 2705 * Returns 0 for success or NULL context or < 2245 * Returns 0 for success or NULL context or < 0 on error. 2706 */ 2246 */ 2707 int __audit_sockaddr(int len, void *a) 2247 int __audit_sockaddr(int len, void *a) 2708 { 2248 { 2709 struct audit_context *context = audit !! 2249 struct audit_context *context = current->audit_context; 2710 2250 2711 if (!context->sockaddr) { 2251 if (!context->sockaddr) { 2712 void *p = kmalloc(sizeof(stru 2252 void *p = kmalloc(sizeof(struct sockaddr_storage), GFP_KERNEL); 2713 << 2714 if (!p) 2253 if (!p) 2715 return -ENOMEM; 2254 return -ENOMEM; 2716 context->sockaddr = p; 2255 context->sockaddr = p; 2717 } 2256 } 2718 2257 2719 context->sockaddr_len = len; 2258 context->sockaddr_len = len; 2720 memcpy(context->sockaddr, a, len); 2259 memcpy(context->sockaddr, a, len); 2721 return 0; 2260 return 0; 2722 } 2261 } 2723 2262 2724 void __audit_ptrace(struct task_struct *t) 2263 void __audit_ptrace(struct task_struct *t) 2725 { 2264 { 2726 struct audit_context *context = audit !! 2265 struct audit_context *context = current->audit_context; 2727 2266 2728 context->target_pid = task_tgid_nr(t) 2267 context->target_pid = task_tgid_nr(t); 2729 context->target_auid = audit_get_logi 2268 context->target_auid = audit_get_loginuid(t); 2730 context->target_uid = task_uid(t); 2269 context->target_uid = task_uid(t); 2731 context->target_sessionid = audit_get 2270 context->target_sessionid = audit_get_sessionid(t); 2732 security_task_getsecid_obj(t, &contex !! 2271 security_task_getsecid(t, &context->target_sid); 2733 memcpy(context->target_comm, t->comm, 2272 memcpy(context->target_comm, t->comm, TASK_COMM_LEN); 2734 } 2273 } 2735 2274 2736 /** 2275 /** 2737 * audit_signal_info_syscall - record signal !! 2276 * audit_signal_info - record signal info for shutting down audit subsystem >> 2277 * @sig: signal value 2738 * @t: task being signaled 2278 * @t: task being signaled 2739 * 2279 * 2740 * If the audit subsystem is being terminated 2280 * If the audit subsystem is being terminated, record the task (pid) 2741 * and uid that is doing that. 2281 * and uid that is doing that. 2742 */ 2282 */ 2743 int audit_signal_info_syscall(struct task_str !! 2283 int audit_signal_info(int sig, struct task_struct *t) 2744 { 2284 { 2745 struct audit_aux_data_pids *axp; 2285 struct audit_aux_data_pids *axp; 2746 struct audit_context *ctx = audit_con !! 2286 struct task_struct *tsk = current; 2747 kuid_t t_uid = task_uid(t); !! 2287 struct audit_context *ctx = tsk->audit_context; >> 2288 kuid_t uid = current_uid(), t_uid = task_uid(t); >> 2289 >> 2290 if (auditd_test_task(t) && >> 2291 (sig == SIGTERM || sig == SIGHUP || >> 2292 sig == SIGUSR1 || sig == SIGUSR2)) { >> 2293 audit_sig_pid = task_tgid_nr(tsk); >> 2294 if (uid_valid(tsk->loginuid)) >> 2295 audit_sig_uid = tsk->loginuid; >> 2296 else >> 2297 audit_sig_uid = uid; >> 2298 security_task_getsecid(tsk, &audit_sig_sid); >> 2299 } 2748 2300 2749 if (!audit_signals || audit_dummy_con 2301 if (!audit_signals || audit_dummy_context()) 2750 return 0; 2302 return 0; 2751 2303 2752 /* optimize the common case by puttin 2304 /* optimize the common case by putting first signal recipient directly 2753 * in audit_context */ 2305 * in audit_context */ 2754 if (!ctx->target_pid) { 2306 if (!ctx->target_pid) { 2755 ctx->target_pid = task_tgid_n 2307 ctx->target_pid = task_tgid_nr(t); 2756 ctx->target_auid = audit_get_ 2308 ctx->target_auid = audit_get_loginuid(t); 2757 ctx->target_uid = t_uid; 2309 ctx->target_uid = t_uid; 2758 ctx->target_sessionid = audit 2310 ctx->target_sessionid = audit_get_sessionid(t); 2759 security_task_getsecid_obj(t, !! 2311 security_task_getsecid(t, &ctx->target_sid); 2760 memcpy(ctx->target_comm, t->c 2312 memcpy(ctx->target_comm, t->comm, TASK_COMM_LEN); 2761 return 0; 2313 return 0; 2762 } 2314 } 2763 2315 2764 axp = (void *)ctx->aux_pids; 2316 axp = (void *)ctx->aux_pids; 2765 if (!axp || axp->pid_count == AUDIT_A 2317 if (!axp || axp->pid_count == AUDIT_AUX_PIDS) { 2766 axp = kzalloc(sizeof(*axp), G 2318 axp = kzalloc(sizeof(*axp), GFP_ATOMIC); 2767 if (!axp) 2319 if (!axp) 2768 return -ENOMEM; 2320 return -ENOMEM; 2769 2321 2770 axp->d.type = AUDIT_OBJ_PID; 2322 axp->d.type = AUDIT_OBJ_PID; 2771 axp->d.next = ctx->aux_pids; 2323 axp->d.next = ctx->aux_pids; 2772 ctx->aux_pids = (void *)axp; 2324 ctx->aux_pids = (void *)axp; 2773 } 2325 } 2774 BUG_ON(axp->pid_count >= AUDIT_AUX_PI 2326 BUG_ON(axp->pid_count >= AUDIT_AUX_PIDS); 2775 2327 2776 axp->target_pid[axp->pid_count] = tas 2328 axp->target_pid[axp->pid_count] = task_tgid_nr(t); 2777 axp->target_auid[axp->pid_count] = au 2329 axp->target_auid[axp->pid_count] = audit_get_loginuid(t); 2778 axp->target_uid[axp->pid_count] = t_u 2330 axp->target_uid[axp->pid_count] = t_uid; 2779 axp->target_sessionid[axp->pid_count] 2331 axp->target_sessionid[axp->pid_count] = audit_get_sessionid(t); 2780 security_task_getsecid_obj(t, &axp->t !! 2332 security_task_getsecid(t, &axp->target_sid[axp->pid_count]); 2781 memcpy(axp->target_comm[axp->pid_coun 2333 memcpy(axp->target_comm[axp->pid_count], t->comm, TASK_COMM_LEN); 2782 axp->pid_count++; 2334 axp->pid_count++; 2783 2335 2784 return 0; 2336 return 0; 2785 } 2337 } 2786 2338 2787 /** 2339 /** 2788 * __audit_log_bprm_fcaps - store information 2340 * __audit_log_bprm_fcaps - store information about a loading bprm and relevant fcaps 2789 * @bprm: pointer to the bprm being processed 2341 * @bprm: pointer to the bprm being processed 2790 * @new: the proposed new credentials 2342 * @new: the proposed new credentials 2791 * @old: the old credentials 2343 * @old: the old credentials 2792 * 2344 * 2793 * Simply check if the proc already has the c 2345 * Simply check if the proc already has the caps given by the file and if not 2794 * store the priv escalation info for later a 2346 * store the priv escalation info for later auditing at the end of the syscall 2795 * 2347 * 2796 * -Eric 2348 * -Eric 2797 */ 2349 */ 2798 int __audit_log_bprm_fcaps(struct linux_binpr 2350 int __audit_log_bprm_fcaps(struct linux_binprm *bprm, 2799 const struct cred 2351 const struct cred *new, const struct cred *old) 2800 { 2352 { 2801 struct audit_aux_data_bprm_fcaps *ax; 2353 struct audit_aux_data_bprm_fcaps *ax; 2802 struct audit_context *context = audit !! 2354 struct audit_context *context = current->audit_context; 2803 struct cpu_vfs_cap_data vcaps; 2355 struct cpu_vfs_cap_data vcaps; 2804 2356 2805 ax = kmalloc(sizeof(*ax), GFP_KERNEL) 2357 ax = kmalloc(sizeof(*ax), GFP_KERNEL); 2806 if (!ax) 2358 if (!ax) 2807 return -ENOMEM; 2359 return -ENOMEM; 2808 2360 2809 ax->d.type = AUDIT_BPRM_FCAPS; 2361 ax->d.type = AUDIT_BPRM_FCAPS; 2810 ax->d.next = context->aux; 2362 ax->d.next = context->aux; 2811 context->aux = (void *)ax; 2363 context->aux = (void *)ax; 2812 2364 2813 get_vfs_caps_from_disk(&nop_mnt_idmap !! 2365 get_vfs_caps_from_disk(bprm->file->f_path.dentry, &vcaps); 2814 bprm->file->f_ << 2815 2366 2816 ax->fcap.permitted = vcaps.permitted; 2367 ax->fcap.permitted = vcaps.permitted; 2817 ax->fcap.inheritable = vcaps.inherita 2368 ax->fcap.inheritable = vcaps.inheritable; 2818 ax->fcap.fE = !!(vcaps.magic_etc & VF 2369 ax->fcap.fE = !!(vcaps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE); 2819 ax->fcap.rootid = vcaps.rootid; << 2820 ax->fcap_ver = (vcaps.magic_etc & VFS 2370 ax->fcap_ver = (vcaps.magic_etc & VFS_CAP_REVISION_MASK) >> VFS_CAP_REVISION_SHIFT; 2821 2371 2822 ax->old_pcap.permitted = old->cap_p 2372 ax->old_pcap.permitted = old->cap_permitted; 2823 ax->old_pcap.inheritable = old->cap_i 2373 ax->old_pcap.inheritable = old->cap_inheritable; 2824 ax->old_pcap.effective = old->cap_e 2374 ax->old_pcap.effective = old->cap_effective; 2825 ax->old_pcap.ambient = old->cap_a 2375 ax->old_pcap.ambient = old->cap_ambient; 2826 2376 2827 ax->new_pcap.permitted = new->cap_p 2377 ax->new_pcap.permitted = new->cap_permitted; 2828 ax->new_pcap.inheritable = new->cap_i 2378 ax->new_pcap.inheritable = new->cap_inheritable; 2829 ax->new_pcap.effective = new->cap_e 2379 ax->new_pcap.effective = new->cap_effective; 2830 ax->new_pcap.ambient = new->cap_a 2380 ax->new_pcap.ambient = new->cap_ambient; 2831 return 0; 2381 return 0; 2832 } 2382 } 2833 2383 2834 /** 2384 /** 2835 * __audit_log_capset - store information abo 2385 * __audit_log_capset - store information about the arguments to the capset syscall 2836 * @new: the new credentials 2386 * @new: the new credentials 2837 * @old: the old (current) credentials 2387 * @old: the old (current) credentials 2838 * 2388 * 2839 * Record the arguments userspace sent to sys 2389 * Record the arguments userspace sent to sys_capset for later printing by the 2840 * audit system if applicable 2390 * audit system if applicable 2841 */ 2391 */ 2842 void __audit_log_capset(const struct cred *ne 2392 void __audit_log_capset(const struct cred *new, const struct cred *old) 2843 { 2393 { 2844 struct audit_context *context = audit !! 2394 struct audit_context *context = current->audit_context; 2845 << 2846 context->capset.pid = task_tgid_nr(cu 2395 context->capset.pid = task_tgid_nr(current); 2847 context->capset.cap.effective = new 2396 context->capset.cap.effective = new->cap_effective; 2848 context->capset.cap.inheritable = new 2397 context->capset.cap.inheritable = new->cap_effective; 2849 context->capset.cap.permitted = new 2398 context->capset.cap.permitted = new->cap_permitted; 2850 context->capset.cap.ambient = new 2399 context->capset.cap.ambient = new->cap_ambient; 2851 context->type = AUDIT_CAPSET; 2400 context->type = AUDIT_CAPSET; 2852 } 2401 } 2853 2402 2854 void __audit_mmap_fd(int fd, int flags) 2403 void __audit_mmap_fd(int fd, int flags) 2855 { 2404 { 2856 struct audit_context *context = audit !! 2405 struct audit_context *context = current->audit_context; 2857 << 2858 context->mmap.fd = fd; 2406 context->mmap.fd = fd; 2859 context->mmap.flags = flags; 2407 context->mmap.flags = flags; 2860 context->type = AUDIT_MMAP; 2408 context->type = AUDIT_MMAP; 2861 } 2409 } 2862 2410 2863 void __audit_openat2_how(struct open_how *how << 2864 { << 2865 struct audit_context *context = audit << 2866 << 2867 context->openat2.flags = how->flags; << 2868 context->openat2.mode = how->mode; << 2869 context->openat2.resolve = how->resol << 2870 context->type = AUDIT_OPENAT2; << 2871 } << 2872 << 2873 void __audit_log_kern_module(char *name) 2411 void __audit_log_kern_module(char *name) 2874 { 2412 { 2875 struct audit_context *context = audit !! 2413 struct audit_context *context = current->audit_context; 2876 2414 2877 context->module.name = kstrdup(name, 2415 context->module.name = kstrdup(name, GFP_KERNEL); 2878 if (!context->module.name) 2416 if (!context->module.name) 2879 audit_log_lost("out of memory 2417 audit_log_lost("out of memory in __audit_log_kern_module"); 2880 context->type = AUDIT_KERN_MODULE; 2418 context->type = AUDIT_KERN_MODULE; 2881 } 2419 } 2882 2420 2883 void __audit_fanotify(u32 response, struct fa !! 2421 void __audit_fanotify(unsigned int response) 2884 { 2422 { 2885 /* {subj,obj}_trust values are {0,1,2 !! 2423 audit_log(current->audit_context, GFP_KERNEL, 2886 switch (friar->hdr.type) { !! 2424 AUDIT_FANOTIFY, "resp=%u", response); 2887 case FAN_RESPONSE_INFO_NONE: << 2888 audit_log(audit_context(), GF << 2889 "resp=%u fan_type=% << 2890 response, FAN_RESPO << 2891 break; << 2892 case FAN_RESPONSE_INFO_AUDIT_RULE: << 2893 audit_log(audit_context(), GF << 2894 "resp=%u fan_type=% << 2895 response, friar->hd << 2896 friar->subj_trust, << 2897 } << 2898 } 2425 } 2899 2426 2900 void __audit_tk_injoffset(struct timespec64 o << 2901 { << 2902 struct audit_context *context = audit << 2903 << 2904 /* only set type if not already set b << 2905 if (!context->type) << 2906 context->type = AUDIT_TIME_IN << 2907 memcpy(&context->time.tk_injoffset, & << 2908 } << 2909 << 2910 void __audit_ntp_log(const struct audit_ntp_d << 2911 { << 2912 struct audit_context *context = audit << 2913 int type; << 2914 << 2915 for (type = 0; type < AUDIT_NTP_NVALS << 2916 if (ad->vals[type].newval != << 2917 /* unconditionally se << 2918 context->type = AUDIT << 2919 memcpy(&context->time << 2920 break; << 2921 } << 2922 } << 2923 << 2924 void __audit_log_nfcfg(const char *name, u8 a << 2925 enum audit_nfcfgop op, << 2926 { << 2927 struct audit_buffer *ab; << 2928 char comm[sizeof(current->comm)]; << 2929 << 2930 ab = audit_log_start(audit_context(), << 2931 if (!ab) << 2932 return; << 2933 audit_log_format(ab, "table=%s family << 2934 name, af, nentries, << 2935 << 2936 audit_log_format(ab, " pid=%u", task_ << 2937 audit_log_task_context(ab); /* subj= << 2938 audit_log_format(ab, " comm="); << 2939 audit_log_untrustedstring(ab, get_tas << 2940 audit_log_end(ab); << 2941 } << 2942 EXPORT_SYMBOL_GPL(__audit_log_nfcfg); << 2943 << 2944 static void audit_log_task(struct audit_buffe 2427 static void audit_log_task(struct audit_buffer *ab) 2945 { 2428 { 2946 kuid_t auid, uid; 2429 kuid_t auid, uid; 2947 kgid_t gid; 2430 kgid_t gid; 2948 unsigned int sessionid; 2431 unsigned int sessionid; 2949 char comm[sizeof(current->comm)]; 2432 char comm[sizeof(current->comm)]; 2950 2433 2951 auid = audit_get_loginuid(current); 2434 auid = audit_get_loginuid(current); 2952 sessionid = audit_get_sessionid(curre 2435 sessionid = audit_get_sessionid(current); 2953 current_uid_gid(&uid, &gid); 2436 current_uid_gid(&uid, &gid); 2954 2437 2955 audit_log_format(ab, "auid=%u uid=%u 2438 audit_log_format(ab, "auid=%u uid=%u gid=%u ses=%u", 2956 from_kuid(&init_user 2439 from_kuid(&init_user_ns, auid), 2957 from_kuid(&init_user 2440 from_kuid(&init_user_ns, uid), 2958 from_kgid(&init_user 2441 from_kgid(&init_user_ns, gid), 2959 sessionid); 2442 sessionid); 2960 audit_log_task_context(ab); 2443 audit_log_task_context(ab); 2961 audit_log_format(ab, " pid=%d comm=", 2444 audit_log_format(ab, " pid=%d comm=", task_tgid_nr(current)); 2962 audit_log_untrustedstring(ab, get_tas 2445 audit_log_untrustedstring(ab, get_task_comm(comm, current)); 2963 audit_log_d_path_exe(ab, current->mm) 2446 audit_log_d_path_exe(ab, current->mm); 2964 } 2447 } 2965 2448 2966 /** 2449 /** 2967 * audit_core_dumps - record information abou 2450 * audit_core_dumps - record information about processes that end abnormally 2968 * @signr: signal value 2451 * @signr: signal value 2969 * 2452 * 2970 * If a process ends with a core dump, someth 2453 * If a process ends with a core dump, something fishy is going on and we 2971 * should record the event for investigation. 2454 * should record the event for investigation. 2972 */ 2455 */ 2973 void audit_core_dumps(long signr) 2456 void audit_core_dumps(long signr) 2974 { 2457 { 2975 struct audit_buffer *ab; 2458 struct audit_buffer *ab; 2976 2459 2977 if (!audit_enabled) 2460 if (!audit_enabled) 2978 return; 2461 return; 2979 2462 2980 if (signr == SIGQUIT) /* don't care 2463 if (signr == SIGQUIT) /* don't care for those */ 2981 return; 2464 return; 2982 2465 2983 ab = audit_log_start(audit_context(), !! 2466 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_ANOM_ABEND); 2984 if (unlikely(!ab)) 2467 if (unlikely(!ab)) 2985 return; 2468 return; 2986 audit_log_task(ab); 2469 audit_log_task(ab); 2987 audit_log_format(ab, " sig=%ld res=1" 2470 audit_log_format(ab, " sig=%ld res=1", signr); 2988 audit_log_end(ab); 2471 audit_log_end(ab); 2989 } 2472 } 2990 2473 2991 /** !! 2474 void __audit_seccomp(unsigned long syscall, long signr, int code) 2992 * audit_seccomp - record information about a << 2993 * @syscall: syscall number << 2994 * @signr: signal value << 2995 * @code: the seccomp action << 2996 * << 2997 * Record the information associated with a s << 2998 * seccomp actions that are not to be logged << 2999 * Therefore, this function forces auditing i << 3000 * and dummy context state because seccomp ac << 3001 * audit is not in use. << 3002 */ << 3003 void audit_seccomp(unsigned long syscall, lon << 3004 { 2475 { 3005 struct audit_buffer *ab; 2476 struct audit_buffer *ab; 3006 2477 3007 ab = audit_log_start(audit_context(), !! 2478 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_SECCOMP); 3008 if (unlikely(!ab)) 2479 if (unlikely(!ab)) 3009 return; 2480 return; 3010 audit_log_task(ab); 2481 audit_log_task(ab); 3011 audit_log_format(ab, " sig=%ld arch=% 2482 audit_log_format(ab, " sig=%ld arch=%x syscall=%ld compat=%d ip=0x%lx code=0x%x", 3012 signr, syscall_get_a !! 2483 signr, syscall_get_arch(), syscall, 3013 in_compat_syscall(), 2484 in_compat_syscall(), KSTK_EIP(current), code); 3014 audit_log_end(ab); 2485 audit_log_end(ab); 3015 } 2486 } 3016 2487 3017 void audit_seccomp_actions_logged(const char << 3018 int res) << 3019 { << 3020 struct audit_buffer *ab; << 3021 << 3022 if (!audit_enabled) << 3023 return; << 3024 << 3025 ab = audit_log_start(audit_context(), << 3026 AUDIT_CONFIG_CHA << 3027 if (unlikely(!ab)) << 3028 return; << 3029 << 3030 audit_log_format(ab, << 3031 "op=seccomp-logging << 3032 names, old_names, re << 3033 audit_log_end(ab); << 3034 } << 3035 << 3036 struct list_head *audit_killed_trees(void) 2488 struct list_head *audit_killed_trees(void) 3037 { 2489 { 3038 struct audit_context *ctx = audit_con !! 2490 struct audit_context *ctx = current->audit_context; 3039 if (likely(!ctx || ctx->context == AU !! 2491 if (likely(!ctx || !ctx->in_syscall)) 3040 return NULL; 2492 return NULL; 3041 return &ctx->killed_trees; 2493 return &ctx->killed_trees; 3042 } 2494 } 3043 2495
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.