1 // SPDX-License-Identifier: GPL-2.0-or-later 1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* auditsc.c -- System-call auditing support 2 /* auditsc.c -- System-call auditing support 3 * Handles all system-call specific auditing f 3 * Handles all system-call specific auditing features. 4 * 4 * 5 * Copyright 2003-2004 Red Hat Inc., Durham, N 5 * Copyright 2003-2004 Red Hat Inc., Durham, North Carolina. 6 * Copyright 2005 Hewlett-Packard Development 6 * Copyright 2005 Hewlett-Packard Development Company, L.P. 7 * Copyright (C) 2005, 2006 IBM Corporation 7 * Copyright (C) 2005, 2006 IBM Corporation 8 * All Rights Reserved. 8 * All Rights Reserved. 9 * 9 * 10 * Written by Rickard E. (Rik) Faith <faith@re 10 * Written by Rickard E. (Rik) Faith <faith@redhat.com> 11 * 11 * 12 * Many of the ideas implemented here are from 12 * Many of the ideas implemented here are from Stephen C. Tweedie, 13 * especially the idea of avoiding a copy by u 13 * especially the idea of avoiding a copy by using getname. 14 * 14 * 15 * The method for actual interception of sysca 15 * The method for actual interception of syscall entry and exit (not in 16 * this file -- see entry.S) is based on a GPL 16 * this file -- see entry.S) is based on a GPL'd patch written by 17 * okir@suse.de and Copyright 2003 SuSE Linux 17 * okir@suse.de and Copyright 2003 SuSE Linux AG. 18 * 18 * 19 * POSIX message queue support added by George 19 * POSIX message queue support added by George Wilson <ltcgcw@us.ibm.com>, 20 * 2006. 20 * 2006. 21 * 21 * 22 * The support of additional filter rules comp 22 * The support of additional filter rules compares (>, <, >=, <=) was 23 * added by Dustin Kirkland <dustin.kirkland@u 23 * added by Dustin Kirkland <dustin.kirkland@us.ibm.com>, 2005. 24 * 24 * 25 * Modified by Amy Griffis <amy.griffis@hp.com 25 * Modified by Amy Griffis <amy.griffis@hp.com> to collect additional 26 * filesystem information. 26 * filesystem information. 27 * 27 * 28 * Subject and object context labeling support 28 * Subject and object context labeling support added by <danjones@us.ibm.com> 29 * and <dustin.kirkland@us.ibm.com> for LSPP c 29 * and <dustin.kirkland@us.ibm.com> for LSPP certification compliance. 30 */ 30 */ 31 31 32 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 32 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 33 33 34 #include <linux/init.h> 34 #include <linux/init.h> 35 #include <asm/types.h> 35 #include <asm/types.h> 36 #include <linux/atomic.h> 36 #include <linux/atomic.h> 37 #include <linux/fs.h> 37 #include <linux/fs.h> 38 #include <linux/namei.h> 38 #include <linux/namei.h> 39 #include <linux/mm.h> 39 #include <linux/mm.h> 40 #include <linux/export.h> 40 #include <linux/export.h> 41 #include <linux/slab.h> 41 #include <linux/slab.h> 42 #include <linux/mount.h> 42 #include <linux/mount.h> 43 #include <linux/socket.h> 43 #include <linux/socket.h> 44 #include <linux/mqueue.h> 44 #include <linux/mqueue.h> 45 #include <linux/audit.h> 45 #include <linux/audit.h> 46 #include <linux/personality.h> 46 #include <linux/personality.h> 47 #include <linux/time.h> 47 #include <linux/time.h> 48 #include <linux/netlink.h> 48 #include <linux/netlink.h> 49 #include <linux/compiler.h> 49 #include <linux/compiler.h> 50 #include <asm/unistd.h> 50 #include <asm/unistd.h> 51 #include <linux/security.h> 51 #include <linux/security.h> 52 #include <linux/list.h> 52 #include <linux/list.h> 53 #include <linux/binfmts.h> 53 #include <linux/binfmts.h> 54 #include <linux/highmem.h> 54 #include <linux/highmem.h> 55 #include <linux/syscalls.h> 55 #include <linux/syscalls.h> 56 #include <asm/syscall.h> 56 #include <asm/syscall.h> 57 #include <linux/capability.h> 57 #include <linux/capability.h> 58 #include <linux/fs_struct.h> 58 #include <linux/fs_struct.h> 59 #include <linux/compat.h> 59 #include <linux/compat.h> 60 #include <linux/ctype.h> 60 #include <linux/ctype.h> 61 #include <linux/string.h> 61 #include <linux/string.h> 62 #include <linux/uaccess.h> 62 #include <linux/uaccess.h> 63 #include <linux/fsnotify_backend.h> 63 #include <linux/fsnotify_backend.h> 64 #include <uapi/linux/limits.h> 64 #include <uapi/linux/limits.h> 65 #include <uapi/linux/netfilter/nf_tables.h> 65 #include <uapi/linux/netfilter/nf_tables.h> 66 #include <uapi/linux/openat2.h> // struct open 66 #include <uapi/linux/openat2.h> // struct open_how 67 #include <uapi/linux/fanotify.h> 67 #include <uapi/linux/fanotify.h> 68 68 69 #include "audit.h" 69 #include "audit.h" 70 70 71 /* flags stating the success for a syscall */ 71 /* flags stating the success for a syscall */ 72 #define AUDITSC_INVALID 0 72 #define AUDITSC_INVALID 0 73 #define AUDITSC_SUCCESS 1 73 #define AUDITSC_SUCCESS 1 74 #define AUDITSC_FAILURE 2 74 #define AUDITSC_FAILURE 2 75 75 76 /* no execve audit message should be longer th 76 /* no execve audit message should be longer than this (userspace limits), 77 * see the note near the top of audit_log_exec 77 * see the note near the top of audit_log_execve_info() about this value */ 78 #define MAX_EXECVE_AUDIT_LEN 7500 78 #define MAX_EXECVE_AUDIT_LEN 7500 79 79 80 /* max length to print of cmdline/proctitle va 80 /* max length to print of cmdline/proctitle value during audit */ 81 #define MAX_PROCTITLE_AUDIT_LEN 128 81 #define MAX_PROCTITLE_AUDIT_LEN 128 82 82 83 /* number of audit rules */ 83 /* number of audit rules */ 84 int audit_n_rules; 84 int audit_n_rules; 85 85 86 /* determines whether we collect data for sign 86 /* determines whether we collect data for signals sent */ 87 int audit_signals; 87 int audit_signals; 88 88 89 struct audit_aux_data { 89 struct audit_aux_data { 90 struct audit_aux_data *next; 90 struct audit_aux_data *next; 91 int type; 91 int type; 92 }; 92 }; 93 93 94 /* Number of target pids per aux struct. */ 94 /* Number of target pids per aux struct. */ 95 #define AUDIT_AUX_PIDS 16 95 #define AUDIT_AUX_PIDS 16 96 96 97 struct audit_aux_data_pids { 97 struct audit_aux_data_pids { 98 struct audit_aux_data d; 98 struct audit_aux_data d; 99 pid_t target_pid[AUD 99 pid_t target_pid[AUDIT_AUX_PIDS]; 100 kuid_t target_auid[AU 100 kuid_t target_auid[AUDIT_AUX_PIDS]; 101 kuid_t target_uid[AUD 101 kuid_t target_uid[AUDIT_AUX_PIDS]; 102 unsigned int target_session 102 unsigned int target_sessionid[AUDIT_AUX_PIDS]; 103 u32 target_sid[AUD 103 u32 target_sid[AUDIT_AUX_PIDS]; 104 char target_comm[AU 104 char target_comm[AUDIT_AUX_PIDS][TASK_COMM_LEN]; 105 int pid_count; 105 int pid_count; 106 }; 106 }; 107 107 108 struct audit_aux_data_bprm_fcaps { 108 struct audit_aux_data_bprm_fcaps { 109 struct audit_aux_data d; 109 struct audit_aux_data d; 110 struct audit_cap_data fcap; 110 struct audit_cap_data fcap; 111 unsigned int fcap_ver; 111 unsigned int fcap_ver; 112 struct audit_cap_data old_pcap; 112 struct audit_cap_data old_pcap; 113 struct audit_cap_data new_pcap; 113 struct audit_cap_data new_pcap; 114 }; 114 }; 115 115 116 struct audit_tree_refs { 116 struct audit_tree_refs { 117 struct audit_tree_refs *next; 117 struct audit_tree_refs *next; 118 struct audit_chunk *c[31]; 118 struct audit_chunk *c[31]; 119 }; 119 }; 120 120 121 struct audit_nfcfgop_tab { 121 struct audit_nfcfgop_tab { 122 enum audit_nfcfgop op; 122 enum audit_nfcfgop op; 123 const char *s; 123 const char *s; 124 }; 124 }; 125 125 126 static const struct audit_nfcfgop_tab audit_nf 126 static const struct audit_nfcfgop_tab audit_nfcfgs[] = { 127 { AUDIT_XT_OP_REGISTER, 127 { AUDIT_XT_OP_REGISTER, "xt_register" }, 128 { AUDIT_XT_OP_REPLACE, 128 { AUDIT_XT_OP_REPLACE, "xt_replace" }, 129 { AUDIT_XT_OP_UNREGISTER, 129 { AUDIT_XT_OP_UNREGISTER, "xt_unregister" }, 130 { AUDIT_NFT_OP_TABLE_REGISTER, 130 { AUDIT_NFT_OP_TABLE_REGISTER, "nft_register_table" }, 131 { AUDIT_NFT_OP_TABLE_UNREGISTER, 131 { AUDIT_NFT_OP_TABLE_UNREGISTER, "nft_unregister_table" }, 132 { AUDIT_NFT_OP_CHAIN_REGISTER, 132 { AUDIT_NFT_OP_CHAIN_REGISTER, "nft_register_chain" }, 133 { AUDIT_NFT_OP_CHAIN_UNREGISTER, 133 { AUDIT_NFT_OP_CHAIN_UNREGISTER, "nft_unregister_chain" }, 134 { AUDIT_NFT_OP_RULE_REGISTER, 134 { AUDIT_NFT_OP_RULE_REGISTER, "nft_register_rule" }, 135 { AUDIT_NFT_OP_RULE_UNREGISTER, 135 { AUDIT_NFT_OP_RULE_UNREGISTER, "nft_unregister_rule" }, 136 { AUDIT_NFT_OP_SET_REGISTER, 136 { AUDIT_NFT_OP_SET_REGISTER, "nft_register_set" }, 137 { AUDIT_NFT_OP_SET_UNREGISTER, 137 { AUDIT_NFT_OP_SET_UNREGISTER, "nft_unregister_set" }, 138 { AUDIT_NFT_OP_SETELEM_REGISTER, 138 { AUDIT_NFT_OP_SETELEM_REGISTER, "nft_register_setelem" }, 139 { AUDIT_NFT_OP_SETELEM_UNREGISTER, 139 { AUDIT_NFT_OP_SETELEM_UNREGISTER, "nft_unregister_setelem" }, 140 { AUDIT_NFT_OP_GEN_REGISTER, 140 { AUDIT_NFT_OP_GEN_REGISTER, "nft_register_gen" }, 141 { AUDIT_NFT_OP_OBJ_REGISTER, 141 { AUDIT_NFT_OP_OBJ_REGISTER, "nft_register_obj" }, 142 { AUDIT_NFT_OP_OBJ_UNREGISTER, 142 { AUDIT_NFT_OP_OBJ_UNREGISTER, "nft_unregister_obj" }, 143 { AUDIT_NFT_OP_OBJ_RESET, 143 { AUDIT_NFT_OP_OBJ_RESET, "nft_reset_obj" }, 144 { AUDIT_NFT_OP_FLOWTABLE_REGISTER, 144 { AUDIT_NFT_OP_FLOWTABLE_REGISTER, "nft_register_flowtable" }, 145 { AUDIT_NFT_OP_FLOWTABLE_UNREGISTER, 145 { AUDIT_NFT_OP_FLOWTABLE_UNREGISTER, "nft_unregister_flowtable" }, 146 { AUDIT_NFT_OP_SETELEM_RESET, << 147 { AUDIT_NFT_OP_RULE_RESET, << 148 { AUDIT_NFT_OP_INVALID, 146 { AUDIT_NFT_OP_INVALID, "nft_invalid" }, 149 }; 147 }; 150 148 151 static int audit_match_perm(struct audit_conte 149 static int audit_match_perm(struct audit_context *ctx, int mask) 152 { 150 { 153 unsigned n; 151 unsigned n; 154 152 155 if (unlikely(!ctx)) 153 if (unlikely(!ctx)) 156 return 0; 154 return 0; 157 n = ctx->major; 155 n = ctx->major; 158 156 159 switch (audit_classify_syscall(ctx->ar 157 switch (audit_classify_syscall(ctx->arch, n)) { 160 case AUDITSC_NATIVE: 158 case AUDITSC_NATIVE: 161 if ((mask & AUDIT_PERM_WRITE) 159 if ((mask & AUDIT_PERM_WRITE) && 162 audit_match_class(AUDIT_C 160 audit_match_class(AUDIT_CLASS_WRITE, n)) 163 return 1; 161 return 1; 164 if ((mask & AUDIT_PERM_READ) & 162 if ((mask & AUDIT_PERM_READ) && 165 audit_match_class(AUDIT_C 163 audit_match_class(AUDIT_CLASS_READ, n)) 166 return 1; 164 return 1; 167 if ((mask & AUDIT_PERM_ATTR) & 165 if ((mask & AUDIT_PERM_ATTR) && 168 audit_match_class(AUDIT_C 166 audit_match_class(AUDIT_CLASS_CHATTR, n)) 169 return 1; 167 return 1; 170 return 0; 168 return 0; 171 case AUDITSC_COMPAT: /* 32bit on biarc 169 case AUDITSC_COMPAT: /* 32bit on biarch */ 172 if ((mask & AUDIT_PERM_WRITE) 170 if ((mask & AUDIT_PERM_WRITE) && 173 audit_match_class(AUDIT_C 171 audit_match_class(AUDIT_CLASS_WRITE_32, n)) 174 return 1; 172 return 1; 175 if ((mask & AUDIT_PERM_READ) & 173 if ((mask & AUDIT_PERM_READ) && 176 audit_match_class(AUDIT_C 174 audit_match_class(AUDIT_CLASS_READ_32, n)) 177 return 1; 175 return 1; 178 if ((mask & AUDIT_PERM_ATTR) & 176 if ((mask & AUDIT_PERM_ATTR) && 179 audit_match_class(AUDIT_C 177 audit_match_class(AUDIT_CLASS_CHATTR_32, n)) 180 return 1; 178 return 1; 181 return 0; 179 return 0; 182 case AUDITSC_OPEN: 180 case AUDITSC_OPEN: 183 return mask & ACC_MODE(ctx->ar 181 return mask & ACC_MODE(ctx->argv[1]); 184 case AUDITSC_OPENAT: 182 case AUDITSC_OPENAT: 185 return mask & ACC_MODE(ctx->ar 183 return mask & ACC_MODE(ctx->argv[2]); 186 case AUDITSC_SOCKETCALL: 184 case AUDITSC_SOCKETCALL: 187 return ((mask & AUDIT_PERM_WRI 185 return ((mask & AUDIT_PERM_WRITE) && ctx->argv[0] == SYS_BIND); 188 case AUDITSC_EXECVE: 186 case AUDITSC_EXECVE: 189 return mask & AUDIT_PERM_EXEC; 187 return mask & AUDIT_PERM_EXEC; 190 case AUDITSC_OPENAT2: 188 case AUDITSC_OPENAT2: 191 return mask & ACC_MODE((u32)ct 189 return mask & ACC_MODE((u32)ctx->openat2.flags); 192 default: 190 default: 193 return 0; 191 return 0; 194 } 192 } 195 } 193 } 196 194 197 static int audit_match_filetype(struct audit_c 195 static int audit_match_filetype(struct audit_context *ctx, int val) 198 { 196 { 199 struct audit_names *n; 197 struct audit_names *n; 200 umode_t mode = (umode_t)val; 198 umode_t mode = (umode_t)val; 201 199 202 if (unlikely(!ctx)) 200 if (unlikely(!ctx)) 203 return 0; 201 return 0; 204 202 205 list_for_each_entry(n, &ctx->names_lis 203 list_for_each_entry(n, &ctx->names_list, list) { 206 if ((n->ino != AUDIT_INO_UNSET 204 if ((n->ino != AUDIT_INO_UNSET) && 207 ((n->mode & S_IFMT) == mod 205 ((n->mode & S_IFMT) == mode)) 208 return 1; 206 return 1; 209 } 207 } 210 208 211 return 0; 209 return 0; 212 } 210 } 213 211 214 /* 212 /* 215 * We keep a linked list of fixed-sized (31 po 213 * We keep a linked list of fixed-sized (31 pointer) arrays of audit_chunk *; 216 * ->first_trees points to its beginning, ->tr 214 * ->first_trees points to its beginning, ->trees - to the current end of data. 217 * ->tree_count is the number of free entries 215 * ->tree_count is the number of free entries in array pointed to by ->trees. 218 * Original condition is (NULL, NULL, 0); as s 216 * Original condition is (NULL, NULL, 0); as soon as it grows we never revert to NULL, 219 * "empty" becomes (p, p, 31) afterwards. We 217 * "empty" becomes (p, p, 31) afterwards. We don't shrink the list (and seriously, 220 * it's going to remain 1-element for almost a 218 * it's going to remain 1-element for almost any setup) until we free context itself. 221 * References in it _are_ dropped - at the sam 219 * References in it _are_ dropped - at the same time we free/drop aux stuff. 222 */ 220 */ 223 221 224 static void audit_set_auditable(struct audit_c 222 static void audit_set_auditable(struct audit_context *ctx) 225 { 223 { 226 if (!ctx->prio) { 224 if (!ctx->prio) { 227 ctx->prio = 1; 225 ctx->prio = 1; 228 ctx->current_state = AUDIT_STA 226 ctx->current_state = AUDIT_STATE_RECORD; 229 } 227 } 230 } 228 } 231 229 232 static int put_tree_ref(struct audit_context * 230 static int put_tree_ref(struct audit_context *ctx, struct audit_chunk *chunk) 233 { 231 { 234 struct audit_tree_refs *p = ctx->trees 232 struct audit_tree_refs *p = ctx->trees; 235 int left = ctx->tree_count; 233 int left = ctx->tree_count; 236 234 237 if (likely(left)) { 235 if (likely(left)) { 238 p->c[--left] = chunk; 236 p->c[--left] = chunk; 239 ctx->tree_count = left; 237 ctx->tree_count = left; 240 return 1; 238 return 1; 241 } 239 } 242 if (!p) 240 if (!p) 243 return 0; 241 return 0; 244 p = p->next; 242 p = p->next; 245 if (p) { 243 if (p) { 246 p->c[30] = chunk; 244 p->c[30] = chunk; 247 ctx->trees = p; 245 ctx->trees = p; 248 ctx->tree_count = 30; 246 ctx->tree_count = 30; 249 return 1; 247 return 1; 250 } 248 } 251 return 0; 249 return 0; 252 } 250 } 253 251 254 static int grow_tree_refs(struct audit_context 252 static int grow_tree_refs(struct audit_context *ctx) 255 { 253 { 256 struct audit_tree_refs *p = ctx->trees 254 struct audit_tree_refs *p = ctx->trees; 257 255 258 ctx->trees = kzalloc(sizeof(struct aud 256 ctx->trees = kzalloc(sizeof(struct audit_tree_refs), GFP_KERNEL); 259 if (!ctx->trees) { 257 if (!ctx->trees) { 260 ctx->trees = p; 258 ctx->trees = p; 261 return 0; 259 return 0; 262 } 260 } 263 if (p) 261 if (p) 264 p->next = ctx->trees; 262 p->next = ctx->trees; 265 else 263 else 266 ctx->first_trees = ctx->trees; 264 ctx->first_trees = ctx->trees; 267 ctx->tree_count = 31; 265 ctx->tree_count = 31; 268 return 1; 266 return 1; 269 } 267 } 270 268 271 static void unroll_tree_refs(struct audit_cont 269 static void unroll_tree_refs(struct audit_context *ctx, 272 struct audit_tree_refs * 270 struct audit_tree_refs *p, int count) 273 { 271 { 274 struct audit_tree_refs *q; 272 struct audit_tree_refs *q; 275 int n; 273 int n; 276 274 277 if (!p) { 275 if (!p) { 278 /* we started with empty chain 276 /* we started with empty chain */ 279 p = ctx->first_trees; 277 p = ctx->first_trees; 280 count = 31; 278 count = 31; 281 /* if the very first allocatio 279 /* if the very first allocation has failed, nothing to do */ 282 if (!p) 280 if (!p) 283 return; 281 return; 284 } 282 } 285 n = count; 283 n = count; 286 for (q = p; q != ctx->trees; q = q->ne 284 for (q = p; q != ctx->trees; q = q->next, n = 31) { 287 while (n--) { 285 while (n--) { 288 audit_put_chunk(q->c[n 286 audit_put_chunk(q->c[n]); 289 q->c[n] = NULL; 287 q->c[n] = NULL; 290 } 288 } 291 } 289 } 292 while (n-- > ctx->tree_count) { 290 while (n-- > ctx->tree_count) { 293 audit_put_chunk(q->c[n]); 291 audit_put_chunk(q->c[n]); 294 q->c[n] = NULL; 292 q->c[n] = NULL; 295 } 293 } 296 ctx->trees = p; 294 ctx->trees = p; 297 ctx->tree_count = count; 295 ctx->tree_count = count; 298 } 296 } 299 297 300 static void free_tree_refs(struct audit_contex 298 static void free_tree_refs(struct audit_context *ctx) 301 { 299 { 302 struct audit_tree_refs *p, *q; 300 struct audit_tree_refs *p, *q; 303 301 304 for (p = ctx->first_trees; p; p = q) { 302 for (p = ctx->first_trees; p; p = q) { 305 q = p->next; 303 q = p->next; 306 kfree(p); 304 kfree(p); 307 } 305 } 308 } 306 } 309 307 310 static int match_tree_refs(struct audit_contex 308 static int match_tree_refs(struct audit_context *ctx, struct audit_tree *tree) 311 { 309 { 312 struct audit_tree_refs *p; 310 struct audit_tree_refs *p; 313 int n; 311 int n; 314 312 315 if (!tree) 313 if (!tree) 316 return 0; 314 return 0; 317 /* full ones */ 315 /* full ones */ 318 for (p = ctx->first_trees; p != ctx->t 316 for (p = ctx->first_trees; p != ctx->trees; p = p->next) { 319 for (n = 0; n < 31; n++) 317 for (n = 0; n < 31; n++) 320 if (audit_tree_match(p 318 if (audit_tree_match(p->c[n], tree)) 321 return 1; 319 return 1; 322 } 320 } 323 /* partial */ 321 /* partial */ 324 if (p) { 322 if (p) { 325 for (n = ctx->tree_count; n < 323 for (n = ctx->tree_count; n < 31; n++) 326 if (audit_tree_match(p 324 if (audit_tree_match(p->c[n], tree)) 327 return 1; 325 return 1; 328 } 326 } 329 return 0; 327 return 0; 330 } 328 } 331 329 332 static int audit_compare_uid(kuid_t uid, 330 static int audit_compare_uid(kuid_t uid, 333 struct audit_name 331 struct audit_names *name, 334 struct audit_fiel 332 struct audit_field *f, 335 struct audit_cont 333 struct audit_context *ctx) 336 { 334 { 337 struct audit_names *n; 335 struct audit_names *n; 338 int rc; 336 int rc; 339 337 340 if (name) { 338 if (name) { 341 rc = audit_uid_comparator(uid, 339 rc = audit_uid_comparator(uid, f->op, name->uid); 342 if (rc) 340 if (rc) 343 return rc; 341 return rc; 344 } 342 } 345 343 346 if (ctx) { 344 if (ctx) { 347 list_for_each_entry(n, &ctx->n 345 list_for_each_entry(n, &ctx->names_list, list) { 348 rc = audit_uid_compara 346 rc = audit_uid_comparator(uid, f->op, n->uid); 349 if (rc) 347 if (rc) 350 return rc; 348 return rc; 351 } 349 } 352 } 350 } 353 return 0; 351 return 0; 354 } 352 } 355 353 356 static int audit_compare_gid(kgid_t gid, 354 static int audit_compare_gid(kgid_t gid, 357 struct audit_name 355 struct audit_names *name, 358 struct audit_fiel 356 struct audit_field *f, 359 struct audit_cont 357 struct audit_context *ctx) 360 { 358 { 361 struct audit_names *n; 359 struct audit_names *n; 362 int rc; 360 int rc; 363 361 364 if (name) { 362 if (name) { 365 rc = audit_gid_comparator(gid, 363 rc = audit_gid_comparator(gid, f->op, name->gid); 366 if (rc) 364 if (rc) 367 return rc; 365 return rc; 368 } 366 } 369 367 370 if (ctx) { 368 if (ctx) { 371 list_for_each_entry(n, &ctx->n 369 list_for_each_entry(n, &ctx->names_list, list) { 372 rc = audit_gid_compara 370 rc = audit_gid_comparator(gid, f->op, n->gid); 373 if (rc) 371 if (rc) 374 return rc; 372 return rc; 375 } 373 } 376 } 374 } 377 return 0; 375 return 0; 378 } 376 } 379 377 380 static int audit_field_compare(struct task_str 378 static int audit_field_compare(struct task_struct *tsk, 381 const struct cr 379 const struct cred *cred, 382 struct audit_fi 380 struct audit_field *f, 383 struct audit_co 381 struct audit_context *ctx, 384 struct audit_na 382 struct audit_names *name) 385 { 383 { 386 switch (f->val) { 384 switch (f->val) { 387 /* process to file object comparisons 385 /* process to file object comparisons */ 388 case AUDIT_COMPARE_UID_TO_OBJ_UID: 386 case AUDIT_COMPARE_UID_TO_OBJ_UID: 389 return audit_compare_uid(cred- 387 return audit_compare_uid(cred->uid, name, f, ctx); 390 case AUDIT_COMPARE_GID_TO_OBJ_GID: 388 case AUDIT_COMPARE_GID_TO_OBJ_GID: 391 return audit_compare_gid(cred- 389 return audit_compare_gid(cred->gid, name, f, ctx); 392 case AUDIT_COMPARE_EUID_TO_OBJ_UID: 390 case AUDIT_COMPARE_EUID_TO_OBJ_UID: 393 return audit_compare_uid(cred- 391 return audit_compare_uid(cred->euid, name, f, ctx); 394 case AUDIT_COMPARE_EGID_TO_OBJ_GID: 392 case AUDIT_COMPARE_EGID_TO_OBJ_GID: 395 return audit_compare_gid(cred- 393 return audit_compare_gid(cred->egid, name, f, ctx); 396 case AUDIT_COMPARE_AUID_TO_OBJ_UID: 394 case AUDIT_COMPARE_AUID_TO_OBJ_UID: 397 return audit_compare_uid(audit 395 return audit_compare_uid(audit_get_loginuid(tsk), name, f, ctx); 398 case AUDIT_COMPARE_SUID_TO_OBJ_UID: 396 case AUDIT_COMPARE_SUID_TO_OBJ_UID: 399 return audit_compare_uid(cred- 397 return audit_compare_uid(cred->suid, name, f, ctx); 400 case AUDIT_COMPARE_SGID_TO_OBJ_GID: 398 case AUDIT_COMPARE_SGID_TO_OBJ_GID: 401 return audit_compare_gid(cred- 399 return audit_compare_gid(cred->sgid, name, f, ctx); 402 case AUDIT_COMPARE_FSUID_TO_OBJ_UID: 400 case AUDIT_COMPARE_FSUID_TO_OBJ_UID: 403 return audit_compare_uid(cred- 401 return audit_compare_uid(cred->fsuid, name, f, ctx); 404 case AUDIT_COMPARE_FSGID_TO_OBJ_GID: 402 case AUDIT_COMPARE_FSGID_TO_OBJ_GID: 405 return audit_compare_gid(cred- 403 return audit_compare_gid(cred->fsgid, name, f, ctx); 406 /* uid comparisons */ 404 /* uid comparisons */ 407 case AUDIT_COMPARE_UID_TO_AUID: 405 case AUDIT_COMPARE_UID_TO_AUID: 408 return audit_uid_comparator(cr 406 return audit_uid_comparator(cred->uid, f->op, 409 au 407 audit_get_loginuid(tsk)); 410 case AUDIT_COMPARE_UID_TO_EUID: 408 case AUDIT_COMPARE_UID_TO_EUID: 411 return audit_uid_comparator(cr 409 return audit_uid_comparator(cred->uid, f->op, cred->euid); 412 case AUDIT_COMPARE_UID_TO_SUID: 410 case AUDIT_COMPARE_UID_TO_SUID: 413 return audit_uid_comparator(cr 411 return audit_uid_comparator(cred->uid, f->op, cred->suid); 414 case AUDIT_COMPARE_UID_TO_FSUID: 412 case AUDIT_COMPARE_UID_TO_FSUID: 415 return audit_uid_comparator(cr 413 return audit_uid_comparator(cred->uid, f->op, cred->fsuid); 416 /* auid comparisons */ 414 /* auid comparisons */ 417 case AUDIT_COMPARE_AUID_TO_EUID: 415 case AUDIT_COMPARE_AUID_TO_EUID: 418 return audit_uid_comparator(au 416 return audit_uid_comparator(audit_get_loginuid(tsk), f->op, 419 cr 417 cred->euid); 420 case AUDIT_COMPARE_AUID_TO_SUID: 418 case AUDIT_COMPARE_AUID_TO_SUID: 421 return audit_uid_comparator(au 419 return audit_uid_comparator(audit_get_loginuid(tsk), f->op, 422 cr 420 cred->suid); 423 case AUDIT_COMPARE_AUID_TO_FSUID: 421 case AUDIT_COMPARE_AUID_TO_FSUID: 424 return audit_uid_comparator(au 422 return audit_uid_comparator(audit_get_loginuid(tsk), f->op, 425 cr 423 cred->fsuid); 426 /* euid comparisons */ 424 /* euid comparisons */ 427 case AUDIT_COMPARE_EUID_TO_SUID: 425 case AUDIT_COMPARE_EUID_TO_SUID: 428 return audit_uid_comparator(cr 426 return audit_uid_comparator(cred->euid, f->op, cred->suid); 429 case AUDIT_COMPARE_EUID_TO_FSUID: 427 case AUDIT_COMPARE_EUID_TO_FSUID: 430 return audit_uid_comparator(cr 428 return audit_uid_comparator(cred->euid, f->op, cred->fsuid); 431 /* suid comparisons */ 429 /* suid comparisons */ 432 case AUDIT_COMPARE_SUID_TO_FSUID: 430 case AUDIT_COMPARE_SUID_TO_FSUID: 433 return audit_uid_comparator(cr 431 return audit_uid_comparator(cred->suid, f->op, cred->fsuid); 434 /* gid comparisons */ 432 /* gid comparisons */ 435 case AUDIT_COMPARE_GID_TO_EGID: 433 case AUDIT_COMPARE_GID_TO_EGID: 436 return audit_gid_comparator(cr 434 return audit_gid_comparator(cred->gid, f->op, cred->egid); 437 case AUDIT_COMPARE_GID_TO_SGID: 435 case AUDIT_COMPARE_GID_TO_SGID: 438 return audit_gid_comparator(cr 436 return audit_gid_comparator(cred->gid, f->op, cred->sgid); 439 case AUDIT_COMPARE_GID_TO_FSGID: 437 case AUDIT_COMPARE_GID_TO_FSGID: 440 return audit_gid_comparator(cr 438 return audit_gid_comparator(cred->gid, f->op, cred->fsgid); 441 /* egid comparisons */ 439 /* egid comparisons */ 442 case AUDIT_COMPARE_EGID_TO_SGID: 440 case AUDIT_COMPARE_EGID_TO_SGID: 443 return audit_gid_comparator(cr 441 return audit_gid_comparator(cred->egid, f->op, cred->sgid); 444 case AUDIT_COMPARE_EGID_TO_FSGID: 442 case AUDIT_COMPARE_EGID_TO_FSGID: 445 return audit_gid_comparator(cr 443 return audit_gid_comparator(cred->egid, f->op, cred->fsgid); 446 /* sgid comparison */ 444 /* sgid comparison */ 447 case AUDIT_COMPARE_SGID_TO_FSGID: 445 case AUDIT_COMPARE_SGID_TO_FSGID: 448 return audit_gid_comparator(cr 446 return audit_gid_comparator(cred->sgid, f->op, cred->fsgid); 449 default: 447 default: 450 WARN(1, "Missing AUDIT_COMPARE 448 WARN(1, "Missing AUDIT_COMPARE define. Report as a bug\n"); 451 return 0; 449 return 0; 452 } 450 } 453 return 0; 451 return 0; 454 } 452 } 455 453 456 /* Determine if any context name data matches 454 /* Determine if any context name data matches a rule's watch data */ 457 /* Compare a task_struct with an audit_rule. 455 /* Compare a task_struct with an audit_rule. Return 1 on match, 0 458 * otherwise. 456 * otherwise. 459 * 457 * 460 * If task_creation is true, this is an explic 458 * If task_creation is true, this is an explicit indication that we are 461 * filtering a task rule at task creation time 459 * filtering a task rule at task creation time. This and tsk == current are 462 * the only situations where tsk->cred may be 460 * the only situations where tsk->cred may be accessed without an rcu read lock. 463 */ 461 */ 464 static int audit_filter_rules(struct task_stru 462 static int audit_filter_rules(struct task_struct *tsk, 465 struct audit_kru 463 struct audit_krule *rule, 466 struct audit_con 464 struct audit_context *ctx, 467 struct audit_nam 465 struct audit_names *name, 468 enum audit_state 466 enum audit_state *state, 469 bool task_creati 467 bool task_creation) 470 { 468 { 471 const struct cred *cred; 469 const struct cred *cred; 472 int i, need_sid = 1; 470 int i, need_sid = 1; 473 u32 sid; 471 u32 sid; 474 unsigned int sessionid; 472 unsigned int sessionid; 475 473 476 if (ctx && rule->prio <= ctx->prio) 474 if (ctx && rule->prio <= ctx->prio) 477 return 0; 475 return 0; 478 476 479 cred = rcu_dereference_check(tsk->cred 477 cred = rcu_dereference_check(tsk->cred, tsk == current || task_creation); 480 478 481 for (i = 0; i < rule->field_count; i++ 479 for (i = 0; i < rule->field_count; i++) { 482 struct audit_field *f = &rule- 480 struct audit_field *f = &rule->fields[i]; 483 struct audit_names *n; 481 struct audit_names *n; 484 int result = 0; 482 int result = 0; 485 pid_t pid; 483 pid_t pid; 486 484 487 switch (f->type) { 485 switch (f->type) { 488 case AUDIT_PID: 486 case AUDIT_PID: 489 pid = task_tgid_nr(tsk 487 pid = task_tgid_nr(tsk); 490 result = audit_compara 488 result = audit_comparator(pid, f->op, f->val); 491 break; 489 break; 492 case AUDIT_PPID: 490 case AUDIT_PPID: 493 if (ctx) { 491 if (ctx) { 494 if (!ctx->ppid 492 if (!ctx->ppid) 495 ctx->p 493 ctx->ppid = task_ppid_nr(tsk); 496 result = audit 494 result = audit_comparator(ctx->ppid, f->op, f->val); 497 } 495 } 498 break; 496 break; 499 case AUDIT_EXE: 497 case AUDIT_EXE: 500 result = audit_exe_com 498 result = audit_exe_compare(tsk, rule->exe); 501 if (f->op == Audit_not 499 if (f->op == Audit_not_equal) 502 result = !resu 500 result = !result; 503 break; 501 break; 504 case AUDIT_UID: 502 case AUDIT_UID: 505 result = audit_uid_com 503 result = audit_uid_comparator(cred->uid, f->op, f->uid); 506 break; 504 break; 507 case AUDIT_EUID: 505 case AUDIT_EUID: 508 result = audit_uid_com 506 result = audit_uid_comparator(cred->euid, f->op, f->uid); 509 break; 507 break; 510 case AUDIT_SUID: 508 case AUDIT_SUID: 511 result = audit_uid_com 509 result = audit_uid_comparator(cred->suid, f->op, f->uid); 512 break; 510 break; 513 case AUDIT_FSUID: 511 case AUDIT_FSUID: 514 result = audit_uid_com 512 result = audit_uid_comparator(cred->fsuid, f->op, f->uid); 515 break; 513 break; 516 case AUDIT_GID: 514 case AUDIT_GID: 517 result = audit_gid_com 515 result = audit_gid_comparator(cred->gid, f->op, f->gid); 518 if (f->op == Audit_equ 516 if (f->op == Audit_equal) { 519 if (!result) 517 if (!result) 520 result 518 result = groups_search(cred->group_info, f->gid); 521 } else if (f->op == Au 519 } else if (f->op == Audit_not_equal) { 522 if (result) 520 if (result) 523 result 521 result = !groups_search(cred->group_info, f->gid); 524 } 522 } 525 break; 523 break; 526 case AUDIT_EGID: 524 case AUDIT_EGID: 527 result = audit_gid_com 525 result = audit_gid_comparator(cred->egid, f->op, f->gid); 528 if (f->op == Audit_equ 526 if (f->op == Audit_equal) { 529 if (!result) 527 if (!result) 530 result 528 result = groups_search(cred->group_info, f->gid); 531 } else if (f->op == Au 529 } else if (f->op == Audit_not_equal) { 532 if (result) 530 if (result) 533 result 531 result = !groups_search(cred->group_info, f->gid); 534 } 532 } 535 break; 533 break; 536 case AUDIT_SGID: 534 case AUDIT_SGID: 537 result = audit_gid_com 535 result = audit_gid_comparator(cred->sgid, f->op, f->gid); 538 break; 536 break; 539 case AUDIT_FSGID: 537 case AUDIT_FSGID: 540 result = audit_gid_com 538 result = audit_gid_comparator(cred->fsgid, f->op, f->gid); 541 break; 539 break; 542 case AUDIT_SESSIONID: 540 case AUDIT_SESSIONID: 543 sessionid = audit_get_ 541 sessionid = audit_get_sessionid(tsk); 544 result = audit_compara 542 result = audit_comparator(sessionid, f->op, f->val); 545 break; 543 break; 546 case AUDIT_PERS: 544 case AUDIT_PERS: 547 result = audit_compara 545 result = audit_comparator(tsk->personality, f->op, f->val); 548 break; 546 break; 549 case AUDIT_ARCH: 547 case AUDIT_ARCH: 550 if (ctx) 548 if (ctx) 551 result = audit 549 result = audit_comparator(ctx->arch, f->op, f->val); 552 break; 550 break; 553 551 554 case AUDIT_EXIT: 552 case AUDIT_EXIT: 555 if (ctx && ctx->return 553 if (ctx && ctx->return_valid != AUDITSC_INVALID) 556 result = audit 554 result = audit_comparator(ctx->return_code, f->op, f->val); 557 break; 555 break; 558 case AUDIT_SUCCESS: 556 case AUDIT_SUCCESS: 559 if (ctx && ctx->return 557 if (ctx && ctx->return_valid != AUDITSC_INVALID) { 560 if (f->val) 558 if (f->val) 561 result 559 result = audit_comparator(ctx->return_valid, f->op, AUDITSC_SUCCESS); 562 else 560 else 563 result 561 result = audit_comparator(ctx->return_valid, f->op, AUDITSC_FAILURE); 564 } 562 } 565 break; 563 break; 566 case AUDIT_DEVMAJOR: 564 case AUDIT_DEVMAJOR: 567 if (name) { 565 if (name) { 568 if (audit_comp 566 if (audit_comparator(MAJOR(name->dev), f->op, f->val) || 569 audit_comp 567 audit_comparator(MAJOR(name->rdev), f->op, f->val)) 570 ++resu 568 ++result; 571 } else if (ctx) { 569 } else if (ctx) { 572 list_for_each_ 570 list_for_each_entry(n, &ctx->names_list, list) { 573 if (au 571 if (audit_comparator(MAJOR(n->dev), f->op, f->val) || 574 au 572 audit_comparator(MAJOR(n->rdev), f->op, f->val)) { 575 573 ++result; 576 574 break; 577 } 575 } 578 } 576 } 579 } 577 } 580 break; 578 break; 581 case AUDIT_DEVMINOR: 579 case AUDIT_DEVMINOR: 582 if (name) { 580 if (name) { 583 if (audit_comp 581 if (audit_comparator(MINOR(name->dev), f->op, f->val) || 584 audit_comp 582 audit_comparator(MINOR(name->rdev), f->op, f->val)) 585 ++resu 583 ++result; 586 } else if (ctx) { 584 } else if (ctx) { 587 list_for_each_ 585 list_for_each_entry(n, &ctx->names_list, list) { 588 if (au 586 if (audit_comparator(MINOR(n->dev), f->op, f->val) || 589 au 587 audit_comparator(MINOR(n->rdev), f->op, f->val)) { 590 588 ++result; 591 589 break; 592 } 590 } 593 } 591 } 594 } 592 } 595 break; 593 break; 596 case AUDIT_INODE: 594 case AUDIT_INODE: 597 if (name) 595 if (name) 598 result = audit 596 result = audit_comparator(name->ino, f->op, f->val); 599 else if (ctx) { 597 else if (ctx) { 600 list_for_each_ 598 list_for_each_entry(n, &ctx->names_list, list) { 601 if (au 599 if (audit_comparator(n->ino, f->op, f->val)) { 602 600 ++result; 603 601 break; 604 } 602 } 605 } 603 } 606 } 604 } 607 break; 605 break; 608 case AUDIT_OBJ_UID: 606 case AUDIT_OBJ_UID: 609 if (name) { 607 if (name) { 610 result = audit 608 result = audit_uid_comparator(name->uid, f->op, f->uid); 611 } else if (ctx) { 609 } else if (ctx) { 612 list_for_each_ 610 list_for_each_entry(n, &ctx->names_list, list) { 613 if (au 611 if (audit_uid_comparator(n->uid, f->op, f->uid)) { 614 612 ++result; 615 613 break; 616 } 614 } 617 } 615 } 618 } 616 } 619 break; 617 break; 620 case AUDIT_OBJ_GID: 618 case AUDIT_OBJ_GID: 621 if (name) { 619 if (name) { 622 result = audit 620 result = audit_gid_comparator(name->gid, f->op, f->gid); 623 } else if (ctx) { 621 } else if (ctx) { 624 list_for_each_ 622 list_for_each_entry(n, &ctx->names_list, list) { 625 if (au 623 if (audit_gid_comparator(n->gid, f->op, f->gid)) { 626 624 ++result; 627 625 break; 628 } 626 } 629 } 627 } 630 } 628 } 631 break; 629 break; 632 case AUDIT_WATCH: 630 case AUDIT_WATCH: 633 if (name) { 631 if (name) { 634 result = audit 632 result = audit_watch_compare(rule->watch, 635 633 name->ino, 636 634 name->dev); 637 if (f->op == A 635 if (f->op == Audit_not_equal) 638 result 636 result = !result; 639 } 637 } 640 break; 638 break; 641 case AUDIT_DIR: 639 case AUDIT_DIR: 642 if (ctx) { 640 if (ctx) { 643 result = match 641 result = match_tree_refs(ctx, rule->tree); 644 if (f->op == A 642 if (f->op == Audit_not_equal) 645 result 643 result = !result; 646 } 644 } 647 break; 645 break; 648 case AUDIT_LOGINUID: 646 case AUDIT_LOGINUID: 649 result = audit_uid_com 647 result = audit_uid_comparator(audit_get_loginuid(tsk), 650 648 f->op, f->uid); 651 break; 649 break; 652 case AUDIT_LOGINUID_SET: 650 case AUDIT_LOGINUID_SET: 653 result = audit_compara 651 result = audit_comparator(audit_loginuid_set(tsk), f->op, f->val); 654 break; 652 break; 655 case AUDIT_SADDR_FAM: 653 case AUDIT_SADDR_FAM: 656 if (ctx && ctx->sockad 654 if (ctx && ctx->sockaddr) 657 result = audit 655 result = audit_comparator(ctx->sockaddr->ss_family, 658 656 f->op, f->val); 659 break; 657 break; 660 case AUDIT_SUBJ_USER: 658 case AUDIT_SUBJ_USER: 661 case AUDIT_SUBJ_ROLE: 659 case AUDIT_SUBJ_ROLE: 662 case AUDIT_SUBJ_TYPE: 660 case AUDIT_SUBJ_TYPE: 663 case AUDIT_SUBJ_SEN: 661 case AUDIT_SUBJ_SEN: 664 case AUDIT_SUBJ_CLR: 662 case AUDIT_SUBJ_CLR: 665 /* NOTE: this may retu 663 /* NOTE: this may return negative values indicating 666 a temporary error. 664 a temporary error. We simply treat this as a 667 match for now to av 665 match for now to avoid losing information that 668 may be wanted. An 666 may be wanted. An error message will also be 669 logged upon error * 667 logged upon error */ 670 if (f->lsm_rule) { 668 if (f->lsm_rule) { 671 if (need_sid) 669 if (need_sid) { 672 /* @ts 670 /* @tsk should always be equal to 673 * @cu 671 * @current with the exception of 674 * for 672 * fork()/copy_process() in which case 675 * the 673 * the new @tsk creds are still a dup 676 * of 674 * of @current's creds so we can still 677 * use 675 * use security_current_getsecid_subj() 678 * her 676 * here even though it always refs 679 * @cu 677 * @current's creds 680 */ 678 */ 681 securi 679 security_current_getsecid_subj(&sid); 682 need_s 680 need_sid = 0; 683 } 681 } 684 result = secur 682 result = security_audit_rule_match(sid, f->type, 685 683 f->op, 686 684 f->lsm_rule); 687 } 685 } 688 break; 686 break; 689 case AUDIT_OBJ_USER: 687 case AUDIT_OBJ_USER: 690 case AUDIT_OBJ_ROLE: 688 case AUDIT_OBJ_ROLE: 691 case AUDIT_OBJ_TYPE: 689 case AUDIT_OBJ_TYPE: 692 case AUDIT_OBJ_LEV_LOW: 690 case AUDIT_OBJ_LEV_LOW: 693 case AUDIT_OBJ_LEV_HIGH: 691 case AUDIT_OBJ_LEV_HIGH: 694 /* The above note for 692 /* The above note for AUDIT_SUBJ_USER...AUDIT_SUBJ_CLR 695 also applies here * 693 also applies here */ 696 if (f->lsm_rule) { 694 if (f->lsm_rule) { 697 /* Find files 695 /* Find files that match */ 698 if (name) { 696 if (name) { 699 result 697 result = security_audit_rule_match( 700 698 name->osid, 701 699 f->type, 702 700 f->op, 703 701 f->lsm_rule); 704 } else if (ctx 702 } else if (ctx) { 705 list_f 703 list_for_each_entry(n, &ctx->names_list, list) { 706 704 if (security_audit_rule_match( 707 705 n->osid, 708 706 f->type, 709 707 f->op, 710 708 f->lsm_rule)) { 711 709 ++result; 712 710 break; 713 711 } 714 } 712 } 715 } 713 } 716 /* Find ipc ob 714 /* Find ipc objects that match */ 717 if (!ctx || ct 715 if (!ctx || ctx->type != AUDIT_IPC) 718 break; 716 break; 719 if (security_a 717 if (security_audit_rule_match(ctx->ipc.osid, 720 718 f->type, f->op, 721 719 f->lsm_rule)) 722 ++resu 720 ++result; 723 } 721 } 724 break; 722 break; 725 case AUDIT_ARG0: 723 case AUDIT_ARG0: 726 case AUDIT_ARG1: 724 case AUDIT_ARG1: 727 case AUDIT_ARG2: 725 case AUDIT_ARG2: 728 case AUDIT_ARG3: 726 case AUDIT_ARG3: 729 if (ctx) 727 if (ctx) 730 result = audit 728 result = audit_comparator(ctx->argv[f->type-AUDIT_ARG0], f->op, f->val); 731 break; 729 break; 732 case AUDIT_FILTERKEY: 730 case AUDIT_FILTERKEY: 733 /* ignore this field f 731 /* ignore this field for filtering */ 734 result = 1; 732 result = 1; 735 break; 733 break; 736 case AUDIT_PERM: 734 case AUDIT_PERM: 737 result = audit_match_p 735 result = audit_match_perm(ctx, f->val); 738 if (f->op == Audit_not 736 if (f->op == Audit_not_equal) 739 result = !resu 737 result = !result; 740 break; 738 break; 741 case AUDIT_FILETYPE: 739 case AUDIT_FILETYPE: 742 result = audit_match_f 740 result = audit_match_filetype(ctx, f->val); 743 if (f->op == Audit_not 741 if (f->op == Audit_not_equal) 744 result = !resu 742 result = !result; 745 break; 743 break; 746 case AUDIT_FIELD_COMPARE: 744 case AUDIT_FIELD_COMPARE: 747 result = audit_field_c 745 result = audit_field_compare(tsk, cred, f, ctx, name); 748 break; 746 break; 749 } 747 } 750 if (!result) 748 if (!result) 751 return 0; 749 return 0; 752 } 750 } 753 751 754 if (ctx) { 752 if (ctx) { 755 if (rule->filterkey) { 753 if (rule->filterkey) { 756 kfree(ctx->filterkey); 754 kfree(ctx->filterkey); 757 ctx->filterkey = kstrd 755 ctx->filterkey = kstrdup(rule->filterkey, GFP_ATOMIC); 758 } 756 } 759 ctx->prio = rule->prio; 757 ctx->prio = rule->prio; 760 } 758 } 761 switch (rule->action) { 759 switch (rule->action) { 762 case AUDIT_NEVER: 760 case AUDIT_NEVER: 763 *state = AUDIT_STATE_DISABLED; 761 *state = AUDIT_STATE_DISABLED; 764 break; 762 break; 765 case AUDIT_ALWAYS: 763 case AUDIT_ALWAYS: 766 *state = AUDIT_STATE_RECORD; 764 *state = AUDIT_STATE_RECORD; 767 break; 765 break; 768 } 766 } 769 return 1; 767 return 1; 770 } 768 } 771 769 772 /* At process creation time, we can determine 770 /* At process creation time, we can determine if system-call auditing is 773 * completely disabled for this task. Since w 771 * completely disabled for this task. Since we only have the task 774 * structure at this point, we can only check 772 * structure at this point, we can only check uid and gid. 775 */ 773 */ 776 static enum audit_state audit_filter_task(stru 774 static enum audit_state audit_filter_task(struct task_struct *tsk, char **key) 777 { 775 { 778 struct audit_entry *e; 776 struct audit_entry *e; 779 enum audit_state state; 777 enum audit_state state; 780 778 781 rcu_read_lock(); 779 rcu_read_lock(); 782 list_for_each_entry_rcu(e, &audit_filt 780 list_for_each_entry_rcu(e, &audit_filter_list[AUDIT_FILTER_TASK], list) { 783 if (audit_filter_rules(tsk, &e 781 if (audit_filter_rules(tsk, &e->rule, NULL, NULL, 784 &state, 782 &state, true)) { 785 if (state == AUDIT_STA 783 if (state == AUDIT_STATE_RECORD) 786 *key = kstrdup 784 *key = kstrdup(e->rule.filterkey, GFP_ATOMIC); 787 rcu_read_unlock(); 785 rcu_read_unlock(); 788 return state; 786 return state; 789 } 787 } 790 } 788 } 791 rcu_read_unlock(); 789 rcu_read_unlock(); 792 return AUDIT_STATE_BUILD; 790 return AUDIT_STATE_BUILD; 793 } 791 } 794 792 795 static int audit_in_mask(const struct audit_kr 793 static int audit_in_mask(const struct audit_krule *rule, unsigned long val) 796 { 794 { 797 int word, bit; 795 int word, bit; 798 796 799 if (val > 0xffffffff) 797 if (val > 0xffffffff) 800 return false; 798 return false; 801 799 802 word = AUDIT_WORD(val); 800 word = AUDIT_WORD(val); 803 if (word >= AUDIT_BITMASK_SIZE) 801 if (word >= AUDIT_BITMASK_SIZE) 804 return false; 802 return false; 805 803 806 bit = AUDIT_BIT(val); 804 bit = AUDIT_BIT(val); 807 805 808 return rule->mask[word] & bit; 806 return rule->mask[word] & bit; 809 } 807 } 810 808 811 /** 809 /** 812 * __audit_filter_op - common filter helper fo 810 * __audit_filter_op - common filter helper for operations (syscall/uring/etc) 813 * @tsk: associated task 811 * @tsk: associated task 814 * @ctx: audit context 812 * @ctx: audit context 815 * @list: audit filter list 813 * @list: audit filter list 816 * @name: audit_name (can be NULL) 814 * @name: audit_name (can be NULL) 817 * @op: current syscall/uring_op 815 * @op: current syscall/uring_op 818 * 816 * 819 * Run the udit filters specified in @list aga 817 * Run the udit filters specified in @list against @tsk using @ctx, 820 * @name, and @op, as necessary; the caller is 818 * @name, and @op, as necessary; the caller is responsible for ensuring 821 * that the call is made while the RCU read lo 819 * that the call is made while the RCU read lock is held. The @name 822 * parameter can be NULL, but all others must 820 * parameter can be NULL, but all others must be specified. 823 * Returns 1/true if the filter finds a match, 821 * Returns 1/true if the filter finds a match, 0/false if none are found. 824 */ 822 */ 825 static int __audit_filter_op(struct task_struc 823 static int __audit_filter_op(struct task_struct *tsk, 826 struct audit_contex 824 struct audit_context *ctx, 827 struct list_head *l 825 struct list_head *list, 828 struct audit_names 826 struct audit_names *name, 829 unsigned long op) 827 unsigned long op) 830 { 828 { 831 struct audit_entry *e; 829 struct audit_entry *e; 832 enum audit_state state; 830 enum audit_state state; 833 831 834 list_for_each_entry_rcu(e, list, list) 832 list_for_each_entry_rcu(e, list, list) { 835 if (audit_in_mask(&e->rule, op 833 if (audit_in_mask(&e->rule, op) && 836 audit_filter_rules(tsk, &e 834 audit_filter_rules(tsk, &e->rule, ctx, name, 837 &state, 835 &state, false)) { 838 ctx->current_state = s 836 ctx->current_state = state; 839 return 1; 837 return 1; 840 } 838 } 841 } 839 } 842 return 0; 840 return 0; 843 } 841 } 844 842 845 /** 843 /** 846 * audit_filter_uring - apply filters to an io 844 * audit_filter_uring - apply filters to an io_uring operation 847 * @tsk: associated task 845 * @tsk: associated task 848 * @ctx: audit context 846 * @ctx: audit context 849 */ 847 */ 850 static void audit_filter_uring(struct task_str 848 static void audit_filter_uring(struct task_struct *tsk, 851 struct audit_co 849 struct audit_context *ctx) 852 { 850 { 853 if (auditd_test_task(tsk)) 851 if (auditd_test_task(tsk)) 854 return; 852 return; 855 853 856 rcu_read_lock(); 854 rcu_read_lock(); 857 __audit_filter_op(tsk, ctx, &audit_fil 855 __audit_filter_op(tsk, ctx, &audit_filter_list[AUDIT_FILTER_URING_EXIT], 858 NULL, ctx->uring_op); 856 NULL, ctx->uring_op); 859 rcu_read_unlock(); 857 rcu_read_unlock(); 860 } 858 } 861 859 862 /* At syscall exit time, this filter is called 860 /* At syscall exit time, this filter is called if the audit_state is 863 * not low enough that auditing cannot take pl 861 * not low enough that auditing cannot take place, but is also not 864 * high enough that we already know we have to 862 * high enough that we already know we have to write an audit record 865 * (i.e., the state is AUDIT_STATE_BUILD). 863 * (i.e., the state is AUDIT_STATE_BUILD). 866 */ 864 */ 867 static void audit_filter_syscall(struct task_s 865 static void audit_filter_syscall(struct task_struct *tsk, 868 struct audit_ 866 struct audit_context *ctx) 869 { 867 { 870 if (auditd_test_task(tsk)) 868 if (auditd_test_task(tsk)) 871 return; 869 return; 872 870 873 rcu_read_lock(); 871 rcu_read_lock(); 874 __audit_filter_op(tsk, ctx, &audit_fil 872 __audit_filter_op(tsk, ctx, &audit_filter_list[AUDIT_FILTER_EXIT], 875 NULL, ctx->major); 873 NULL, ctx->major); 876 rcu_read_unlock(); 874 rcu_read_unlock(); 877 } 875 } 878 876 879 /* 877 /* 880 * Given an audit_name check the inode hash ta 878 * Given an audit_name check the inode hash table to see if they match. 881 * Called holding the rcu read lock to protect 879 * Called holding the rcu read lock to protect the use of audit_inode_hash 882 */ 880 */ 883 static int audit_filter_inode_name(struct task 881 static int audit_filter_inode_name(struct task_struct *tsk, 884 struct audi 882 struct audit_names *n, 885 struct audi !! 883 struct audit_context *ctx) { 886 { << 887 int h = audit_hash_ino((u32)n->ino); 884 int h = audit_hash_ino((u32)n->ino); 888 struct list_head *list = &audit_inode_ 885 struct list_head *list = &audit_inode_hash[h]; 889 886 890 return __audit_filter_op(tsk, ctx, lis 887 return __audit_filter_op(tsk, ctx, list, n, ctx->major); 891 } 888 } 892 889 893 /* At syscall exit time, this filter is called 890 /* At syscall exit time, this filter is called if any audit_names have been 894 * collected during syscall processing. We on 891 * collected during syscall processing. We only check rules in sublists at hash 895 * buckets applicable to the inode numbers in 892 * buckets applicable to the inode numbers in audit_names. 896 * Regarding audit_state, same rules apply as 893 * Regarding audit_state, same rules apply as for audit_filter_syscall(). 897 */ 894 */ 898 void audit_filter_inodes(struct task_struct *t 895 void audit_filter_inodes(struct task_struct *tsk, struct audit_context *ctx) 899 { 896 { 900 struct audit_names *n; 897 struct audit_names *n; 901 898 902 if (auditd_test_task(tsk)) 899 if (auditd_test_task(tsk)) 903 return; 900 return; 904 901 905 rcu_read_lock(); 902 rcu_read_lock(); 906 903 907 list_for_each_entry(n, &ctx->names_lis 904 list_for_each_entry(n, &ctx->names_list, list) { 908 if (audit_filter_inode_name(ts 905 if (audit_filter_inode_name(tsk, n, ctx)) 909 break; 906 break; 910 } 907 } 911 rcu_read_unlock(); 908 rcu_read_unlock(); 912 } 909 } 913 910 914 static inline void audit_proctitle_free(struct 911 static inline void audit_proctitle_free(struct audit_context *context) 915 { 912 { 916 kfree(context->proctitle.value); 913 kfree(context->proctitle.value); 917 context->proctitle.value = NULL; 914 context->proctitle.value = NULL; 918 context->proctitle.len = 0; 915 context->proctitle.len = 0; 919 } 916 } 920 917 921 static inline void audit_free_module(struct au 918 static inline void audit_free_module(struct audit_context *context) 922 { 919 { 923 if (context->type == AUDIT_KERN_MODULE 920 if (context->type == AUDIT_KERN_MODULE) { 924 kfree(context->module.name); 921 kfree(context->module.name); 925 context->module.name = NULL; 922 context->module.name = NULL; 926 } 923 } 927 } 924 } 928 static inline void audit_free_names(struct aud 925 static inline void audit_free_names(struct audit_context *context) 929 { 926 { 930 struct audit_names *n, *next; 927 struct audit_names *n, *next; 931 928 932 list_for_each_entry_safe(n, next, &con 929 list_for_each_entry_safe(n, next, &context->names_list, list) { 933 list_del(&n->list); 930 list_del(&n->list); 934 if (n->name) 931 if (n->name) 935 putname(n->name); 932 putname(n->name); 936 if (n->should_free) 933 if (n->should_free) 937 kfree(n); 934 kfree(n); 938 } 935 } 939 context->name_count = 0; 936 context->name_count = 0; 940 path_put(&context->pwd); 937 path_put(&context->pwd); 941 context->pwd.dentry = NULL; 938 context->pwd.dentry = NULL; 942 context->pwd.mnt = NULL; 939 context->pwd.mnt = NULL; 943 } 940 } 944 941 945 static inline void audit_free_aux(struct audit 942 static inline void audit_free_aux(struct audit_context *context) 946 { 943 { 947 struct audit_aux_data *aux; 944 struct audit_aux_data *aux; 948 945 949 while ((aux = context->aux)) { 946 while ((aux = context->aux)) { 950 context->aux = aux->next; 947 context->aux = aux->next; 951 kfree(aux); 948 kfree(aux); 952 } 949 } 953 context->aux = NULL; 950 context->aux = NULL; 954 while ((aux = context->aux_pids)) { 951 while ((aux = context->aux_pids)) { 955 context->aux_pids = aux->next; 952 context->aux_pids = aux->next; 956 kfree(aux); 953 kfree(aux); 957 } 954 } 958 context->aux_pids = NULL; 955 context->aux_pids = NULL; 959 } 956 } 960 957 961 /** 958 /** 962 * audit_reset_context - reset a audit_context 959 * audit_reset_context - reset a audit_context structure 963 * @ctx: the audit_context to reset 960 * @ctx: the audit_context to reset 964 * 961 * 965 * All fields in the audit_context will be res 962 * All fields in the audit_context will be reset to an initial state, all 966 * references held by fields will be dropped, 963 * references held by fields will be dropped, and private memory will be 967 * released. When this function returns the a 964 * released. When this function returns the audit_context will be suitable 968 * for reuse, so long as the passed context is 965 * for reuse, so long as the passed context is not NULL or a dummy context. 969 */ 966 */ 970 static void audit_reset_context(struct audit_c 967 static void audit_reset_context(struct audit_context *ctx) 971 { 968 { 972 if (!ctx) 969 if (!ctx) 973 return; 970 return; 974 971 975 /* if ctx is non-null, reset the "ctx- 972 /* if ctx is non-null, reset the "ctx->context" regardless */ 976 ctx->context = AUDIT_CTX_UNUSED; 973 ctx->context = AUDIT_CTX_UNUSED; 977 if (ctx->dummy) 974 if (ctx->dummy) 978 return; 975 return; 979 976 980 /* 977 /* 981 * NOTE: It shouldn't matter in what o 978 * NOTE: It shouldn't matter in what order we release the fields, so 982 * release them in the order in 979 * release them in the order in which they appear in the struct; 983 * this gives us some hope of qu 980 * this gives us some hope of quickly making sure we are 984 * resetting the audit_context p 981 * resetting the audit_context properly. 985 * 982 * 986 * Other things worth mentioning 983 * Other things worth mentioning: 987 * - we don't reset "dummy" 984 * - we don't reset "dummy" 988 * - we don't reset "state", we 985 * - we don't reset "state", we do reset "current_state" 989 * - we preserve "filterkey" if 986 * - we preserve "filterkey" if "state" is AUDIT_STATE_RECORD 990 * - much of this is likely over 987 * - much of this is likely overkill, but play it safe for now 991 * - we really need to work on i 988 * - we really need to work on improving the audit_context struct 992 */ 989 */ 993 990 994 ctx->current_state = ctx->state; 991 ctx->current_state = ctx->state; 995 ctx->serial = 0; 992 ctx->serial = 0; 996 ctx->major = 0; 993 ctx->major = 0; 997 ctx->uring_op = 0; 994 ctx->uring_op = 0; 998 ctx->ctime = (struct timespec64){ .tv_ 995 ctx->ctime = (struct timespec64){ .tv_sec = 0, .tv_nsec = 0 }; 999 memset(ctx->argv, 0, sizeof(ctx->argv) 996 memset(ctx->argv, 0, sizeof(ctx->argv)); 1000 ctx->return_code = 0; 997 ctx->return_code = 0; 1001 ctx->prio = (ctx->state == AUDIT_STAT 998 ctx->prio = (ctx->state == AUDIT_STATE_RECORD ? ~0ULL : 0); 1002 ctx->return_valid = AUDITSC_INVALID; 999 ctx->return_valid = AUDITSC_INVALID; 1003 audit_free_names(ctx); 1000 audit_free_names(ctx); 1004 if (ctx->state != AUDIT_STATE_RECORD) 1001 if (ctx->state != AUDIT_STATE_RECORD) { 1005 kfree(ctx->filterkey); 1002 kfree(ctx->filterkey); 1006 ctx->filterkey = NULL; 1003 ctx->filterkey = NULL; 1007 } 1004 } 1008 audit_free_aux(ctx); 1005 audit_free_aux(ctx); 1009 kfree(ctx->sockaddr); 1006 kfree(ctx->sockaddr); 1010 ctx->sockaddr = NULL; 1007 ctx->sockaddr = NULL; 1011 ctx->sockaddr_len = 0; 1008 ctx->sockaddr_len = 0; 1012 ctx->ppid = 0; 1009 ctx->ppid = 0; 1013 ctx->uid = ctx->euid = ctx->suid = ct 1010 ctx->uid = ctx->euid = ctx->suid = ctx->fsuid = KUIDT_INIT(0); 1014 ctx->gid = ctx->egid = ctx->sgid = ct 1011 ctx->gid = ctx->egid = ctx->sgid = ctx->fsgid = KGIDT_INIT(0); 1015 ctx->personality = 0; 1012 ctx->personality = 0; 1016 ctx->arch = 0; 1013 ctx->arch = 0; 1017 ctx->target_pid = 0; 1014 ctx->target_pid = 0; 1018 ctx->target_auid = ctx->target_uid = 1015 ctx->target_auid = ctx->target_uid = KUIDT_INIT(0); 1019 ctx->target_sessionid = 0; 1016 ctx->target_sessionid = 0; 1020 ctx->target_sid = 0; 1017 ctx->target_sid = 0; 1021 ctx->target_comm[0] = '\0'; 1018 ctx->target_comm[0] = '\0'; 1022 unroll_tree_refs(ctx, NULL, 0); 1019 unroll_tree_refs(ctx, NULL, 0); 1023 WARN_ON(!list_empty(&ctx->killed_tree 1020 WARN_ON(!list_empty(&ctx->killed_trees)); 1024 audit_free_module(ctx); 1021 audit_free_module(ctx); 1025 ctx->fds[0] = -1; 1022 ctx->fds[0] = -1; 1026 ctx->type = 0; /* reset last for audi 1023 ctx->type = 0; /* reset last for audit_free_*() */ 1027 } 1024 } 1028 1025 1029 static inline struct audit_context *audit_all 1026 static inline struct audit_context *audit_alloc_context(enum audit_state state) 1030 { 1027 { 1031 struct audit_context *context; 1028 struct audit_context *context; 1032 1029 1033 context = kzalloc(sizeof(*context), G 1030 context = kzalloc(sizeof(*context), GFP_KERNEL); 1034 if (!context) 1031 if (!context) 1035 return NULL; 1032 return NULL; 1036 context->context = AUDIT_CTX_UNUSED; 1033 context->context = AUDIT_CTX_UNUSED; 1037 context->state = state; 1034 context->state = state; 1038 context->prio = state == AUDIT_STATE_ 1035 context->prio = state == AUDIT_STATE_RECORD ? ~0ULL : 0; 1039 INIT_LIST_HEAD(&context->killed_trees 1036 INIT_LIST_HEAD(&context->killed_trees); 1040 INIT_LIST_HEAD(&context->names_list); 1037 INIT_LIST_HEAD(&context->names_list); 1041 context->fds[0] = -1; 1038 context->fds[0] = -1; 1042 context->return_valid = AUDITSC_INVAL 1039 context->return_valid = AUDITSC_INVALID; 1043 return context; 1040 return context; 1044 } 1041 } 1045 1042 1046 /** 1043 /** 1047 * audit_alloc - allocate an audit context bl 1044 * audit_alloc - allocate an audit context block for a task 1048 * @tsk: task 1045 * @tsk: task 1049 * 1046 * 1050 * Filter on the task information and allocat 1047 * Filter on the task information and allocate a per-task audit context 1051 * if necessary. Doing so turns on system ca 1048 * if necessary. Doing so turns on system call auditing for the 1052 * specified task. This is called from copy_ 1049 * specified task. This is called from copy_process, so no lock is 1053 * needed. 1050 * needed. 1054 */ 1051 */ 1055 int audit_alloc(struct task_struct *tsk) 1052 int audit_alloc(struct task_struct *tsk) 1056 { 1053 { 1057 struct audit_context *context; 1054 struct audit_context *context; 1058 enum audit_state state; 1055 enum audit_state state; 1059 char *key = NULL; 1056 char *key = NULL; 1060 1057 1061 if (likely(!audit_ever_enabled)) 1058 if (likely(!audit_ever_enabled)) 1062 return 0; 1059 return 0; 1063 1060 1064 state = audit_filter_task(tsk, &key); 1061 state = audit_filter_task(tsk, &key); 1065 if (state == AUDIT_STATE_DISABLED) { 1062 if (state == AUDIT_STATE_DISABLED) { 1066 clear_task_syscall_work(tsk, 1063 clear_task_syscall_work(tsk, SYSCALL_AUDIT); 1067 return 0; 1064 return 0; 1068 } 1065 } 1069 1066 1070 context = audit_alloc_context(state); !! 1067 if (!(context = audit_alloc_context(state))) { 1071 if (!context) { << 1072 kfree(key); 1068 kfree(key); 1073 audit_log_lost("out of memory 1069 audit_log_lost("out of memory in audit_alloc"); 1074 return -ENOMEM; 1070 return -ENOMEM; 1075 } 1071 } 1076 context->filterkey = key; 1072 context->filterkey = key; 1077 1073 1078 audit_set_context(tsk, context); 1074 audit_set_context(tsk, context); 1079 set_task_syscall_work(tsk, SYSCALL_AU 1075 set_task_syscall_work(tsk, SYSCALL_AUDIT); 1080 return 0; 1076 return 0; 1081 } 1077 } 1082 1078 1083 static inline void audit_free_context(struct 1079 static inline void audit_free_context(struct audit_context *context) 1084 { 1080 { 1085 /* resetting is extra work, but it is 1081 /* resetting is extra work, but it is likely just noise */ 1086 audit_reset_context(context); 1082 audit_reset_context(context); 1087 audit_proctitle_free(context); 1083 audit_proctitle_free(context); 1088 free_tree_refs(context); 1084 free_tree_refs(context); 1089 kfree(context->filterkey); 1085 kfree(context->filterkey); 1090 kfree(context); 1086 kfree(context); 1091 } 1087 } 1092 1088 1093 static int audit_log_pid_context(struct audit 1089 static int audit_log_pid_context(struct audit_context *context, pid_t pid, 1094 kuid_t auid, 1090 kuid_t auid, kuid_t uid, unsigned int sessionid, 1095 u32 sid, cha 1091 u32 sid, char *comm) 1096 { 1092 { 1097 struct audit_buffer *ab; 1093 struct audit_buffer *ab; 1098 char *ctx = NULL; 1094 char *ctx = NULL; 1099 u32 len; 1095 u32 len; 1100 int rc = 0; 1096 int rc = 0; 1101 1097 1102 ab = audit_log_start(context, GFP_KER 1098 ab = audit_log_start(context, GFP_KERNEL, AUDIT_OBJ_PID); 1103 if (!ab) 1099 if (!ab) 1104 return rc; 1100 return rc; 1105 1101 1106 audit_log_format(ab, "opid=%d oauid=% 1102 audit_log_format(ab, "opid=%d oauid=%d ouid=%d oses=%d", pid, 1107 from_kuid(&init_user 1103 from_kuid(&init_user_ns, auid), 1108 from_kuid(&init_user 1104 from_kuid(&init_user_ns, uid), sessionid); 1109 if (sid) { 1105 if (sid) { 1110 if (security_secid_to_secctx( 1106 if (security_secid_to_secctx(sid, &ctx, &len)) { 1111 audit_log_format(ab, 1107 audit_log_format(ab, " obj=(none)"); 1112 rc = 1; 1108 rc = 1; 1113 } else { 1109 } else { 1114 audit_log_format(ab, 1110 audit_log_format(ab, " obj=%s", ctx); 1115 security_release_secc 1111 security_release_secctx(ctx, len); 1116 } 1112 } 1117 } 1113 } 1118 audit_log_format(ab, " ocomm="); 1114 audit_log_format(ab, " ocomm="); 1119 audit_log_untrustedstring(ab, comm); 1115 audit_log_untrustedstring(ab, comm); 1120 audit_log_end(ab); 1116 audit_log_end(ab); 1121 1117 1122 return rc; 1118 return rc; 1123 } 1119 } 1124 1120 1125 static void audit_log_execve_info(struct audi 1121 static void audit_log_execve_info(struct audit_context *context, 1126 struct audi 1122 struct audit_buffer **ab) 1127 { 1123 { 1128 long len_max; 1124 long len_max; 1129 long len_rem; 1125 long len_rem; 1130 long len_full; 1126 long len_full; 1131 long len_buf; 1127 long len_buf; 1132 long len_abuf = 0; 1128 long len_abuf = 0; 1133 long len_tmp; 1129 long len_tmp; 1134 bool require_data; 1130 bool require_data; 1135 bool encode; 1131 bool encode; 1136 unsigned int iter; 1132 unsigned int iter; 1137 unsigned int arg; 1133 unsigned int arg; 1138 char *buf_head; 1134 char *buf_head; 1139 char *buf; 1135 char *buf; 1140 const char __user *p = (const char __ 1136 const char __user *p = (const char __user *)current->mm->arg_start; 1141 1137 1142 /* NOTE: this buffer needs to be larg 1138 /* NOTE: this buffer needs to be large enough to hold all the non-arg 1143 * data we put in the audit rec 1139 * data we put in the audit record for this argument (see the 1144 * code below) ... at this poin 1140 * code below) ... at this point in time 96 is plenty */ 1145 char abuf[96]; 1141 char abuf[96]; 1146 1142 1147 /* NOTE: we set MAX_EXECVE_AUDIT_LEN 1143 /* NOTE: we set MAX_EXECVE_AUDIT_LEN to a rather arbitrary limit, the 1148 * current value of 7500 is not 1144 * current value of 7500 is not as important as the fact that it 1149 * is less than 8k, a setting o 1145 * is less than 8k, a setting of 7500 gives us plenty of wiggle 1150 * room if we go over a little 1146 * room if we go over a little bit in the logging below */ 1151 WARN_ON_ONCE(MAX_EXECVE_AUDIT_LEN > 7 1147 WARN_ON_ONCE(MAX_EXECVE_AUDIT_LEN > 7500); 1152 len_max = MAX_EXECVE_AUDIT_LEN; 1148 len_max = MAX_EXECVE_AUDIT_LEN; 1153 1149 1154 /* scratch buffer to hold the userspa 1150 /* scratch buffer to hold the userspace args */ 1155 buf_head = kmalloc(MAX_EXECVE_AUDIT_L 1151 buf_head = kmalloc(MAX_EXECVE_AUDIT_LEN + 1, GFP_KERNEL); 1156 if (!buf_head) { 1152 if (!buf_head) { 1157 audit_panic("out of memory fo 1153 audit_panic("out of memory for argv string"); 1158 return; 1154 return; 1159 } 1155 } 1160 buf = buf_head; 1156 buf = buf_head; 1161 1157 1162 audit_log_format(*ab, "argc=%d", cont 1158 audit_log_format(*ab, "argc=%d", context->execve.argc); 1163 1159 1164 len_rem = len_max; 1160 len_rem = len_max; 1165 len_buf = 0; 1161 len_buf = 0; 1166 len_full = 0; 1162 len_full = 0; 1167 require_data = true; 1163 require_data = true; 1168 encode = false; 1164 encode = false; 1169 iter = 0; 1165 iter = 0; 1170 arg = 0; 1166 arg = 0; 1171 do { 1167 do { 1172 /* NOTE: we don't ever want t 1168 /* NOTE: we don't ever want to trust this value for anything 1173 * serious, but the aud 1169 * serious, but the audit record format insists we 1174 * provide an argument 1170 * provide an argument length for really long arguments, 1175 * e.g. > MAX_EXECVE_AU 1171 * e.g. > MAX_EXECVE_AUDIT_LEN, so we have no choice but 1176 * to use strncpy_from_ 1172 * to use strncpy_from_user() to obtain this value for 1177 * recording in the log 1173 * recording in the log, although we don't use it 1178 * anywhere here to avo 1174 * anywhere here to avoid a double-fetch problem */ 1179 if (len_full == 0) 1175 if (len_full == 0) 1180 len_full = strnlen_us 1176 len_full = strnlen_user(p, MAX_ARG_STRLEN) - 1; 1181 1177 1182 /* read more data from usersp 1178 /* read more data from userspace */ 1183 if (require_data) { 1179 if (require_data) { 1184 /* can we make more r 1180 /* can we make more room in the buffer? */ 1185 if (buf != buf_head) 1181 if (buf != buf_head) { 1186 memmove(buf_h 1182 memmove(buf_head, buf, len_buf); 1187 buf = buf_hea 1183 buf = buf_head; 1188 } 1184 } 1189 1185 1190 /* fetch as much as w 1186 /* fetch as much as we can of the argument */ 1191 len_tmp = strncpy_fro 1187 len_tmp = strncpy_from_user(&buf_head[len_buf], p, 1192 1188 len_max - len_buf); 1193 if (len_tmp == -EFAUL 1189 if (len_tmp == -EFAULT) { 1194 /* unable to 1190 /* unable to copy from userspace */ 1195 send_sig(SIGK 1191 send_sig(SIGKILL, current, 0); 1196 goto out; 1192 goto out; 1197 } else if (len_tmp == 1193 } else if (len_tmp == (len_max - len_buf)) { 1198 /* buffer is 1194 /* buffer is not large enough */ 1199 require_data 1195 require_data = true; 1200 /* NOTE: if w 1196 /* NOTE: if we are going to span multiple 1201 * buff 1197 * buffers force the encoding so we stand 1202 * a ch 1198 * a chance at a sane len_full value and 1203 * cons 1199 * consistent record encoding */ 1204 encode = true 1200 encode = true; 1205 len_full = le 1201 len_full = len_full * 2; 1206 p += len_tmp; 1202 p += len_tmp; 1207 } else { 1203 } else { 1208 require_data 1204 require_data = false; 1209 if (!encode) 1205 if (!encode) 1210 encod 1206 encode = audit_string_contains_control( 1211 1207 buf, len_tmp); 1212 /* try to use 1208 /* try to use a trusted value for len_full */ 1213 if (len_full 1209 if (len_full < len_max) 1214 len_f 1210 len_full = (encode ? 1215 1211 len_tmp * 2 : len_tmp); 1216 p += len_tmp 1212 p += len_tmp + 1; 1217 } 1213 } 1218 len_buf += len_tmp; 1214 len_buf += len_tmp; 1219 buf_head[len_buf] = ' 1215 buf_head[len_buf] = '\0'; 1220 1216 1221 /* length of the buff 1217 /* length of the buffer in the audit record? */ 1222 len_abuf = (encode ? 1218 len_abuf = (encode ? len_buf * 2 : len_buf + 2); 1223 } 1219 } 1224 1220 1225 /* write as much as we can to 1221 /* write as much as we can to the audit log */ 1226 if (len_buf >= 0) { 1222 if (len_buf >= 0) { 1227 /* NOTE: some magic n 1223 /* NOTE: some magic numbers here - basically if we 1228 * can't fit a 1224 * can't fit a reasonable amount of data into the 1229 * existing aud 1225 * existing audit buffer, flush it and start with 1230 * a new buffer 1226 * a new buffer */ 1231 if ((sizeof(abuf) + 8 1227 if ((sizeof(abuf) + 8) > len_rem) { 1232 len_rem = len 1228 len_rem = len_max; 1233 audit_log_end 1229 audit_log_end(*ab); 1234 *ab = audit_l 1230 *ab = audit_log_start(context, 1235 1231 GFP_KERNEL, AUDIT_EXECVE); 1236 if (!*ab) 1232 if (!*ab) 1237 goto 1233 goto out; 1238 } 1234 } 1239 1235 1240 /* create the non-arg 1236 /* create the non-arg portion of the arg record */ 1241 len_tmp = 0; 1237 len_tmp = 0; 1242 if (require_data || ( 1238 if (require_data || (iter > 0) || 1243 ((len_abuf + size 1239 ((len_abuf + sizeof(abuf)) > len_rem)) { 1244 if (iter == 0 1240 if (iter == 0) { 1245 len_t 1241 len_tmp += snprintf(&abuf[len_tmp], 1246 1242 sizeof(abuf) - len_tmp, 1247 1243 " a%d_len=%lu", 1248 1244 arg, len_full); 1249 } 1245 } 1250 len_tmp += sn 1246 len_tmp += snprintf(&abuf[len_tmp], 1251 1247 sizeof(abuf) - len_tmp, 1252 1248 " a%d[%d]=", arg, iter++); 1253 } else 1249 } else 1254 len_tmp += sn 1250 len_tmp += snprintf(&abuf[len_tmp], 1255 1251 sizeof(abuf) - len_tmp, 1256 1252 " a%d=", arg); 1257 WARN_ON(len_tmp >= si 1253 WARN_ON(len_tmp >= sizeof(abuf)); 1258 abuf[sizeof(abuf) - 1 1254 abuf[sizeof(abuf) - 1] = '\0'; 1259 1255 1260 /* log the arg in the 1256 /* log the arg in the audit record */ 1261 audit_log_format(*ab, 1257 audit_log_format(*ab, "%s", abuf); 1262 len_rem -= len_tmp; 1258 len_rem -= len_tmp; 1263 len_tmp = len_buf; 1259 len_tmp = len_buf; 1264 if (encode) { 1260 if (encode) { 1265 if (len_abuf 1261 if (len_abuf > len_rem) 1266 len_t 1262 len_tmp = len_rem / 2; /* encoding */ 1267 audit_log_n_h 1263 audit_log_n_hex(*ab, buf, len_tmp); 1268 len_rem -= le 1264 len_rem -= len_tmp * 2; 1269 len_abuf -= l 1265 len_abuf -= len_tmp * 2; 1270 } else { 1266 } else { 1271 if (len_abuf 1267 if (len_abuf > len_rem) 1272 len_t 1268 len_tmp = len_rem - 2; /* quotes */ 1273 audit_log_n_s 1269 audit_log_n_string(*ab, buf, len_tmp); 1274 len_rem -= le 1270 len_rem -= len_tmp + 2; 1275 /* don't subt 1271 /* don't subtract the "2" because we still need 1276 * to add quo 1272 * to add quotes to the remaining string */ 1277 len_abuf -= l 1273 len_abuf -= len_tmp; 1278 } 1274 } 1279 len_buf -= len_tmp; 1275 len_buf -= len_tmp; 1280 buf += len_tmp; 1276 buf += len_tmp; 1281 } 1277 } 1282 1278 1283 /* ready to move to the next 1279 /* ready to move to the next argument? */ 1284 if ((len_buf == 0) && !requir 1280 if ((len_buf == 0) && !require_data) { 1285 arg++; 1281 arg++; 1286 iter = 0; 1282 iter = 0; 1287 len_full = 0; 1283 len_full = 0; 1288 require_data = true; 1284 require_data = true; 1289 encode = false; 1285 encode = false; 1290 } 1286 } 1291 } while (arg < context->execve.argc); 1287 } while (arg < context->execve.argc); 1292 1288 1293 /* NOTE: the caller handles the final 1289 /* NOTE: the caller handles the final audit_log_end() call */ 1294 1290 1295 out: 1291 out: 1296 kfree(buf_head); 1292 kfree(buf_head); 1297 } 1293 } 1298 1294 1299 static void audit_log_cap(struct audit_buffer 1295 static void audit_log_cap(struct audit_buffer *ab, char *prefix, 1300 kernel_cap_t *cap) 1296 kernel_cap_t *cap) 1301 { 1297 { 1302 if (cap_isclear(*cap)) { 1298 if (cap_isclear(*cap)) { 1303 audit_log_format(ab, " %s=0", 1299 audit_log_format(ab, " %s=0", prefix); 1304 return; 1300 return; 1305 } 1301 } 1306 audit_log_format(ab, " %s=%016llx", p 1302 audit_log_format(ab, " %s=%016llx", prefix, cap->val); 1307 } 1303 } 1308 1304 1309 static void audit_log_fcaps(struct audit_buff 1305 static void audit_log_fcaps(struct audit_buffer *ab, struct audit_names *name) 1310 { 1306 { 1311 if (name->fcap_ver == -1) { 1307 if (name->fcap_ver == -1) { 1312 audit_log_format(ab, " cap_fe 1308 audit_log_format(ab, " cap_fe=? cap_fver=? cap_fp=? cap_fi=?"); 1313 return; 1309 return; 1314 } 1310 } 1315 audit_log_cap(ab, "cap_fp", &name->fc 1311 audit_log_cap(ab, "cap_fp", &name->fcap.permitted); 1316 audit_log_cap(ab, "cap_fi", &name->fc 1312 audit_log_cap(ab, "cap_fi", &name->fcap.inheritable); 1317 audit_log_format(ab, " cap_fe=%d cap_ 1313 audit_log_format(ab, " cap_fe=%d cap_fver=%x cap_frootid=%d", 1318 name->fcap.fE, name- 1314 name->fcap.fE, name->fcap_ver, 1319 from_kuid(&init_user 1315 from_kuid(&init_user_ns, name->fcap.rootid)); 1320 } 1316 } 1321 1317 1322 static void audit_log_time(struct audit_conte 1318 static void audit_log_time(struct audit_context *context, struct audit_buffer **ab) 1323 { 1319 { 1324 const struct audit_ntp_data *ntp = &c 1320 const struct audit_ntp_data *ntp = &context->time.ntp_data; 1325 const struct timespec64 *tk = &contex 1321 const struct timespec64 *tk = &context->time.tk_injoffset; 1326 static const char * const ntp_name[] 1322 static const char * const ntp_name[] = { 1327 "offset", 1323 "offset", 1328 "freq", 1324 "freq", 1329 "status", 1325 "status", 1330 "tai", 1326 "tai", 1331 "tick", 1327 "tick", 1332 "adjust", 1328 "adjust", 1333 }; 1329 }; 1334 int type; 1330 int type; 1335 1331 1336 if (context->type == AUDIT_TIME_ADJNT 1332 if (context->type == AUDIT_TIME_ADJNTPVAL) { 1337 for (type = 0; type < AUDIT_N 1333 for (type = 0; type < AUDIT_NTP_NVALS; type++) { 1338 if (ntp->vals[type].n 1334 if (ntp->vals[type].newval != ntp->vals[type].oldval) { 1339 if (!*ab) { 1335 if (!*ab) { 1340 *ab = 1336 *ab = audit_log_start(context, 1341 1337 GFP_KERNEL, 1342 1338 AUDIT_TIME_ADJNTPVAL); 1343 if (! 1339 if (!*ab) 1344 1340 return; 1345 } 1341 } 1346 audit_log_for 1342 audit_log_format(*ab, "op=%s old=%lli new=%lli", 1347 1343 ntp_name[type], 1348 1344 ntp->vals[type].oldval, 1349 1345 ntp->vals[type].newval); 1350 audit_log_end 1346 audit_log_end(*ab); 1351 *ab = NULL; 1347 *ab = NULL; 1352 } 1348 } 1353 } 1349 } 1354 } 1350 } 1355 if (tk->tv_sec != 0 || tk->tv_nsec != 1351 if (tk->tv_sec != 0 || tk->tv_nsec != 0) { 1356 if (!*ab) { 1352 if (!*ab) { 1357 *ab = audit_log_start 1353 *ab = audit_log_start(context, GFP_KERNEL, 1358 1354 AUDIT_TIME_INJOFFSET); 1359 if (!*ab) 1355 if (!*ab) 1360 return; 1356 return; 1361 } 1357 } 1362 audit_log_format(*ab, "sec=%l 1358 audit_log_format(*ab, "sec=%lli nsec=%li", 1363 (long long)t 1359 (long long)tk->tv_sec, tk->tv_nsec); 1364 audit_log_end(*ab); 1360 audit_log_end(*ab); 1365 *ab = NULL; 1361 *ab = NULL; 1366 } 1362 } 1367 } 1363 } 1368 1364 1369 static void show_special(struct audit_context 1365 static void show_special(struct audit_context *context, int *call_panic) 1370 { 1366 { 1371 struct audit_buffer *ab; 1367 struct audit_buffer *ab; 1372 int i; 1368 int i; 1373 1369 1374 ab = audit_log_start(context, GFP_KER 1370 ab = audit_log_start(context, GFP_KERNEL, context->type); 1375 if (!ab) 1371 if (!ab) 1376 return; 1372 return; 1377 1373 1378 switch (context->type) { 1374 switch (context->type) { 1379 case AUDIT_SOCKETCALL: { 1375 case AUDIT_SOCKETCALL: { 1380 int nargs = context->socketca 1376 int nargs = context->socketcall.nargs; 1381 1377 1382 audit_log_format(ab, "nargs=% 1378 audit_log_format(ab, "nargs=%d", nargs); 1383 for (i = 0; i < nargs; i++) 1379 for (i = 0; i < nargs; i++) 1384 audit_log_format(ab, 1380 audit_log_format(ab, " a%d=%lx", i, 1385 context->sock 1381 context->socketcall.args[i]); 1386 break; } 1382 break; } 1387 case AUDIT_IPC: { 1383 case AUDIT_IPC: { 1388 u32 osid = context->ipc.osid; 1384 u32 osid = context->ipc.osid; 1389 1385 1390 audit_log_format(ab, "ouid=%u 1386 audit_log_format(ab, "ouid=%u ogid=%u mode=%#ho", 1391 from_kuid(&i 1387 from_kuid(&init_user_ns, context->ipc.uid), 1392 from_kgid(&i 1388 from_kgid(&init_user_ns, context->ipc.gid), 1393 context->ipc 1389 context->ipc.mode); 1394 if (osid) { 1390 if (osid) { 1395 char *ctx = NULL; 1391 char *ctx = NULL; 1396 u32 len; 1392 u32 len; 1397 1393 1398 if (security_secid_to 1394 if (security_secid_to_secctx(osid, &ctx, &len)) { 1399 audit_log_for 1395 audit_log_format(ab, " osid=%u", osid); 1400 *call_panic = 1396 *call_panic = 1; 1401 } else { 1397 } else { 1402 audit_log_for 1398 audit_log_format(ab, " obj=%s", ctx); 1403 security_rele 1399 security_release_secctx(ctx, len); 1404 } 1400 } 1405 } 1401 } 1406 if (context->ipc.has_perm) { 1402 if (context->ipc.has_perm) { 1407 audit_log_end(ab); 1403 audit_log_end(ab); 1408 ab = audit_log_start( 1404 ab = audit_log_start(context, GFP_KERNEL, 1409 1405 AUDIT_IPC_SET_PERM); 1410 if (unlikely(!ab)) 1406 if (unlikely(!ab)) 1411 return; 1407 return; 1412 audit_log_format(ab, 1408 audit_log_format(ab, 1413 "qbytes=%lx o 1409 "qbytes=%lx ouid=%u ogid=%u mode=%#ho", 1414 context->ipc. 1410 context->ipc.qbytes, 1415 context->ipc. 1411 context->ipc.perm_uid, 1416 context->ipc. 1412 context->ipc.perm_gid, 1417 context->ipc. 1413 context->ipc.perm_mode); 1418 } 1414 } 1419 break; } 1415 break; } 1420 case AUDIT_MQ_OPEN: 1416 case AUDIT_MQ_OPEN: 1421 audit_log_format(ab, 1417 audit_log_format(ab, 1422 "oflag=0x%x mode=%#ho 1418 "oflag=0x%x mode=%#ho mq_flags=0x%lx mq_maxmsg=%ld " 1423 "mq_msgsize=%ld mq_cu 1419 "mq_msgsize=%ld mq_curmsgs=%ld", 1424 context->mq_open.ofla 1420 context->mq_open.oflag, context->mq_open.mode, 1425 context->mq_open.attr 1421 context->mq_open.attr.mq_flags, 1426 context->mq_open.attr 1422 context->mq_open.attr.mq_maxmsg, 1427 context->mq_open.attr 1423 context->mq_open.attr.mq_msgsize, 1428 context->mq_open.attr 1424 context->mq_open.attr.mq_curmsgs); 1429 break; 1425 break; 1430 case AUDIT_MQ_SENDRECV: 1426 case AUDIT_MQ_SENDRECV: 1431 audit_log_format(ab, 1427 audit_log_format(ab, 1432 "mqdes=%d msg_len=%zd 1428 "mqdes=%d msg_len=%zd msg_prio=%u " 1433 "abs_timeout_sec=%lld 1429 "abs_timeout_sec=%lld abs_timeout_nsec=%ld", 1434 context->mq_sendrecv. 1430 context->mq_sendrecv.mqdes, 1435 context->mq_sendrecv. 1431 context->mq_sendrecv.msg_len, 1436 context->mq_sendrecv. 1432 context->mq_sendrecv.msg_prio, 1437 (long long) context-> 1433 (long long) context->mq_sendrecv.abs_timeout.tv_sec, 1438 context->mq_sendrecv. 1434 context->mq_sendrecv.abs_timeout.tv_nsec); 1439 break; 1435 break; 1440 case AUDIT_MQ_NOTIFY: 1436 case AUDIT_MQ_NOTIFY: 1441 audit_log_format(ab, "mqdes=% 1437 audit_log_format(ab, "mqdes=%d sigev_signo=%d", 1442 context->mq_n 1438 context->mq_notify.mqdes, 1443 context->mq_n 1439 context->mq_notify.sigev_signo); 1444 break; 1440 break; 1445 case AUDIT_MQ_GETSETATTR: { 1441 case AUDIT_MQ_GETSETATTR: { 1446 struct mq_attr *attr = &conte 1442 struct mq_attr *attr = &context->mq_getsetattr.mqstat; 1447 1443 1448 audit_log_format(ab, 1444 audit_log_format(ab, 1449 "mqdes=%d mq_flags=0x 1445 "mqdes=%d mq_flags=0x%lx mq_maxmsg=%ld mq_msgsize=%ld " 1450 "mq_curmsgs=%ld ", 1446 "mq_curmsgs=%ld ", 1451 context->mq_getsetatt 1447 context->mq_getsetattr.mqdes, 1452 attr->mq_flags, attr- 1448 attr->mq_flags, attr->mq_maxmsg, 1453 attr->mq_msgsize, att 1449 attr->mq_msgsize, attr->mq_curmsgs); 1454 break; } 1450 break; } 1455 case AUDIT_CAPSET: 1451 case AUDIT_CAPSET: 1456 audit_log_format(ab, "pid=%d" 1452 audit_log_format(ab, "pid=%d", context->capset.pid); 1457 audit_log_cap(ab, "cap_pi", & 1453 audit_log_cap(ab, "cap_pi", &context->capset.cap.inheritable); 1458 audit_log_cap(ab, "cap_pp", & 1454 audit_log_cap(ab, "cap_pp", &context->capset.cap.permitted); 1459 audit_log_cap(ab, "cap_pe", & 1455 audit_log_cap(ab, "cap_pe", &context->capset.cap.effective); 1460 audit_log_cap(ab, "cap_pa", & 1456 audit_log_cap(ab, "cap_pa", &context->capset.cap.ambient); 1461 break; 1457 break; 1462 case AUDIT_MMAP: 1458 case AUDIT_MMAP: 1463 audit_log_format(ab, "fd=%d f 1459 audit_log_format(ab, "fd=%d flags=0x%x", context->mmap.fd, 1464 context->mma 1460 context->mmap.flags); 1465 break; 1461 break; 1466 case AUDIT_OPENAT2: 1462 case AUDIT_OPENAT2: 1467 audit_log_format(ab, "oflag=0 1463 audit_log_format(ab, "oflag=0%llo mode=0%llo resolve=0x%llx", 1468 context->ope 1464 context->openat2.flags, 1469 context->ope 1465 context->openat2.mode, 1470 context->ope 1466 context->openat2.resolve); 1471 break; 1467 break; 1472 case AUDIT_EXECVE: 1468 case AUDIT_EXECVE: 1473 audit_log_execve_info(context 1469 audit_log_execve_info(context, &ab); 1474 break; 1470 break; 1475 case AUDIT_KERN_MODULE: 1471 case AUDIT_KERN_MODULE: 1476 audit_log_format(ab, "name=") 1472 audit_log_format(ab, "name="); 1477 if (context->module.name) { 1473 if (context->module.name) { 1478 audit_log_untrustedst 1474 audit_log_untrustedstring(ab, context->module.name); 1479 } else 1475 } else 1480 audit_log_format(ab, 1476 audit_log_format(ab, "(null)"); 1481 1477 1482 break; 1478 break; 1483 case AUDIT_TIME_ADJNTPVAL: 1479 case AUDIT_TIME_ADJNTPVAL: 1484 case AUDIT_TIME_INJOFFSET: 1480 case AUDIT_TIME_INJOFFSET: 1485 /* this call deviates from th 1481 /* this call deviates from the rest, eating the buffer */ 1486 audit_log_time(context, &ab); 1482 audit_log_time(context, &ab); 1487 break; 1483 break; 1488 } 1484 } 1489 audit_log_end(ab); 1485 audit_log_end(ab); 1490 } 1486 } 1491 1487 1492 static inline int audit_proctitle_rtrim(char 1488 static inline int audit_proctitle_rtrim(char *proctitle, int len) 1493 { 1489 { 1494 char *end = proctitle + len - 1; 1490 char *end = proctitle + len - 1; 1495 1491 1496 while (end > proctitle && !isprint(*e 1492 while (end > proctitle && !isprint(*end)) 1497 end--; 1493 end--; 1498 1494 1499 /* catch the case where proctitle is 1495 /* catch the case where proctitle is only 1 non-print character */ 1500 len = end - proctitle + 1; 1496 len = end - proctitle + 1; 1501 len -= isprint(proctitle[len-1]) == 0 1497 len -= isprint(proctitle[len-1]) == 0; 1502 return len; 1498 return len; 1503 } 1499 } 1504 1500 1505 /* 1501 /* 1506 * audit_log_name - produce AUDIT_PATH record 1502 * audit_log_name - produce AUDIT_PATH record from struct audit_names 1507 * @context: audit_context for the task 1503 * @context: audit_context for the task 1508 * @n: audit_names structure with reportable 1504 * @n: audit_names structure with reportable details 1509 * @path: optional path to report instead of 1505 * @path: optional path to report instead of audit_names->name 1510 * @record_num: record number to report when 1506 * @record_num: record number to report when handling a list of names 1511 * @call_panic: optional pointer to int that 1507 * @call_panic: optional pointer to int that will be updated if secid fails 1512 */ 1508 */ 1513 static void audit_log_name(struct audit_conte 1509 static void audit_log_name(struct audit_context *context, struct audit_names *n, 1514 const struct path *path, 1510 const struct path *path, int record_num, int *call_panic) 1515 { 1511 { 1516 struct audit_buffer *ab; 1512 struct audit_buffer *ab; 1517 1513 1518 ab = audit_log_start(context, GFP_KER 1514 ab = audit_log_start(context, GFP_KERNEL, AUDIT_PATH); 1519 if (!ab) 1515 if (!ab) 1520 return; 1516 return; 1521 1517 1522 audit_log_format(ab, "item=%d", recor 1518 audit_log_format(ab, "item=%d", record_num); 1523 1519 1524 if (path) 1520 if (path) 1525 audit_log_d_path(ab, " name=" 1521 audit_log_d_path(ab, " name=", path); 1526 else if (n->name) { 1522 else if (n->name) { 1527 switch (n->name_len) { 1523 switch (n->name_len) { 1528 case AUDIT_NAME_FULL: 1524 case AUDIT_NAME_FULL: 1529 /* log the full path 1525 /* log the full path */ 1530 audit_log_format(ab, 1526 audit_log_format(ab, " name="); 1531 audit_log_untrustedst 1527 audit_log_untrustedstring(ab, n->name->name); 1532 break; 1528 break; 1533 case 0: 1529 case 0: 1534 /* name was specified 1530 /* name was specified as a relative path and the 1535 * directory componen 1531 * directory component is the cwd 1536 */ 1532 */ 1537 if (context->pwd.dent 1533 if (context->pwd.dentry && context->pwd.mnt) 1538 audit_log_d_p 1534 audit_log_d_path(ab, " name=", &context->pwd); 1539 else 1535 else 1540 audit_log_for 1536 audit_log_format(ab, " name=(null)"); 1541 break; 1537 break; 1542 default: 1538 default: 1543 /* log the name's dir 1539 /* log the name's directory component */ 1544 audit_log_format(ab, 1540 audit_log_format(ab, " name="); 1545 audit_log_n_untrusted 1541 audit_log_n_untrustedstring(ab, n->name->name, 1546 1542 n->name_len); 1547 } 1543 } 1548 } else 1544 } else 1549 audit_log_format(ab, " name=( 1545 audit_log_format(ab, " name=(null)"); 1550 1546 1551 if (n->ino != AUDIT_INO_UNSET) 1547 if (n->ino != AUDIT_INO_UNSET) 1552 audit_log_format(ab, " inode= 1548 audit_log_format(ab, " inode=%lu dev=%02x:%02x mode=%#ho ouid=%u ogid=%u rdev=%02x:%02x", 1553 n->ino, 1549 n->ino, 1554 MAJOR(n->dev 1550 MAJOR(n->dev), 1555 MINOR(n->dev 1551 MINOR(n->dev), 1556 n->mode, 1552 n->mode, 1557 from_kuid(&i 1553 from_kuid(&init_user_ns, n->uid), 1558 from_kgid(&i 1554 from_kgid(&init_user_ns, n->gid), 1559 MAJOR(n->rde 1555 MAJOR(n->rdev), 1560 MINOR(n->rde 1556 MINOR(n->rdev)); 1561 if (n->osid != 0) { 1557 if (n->osid != 0) { 1562 char *ctx = NULL; 1558 char *ctx = NULL; 1563 u32 len; 1559 u32 len; 1564 1560 1565 if (security_secid_to_secctx( 1561 if (security_secid_to_secctx( 1566 n->osid, &ctx, &len)) 1562 n->osid, &ctx, &len)) { 1567 audit_log_format(ab, 1563 audit_log_format(ab, " osid=%u", n->osid); 1568 if (call_panic) 1564 if (call_panic) 1569 *call_panic = 1565 *call_panic = 2; 1570 } else { 1566 } else { 1571 audit_log_format(ab, 1567 audit_log_format(ab, " obj=%s", ctx); 1572 security_release_secc 1568 security_release_secctx(ctx, len); 1573 } 1569 } 1574 } 1570 } 1575 1571 1576 /* log the audit_names record type */ 1572 /* log the audit_names record type */ 1577 switch (n->type) { 1573 switch (n->type) { 1578 case AUDIT_TYPE_NORMAL: 1574 case AUDIT_TYPE_NORMAL: 1579 audit_log_format(ab, " namety 1575 audit_log_format(ab, " nametype=NORMAL"); 1580 break; 1576 break; 1581 case AUDIT_TYPE_PARENT: 1577 case AUDIT_TYPE_PARENT: 1582 audit_log_format(ab, " namety 1578 audit_log_format(ab, " nametype=PARENT"); 1583 break; 1579 break; 1584 case AUDIT_TYPE_CHILD_DELETE: 1580 case AUDIT_TYPE_CHILD_DELETE: 1585 audit_log_format(ab, " namety 1581 audit_log_format(ab, " nametype=DELETE"); 1586 break; 1582 break; 1587 case AUDIT_TYPE_CHILD_CREATE: 1583 case AUDIT_TYPE_CHILD_CREATE: 1588 audit_log_format(ab, " namety 1584 audit_log_format(ab, " nametype=CREATE"); 1589 break; 1585 break; 1590 default: 1586 default: 1591 audit_log_format(ab, " namety 1587 audit_log_format(ab, " nametype=UNKNOWN"); 1592 break; 1588 break; 1593 } 1589 } 1594 1590 1595 audit_log_fcaps(ab, n); 1591 audit_log_fcaps(ab, n); 1596 audit_log_end(ab); 1592 audit_log_end(ab); 1597 } 1593 } 1598 1594 1599 static void audit_log_proctitle(void) 1595 static void audit_log_proctitle(void) 1600 { 1596 { 1601 int res; 1597 int res; 1602 char *buf; 1598 char *buf; 1603 char *msg = "(null)"; 1599 char *msg = "(null)"; 1604 int len = strlen(msg); 1600 int len = strlen(msg); 1605 struct audit_context *context = audit 1601 struct audit_context *context = audit_context(); 1606 struct audit_buffer *ab; 1602 struct audit_buffer *ab; 1607 1603 1608 ab = audit_log_start(context, GFP_KER 1604 ab = audit_log_start(context, GFP_KERNEL, AUDIT_PROCTITLE); 1609 if (!ab) 1605 if (!ab) 1610 return; /* audit_panic or bei 1606 return; /* audit_panic or being filtered */ 1611 1607 1612 audit_log_format(ab, "proctitle="); 1608 audit_log_format(ab, "proctitle="); 1613 1609 1614 /* Not cached */ 1610 /* Not cached */ 1615 if (!context->proctitle.value) { 1611 if (!context->proctitle.value) { 1616 buf = kmalloc(MAX_PROCTITLE_A 1612 buf = kmalloc(MAX_PROCTITLE_AUDIT_LEN, GFP_KERNEL); 1617 if (!buf) 1613 if (!buf) 1618 goto out; 1614 goto out; 1619 /* Historically called this f 1615 /* Historically called this from procfs naming */ 1620 res = get_cmdline(current, bu 1616 res = get_cmdline(current, buf, MAX_PROCTITLE_AUDIT_LEN); 1621 if (res == 0) { 1617 if (res == 0) { 1622 kfree(buf); 1618 kfree(buf); 1623 goto out; 1619 goto out; 1624 } 1620 } 1625 res = audit_proctitle_rtrim(b 1621 res = audit_proctitle_rtrim(buf, res); 1626 if (res == 0) { 1622 if (res == 0) { 1627 kfree(buf); 1623 kfree(buf); 1628 goto out; 1624 goto out; 1629 } 1625 } 1630 context->proctitle.value = bu 1626 context->proctitle.value = buf; 1631 context->proctitle.len = res; 1627 context->proctitle.len = res; 1632 } 1628 } 1633 msg = context->proctitle.value; 1629 msg = context->proctitle.value; 1634 len = context->proctitle.len; 1630 len = context->proctitle.len; 1635 out: 1631 out: 1636 audit_log_n_untrustedstring(ab, msg, 1632 audit_log_n_untrustedstring(ab, msg, len); 1637 audit_log_end(ab); 1633 audit_log_end(ab); 1638 } 1634 } 1639 1635 1640 /** 1636 /** 1641 * audit_log_uring - generate a AUDIT_URINGOP 1637 * audit_log_uring - generate a AUDIT_URINGOP record 1642 * @ctx: the audit context 1638 * @ctx: the audit context 1643 */ 1639 */ 1644 static void audit_log_uring(struct audit_cont 1640 static void audit_log_uring(struct audit_context *ctx) 1645 { 1641 { 1646 struct audit_buffer *ab; 1642 struct audit_buffer *ab; 1647 const struct cred *cred; 1643 const struct cred *cred; 1648 1644 1649 ab = audit_log_start(ctx, GFP_ATOMIC, 1645 ab = audit_log_start(ctx, GFP_ATOMIC, AUDIT_URINGOP); 1650 if (!ab) 1646 if (!ab) 1651 return; 1647 return; 1652 cred = current_cred(); 1648 cred = current_cred(); 1653 audit_log_format(ab, "uring_op=%d", c 1649 audit_log_format(ab, "uring_op=%d", ctx->uring_op); 1654 if (ctx->return_valid != AUDITSC_INVA 1650 if (ctx->return_valid != AUDITSC_INVALID) 1655 audit_log_format(ab, " succes 1651 audit_log_format(ab, " success=%s exit=%ld", 1656 (ctx->return 1652 (ctx->return_valid == AUDITSC_SUCCESS ? 1657 "yes" : "no 1653 "yes" : "no"), 1658 ctx->return_ 1654 ctx->return_code); 1659 audit_log_format(ab, 1655 audit_log_format(ab, 1660 " items=%d" 1656 " items=%d" 1661 " ppid=%d pid=%d uid 1657 " ppid=%d pid=%d uid=%u gid=%u euid=%u suid=%u" 1662 " fsuid=%u egid=%u s 1658 " fsuid=%u egid=%u sgid=%u fsgid=%u", 1663 ctx->name_count, 1659 ctx->name_count, 1664 task_ppid_nr(current 1660 task_ppid_nr(current), task_tgid_nr(current), 1665 from_kuid(&init_user 1661 from_kuid(&init_user_ns, cred->uid), 1666 from_kgid(&init_user 1662 from_kgid(&init_user_ns, cred->gid), 1667 from_kuid(&init_user 1663 from_kuid(&init_user_ns, cred->euid), 1668 from_kuid(&init_user 1664 from_kuid(&init_user_ns, cred->suid), 1669 from_kuid(&init_user 1665 from_kuid(&init_user_ns, cred->fsuid), 1670 from_kgid(&init_user 1666 from_kgid(&init_user_ns, cred->egid), 1671 from_kgid(&init_user 1667 from_kgid(&init_user_ns, cred->sgid), 1672 from_kgid(&init_user 1668 from_kgid(&init_user_ns, cred->fsgid)); 1673 audit_log_task_context(ab); 1669 audit_log_task_context(ab); 1674 audit_log_key(ab, ctx->filterkey); 1670 audit_log_key(ab, ctx->filterkey); 1675 audit_log_end(ab); 1671 audit_log_end(ab); 1676 } 1672 } 1677 1673 1678 static void audit_log_exit(void) 1674 static void audit_log_exit(void) 1679 { 1675 { 1680 int i, call_panic = 0; 1676 int i, call_panic = 0; 1681 struct audit_context *context = audit 1677 struct audit_context *context = audit_context(); 1682 struct audit_buffer *ab; 1678 struct audit_buffer *ab; 1683 struct audit_aux_data *aux; 1679 struct audit_aux_data *aux; 1684 struct audit_names *n; 1680 struct audit_names *n; 1685 1681 1686 context->personality = current->perso 1682 context->personality = current->personality; 1687 1683 1688 switch (context->context) { 1684 switch (context->context) { 1689 case AUDIT_CTX_SYSCALL: 1685 case AUDIT_CTX_SYSCALL: 1690 ab = audit_log_start(context, 1686 ab = audit_log_start(context, GFP_KERNEL, AUDIT_SYSCALL); 1691 if (!ab) 1687 if (!ab) 1692 return; 1688 return; 1693 audit_log_format(ab, "arch=%x 1689 audit_log_format(ab, "arch=%x syscall=%d", 1694 context->arc 1690 context->arch, context->major); 1695 if (context->personality != P 1691 if (context->personality != PER_LINUX) 1696 audit_log_format(ab, 1692 audit_log_format(ab, " per=%lx", context->personality); 1697 if (context->return_valid != 1693 if (context->return_valid != AUDITSC_INVALID) 1698 audit_log_format(ab, 1694 audit_log_format(ab, " success=%s exit=%ld", 1699 (con 1695 (context->return_valid == AUDITSC_SUCCESS ? 1700 "ye 1696 "yes" : "no"), 1701 cont 1697 context->return_code); 1702 audit_log_format(ab, 1698 audit_log_format(ab, 1703 " a0=%lx a1= 1699 " a0=%lx a1=%lx a2=%lx a3=%lx items=%d", 1704 context->arg 1700 context->argv[0], 1705 context->arg 1701 context->argv[1], 1706 context->arg 1702 context->argv[2], 1707 context->arg 1703 context->argv[3], 1708 context->nam 1704 context->name_count); 1709 audit_log_task_info(ab); 1705 audit_log_task_info(ab); 1710 audit_log_key(ab, context->fi 1706 audit_log_key(ab, context->filterkey); 1711 audit_log_end(ab); 1707 audit_log_end(ab); 1712 break; 1708 break; 1713 case AUDIT_CTX_URING: 1709 case AUDIT_CTX_URING: 1714 audit_log_uring(context); 1710 audit_log_uring(context); 1715 break; 1711 break; 1716 default: 1712 default: 1717 BUG(); 1713 BUG(); 1718 break; 1714 break; 1719 } 1715 } 1720 1716 1721 for (aux = context->aux; aux; aux = a 1717 for (aux = context->aux; aux; aux = aux->next) { 1722 1718 1723 ab = audit_log_start(context, 1719 ab = audit_log_start(context, GFP_KERNEL, aux->type); 1724 if (!ab) 1720 if (!ab) 1725 continue; /* audit_pa 1721 continue; /* audit_panic has been called */ 1726 1722 1727 switch (aux->type) { 1723 switch (aux->type) { 1728 1724 1729 case AUDIT_BPRM_FCAPS: { 1725 case AUDIT_BPRM_FCAPS: { 1730 struct audit_aux_data 1726 struct audit_aux_data_bprm_fcaps *axs = (void *)aux; 1731 1727 1732 audit_log_format(ab, 1728 audit_log_format(ab, "fver=%x", axs->fcap_ver); 1733 audit_log_cap(ab, "fp 1729 audit_log_cap(ab, "fp", &axs->fcap.permitted); 1734 audit_log_cap(ab, "fi 1730 audit_log_cap(ab, "fi", &axs->fcap.inheritable); 1735 audit_log_format(ab, 1731 audit_log_format(ab, " fe=%d", axs->fcap.fE); 1736 audit_log_cap(ab, "ol 1732 audit_log_cap(ab, "old_pp", &axs->old_pcap.permitted); 1737 audit_log_cap(ab, "ol 1733 audit_log_cap(ab, "old_pi", &axs->old_pcap.inheritable); 1738 audit_log_cap(ab, "ol 1734 audit_log_cap(ab, "old_pe", &axs->old_pcap.effective); 1739 audit_log_cap(ab, "ol 1735 audit_log_cap(ab, "old_pa", &axs->old_pcap.ambient); 1740 audit_log_cap(ab, "pp 1736 audit_log_cap(ab, "pp", &axs->new_pcap.permitted); 1741 audit_log_cap(ab, "pi 1737 audit_log_cap(ab, "pi", &axs->new_pcap.inheritable); 1742 audit_log_cap(ab, "pe 1738 audit_log_cap(ab, "pe", &axs->new_pcap.effective); 1743 audit_log_cap(ab, "pa 1739 audit_log_cap(ab, "pa", &axs->new_pcap.ambient); 1744 audit_log_format(ab, 1740 audit_log_format(ab, " frootid=%d", 1745 from 1741 from_kuid(&init_user_ns, 1746 1742 axs->fcap.rootid)); 1747 break; } 1743 break; } 1748 1744 1749 } 1745 } 1750 audit_log_end(ab); 1746 audit_log_end(ab); 1751 } 1747 } 1752 1748 1753 if (context->type) 1749 if (context->type) 1754 show_special(context, &call_p 1750 show_special(context, &call_panic); 1755 1751 1756 if (context->fds[0] >= 0) { 1752 if (context->fds[0] >= 0) { 1757 ab = audit_log_start(context, 1753 ab = audit_log_start(context, GFP_KERNEL, AUDIT_FD_PAIR); 1758 if (ab) { 1754 if (ab) { 1759 audit_log_format(ab, 1755 audit_log_format(ab, "fd0=%d fd1=%d", 1760 conte 1756 context->fds[0], context->fds[1]); 1761 audit_log_end(ab); 1757 audit_log_end(ab); 1762 } 1758 } 1763 } 1759 } 1764 1760 1765 if (context->sockaddr_len) { 1761 if (context->sockaddr_len) { 1766 ab = audit_log_start(context, 1762 ab = audit_log_start(context, GFP_KERNEL, AUDIT_SOCKADDR); 1767 if (ab) { 1763 if (ab) { 1768 audit_log_format(ab, 1764 audit_log_format(ab, "saddr="); 1769 audit_log_n_hex(ab, ( 1765 audit_log_n_hex(ab, (void *)context->sockaddr, 1770 conte 1766 context->sockaddr_len); 1771 audit_log_end(ab); 1767 audit_log_end(ab); 1772 } 1768 } 1773 } 1769 } 1774 1770 1775 for (aux = context->aux_pids; aux; au 1771 for (aux = context->aux_pids; aux; aux = aux->next) { 1776 struct audit_aux_data_pids *a 1772 struct audit_aux_data_pids *axs = (void *)aux; 1777 1773 1778 for (i = 0; i < axs->pid_coun 1774 for (i = 0; i < axs->pid_count; i++) 1779 if (audit_log_pid_con 1775 if (audit_log_pid_context(context, axs->target_pid[i], 1780 1776 axs->target_auid[i], 1781 1777 axs->target_uid[i], 1782 1778 axs->target_sessionid[i], 1783 1779 axs->target_sid[i], 1784 1780 axs->target_comm[i])) 1785 call_panic = 1781 call_panic = 1; 1786 } 1782 } 1787 1783 1788 if (context->target_pid && 1784 if (context->target_pid && 1789 audit_log_pid_context(context, co 1785 audit_log_pid_context(context, context->target_pid, 1790 context->ta 1786 context->target_auid, context->target_uid, 1791 context->ta 1787 context->target_sessionid, 1792 context->ta 1788 context->target_sid, context->target_comm)) 1793 call_panic = 1; 1789 call_panic = 1; 1794 1790 1795 if (context->pwd.dentry && context->p 1791 if (context->pwd.dentry && context->pwd.mnt) { 1796 ab = audit_log_start(context, 1792 ab = audit_log_start(context, GFP_KERNEL, AUDIT_CWD); 1797 if (ab) { 1793 if (ab) { 1798 audit_log_d_path(ab, 1794 audit_log_d_path(ab, "cwd=", &context->pwd); 1799 audit_log_end(ab); 1795 audit_log_end(ab); 1800 } 1796 } 1801 } 1797 } 1802 1798 1803 i = 0; 1799 i = 0; 1804 list_for_each_entry(n, &context->name 1800 list_for_each_entry(n, &context->names_list, list) { 1805 if (n->hidden) 1801 if (n->hidden) 1806 continue; 1802 continue; 1807 audit_log_name(context, n, NU 1803 audit_log_name(context, n, NULL, i++, &call_panic); 1808 } 1804 } 1809 1805 1810 if (context->context == AUDIT_CTX_SYS 1806 if (context->context == AUDIT_CTX_SYSCALL) 1811 audit_log_proctitle(); 1807 audit_log_proctitle(); 1812 1808 1813 /* Send end of event record to help u 1809 /* Send end of event record to help user space know we are finished */ 1814 ab = audit_log_start(context, GFP_KER 1810 ab = audit_log_start(context, GFP_KERNEL, AUDIT_EOE); 1815 if (ab) 1811 if (ab) 1816 audit_log_end(ab); 1812 audit_log_end(ab); 1817 if (call_panic) 1813 if (call_panic) 1818 audit_panic("error in audit_l 1814 audit_panic("error in audit_log_exit()"); 1819 } 1815 } 1820 1816 1821 /** 1817 /** 1822 * __audit_free - free a per-task audit conte 1818 * __audit_free - free a per-task audit context 1823 * @tsk: task whose audit context block to fr 1819 * @tsk: task whose audit context block to free 1824 * 1820 * 1825 * Called from copy_process, do_exit, and the 1821 * Called from copy_process, do_exit, and the io_uring code 1826 */ 1822 */ 1827 void __audit_free(struct task_struct *tsk) 1823 void __audit_free(struct task_struct *tsk) 1828 { 1824 { 1829 struct audit_context *context = tsk-> 1825 struct audit_context *context = tsk->audit_context; 1830 1826 1831 if (!context) 1827 if (!context) 1832 return; 1828 return; 1833 1829 1834 /* this may generate CONFIG_CHANGE re 1830 /* this may generate CONFIG_CHANGE records */ 1835 if (!list_empty(&context->killed_tree 1831 if (!list_empty(&context->killed_trees)) 1836 audit_kill_trees(context); 1832 audit_kill_trees(context); 1837 1833 1838 /* We are called either by do_exit() 1834 /* We are called either by do_exit() or the fork() error handling code; 1839 * in the former case tsk == current 1835 * in the former case tsk == current and in the latter tsk is a 1840 * random task_struct that doesn't ha 1836 * random task_struct that doesn't have any meaningful data we 1841 * need to log via audit_log_exit(). 1837 * need to log via audit_log_exit(). 1842 */ 1838 */ 1843 if (tsk == current && !context->dummy 1839 if (tsk == current && !context->dummy) { 1844 context->return_valid = AUDIT 1840 context->return_valid = AUDITSC_INVALID; 1845 context->return_code = 0; 1841 context->return_code = 0; 1846 if (context->context == AUDIT 1842 if (context->context == AUDIT_CTX_SYSCALL) { 1847 audit_filter_syscall( 1843 audit_filter_syscall(tsk, context); 1848 audit_filter_inodes(t 1844 audit_filter_inodes(tsk, context); 1849 if (context->current_ 1845 if (context->current_state == AUDIT_STATE_RECORD) 1850 audit_log_exi 1846 audit_log_exit(); 1851 } else if (context->context = 1847 } else if (context->context == AUDIT_CTX_URING) { 1852 /* TODO: verify this 1848 /* TODO: verify this case is real and valid */ 1853 audit_filter_uring(ts 1849 audit_filter_uring(tsk, context); 1854 audit_filter_inodes(t 1850 audit_filter_inodes(tsk, context); 1855 if (context->current_ 1851 if (context->current_state == AUDIT_STATE_RECORD) 1856 audit_log_uri 1852 audit_log_uring(context); 1857 } 1853 } 1858 } 1854 } 1859 1855 1860 audit_set_context(tsk, NULL); 1856 audit_set_context(tsk, NULL); 1861 audit_free_context(context); 1857 audit_free_context(context); 1862 } 1858 } 1863 1859 1864 /** 1860 /** 1865 * audit_return_fixup - fixup the return code 1861 * audit_return_fixup - fixup the return codes in the audit_context 1866 * @ctx: the audit_context 1862 * @ctx: the audit_context 1867 * @success: true/false value to indicate if 1863 * @success: true/false value to indicate if the operation succeeded or not 1868 * @code: operation return code 1864 * @code: operation return code 1869 * 1865 * 1870 * We need to fixup the return code in the au 1866 * We need to fixup the return code in the audit logs if the actual return 1871 * codes are later going to be fixed by the a 1867 * codes are later going to be fixed by the arch specific signal handlers. 1872 */ 1868 */ 1873 static void audit_return_fixup(struct audit_c 1869 static void audit_return_fixup(struct audit_context *ctx, 1874 int success, l 1870 int success, long code) 1875 { 1871 { 1876 /* 1872 /* 1877 * This is actually a test for: 1873 * This is actually a test for: 1878 * (rc == ERESTARTSYS ) || (rc == ERE 1874 * (rc == ERESTARTSYS ) || (rc == ERESTARTNOINTR) || 1879 * (rc == ERESTARTNOHAND) || (rc == E 1875 * (rc == ERESTARTNOHAND) || (rc == ERESTART_RESTARTBLOCK) 1880 * 1876 * 1881 * but is faster than a bunch of || 1877 * but is faster than a bunch of || 1882 */ 1878 */ 1883 if (unlikely(code <= -ERESTARTSYS) && 1879 if (unlikely(code <= -ERESTARTSYS) && 1884 (code >= -ERESTART_RESTARTBLOCK) 1880 (code >= -ERESTART_RESTARTBLOCK) && 1885 (code != -ENOIOCTLCMD)) 1881 (code != -ENOIOCTLCMD)) 1886 ctx->return_code = -EINTR; 1882 ctx->return_code = -EINTR; 1887 else 1883 else 1888 ctx->return_code = code; 1884 ctx->return_code = code; 1889 ctx->return_valid = (success ? AUDITS 1885 ctx->return_valid = (success ? AUDITSC_SUCCESS : AUDITSC_FAILURE); 1890 } 1886 } 1891 1887 1892 /** 1888 /** 1893 * __audit_uring_entry - prepare the kernel t 1889 * __audit_uring_entry - prepare the kernel task's audit context for io_uring 1894 * @op: the io_uring opcode 1890 * @op: the io_uring opcode 1895 * 1891 * 1896 * This is similar to audit_syscall_entry() b 1892 * This is similar to audit_syscall_entry() but is intended for use by io_uring 1897 * operations. This function should only eve 1893 * operations. This function should only ever be called from 1898 * audit_uring_entry() as we rely on the audi 1894 * audit_uring_entry() as we rely on the audit context checking present in that 1899 * function. 1895 * function. 1900 */ 1896 */ 1901 void __audit_uring_entry(u8 op) 1897 void __audit_uring_entry(u8 op) 1902 { 1898 { 1903 struct audit_context *ctx = audit_con 1899 struct audit_context *ctx = audit_context(); 1904 1900 1905 if (ctx->state == AUDIT_STATE_DISABLE 1901 if (ctx->state == AUDIT_STATE_DISABLED) 1906 return; 1902 return; 1907 1903 1908 /* 1904 /* 1909 * NOTE: It's possible that we can be 1905 * NOTE: It's possible that we can be called from the process' context 1910 * before it returns to userspa 1906 * before it returns to userspace, and before audit_syscall_exit() 1911 * is called. In this case the 1907 * is called. In this case there is not much to do, just record 1912 * the io_uring details and ret 1908 * the io_uring details and return. 1913 */ 1909 */ 1914 ctx->uring_op = op; 1910 ctx->uring_op = op; 1915 if (ctx->context == AUDIT_CTX_SYSCALL 1911 if (ctx->context == AUDIT_CTX_SYSCALL) 1916 return; 1912 return; 1917 1913 1918 ctx->dummy = !audit_n_rules; 1914 ctx->dummy = !audit_n_rules; 1919 if (!ctx->dummy && ctx->state == AUDI 1915 if (!ctx->dummy && ctx->state == AUDIT_STATE_BUILD) 1920 ctx->prio = 0; 1916 ctx->prio = 0; 1921 1917 1922 ctx->context = AUDIT_CTX_URING; 1918 ctx->context = AUDIT_CTX_URING; 1923 ctx->current_state = ctx->state; 1919 ctx->current_state = ctx->state; 1924 ktime_get_coarse_real_ts64(&ctx->ctim 1920 ktime_get_coarse_real_ts64(&ctx->ctime); 1925 } 1921 } 1926 1922 1927 /** 1923 /** 1928 * __audit_uring_exit - wrap up the kernel ta 1924 * __audit_uring_exit - wrap up the kernel task's audit context after io_uring 1929 * @success: true/false value to indicate if 1925 * @success: true/false value to indicate if the operation succeeded or not 1930 * @code: operation return code 1926 * @code: operation return code 1931 * 1927 * 1932 * This is similar to audit_syscall_exit() bu 1928 * This is similar to audit_syscall_exit() but is intended for use by io_uring 1933 * operations. This function should only eve 1929 * operations. This function should only ever be called from 1934 * audit_uring_exit() as we rely on the audit 1930 * audit_uring_exit() as we rely on the audit context checking present in that 1935 * function. 1931 * function. 1936 */ 1932 */ 1937 void __audit_uring_exit(int success, long cod 1933 void __audit_uring_exit(int success, long code) 1938 { 1934 { 1939 struct audit_context *ctx = audit_con 1935 struct audit_context *ctx = audit_context(); 1940 1936 1941 if (ctx->dummy) { 1937 if (ctx->dummy) { 1942 if (ctx->context != AUDIT_CTX 1938 if (ctx->context != AUDIT_CTX_URING) 1943 return; 1939 return; 1944 goto out; 1940 goto out; 1945 } 1941 } 1946 1942 1947 audit_return_fixup(ctx, success, code 1943 audit_return_fixup(ctx, success, code); 1948 if (ctx->context == AUDIT_CTX_SYSCALL 1944 if (ctx->context == AUDIT_CTX_SYSCALL) { 1949 /* 1945 /* 1950 * NOTE: See the note in __au 1946 * NOTE: See the note in __audit_uring_entry() about the case 1951 * where we may be call 1947 * where we may be called from process context before we 1952 * return to userspace 1948 * return to userspace via audit_syscall_exit(). In this 1953 * case we simply emit 1949 * case we simply emit a URINGOP record and bail, the 1954 * normal syscall exit 1950 * normal syscall exit handling will take care of 1955 * everything else. 1951 * everything else. 1956 * It is also worth men 1952 * It is also worth mentioning that when we are called, 1957 * the current process 1953 * the current process creds may differ from the creds 1958 * used during the norm 1954 * used during the normal syscall processing; keep that 1959 * in mind if/when we m 1955 * in mind if/when we move the record generation code. 1960 */ 1956 */ 1961 1957 1962 /* 1958 /* 1963 * We need to filter on the s 1959 * We need to filter on the syscall info here to decide if we 1964 * should emit a URINGOP reco 1960 * should emit a URINGOP record. I know it seems odd but this 1965 * solves the problem where u 1961 * solves the problem where users have a filter to block *all* 1966 * syscall records in the "ex 1962 * syscall records in the "exit" filter; we want to preserve 1967 * the behavior here. 1963 * the behavior here. 1968 */ 1964 */ 1969 audit_filter_syscall(current, 1965 audit_filter_syscall(current, ctx); 1970 if (ctx->current_state != AUD 1966 if (ctx->current_state != AUDIT_STATE_RECORD) 1971 audit_filter_uring(cu 1967 audit_filter_uring(current, ctx); 1972 audit_filter_inodes(current, 1968 audit_filter_inodes(current, ctx); 1973 if (ctx->current_state != AUD 1969 if (ctx->current_state != AUDIT_STATE_RECORD) 1974 return; 1970 return; 1975 1971 1976 audit_log_uring(ctx); 1972 audit_log_uring(ctx); 1977 return; 1973 return; 1978 } 1974 } 1979 1975 1980 /* this may generate CONFIG_CHANGE re 1976 /* this may generate CONFIG_CHANGE records */ 1981 if (!list_empty(&ctx->killed_trees)) 1977 if (!list_empty(&ctx->killed_trees)) 1982 audit_kill_trees(ctx); 1978 audit_kill_trees(ctx); 1983 1979 1984 /* run through both filters to ensure 1980 /* run through both filters to ensure we set the filterkey properly */ 1985 audit_filter_uring(current, ctx); 1981 audit_filter_uring(current, ctx); 1986 audit_filter_inodes(current, ctx); 1982 audit_filter_inodes(current, ctx); 1987 if (ctx->current_state != AUDIT_STATE 1983 if (ctx->current_state != AUDIT_STATE_RECORD) 1988 goto out; 1984 goto out; 1989 audit_log_exit(); 1985 audit_log_exit(); 1990 1986 1991 out: 1987 out: 1992 audit_reset_context(ctx); 1988 audit_reset_context(ctx); 1993 } 1989 } 1994 1990 1995 /** 1991 /** 1996 * __audit_syscall_entry - fill in an audit r 1992 * __audit_syscall_entry - fill in an audit record at syscall entry 1997 * @major: major syscall type (function) 1993 * @major: major syscall type (function) 1998 * @a1: additional syscall register 1 1994 * @a1: additional syscall register 1 1999 * @a2: additional syscall register 2 1995 * @a2: additional syscall register 2 2000 * @a3: additional syscall register 3 1996 * @a3: additional syscall register 3 2001 * @a4: additional syscall register 4 1997 * @a4: additional syscall register 4 2002 * 1998 * 2003 * Fill in audit context at syscall entry. T 1999 * Fill in audit context at syscall entry. This only happens if the 2004 * audit context was created when the task wa 2000 * audit context was created when the task was created and the state or 2005 * filters demand the audit context be built. 2001 * filters demand the audit context be built. If the state from the 2006 * per-task filter or from the per-syscall fi 2002 * per-task filter or from the per-syscall filter is AUDIT_STATE_RECORD, 2007 * then the record will be written at syscall 2003 * then the record will be written at syscall exit time (otherwise, it 2008 * will only be written if another part of th 2004 * will only be written if another part of the kernel requests that it 2009 * be written). 2005 * be written). 2010 */ 2006 */ 2011 void __audit_syscall_entry(int major, unsigne 2007 void __audit_syscall_entry(int major, unsigned long a1, unsigned long a2, 2012 unsigned long a3, 2008 unsigned long a3, unsigned long a4) 2013 { 2009 { 2014 struct audit_context *context = audit 2010 struct audit_context *context = audit_context(); 2015 enum audit_state state; 2011 enum audit_state state; 2016 2012 2017 if (!audit_enabled || !context) 2013 if (!audit_enabled || !context) 2018 return; 2014 return; 2019 2015 2020 WARN_ON(context->context != AUDIT_CTX 2016 WARN_ON(context->context != AUDIT_CTX_UNUSED); 2021 WARN_ON(context->name_count); 2017 WARN_ON(context->name_count); 2022 if (context->context != AUDIT_CTX_UNU 2018 if (context->context != AUDIT_CTX_UNUSED || context->name_count) { 2023 audit_panic("unrecoverable er 2019 audit_panic("unrecoverable error in audit_syscall_entry()"); 2024 return; 2020 return; 2025 } 2021 } 2026 2022 2027 state = context->state; 2023 state = context->state; 2028 if (state == AUDIT_STATE_DISABLED) 2024 if (state == AUDIT_STATE_DISABLED) 2029 return; 2025 return; 2030 2026 2031 context->dummy = !audit_n_rules; 2027 context->dummy = !audit_n_rules; 2032 if (!context->dummy && state == AUDIT 2028 if (!context->dummy && state == AUDIT_STATE_BUILD) { 2033 context->prio = 0; 2029 context->prio = 0; 2034 if (auditd_test_task(current) 2030 if (auditd_test_task(current)) 2035 return; 2031 return; 2036 } 2032 } 2037 2033 2038 context->arch = syscall_get_arc 2034 context->arch = syscall_get_arch(current); 2039 context->major = major; 2035 context->major = major; 2040 context->argv[0] = a1; 2036 context->argv[0] = a1; 2041 context->argv[1] = a2; 2037 context->argv[1] = a2; 2042 context->argv[2] = a3; 2038 context->argv[2] = a3; 2043 context->argv[3] = a4; 2039 context->argv[3] = a4; 2044 context->context = AUDIT_CTX_SYSCALL; 2040 context->context = AUDIT_CTX_SYSCALL; 2045 context->current_state = state; 2041 context->current_state = state; 2046 ktime_get_coarse_real_ts64(&context-> 2042 ktime_get_coarse_real_ts64(&context->ctime); 2047 } 2043 } 2048 2044 2049 /** 2045 /** 2050 * __audit_syscall_exit - deallocate audit co 2046 * __audit_syscall_exit - deallocate audit context after a system call 2051 * @success: success value of the syscall 2047 * @success: success value of the syscall 2052 * @return_code: return value of the syscall 2048 * @return_code: return value of the syscall 2053 * 2049 * 2054 * Tear down after system call. If the audit 2050 * Tear down after system call. If the audit context has been marked as 2055 * auditable (either because of the AUDIT_STA 2051 * auditable (either because of the AUDIT_STATE_RECORD state from 2056 * filtering, or because some other part of t 2052 * filtering, or because some other part of the kernel wrote an audit 2057 * message), then write out the syscall infor 2053 * message), then write out the syscall information. In call cases, 2058 * free the names stored from getname(). 2054 * free the names stored from getname(). 2059 */ 2055 */ 2060 void __audit_syscall_exit(int success, long r 2056 void __audit_syscall_exit(int success, long return_code) 2061 { 2057 { 2062 struct audit_context *context = audit 2058 struct audit_context *context = audit_context(); 2063 2059 2064 if (!context || context->dummy || 2060 if (!context || context->dummy || 2065 context->context != AUDIT_CTX_SYS 2061 context->context != AUDIT_CTX_SYSCALL) 2066 goto out; 2062 goto out; 2067 2063 2068 /* this may generate CONFIG_CHANGE re 2064 /* this may generate CONFIG_CHANGE records */ 2069 if (!list_empty(&context->killed_tree 2065 if (!list_empty(&context->killed_trees)) 2070 audit_kill_trees(context); 2066 audit_kill_trees(context); 2071 2067 2072 audit_return_fixup(context, success, 2068 audit_return_fixup(context, success, return_code); 2073 /* run through both filters to ensure 2069 /* run through both filters to ensure we set the filterkey properly */ 2074 audit_filter_syscall(current, context 2070 audit_filter_syscall(current, context); 2075 audit_filter_inodes(current, context) 2071 audit_filter_inodes(current, context); 2076 if (context->current_state != AUDIT_S 2072 if (context->current_state != AUDIT_STATE_RECORD) 2077 goto out; 2073 goto out; 2078 2074 2079 audit_log_exit(); 2075 audit_log_exit(); 2080 2076 2081 out: 2077 out: 2082 audit_reset_context(context); 2078 audit_reset_context(context); 2083 } 2079 } 2084 2080 2085 static inline void handle_one(const struct in 2081 static inline void handle_one(const struct inode *inode) 2086 { 2082 { 2087 struct audit_context *context; 2083 struct audit_context *context; 2088 struct audit_tree_refs *p; 2084 struct audit_tree_refs *p; 2089 struct audit_chunk *chunk; 2085 struct audit_chunk *chunk; 2090 int count; 2086 int count; 2091 2087 2092 if (likely(!inode->i_fsnotify_marks)) 2088 if (likely(!inode->i_fsnotify_marks)) 2093 return; 2089 return; 2094 context = audit_context(); 2090 context = audit_context(); 2095 p = context->trees; 2091 p = context->trees; 2096 count = context->tree_count; 2092 count = context->tree_count; 2097 rcu_read_lock(); 2093 rcu_read_lock(); 2098 chunk = audit_tree_lookup(inode); 2094 chunk = audit_tree_lookup(inode); 2099 rcu_read_unlock(); 2095 rcu_read_unlock(); 2100 if (!chunk) 2096 if (!chunk) 2101 return; 2097 return; 2102 if (likely(put_tree_ref(context, chun 2098 if (likely(put_tree_ref(context, chunk))) 2103 return; 2099 return; 2104 if (unlikely(!grow_tree_refs(context) 2100 if (unlikely(!grow_tree_refs(context))) { 2105 pr_warn("out of memory, audit 2101 pr_warn("out of memory, audit has lost a tree reference\n"); 2106 audit_set_auditable(context); 2102 audit_set_auditable(context); 2107 audit_put_chunk(chunk); 2103 audit_put_chunk(chunk); 2108 unroll_tree_refs(context, p, 2104 unroll_tree_refs(context, p, count); 2109 return; 2105 return; 2110 } 2106 } 2111 put_tree_ref(context, chunk); 2107 put_tree_ref(context, chunk); 2112 } 2108 } 2113 2109 2114 static void handle_path(const struct dentry * 2110 static void handle_path(const struct dentry *dentry) 2115 { 2111 { 2116 struct audit_context *context; 2112 struct audit_context *context; 2117 struct audit_tree_refs *p; 2113 struct audit_tree_refs *p; 2118 const struct dentry *d, *parent; 2114 const struct dentry *d, *parent; 2119 struct audit_chunk *drop; 2115 struct audit_chunk *drop; 2120 unsigned long seq; 2116 unsigned long seq; 2121 int count; 2117 int count; 2122 2118 2123 context = audit_context(); 2119 context = audit_context(); 2124 p = context->trees; 2120 p = context->trees; 2125 count = context->tree_count; 2121 count = context->tree_count; 2126 retry: 2122 retry: 2127 drop = NULL; 2123 drop = NULL; 2128 d = dentry; 2124 d = dentry; 2129 rcu_read_lock(); 2125 rcu_read_lock(); 2130 seq = read_seqbegin(&rename_lock); 2126 seq = read_seqbegin(&rename_lock); 2131 for (;;) { !! 2127 for(;;) { 2132 struct inode *inode = d_backi 2128 struct inode *inode = d_backing_inode(d); 2133 2129 2134 if (inode && unlikely(inode-> 2130 if (inode && unlikely(inode->i_fsnotify_marks)) { 2135 struct audit_chunk *c 2131 struct audit_chunk *chunk; 2136 2132 2137 chunk = audit_tree_lo 2133 chunk = audit_tree_lookup(inode); 2138 if (chunk) { 2134 if (chunk) { 2139 if (unlikely( 2135 if (unlikely(!put_tree_ref(context, chunk))) { 2140 drop 2136 drop = chunk; 2141 break 2137 break; 2142 } 2138 } 2143 } 2139 } 2144 } 2140 } 2145 parent = d->d_parent; 2141 parent = d->d_parent; 2146 if (parent == d) 2142 if (parent == d) 2147 break; 2143 break; 2148 d = parent; 2144 d = parent; 2149 } 2145 } 2150 if (unlikely(read_seqretry(&rename_lo 2146 if (unlikely(read_seqretry(&rename_lock, seq) || drop)) { /* in this order */ 2151 rcu_read_unlock(); 2147 rcu_read_unlock(); 2152 if (!drop) { 2148 if (!drop) { 2153 /* just a race with r 2149 /* just a race with rename */ 2154 unroll_tree_refs(cont 2150 unroll_tree_refs(context, p, count); 2155 goto retry; 2151 goto retry; 2156 } 2152 } 2157 audit_put_chunk(drop); 2153 audit_put_chunk(drop); 2158 if (grow_tree_refs(context)) 2154 if (grow_tree_refs(context)) { 2159 /* OK, got more space 2155 /* OK, got more space */ 2160 unroll_tree_refs(cont 2156 unroll_tree_refs(context, p, count); 2161 goto retry; 2157 goto retry; 2162 } 2158 } 2163 /* too bad */ 2159 /* too bad */ 2164 pr_warn("out of memory, audit 2160 pr_warn("out of memory, audit has lost a tree reference\n"); 2165 unroll_tree_refs(context, p, 2161 unroll_tree_refs(context, p, count); 2166 audit_set_auditable(context); 2162 audit_set_auditable(context); 2167 return; 2163 return; 2168 } 2164 } 2169 rcu_read_unlock(); 2165 rcu_read_unlock(); 2170 } 2166 } 2171 2167 2172 static struct audit_names *audit_alloc_name(s 2168 static struct audit_names *audit_alloc_name(struct audit_context *context, 2173 2169 unsigned char type) 2174 { 2170 { 2175 struct audit_names *aname; 2171 struct audit_names *aname; 2176 2172 2177 if (context->name_count < AUDIT_NAMES 2173 if (context->name_count < AUDIT_NAMES) { 2178 aname = &context->preallocate 2174 aname = &context->preallocated_names[context->name_count]; 2179 memset(aname, 0, sizeof(*anam 2175 memset(aname, 0, sizeof(*aname)); 2180 } else { 2176 } else { 2181 aname = kzalloc(sizeof(*aname 2177 aname = kzalloc(sizeof(*aname), GFP_NOFS); 2182 if (!aname) 2178 if (!aname) 2183 return NULL; 2179 return NULL; 2184 aname->should_free = true; 2180 aname->should_free = true; 2185 } 2181 } 2186 2182 2187 aname->ino = AUDIT_INO_UNSET; 2183 aname->ino = AUDIT_INO_UNSET; 2188 aname->type = type; 2184 aname->type = type; 2189 list_add_tail(&aname->list, &context- 2185 list_add_tail(&aname->list, &context->names_list); 2190 2186 2191 context->name_count++; 2187 context->name_count++; 2192 if (!context->pwd.dentry) 2188 if (!context->pwd.dentry) 2193 get_fs_pwd(current->fs, &cont 2189 get_fs_pwd(current->fs, &context->pwd); 2194 return aname; 2190 return aname; 2195 } 2191 } 2196 2192 2197 /** 2193 /** 2198 * __audit_reusename - fill out filename with 2194 * __audit_reusename - fill out filename with info from existing entry 2199 * @uptr: userland ptr to pathname 2195 * @uptr: userland ptr to pathname 2200 * 2196 * 2201 * Search the audit_names list for the curren 2197 * Search the audit_names list for the current audit context. If there is an 2202 * existing entry with a matching "uptr" then 2198 * existing entry with a matching "uptr" then return the filename 2203 * associated with that audit_name. If not, r 2199 * associated with that audit_name. If not, return NULL. 2204 */ 2200 */ 2205 struct filename * 2201 struct filename * 2206 __audit_reusename(const __user char *uptr) 2202 __audit_reusename(const __user char *uptr) 2207 { 2203 { 2208 struct audit_context *context = audit 2204 struct audit_context *context = audit_context(); 2209 struct audit_names *n; 2205 struct audit_names *n; 2210 2206 2211 list_for_each_entry(n, &context->name 2207 list_for_each_entry(n, &context->names_list, list) { 2212 if (!n->name) 2208 if (!n->name) 2213 continue; 2209 continue; 2214 if (n->name->uptr == uptr) { 2210 if (n->name->uptr == uptr) { 2215 atomic_inc(&n->name-> !! 2211 n->name->refcnt++; 2216 return n->name; 2212 return n->name; 2217 } 2213 } 2218 } 2214 } 2219 return NULL; 2215 return NULL; 2220 } 2216 } 2221 2217 2222 /** 2218 /** 2223 * __audit_getname - add a name to the list 2219 * __audit_getname - add a name to the list 2224 * @name: name to add 2220 * @name: name to add 2225 * 2221 * 2226 * Add a name to the list of audit names for 2222 * Add a name to the list of audit names for this context. 2227 * Called from fs/namei.c:getname(). 2223 * Called from fs/namei.c:getname(). 2228 */ 2224 */ 2229 void __audit_getname(struct filename *name) 2225 void __audit_getname(struct filename *name) 2230 { 2226 { 2231 struct audit_context *context = audit 2227 struct audit_context *context = audit_context(); 2232 struct audit_names *n; 2228 struct audit_names *n; 2233 2229 2234 if (context->context == AUDIT_CTX_UNU 2230 if (context->context == AUDIT_CTX_UNUSED) 2235 return; 2231 return; 2236 2232 2237 n = audit_alloc_name(context, AUDIT_T 2233 n = audit_alloc_name(context, AUDIT_TYPE_UNKNOWN); 2238 if (!n) 2234 if (!n) 2239 return; 2235 return; 2240 2236 2241 n->name = name; 2237 n->name = name; 2242 n->name_len = AUDIT_NAME_FULL; 2238 n->name_len = AUDIT_NAME_FULL; 2243 name->aname = n; 2239 name->aname = n; 2244 atomic_inc(&name->refcnt); !! 2240 name->refcnt++; 2245 } 2241 } 2246 2242 2247 static inline int audit_copy_fcaps(struct aud 2243 static inline int audit_copy_fcaps(struct audit_names *name, 2248 const stru 2244 const struct dentry *dentry) 2249 { 2245 { 2250 struct cpu_vfs_cap_data caps; 2246 struct cpu_vfs_cap_data caps; 2251 int rc; 2247 int rc; 2252 2248 2253 if (!dentry) 2249 if (!dentry) 2254 return 0; 2250 return 0; 2255 2251 2256 rc = get_vfs_caps_from_disk(&nop_mnt_ 2252 rc = get_vfs_caps_from_disk(&nop_mnt_idmap, dentry, &caps); 2257 if (rc) 2253 if (rc) 2258 return rc; 2254 return rc; 2259 2255 2260 name->fcap.permitted = caps.permitted 2256 name->fcap.permitted = caps.permitted; 2261 name->fcap.inheritable = caps.inherit 2257 name->fcap.inheritable = caps.inheritable; 2262 name->fcap.fE = !!(caps.magic_etc & V 2258 name->fcap.fE = !!(caps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE); 2263 name->fcap.rootid = caps.rootid; 2259 name->fcap.rootid = caps.rootid; 2264 name->fcap_ver = (caps.magic_etc & VF 2260 name->fcap_ver = (caps.magic_etc & VFS_CAP_REVISION_MASK) >> 2265 VFS_CAP_REVIS 2261 VFS_CAP_REVISION_SHIFT; 2266 2262 2267 return 0; 2263 return 0; 2268 } 2264 } 2269 2265 2270 /* Copy inode data into an audit_names. */ 2266 /* Copy inode data into an audit_names. */ 2271 static void audit_copy_inode(struct audit_nam 2267 static void audit_copy_inode(struct audit_names *name, 2272 const struct den 2268 const struct dentry *dentry, 2273 struct inode *in 2269 struct inode *inode, unsigned int flags) 2274 { 2270 { 2275 name->ino = inode->i_ino; 2271 name->ino = inode->i_ino; 2276 name->dev = inode->i_sb->s_dev; 2272 name->dev = inode->i_sb->s_dev; 2277 name->mode = inode->i_mode; 2273 name->mode = inode->i_mode; 2278 name->uid = inode->i_uid; 2274 name->uid = inode->i_uid; 2279 name->gid = inode->i_gid; 2275 name->gid = inode->i_gid; 2280 name->rdev = inode->i_rdev; 2276 name->rdev = inode->i_rdev; 2281 security_inode_getsecid(inode, &name- 2277 security_inode_getsecid(inode, &name->osid); 2282 if (flags & AUDIT_INODE_NOEVAL) { 2278 if (flags & AUDIT_INODE_NOEVAL) { 2283 name->fcap_ver = -1; 2279 name->fcap_ver = -1; 2284 return; 2280 return; 2285 } 2281 } 2286 audit_copy_fcaps(name, dentry); 2282 audit_copy_fcaps(name, dentry); 2287 } 2283 } 2288 2284 2289 /** 2285 /** 2290 * __audit_inode - store the inode and device 2286 * __audit_inode - store the inode and device from a lookup 2291 * @name: name being audited 2287 * @name: name being audited 2292 * @dentry: dentry being audited 2288 * @dentry: dentry being audited 2293 * @flags: attributes for this particular ent 2289 * @flags: attributes for this particular entry 2294 */ 2290 */ 2295 void __audit_inode(struct filename *name, con 2291 void __audit_inode(struct filename *name, const struct dentry *dentry, 2296 unsigned int flags) 2292 unsigned int flags) 2297 { 2293 { 2298 struct audit_context *context = audit 2294 struct audit_context *context = audit_context(); 2299 struct inode *inode = d_backing_inode 2295 struct inode *inode = d_backing_inode(dentry); 2300 struct audit_names *n; 2296 struct audit_names *n; 2301 bool parent = flags & AUDIT_INODE_PAR 2297 bool parent = flags & AUDIT_INODE_PARENT; 2302 struct audit_entry *e; 2298 struct audit_entry *e; 2303 struct list_head *list = &audit_filte 2299 struct list_head *list = &audit_filter_list[AUDIT_FILTER_FS]; 2304 int i; 2300 int i; 2305 2301 2306 if (context->context == AUDIT_CTX_UNU 2302 if (context->context == AUDIT_CTX_UNUSED) 2307 return; 2303 return; 2308 2304 2309 rcu_read_lock(); 2305 rcu_read_lock(); 2310 list_for_each_entry_rcu(e, list, list 2306 list_for_each_entry_rcu(e, list, list) { 2311 for (i = 0; i < e->rule.field 2307 for (i = 0; i < e->rule.field_count; i++) { 2312 struct audit_field *f 2308 struct audit_field *f = &e->rule.fields[i]; 2313 2309 2314 if (f->type == AUDIT_ 2310 if (f->type == AUDIT_FSTYPE 2315 && audit_comparat 2311 && audit_comparator(inode->i_sb->s_magic, 2316 2312 f->op, f->val) 2317 && e->rule.action 2313 && e->rule.action == AUDIT_NEVER) { 2318 rcu_read_unlo 2314 rcu_read_unlock(); 2319 return; 2315 return; 2320 } 2316 } 2321 } 2317 } 2322 } 2318 } 2323 rcu_read_unlock(); 2319 rcu_read_unlock(); 2324 2320 2325 if (!name) 2321 if (!name) 2326 goto out_alloc; 2322 goto out_alloc; 2327 2323 2328 /* 2324 /* 2329 * If we have a pointer to an audit_n 2325 * If we have a pointer to an audit_names entry already, then we can 2330 * just use it directly if the type i 2326 * just use it directly if the type is correct. 2331 */ 2327 */ 2332 n = name->aname; 2328 n = name->aname; 2333 if (n) { 2329 if (n) { 2334 if (parent) { 2330 if (parent) { 2335 if (n->type == AUDIT_ 2331 if (n->type == AUDIT_TYPE_PARENT || 2336 n->type == AUDIT_ 2332 n->type == AUDIT_TYPE_UNKNOWN) 2337 goto out; 2333 goto out; 2338 } else { 2334 } else { 2339 if (n->type != AUDIT_ 2335 if (n->type != AUDIT_TYPE_PARENT) 2340 goto out; 2336 goto out; 2341 } 2337 } 2342 } 2338 } 2343 2339 2344 list_for_each_entry_reverse(n, &conte 2340 list_for_each_entry_reverse(n, &context->names_list, list) { 2345 if (n->ino) { 2341 if (n->ino) { 2346 /* valid inode number 2342 /* valid inode number, use that for the comparison */ 2347 if (n->ino != inode-> 2343 if (n->ino != inode->i_ino || 2348 n->dev != inode-> 2344 n->dev != inode->i_sb->s_dev) 2349 continue; 2345 continue; 2350 } else if (n->name) { 2346 } else if (n->name) { 2351 /* inode number has n 2347 /* inode number has not been set, check the name */ 2352 if (strcmp(n->name->n 2348 if (strcmp(n->name->name, name->name)) 2353 continue; 2349 continue; 2354 } else 2350 } else 2355 /* no inode and no na 2351 /* no inode and no name (?!) ... this is odd ... */ 2356 continue; 2352 continue; 2357 2353 2358 /* match the correct record t 2354 /* match the correct record type */ 2359 if (parent) { 2355 if (parent) { 2360 if (n->type == AUDIT_ 2356 if (n->type == AUDIT_TYPE_PARENT || 2361 n->type == AUDIT_ 2357 n->type == AUDIT_TYPE_UNKNOWN) 2362 goto out; 2358 goto out; 2363 } else { 2359 } else { 2364 if (n->type != AUDIT_ 2360 if (n->type != AUDIT_TYPE_PARENT) 2365 goto out; 2361 goto out; 2366 } 2362 } 2367 } 2363 } 2368 2364 2369 out_alloc: 2365 out_alloc: 2370 /* unable to find an entry with both 2366 /* unable to find an entry with both a matching name and type */ 2371 n = audit_alloc_name(context, AUDIT_T 2367 n = audit_alloc_name(context, AUDIT_TYPE_UNKNOWN); 2372 if (!n) 2368 if (!n) 2373 return; 2369 return; 2374 if (name) { 2370 if (name) { 2375 n->name = name; 2371 n->name = name; 2376 atomic_inc(&name->refcnt); !! 2372 name->refcnt++; 2377 } 2373 } 2378 2374 2379 out: 2375 out: 2380 if (parent) { 2376 if (parent) { 2381 n->name_len = n->name ? paren 2377 n->name_len = n->name ? parent_len(n->name->name) : AUDIT_NAME_FULL; 2382 n->type = AUDIT_TYPE_PARENT; 2378 n->type = AUDIT_TYPE_PARENT; 2383 if (flags & AUDIT_INODE_HIDDE 2379 if (flags & AUDIT_INODE_HIDDEN) 2384 n->hidden = true; 2380 n->hidden = true; 2385 } else { 2381 } else { 2386 n->name_len = AUDIT_NAME_FULL 2382 n->name_len = AUDIT_NAME_FULL; 2387 n->type = AUDIT_TYPE_NORMAL; 2383 n->type = AUDIT_TYPE_NORMAL; 2388 } 2384 } 2389 handle_path(dentry); 2385 handle_path(dentry); 2390 audit_copy_inode(n, dentry, inode, fl 2386 audit_copy_inode(n, dentry, inode, flags & AUDIT_INODE_NOEVAL); 2391 } 2387 } 2392 2388 2393 void __audit_file(const struct file *file) 2389 void __audit_file(const struct file *file) 2394 { 2390 { 2395 __audit_inode(NULL, file->f_path.dent 2391 __audit_inode(NULL, file->f_path.dentry, 0); 2396 } 2392 } 2397 2393 2398 /** 2394 /** 2399 * __audit_inode_child - collect inode info f 2395 * __audit_inode_child - collect inode info for created/removed objects 2400 * @parent: inode of dentry parent 2396 * @parent: inode of dentry parent 2401 * @dentry: dentry being audited 2397 * @dentry: dentry being audited 2402 * @type: AUDIT_TYPE_* value that we're loo 2398 * @type: AUDIT_TYPE_* value that we're looking for 2403 * 2399 * 2404 * For syscalls that create or remove filesys 2400 * For syscalls that create or remove filesystem objects, audit_inode 2405 * can only collect information for the files 2401 * can only collect information for the filesystem object's parent. 2406 * This call updates the audit context with t 2402 * This call updates the audit context with the child's information. 2407 * Syscalls that create a new filesystem obje 2403 * Syscalls that create a new filesystem object must be hooked after 2408 * the object is created. Syscalls that remo 2404 * the object is created. Syscalls that remove a filesystem object 2409 * must be hooked prior, in order to capture 2405 * must be hooked prior, in order to capture the target inode during 2410 * unsuccessful attempts. 2406 * unsuccessful attempts. 2411 */ 2407 */ 2412 void __audit_inode_child(struct inode *parent 2408 void __audit_inode_child(struct inode *parent, 2413 const struct dentry 2409 const struct dentry *dentry, 2414 const unsigned char 2410 const unsigned char type) 2415 { 2411 { 2416 struct audit_context *context = audit 2412 struct audit_context *context = audit_context(); 2417 struct inode *inode = d_backing_inode 2413 struct inode *inode = d_backing_inode(dentry); 2418 const struct qstr *dname = &dentry->d 2414 const struct qstr *dname = &dentry->d_name; 2419 struct audit_names *n, *found_parent 2415 struct audit_names *n, *found_parent = NULL, *found_child = NULL; 2420 struct audit_entry *e; 2416 struct audit_entry *e; 2421 struct list_head *list = &audit_filte 2417 struct list_head *list = &audit_filter_list[AUDIT_FILTER_FS]; 2422 int i; 2418 int i; 2423 2419 2424 if (context->context == AUDIT_CTX_UNU 2420 if (context->context == AUDIT_CTX_UNUSED) 2425 return; 2421 return; 2426 2422 2427 rcu_read_lock(); 2423 rcu_read_lock(); 2428 list_for_each_entry_rcu(e, list, list 2424 list_for_each_entry_rcu(e, list, list) { 2429 for (i = 0; i < e->rule.field 2425 for (i = 0; i < e->rule.field_count; i++) { 2430 struct audit_field *f 2426 struct audit_field *f = &e->rule.fields[i]; 2431 2427 2432 if (f->type == AUDIT_ 2428 if (f->type == AUDIT_FSTYPE 2433 && audit_comparat 2429 && audit_comparator(parent->i_sb->s_magic, 2434 2430 f->op, f->val) 2435 && e->rule.action 2431 && e->rule.action == AUDIT_NEVER) { 2436 rcu_read_unlo 2432 rcu_read_unlock(); 2437 return; 2433 return; 2438 } 2434 } 2439 } 2435 } 2440 } 2436 } 2441 rcu_read_unlock(); 2437 rcu_read_unlock(); 2442 2438 2443 if (inode) 2439 if (inode) 2444 handle_one(inode); 2440 handle_one(inode); 2445 2441 2446 /* look for a parent entry first */ 2442 /* look for a parent entry first */ 2447 list_for_each_entry(n, &context->name 2443 list_for_each_entry(n, &context->names_list, list) { 2448 if (!n->name || 2444 if (!n->name || 2449 (n->type != AUDIT_TYPE_PA 2445 (n->type != AUDIT_TYPE_PARENT && 2450 n->type != AUDIT_TYPE_UN 2446 n->type != AUDIT_TYPE_UNKNOWN)) 2451 continue; 2447 continue; 2452 2448 2453 if (n->ino == parent->i_ino & 2449 if (n->ino == parent->i_ino && n->dev == parent->i_sb->s_dev && 2454 !audit_compare_dname_path 2450 !audit_compare_dname_path(dname, 2455 2451 n->name->name, n->name_len)) { 2456 if (n->type == AUDIT_ 2452 if (n->type == AUDIT_TYPE_UNKNOWN) 2457 n->type = AUD 2453 n->type = AUDIT_TYPE_PARENT; 2458 found_parent = n; 2454 found_parent = n; 2459 break; 2455 break; 2460 } 2456 } 2461 } 2457 } 2462 2458 2463 cond_resched(); << 2464 << 2465 /* is there a matching child entry? * 2459 /* is there a matching child entry? */ 2466 list_for_each_entry(n, &context->name 2460 list_for_each_entry(n, &context->names_list, list) { 2467 /* can only match entries tha 2461 /* can only match entries that have a name */ 2468 if (!n->name || 2462 if (!n->name || 2469 (n->type != type && n->ty 2463 (n->type != type && n->type != AUDIT_TYPE_UNKNOWN)) 2470 continue; 2464 continue; 2471 2465 2472 if (!strcmp(dname->name, n->n 2466 if (!strcmp(dname->name, n->name->name) || 2473 !audit_compare_dname_path 2467 !audit_compare_dname_path(dname, n->name->name, 2474 2468 found_parent ? 2475 2469 found_parent->name_len : 2476 2470 AUDIT_NAME_FULL)) { 2477 if (n->type == AUDIT_ 2471 if (n->type == AUDIT_TYPE_UNKNOWN) 2478 n->type = typ 2472 n->type = type; 2479 found_child = n; 2473 found_child = n; 2480 break; 2474 break; 2481 } 2475 } 2482 } 2476 } 2483 2477 2484 if (!found_parent) { 2478 if (!found_parent) { 2485 /* create a new, "anonymous" 2479 /* create a new, "anonymous" parent record */ 2486 n = audit_alloc_name(context, 2480 n = audit_alloc_name(context, AUDIT_TYPE_PARENT); 2487 if (!n) 2481 if (!n) 2488 return; 2482 return; 2489 audit_copy_inode(n, NULL, par 2483 audit_copy_inode(n, NULL, parent, 0); 2490 } 2484 } 2491 2485 2492 if (!found_child) { 2486 if (!found_child) { 2493 found_child = audit_alloc_nam 2487 found_child = audit_alloc_name(context, type); 2494 if (!found_child) 2488 if (!found_child) 2495 return; 2489 return; 2496 2490 2497 /* Re-use the name belonging 2491 /* Re-use the name belonging to the slot for a matching parent 2498 * directory. All names for t 2492 * directory. All names for this context are relinquished in 2499 * audit_free_names() */ 2493 * audit_free_names() */ 2500 if (found_parent) { 2494 if (found_parent) { 2501 found_child->name = f 2495 found_child->name = found_parent->name; 2502 found_child->name_len 2496 found_child->name_len = AUDIT_NAME_FULL; 2503 atomic_inc(&found_chi !! 2497 found_child->name->refcnt++; 2504 } 2498 } 2505 } 2499 } 2506 2500 2507 if (inode) 2501 if (inode) 2508 audit_copy_inode(found_child, 2502 audit_copy_inode(found_child, dentry, inode, 0); 2509 else 2503 else 2510 found_child->ino = AUDIT_INO_ 2504 found_child->ino = AUDIT_INO_UNSET; 2511 } 2505 } 2512 EXPORT_SYMBOL_GPL(__audit_inode_child); 2506 EXPORT_SYMBOL_GPL(__audit_inode_child); 2513 2507 2514 /** 2508 /** 2515 * auditsc_get_stamp - get local copies of au 2509 * auditsc_get_stamp - get local copies of audit_context values 2516 * @ctx: audit_context for the task 2510 * @ctx: audit_context for the task 2517 * @t: timespec64 to store time recorded in t 2511 * @t: timespec64 to store time recorded in the audit_context 2518 * @serial: serial value that is recorded in 2512 * @serial: serial value that is recorded in the audit_context 2519 * 2513 * 2520 * Also sets the context as auditable. 2514 * Also sets the context as auditable. 2521 */ 2515 */ 2522 int auditsc_get_stamp(struct audit_context *c 2516 int auditsc_get_stamp(struct audit_context *ctx, 2523 struct timespec64 *t, 2517 struct timespec64 *t, unsigned int *serial) 2524 { 2518 { 2525 if (ctx->context == AUDIT_CTX_UNUSED) 2519 if (ctx->context == AUDIT_CTX_UNUSED) 2526 return 0; 2520 return 0; 2527 if (!ctx->serial) 2521 if (!ctx->serial) 2528 ctx->serial = audit_serial(); 2522 ctx->serial = audit_serial(); 2529 t->tv_sec = ctx->ctime.tv_sec; 2523 t->tv_sec = ctx->ctime.tv_sec; 2530 t->tv_nsec = ctx->ctime.tv_nsec; 2524 t->tv_nsec = ctx->ctime.tv_nsec; 2531 *serial = ctx->serial; 2525 *serial = ctx->serial; 2532 if (!ctx->prio) { 2526 if (!ctx->prio) { 2533 ctx->prio = 1; 2527 ctx->prio = 1; 2534 ctx->current_state = AUDIT_ST 2528 ctx->current_state = AUDIT_STATE_RECORD; 2535 } 2529 } 2536 return 1; 2530 return 1; 2537 } 2531 } 2538 2532 2539 /** 2533 /** 2540 * __audit_mq_open - record audit data for a 2534 * __audit_mq_open - record audit data for a POSIX MQ open 2541 * @oflag: open flag 2535 * @oflag: open flag 2542 * @mode: mode bits 2536 * @mode: mode bits 2543 * @attr: queue attributes 2537 * @attr: queue attributes 2544 * 2538 * 2545 */ 2539 */ 2546 void __audit_mq_open(int oflag, umode_t mode, 2540 void __audit_mq_open(int oflag, umode_t mode, struct mq_attr *attr) 2547 { 2541 { 2548 struct audit_context *context = audit 2542 struct audit_context *context = audit_context(); 2549 2543 2550 if (attr) 2544 if (attr) 2551 memcpy(&context->mq_open.attr 2545 memcpy(&context->mq_open.attr, attr, sizeof(struct mq_attr)); 2552 else 2546 else 2553 memset(&context->mq_open.attr 2547 memset(&context->mq_open.attr, 0, sizeof(struct mq_attr)); 2554 2548 2555 context->mq_open.oflag = oflag; 2549 context->mq_open.oflag = oflag; 2556 context->mq_open.mode = mode; 2550 context->mq_open.mode = mode; 2557 2551 2558 context->type = AUDIT_MQ_OPEN; 2552 context->type = AUDIT_MQ_OPEN; 2559 } 2553 } 2560 2554 2561 /** 2555 /** 2562 * __audit_mq_sendrecv - record audit data fo 2556 * __audit_mq_sendrecv - record audit data for a POSIX MQ timed send/receive 2563 * @mqdes: MQ descriptor 2557 * @mqdes: MQ descriptor 2564 * @msg_len: Message length 2558 * @msg_len: Message length 2565 * @msg_prio: Message priority 2559 * @msg_prio: Message priority 2566 * @abs_timeout: Message timeout in absolute 2560 * @abs_timeout: Message timeout in absolute time 2567 * 2561 * 2568 */ 2562 */ 2569 void __audit_mq_sendrecv(mqd_t mqdes, size_t 2563 void __audit_mq_sendrecv(mqd_t mqdes, size_t msg_len, unsigned int msg_prio, 2570 const struct timespec 2564 const struct timespec64 *abs_timeout) 2571 { 2565 { 2572 struct audit_context *context = audit 2566 struct audit_context *context = audit_context(); 2573 struct timespec64 *p = &context->mq_s 2567 struct timespec64 *p = &context->mq_sendrecv.abs_timeout; 2574 2568 2575 if (abs_timeout) 2569 if (abs_timeout) 2576 memcpy(p, abs_timeout, sizeof 2570 memcpy(p, abs_timeout, sizeof(*p)); 2577 else 2571 else 2578 memset(p, 0, sizeof(*p)); 2572 memset(p, 0, sizeof(*p)); 2579 2573 2580 context->mq_sendrecv.mqdes = mqdes; 2574 context->mq_sendrecv.mqdes = mqdes; 2581 context->mq_sendrecv.msg_len = msg_le 2575 context->mq_sendrecv.msg_len = msg_len; 2582 context->mq_sendrecv.msg_prio = msg_p 2576 context->mq_sendrecv.msg_prio = msg_prio; 2583 2577 2584 context->type = AUDIT_MQ_SENDRECV; 2578 context->type = AUDIT_MQ_SENDRECV; 2585 } 2579 } 2586 2580 2587 /** 2581 /** 2588 * __audit_mq_notify - record audit data for 2582 * __audit_mq_notify - record audit data for a POSIX MQ notify 2589 * @mqdes: MQ descriptor 2583 * @mqdes: MQ descriptor 2590 * @notification: Notification event 2584 * @notification: Notification event 2591 * 2585 * 2592 */ 2586 */ 2593 2587 2594 void __audit_mq_notify(mqd_t mqdes, const str 2588 void __audit_mq_notify(mqd_t mqdes, const struct sigevent *notification) 2595 { 2589 { 2596 struct audit_context *context = audit 2590 struct audit_context *context = audit_context(); 2597 2591 2598 if (notification) 2592 if (notification) 2599 context->mq_notify.sigev_sign 2593 context->mq_notify.sigev_signo = notification->sigev_signo; 2600 else 2594 else 2601 context->mq_notify.sigev_sign 2595 context->mq_notify.sigev_signo = 0; 2602 2596 2603 context->mq_notify.mqdes = mqdes; 2597 context->mq_notify.mqdes = mqdes; 2604 context->type = AUDIT_MQ_NOTIFY; 2598 context->type = AUDIT_MQ_NOTIFY; 2605 } 2599 } 2606 2600 2607 /** 2601 /** 2608 * __audit_mq_getsetattr - record audit data 2602 * __audit_mq_getsetattr - record audit data for a POSIX MQ get/set attribute 2609 * @mqdes: MQ descriptor 2603 * @mqdes: MQ descriptor 2610 * @mqstat: MQ flags 2604 * @mqstat: MQ flags 2611 * 2605 * 2612 */ 2606 */ 2613 void __audit_mq_getsetattr(mqd_t mqdes, struc 2607 void __audit_mq_getsetattr(mqd_t mqdes, struct mq_attr *mqstat) 2614 { 2608 { 2615 struct audit_context *context = audit 2609 struct audit_context *context = audit_context(); 2616 2610 2617 context->mq_getsetattr.mqdes = mqdes; 2611 context->mq_getsetattr.mqdes = mqdes; 2618 context->mq_getsetattr.mqstat = *mqst 2612 context->mq_getsetattr.mqstat = *mqstat; 2619 context->type = AUDIT_MQ_GETSETATTR; 2613 context->type = AUDIT_MQ_GETSETATTR; 2620 } 2614 } 2621 2615 2622 /** 2616 /** 2623 * __audit_ipc_obj - record audit data for ip 2617 * __audit_ipc_obj - record audit data for ipc object 2624 * @ipcp: ipc permissions 2618 * @ipcp: ipc permissions 2625 * 2619 * 2626 */ 2620 */ 2627 void __audit_ipc_obj(struct kern_ipc_perm *ip 2621 void __audit_ipc_obj(struct kern_ipc_perm *ipcp) 2628 { 2622 { 2629 struct audit_context *context = audit 2623 struct audit_context *context = audit_context(); 2630 2624 2631 context->ipc.uid = ipcp->uid; 2625 context->ipc.uid = ipcp->uid; 2632 context->ipc.gid = ipcp->gid; 2626 context->ipc.gid = ipcp->gid; 2633 context->ipc.mode = ipcp->mode; 2627 context->ipc.mode = ipcp->mode; 2634 context->ipc.has_perm = 0; 2628 context->ipc.has_perm = 0; 2635 security_ipc_getsecid(ipcp, &context- 2629 security_ipc_getsecid(ipcp, &context->ipc.osid); 2636 context->type = AUDIT_IPC; 2630 context->type = AUDIT_IPC; 2637 } 2631 } 2638 2632 2639 /** 2633 /** 2640 * __audit_ipc_set_perm - record audit data f 2634 * __audit_ipc_set_perm - record audit data for new ipc permissions 2641 * @qbytes: msgq bytes 2635 * @qbytes: msgq bytes 2642 * @uid: msgq user id 2636 * @uid: msgq user id 2643 * @gid: msgq group id 2637 * @gid: msgq group id 2644 * @mode: msgq mode (permissions) 2638 * @mode: msgq mode (permissions) 2645 * 2639 * 2646 * Called only after audit_ipc_obj(). 2640 * Called only after audit_ipc_obj(). 2647 */ 2641 */ 2648 void __audit_ipc_set_perm(unsigned long qbyte 2642 void __audit_ipc_set_perm(unsigned long qbytes, uid_t uid, gid_t gid, umode_t mode) 2649 { 2643 { 2650 struct audit_context *context = audit 2644 struct audit_context *context = audit_context(); 2651 2645 2652 context->ipc.qbytes = qbytes; 2646 context->ipc.qbytes = qbytes; 2653 context->ipc.perm_uid = uid; 2647 context->ipc.perm_uid = uid; 2654 context->ipc.perm_gid = gid; 2648 context->ipc.perm_gid = gid; 2655 context->ipc.perm_mode = mode; 2649 context->ipc.perm_mode = mode; 2656 context->ipc.has_perm = 1; 2650 context->ipc.has_perm = 1; 2657 } 2651 } 2658 2652 2659 void __audit_bprm(struct linux_binprm *bprm) 2653 void __audit_bprm(struct linux_binprm *bprm) 2660 { 2654 { 2661 struct audit_context *context = audit 2655 struct audit_context *context = audit_context(); 2662 2656 2663 context->type = AUDIT_EXECVE; 2657 context->type = AUDIT_EXECVE; 2664 context->execve.argc = bprm->argc; 2658 context->execve.argc = bprm->argc; 2665 } 2659 } 2666 2660 2667 2661 2668 /** 2662 /** 2669 * __audit_socketcall - record audit data for 2663 * __audit_socketcall - record audit data for sys_socketcall 2670 * @nargs: number of args, which should not b 2664 * @nargs: number of args, which should not be more than AUDITSC_ARGS. 2671 * @args: args array 2665 * @args: args array 2672 * 2666 * 2673 */ 2667 */ 2674 int __audit_socketcall(int nargs, unsigned lo 2668 int __audit_socketcall(int nargs, unsigned long *args) 2675 { 2669 { 2676 struct audit_context *context = audit 2670 struct audit_context *context = audit_context(); 2677 2671 2678 if (nargs <= 0 || nargs > AUDITSC_ARG 2672 if (nargs <= 0 || nargs > AUDITSC_ARGS || !args) 2679 return -EINVAL; 2673 return -EINVAL; 2680 context->type = AUDIT_SOCKETCALL; 2674 context->type = AUDIT_SOCKETCALL; 2681 context->socketcall.nargs = nargs; 2675 context->socketcall.nargs = nargs; 2682 memcpy(context->socketcall.args, args 2676 memcpy(context->socketcall.args, args, nargs * sizeof(unsigned long)); 2683 return 0; 2677 return 0; 2684 } 2678 } 2685 2679 2686 /** 2680 /** 2687 * __audit_fd_pair - record audit data for pi 2681 * __audit_fd_pair - record audit data for pipe and socketpair 2688 * @fd1: the first file descriptor 2682 * @fd1: the first file descriptor 2689 * @fd2: the second file descriptor 2683 * @fd2: the second file descriptor 2690 * 2684 * 2691 */ 2685 */ 2692 void __audit_fd_pair(int fd1, int fd2) 2686 void __audit_fd_pair(int fd1, int fd2) 2693 { 2687 { 2694 struct audit_context *context = audit 2688 struct audit_context *context = audit_context(); 2695 2689 2696 context->fds[0] = fd1; 2690 context->fds[0] = fd1; 2697 context->fds[1] = fd2; 2691 context->fds[1] = fd2; 2698 } 2692 } 2699 2693 2700 /** 2694 /** 2701 * __audit_sockaddr - record audit data for s 2695 * __audit_sockaddr - record audit data for sys_bind, sys_connect, sys_sendto 2702 * @len: data length in user space 2696 * @len: data length in user space 2703 * @a: data address in kernel space 2697 * @a: data address in kernel space 2704 * 2698 * 2705 * Returns 0 for success or NULL context or < 2699 * Returns 0 for success or NULL context or < 0 on error. 2706 */ 2700 */ 2707 int __audit_sockaddr(int len, void *a) 2701 int __audit_sockaddr(int len, void *a) 2708 { 2702 { 2709 struct audit_context *context = audit 2703 struct audit_context *context = audit_context(); 2710 2704 2711 if (!context->sockaddr) { 2705 if (!context->sockaddr) { 2712 void *p = kmalloc(sizeof(stru 2706 void *p = kmalloc(sizeof(struct sockaddr_storage), GFP_KERNEL); 2713 2707 2714 if (!p) 2708 if (!p) 2715 return -ENOMEM; 2709 return -ENOMEM; 2716 context->sockaddr = p; 2710 context->sockaddr = p; 2717 } 2711 } 2718 2712 2719 context->sockaddr_len = len; 2713 context->sockaddr_len = len; 2720 memcpy(context->sockaddr, a, len); 2714 memcpy(context->sockaddr, a, len); 2721 return 0; 2715 return 0; 2722 } 2716 } 2723 2717 2724 void __audit_ptrace(struct task_struct *t) 2718 void __audit_ptrace(struct task_struct *t) 2725 { 2719 { 2726 struct audit_context *context = audit 2720 struct audit_context *context = audit_context(); 2727 2721 2728 context->target_pid = task_tgid_nr(t) 2722 context->target_pid = task_tgid_nr(t); 2729 context->target_auid = audit_get_logi 2723 context->target_auid = audit_get_loginuid(t); 2730 context->target_uid = task_uid(t); 2724 context->target_uid = task_uid(t); 2731 context->target_sessionid = audit_get 2725 context->target_sessionid = audit_get_sessionid(t); 2732 security_task_getsecid_obj(t, &contex 2726 security_task_getsecid_obj(t, &context->target_sid); 2733 memcpy(context->target_comm, t->comm, 2727 memcpy(context->target_comm, t->comm, TASK_COMM_LEN); 2734 } 2728 } 2735 2729 2736 /** 2730 /** 2737 * audit_signal_info_syscall - record signal 2731 * audit_signal_info_syscall - record signal info for syscalls 2738 * @t: task being signaled 2732 * @t: task being signaled 2739 * 2733 * 2740 * If the audit subsystem is being terminated 2734 * If the audit subsystem is being terminated, record the task (pid) 2741 * and uid that is doing that. 2735 * and uid that is doing that. 2742 */ 2736 */ 2743 int audit_signal_info_syscall(struct task_str 2737 int audit_signal_info_syscall(struct task_struct *t) 2744 { 2738 { 2745 struct audit_aux_data_pids *axp; 2739 struct audit_aux_data_pids *axp; 2746 struct audit_context *ctx = audit_con 2740 struct audit_context *ctx = audit_context(); 2747 kuid_t t_uid = task_uid(t); 2741 kuid_t t_uid = task_uid(t); 2748 2742 2749 if (!audit_signals || audit_dummy_con 2743 if (!audit_signals || audit_dummy_context()) 2750 return 0; 2744 return 0; 2751 2745 2752 /* optimize the common case by puttin 2746 /* optimize the common case by putting first signal recipient directly 2753 * in audit_context */ 2747 * in audit_context */ 2754 if (!ctx->target_pid) { 2748 if (!ctx->target_pid) { 2755 ctx->target_pid = task_tgid_n 2749 ctx->target_pid = task_tgid_nr(t); 2756 ctx->target_auid = audit_get_ 2750 ctx->target_auid = audit_get_loginuid(t); 2757 ctx->target_uid = t_uid; 2751 ctx->target_uid = t_uid; 2758 ctx->target_sessionid = audit 2752 ctx->target_sessionid = audit_get_sessionid(t); 2759 security_task_getsecid_obj(t, 2753 security_task_getsecid_obj(t, &ctx->target_sid); 2760 memcpy(ctx->target_comm, t->c 2754 memcpy(ctx->target_comm, t->comm, TASK_COMM_LEN); 2761 return 0; 2755 return 0; 2762 } 2756 } 2763 2757 2764 axp = (void *)ctx->aux_pids; 2758 axp = (void *)ctx->aux_pids; 2765 if (!axp || axp->pid_count == AUDIT_A 2759 if (!axp || axp->pid_count == AUDIT_AUX_PIDS) { 2766 axp = kzalloc(sizeof(*axp), G 2760 axp = kzalloc(sizeof(*axp), GFP_ATOMIC); 2767 if (!axp) 2761 if (!axp) 2768 return -ENOMEM; 2762 return -ENOMEM; 2769 2763 2770 axp->d.type = AUDIT_OBJ_PID; 2764 axp->d.type = AUDIT_OBJ_PID; 2771 axp->d.next = ctx->aux_pids; 2765 axp->d.next = ctx->aux_pids; 2772 ctx->aux_pids = (void *)axp; 2766 ctx->aux_pids = (void *)axp; 2773 } 2767 } 2774 BUG_ON(axp->pid_count >= AUDIT_AUX_PI 2768 BUG_ON(axp->pid_count >= AUDIT_AUX_PIDS); 2775 2769 2776 axp->target_pid[axp->pid_count] = tas 2770 axp->target_pid[axp->pid_count] = task_tgid_nr(t); 2777 axp->target_auid[axp->pid_count] = au 2771 axp->target_auid[axp->pid_count] = audit_get_loginuid(t); 2778 axp->target_uid[axp->pid_count] = t_u 2772 axp->target_uid[axp->pid_count] = t_uid; 2779 axp->target_sessionid[axp->pid_count] 2773 axp->target_sessionid[axp->pid_count] = audit_get_sessionid(t); 2780 security_task_getsecid_obj(t, &axp->t 2774 security_task_getsecid_obj(t, &axp->target_sid[axp->pid_count]); 2781 memcpy(axp->target_comm[axp->pid_coun 2775 memcpy(axp->target_comm[axp->pid_count], t->comm, TASK_COMM_LEN); 2782 axp->pid_count++; 2776 axp->pid_count++; 2783 2777 2784 return 0; 2778 return 0; 2785 } 2779 } 2786 2780 2787 /** 2781 /** 2788 * __audit_log_bprm_fcaps - store information 2782 * __audit_log_bprm_fcaps - store information about a loading bprm and relevant fcaps 2789 * @bprm: pointer to the bprm being processed 2783 * @bprm: pointer to the bprm being processed 2790 * @new: the proposed new credentials 2784 * @new: the proposed new credentials 2791 * @old: the old credentials 2785 * @old: the old credentials 2792 * 2786 * 2793 * Simply check if the proc already has the c 2787 * Simply check if the proc already has the caps given by the file and if not 2794 * store the priv escalation info for later a 2788 * store the priv escalation info for later auditing at the end of the syscall 2795 * 2789 * 2796 * -Eric 2790 * -Eric 2797 */ 2791 */ 2798 int __audit_log_bprm_fcaps(struct linux_binpr 2792 int __audit_log_bprm_fcaps(struct linux_binprm *bprm, 2799 const struct cred 2793 const struct cred *new, const struct cred *old) 2800 { 2794 { 2801 struct audit_aux_data_bprm_fcaps *ax; 2795 struct audit_aux_data_bprm_fcaps *ax; 2802 struct audit_context *context = audit 2796 struct audit_context *context = audit_context(); 2803 struct cpu_vfs_cap_data vcaps; 2797 struct cpu_vfs_cap_data vcaps; 2804 2798 2805 ax = kmalloc(sizeof(*ax), GFP_KERNEL) 2799 ax = kmalloc(sizeof(*ax), GFP_KERNEL); 2806 if (!ax) 2800 if (!ax) 2807 return -ENOMEM; 2801 return -ENOMEM; 2808 2802 2809 ax->d.type = AUDIT_BPRM_FCAPS; 2803 ax->d.type = AUDIT_BPRM_FCAPS; 2810 ax->d.next = context->aux; 2804 ax->d.next = context->aux; 2811 context->aux = (void *)ax; 2805 context->aux = (void *)ax; 2812 2806 2813 get_vfs_caps_from_disk(&nop_mnt_idmap 2807 get_vfs_caps_from_disk(&nop_mnt_idmap, 2814 bprm->file->f_ 2808 bprm->file->f_path.dentry, &vcaps); 2815 2809 2816 ax->fcap.permitted = vcaps.permitted; 2810 ax->fcap.permitted = vcaps.permitted; 2817 ax->fcap.inheritable = vcaps.inherita 2811 ax->fcap.inheritable = vcaps.inheritable; 2818 ax->fcap.fE = !!(vcaps.magic_etc & VF 2812 ax->fcap.fE = !!(vcaps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE); 2819 ax->fcap.rootid = vcaps.rootid; 2813 ax->fcap.rootid = vcaps.rootid; 2820 ax->fcap_ver = (vcaps.magic_etc & VFS 2814 ax->fcap_ver = (vcaps.magic_etc & VFS_CAP_REVISION_MASK) >> VFS_CAP_REVISION_SHIFT; 2821 2815 2822 ax->old_pcap.permitted = old->cap_p 2816 ax->old_pcap.permitted = old->cap_permitted; 2823 ax->old_pcap.inheritable = old->cap_i 2817 ax->old_pcap.inheritable = old->cap_inheritable; 2824 ax->old_pcap.effective = old->cap_e 2818 ax->old_pcap.effective = old->cap_effective; 2825 ax->old_pcap.ambient = old->cap_a 2819 ax->old_pcap.ambient = old->cap_ambient; 2826 2820 2827 ax->new_pcap.permitted = new->cap_p 2821 ax->new_pcap.permitted = new->cap_permitted; 2828 ax->new_pcap.inheritable = new->cap_i 2822 ax->new_pcap.inheritable = new->cap_inheritable; 2829 ax->new_pcap.effective = new->cap_e 2823 ax->new_pcap.effective = new->cap_effective; 2830 ax->new_pcap.ambient = new->cap_a 2824 ax->new_pcap.ambient = new->cap_ambient; 2831 return 0; 2825 return 0; 2832 } 2826 } 2833 2827 2834 /** 2828 /** 2835 * __audit_log_capset - store information abo 2829 * __audit_log_capset - store information about the arguments to the capset syscall 2836 * @new: the new credentials 2830 * @new: the new credentials 2837 * @old: the old (current) credentials 2831 * @old: the old (current) credentials 2838 * 2832 * 2839 * Record the arguments userspace sent to sys 2833 * Record the arguments userspace sent to sys_capset for later printing by the 2840 * audit system if applicable 2834 * audit system if applicable 2841 */ 2835 */ 2842 void __audit_log_capset(const struct cred *ne 2836 void __audit_log_capset(const struct cred *new, const struct cred *old) 2843 { 2837 { 2844 struct audit_context *context = audit 2838 struct audit_context *context = audit_context(); 2845 2839 2846 context->capset.pid = task_tgid_nr(cu 2840 context->capset.pid = task_tgid_nr(current); 2847 context->capset.cap.effective = new 2841 context->capset.cap.effective = new->cap_effective; 2848 context->capset.cap.inheritable = new 2842 context->capset.cap.inheritable = new->cap_effective; 2849 context->capset.cap.permitted = new 2843 context->capset.cap.permitted = new->cap_permitted; 2850 context->capset.cap.ambient = new 2844 context->capset.cap.ambient = new->cap_ambient; 2851 context->type = AUDIT_CAPSET; 2845 context->type = AUDIT_CAPSET; 2852 } 2846 } 2853 2847 2854 void __audit_mmap_fd(int fd, int flags) 2848 void __audit_mmap_fd(int fd, int flags) 2855 { 2849 { 2856 struct audit_context *context = audit 2850 struct audit_context *context = audit_context(); 2857 2851 2858 context->mmap.fd = fd; 2852 context->mmap.fd = fd; 2859 context->mmap.flags = flags; 2853 context->mmap.flags = flags; 2860 context->type = AUDIT_MMAP; 2854 context->type = AUDIT_MMAP; 2861 } 2855 } 2862 2856 2863 void __audit_openat2_how(struct open_how *how 2857 void __audit_openat2_how(struct open_how *how) 2864 { 2858 { 2865 struct audit_context *context = audit 2859 struct audit_context *context = audit_context(); 2866 2860 2867 context->openat2.flags = how->flags; 2861 context->openat2.flags = how->flags; 2868 context->openat2.mode = how->mode; 2862 context->openat2.mode = how->mode; 2869 context->openat2.resolve = how->resol 2863 context->openat2.resolve = how->resolve; 2870 context->type = AUDIT_OPENAT2; 2864 context->type = AUDIT_OPENAT2; 2871 } 2865 } 2872 2866 2873 void __audit_log_kern_module(char *name) 2867 void __audit_log_kern_module(char *name) 2874 { 2868 { 2875 struct audit_context *context = audit 2869 struct audit_context *context = audit_context(); 2876 2870 2877 context->module.name = kstrdup(name, 2871 context->module.name = kstrdup(name, GFP_KERNEL); 2878 if (!context->module.name) 2872 if (!context->module.name) 2879 audit_log_lost("out of memory 2873 audit_log_lost("out of memory in __audit_log_kern_module"); 2880 context->type = AUDIT_KERN_MODULE; 2874 context->type = AUDIT_KERN_MODULE; 2881 } 2875 } 2882 2876 2883 void __audit_fanotify(u32 response, struct fa 2877 void __audit_fanotify(u32 response, struct fanotify_response_info_audit_rule *friar) 2884 { 2878 { 2885 /* {subj,obj}_trust values are {0,1,2 2879 /* {subj,obj}_trust values are {0,1,2}: no,yes,unknown */ 2886 switch (friar->hdr.type) { 2880 switch (friar->hdr.type) { 2887 case FAN_RESPONSE_INFO_NONE: 2881 case FAN_RESPONSE_INFO_NONE: 2888 audit_log(audit_context(), GF 2882 audit_log(audit_context(), GFP_KERNEL, AUDIT_FANOTIFY, 2889 "resp=%u fan_type=% 2883 "resp=%u fan_type=%u fan_info=0 subj_trust=2 obj_trust=2", 2890 response, FAN_RESPO 2884 response, FAN_RESPONSE_INFO_NONE); 2891 break; 2885 break; 2892 case FAN_RESPONSE_INFO_AUDIT_RULE: 2886 case FAN_RESPONSE_INFO_AUDIT_RULE: 2893 audit_log(audit_context(), GF 2887 audit_log(audit_context(), GFP_KERNEL, AUDIT_FANOTIFY, 2894 "resp=%u fan_type=% 2888 "resp=%u fan_type=%u fan_info=%X subj_trust=%u obj_trust=%u", 2895 response, friar->hd 2889 response, friar->hdr.type, friar->rule_number, 2896 friar->subj_trust, 2890 friar->subj_trust, friar->obj_trust); 2897 } 2891 } 2898 } 2892 } 2899 2893 2900 void __audit_tk_injoffset(struct timespec64 o 2894 void __audit_tk_injoffset(struct timespec64 offset) 2901 { 2895 { 2902 struct audit_context *context = audit 2896 struct audit_context *context = audit_context(); 2903 2897 2904 /* only set type if not already set b 2898 /* only set type if not already set by NTP */ 2905 if (!context->type) 2899 if (!context->type) 2906 context->type = AUDIT_TIME_IN 2900 context->type = AUDIT_TIME_INJOFFSET; 2907 memcpy(&context->time.tk_injoffset, & 2901 memcpy(&context->time.tk_injoffset, &offset, sizeof(offset)); 2908 } 2902 } 2909 2903 2910 void __audit_ntp_log(const struct audit_ntp_d 2904 void __audit_ntp_log(const struct audit_ntp_data *ad) 2911 { 2905 { 2912 struct audit_context *context = audit 2906 struct audit_context *context = audit_context(); 2913 int type; 2907 int type; 2914 2908 2915 for (type = 0; type < AUDIT_NTP_NVALS 2909 for (type = 0; type < AUDIT_NTP_NVALS; type++) 2916 if (ad->vals[type].newval != 2910 if (ad->vals[type].newval != ad->vals[type].oldval) { 2917 /* unconditionally se 2911 /* unconditionally set type, overwriting TK */ 2918 context->type = AUDIT 2912 context->type = AUDIT_TIME_ADJNTPVAL; 2919 memcpy(&context->time 2913 memcpy(&context->time.ntp_data, ad, sizeof(*ad)); 2920 break; 2914 break; 2921 } 2915 } 2922 } 2916 } 2923 2917 2924 void __audit_log_nfcfg(const char *name, u8 a 2918 void __audit_log_nfcfg(const char *name, u8 af, unsigned int nentries, 2925 enum audit_nfcfgop op, 2919 enum audit_nfcfgop op, gfp_t gfp) 2926 { 2920 { 2927 struct audit_buffer *ab; 2921 struct audit_buffer *ab; 2928 char comm[sizeof(current->comm)]; 2922 char comm[sizeof(current->comm)]; 2929 2923 2930 ab = audit_log_start(audit_context(), 2924 ab = audit_log_start(audit_context(), gfp, AUDIT_NETFILTER_CFG); 2931 if (!ab) 2925 if (!ab) 2932 return; 2926 return; 2933 audit_log_format(ab, "table=%s family 2927 audit_log_format(ab, "table=%s family=%u entries=%u op=%s", 2934 name, af, nentries, 2928 name, af, nentries, audit_nfcfgs[op].s); 2935 2929 2936 audit_log_format(ab, " pid=%u", task_ 2930 audit_log_format(ab, " pid=%u", task_pid_nr(current)); 2937 audit_log_task_context(ab); /* subj= 2931 audit_log_task_context(ab); /* subj= */ 2938 audit_log_format(ab, " comm="); 2932 audit_log_format(ab, " comm="); 2939 audit_log_untrustedstring(ab, get_tas 2933 audit_log_untrustedstring(ab, get_task_comm(comm, current)); 2940 audit_log_end(ab); 2934 audit_log_end(ab); 2941 } 2935 } 2942 EXPORT_SYMBOL_GPL(__audit_log_nfcfg); 2936 EXPORT_SYMBOL_GPL(__audit_log_nfcfg); 2943 2937 2944 static void audit_log_task(struct audit_buffe 2938 static void audit_log_task(struct audit_buffer *ab) 2945 { 2939 { 2946 kuid_t auid, uid; 2940 kuid_t auid, uid; 2947 kgid_t gid; 2941 kgid_t gid; 2948 unsigned int sessionid; 2942 unsigned int sessionid; 2949 char comm[sizeof(current->comm)]; 2943 char comm[sizeof(current->comm)]; 2950 2944 2951 auid = audit_get_loginuid(current); 2945 auid = audit_get_loginuid(current); 2952 sessionid = audit_get_sessionid(curre 2946 sessionid = audit_get_sessionid(current); 2953 current_uid_gid(&uid, &gid); 2947 current_uid_gid(&uid, &gid); 2954 2948 2955 audit_log_format(ab, "auid=%u uid=%u 2949 audit_log_format(ab, "auid=%u uid=%u gid=%u ses=%u", 2956 from_kuid(&init_user 2950 from_kuid(&init_user_ns, auid), 2957 from_kuid(&init_user 2951 from_kuid(&init_user_ns, uid), 2958 from_kgid(&init_user 2952 from_kgid(&init_user_ns, gid), 2959 sessionid); 2953 sessionid); 2960 audit_log_task_context(ab); 2954 audit_log_task_context(ab); 2961 audit_log_format(ab, " pid=%d comm=", 2955 audit_log_format(ab, " pid=%d comm=", task_tgid_nr(current)); 2962 audit_log_untrustedstring(ab, get_tas 2956 audit_log_untrustedstring(ab, get_task_comm(comm, current)); 2963 audit_log_d_path_exe(ab, current->mm) 2957 audit_log_d_path_exe(ab, current->mm); 2964 } 2958 } 2965 2959 2966 /** 2960 /** 2967 * audit_core_dumps - record information abou 2961 * audit_core_dumps - record information about processes that end abnormally 2968 * @signr: signal value 2962 * @signr: signal value 2969 * 2963 * 2970 * If a process ends with a core dump, someth 2964 * If a process ends with a core dump, something fishy is going on and we 2971 * should record the event for investigation. 2965 * should record the event for investigation. 2972 */ 2966 */ 2973 void audit_core_dumps(long signr) 2967 void audit_core_dumps(long signr) 2974 { 2968 { 2975 struct audit_buffer *ab; 2969 struct audit_buffer *ab; 2976 2970 2977 if (!audit_enabled) 2971 if (!audit_enabled) 2978 return; 2972 return; 2979 2973 2980 if (signr == SIGQUIT) /* don't care 2974 if (signr == SIGQUIT) /* don't care for those */ 2981 return; 2975 return; 2982 2976 2983 ab = audit_log_start(audit_context(), 2977 ab = audit_log_start(audit_context(), GFP_KERNEL, AUDIT_ANOM_ABEND); 2984 if (unlikely(!ab)) 2978 if (unlikely(!ab)) 2985 return; 2979 return; 2986 audit_log_task(ab); 2980 audit_log_task(ab); 2987 audit_log_format(ab, " sig=%ld res=1" 2981 audit_log_format(ab, " sig=%ld res=1", signr); 2988 audit_log_end(ab); 2982 audit_log_end(ab); 2989 } 2983 } 2990 2984 2991 /** 2985 /** 2992 * audit_seccomp - record information about a 2986 * audit_seccomp - record information about a seccomp action 2993 * @syscall: syscall number 2987 * @syscall: syscall number 2994 * @signr: signal value 2988 * @signr: signal value 2995 * @code: the seccomp action 2989 * @code: the seccomp action 2996 * 2990 * 2997 * Record the information associated with a s 2991 * Record the information associated with a seccomp action. Event filtering for 2998 * seccomp actions that are not to be logged 2992 * seccomp actions that are not to be logged is done in seccomp_log(). 2999 * Therefore, this function forces auditing i 2993 * Therefore, this function forces auditing independent of the audit_enabled 3000 * and dummy context state because seccomp ac 2994 * and dummy context state because seccomp actions should be logged even when 3001 * audit is not in use. 2995 * audit is not in use. 3002 */ 2996 */ 3003 void audit_seccomp(unsigned long syscall, lon 2997 void audit_seccomp(unsigned long syscall, long signr, int code) 3004 { 2998 { 3005 struct audit_buffer *ab; 2999 struct audit_buffer *ab; 3006 3000 3007 ab = audit_log_start(audit_context(), 3001 ab = audit_log_start(audit_context(), GFP_KERNEL, AUDIT_SECCOMP); 3008 if (unlikely(!ab)) 3002 if (unlikely(!ab)) 3009 return; 3003 return; 3010 audit_log_task(ab); 3004 audit_log_task(ab); 3011 audit_log_format(ab, " sig=%ld arch=% 3005 audit_log_format(ab, " sig=%ld arch=%x syscall=%ld compat=%d ip=0x%lx code=0x%x", 3012 signr, syscall_get_a 3006 signr, syscall_get_arch(current), syscall, 3013 in_compat_syscall(), 3007 in_compat_syscall(), KSTK_EIP(current), code); 3014 audit_log_end(ab); 3008 audit_log_end(ab); 3015 } 3009 } 3016 3010 3017 void audit_seccomp_actions_logged(const char 3011 void audit_seccomp_actions_logged(const char *names, const char *old_names, 3018 int res) 3012 int res) 3019 { 3013 { 3020 struct audit_buffer *ab; 3014 struct audit_buffer *ab; 3021 3015 3022 if (!audit_enabled) 3016 if (!audit_enabled) 3023 return; 3017 return; 3024 3018 3025 ab = audit_log_start(audit_context(), 3019 ab = audit_log_start(audit_context(), GFP_KERNEL, 3026 AUDIT_CONFIG_CHA 3020 AUDIT_CONFIG_CHANGE); 3027 if (unlikely(!ab)) 3021 if (unlikely(!ab)) 3028 return; 3022 return; 3029 3023 3030 audit_log_format(ab, 3024 audit_log_format(ab, 3031 "op=seccomp-logging 3025 "op=seccomp-logging actions=%s old-actions=%s res=%d", 3032 names, old_names, re 3026 names, old_names, res); 3033 audit_log_end(ab); 3027 audit_log_end(ab); 3034 } 3028 } 3035 3029 3036 struct list_head *audit_killed_trees(void) 3030 struct list_head *audit_killed_trees(void) 3037 { 3031 { 3038 struct audit_context *ctx = audit_con 3032 struct audit_context *ctx = audit_context(); 3039 if (likely(!ctx || ctx->context == AU 3033 if (likely(!ctx || ctx->context == AUDIT_CTX_UNUSED)) 3040 return NULL; 3034 return NULL; 3041 return &ctx->killed_trees; 3035 return &ctx->killed_trees; 3042 } 3036 } 3043 3037
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.