1 // SPDX-License-Identifier: GPL-2.0-or-later 1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* auditsc.c -- System-call auditing support 2 /* auditsc.c -- System-call auditing support 3 * Handles all system-call specific auditing f 3 * Handles all system-call specific auditing features. 4 * 4 * 5 * Copyright 2003-2004 Red Hat Inc., Durham, N 5 * Copyright 2003-2004 Red Hat Inc., Durham, North Carolina. 6 * Copyright 2005 Hewlett-Packard Development 6 * Copyright 2005 Hewlett-Packard Development Company, L.P. 7 * Copyright (C) 2005, 2006 IBM Corporation 7 * Copyright (C) 2005, 2006 IBM Corporation 8 * All Rights Reserved. 8 * All Rights Reserved. 9 * 9 * 10 * Written by Rickard E. (Rik) Faith <faith@re 10 * Written by Rickard E. (Rik) Faith <faith@redhat.com> 11 * 11 * 12 * Many of the ideas implemented here are from 12 * Many of the ideas implemented here are from Stephen C. Tweedie, 13 * especially the idea of avoiding a copy by u 13 * especially the idea of avoiding a copy by using getname. 14 * 14 * 15 * The method for actual interception of sysca 15 * The method for actual interception of syscall entry and exit (not in 16 * this file -- see entry.S) is based on a GPL 16 * this file -- see entry.S) is based on a GPL'd patch written by 17 * okir@suse.de and Copyright 2003 SuSE Linux 17 * okir@suse.de and Copyright 2003 SuSE Linux AG. 18 * 18 * 19 * POSIX message queue support added by George 19 * POSIX message queue support added by George Wilson <ltcgcw@us.ibm.com>, 20 * 2006. 20 * 2006. 21 * 21 * 22 * The support of additional filter rules comp 22 * The support of additional filter rules compares (>, <, >=, <=) was 23 * added by Dustin Kirkland <dustin.kirkland@u 23 * added by Dustin Kirkland <dustin.kirkland@us.ibm.com>, 2005. 24 * 24 * 25 * Modified by Amy Griffis <amy.griffis@hp.com 25 * Modified by Amy Griffis <amy.griffis@hp.com> to collect additional 26 * filesystem information. 26 * filesystem information. 27 * 27 * 28 * Subject and object context labeling support 28 * Subject and object context labeling support added by <danjones@us.ibm.com> 29 * and <dustin.kirkland@us.ibm.com> for LSPP c 29 * and <dustin.kirkland@us.ibm.com> for LSPP certification compliance. 30 */ 30 */ 31 31 32 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 32 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 33 33 34 #include <linux/init.h> 34 #include <linux/init.h> 35 #include <asm/types.h> 35 #include <asm/types.h> 36 #include <linux/atomic.h> 36 #include <linux/atomic.h> 37 #include <linux/fs.h> 37 #include <linux/fs.h> 38 #include <linux/namei.h> 38 #include <linux/namei.h> 39 #include <linux/mm.h> 39 #include <linux/mm.h> 40 #include <linux/export.h> 40 #include <linux/export.h> 41 #include <linux/slab.h> 41 #include <linux/slab.h> 42 #include <linux/mount.h> 42 #include <linux/mount.h> 43 #include <linux/socket.h> 43 #include <linux/socket.h> 44 #include <linux/mqueue.h> 44 #include <linux/mqueue.h> 45 #include <linux/audit.h> 45 #include <linux/audit.h> 46 #include <linux/personality.h> 46 #include <linux/personality.h> 47 #include <linux/time.h> 47 #include <linux/time.h> 48 #include <linux/netlink.h> 48 #include <linux/netlink.h> 49 #include <linux/compiler.h> 49 #include <linux/compiler.h> 50 #include <asm/unistd.h> 50 #include <asm/unistd.h> 51 #include <linux/security.h> 51 #include <linux/security.h> 52 #include <linux/list.h> 52 #include <linux/list.h> 53 #include <linux/binfmts.h> 53 #include <linux/binfmts.h> 54 #include <linux/highmem.h> 54 #include <linux/highmem.h> 55 #include <linux/syscalls.h> 55 #include <linux/syscalls.h> 56 #include <asm/syscall.h> 56 #include <asm/syscall.h> 57 #include <linux/capability.h> 57 #include <linux/capability.h> 58 #include <linux/fs_struct.h> 58 #include <linux/fs_struct.h> 59 #include <linux/compat.h> 59 #include <linux/compat.h> 60 #include <linux/ctype.h> 60 #include <linux/ctype.h> 61 #include <linux/string.h> 61 #include <linux/string.h> 62 #include <linux/uaccess.h> 62 #include <linux/uaccess.h> 63 #include <linux/fsnotify_backend.h> 63 #include <linux/fsnotify_backend.h> 64 #include <uapi/linux/limits.h> 64 #include <uapi/linux/limits.h> 65 #include <uapi/linux/netfilter/nf_tables.h> 65 #include <uapi/linux/netfilter/nf_tables.h> 66 #include <uapi/linux/openat2.h> // struct open 66 #include <uapi/linux/openat2.h> // struct open_how 67 #include <uapi/linux/fanotify.h> 67 #include <uapi/linux/fanotify.h> 68 68 69 #include "audit.h" 69 #include "audit.h" 70 70 71 /* flags stating the success for a syscall */ 71 /* flags stating the success for a syscall */ 72 #define AUDITSC_INVALID 0 72 #define AUDITSC_INVALID 0 73 #define AUDITSC_SUCCESS 1 73 #define AUDITSC_SUCCESS 1 74 #define AUDITSC_FAILURE 2 74 #define AUDITSC_FAILURE 2 75 75 76 /* no execve audit message should be longer th 76 /* no execve audit message should be longer than this (userspace limits), 77 * see the note near the top of audit_log_exec 77 * see the note near the top of audit_log_execve_info() about this value */ 78 #define MAX_EXECVE_AUDIT_LEN 7500 78 #define MAX_EXECVE_AUDIT_LEN 7500 79 79 80 /* max length to print of cmdline/proctitle va 80 /* max length to print of cmdline/proctitle value during audit */ 81 #define MAX_PROCTITLE_AUDIT_LEN 128 81 #define MAX_PROCTITLE_AUDIT_LEN 128 82 82 83 /* number of audit rules */ 83 /* number of audit rules */ 84 int audit_n_rules; 84 int audit_n_rules; 85 85 86 /* determines whether we collect data for sign 86 /* determines whether we collect data for signals sent */ 87 int audit_signals; 87 int audit_signals; 88 88 89 struct audit_aux_data { 89 struct audit_aux_data { 90 struct audit_aux_data *next; 90 struct audit_aux_data *next; 91 int type; 91 int type; 92 }; 92 }; 93 93 94 /* Number of target pids per aux struct. */ 94 /* Number of target pids per aux struct. */ 95 #define AUDIT_AUX_PIDS 16 95 #define AUDIT_AUX_PIDS 16 96 96 97 struct audit_aux_data_pids { 97 struct audit_aux_data_pids { 98 struct audit_aux_data d; 98 struct audit_aux_data d; 99 pid_t target_pid[AUD 99 pid_t target_pid[AUDIT_AUX_PIDS]; 100 kuid_t target_auid[AU 100 kuid_t target_auid[AUDIT_AUX_PIDS]; 101 kuid_t target_uid[AUD 101 kuid_t target_uid[AUDIT_AUX_PIDS]; 102 unsigned int target_session 102 unsigned int target_sessionid[AUDIT_AUX_PIDS]; 103 u32 target_sid[AUD 103 u32 target_sid[AUDIT_AUX_PIDS]; 104 char target_comm[AU 104 char target_comm[AUDIT_AUX_PIDS][TASK_COMM_LEN]; 105 int pid_count; 105 int pid_count; 106 }; 106 }; 107 107 108 struct audit_aux_data_bprm_fcaps { 108 struct audit_aux_data_bprm_fcaps { 109 struct audit_aux_data d; 109 struct audit_aux_data d; 110 struct audit_cap_data fcap; 110 struct audit_cap_data fcap; 111 unsigned int fcap_ver; 111 unsigned int fcap_ver; 112 struct audit_cap_data old_pcap; 112 struct audit_cap_data old_pcap; 113 struct audit_cap_data new_pcap; 113 struct audit_cap_data new_pcap; 114 }; 114 }; 115 115 116 struct audit_tree_refs { 116 struct audit_tree_refs { 117 struct audit_tree_refs *next; 117 struct audit_tree_refs *next; 118 struct audit_chunk *c[31]; 118 struct audit_chunk *c[31]; 119 }; 119 }; 120 120 121 struct audit_nfcfgop_tab { 121 struct audit_nfcfgop_tab { 122 enum audit_nfcfgop op; 122 enum audit_nfcfgop op; 123 const char *s; 123 const char *s; 124 }; 124 }; 125 125 126 static const struct audit_nfcfgop_tab audit_nf 126 static const struct audit_nfcfgop_tab audit_nfcfgs[] = { 127 { AUDIT_XT_OP_REGISTER, 127 { AUDIT_XT_OP_REGISTER, "xt_register" }, 128 { AUDIT_XT_OP_REPLACE, 128 { AUDIT_XT_OP_REPLACE, "xt_replace" }, 129 { AUDIT_XT_OP_UNREGISTER, 129 { AUDIT_XT_OP_UNREGISTER, "xt_unregister" }, 130 { AUDIT_NFT_OP_TABLE_REGISTER, 130 { AUDIT_NFT_OP_TABLE_REGISTER, "nft_register_table" }, 131 { AUDIT_NFT_OP_TABLE_UNREGISTER, 131 { AUDIT_NFT_OP_TABLE_UNREGISTER, "nft_unregister_table" }, 132 { AUDIT_NFT_OP_CHAIN_REGISTER, 132 { AUDIT_NFT_OP_CHAIN_REGISTER, "nft_register_chain" }, 133 { AUDIT_NFT_OP_CHAIN_UNREGISTER, 133 { AUDIT_NFT_OP_CHAIN_UNREGISTER, "nft_unregister_chain" }, 134 { AUDIT_NFT_OP_RULE_REGISTER, 134 { AUDIT_NFT_OP_RULE_REGISTER, "nft_register_rule" }, 135 { AUDIT_NFT_OP_RULE_UNREGISTER, 135 { AUDIT_NFT_OP_RULE_UNREGISTER, "nft_unregister_rule" }, 136 { AUDIT_NFT_OP_SET_REGISTER, 136 { AUDIT_NFT_OP_SET_REGISTER, "nft_register_set" }, 137 { AUDIT_NFT_OP_SET_UNREGISTER, 137 { AUDIT_NFT_OP_SET_UNREGISTER, "nft_unregister_set" }, 138 { AUDIT_NFT_OP_SETELEM_REGISTER, 138 { AUDIT_NFT_OP_SETELEM_REGISTER, "nft_register_setelem" }, 139 { AUDIT_NFT_OP_SETELEM_UNREGISTER, 139 { AUDIT_NFT_OP_SETELEM_UNREGISTER, "nft_unregister_setelem" }, 140 { AUDIT_NFT_OP_GEN_REGISTER, 140 { AUDIT_NFT_OP_GEN_REGISTER, "nft_register_gen" }, 141 { AUDIT_NFT_OP_OBJ_REGISTER, 141 { AUDIT_NFT_OP_OBJ_REGISTER, "nft_register_obj" }, 142 { AUDIT_NFT_OP_OBJ_UNREGISTER, 142 { AUDIT_NFT_OP_OBJ_UNREGISTER, "nft_unregister_obj" }, 143 { AUDIT_NFT_OP_OBJ_RESET, 143 { AUDIT_NFT_OP_OBJ_RESET, "nft_reset_obj" }, 144 { AUDIT_NFT_OP_FLOWTABLE_REGISTER, 144 { AUDIT_NFT_OP_FLOWTABLE_REGISTER, "nft_register_flowtable" }, 145 { AUDIT_NFT_OP_FLOWTABLE_UNREGISTER, 145 { AUDIT_NFT_OP_FLOWTABLE_UNREGISTER, "nft_unregister_flowtable" }, 146 { AUDIT_NFT_OP_SETELEM_RESET, 146 { AUDIT_NFT_OP_SETELEM_RESET, "nft_reset_setelem" }, 147 { AUDIT_NFT_OP_RULE_RESET, 147 { AUDIT_NFT_OP_RULE_RESET, "nft_reset_rule" }, 148 { AUDIT_NFT_OP_INVALID, 148 { AUDIT_NFT_OP_INVALID, "nft_invalid" }, 149 }; 149 }; 150 150 151 static int audit_match_perm(struct audit_conte 151 static int audit_match_perm(struct audit_context *ctx, int mask) 152 { 152 { 153 unsigned n; 153 unsigned n; 154 154 155 if (unlikely(!ctx)) 155 if (unlikely(!ctx)) 156 return 0; 156 return 0; 157 n = ctx->major; 157 n = ctx->major; 158 158 159 switch (audit_classify_syscall(ctx->ar 159 switch (audit_classify_syscall(ctx->arch, n)) { 160 case AUDITSC_NATIVE: 160 case AUDITSC_NATIVE: 161 if ((mask & AUDIT_PERM_WRITE) 161 if ((mask & AUDIT_PERM_WRITE) && 162 audit_match_class(AUDIT_C 162 audit_match_class(AUDIT_CLASS_WRITE, n)) 163 return 1; 163 return 1; 164 if ((mask & AUDIT_PERM_READ) & 164 if ((mask & AUDIT_PERM_READ) && 165 audit_match_class(AUDIT_C 165 audit_match_class(AUDIT_CLASS_READ, n)) 166 return 1; 166 return 1; 167 if ((mask & AUDIT_PERM_ATTR) & 167 if ((mask & AUDIT_PERM_ATTR) && 168 audit_match_class(AUDIT_C 168 audit_match_class(AUDIT_CLASS_CHATTR, n)) 169 return 1; 169 return 1; 170 return 0; 170 return 0; 171 case AUDITSC_COMPAT: /* 32bit on biarc 171 case AUDITSC_COMPAT: /* 32bit on biarch */ 172 if ((mask & AUDIT_PERM_WRITE) 172 if ((mask & AUDIT_PERM_WRITE) && 173 audit_match_class(AUDIT_C 173 audit_match_class(AUDIT_CLASS_WRITE_32, n)) 174 return 1; 174 return 1; 175 if ((mask & AUDIT_PERM_READ) & 175 if ((mask & AUDIT_PERM_READ) && 176 audit_match_class(AUDIT_C 176 audit_match_class(AUDIT_CLASS_READ_32, n)) 177 return 1; 177 return 1; 178 if ((mask & AUDIT_PERM_ATTR) & 178 if ((mask & AUDIT_PERM_ATTR) && 179 audit_match_class(AUDIT_C 179 audit_match_class(AUDIT_CLASS_CHATTR_32, n)) 180 return 1; 180 return 1; 181 return 0; 181 return 0; 182 case AUDITSC_OPEN: 182 case AUDITSC_OPEN: 183 return mask & ACC_MODE(ctx->ar 183 return mask & ACC_MODE(ctx->argv[1]); 184 case AUDITSC_OPENAT: 184 case AUDITSC_OPENAT: 185 return mask & ACC_MODE(ctx->ar 185 return mask & ACC_MODE(ctx->argv[2]); 186 case AUDITSC_SOCKETCALL: 186 case AUDITSC_SOCKETCALL: 187 return ((mask & AUDIT_PERM_WRI 187 return ((mask & AUDIT_PERM_WRITE) && ctx->argv[0] == SYS_BIND); 188 case AUDITSC_EXECVE: 188 case AUDITSC_EXECVE: 189 return mask & AUDIT_PERM_EXEC; 189 return mask & AUDIT_PERM_EXEC; 190 case AUDITSC_OPENAT2: 190 case AUDITSC_OPENAT2: 191 return mask & ACC_MODE((u32)ct 191 return mask & ACC_MODE((u32)ctx->openat2.flags); 192 default: 192 default: 193 return 0; 193 return 0; 194 } 194 } 195 } 195 } 196 196 197 static int audit_match_filetype(struct audit_c 197 static int audit_match_filetype(struct audit_context *ctx, int val) 198 { 198 { 199 struct audit_names *n; 199 struct audit_names *n; 200 umode_t mode = (umode_t)val; 200 umode_t mode = (umode_t)val; 201 201 202 if (unlikely(!ctx)) 202 if (unlikely(!ctx)) 203 return 0; 203 return 0; 204 204 205 list_for_each_entry(n, &ctx->names_lis 205 list_for_each_entry(n, &ctx->names_list, list) { 206 if ((n->ino != AUDIT_INO_UNSET 206 if ((n->ino != AUDIT_INO_UNSET) && 207 ((n->mode & S_IFMT) == mod 207 ((n->mode & S_IFMT) == mode)) 208 return 1; 208 return 1; 209 } 209 } 210 210 211 return 0; 211 return 0; 212 } 212 } 213 213 214 /* 214 /* 215 * We keep a linked list of fixed-sized (31 po 215 * We keep a linked list of fixed-sized (31 pointer) arrays of audit_chunk *; 216 * ->first_trees points to its beginning, ->tr 216 * ->first_trees points to its beginning, ->trees - to the current end of data. 217 * ->tree_count is the number of free entries 217 * ->tree_count is the number of free entries in array pointed to by ->trees. 218 * Original condition is (NULL, NULL, 0); as s 218 * Original condition is (NULL, NULL, 0); as soon as it grows we never revert to NULL, 219 * "empty" becomes (p, p, 31) afterwards. We 219 * "empty" becomes (p, p, 31) afterwards. We don't shrink the list (and seriously, 220 * it's going to remain 1-element for almost a 220 * it's going to remain 1-element for almost any setup) until we free context itself. 221 * References in it _are_ dropped - at the sam 221 * References in it _are_ dropped - at the same time we free/drop aux stuff. 222 */ 222 */ 223 223 224 static void audit_set_auditable(struct audit_c 224 static void audit_set_auditable(struct audit_context *ctx) 225 { 225 { 226 if (!ctx->prio) { 226 if (!ctx->prio) { 227 ctx->prio = 1; 227 ctx->prio = 1; 228 ctx->current_state = AUDIT_STA 228 ctx->current_state = AUDIT_STATE_RECORD; 229 } 229 } 230 } 230 } 231 231 232 static int put_tree_ref(struct audit_context * 232 static int put_tree_ref(struct audit_context *ctx, struct audit_chunk *chunk) 233 { 233 { 234 struct audit_tree_refs *p = ctx->trees 234 struct audit_tree_refs *p = ctx->trees; 235 int left = ctx->tree_count; 235 int left = ctx->tree_count; 236 236 237 if (likely(left)) { 237 if (likely(left)) { 238 p->c[--left] = chunk; 238 p->c[--left] = chunk; 239 ctx->tree_count = left; 239 ctx->tree_count = left; 240 return 1; 240 return 1; 241 } 241 } 242 if (!p) 242 if (!p) 243 return 0; 243 return 0; 244 p = p->next; 244 p = p->next; 245 if (p) { 245 if (p) { 246 p->c[30] = chunk; 246 p->c[30] = chunk; 247 ctx->trees = p; 247 ctx->trees = p; 248 ctx->tree_count = 30; 248 ctx->tree_count = 30; 249 return 1; 249 return 1; 250 } 250 } 251 return 0; 251 return 0; 252 } 252 } 253 253 254 static int grow_tree_refs(struct audit_context 254 static int grow_tree_refs(struct audit_context *ctx) 255 { 255 { 256 struct audit_tree_refs *p = ctx->trees 256 struct audit_tree_refs *p = ctx->trees; 257 257 258 ctx->trees = kzalloc(sizeof(struct aud 258 ctx->trees = kzalloc(sizeof(struct audit_tree_refs), GFP_KERNEL); 259 if (!ctx->trees) { 259 if (!ctx->trees) { 260 ctx->trees = p; 260 ctx->trees = p; 261 return 0; 261 return 0; 262 } 262 } 263 if (p) 263 if (p) 264 p->next = ctx->trees; 264 p->next = ctx->trees; 265 else 265 else 266 ctx->first_trees = ctx->trees; 266 ctx->first_trees = ctx->trees; 267 ctx->tree_count = 31; 267 ctx->tree_count = 31; 268 return 1; 268 return 1; 269 } 269 } 270 270 271 static void unroll_tree_refs(struct audit_cont 271 static void unroll_tree_refs(struct audit_context *ctx, 272 struct audit_tree_refs * 272 struct audit_tree_refs *p, int count) 273 { 273 { 274 struct audit_tree_refs *q; 274 struct audit_tree_refs *q; 275 int n; 275 int n; 276 276 277 if (!p) { 277 if (!p) { 278 /* we started with empty chain 278 /* we started with empty chain */ 279 p = ctx->first_trees; 279 p = ctx->first_trees; 280 count = 31; 280 count = 31; 281 /* if the very first allocatio 281 /* if the very first allocation has failed, nothing to do */ 282 if (!p) 282 if (!p) 283 return; 283 return; 284 } 284 } 285 n = count; 285 n = count; 286 for (q = p; q != ctx->trees; q = q->ne 286 for (q = p; q != ctx->trees; q = q->next, n = 31) { 287 while (n--) { 287 while (n--) { 288 audit_put_chunk(q->c[n 288 audit_put_chunk(q->c[n]); 289 q->c[n] = NULL; 289 q->c[n] = NULL; 290 } 290 } 291 } 291 } 292 while (n-- > ctx->tree_count) { 292 while (n-- > ctx->tree_count) { 293 audit_put_chunk(q->c[n]); 293 audit_put_chunk(q->c[n]); 294 q->c[n] = NULL; 294 q->c[n] = NULL; 295 } 295 } 296 ctx->trees = p; 296 ctx->trees = p; 297 ctx->tree_count = count; 297 ctx->tree_count = count; 298 } 298 } 299 299 300 static void free_tree_refs(struct audit_contex 300 static void free_tree_refs(struct audit_context *ctx) 301 { 301 { 302 struct audit_tree_refs *p, *q; 302 struct audit_tree_refs *p, *q; 303 303 304 for (p = ctx->first_trees; p; p = q) { 304 for (p = ctx->first_trees; p; p = q) { 305 q = p->next; 305 q = p->next; 306 kfree(p); 306 kfree(p); 307 } 307 } 308 } 308 } 309 309 310 static int match_tree_refs(struct audit_contex 310 static int match_tree_refs(struct audit_context *ctx, struct audit_tree *tree) 311 { 311 { 312 struct audit_tree_refs *p; 312 struct audit_tree_refs *p; 313 int n; 313 int n; 314 314 315 if (!tree) 315 if (!tree) 316 return 0; 316 return 0; 317 /* full ones */ 317 /* full ones */ 318 for (p = ctx->first_trees; p != ctx->t 318 for (p = ctx->first_trees; p != ctx->trees; p = p->next) { 319 for (n = 0; n < 31; n++) 319 for (n = 0; n < 31; n++) 320 if (audit_tree_match(p 320 if (audit_tree_match(p->c[n], tree)) 321 return 1; 321 return 1; 322 } 322 } 323 /* partial */ 323 /* partial */ 324 if (p) { 324 if (p) { 325 for (n = ctx->tree_count; n < 325 for (n = ctx->tree_count; n < 31; n++) 326 if (audit_tree_match(p 326 if (audit_tree_match(p->c[n], tree)) 327 return 1; 327 return 1; 328 } 328 } 329 return 0; 329 return 0; 330 } 330 } 331 331 332 static int audit_compare_uid(kuid_t uid, 332 static int audit_compare_uid(kuid_t uid, 333 struct audit_name 333 struct audit_names *name, 334 struct audit_fiel 334 struct audit_field *f, 335 struct audit_cont 335 struct audit_context *ctx) 336 { 336 { 337 struct audit_names *n; 337 struct audit_names *n; 338 int rc; 338 int rc; 339 339 340 if (name) { 340 if (name) { 341 rc = audit_uid_comparator(uid, 341 rc = audit_uid_comparator(uid, f->op, name->uid); 342 if (rc) 342 if (rc) 343 return rc; 343 return rc; 344 } 344 } 345 345 346 if (ctx) { 346 if (ctx) { 347 list_for_each_entry(n, &ctx->n 347 list_for_each_entry(n, &ctx->names_list, list) { 348 rc = audit_uid_compara 348 rc = audit_uid_comparator(uid, f->op, n->uid); 349 if (rc) 349 if (rc) 350 return rc; 350 return rc; 351 } 351 } 352 } 352 } 353 return 0; 353 return 0; 354 } 354 } 355 355 356 static int audit_compare_gid(kgid_t gid, 356 static int audit_compare_gid(kgid_t gid, 357 struct audit_name 357 struct audit_names *name, 358 struct audit_fiel 358 struct audit_field *f, 359 struct audit_cont 359 struct audit_context *ctx) 360 { 360 { 361 struct audit_names *n; 361 struct audit_names *n; 362 int rc; 362 int rc; 363 363 364 if (name) { 364 if (name) { 365 rc = audit_gid_comparator(gid, 365 rc = audit_gid_comparator(gid, f->op, name->gid); 366 if (rc) 366 if (rc) 367 return rc; 367 return rc; 368 } 368 } 369 369 370 if (ctx) { 370 if (ctx) { 371 list_for_each_entry(n, &ctx->n 371 list_for_each_entry(n, &ctx->names_list, list) { 372 rc = audit_gid_compara 372 rc = audit_gid_comparator(gid, f->op, n->gid); 373 if (rc) 373 if (rc) 374 return rc; 374 return rc; 375 } 375 } 376 } 376 } 377 return 0; 377 return 0; 378 } 378 } 379 379 380 static int audit_field_compare(struct task_str 380 static int audit_field_compare(struct task_struct *tsk, 381 const struct cr 381 const struct cred *cred, 382 struct audit_fi 382 struct audit_field *f, 383 struct audit_co 383 struct audit_context *ctx, 384 struct audit_na 384 struct audit_names *name) 385 { 385 { 386 switch (f->val) { 386 switch (f->val) { 387 /* process to file object comparisons 387 /* process to file object comparisons */ 388 case AUDIT_COMPARE_UID_TO_OBJ_UID: 388 case AUDIT_COMPARE_UID_TO_OBJ_UID: 389 return audit_compare_uid(cred- 389 return audit_compare_uid(cred->uid, name, f, ctx); 390 case AUDIT_COMPARE_GID_TO_OBJ_GID: 390 case AUDIT_COMPARE_GID_TO_OBJ_GID: 391 return audit_compare_gid(cred- 391 return audit_compare_gid(cred->gid, name, f, ctx); 392 case AUDIT_COMPARE_EUID_TO_OBJ_UID: 392 case AUDIT_COMPARE_EUID_TO_OBJ_UID: 393 return audit_compare_uid(cred- 393 return audit_compare_uid(cred->euid, name, f, ctx); 394 case AUDIT_COMPARE_EGID_TO_OBJ_GID: 394 case AUDIT_COMPARE_EGID_TO_OBJ_GID: 395 return audit_compare_gid(cred- 395 return audit_compare_gid(cred->egid, name, f, ctx); 396 case AUDIT_COMPARE_AUID_TO_OBJ_UID: 396 case AUDIT_COMPARE_AUID_TO_OBJ_UID: 397 return audit_compare_uid(audit 397 return audit_compare_uid(audit_get_loginuid(tsk), name, f, ctx); 398 case AUDIT_COMPARE_SUID_TO_OBJ_UID: 398 case AUDIT_COMPARE_SUID_TO_OBJ_UID: 399 return audit_compare_uid(cred- 399 return audit_compare_uid(cred->suid, name, f, ctx); 400 case AUDIT_COMPARE_SGID_TO_OBJ_GID: 400 case AUDIT_COMPARE_SGID_TO_OBJ_GID: 401 return audit_compare_gid(cred- 401 return audit_compare_gid(cred->sgid, name, f, ctx); 402 case AUDIT_COMPARE_FSUID_TO_OBJ_UID: 402 case AUDIT_COMPARE_FSUID_TO_OBJ_UID: 403 return audit_compare_uid(cred- 403 return audit_compare_uid(cred->fsuid, name, f, ctx); 404 case AUDIT_COMPARE_FSGID_TO_OBJ_GID: 404 case AUDIT_COMPARE_FSGID_TO_OBJ_GID: 405 return audit_compare_gid(cred- 405 return audit_compare_gid(cred->fsgid, name, f, ctx); 406 /* uid comparisons */ 406 /* uid comparisons */ 407 case AUDIT_COMPARE_UID_TO_AUID: 407 case AUDIT_COMPARE_UID_TO_AUID: 408 return audit_uid_comparator(cr 408 return audit_uid_comparator(cred->uid, f->op, 409 au 409 audit_get_loginuid(tsk)); 410 case AUDIT_COMPARE_UID_TO_EUID: 410 case AUDIT_COMPARE_UID_TO_EUID: 411 return audit_uid_comparator(cr 411 return audit_uid_comparator(cred->uid, f->op, cred->euid); 412 case AUDIT_COMPARE_UID_TO_SUID: 412 case AUDIT_COMPARE_UID_TO_SUID: 413 return audit_uid_comparator(cr 413 return audit_uid_comparator(cred->uid, f->op, cred->suid); 414 case AUDIT_COMPARE_UID_TO_FSUID: 414 case AUDIT_COMPARE_UID_TO_FSUID: 415 return audit_uid_comparator(cr 415 return audit_uid_comparator(cred->uid, f->op, cred->fsuid); 416 /* auid comparisons */ 416 /* auid comparisons */ 417 case AUDIT_COMPARE_AUID_TO_EUID: 417 case AUDIT_COMPARE_AUID_TO_EUID: 418 return audit_uid_comparator(au 418 return audit_uid_comparator(audit_get_loginuid(tsk), f->op, 419 cr 419 cred->euid); 420 case AUDIT_COMPARE_AUID_TO_SUID: 420 case AUDIT_COMPARE_AUID_TO_SUID: 421 return audit_uid_comparator(au 421 return audit_uid_comparator(audit_get_loginuid(tsk), f->op, 422 cr 422 cred->suid); 423 case AUDIT_COMPARE_AUID_TO_FSUID: 423 case AUDIT_COMPARE_AUID_TO_FSUID: 424 return audit_uid_comparator(au 424 return audit_uid_comparator(audit_get_loginuid(tsk), f->op, 425 cr 425 cred->fsuid); 426 /* euid comparisons */ 426 /* euid comparisons */ 427 case AUDIT_COMPARE_EUID_TO_SUID: 427 case AUDIT_COMPARE_EUID_TO_SUID: 428 return audit_uid_comparator(cr 428 return audit_uid_comparator(cred->euid, f->op, cred->suid); 429 case AUDIT_COMPARE_EUID_TO_FSUID: 429 case AUDIT_COMPARE_EUID_TO_FSUID: 430 return audit_uid_comparator(cr 430 return audit_uid_comparator(cred->euid, f->op, cred->fsuid); 431 /* suid comparisons */ 431 /* suid comparisons */ 432 case AUDIT_COMPARE_SUID_TO_FSUID: 432 case AUDIT_COMPARE_SUID_TO_FSUID: 433 return audit_uid_comparator(cr 433 return audit_uid_comparator(cred->suid, f->op, cred->fsuid); 434 /* gid comparisons */ 434 /* gid comparisons */ 435 case AUDIT_COMPARE_GID_TO_EGID: 435 case AUDIT_COMPARE_GID_TO_EGID: 436 return audit_gid_comparator(cr 436 return audit_gid_comparator(cred->gid, f->op, cred->egid); 437 case AUDIT_COMPARE_GID_TO_SGID: 437 case AUDIT_COMPARE_GID_TO_SGID: 438 return audit_gid_comparator(cr 438 return audit_gid_comparator(cred->gid, f->op, cred->sgid); 439 case AUDIT_COMPARE_GID_TO_FSGID: 439 case AUDIT_COMPARE_GID_TO_FSGID: 440 return audit_gid_comparator(cr 440 return audit_gid_comparator(cred->gid, f->op, cred->fsgid); 441 /* egid comparisons */ 441 /* egid comparisons */ 442 case AUDIT_COMPARE_EGID_TO_SGID: 442 case AUDIT_COMPARE_EGID_TO_SGID: 443 return audit_gid_comparator(cr 443 return audit_gid_comparator(cred->egid, f->op, cred->sgid); 444 case AUDIT_COMPARE_EGID_TO_FSGID: 444 case AUDIT_COMPARE_EGID_TO_FSGID: 445 return audit_gid_comparator(cr 445 return audit_gid_comparator(cred->egid, f->op, cred->fsgid); 446 /* sgid comparison */ 446 /* sgid comparison */ 447 case AUDIT_COMPARE_SGID_TO_FSGID: 447 case AUDIT_COMPARE_SGID_TO_FSGID: 448 return audit_gid_comparator(cr 448 return audit_gid_comparator(cred->sgid, f->op, cred->fsgid); 449 default: 449 default: 450 WARN(1, "Missing AUDIT_COMPARE 450 WARN(1, "Missing AUDIT_COMPARE define. Report as a bug\n"); 451 return 0; 451 return 0; 452 } 452 } 453 return 0; 453 return 0; 454 } 454 } 455 455 456 /* Determine if any context name data matches 456 /* Determine if any context name data matches a rule's watch data */ 457 /* Compare a task_struct with an audit_rule. 457 /* Compare a task_struct with an audit_rule. Return 1 on match, 0 458 * otherwise. 458 * otherwise. 459 * 459 * 460 * If task_creation is true, this is an explic 460 * If task_creation is true, this is an explicit indication that we are 461 * filtering a task rule at task creation time 461 * filtering a task rule at task creation time. This and tsk == current are 462 * the only situations where tsk->cred may be 462 * the only situations where tsk->cred may be accessed without an rcu read lock. 463 */ 463 */ 464 static int audit_filter_rules(struct task_stru 464 static int audit_filter_rules(struct task_struct *tsk, 465 struct audit_kru 465 struct audit_krule *rule, 466 struct audit_con 466 struct audit_context *ctx, 467 struct audit_nam 467 struct audit_names *name, 468 enum audit_state 468 enum audit_state *state, 469 bool task_creati 469 bool task_creation) 470 { 470 { 471 const struct cred *cred; 471 const struct cred *cred; 472 int i, need_sid = 1; 472 int i, need_sid = 1; 473 u32 sid; 473 u32 sid; 474 unsigned int sessionid; 474 unsigned int sessionid; 475 475 476 if (ctx && rule->prio <= ctx->prio) 476 if (ctx && rule->prio <= ctx->prio) 477 return 0; 477 return 0; 478 478 479 cred = rcu_dereference_check(tsk->cred 479 cred = rcu_dereference_check(tsk->cred, tsk == current || task_creation); 480 480 481 for (i = 0; i < rule->field_count; i++ 481 for (i = 0; i < rule->field_count; i++) { 482 struct audit_field *f = &rule- 482 struct audit_field *f = &rule->fields[i]; 483 struct audit_names *n; 483 struct audit_names *n; 484 int result = 0; 484 int result = 0; 485 pid_t pid; 485 pid_t pid; 486 486 487 switch (f->type) { 487 switch (f->type) { 488 case AUDIT_PID: 488 case AUDIT_PID: 489 pid = task_tgid_nr(tsk 489 pid = task_tgid_nr(tsk); 490 result = audit_compara 490 result = audit_comparator(pid, f->op, f->val); 491 break; 491 break; 492 case AUDIT_PPID: 492 case AUDIT_PPID: 493 if (ctx) { 493 if (ctx) { 494 if (!ctx->ppid 494 if (!ctx->ppid) 495 ctx->p 495 ctx->ppid = task_ppid_nr(tsk); 496 result = audit 496 result = audit_comparator(ctx->ppid, f->op, f->val); 497 } 497 } 498 break; 498 break; 499 case AUDIT_EXE: 499 case AUDIT_EXE: 500 result = audit_exe_com 500 result = audit_exe_compare(tsk, rule->exe); 501 if (f->op == Audit_not 501 if (f->op == Audit_not_equal) 502 result = !resu 502 result = !result; 503 break; 503 break; 504 case AUDIT_UID: 504 case AUDIT_UID: 505 result = audit_uid_com 505 result = audit_uid_comparator(cred->uid, f->op, f->uid); 506 break; 506 break; 507 case AUDIT_EUID: 507 case AUDIT_EUID: 508 result = audit_uid_com 508 result = audit_uid_comparator(cred->euid, f->op, f->uid); 509 break; 509 break; 510 case AUDIT_SUID: 510 case AUDIT_SUID: 511 result = audit_uid_com 511 result = audit_uid_comparator(cred->suid, f->op, f->uid); 512 break; 512 break; 513 case AUDIT_FSUID: 513 case AUDIT_FSUID: 514 result = audit_uid_com 514 result = audit_uid_comparator(cred->fsuid, f->op, f->uid); 515 break; 515 break; 516 case AUDIT_GID: 516 case AUDIT_GID: 517 result = audit_gid_com 517 result = audit_gid_comparator(cred->gid, f->op, f->gid); 518 if (f->op == Audit_equ 518 if (f->op == Audit_equal) { 519 if (!result) 519 if (!result) 520 result 520 result = groups_search(cred->group_info, f->gid); 521 } else if (f->op == Au 521 } else if (f->op == Audit_not_equal) { 522 if (result) 522 if (result) 523 result 523 result = !groups_search(cred->group_info, f->gid); 524 } 524 } 525 break; 525 break; 526 case AUDIT_EGID: 526 case AUDIT_EGID: 527 result = audit_gid_com 527 result = audit_gid_comparator(cred->egid, f->op, f->gid); 528 if (f->op == Audit_equ 528 if (f->op == Audit_equal) { 529 if (!result) 529 if (!result) 530 result 530 result = groups_search(cred->group_info, f->gid); 531 } else if (f->op == Au 531 } else if (f->op == Audit_not_equal) { 532 if (result) 532 if (result) 533 result 533 result = !groups_search(cred->group_info, f->gid); 534 } 534 } 535 break; 535 break; 536 case AUDIT_SGID: 536 case AUDIT_SGID: 537 result = audit_gid_com 537 result = audit_gid_comparator(cred->sgid, f->op, f->gid); 538 break; 538 break; 539 case AUDIT_FSGID: 539 case AUDIT_FSGID: 540 result = audit_gid_com 540 result = audit_gid_comparator(cred->fsgid, f->op, f->gid); 541 break; 541 break; 542 case AUDIT_SESSIONID: 542 case AUDIT_SESSIONID: 543 sessionid = audit_get_ 543 sessionid = audit_get_sessionid(tsk); 544 result = audit_compara 544 result = audit_comparator(sessionid, f->op, f->val); 545 break; 545 break; 546 case AUDIT_PERS: 546 case AUDIT_PERS: 547 result = audit_compara 547 result = audit_comparator(tsk->personality, f->op, f->val); 548 break; 548 break; 549 case AUDIT_ARCH: 549 case AUDIT_ARCH: 550 if (ctx) 550 if (ctx) 551 result = audit 551 result = audit_comparator(ctx->arch, f->op, f->val); 552 break; 552 break; 553 553 554 case AUDIT_EXIT: 554 case AUDIT_EXIT: 555 if (ctx && ctx->return 555 if (ctx && ctx->return_valid != AUDITSC_INVALID) 556 result = audit 556 result = audit_comparator(ctx->return_code, f->op, f->val); 557 break; 557 break; 558 case AUDIT_SUCCESS: 558 case AUDIT_SUCCESS: 559 if (ctx && ctx->return 559 if (ctx && ctx->return_valid != AUDITSC_INVALID) { 560 if (f->val) 560 if (f->val) 561 result 561 result = audit_comparator(ctx->return_valid, f->op, AUDITSC_SUCCESS); 562 else 562 else 563 result 563 result = audit_comparator(ctx->return_valid, f->op, AUDITSC_FAILURE); 564 } 564 } 565 break; 565 break; 566 case AUDIT_DEVMAJOR: 566 case AUDIT_DEVMAJOR: 567 if (name) { 567 if (name) { 568 if (audit_comp 568 if (audit_comparator(MAJOR(name->dev), f->op, f->val) || 569 audit_comp 569 audit_comparator(MAJOR(name->rdev), f->op, f->val)) 570 ++resu 570 ++result; 571 } else if (ctx) { 571 } else if (ctx) { 572 list_for_each_ 572 list_for_each_entry(n, &ctx->names_list, list) { 573 if (au 573 if (audit_comparator(MAJOR(n->dev), f->op, f->val) || 574 au 574 audit_comparator(MAJOR(n->rdev), f->op, f->val)) { 575 575 ++result; 576 576 break; 577 } 577 } 578 } 578 } 579 } 579 } 580 break; 580 break; 581 case AUDIT_DEVMINOR: 581 case AUDIT_DEVMINOR: 582 if (name) { 582 if (name) { 583 if (audit_comp 583 if (audit_comparator(MINOR(name->dev), f->op, f->val) || 584 audit_comp 584 audit_comparator(MINOR(name->rdev), f->op, f->val)) 585 ++resu 585 ++result; 586 } else if (ctx) { 586 } else if (ctx) { 587 list_for_each_ 587 list_for_each_entry(n, &ctx->names_list, list) { 588 if (au 588 if (audit_comparator(MINOR(n->dev), f->op, f->val) || 589 au 589 audit_comparator(MINOR(n->rdev), f->op, f->val)) { 590 590 ++result; 591 591 break; 592 } 592 } 593 } 593 } 594 } 594 } 595 break; 595 break; 596 case AUDIT_INODE: 596 case AUDIT_INODE: 597 if (name) 597 if (name) 598 result = audit 598 result = audit_comparator(name->ino, f->op, f->val); 599 else if (ctx) { 599 else if (ctx) { 600 list_for_each_ 600 list_for_each_entry(n, &ctx->names_list, list) { 601 if (au 601 if (audit_comparator(n->ino, f->op, f->val)) { 602 602 ++result; 603 603 break; 604 } 604 } 605 } 605 } 606 } 606 } 607 break; 607 break; 608 case AUDIT_OBJ_UID: 608 case AUDIT_OBJ_UID: 609 if (name) { 609 if (name) { 610 result = audit 610 result = audit_uid_comparator(name->uid, f->op, f->uid); 611 } else if (ctx) { 611 } else if (ctx) { 612 list_for_each_ 612 list_for_each_entry(n, &ctx->names_list, list) { 613 if (au 613 if (audit_uid_comparator(n->uid, f->op, f->uid)) { 614 614 ++result; 615 615 break; 616 } 616 } 617 } 617 } 618 } 618 } 619 break; 619 break; 620 case AUDIT_OBJ_GID: 620 case AUDIT_OBJ_GID: 621 if (name) { 621 if (name) { 622 result = audit 622 result = audit_gid_comparator(name->gid, f->op, f->gid); 623 } else if (ctx) { 623 } else if (ctx) { 624 list_for_each_ 624 list_for_each_entry(n, &ctx->names_list, list) { 625 if (au 625 if (audit_gid_comparator(n->gid, f->op, f->gid)) { 626 626 ++result; 627 627 break; 628 } 628 } 629 } 629 } 630 } 630 } 631 break; 631 break; 632 case AUDIT_WATCH: 632 case AUDIT_WATCH: 633 if (name) { 633 if (name) { 634 result = audit 634 result = audit_watch_compare(rule->watch, 635 635 name->ino, 636 636 name->dev); 637 if (f->op == A 637 if (f->op == Audit_not_equal) 638 result 638 result = !result; 639 } 639 } 640 break; 640 break; 641 case AUDIT_DIR: 641 case AUDIT_DIR: 642 if (ctx) { 642 if (ctx) { 643 result = match 643 result = match_tree_refs(ctx, rule->tree); 644 if (f->op == A 644 if (f->op == Audit_not_equal) 645 result 645 result = !result; 646 } 646 } 647 break; 647 break; 648 case AUDIT_LOGINUID: 648 case AUDIT_LOGINUID: 649 result = audit_uid_com 649 result = audit_uid_comparator(audit_get_loginuid(tsk), 650 650 f->op, f->uid); 651 break; 651 break; 652 case AUDIT_LOGINUID_SET: 652 case AUDIT_LOGINUID_SET: 653 result = audit_compara 653 result = audit_comparator(audit_loginuid_set(tsk), f->op, f->val); 654 break; 654 break; 655 case AUDIT_SADDR_FAM: 655 case AUDIT_SADDR_FAM: 656 if (ctx && ctx->sockad 656 if (ctx && ctx->sockaddr) 657 result = audit 657 result = audit_comparator(ctx->sockaddr->ss_family, 658 658 f->op, f->val); 659 break; 659 break; 660 case AUDIT_SUBJ_USER: 660 case AUDIT_SUBJ_USER: 661 case AUDIT_SUBJ_ROLE: 661 case AUDIT_SUBJ_ROLE: 662 case AUDIT_SUBJ_TYPE: 662 case AUDIT_SUBJ_TYPE: 663 case AUDIT_SUBJ_SEN: 663 case AUDIT_SUBJ_SEN: 664 case AUDIT_SUBJ_CLR: 664 case AUDIT_SUBJ_CLR: 665 /* NOTE: this may retu 665 /* NOTE: this may return negative values indicating 666 a temporary error. 666 a temporary error. We simply treat this as a 667 match for now to av 667 match for now to avoid losing information that 668 may be wanted. An 668 may be wanted. An error message will also be 669 logged upon error * 669 logged upon error */ 670 if (f->lsm_rule) { 670 if (f->lsm_rule) { 671 if (need_sid) 671 if (need_sid) { 672 /* @ts 672 /* @tsk should always be equal to 673 * @cu 673 * @current with the exception of 674 * for 674 * fork()/copy_process() in which case 675 * the 675 * the new @tsk creds are still a dup 676 * of 676 * of @current's creds so we can still 677 * use 677 * use security_current_getsecid_subj() 678 * her 678 * here even though it always refs 679 * @cu 679 * @current's creds 680 */ 680 */ 681 securi 681 security_current_getsecid_subj(&sid); 682 need_s 682 need_sid = 0; 683 } 683 } 684 result = secur 684 result = security_audit_rule_match(sid, f->type, 685 685 f->op, 686 686 f->lsm_rule); 687 } 687 } 688 break; 688 break; 689 case AUDIT_OBJ_USER: 689 case AUDIT_OBJ_USER: 690 case AUDIT_OBJ_ROLE: 690 case AUDIT_OBJ_ROLE: 691 case AUDIT_OBJ_TYPE: 691 case AUDIT_OBJ_TYPE: 692 case AUDIT_OBJ_LEV_LOW: 692 case AUDIT_OBJ_LEV_LOW: 693 case AUDIT_OBJ_LEV_HIGH: 693 case AUDIT_OBJ_LEV_HIGH: 694 /* The above note for 694 /* The above note for AUDIT_SUBJ_USER...AUDIT_SUBJ_CLR 695 also applies here * 695 also applies here */ 696 if (f->lsm_rule) { 696 if (f->lsm_rule) { 697 /* Find files 697 /* Find files that match */ 698 if (name) { 698 if (name) { 699 result 699 result = security_audit_rule_match( 700 700 name->osid, 701 701 f->type, 702 702 f->op, 703 703 f->lsm_rule); 704 } else if (ctx 704 } else if (ctx) { 705 list_f 705 list_for_each_entry(n, &ctx->names_list, list) { 706 706 if (security_audit_rule_match( 707 707 n->osid, 708 708 f->type, 709 709 f->op, 710 710 f->lsm_rule)) { 711 711 ++result; 712 712 break; 713 713 } 714 } 714 } 715 } 715 } 716 /* Find ipc ob 716 /* Find ipc objects that match */ 717 if (!ctx || ct 717 if (!ctx || ctx->type != AUDIT_IPC) 718 break; 718 break; 719 if (security_a 719 if (security_audit_rule_match(ctx->ipc.osid, 720 720 f->type, f->op, 721 721 f->lsm_rule)) 722 ++resu 722 ++result; 723 } 723 } 724 break; 724 break; 725 case AUDIT_ARG0: 725 case AUDIT_ARG0: 726 case AUDIT_ARG1: 726 case AUDIT_ARG1: 727 case AUDIT_ARG2: 727 case AUDIT_ARG2: 728 case AUDIT_ARG3: 728 case AUDIT_ARG3: 729 if (ctx) 729 if (ctx) 730 result = audit 730 result = audit_comparator(ctx->argv[f->type-AUDIT_ARG0], f->op, f->val); 731 break; 731 break; 732 case AUDIT_FILTERKEY: 732 case AUDIT_FILTERKEY: 733 /* ignore this field f 733 /* ignore this field for filtering */ 734 result = 1; 734 result = 1; 735 break; 735 break; 736 case AUDIT_PERM: 736 case AUDIT_PERM: 737 result = audit_match_p 737 result = audit_match_perm(ctx, f->val); 738 if (f->op == Audit_not 738 if (f->op == Audit_not_equal) 739 result = !resu 739 result = !result; 740 break; 740 break; 741 case AUDIT_FILETYPE: 741 case AUDIT_FILETYPE: 742 result = audit_match_f 742 result = audit_match_filetype(ctx, f->val); 743 if (f->op == Audit_not 743 if (f->op == Audit_not_equal) 744 result = !resu 744 result = !result; 745 break; 745 break; 746 case AUDIT_FIELD_COMPARE: 746 case AUDIT_FIELD_COMPARE: 747 result = audit_field_c 747 result = audit_field_compare(tsk, cred, f, ctx, name); 748 break; 748 break; 749 } 749 } 750 if (!result) 750 if (!result) 751 return 0; 751 return 0; 752 } 752 } 753 753 754 if (ctx) { 754 if (ctx) { 755 if (rule->filterkey) { 755 if (rule->filterkey) { 756 kfree(ctx->filterkey); 756 kfree(ctx->filterkey); 757 ctx->filterkey = kstrd 757 ctx->filterkey = kstrdup(rule->filterkey, GFP_ATOMIC); 758 } 758 } 759 ctx->prio = rule->prio; 759 ctx->prio = rule->prio; 760 } 760 } 761 switch (rule->action) { 761 switch (rule->action) { 762 case AUDIT_NEVER: 762 case AUDIT_NEVER: 763 *state = AUDIT_STATE_DISABLED; 763 *state = AUDIT_STATE_DISABLED; 764 break; 764 break; 765 case AUDIT_ALWAYS: 765 case AUDIT_ALWAYS: 766 *state = AUDIT_STATE_RECORD; 766 *state = AUDIT_STATE_RECORD; 767 break; 767 break; 768 } 768 } 769 return 1; 769 return 1; 770 } 770 } 771 771 772 /* At process creation time, we can determine 772 /* At process creation time, we can determine if system-call auditing is 773 * completely disabled for this task. Since w 773 * completely disabled for this task. Since we only have the task 774 * structure at this point, we can only check 774 * structure at this point, we can only check uid and gid. 775 */ 775 */ 776 static enum audit_state audit_filter_task(stru 776 static enum audit_state audit_filter_task(struct task_struct *tsk, char **key) 777 { 777 { 778 struct audit_entry *e; 778 struct audit_entry *e; 779 enum audit_state state; 779 enum audit_state state; 780 780 781 rcu_read_lock(); 781 rcu_read_lock(); 782 list_for_each_entry_rcu(e, &audit_filt 782 list_for_each_entry_rcu(e, &audit_filter_list[AUDIT_FILTER_TASK], list) { 783 if (audit_filter_rules(tsk, &e 783 if (audit_filter_rules(tsk, &e->rule, NULL, NULL, 784 &state, 784 &state, true)) { 785 if (state == AUDIT_STA 785 if (state == AUDIT_STATE_RECORD) 786 *key = kstrdup 786 *key = kstrdup(e->rule.filterkey, GFP_ATOMIC); 787 rcu_read_unlock(); 787 rcu_read_unlock(); 788 return state; 788 return state; 789 } 789 } 790 } 790 } 791 rcu_read_unlock(); 791 rcu_read_unlock(); 792 return AUDIT_STATE_BUILD; 792 return AUDIT_STATE_BUILD; 793 } 793 } 794 794 795 static int audit_in_mask(const struct audit_kr 795 static int audit_in_mask(const struct audit_krule *rule, unsigned long val) 796 { 796 { 797 int word, bit; 797 int word, bit; 798 798 799 if (val > 0xffffffff) 799 if (val > 0xffffffff) 800 return false; 800 return false; 801 801 802 word = AUDIT_WORD(val); 802 word = AUDIT_WORD(val); 803 if (word >= AUDIT_BITMASK_SIZE) 803 if (word >= AUDIT_BITMASK_SIZE) 804 return false; 804 return false; 805 805 806 bit = AUDIT_BIT(val); 806 bit = AUDIT_BIT(val); 807 807 808 return rule->mask[word] & bit; 808 return rule->mask[word] & bit; 809 } 809 } 810 810 811 /** 811 /** 812 * __audit_filter_op - common filter helper fo 812 * __audit_filter_op - common filter helper for operations (syscall/uring/etc) 813 * @tsk: associated task 813 * @tsk: associated task 814 * @ctx: audit context 814 * @ctx: audit context 815 * @list: audit filter list 815 * @list: audit filter list 816 * @name: audit_name (can be NULL) 816 * @name: audit_name (can be NULL) 817 * @op: current syscall/uring_op 817 * @op: current syscall/uring_op 818 * 818 * 819 * Run the udit filters specified in @list aga 819 * Run the udit filters specified in @list against @tsk using @ctx, 820 * @name, and @op, as necessary; the caller is 820 * @name, and @op, as necessary; the caller is responsible for ensuring 821 * that the call is made while the RCU read lo 821 * that the call is made while the RCU read lock is held. The @name 822 * parameter can be NULL, but all others must 822 * parameter can be NULL, but all others must be specified. 823 * Returns 1/true if the filter finds a match, 823 * Returns 1/true if the filter finds a match, 0/false if none are found. 824 */ 824 */ 825 static int __audit_filter_op(struct task_struc 825 static int __audit_filter_op(struct task_struct *tsk, 826 struct audit_contex 826 struct audit_context *ctx, 827 struct list_head *l 827 struct list_head *list, 828 struct audit_names 828 struct audit_names *name, 829 unsigned long op) 829 unsigned long op) 830 { 830 { 831 struct audit_entry *e; 831 struct audit_entry *e; 832 enum audit_state state; 832 enum audit_state state; 833 833 834 list_for_each_entry_rcu(e, list, list) 834 list_for_each_entry_rcu(e, list, list) { 835 if (audit_in_mask(&e->rule, op 835 if (audit_in_mask(&e->rule, op) && 836 audit_filter_rules(tsk, &e 836 audit_filter_rules(tsk, &e->rule, ctx, name, 837 &state, 837 &state, false)) { 838 ctx->current_state = s 838 ctx->current_state = state; 839 return 1; 839 return 1; 840 } 840 } 841 } 841 } 842 return 0; 842 return 0; 843 } 843 } 844 844 845 /** 845 /** 846 * audit_filter_uring - apply filters to an io 846 * audit_filter_uring - apply filters to an io_uring operation 847 * @tsk: associated task 847 * @tsk: associated task 848 * @ctx: audit context 848 * @ctx: audit context 849 */ 849 */ 850 static void audit_filter_uring(struct task_str 850 static void audit_filter_uring(struct task_struct *tsk, 851 struct audit_co 851 struct audit_context *ctx) 852 { 852 { 853 if (auditd_test_task(tsk)) 853 if (auditd_test_task(tsk)) 854 return; 854 return; 855 855 856 rcu_read_lock(); 856 rcu_read_lock(); 857 __audit_filter_op(tsk, ctx, &audit_fil 857 __audit_filter_op(tsk, ctx, &audit_filter_list[AUDIT_FILTER_URING_EXIT], 858 NULL, ctx->uring_op); 858 NULL, ctx->uring_op); 859 rcu_read_unlock(); 859 rcu_read_unlock(); 860 } 860 } 861 861 862 /* At syscall exit time, this filter is called 862 /* At syscall exit time, this filter is called if the audit_state is 863 * not low enough that auditing cannot take pl 863 * not low enough that auditing cannot take place, but is also not 864 * high enough that we already know we have to 864 * high enough that we already know we have to write an audit record 865 * (i.e., the state is AUDIT_STATE_BUILD). 865 * (i.e., the state is AUDIT_STATE_BUILD). 866 */ 866 */ 867 static void audit_filter_syscall(struct task_s 867 static void audit_filter_syscall(struct task_struct *tsk, 868 struct audit_ 868 struct audit_context *ctx) 869 { 869 { 870 if (auditd_test_task(tsk)) 870 if (auditd_test_task(tsk)) 871 return; 871 return; 872 872 873 rcu_read_lock(); 873 rcu_read_lock(); 874 __audit_filter_op(tsk, ctx, &audit_fil 874 __audit_filter_op(tsk, ctx, &audit_filter_list[AUDIT_FILTER_EXIT], 875 NULL, ctx->major); 875 NULL, ctx->major); 876 rcu_read_unlock(); 876 rcu_read_unlock(); 877 } 877 } 878 878 879 /* 879 /* 880 * Given an audit_name check the inode hash ta 880 * Given an audit_name check the inode hash table to see if they match. 881 * Called holding the rcu read lock to protect 881 * Called holding the rcu read lock to protect the use of audit_inode_hash 882 */ 882 */ 883 static int audit_filter_inode_name(struct task 883 static int audit_filter_inode_name(struct task_struct *tsk, 884 struct audi 884 struct audit_names *n, 885 struct audi 885 struct audit_context *ctx) 886 { 886 { 887 int h = audit_hash_ino((u32)n->ino); 887 int h = audit_hash_ino((u32)n->ino); 888 struct list_head *list = &audit_inode_ 888 struct list_head *list = &audit_inode_hash[h]; 889 889 890 return __audit_filter_op(tsk, ctx, lis 890 return __audit_filter_op(tsk, ctx, list, n, ctx->major); 891 } 891 } 892 892 893 /* At syscall exit time, this filter is called 893 /* At syscall exit time, this filter is called if any audit_names have been 894 * collected during syscall processing. We on 894 * collected during syscall processing. We only check rules in sublists at hash 895 * buckets applicable to the inode numbers in 895 * buckets applicable to the inode numbers in audit_names. 896 * Regarding audit_state, same rules apply as 896 * Regarding audit_state, same rules apply as for audit_filter_syscall(). 897 */ 897 */ 898 void audit_filter_inodes(struct task_struct *t 898 void audit_filter_inodes(struct task_struct *tsk, struct audit_context *ctx) 899 { 899 { 900 struct audit_names *n; 900 struct audit_names *n; 901 901 902 if (auditd_test_task(tsk)) 902 if (auditd_test_task(tsk)) 903 return; 903 return; 904 904 905 rcu_read_lock(); 905 rcu_read_lock(); 906 906 907 list_for_each_entry(n, &ctx->names_lis 907 list_for_each_entry(n, &ctx->names_list, list) { 908 if (audit_filter_inode_name(ts 908 if (audit_filter_inode_name(tsk, n, ctx)) 909 break; 909 break; 910 } 910 } 911 rcu_read_unlock(); 911 rcu_read_unlock(); 912 } 912 } 913 913 914 static inline void audit_proctitle_free(struct 914 static inline void audit_proctitle_free(struct audit_context *context) 915 { 915 { 916 kfree(context->proctitle.value); 916 kfree(context->proctitle.value); 917 context->proctitle.value = NULL; 917 context->proctitle.value = NULL; 918 context->proctitle.len = 0; 918 context->proctitle.len = 0; 919 } 919 } 920 920 921 static inline void audit_free_module(struct au 921 static inline void audit_free_module(struct audit_context *context) 922 { 922 { 923 if (context->type == AUDIT_KERN_MODULE 923 if (context->type == AUDIT_KERN_MODULE) { 924 kfree(context->module.name); 924 kfree(context->module.name); 925 context->module.name = NULL; 925 context->module.name = NULL; 926 } 926 } 927 } 927 } 928 static inline void audit_free_names(struct aud 928 static inline void audit_free_names(struct audit_context *context) 929 { 929 { 930 struct audit_names *n, *next; 930 struct audit_names *n, *next; 931 931 932 list_for_each_entry_safe(n, next, &con 932 list_for_each_entry_safe(n, next, &context->names_list, list) { 933 list_del(&n->list); 933 list_del(&n->list); 934 if (n->name) 934 if (n->name) 935 putname(n->name); 935 putname(n->name); 936 if (n->should_free) 936 if (n->should_free) 937 kfree(n); 937 kfree(n); 938 } 938 } 939 context->name_count = 0; 939 context->name_count = 0; 940 path_put(&context->pwd); 940 path_put(&context->pwd); 941 context->pwd.dentry = NULL; 941 context->pwd.dentry = NULL; 942 context->pwd.mnt = NULL; 942 context->pwd.mnt = NULL; 943 } 943 } 944 944 945 static inline void audit_free_aux(struct audit 945 static inline void audit_free_aux(struct audit_context *context) 946 { 946 { 947 struct audit_aux_data *aux; 947 struct audit_aux_data *aux; 948 948 949 while ((aux = context->aux)) { 949 while ((aux = context->aux)) { 950 context->aux = aux->next; 950 context->aux = aux->next; 951 kfree(aux); 951 kfree(aux); 952 } 952 } 953 context->aux = NULL; 953 context->aux = NULL; 954 while ((aux = context->aux_pids)) { 954 while ((aux = context->aux_pids)) { 955 context->aux_pids = aux->next; 955 context->aux_pids = aux->next; 956 kfree(aux); 956 kfree(aux); 957 } 957 } 958 context->aux_pids = NULL; 958 context->aux_pids = NULL; 959 } 959 } 960 960 961 /** 961 /** 962 * audit_reset_context - reset a audit_context 962 * audit_reset_context - reset a audit_context structure 963 * @ctx: the audit_context to reset 963 * @ctx: the audit_context to reset 964 * 964 * 965 * All fields in the audit_context will be res 965 * All fields in the audit_context will be reset to an initial state, all 966 * references held by fields will be dropped, 966 * references held by fields will be dropped, and private memory will be 967 * released. When this function returns the a 967 * released. When this function returns the audit_context will be suitable 968 * for reuse, so long as the passed context is 968 * for reuse, so long as the passed context is not NULL or a dummy context. 969 */ 969 */ 970 static void audit_reset_context(struct audit_c 970 static void audit_reset_context(struct audit_context *ctx) 971 { 971 { 972 if (!ctx) 972 if (!ctx) 973 return; 973 return; 974 974 975 /* if ctx is non-null, reset the "ctx- 975 /* if ctx is non-null, reset the "ctx->context" regardless */ 976 ctx->context = AUDIT_CTX_UNUSED; 976 ctx->context = AUDIT_CTX_UNUSED; 977 if (ctx->dummy) 977 if (ctx->dummy) 978 return; 978 return; 979 979 980 /* 980 /* 981 * NOTE: It shouldn't matter in what o 981 * NOTE: It shouldn't matter in what order we release the fields, so 982 * release them in the order in 982 * release them in the order in which they appear in the struct; 983 * this gives us some hope of qu 983 * this gives us some hope of quickly making sure we are 984 * resetting the audit_context p 984 * resetting the audit_context properly. 985 * 985 * 986 * Other things worth mentioning 986 * Other things worth mentioning: 987 * - we don't reset "dummy" 987 * - we don't reset "dummy" 988 * - we don't reset "state", we 988 * - we don't reset "state", we do reset "current_state" 989 * - we preserve "filterkey" if 989 * - we preserve "filterkey" if "state" is AUDIT_STATE_RECORD 990 * - much of this is likely over 990 * - much of this is likely overkill, but play it safe for now 991 * - we really need to work on i 991 * - we really need to work on improving the audit_context struct 992 */ 992 */ 993 993 994 ctx->current_state = ctx->state; 994 ctx->current_state = ctx->state; 995 ctx->serial = 0; 995 ctx->serial = 0; 996 ctx->major = 0; 996 ctx->major = 0; 997 ctx->uring_op = 0; 997 ctx->uring_op = 0; 998 ctx->ctime = (struct timespec64){ .tv_ 998 ctx->ctime = (struct timespec64){ .tv_sec = 0, .tv_nsec = 0 }; 999 memset(ctx->argv, 0, sizeof(ctx->argv) 999 memset(ctx->argv, 0, sizeof(ctx->argv)); 1000 ctx->return_code = 0; 1000 ctx->return_code = 0; 1001 ctx->prio = (ctx->state == AUDIT_STAT 1001 ctx->prio = (ctx->state == AUDIT_STATE_RECORD ? ~0ULL : 0); 1002 ctx->return_valid = AUDITSC_INVALID; 1002 ctx->return_valid = AUDITSC_INVALID; 1003 audit_free_names(ctx); 1003 audit_free_names(ctx); 1004 if (ctx->state != AUDIT_STATE_RECORD) 1004 if (ctx->state != AUDIT_STATE_RECORD) { 1005 kfree(ctx->filterkey); 1005 kfree(ctx->filterkey); 1006 ctx->filterkey = NULL; 1006 ctx->filterkey = NULL; 1007 } 1007 } 1008 audit_free_aux(ctx); 1008 audit_free_aux(ctx); 1009 kfree(ctx->sockaddr); 1009 kfree(ctx->sockaddr); 1010 ctx->sockaddr = NULL; 1010 ctx->sockaddr = NULL; 1011 ctx->sockaddr_len = 0; 1011 ctx->sockaddr_len = 0; 1012 ctx->ppid = 0; 1012 ctx->ppid = 0; 1013 ctx->uid = ctx->euid = ctx->suid = ct 1013 ctx->uid = ctx->euid = ctx->suid = ctx->fsuid = KUIDT_INIT(0); 1014 ctx->gid = ctx->egid = ctx->sgid = ct 1014 ctx->gid = ctx->egid = ctx->sgid = ctx->fsgid = KGIDT_INIT(0); 1015 ctx->personality = 0; 1015 ctx->personality = 0; 1016 ctx->arch = 0; 1016 ctx->arch = 0; 1017 ctx->target_pid = 0; 1017 ctx->target_pid = 0; 1018 ctx->target_auid = ctx->target_uid = 1018 ctx->target_auid = ctx->target_uid = KUIDT_INIT(0); 1019 ctx->target_sessionid = 0; 1019 ctx->target_sessionid = 0; 1020 ctx->target_sid = 0; 1020 ctx->target_sid = 0; 1021 ctx->target_comm[0] = '\0'; 1021 ctx->target_comm[0] = '\0'; 1022 unroll_tree_refs(ctx, NULL, 0); 1022 unroll_tree_refs(ctx, NULL, 0); 1023 WARN_ON(!list_empty(&ctx->killed_tree 1023 WARN_ON(!list_empty(&ctx->killed_trees)); 1024 audit_free_module(ctx); 1024 audit_free_module(ctx); 1025 ctx->fds[0] = -1; 1025 ctx->fds[0] = -1; 1026 ctx->type = 0; /* reset last for audi 1026 ctx->type = 0; /* reset last for audit_free_*() */ 1027 } 1027 } 1028 1028 1029 static inline struct audit_context *audit_all 1029 static inline struct audit_context *audit_alloc_context(enum audit_state state) 1030 { 1030 { 1031 struct audit_context *context; 1031 struct audit_context *context; 1032 1032 1033 context = kzalloc(sizeof(*context), G 1033 context = kzalloc(sizeof(*context), GFP_KERNEL); 1034 if (!context) 1034 if (!context) 1035 return NULL; 1035 return NULL; 1036 context->context = AUDIT_CTX_UNUSED; 1036 context->context = AUDIT_CTX_UNUSED; 1037 context->state = state; 1037 context->state = state; 1038 context->prio = state == AUDIT_STATE_ 1038 context->prio = state == AUDIT_STATE_RECORD ? ~0ULL : 0; 1039 INIT_LIST_HEAD(&context->killed_trees 1039 INIT_LIST_HEAD(&context->killed_trees); 1040 INIT_LIST_HEAD(&context->names_list); 1040 INIT_LIST_HEAD(&context->names_list); 1041 context->fds[0] = -1; 1041 context->fds[0] = -1; 1042 context->return_valid = AUDITSC_INVAL 1042 context->return_valid = AUDITSC_INVALID; 1043 return context; 1043 return context; 1044 } 1044 } 1045 1045 1046 /** 1046 /** 1047 * audit_alloc - allocate an audit context bl 1047 * audit_alloc - allocate an audit context block for a task 1048 * @tsk: task 1048 * @tsk: task 1049 * 1049 * 1050 * Filter on the task information and allocat 1050 * Filter on the task information and allocate a per-task audit context 1051 * if necessary. Doing so turns on system ca 1051 * if necessary. Doing so turns on system call auditing for the 1052 * specified task. This is called from copy_ 1052 * specified task. This is called from copy_process, so no lock is 1053 * needed. 1053 * needed. 1054 */ 1054 */ 1055 int audit_alloc(struct task_struct *tsk) 1055 int audit_alloc(struct task_struct *tsk) 1056 { 1056 { 1057 struct audit_context *context; 1057 struct audit_context *context; 1058 enum audit_state state; 1058 enum audit_state state; 1059 char *key = NULL; 1059 char *key = NULL; 1060 1060 1061 if (likely(!audit_ever_enabled)) 1061 if (likely(!audit_ever_enabled)) 1062 return 0; 1062 return 0; 1063 1063 1064 state = audit_filter_task(tsk, &key); 1064 state = audit_filter_task(tsk, &key); 1065 if (state == AUDIT_STATE_DISABLED) { 1065 if (state == AUDIT_STATE_DISABLED) { 1066 clear_task_syscall_work(tsk, 1066 clear_task_syscall_work(tsk, SYSCALL_AUDIT); 1067 return 0; 1067 return 0; 1068 } 1068 } 1069 1069 1070 context = audit_alloc_context(state); 1070 context = audit_alloc_context(state); 1071 if (!context) { 1071 if (!context) { 1072 kfree(key); 1072 kfree(key); 1073 audit_log_lost("out of memory 1073 audit_log_lost("out of memory in audit_alloc"); 1074 return -ENOMEM; 1074 return -ENOMEM; 1075 } 1075 } 1076 context->filterkey = key; 1076 context->filterkey = key; 1077 1077 1078 audit_set_context(tsk, context); 1078 audit_set_context(tsk, context); 1079 set_task_syscall_work(tsk, SYSCALL_AU 1079 set_task_syscall_work(tsk, SYSCALL_AUDIT); 1080 return 0; 1080 return 0; 1081 } 1081 } 1082 1082 1083 static inline void audit_free_context(struct 1083 static inline void audit_free_context(struct audit_context *context) 1084 { 1084 { 1085 /* resetting is extra work, but it is 1085 /* resetting is extra work, but it is likely just noise */ 1086 audit_reset_context(context); 1086 audit_reset_context(context); 1087 audit_proctitle_free(context); 1087 audit_proctitle_free(context); 1088 free_tree_refs(context); 1088 free_tree_refs(context); 1089 kfree(context->filterkey); 1089 kfree(context->filterkey); 1090 kfree(context); 1090 kfree(context); 1091 } 1091 } 1092 1092 1093 static int audit_log_pid_context(struct audit 1093 static int audit_log_pid_context(struct audit_context *context, pid_t pid, 1094 kuid_t auid, 1094 kuid_t auid, kuid_t uid, unsigned int sessionid, 1095 u32 sid, cha 1095 u32 sid, char *comm) 1096 { 1096 { 1097 struct audit_buffer *ab; 1097 struct audit_buffer *ab; 1098 char *ctx = NULL; 1098 char *ctx = NULL; 1099 u32 len; 1099 u32 len; 1100 int rc = 0; 1100 int rc = 0; 1101 1101 1102 ab = audit_log_start(context, GFP_KER 1102 ab = audit_log_start(context, GFP_KERNEL, AUDIT_OBJ_PID); 1103 if (!ab) 1103 if (!ab) 1104 return rc; 1104 return rc; 1105 1105 1106 audit_log_format(ab, "opid=%d oauid=% 1106 audit_log_format(ab, "opid=%d oauid=%d ouid=%d oses=%d", pid, 1107 from_kuid(&init_user 1107 from_kuid(&init_user_ns, auid), 1108 from_kuid(&init_user 1108 from_kuid(&init_user_ns, uid), sessionid); 1109 if (sid) { 1109 if (sid) { 1110 if (security_secid_to_secctx( 1110 if (security_secid_to_secctx(sid, &ctx, &len)) { 1111 audit_log_format(ab, 1111 audit_log_format(ab, " obj=(none)"); 1112 rc = 1; 1112 rc = 1; 1113 } else { 1113 } else { 1114 audit_log_format(ab, 1114 audit_log_format(ab, " obj=%s", ctx); 1115 security_release_secc 1115 security_release_secctx(ctx, len); 1116 } 1116 } 1117 } 1117 } 1118 audit_log_format(ab, " ocomm="); 1118 audit_log_format(ab, " ocomm="); 1119 audit_log_untrustedstring(ab, comm); 1119 audit_log_untrustedstring(ab, comm); 1120 audit_log_end(ab); 1120 audit_log_end(ab); 1121 1121 1122 return rc; 1122 return rc; 1123 } 1123 } 1124 1124 1125 static void audit_log_execve_info(struct audi 1125 static void audit_log_execve_info(struct audit_context *context, 1126 struct audi 1126 struct audit_buffer **ab) 1127 { 1127 { 1128 long len_max; 1128 long len_max; 1129 long len_rem; 1129 long len_rem; 1130 long len_full; 1130 long len_full; 1131 long len_buf; 1131 long len_buf; 1132 long len_abuf = 0; 1132 long len_abuf = 0; 1133 long len_tmp; 1133 long len_tmp; 1134 bool require_data; 1134 bool require_data; 1135 bool encode; 1135 bool encode; 1136 unsigned int iter; 1136 unsigned int iter; 1137 unsigned int arg; 1137 unsigned int arg; 1138 char *buf_head; 1138 char *buf_head; 1139 char *buf; 1139 char *buf; 1140 const char __user *p = (const char __ 1140 const char __user *p = (const char __user *)current->mm->arg_start; 1141 1141 1142 /* NOTE: this buffer needs to be larg 1142 /* NOTE: this buffer needs to be large enough to hold all the non-arg 1143 * data we put in the audit rec 1143 * data we put in the audit record for this argument (see the 1144 * code below) ... at this poin 1144 * code below) ... at this point in time 96 is plenty */ 1145 char abuf[96]; 1145 char abuf[96]; 1146 1146 1147 /* NOTE: we set MAX_EXECVE_AUDIT_LEN 1147 /* NOTE: we set MAX_EXECVE_AUDIT_LEN to a rather arbitrary limit, the 1148 * current value of 7500 is not 1148 * current value of 7500 is not as important as the fact that it 1149 * is less than 8k, a setting o 1149 * is less than 8k, a setting of 7500 gives us plenty of wiggle 1150 * room if we go over a little 1150 * room if we go over a little bit in the logging below */ 1151 WARN_ON_ONCE(MAX_EXECVE_AUDIT_LEN > 7 1151 WARN_ON_ONCE(MAX_EXECVE_AUDIT_LEN > 7500); 1152 len_max = MAX_EXECVE_AUDIT_LEN; 1152 len_max = MAX_EXECVE_AUDIT_LEN; 1153 1153 1154 /* scratch buffer to hold the userspa 1154 /* scratch buffer to hold the userspace args */ 1155 buf_head = kmalloc(MAX_EXECVE_AUDIT_L 1155 buf_head = kmalloc(MAX_EXECVE_AUDIT_LEN + 1, GFP_KERNEL); 1156 if (!buf_head) { 1156 if (!buf_head) { 1157 audit_panic("out of memory fo 1157 audit_panic("out of memory for argv string"); 1158 return; 1158 return; 1159 } 1159 } 1160 buf = buf_head; 1160 buf = buf_head; 1161 1161 1162 audit_log_format(*ab, "argc=%d", cont 1162 audit_log_format(*ab, "argc=%d", context->execve.argc); 1163 1163 1164 len_rem = len_max; 1164 len_rem = len_max; 1165 len_buf = 0; 1165 len_buf = 0; 1166 len_full = 0; 1166 len_full = 0; 1167 require_data = true; 1167 require_data = true; 1168 encode = false; 1168 encode = false; 1169 iter = 0; 1169 iter = 0; 1170 arg = 0; 1170 arg = 0; 1171 do { 1171 do { 1172 /* NOTE: we don't ever want t 1172 /* NOTE: we don't ever want to trust this value for anything 1173 * serious, but the aud 1173 * serious, but the audit record format insists we 1174 * provide an argument 1174 * provide an argument length for really long arguments, 1175 * e.g. > MAX_EXECVE_AU 1175 * e.g. > MAX_EXECVE_AUDIT_LEN, so we have no choice but 1176 * to use strncpy_from_ 1176 * to use strncpy_from_user() to obtain this value for 1177 * recording in the log 1177 * recording in the log, although we don't use it 1178 * anywhere here to avo 1178 * anywhere here to avoid a double-fetch problem */ 1179 if (len_full == 0) 1179 if (len_full == 0) 1180 len_full = strnlen_us 1180 len_full = strnlen_user(p, MAX_ARG_STRLEN) - 1; 1181 1181 1182 /* read more data from usersp 1182 /* read more data from userspace */ 1183 if (require_data) { 1183 if (require_data) { 1184 /* can we make more r 1184 /* can we make more room in the buffer? */ 1185 if (buf != buf_head) 1185 if (buf != buf_head) { 1186 memmove(buf_h 1186 memmove(buf_head, buf, len_buf); 1187 buf = buf_hea 1187 buf = buf_head; 1188 } 1188 } 1189 1189 1190 /* fetch as much as w 1190 /* fetch as much as we can of the argument */ 1191 len_tmp = strncpy_fro 1191 len_tmp = strncpy_from_user(&buf_head[len_buf], p, 1192 1192 len_max - len_buf); 1193 if (len_tmp == -EFAUL 1193 if (len_tmp == -EFAULT) { 1194 /* unable to 1194 /* unable to copy from userspace */ 1195 send_sig(SIGK 1195 send_sig(SIGKILL, current, 0); 1196 goto out; 1196 goto out; 1197 } else if (len_tmp == 1197 } else if (len_tmp == (len_max - len_buf)) { 1198 /* buffer is 1198 /* buffer is not large enough */ 1199 require_data 1199 require_data = true; 1200 /* NOTE: if w 1200 /* NOTE: if we are going to span multiple 1201 * buff 1201 * buffers force the encoding so we stand 1202 * a ch 1202 * a chance at a sane len_full value and 1203 * cons 1203 * consistent record encoding */ 1204 encode = true 1204 encode = true; 1205 len_full = le 1205 len_full = len_full * 2; 1206 p += len_tmp; 1206 p += len_tmp; 1207 } else { 1207 } else { 1208 require_data 1208 require_data = false; 1209 if (!encode) 1209 if (!encode) 1210 encod 1210 encode = audit_string_contains_control( 1211 1211 buf, len_tmp); 1212 /* try to use 1212 /* try to use a trusted value for len_full */ 1213 if (len_full 1213 if (len_full < len_max) 1214 len_f 1214 len_full = (encode ? 1215 1215 len_tmp * 2 : len_tmp); 1216 p += len_tmp 1216 p += len_tmp + 1; 1217 } 1217 } 1218 len_buf += len_tmp; 1218 len_buf += len_tmp; 1219 buf_head[len_buf] = ' 1219 buf_head[len_buf] = '\0'; 1220 1220 1221 /* length of the buff 1221 /* length of the buffer in the audit record? */ 1222 len_abuf = (encode ? 1222 len_abuf = (encode ? len_buf * 2 : len_buf + 2); 1223 } 1223 } 1224 1224 1225 /* write as much as we can to 1225 /* write as much as we can to the audit log */ 1226 if (len_buf >= 0) { 1226 if (len_buf >= 0) { 1227 /* NOTE: some magic n 1227 /* NOTE: some magic numbers here - basically if we 1228 * can't fit a 1228 * can't fit a reasonable amount of data into the 1229 * existing aud 1229 * existing audit buffer, flush it and start with 1230 * a new buffer 1230 * a new buffer */ 1231 if ((sizeof(abuf) + 8 1231 if ((sizeof(abuf) + 8) > len_rem) { 1232 len_rem = len 1232 len_rem = len_max; 1233 audit_log_end 1233 audit_log_end(*ab); 1234 *ab = audit_l 1234 *ab = audit_log_start(context, 1235 1235 GFP_KERNEL, AUDIT_EXECVE); 1236 if (!*ab) 1236 if (!*ab) 1237 goto 1237 goto out; 1238 } 1238 } 1239 1239 1240 /* create the non-arg 1240 /* create the non-arg portion of the arg record */ 1241 len_tmp = 0; 1241 len_tmp = 0; 1242 if (require_data || ( 1242 if (require_data || (iter > 0) || 1243 ((len_abuf + size 1243 ((len_abuf + sizeof(abuf)) > len_rem)) { 1244 if (iter == 0 1244 if (iter == 0) { 1245 len_t 1245 len_tmp += snprintf(&abuf[len_tmp], 1246 1246 sizeof(abuf) - len_tmp, 1247 1247 " a%d_len=%lu", 1248 1248 arg, len_full); 1249 } 1249 } 1250 len_tmp += sn 1250 len_tmp += snprintf(&abuf[len_tmp], 1251 1251 sizeof(abuf) - len_tmp, 1252 1252 " a%d[%d]=", arg, iter++); 1253 } else 1253 } else 1254 len_tmp += sn 1254 len_tmp += snprintf(&abuf[len_tmp], 1255 1255 sizeof(abuf) - len_tmp, 1256 1256 " a%d=", arg); 1257 WARN_ON(len_tmp >= si 1257 WARN_ON(len_tmp >= sizeof(abuf)); 1258 abuf[sizeof(abuf) - 1 1258 abuf[sizeof(abuf) - 1] = '\0'; 1259 1259 1260 /* log the arg in the 1260 /* log the arg in the audit record */ 1261 audit_log_format(*ab, 1261 audit_log_format(*ab, "%s", abuf); 1262 len_rem -= len_tmp; 1262 len_rem -= len_tmp; 1263 len_tmp = len_buf; 1263 len_tmp = len_buf; 1264 if (encode) { 1264 if (encode) { 1265 if (len_abuf 1265 if (len_abuf > len_rem) 1266 len_t 1266 len_tmp = len_rem / 2; /* encoding */ 1267 audit_log_n_h 1267 audit_log_n_hex(*ab, buf, len_tmp); 1268 len_rem -= le 1268 len_rem -= len_tmp * 2; 1269 len_abuf -= l 1269 len_abuf -= len_tmp * 2; 1270 } else { 1270 } else { 1271 if (len_abuf 1271 if (len_abuf > len_rem) 1272 len_t 1272 len_tmp = len_rem - 2; /* quotes */ 1273 audit_log_n_s 1273 audit_log_n_string(*ab, buf, len_tmp); 1274 len_rem -= le 1274 len_rem -= len_tmp + 2; 1275 /* don't subt 1275 /* don't subtract the "2" because we still need 1276 * to add quo 1276 * to add quotes to the remaining string */ 1277 len_abuf -= l 1277 len_abuf -= len_tmp; 1278 } 1278 } 1279 len_buf -= len_tmp; 1279 len_buf -= len_tmp; 1280 buf += len_tmp; 1280 buf += len_tmp; 1281 } 1281 } 1282 1282 1283 /* ready to move to the next 1283 /* ready to move to the next argument? */ 1284 if ((len_buf == 0) && !requir 1284 if ((len_buf == 0) && !require_data) { 1285 arg++; 1285 arg++; 1286 iter = 0; 1286 iter = 0; 1287 len_full = 0; 1287 len_full = 0; 1288 require_data = true; 1288 require_data = true; 1289 encode = false; 1289 encode = false; 1290 } 1290 } 1291 } while (arg < context->execve.argc); 1291 } while (arg < context->execve.argc); 1292 1292 1293 /* NOTE: the caller handles the final 1293 /* NOTE: the caller handles the final audit_log_end() call */ 1294 1294 1295 out: 1295 out: 1296 kfree(buf_head); 1296 kfree(buf_head); 1297 } 1297 } 1298 1298 1299 static void audit_log_cap(struct audit_buffer 1299 static void audit_log_cap(struct audit_buffer *ab, char *prefix, 1300 kernel_cap_t *cap) 1300 kernel_cap_t *cap) 1301 { 1301 { 1302 if (cap_isclear(*cap)) { 1302 if (cap_isclear(*cap)) { 1303 audit_log_format(ab, " %s=0", 1303 audit_log_format(ab, " %s=0", prefix); 1304 return; 1304 return; 1305 } 1305 } 1306 audit_log_format(ab, " %s=%016llx", p 1306 audit_log_format(ab, " %s=%016llx", prefix, cap->val); 1307 } 1307 } 1308 1308 1309 static void audit_log_fcaps(struct audit_buff 1309 static void audit_log_fcaps(struct audit_buffer *ab, struct audit_names *name) 1310 { 1310 { 1311 if (name->fcap_ver == -1) { 1311 if (name->fcap_ver == -1) { 1312 audit_log_format(ab, " cap_fe 1312 audit_log_format(ab, " cap_fe=? cap_fver=? cap_fp=? cap_fi=?"); 1313 return; 1313 return; 1314 } 1314 } 1315 audit_log_cap(ab, "cap_fp", &name->fc 1315 audit_log_cap(ab, "cap_fp", &name->fcap.permitted); 1316 audit_log_cap(ab, "cap_fi", &name->fc 1316 audit_log_cap(ab, "cap_fi", &name->fcap.inheritable); 1317 audit_log_format(ab, " cap_fe=%d cap_ 1317 audit_log_format(ab, " cap_fe=%d cap_fver=%x cap_frootid=%d", 1318 name->fcap.fE, name- 1318 name->fcap.fE, name->fcap_ver, 1319 from_kuid(&init_user 1319 from_kuid(&init_user_ns, name->fcap.rootid)); 1320 } 1320 } 1321 1321 1322 static void audit_log_time(struct audit_conte 1322 static void audit_log_time(struct audit_context *context, struct audit_buffer **ab) 1323 { 1323 { 1324 const struct audit_ntp_data *ntp = &c 1324 const struct audit_ntp_data *ntp = &context->time.ntp_data; 1325 const struct timespec64 *tk = &contex 1325 const struct timespec64 *tk = &context->time.tk_injoffset; 1326 static const char * const ntp_name[] 1326 static const char * const ntp_name[] = { 1327 "offset", 1327 "offset", 1328 "freq", 1328 "freq", 1329 "status", 1329 "status", 1330 "tai", 1330 "tai", 1331 "tick", 1331 "tick", 1332 "adjust", 1332 "adjust", 1333 }; 1333 }; 1334 int type; 1334 int type; 1335 1335 1336 if (context->type == AUDIT_TIME_ADJNT 1336 if (context->type == AUDIT_TIME_ADJNTPVAL) { 1337 for (type = 0; type < AUDIT_N 1337 for (type = 0; type < AUDIT_NTP_NVALS; type++) { 1338 if (ntp->vals[type].n 1338 if (ntp->vals[type].newval != ntp->vals[type].oldval) { 1339 if (!*ab) { 1339 if (!*ab) { 1340 *ab = 1340 *ab = audit_log_start(context, 1341 1341 GFP_KERNEL, 1342 1342 AUDIT_TIME_ADJNTPVAL); 1343 if (! 1343 if (!*ab) 1344 1344 return; 1345 } 1345 } 1346 audit_log_for 1346 audit_log_format(*ab, "op=%s old=%lli new=%lli", 1347 1347 ntp_name[type], 1348 1348 ntp->vals[type].oldval, 1349 1349 ntp->vals[type].newval); 1350 audit_log_end 1350 audit_log_end(*ab); 1351 *ab = NULL; 1351 *ab = NULL; 1352 } 1352 } 1353 } 1353 } 1354 } 1354 } 1355 if (tk->tv_sec != 0 || tk->tv_nsec != 1355 if (tk->tv_sec != 0 || tk->tv_nsec != 0) { 1356 if (!*ab) { 1356 if (!*ab) { 1357 *ab = audit_log_start 1357 *ab = audit_log_start(context, GFP_KERNEL, 1358 1358 AUDIT_TIME_INJOFFSET); 1359 if (!*ab) 1359 if (!*ab) 1360 return; 1360 return; 1361 } 1361 } 1362 audit_log_format(*ab, "sec=%l 1362 audit_log_format(*ab, "sec=%lli nsec=%li", 1363 (long long)t 1363 (long long)tk->tv_sec, tk->tv_nsec); 1364 audit_log_end(*ab); 1364 audit_log_end(*ab); 1365 *ab = NULL; 1365 *ab = NULL; 1366 } 1366 } 1367 } 1367 } 1368 1368 1369 static void show_special(struct audit_context 1369 static void show_special(struct audit_context *context, int *call_panic) 1370 { 1370 { 1371 struct audit_buffer *ab; 1371 struct audit_buffer *ab; 1372 int i; 1372 int i; 1373 1373 1374 ab = audit_log_start(context, GFP_KER 1374 ab = audit_log_start(context, GFP_KERNEL, context->type); 1375 if (!ab) 1375 if (!ab) 1376 return; 1376 return; 1377 1377 1378 switch (context->type) { 1378 switch (context->type) { 1379 case AUDIT_SOCKETCALL: { 1379 case AUDIT_SOCKETCALL: { 1380 int nargs = context->socketca 1380 int nargs = context->socketcall.nargs; 1381 1381 1382 audit_log_format(ab, "nargs=% 1382 audit_log_format(ab, "nargs=%d", nargs); 1383 for (i = 0; i < nargs; i++) 1383 for (i = 0; i < nargs; i++) 1384 audit_log_format(ab, 1384 audit_log_format(ab, " a%d=%lx", i, 1385 context->sock 1385 context->socketcall.args[i]); 1386 break; } 1386 break; } 1387 case AUDIT_IPC: { 1387 case AUDIT_IPC: { 1388 u32 osid = context->ipc.osid; 1388 u32 osid = context->ipc.osid; 1389 1389 1390 audit_log_format(ab, "ouid=%u 1390 audit_log_format(ab, "ouid=%u ogid=%u mode=%#ho", 1391 from_kuid(&i 1391 from_kuid(&init_user_ns, context->ipc.uid), 1392 from_kgid(&i 1392 from_kgid(&init_user_ns, context->ipc.gid), 1393 context->ipc 1393 context->ipc.mode); 1394 if (osid) { 1394 if (osid) { 1395 char *ctx = NULL; 1395 char *ctx = NULL; 1396 u32 len; 1396 u32 len; 1397 1397 1398 if (security_secid_to 1398 if (security_secid_to_secctx(osid, &ctx, &len)) { 1399 audit_log_for 1399 audit_log_format(ab, " osid=%u", osid); 1400 *call_panic = 1400 *call_panic = 1; 1401 } else { 1401 } else { 1402 audit_log_for 1402 audit_log_format(ab, " obj=%s", ctx); 1403 security_rele 1403 security_release_secctx(ctx, len); 1404 } 1404 } 1405 } 1405 } 1406 if (context->ipc.has_perm) { 1406 if (context->ipc.has_perm) { 1407 audit_log_end(ab); 1407 audit_log_end(ab); 1408 ab = audit_log_start( 1408 ab = audit_log_start(context, GFP_KERNEL, 1409 1409 AUDIT_IPC_SET_PERM); 1410 if (unlikely(!ab)) 1410 if (unlikely(!ab)) 1411 return; 1411 return; 1412 audit_log_format(ab, 1412 audit_log_format(ab, 1413 "qbytes=%lx o 1413 "qbytes=%lx ouid=%u ogid=%u mode=%#ho", 1414 context->ipc. 1414 context->ipc.qbytes, 1415 context->ipc. 1415 context->ipc.perm_uid, 1416 context->ipc. 1416 context->ipc.perm_gid, 1417 context->ipc. 1417 context->ipc.perm_mode); 1418 } 1418 } 1419 break; } 1419 break; } 1420 case AUDIT_MQ_OPEN: 1420 case AUDIT_MQ_OPEN: 1421 audit_log_format(ab, 1421 audit_log_format(ab, 1422 "oflag=0x%x mode=%#ho 1422 "oflag=0x%x mode=%#ho mq_flags=0x%lx mq_maxmsg=%ld " 1423 "mq_msgsize=%ld mq_cu 1423 "mq_msgsize=%ld mq_curmsgs=%ld", 1424 context->mq_open.ofla 1424 context->mq_open.oflag, context->mq_open.mode, 1425 context->mq_open.attr 1425 context->mq_open.attr.mq_flags, 1426 context->mq_open.attr 1426 context->mq_open.attr.mq_maxmsg, 1427 context->mq_open.attr 1427 context->mq_open.attr.mq_msgsize, 1428 context->mq_open.attr 1428 context->mq_open.attr.mq_curmsgs); 1429 break; 1429 break; 1430 case AUDIT_MQ_SENDRECV: 1430 case AUDIT_MQ_SENDRECV: 1431 audit_log_format(ab, 1431 audit_log_format(ab, 1432 "mqdes=%d msg_len=%zd 1432 "mqdes=%d msg_len=%zd msg_prio=%u " 1433 "abs_timeout_sec=%lld 1433 "abs_timeout_sec=%lld abs_timeout_nsec=%ld", 1434 context->mq_sendrecv. 1434 context->mq_sendrecv.mqdes, 1435 context->mq_sendrecv. 1435 context->mq_sendrecv.msg_len, 1436 context->mq_sendrecv. 1436 context->mq_sendrecv.msg_prio, 1437 (long long) context-> 1437 (long long) context->mq_sendrecv.abs_timeout.tv_sec, 1438 context->mq_sendrecv. 1438 context->mq_sendrecv.abs_timeout.tv_nsec); 1439 break; 1439 break; 1440 case AUDIT_MQ_NOTIFY: 1440 case AUDIT_MQ_NOTIFY: 1441 audit_log_format(ab, "mqdes=% 1441 audit_log_format(ab, "mqdes=%d sigev_signo=%d", 1442 context->mq_n 1442 context->mq_notify.mqdes, 1443 context->mq_n 1443 context->mq_notify.sigev_signo); 1444 break; 1444 break; 1445 case AUDIT_MQ_GETSETATTR: { 1445 case AUDIT_MQ_GETSETATTR: { 1446 struct mq_attr *attr = &conte 1446 struct mq_attr *attr = &context->mq_getsetattr.mqstat; 1447 1447 1448 audit_log_format(ab, 1448 audit_log_format(ab, 1449 "mqdes=%d mq_flags=0x 1449 "mqdes=%d mq_flags=0x%lx mq_maxmsg=%ld mq_msgsize=%ld " 1450 "mq_curmsgs=%ld ", 1450 "mq_curmsgs=%ld ", 1451 context->mq_getsetatt 1451 context->mq_getsetattr.mqdes, 1452 attr->mq_flags, attr- 1452 attr->mq_flags, attr->mq_maxmsg, 1453 attr->mq_msgsize, att 1453 attr->mq_msgsize, attr->mq_curmsgs); 1454 break; } 1454 break; } 1455 case AUDIT_CAPSET: 1455 case AUDIT_CAPSET: 1456 audit_log_format(ab, "pid=%d" 1456 audit_log_format(ab, "pid=%d", context->capset.pid); 1457 audit_log_cap(ab, "cap_pi", & 1457 audit_log_cap(ab, "cap_pi", &context->capset.cap.inheritable); 1458 audit_log_cap(ab, "cap_pp", & 1458 audit_log_cap(ab, "cap_pp", &context->capset.cap.permitted); 1459 audit_log_cap(ab, "cap_pe", & 1459 audit_log_cap(ab, "cap_pe", &context->capset.cap.effective); 1460 audit_log_cap(ab, "cap_pa", & 1460 audit_log_cap(ab, "cap_pa", &context->capset.cap.ambient); 1461 break; 1461 break; 1462 case AUDIT_MMAP: 1462 case AUDIT_MMAP: 1463 audit_log_format(ab, "fd=%d f 1463 audit_log_format(ab, "fd=%d flags=0x%x", context->mmap.fd, 1464 context->mma 1464 context->mmap.flags); 1465 break; 1465 break; 1466 case AUDIT_OPENAT2: 1466 case AUDIT_OPENAT2: 1467 audit_log_format(ab, "oflag=0 1467 audit_log_format(ab, "oflag=0%llo mode=0%llo resolve=0x%llx", 1468 context->ope 1468 context->openat2.flags, 1469 context->ope 1469 context->openat2.mode, 1470 context->ope 1470 context->openat2.resolve); 1471 break; 1471 break; 1472 case AUDIT_EXECVE: 1472 case AUDIT_EXECVE: 1473 audit_log_execve_info(context 1473 audit_log_execve_info(context, &ab); 1474 break; 1474 break; 1475 case AUDIT_KERN_MODULE: 1475 case AUDIT_KERN_MODULE: 1476 audit_log_format(ab, "name=") 1476 audit_log_format(ab, "name="); 1477 if (context->module.name) { 1477 if (context->module.name) { 1478 audit_log_untrustedst 1478 audit_log_untrustedstring(ab, context->module.name); 1479 } else 1479 } else 1480 audit_log_format(ab, 1480 audit_log_format(ab, "(null)"); 1481 1481 1482 break; 1482 break; 1483 case AUDIT_TIME_ADJNTPVAL: 1483 case AUDIT_TIME_ADJNTPVAL: 1484 case AUDIT_TIME_INJOFFSET: 1484 case AUDIT_TIME_INJOFFSET: 1485 /* this call deviates from th 1485 /* this call deviates from the rest, eating the buffer */ 1486 audit_log_time(context, &ab); 1486 audit_log_time(context, &ab); 1487 break; 1487 break; 1488 } 1488 } 1489 audit_log_end(ab); 1489 audit_log_end(ab); 1490 } 1490 } 1491 1491 1492 static inline int audit_proctitle_rtrim(char 1492 static inline int audit_proctitle_rtrim(char *proctitle, int len) 1493 { 1493 { 1494 char *end = proctitle + len - 1; 1494 char *end = proctitle + len - 1; 1495 1495 1496 while (end > proctitle && !isprint(*e 1496 while (end > proctitle && !isprint(*end)) 1497 end--; 1497 end--; 1498 1498 1499 /* catch the case where proctitle is 1499 /* catch the case where proctitle is only 1 non-print character */ 1500 len = end - proctitle + 1; 1500 len = end - proctitle + 1; 1501 len -= isprint(proctitle[len-1]) == 0 1501 len -= isprint(proctitle[len-1]) == 0; 1502 return len; 1502 return len; 1503 } 1503 } 1504 1504 1505 /* 1505 /* 1506 * audit_log_name - produce AUDIT_PATH record 1506 * audit_log_name - produce AUDIT_PATH record from struct audit_names 1507 * @context: audit_context for the task 1507 * @context: audit_context for the task 1508 * @n: audit_names structure with reportable 1508 * @n: audit_names structure with reportable details 1509 * @path: optional path to report instead of 1509 * @path: optional path to report instead of audit_names->name 1510 * @record_num: record number to report when 1510 * @record_num: record number to report when handling a list of names 1511 * @call_panic: optional pointer to int that 1511 * @call_panic: optional pointer to int that will be updated if secid fails 1512 */ 1512 */ 1513 static void audit_log_name(struct audit_conte 1513 static void audit_log_name(struct audit_context *context, struct audit_names *n, 1514 const struct path *path, 1514 const struct path *path, int record_num, int *call_panic) 1515 { 1515 { 1516 struct audit_buffer *ab; 1516 struct audit_buffer *ab; 1517 1517 1518 ab = audit_log_start(context, GFP_KER 1518 ab = audit_log_start(context, GFP_KERNEL, AUDIT_PATH); 1519 if (!ab) 1519 if (!ab) 1520 return; 1520 return; 1521 1521 1522 audit_log_format(ab, "item=%d", recor 1522 audit_log_format(ab, "item=%d", record_num); 1523 1523 1524 if (path) 1524 if (path) 1525 audit_log_d_path(ab, " name=" 1525 audit_log_d_path(ab, " name=", path); 1526 else if (n->name) { 1526 else if (n->name) { 1527 switch (n->name_len) { 1527 switch (n->name_len) { 1528 case AUDIT_NAME_FULL: 1528 case AUDIT_NAME_FULL: 1529 /* log the full path 1529 /* log the full path */ 1530 audit_log_format(ab, 1530 audit_log_format(ab, " name="); 1531 audit_log_untrustedst 1531 audit_log_untrustedstring(ab, n->name->name); 1532 break; 1532 break; 1533 case 0: 1533 case 0: 1534 /* name was specified 1534 /* name was specified as a relative path and the 1535 * directory componen 1535 * directory component is the cwd 1536 */ 1536 */ 1537 if (context->pwd.dent 1537 if (context->pwd.dentry && context->pwd.mnt) 1538 audit_log_d_p 1538 audit_log_d_path(ab, " name=", &context->pwd); 1539 else 1539 else 1540 audit_log_for 1540 audit_log_format(ab, " name=(null)"); 1541 break; 1541 break; 1542 default: 1542 default: 1543 /* log the name's dir 1543 /* log the name's directory component */ 1544 audit_log_format(ab, 1544 audit_log_format(ab, " name="); 1545 audit_log_n_untrusted 1545 audit_log_n_untrustedstring(ab, n->name->name, 1546 1546 n->name_len); 1547 } 1547 } 1548 } else 1548 } else 1549 audit_log_format(ab, " name=( 1549 audit_log_format(ab, " name=(null)"); 1550 1550 1551 if (n->ino != AUDIT_INO_UNSET) 1551 if (n->ino != AUDIT_INO_UNSET) 1552 audit_log_format(ab, " inode= 1552 audit_log_format(ab, " inode=%lu dev=%02x:%02x mode=%#ho ouid=%u ogid=%u rdev=%02x:%02x", 1553 n->ino, 1553 n->ino, 1554 MAJOR(n->dev 1554 MAJOR(n->dev), 1555 MINOR(n->dev 1555 MINOR(n->dev), 1556 n->mode, 1556 n->mode, 1557 from_kuid(&i 1557 from_kuid(&init_user_ns, n->uid), 1558 from_kgid(&i 1558 from_kgid(&init_user_ns, n->gid), 1559 MAJOR(n->rde 1559 MAJOR(n->rdev), 1560 MINOR(n->rde 1560 MINOR(n->rdev)); 1561 if (n->osid != 0) { 1561 if (n->osid != 0) { 1562 char *ctx = NULL; 1562 char *ctx = NULL; 1563 u32 len; 1563 u32 len; 1564 1564 1565 if (security_secid_to_secctx( 1565 if (security_secid_to_secctx( 1566 n->osid, &ctx, &len)) 1566 n->osid, &ctx, &len)) { 1567 audit_log_format(ab, 1567 audit_log_format(ab, " osid=%u", n->osid); 1568 if (call_panic) 1568 if (call_panic) 1569 *call_panic = 1569 *call_panic = 2; 1570 } else { 1570 } else { 1571 audit_log_format(ab, 1571 audit_log_format(ab, " obj=%s", ctx); 1572 security_release_secc 1572 security_release_secctx(ctx, len); 1573 } 1573 } 1574 } 1574 } 1575 1575 1576 /* log the audit_names record type */ 1576 /* log the audit_names record type */ 1577 switch (n->type) { 1577 switch (n->type) { 1578 case AUDIT_TYPE_NORMAL: 1578 case AUDIT_TYPE_NORMAL: 1579 audit_log_format(ab, " namety 1579 audit_log_format(ab, " nametype=NORMAL"); 1580 break; 1580 break; 1581 case AUDIT_TYPE_PARENT: 1581 case AUDIT_TYPE_PARENT: 1582 audit_log_format(ab, " namety 1582 audit_log_format(ab, " nametype=PARENT"); 1583 break; 1583 break; 1584 case AUDIT_TYPE_CHILD_DELETE: 1584 case AUDIT_TYPE_CHILD_DELETE: 1585 audit_log_format(ab, " namety 1585 audit_log_format(ab, " nametype=DELETE"); 1586 break; 1586 break; 1587 case AUDIT_TYPE_CHILD_CREATE: 1587 case AUDIT_TYPE_CHILD_CREATE: 1588 audit_log_format(ab, " namety 1588 audit_log_format(ab, " nametype=CREATE"); 1589 break; 1589 break; 1590 default: 1590 default: 1591 audit_log_format(ab, " namety 1591 audit_log_format(ab, " nametype=UNKNOWN"); 1592 break; 1592 break; 1593 } 1593 } 1594 1594 1595 audit_log_fcaps(ab, n); 1595 audit_log_fcaps(ab, n); 1596 audit_log_end(ab); 1596 audit_log_end(ab); 1597 } 1597 } 1598 1598 1599 static void audit_log_proctitle(void) 1599 static void audit_log_proctitle(void) 1600 { 1600 { 1601 int res; 1601 int res; 1602 char *buf; 1602 char *buf; 1603 char *msg = "(null)"; 1603 char *msg = "(null)"; 1604 int len = strlen(msg); 1604 int len = strlen(msg); 1605 struct audit_context *context = audit 1605 struct audit_context *context = audit_context(); 1606 struct audit_buffer *ab; 1606 struct audit_buffer *ab; 1607 1607 1608 ab = audit_log_start(context, GFP_KER 1608 ab = audit_log_start(context, GFP_KERNEL, AUDIT_PROCTITLE); 1609 if (!ab) 1609 if (!ab) 1610 return; /* audit_panic or bei 1610 return; /* audit_panic or being filtered */ 1611 1611 1612 audit_log_format(ab, "proctitle="); 1612 audit_log_format(ab, "proctitle="); 1613 1613 1614 /* Not cached */ 1614 /* Not cached */ 1615 if (!context->proctitle.value) { 1615 if (!context->proctitle.value) { 1616 buf = kmalloc(MAX_PROCTITLE_A 1616 buf = kmalloc(MAX_PROCTITLE_AUDIT_LEN, GFP_KERNEL); 1617 if (!buf) 1617 if (!buf) 1618 goto out; 1618 goto out; 1619 /* Historically called this f 1619 /* Historically called this from procfs naming */ 1620 res = get_cmdline(current, bu 1620 res = get_cmdline(current, buf, MAX_PROCTITLE_AUDIT_LEN); 1621 if (res == 0) { 1621 if (res == 0) { 1622 kfree(buf); 1622 kfree(buf); 1623 goto out; 1623 goto out; 1624 } 1624 } 1625 res = audit_proctitle_rtrim(b 1625 res = audit_proctitle_rtrim(buf, res); 1626 if (res == 0) { 1626 if (res == 0) { 1627 kfree(buf); 1627 kfree(buf); 1628 goto out; 1628 goto out; 1629 } 1629 } 1630 context->proctitle.value = bu 1630 context->proctitle.value = buf; 1631 context->proctitle.len = res; 1631 context->proctitle.len = res; 1632 } 1632 } 1633 msg = context->proctitle.value; 1633 msg = context->proctitle.value; 1634 len = context->proctitle.len; 1634 len = context->proctitle.len; 1635 out: 1635 out: 1636 audit_log_n_untrustedstring(ab, msg, 1636 audit_log_n_untrustedstring(ab, msg, len); 1637 audit_log_end(ab); 1637 audit_log_end(ab); 1638 } 1638 } 1639 1639 1640 /** 1640 /** 1641 * audit_log_uring - generate a AUDIT_URINGOP 1641 * audit_log_uring - generate a AUDIT_URINGOP record 1642 * @ctx: the audit context 1642 * @ctx: the audit context 1643 */ 1643 */ 1644 static void audit_log_uring(struct audit_cont 1644 static void audit_log_uring(struct audit_context *ctx) 1645 { 1645 { 1646 struct audit_buffer *ab; 1646 struct audit_buffer *ab; 1647 const struct cred *cred; 1647 const struct cred *cred; 1648 1648 1649 ab = audit_log_start(ctx, GFP_ATOMIC, 1649 ab = audit_log_start(ctx, GFP_ATOMIC, AUDIT_URINGOP); 1650 if (!ab) 1650 if (!ab) 1651 return; 1651 return; 1652 cred = current_cred(); 1652 cred = current_cred(); 1653 audit_log_format(ab, "uring_op=%d", c 1653 audit_log_format(ab, "uring_op=%d", ctx->uring_op); 1654 if (ctx->return_valid != AUDITSC_INVA 1654 if (ctx->return_valid != AUDITSC_INVALID) 1655 audit_log_format(ab, " succes 1655 audit_log_format(ab, " success=%s exit=%ld", 1656 (ctx->return 1656 (ctx->return_valid == AUDITSC_SUCCESS ? 1657 "yes" : "no 1657 "yes" : "no"), 1658 ctx->return_ 1658 ctx->return_code); 1659 audit_log_format(ab, 1659 audit_log_format(ab, 1660 " items=%d" 1660 " items=%d" 1661 " ppid=%d pid=%d uid 1661 " ppid=%d pid=%d uid=%u gid=%u euid=%u suid=%u" 1662 " fsuid=%u egid=%u s 1662 " fsuid=%u egid=%u sgid=%u fsgid=%u", 1663 ctx->name_count, 1663 ctx->name_count, 1664 task_ppid_nr(current 1664 task_ppid_nr(current), task_tgid_nr(current), 1665 from_kuid(&init_user 1665 from_kuid(&init_user_ns, cred->uid), 1666 from_kgid(&init_user 1666 from_kgid(&init_user_ns, cred->gid), 1667 from_kuid(&init_user 1667 from_kuid(&init_user_ns, cred->euid), 1668 from_kuid(&init_user 1668 from_kuid(&init_user_ns, cred->suid), 1669 from_kuid(&init_user 1669 from_kuid(&init_user_ns, cred->fsuid), 1670 from_kgid(&init_user 1670 from_kgid(&init_user_ns, cred->egid), 1671 from_kgid(&init_user 1671 from_kgid(&init_user_ns, cred->sgid), 1672 from_kgid(&init_user 1672 from_kgid(&init_user_ns, cred->fsgid)); 1673 audit_log_task_context(ab); 1673 audit_log_task_context(ab); 1674 audit_log_key(ab, ctx->filterkey); 1674 audit_log_key(ab, ctx->filterkey); 1675 audit_log_end(ab); 1675 audit_log_end(ab); 1676 } 1676 } 1677 1677 1678 static void audit_log_exit(void) 1678 static void audit_log_exit(void) 1679 { 1679 { 1680 int i, call_panic = 0; 1680 int i, call_panic = 0; 1681 struct audit_context *context = audit 1681 struct audit_context *context = audit_context(); 1682 struct audit_buffer *ab; 1682 struct audit_buffer *ab; 1683 struct audit_aux_data *aux; 1683 struct audit_aux_data *aux; 1684 struct audit_names *n; 1684 struct audit_names *n; 1685 1685 1686 context->personality = current->perso 1686 context->personality = current->personality; 1687 1687 1688 switch (context->context) { 1688 switch (context->context) { 1689 case AUDIT_CTX_SYSCALL: 1689 case AUDIT_CTX_SYSCALL: 1690 ab = audit_log_start(context, 1690 ab = audit_log_start(context, GFP_KERNEL, AUDIT_SYSCALL); 1691 if (!ab) 1691 if (!ab) 1692 return; 1692 return; 1693 audit_log_format(ab, "arch=%x 1693 audit_log_format(ab, "arch=%x syscall=%d", 1694 context->arc 1694 context->arch, context->major); 1695 if (context->personality != P 1695 if (context->personality != PER_LINUX) 1696 audit_log_format(ab, 1696 audit_log_format(ab, " per=%lx", context->personality); 1697 if (context->return_valid != 1697 if (context->return_valid != AUDITSC_INVALID) 1698 audit_log_format(ab, 1698 audit_log_format(ab, " success=%s exit=%ld", 1699 (con 1699 (context->return_valid == AUDITSC_SUCCESS ? 1700 "ye 1700 "yes" : "no"), 1701 cont 1701 context->return_code); 1702 audit_log_format(ab, 1702 audit_log_format(ab, 1703 " a0=%lx a1= 1703 " a0=%lx a1=%lx a2=%lx a3=%lx items=%d", 1704 context->arg 1704 context->argv[0], 1705 context->arg 1705 context->argv[1], 1706 context->arg 1706 context->argv[2], 1707 context->arg 1707 context->argv[3], 1708 context->nam 1708 context->name_count); 1709 audit_log_task_info(ab); 1709 audit_log_task_info(ab); 1710 audit_log_key(ab, context->fi 1710 audit_log_key(ab, context->filterkey); 1711 audit_log_end(ab); 1711 audit_log_end(ab); 1712 break; 1712 break; 1713 case AUDIT_CTX_URING: 1713 case AUDIT_CTX_URING: 1714 audit_log_uring(context); 1714 audit_log_uring(context); 1715 break; 1715 break; 1716 default: 1716 default: 1717 BUG(); 1717 BUG(); 1718 break; 1718 break; 1719 } 1719 } 1720 1720 1721 for (aux = context->aux; aux; aux = a 1721 for (aux = context->aux; aux; aux = aux->next) { 1722 1722 1723 ab = audit_log_start(context, 1723 ab = audit_log_start(context, GFP_KERNEL, aux->type); 1724 if (!ab) 1724 if (!ab) 1725 continue; /* audit_pa 1725 continue; /* audit_panic has been called */ 1726 1726 1727 switch (aux->type) { 1727 switch (aux->type) { 1728 1728 1729 case AUDIT_BPRM_FCAPS: { 1729 case AUDIT_BPRM_FCAPS: { 1730 struct audit_aux_data 1730 struct audit_aux_data_bprm_fcaps *axs = (void *)aux; 1731 1731 1732 audit_log_format(ab, 1732 audit_log_format(ab, "fver=%x", axs->fcap_ver); 1733 audit_log_cap(ab, "fp 1733 audit_log_cap(ab, "fp", &axs->fcap.permitted); 1734 audit_log_cap(ab, "fi 1734 audit_log_cap(ab, "fi", &axs->fcap.inheritable); 1735 audit_log_format(ab, 1735 audit_log_format(ab, " fe=%d", axs->fcap.fE); 1736 audit_log_cap(ab, "ol 1736 audit_log_cap(ab, "old_pp", &axs->old_pcap.permitted); 1737 audit_log_cap(ab, "ol 1737 audit_log_cap(ab, "old_pi", &axs->old_pcap.inheritable); 1738 audit_log_cap(ab, "ol 1738 audit_log_cap(ab, "old_pe", &axs->old_pcap.effective); 1739 audit_log_cap(ab, "ol 1739 audit_log_cap(ab, "old_pa", &axs->old_pcap.ambient); 1740 audit_log_cap(ab, "pp 1740 audit_log_cap(ab, "pp", &axs->new_pcap.permitted); 1741 audit_log_cap(ab, "pi 1741 audit_log_cap(ab, "pi", &axs->new_pcap.inheritable); 1742 audit_log_cap(ab, "pe 1742 audit_log_cap(ab, "pe", &axs->new_pcap.effective); 1743 audit_log_cap(ab, "pa 1743 audit_log_cap(ab, "pa", &axs->new_pcap.ambient); 1744 audit_log_format(ab, 1744 audit_log_format(ab, " frootid=%d", 1745 from 1745 from_kuid(&init_user_ns, 1746 1746 axs->fcap.rootid)); 1747 break; } 1747 break; } 1748 1748 1749 } 1749 } 1750 audit_log_end(ab); 1750 audit_log_end(ab); 1751 } 1751 } 1752 1752 1753 if (context->type) 1753 if (context->type) 1754 show_special(context, &call_p 1754 show_special(context, &call_panic); 1755 1755 1756 if (context->fds[0] >= 0) { 1756 if (context->fds[0] >= 0) { 1757 ab = audit_log_start(context, 1757 ab = audit_log_start(context, GFP_KERNEL, AUDIT_FD_PAIR); 1758 if (ab) { 1758 if (ab) { 1759 audit_log_format(ab, 1759 audit_log_format(ab, "fd0=%d fd1=%d", 1760 conte 1760 context->fds[0], context->fds[1]); 1761 audit_log_end(ab); 1761 audit_log_end(ab); 1762 } 1762 } 1763 } 1763 } 1764 1764 1765 if (context->sockaddr_len) { 1765 if (context->sockaddr_len) { 1766 ab = audit_log_start(context, 1766 ab = audit_log_start(context, GFP_KERNEL, AUDIT_SOCKADDR); 1767 if (ab) { 1767 if (ab) { 1768 audit_log_format(ab, 1768 audit_log_format(ab, "saddr="); 1769 audit_log_n_hex(ab, ( 1769 audit_log_n_hex(ab, (void *)context->sockaddr, 1770 conte 1770 context->sockaddr_len); 1771 audit_log_end(ab); 1771 audit_log_end(ab); 1772 } 1772 } 1773 } 1773 } 1774 1774 1775 for (aux = context->aux_pids; aux; au 1775 for (aux = context->aux_pids; aux; aux = aux->next) { 1776 struct audit_aux_data_pids *a 1776 struct audit_aux_data_pids *axs = (void *)aux; 1777 1777 1778 for (i = 0; i < axs->pid_coun 1778 for (i = 0; i < axs->pid_count; i++) 1779 if (audit_log_pid_con 1779 if (audit_log_pid_context(context, axs->target_pid[i], 1780 1780 axs->target_auid[i], 1781 1781 axs->target_uid[i], 1782 1782 axs->target_sessionid[i], 1783 1783 axs->target_sid[i], 1784 1784 axs->target_comm[i])) 1785 call_panic = 1785 call_panic = 1; 1786 } 1786 } 1787 1787 1788 if (context->target_pid && 1788 if (context->target_pid && 1789 audit_log_pid_context(context, co 1789 audit_log_pid_context(context, context->target_pid, 1790 context->ta 1790 context->target_auid, context->target_uid, 1791 context->ta 1791 context->target_sessionid, 1792 context->ta 1792 context->target_sid, context->target_comm)) 1793 call_panic = 1; 1793 call_panic = 1; 1794 1794 1795 if (context->pwd.dentry && context->p 1795 if (context->pwd.dentry && context->pwd.mnt) { 1796 ab = audit_log_start(context, 1796 ab = audit_log_start(context, GFP_KERNEL, AUDIT_CWD); 1797 if (ab) { 1797 if (ab) { 1798 audit_log_d_path(ab, 1798 audit_log_d_path(ab, "cwd=", &context->pwd); 1799 audit_log_end(ab); 1799 audit_log_end(ab); 1800 } 1800 } 1801 } 1801 } 1802 1802 1803 i = 0; 1803 i = 0; 1804 list_for_each_entry(n, &context->name 1804 list_for_each_entry(n, &context->names_list, list) { 1805 if (n->hidden) 1805 if (n->hidden) 1806 continue; 1806 continue; 1807 audit_log_name(context, n, NU 1807 audit_log_name(context, n, NULL, i++, &call_panic); 1808 } 1808 } 1809 1809 1810 if (context->context == AUDIT_CTX_SYS 1810 if (context->context == AUDIT_CTX_SYSCALL) 1811 audit_log_proctitle(); 1811 audit_log_proctitle(); 1812 1812 1813 /* Send end of event record to help u 1813 /* Send end of event record to help user space know we are finished */ 1814 ab = audit_log_start(context, GFP_KER 1814 ab = audit_log_start(context, GFP_KERNEL, AUDIT_EOE); 1815 if (ab) 1815 if (ab) 1816 audit_log_end(ab); 1816 audit_log_end(ab); 1817 if (call_panic) 1817 if (call_panic) 1818 audit_panic("error in audit_l 1818 audit_panic("error in audit_log_exit()"); 1819 } 1819 } 1820 1820 1821 /** 1821 /** 1822 * __audit_free - free a per-task audit conte 1822 * __audit_free - free a per-task audit context 1823 * @tsk: task whose audit context block to fr 1823 * @tsk: task whose audit context block to free 1824 * 1824 * 1825 * Called from copy_process, do_exit, and the 1825 * Called from copy_process, do_exit, and the io_uring code 1826 */ 1826 */ 1827 void __audit_free(struct task_struct *tsk) 1827 void __audit_free(struct task_struct *tsk) 1828 { 1828 { 1829 struct audit_context *context = tsk-> 1829 struct audit_context *context = tsk->audit_context; 1830 1830 1831 if (!context) 1831 if (!context) 1832 return; 1832 return; 1833 1833 1834 /* this may generate CONFIG_CHANGE re 1834 /* this may generate CONFIG_CHANGE records */ 1835 if (!list_empty(&context->killed_tree 1835 if (!list_empty(&context->killed_trees)) 1836 audit_kill_trees(context); 1836 audit_kill_trees(context); 1837 1837 1838 /* We are called either by do_exit() 1838 /* We are called either by do_exit() or the fork() error handling code; 1839 * in the former case tsk == current 1839 * in the former case tsk == current and in the latter tsk is a 1840 * random task_struct that doesn't ha 1840 * random task_struct that doesn't have any meaningful data we 1841 * need to log via audit_log_exit(). 1841 * need to log via audit_log_exit(). 1842 */ 1842 */ 1843 if (tsk == current && !context->dummy 1843 if (tsk == current && !context->dummy) { 1844 context->return_valid = AUDIT 1844 context->return_valid = AUDITSC_INVALID; 1845 context->return_code = 0; 1845 context->return_code = 0; 1846 if (context->context == AUDIT 1846 if (context->context == AUDIT_CTX_SYSCALL) { 1847 audit_filter_syscall( 1847 audit_filter_syscall(tsk, context); 1848 audit_filter_inodes(t 1848 audit_filter_inodes(tsk, context); 1849 if (context->current_ 1849 if (context->current_state == AUDIT_STATE_RECORD) 1850 audit_log_exi 1850 audit_log_exit(); 1851 } else if (context->context = 1851 } else if (context->context == AUDIT_CTX_URING) { 1852 /* TODO: verify this 1852 /* TODO: verify this case is real and valid */ 1853 audit_filter_uring(ts 1853 audit_filter_uring(tsk, context); 1854 audit_filter_inodes(t 1854 audit_filter_inodes(tsk, context); 1855 if (context->current_ 1855 if (context->current_state == AUDIT_STATE_RECORD) 1856 audit_log_uri 1856 audit_log_uring(context); 1857 } 1857 } 1858 } 1858 } 1859 1859 1860 audit_set_context(tsk, NULL); 1860 audit_set_context(tsk, NULL); 1861 audit_free_context(context); 1861 audit_free_context(context); 1862 } 1862 } 1863 1863 1864 /** 1864 /** 1865 * audit_return_fixup - fixup the return code 1865 * audit_return_fixup - fixup the return codes in the audit_context 1866 * @ctx: the audit_context 1866 * @ctx: the audit_context 1867 * @success: true/false value to indicate if 1867 * @success: true/false value to indicate if the operation succeeded or not 1868 * @code: operation return code 1868 * @code: operation return code 1869 * 1869 * 1870 * We need to fixup the return code in the au 1870 * We need to fixup the return code in the audit logs if the actual return 1871 * codes are later going to be fixed by the a 1871 * codes are later going to be fixed by the arch specific signal handlers. 1872 */ 1872 */ 1873 static void audit_return_fixup(struct audit_c 1873 static void audit_return_fixup(struct audit_context *ctx, 1874 int success, l 1874 int success, long code) 1875 { 1875 { 1876 /* 1876 /* 1877 * This is actually a test for: 1877 * This is actually a test for: 1878 * (rc == ERESTARTSYS ) || (rc == ERE 1878 * (rc == ERESTARTSYS ) || (rc == ERESTARTNOINTR) || 1879 * (rc == ERESTARTNOHAND) || (rc == E 1879 * (rc == ERESTARTNOHAND) || (rc == ERESTART_RESTARTBLOCK) 1880 * 1880 * 1881 * but is faster than a bunch of || 1881 * but is faster than a bunch of || 1882 */ 1882 */ 1883 if (unlikely(code <= -ERESTARTSYS) && 1883 if (unlikely(code <= -ERESTARTSYS) && 1884 (code >= -ERESTART_RESTARTBLOCK) 1884 (code >= -ERESTART_RESTARTBLOCK) && 1885 (code != -ENOIOCTLCMD)) 1885 (code != -ENOIOCTLCMD)) 1886 ctx->return_code = -EINTR; 1886 ctx->return_code = -EINTR; 1887 else 1887 else 1888 ctx->return_code = code; 1888 ctx->return_code = code; 1889 ctx->return_valid = (success ? AUDITS 1889 ctx->return_valid = (success ? AUDITSC_SUCCESS : AUDITSC_FAILURE); 1890 } 1890 } 1891 1891 1892 /** 1892 /** 1893 * __audit_uring_entry - prepare the kernel t 1893 * __audit_uring_entry - prepare the kernel task's audit context for io_uring 1894 * @op: the io_uring opcode 1894 * @op: the io_uring opcode 1895 * 1895 * 1896 * This is similar to audit_syscall_entry() b 1896 * This is similar to audit_syscall_entry() but is intended for use by io_uring 1897 * operations. This function should only eve 1897 * operations. This function should only ever be called from 1898 * audit_uring_entry() as we rely on the audi 1898 * audit_uring_entry() as we rely on the audit context checking present in that 1899 * function. 1899 * function. 1900 */ 1900 */ 1901 void __audit_uring_entry(u8 op) 1901 void __audit_uring_entry(u8 op) 1902 { 1902 { 1903 struct audit_context *ctx = audit_con 1903 struct audit_context *ctx = audit_context(); 1904 1904 1905 if (ctx->state == AUDIT_STATE_DISABLE 1905 if (ctx->state == AUDIT_STATE_DISABLED) 1906 return; 1906 return; 1907 1907 1908 /* 1908 /* 1909 * NOTE: It's possible that we can be 1909 * NOTE: It's possible that we can be called from the process' context 1910 * before it returns to userspa 1910 * before it returns to userspace, and before audit_syscall_exit() 1911 * is called. In this case the 1911 * is called. In this case there is not much to do, just record 1912 * the io_uring details and ret 1912 * the io_uring details and return. 1913 */ 1913 */ 1914 ctx->uring_op = op; 1914 ctx->uring_op = op; 1915 if (ctx->context == AUDIT_CTX_SYSCALL 1915 if (ctx->context == AUDIT_CTX_SYSCALL) 1916 return; 1916 return; 1917 1917 1918 ctx->dummy = !audit_n_rules; 1918 ctx->dummy = !audit_n_rules; 1919 if (!ctx->dummy && ctx->state == AUDI 1919 if (!ctx->dummy && ctx->state == AUDIT_STATE_BUILD) 1920 ctx->prio = 0; 1920 ctx->prio = 0; 1921 1921 1922 ctx->context = AUDIT_CTX_URING; 1922 ctx->context = AUDIT_CTX_URING; 1923 ctx->current_state = ctx->state; 1923 ctx->current_state = ctx->state; 1924 ktime_get_coarse_real_ts64(&ctx->ctim 1924 ktime_get_coarse_real_ts64(&ctx->ctime); 1925 } 1925 } 1926 1926 1927 /** 1927 /** 1928 * __audit_uring_exit - wrap up the kernel ta 1928 * __audit_uring_exit - wrap up the kernel task's audit context after io_uring 1929 * @success: true/false value to indicate if 1929 * @success: true/false value to indicate if the operation succeeded or not 1930 * @code: operation return code 1930 * @code: operation return code 1931 * 1931 * 1932 * This is similar to audit_syscall_exit() bu 1932 * This is similar to audit_syscall_exit() but is intended for use by io_uring 1933 * operations. This function should only eve 1933 * operations. This function should only ever be called from 1934 * audit_uring_exit() as we rely on the audit 1934 * audit_uring_exit() as we rely on the audit context checking present in that 1935 * function. 1935 * function. 1936 */ 1936 */ 1937 void __audit_uring_exit(int success, long cod 1937 void __audit_uring_exit(int success, long code) 1938 { 1938 { 1939 struct audit_context *ctx = audit_con 1939 struct audit_context *ctx = audit_context(); 1940 1940 1941 if (ctx->dummy) { 1941 if (ctx->dummy) { 1942 if (ctx->context != AUDIT_CTX 1942 if (ctx->context != AUDIT_CTX_URING) 1943 return; 1943 return; 1944 goto out; 1944 goto out; 1945 } 1945 } 1946 1946 1947 audit_return_fixup(ctx, success, code 1947 audit_return_fixup(ctx, success, code); 1948 if (ctx->context == AUDIT_CTX_SYSCALL 1948 if (ctx->context == AUDIT_CTX_SYSCALL) { 1949 /* 1949 /* 1950 * NOTE: See the note in __au 1950 * NOTE: See the note in __audit_uring_entry() about the case 1951 * where we may be call 1951 * where we may be called from process context before we 1952 * return to userspace 1952 * return to userspace via audit_syscall_exit(). In this 1953 * case we simply emit 1953 * case we simply emit a URINGOP record and bail, the 1954 * normal syscall exit 1954 * normal syscall exit handling will take care of 1955 * everything else. 1955 * everything else. 1956 * It is also worth men 1956 * It is also worth mentioning that when we are called, 1957 * the current process 1957 * the current process creds may differ from the creds 1958 * used during the norm 1958 * used during the normal syscall processing; keep that 1959 * in mind if/when we m 1959 * in mind if/when we move the record generation code. 1960 */ 1960 */ 1961 1961 1962 /* 1962 /* 1963 * We need to filter on the s 1963 * We need to filter on the syscall info here to decide if we 1964 * should emit a URINGOP reco 1964 * should emit a URINGOP record. I know it seems odd but this 1965 * solves the problem where u 1965 * solves the problem where users have a filter to block *all* 1966 * syscall records in the "ex 1966 * syscall records in the "exit" filter; we want to preserve 1967 * the behavior here. 1967 * the behavior here. 1968 */ 1968 */ 1969 audit_filter_syscall(current, 1969 audit_filter_syscall(current, ctx); 1970 if (ctx->current_state != AUD 1970 if (ctx->current_state != AUDIT_STATE_RECORD) 1971 audit_filter_uring(cu 1971 audit_filter_uring(current, ctx); 1972 audit_filter_inodes(current, 1972 audit_filter_inodes(current, ctx); 1973 if (ctx->current_state != AUD 1973 if (ctx->current_state != AUDIT_STATE_RECORD) 1974 return; 1974 return; 1975 1975 1976 audit_log_uring(ctx); 1976 audit_log_uring(ctx); 1977 return; 1977 return; 1978 } 1978 } 1979 1979 1980 /* this may generate CONFIG_CHANGE re 1980 /* this may generate CONFIG_CHANGE records */ 1981 if (!list_empty(&ctx->killed_trees)) 1981 if (!list_empty(&ctx->killed_trees)) 1982 audit_kill_trees(ctx); 1982 audit_kill_trees(ctx); 1983 1983 1984 /* run through both filters to ensure 1984 /* run through both filters to ensure we set the filterkey properly */ 1985 audit_filter_uring(current, ctx); 1985 audit_filter_uring(current, ctx); 1986 audit_filter_inodes(current, ctx); 1986 audit_filter_inodes(current, ctx); 1987 if (ctx->current_state != AUDIT_STATE 1987 if (ctx->current_state != AUDIT_STATE_RECORD) 1988 goto out; 1988 goto out; 1989 audit_log_exit(); 1989 audit_log_exit(); 1990 1990 1991 out: 1991 out: 1992 audit_reset_context(ctx); 1992 audit_reset_context(ctx); 1993 } 1993 } 1994 1994 1995 /** 1995 /** 1996 * __audit_syscall_entry - fill in an audit r 1996 * __audit_syscall_entry - fill in an audit record at syscall entry 1997 * @major: major syscall type (function) 1997 * @major: major syscall type (function) 1998 * @a1: additional syscall register 1 1998 * @a1: additional syscall register 1 1999 * @a2: additional syscall register 2 1999 * @a2: additional syscall register 2 2000 * @a3: additional syscall register 3 2000 * @a3: additional syscall register 3 2001 * @a4: additional syscall register 4 2001 * @a4: additional syscall register 4 2002 * 2002 * 2003 * Fill in audit context at syscall entry. T 2003 * Fill in audit context at syscall entry. This only happens if the 2004 * audit context was created when the task wa 2004 * audit context was created when the task was created and the state or 2005 * filters demand the audit context be built. 2005 * filters demand the audit context be built. If the state from the 2006 * per-task filter or from the per-syscall fi 2006 * per-task filter or from the per-syscall filter is AUDIT_STATE_RECORD, 2007 * then the record will be written at syscall 2007 * then the record will be written at syscall exit time (otherwise, it 2008 * will only be written if another part of th 2008 * will only be written if another part of the kernel requests that it 2009 * be written). 2009 * be written). 2010 */ 2010 */ 2011 void __audit_syscall_entry(int major, unsigne 2011 void __audit_syscall_entry(int major, unsigned long a1, unsigned long a2, 2012 unsigned long a3, 2012 unsigned long a3, unsigned long a4) 2013 { 2013 { 2014 struct audit_context *context = audit 2014 struct audit_context *context = audit_context(); 2015 enum audit_state state; 2015 enum audit_state state; 2016 2016 2017 if (!audit_enabled || !context) 2017 if (!audit_enabled || !context) 2018 return; 2018 return; 2019 2019 2020 WARN_ON(context->context != AUDIT_CTX 2020 WARN_ON(context->context != AUDIT_CTX_UNUSED); 2021 WARN_ON(context->name_count); 2021 WARN_ON(context->name_count); 2022 if (context->context != AUDIT_CTX_UNU 2022 if (context->context != AUDIT_CTX_UNUSED || context->name_count) { 2023 audit_panic("unrecoverable er 2023 audit_panic("unrecoverable error in audit_syscall_entry()"); 2024 return; 2024 return; 2025 } 2025 } 2026 2026 2027 state = context->state; 2027 state = context->state; 2028 if (state == AUDIT_STATE_DISABLED) 2028 if (state == AUDIT_STATE_DISABLED) 2029 return; 2029 return; 2030 2030 2031 context->dummy = !audit_n_rules; 2031 context->dummy = !audit_n_rules; 2032 if (!context->dummy && state == AUDIT 2032 if (!context->dummy && state == AUDIT_STATE_BUILD) { 2033 context->prio = 0; 2033 context->prio = 0; 2034 if (auditd_test_task(current) 2034 if (auditd_test_task(current)) 2035 return; 2035 return; 2036 } 2036 } 2037 2037 2038 context->arch = syscall_get_arc 2038 context->arch = syscall_get_arch(current); 2039 context->major = major; 2039 context->major = major; 2040 context->argv[0] = a1; 2040 context->argv[0] = a1; 2041 context->argv[1] = a2; 2041 context->argv[1] = a2; 2042 context->argv[2] = a3; 2042 context->argv[2] = a3; 2043 context->argv[3] = a4; 2043 context->argv[3] = a4; 2044 context->context = AUDIT_CTX_SYSCALL; 2044 context->context = AUDIT_CTX_SYSCALL; 2045 context->current_state = state; 2045 context->current_state = state; 2046 ktime_get_coarse_real_ts64(&context-> 2046 ktime_get_coarse_real_ts64(&context->ctime); 2047 } 2047 } 2048 2048 2049 /** 2049 /** 2050 * __audit_syscall_exit - deallocate audit co 2050 * __audit_syscall_exit - deallocate audit context after a system call 2051 * @success: success value of the syscall 2051 * @success: success value of the syscall 2052 * @return_code: return value of the syscall 2052 * @return_code: return value of the syscall 2053 * 2053 * 2054 * Tear down after system call. If the audit 2054 * Tear down after system call. If the audit context has been marked as 2055 * auditable (either because of the AUDIT_STA 2055 * auditable (either because of the AUDIT_STATE_RECORD state from 2056 * filtering, or because some other part of t 2056 * filtering, or because some other part of the kernel wrote an audit 2057 * message), then write out the syscall infor 2057 * message), then write out the syscall information. In call cases, 2058 * free the names stored from getname(). 2058 * free the names stored from getname(). 2059 */ 2059 */ 2060 void __audit_syscall_exit(int success, long r 2060 void __audit_syscall_exit(int success, long return_code) 2061 { 2061 { 2062 struct audit_context *context = audit 2062 struct audit_context *context = audit_context(); 2063 2063 2064 if (!context || context->dummy || 2064 if (!context || context->dummy || 2065 context->context != AUDIT_CTX_SYS 2065 context->context != AUDIT_CTX_SYSCALL) 2066 goto out; 2066 goto out; 2067 2067 2068 /* this may generate CONFIG_CHANGE re 2068 /* this may generate CONFIG_CHANGE records */ 2069 if (!list_empty(&context->killed_tree 2069 if (!list_empty(&context->killed_trees)) 2070 audit_kill_trees(context); 2070 audit_kill_trees(context); 2071 2071 2072 audit_return_fixup(context, success, 2072 audit_return_fixup(context, success, return_code); 2073 /* run through both filters to ensure 2073 /* run through both filters to ensure we set the filterkey properly */ 2074 audit_filter_syscall(current, context 2074 audit_filter_syscall(current, context); 2075 audit_filter_inodes(current, context) 2075 audit_filter_inodes(current, context); 2076 if (context->current_state != AUDIT_S 2076 if (context->current_state != AUDIT_STATE_RECORD) 2077 goto out; 2077 goto out; 2078 2078 2079 audit_log_exit(); 2079 audit_log_exit(); 2080 2080 2081 out: 2081 out: 2082 audit_reset_context(context); 2082 audit_reset_context(context); 2083 } 2083 } 2084 2084 2085 static inline void handle_one(const struct in 2085 static inline void handle_one(const struct inode *inode) 2086 { 2086 { 2087 struct audit_context *context; 2087 struct audit_context *context; 2088 struct audit_tree_refs *p; 2088 struct audit_tree_refs *p; 2089 struct audit_chunk *chunk; 2089 struct audit_chunk *chunk; 2090 int count; 2090 int count; 2091 2091 2092 if (likely(!inode->i_fsnotify_marks)) 2092 if (likely(!inode->i_fsnotify_marks)) 2093 return; 2093 return; 2094 context = audit_context(); 2094 context = audit_context(); 2095 p = context->trees; 2095 p = context->trees; 2096 count = context->tree_count; 2096 count = context->tree_count; 2097 rcu_read_lock(); 2097 rcu_read_lock(); 2098 chunk = audit_tree_lookup(inode); 2098 chunk = audit_tree_lookup(inode); 2099 rcu_read_unlock(); 2099 rcu_read_unlock(); 2100 if (!chunk) 2100 if (!chunk) 2101 return; 2101 return; 2102 if (likely(put_tree_ref(context, chun 2102 if (likely(put_tree_ref(context, chunk))) 2103 return; 2103 return; 2104 if (unlikely(!grow_tree_refs(context) 2104 if (unlikely(!grow_tree_refs(context))) { 2105 pr_warn("out of memory, audit 2105 pr_warn("out of memory, audit has lost a tree reference\n"); 2106 audit_set_auditable(context); 2106 audit_set_auditable(context); 2107 audit_put_chunk(chunk); 2107 audit_put_chunk(chunk); 2108 unroll_tree_refs(context, p, 2108 unroll_tree_refs(context, p, count); 2109 return; 2109 return; 2110 } 2110 } 2111 put_tree_ref(context, chunk); 2111 put_tree_ref(context, chunk); 2112 } 2112 } 2113 2113 2114 static void handle_path(const struct dentry * 2114 static void handle_path(const struct dentry *dentry) 2115 { 2115 { 2116 struct audit_context *context; 2116 struct audit_context *context; 2117 struct audit_tree_refs *p; 2117 struct audit_tree_refs *p; 2118 const struct dentry *d, *parent; 2118 const struct dentry *d, *parent; 2119 struct audit_chunk *drop; 2119 struct audit_chunk *drop; 2120 unsigned long seq; 2120 unsigned long seq; 2121 int count; 2121 int count; 2122 2122 2123 context = audit_context(); 2123 context = audit_context(); 2124 p = context->trees; 2124 p = context->trees; 2125 count = context->tree_count; 2125 count = context->tree_count; 2126 retry: 2126 retry: 2127 drop = NULL; 2127 drop = NULL; 2128 d = dentry; 2128 d = dentry; 2129 rcu_read_lock(); 2129 rcu_read_lock(); 2130 seq = read_seqbegin(&rename_lock); 2130 seq = read_seqbegin(&rename_lock); 2131 for (;;) { 2131 for (;;) { 2132 struct inode *inode = d_backi 2132 struct inode *inode = d_backing_inode(d); 2133 2133 2134 if (inode && unlikely(inode-> 2134 if (inode && unlikely(inode->i_fsnotify_marks)) { 2135 struct audit_chunk *c 2135 struct audit_chunk *chunk; 2136 2136 2137 chunk = audit_tree_lo 2137 chunk = audit_tree_lookup(inode); 2138 if (chunk) { 2138 if (chunk) { 2139 if (unlikely( 2139 if (unlikely(!put_tree_ref(context, chunk))) { 2140 drop 2140 drop = chunk; 2141 break 2141 break; 2142 } 2142 } 2143 } 2143 } 2144 } 2144 } 2145 parent = d->d_parent; 2145 parent = d->d_parent; 2146 if (parent == d) 2146 if (parent == d) 2147 break; 2147 break; 2148 d = parent; 2148 d = parent; 2149 } 2149 } 2150 if (unlikely(read_seqretry(&rename_lo 2150 if (unlikely(read_seqretry(&rename_lock, seq) || drop)) { /* in this order */ 2151 rcu_read_unlock(); 2151 rcu_read_unlock(); 2152 if (!drop) { 2152 if (!drop) { 2153 /* just a race with r 2153 /* just a race with rename */ 2154 unroll_tree_refs(cont 2154 unroll_tree_refs(context, p, count); 2155 goto retry; 2155 goto retry; 2156 } 2156 } 2157 audit_put_chunk(drop); 2157 audit_put_chunk(drop); 2158 if (grow_tree_refs(context)) 2158 if (grow_tree_refs(context)) { 2159 /* OK, got more space 2159 /* OK, got more space */ 2160 unroll_tree_refs(cont 2160 unroll_tree_refs(context, p, count); 2161 goto retry; 2161 goto retry; 2162 } 2162 } 2163 /* too bad */ 2163 /* too bad */ 2164 pr_warn("out of memory, audit 2164 pr_warn("out of memory, audit has lost a tree reference\n"); 2165 unroll_tree_refs(context, p, 2165 unroll_tree_refs(context, p, count); 2166 audit_set_auditable(context); 2166 audit_set_auditable(context); 2167 return; 2167 return; 2168 } 2168 } 2169 rcu_read_unlock(); 2169 rcu_read_unlock(); 2170 } 2170 } 2171 2171 2172 static struct audit_names *audit_alloc_name(s 2172 static struct audit_names *audit_alloc_name(struct audit_context *context, 2173 2173 unsigned char type) 2174 { 2174 { 2175 struct audit_names *aname; 2175 struct audit_names *aname; 2176 2176 2177 if (context->name_count < AUDIT_NAMES 2177 if (context->name_count < AUDIT_NAMES) { 2178 aname = &context->preallocate 2178 aname = &context->preallocated_names[context->name_count]; 2179 memset(aname, 0, sizeof(*anam 2179 memset(aname, 0, sizeof(*aname)); 2180 } else { 2180 } else { 2181 aname = kzalloc(sizeof(*aname 2181 aname = kzalloc(sizeof(*aname), GFP_NOFS); 2182 if (!aname) 2182 if (!aname) 2183 return NULL; 2183 return NULL; 2184 aname->should_free = true; 2184 aname->should_free = true; 2185 } 2185 } 2186 2186 2187 aname->ino = AUDIT_INO_UNSET; 2187 aname->ino = AUDIT_INO_UNSET; 2188 aname->type = type; 2188 aname->type = type; 2189 list_add_tail(&aname->list, &context- 2189 list_add_tail(&aname->list, &context->names_list); 2190 2190 2191 context->name_count++; 2191 context->name_count++; 2192 if (!context->pwd.dentry) 2192 if (!context->pwd.dentry) 2193 get_fs_pwd(current->fs, &cont 2193 get_fs_pwd(current->fs, &context->pwd); 2194 return aname; 2194 return aname; 2195 } 2195 } 2196 2196 2197 /** 2197 /** 2198 * __audit_reusename - fill out filename with 2198 * __audit_reusename - fill out filename with info from existing entry 2199 * @uptr: userland ptr to pathname 2199 * @uptr: userland ptr to pathname 2200 * 2200 * 2201 * Search the audit_names list for the curren 2201 * Search the audit_names list for the current audit context. If there is an 2202 * existing entry with a matching "uptr" then 2202 * existing entry with a matching "uptr" then return the filename 2203 * associated with that audit_name. If not, r 2203 * associated with that audit_name. If not, return NULL. 2204 */ 2204 */ 2205 struct filename * 2205 struct filename * 2206 __audit_reusename(const __user char *uptr) 2206 __audit_reusename(const __user char *uptr) 2207 { 2207 { 2208 struct audit_context *context = audit 2208 struct audit_context *context = audit_context(); 2209 struct audit_names *n; 2209 struct audit_names *n; 2210 2210 2211 list_for_each_entry(n, &context->name 2211 list_for_each_entry(n, &context->names_list, list) { 2212 if (!n->name) 2212 if (!n->name) 2213 continue; 2213 continue; 2214 if (n->name->uptr == uptr) { 2214 if (n->name->uptr == uptr) { 2215 atomic_inc(&n->name-> 2215 atomic_inc(&n->name->refcnt); 2216 return n->name; 2216 return n->name; 2217 } 2217 } 2218 } 2218 } 2219 return NULL; 2219 return NULL; 2220 } 2220 } 2221 2221 2222 /** 2222 /** 2223 * __audit_getname - add a name to the list 2223 * __audit_getname - add a name to the list 2224 * @name: name to add 2224 * @name: name to add 2225 * 2225 * 2226 * Add a name to the list of audit names for 2226 * Add a name to the list of audit names for this context. 2227 * Called from fs/namei.c:getname(). 2227 * Called from fs/namei.c:getname(). 2228 */ 2228 */ 2229 void __audit_getname(struct filename *name) 2229 void __audit_getname(struct filename *name) 2230 { 2230 { 2231 struct audit_context *context = audit 2231 struct audit_context *context = audit_context(); 2232 struct audit_names *n; 2232 struct audit_names *n; 2233 2233 2234 if (context->context == AUDIT_CTX_UNU 2234 if (context->context == AUDIT_CTX_UNUSED) 2235 return; 2235 return; 2236 2236 2237 n = audit_alloc_name(context, AUDIT_T 2237 n = audit_alloc_name(context, AUDIT_TYPE_UNKNOWN); 2238 if (!n) 2238 if (!n) 2239 return; 2239 return; 2240 2240 2241 n->name = name; 2241 n->name = name; 2242 n->name_len = AUDIT_NAME_FULL; 2242 n->name_len = AUDIT_NAME_FULL; 2243 name->aname = n; 2243 name->aname = n; 2244 atomic_inc(&name->refcnt); 2244 atomic_inc(&name->refcnt); 2245 } 2245 } 2246 2246 2247 static inline int audit_copy_fcaps(struct aud 2247 static inline int audit_copy_fcaps(struct audit_names *name, 2248 const stru 2248 const struct dentry *dentry) 2249 { 2249 { 2250 struct cpu_vfs_cap_data caps; 2250 struct cpu_vfs_cap_data caps; 2251 int rc; 2251 int rc; 2252 2252 2253 if (!dentry) 2253 if (!dentry) 2254 return 0; 2254 return 0; 2255 2255 2256 rc = get_vfs_caps_from_disk(&nop_mnt_ 2256 rc = get_vfs_caps_from_disk(&nop_mnt_idmap, dentry, &caps); 2257 if (rc) 2257 if (rc) 2258 return rc; 2258 return rc; 2259 2259 2260 name->fcap.permitted = caps.permitted 2260 name->fcap.permitted = caps.permitted; 2261 name->fcap.inheritable = caps.inherit 2261 name->fcap.inheritable = caps.inheritable; 2262 name->fcap.fE = !!(caps.magic_etc & V 2262 name->fcap.fE = !!(caps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE); 2263 name->fcap.rootid = caps.rootid; 2263 name->fcap.rootid = caps.rootid; 2264 name->fcap_ver = (caps.magic_etc & VF 2264 name->fcap_ver = (caps.magic_etc & VFS_CAP_REVISION_MASK) >> 2265 VFS_CAP_REVIS 2265 VFS_CAP_REVISION_SHIFT; 2266 2266 2267 return 0; 2267 return 0; 2268 } 2268 } 2269 2269 2270 /* Copy inode data into an audit_names. */ 2270 /* Copy inode data into an audit_names. */ 2271 static void audit_copy_inode(struct audit_nam 2271 static void audit_copy_inode(struct audit_names *name, 2272 const struct den 2272 const struct dentry *dentry, 2273 struct inode *in 2273 struct inode *inode, unsigned int flags) 2274 { 2274 { 2275 name->ino = inode->i_ino; 2275 name->ino = inode->i_ino; 2276 name->dev = inode->i_sb->s_dev; 2276 name->dev = inode->i_sb->s_dev; 2277 name->mode = inode->i_mode; 2277 name->mode = inode->i_mode; 2278 name->uid = inode->i_uid; 2278 name->uid = inode->i_uid; 2279 name->gid = inode->i_gid; 2279 name->gid = inode->i_gid; 2280 name->rdev = inode->i_rdev; 2280 name->rdev = inode->i_rdev; 2281 security_inode_getsecid(inode, &name- 2281 security_inode_getsecid(inode, &name->osid); 2282 if (flags & AUDIT_INODE_NOEVAL) { 2282 if (flags & AUDIT_INODE_NOEVAL) { 2283 name->fcap_ver = -1; 2283 name->fcap_ver = -1; 2284 return; 2284 return; 2285 } 2285 } 2286 audit_copy_fcaps(name, dentry); 2286 audit_copy_fcaps(name, dentry); 2287 } 2287 } 2288 2288 2289 /** 2289 /** 2290 * __audit_inode - store the inode and device 2290 * __audit_inode - store the inode and device from a lookup 2291 * @name: name being audited 2291 * @name: name being audited 2292 * @dentry: dentry being audited 2292 * @dentry: dentry being audited 2293 * @flags: attributes for this particular ent 2293 * @flags: attributes for this particular entry 2294 */ 2294 */ 2295 void __audit_inode(struct filename *name, con 2295 void __audit_inode(struct filename *name, const struct dentry *dentry, 2296 unsigned int flags) 2296 unsigned int flags) 2297 { 2297 { 2298 struct audit_context *context = audit 2298 struct audit_context *context = audit_context(); 2299 struct inode *inode = d_backing_inode 2299 struct inode *inode = d_backing_inode(dentry); 2300 struct audit_names *n; 2300 struct audit_names *n; 2301 bool parent = flags & AUDIT_INODE_PAR 2301 bool parent = flags & AUDIT_INODE_PARENT; 2302 struct audit_entry *e; 2302 struct audit_entry *e; 2303 struct list_head *list = &audit_filte 2303 struct list_head *list = &audit_filter_list[AUDIT_FILTER_FS]; 2304 int i; 2304 int i; 2305 2305 2306 if (context->context == AUDIT_CTX_UNU 2306 if (context->context == AUDIT_CTX_UNUSED) 2307 return; 2307 return; 2308 2308 2309 rcu_read_lock(); 2309 rcu_read_lock(); 2310 list_for_each_entry_rcu(e, list, list 2310 list_for_each_entry_rcu(e, list, list) { 2311 for (i = 0; i < e->rule.field 2311 for (i = 0; i < e->rule.field_count; i++) { 2312 struct audit_field *f 2312 struct audit_field *f = &e->rule.fields[i]; 2313 2313 2314 if (f->type == AUDIT_ 2314 if (f->type == AUDIT_FSTYPE 2315 && audit_comparat 2315 && audit_comparator(inode->i_sb->s_magic, 2316 2316 f->op, f->val) 2317 && e->rule.action 2317 && e->rule.action == AUDIT_NEVER) { 2318 rcu_read_unlo 2318 rcu_read_unlock(); 2319 return; 2319 return; 2320 } 2320 } 2321 } 2321 } 2322 } 2322 } 2323 rcu_read_unlock(); 2323 rcu_read_unlock(); 2324 2324 2325 if (!name) 2325 if (!name) 2326 goto out_alloc; 2326 goto out_alloc; 2327 2327 2328 /* 2328 /* 2329 * If we have a pointer to an audit_n 2329 * If we have a pointer to an audit_names entry already, then we can 2330 * just use it directly if the type i 2330 * just use it directly if the type is correct. 2331 */ 2331 */ 2332 n = name->aname; 2332 n = name->aname; 2333 if (n) { 2333 if (n) { 2334 if (parent) { 2334 if (parent) { 2335 if (n->type == AUDIT_ 2335 if (n->type == AUDIT_TYPE_PARENT || 2336 n->type == AUDIT_ 2336 n->type == AUDIT_TYPE_UNKNOWN) 2337 goto out; 2337 goto out; 2338 } else { 2338 } else { 2339 if (n->type != AUDIT_ 2339 if (n->type != AUDIT_TYPE_PARENT) 2340 goto out; 2340 goto out; 2341 } 2341 } 2342 } 2342 } 2343 2343 2344 list_for_each_entry_reverse(n, &conte 2344 list_for_each_entry_reverse(n, &context->names_list, list) { 2345 if (n->ino) { 2345 if (n->ino) { 2346 /* valid inode number 2346 /* valid inode number, use that for the comparison */ 2347 if (n->ino != inode-> 2347 if (n->ino != inode->i_ino || 2348 n->dev != inode-> 2348 n->dev != inode->i_sb->s_dev) 2349 continue; 2349 continue; 2350 } else if (n->name) { 2350 } else if (n->name) { 2351 /* inode number has n 2351 /* inode number has not been set, check the name */ 2352 if (strcmp(n->name->n 2352 if (strcmp(n->name->name, name->name)) 2353 continue; 2353 continue; 2354 } else 2354 } else 2355 /* no inode and no na 2355 /* no inode and no name (?!) ... this is odd ... */ 2356 continue; 2356 continue; 2357 2357 2358 /* match the correct record t 2358 /* match the correct record type */ 2359 if (parent) { 2359 if (parent) { 2360 if (n->type == AUDIT_ 2360 if (n->type == AUDIT_TYPE_PARENT || 2361 n->type == AUDIT_ 2361 n->type == AUDIT_TYPE_UNKNOWN) 2362 goto out; 2362 goto out; 2363 } else { 2363 } else { 2364 if (n->type != AUDIT_ 2364 if (n->type != AUDIT_TYPE_PARENT) 2365 goto out; 2365 goto out; 2366 } 2366 } 2367 } 2367 } 2368 2368 2369 out_alloc: 2369 out_alloc: 2370 /* unable to find an entry with both 2370 /* unable to find an entry with both a matching name and type */ 2371 n = audit_alloc_name(context, AUDIT_T 2371 n = audit_alloc_name(context, AUDIT_TYPE_UNKNOWN); 2372 if (!n) 2372 if (!n) 2373 return; 2373 return; 2374 if (name) { 2374 if (name) { 2375 n->name = name; 2375 n->name = name; 2376 atomic_inc(&name->refcnt); 2376 atomic_inc(&name->refcnt); 2377 } 2377 } 2378 2378 2379 out: 2379 out: 2380 if (parent) { 2380 if (parent) { 2381 n->name_len = n->name ? paren 2381 n->name_len = n->name ? parent_len(n->name->name) : AUDIT_NAME_FULL; 2382 n->type = AUDIT_TYPE_PARENT; 2382 n->type = AUDIT_TYPE_PARENT; 2383 if (flags & AUDIT_INODE_HIDDE 2383 if (flags & AUDIT_INODE_HIDDEN) 2384 n->hidden = true; 2384 n->hidden = true; 2385 } else { 2385 } else { 2386 n->name_len = AUDIT_NAME_FULL 2386 n->name_len = AUDIT_NAME_FULL; 2387 n->type = AUDIT_TYPE_NORMAL; 2387 n->type = AUDIT_TYPE_NORMAL; 2388 } 2388 } 2389 handle_path(dentry); 2389 handle_path(dentry); 2390 audit_copy_inode(n, dentry, inode, fl 2390 audit_copy_inode(n, dentry, inode, flags & AUDIT_INODE_NOEVAL); 2391 } 2391 } 2392 2392 2393 void __audit_file(const struct file *file) 2393 void __audit_file(const struct file *file) 2394 { 2394 { 2395 __audit_inode(NULL, file->f_path.dent 2395 __audit_inode(NULL, file->f_path.dentry, 0); 2396 } 2396 } 2397 2397 2398 /** 2398 /** 2399 * __audit_inode_child - collect inode info f 2399 * __audit_inode_child - collect inode info for created/removed objects 2400 * @parent: inode of dentry parent 2400 * @parent: inode of dentry parent 2401 * @dentry: dentry being audited 2401 * @dentry: dentry being audited 2402 * @type: AUDIT_TYPE_* value that we're loo 2402 * @type: AUDIT_TYPE_* value that we're looking for 2403 * 2403 * 2404 * For syscalls that create or remove filesys 2404 * For syscalls that create or remove filesystem objects, audit_inode 2405 * can only collect information for the files 2405 * can only collect information for the filesystem object's parent. 2406 * This call updates the audit context with t 2406 * This call updates the audit context with the child's information. 2407 * Syscalls that create a new filesystem obje 2407 * Syscalls that create a new filesystem object must be hooked after 2408 * the object is created. Syscalls that remo 2408 * the object is created. Syscalls that remove a filesystem object 2409 * must be hooked prior, in order to capture 2409 * must be hooked prior, in order to capture the target inode during 2410 * unsuccessful attempts. 2410 * unsuccessful attempts. 2411 */ 2411 */ 2412 void __audit_inode_child(struct inode *parent 2412 void __audit_inode_child(struct inode *parent, 2413 const struct dentry 2413 const struct dentry *dentry, 2414 const unsigned char 2414 const unsigned char type) 2415 { 2415 { 2416 struct audit_context *context = audit 2416 struct audit_context *context = audit_context(); 2417 struct inode *inode = d_backing_inode 2417 struct inode *inode = d_backing_inode(dentry); 2418 const struct qstr *dname = &dentry->d 2418 const struct qstr *dname = &dentry->d_name; 2419 struct audit_names *n, *found_parent 2419 struct audit_names *n, *found_parent = NULL, *found_child = NULL; 2420 struct audit_entry *e; 2420 struct audit_entry *e; 2421 struct list_head *list = &audit_filte 2421 struct list_head *list = &audit_filter_list[AUDIT_FILTER_FS]; 2422 int i; 2422 int i; 2423 2423 2424 if (context->context == AUDIT_CTX_UNU 2424 if (context->context == AUDIT_CTX_UNUSED) 2425 return; 2425 return; 2426 2426 2427 rcu_read_lock(); 2427 rcu_read_lock(); 2428 list_for_each_entry_rcu(e, list, list 2428 list_for_each_entry_rcu(e, list, list) { 2429 for (i = 0; i < e->rule.field 2429 for (i = 0; i < e->rule.field_count; i++) { 2430 struct audit_field *f 2430 struct audit_field *f = &e->rule.fields[i]; 2431 2431 2432 if (f->type == AUDIT_ 2432 if (f->type == AUDIT_FSTYPE 2433 && audit_comparat 2433 && audit_comparator(parent->i_sb->s_magic, 2434 2434 f->op, f->val) 2435 && e->rule.action 2435 && e->rule.action == AUDIT_NEVER) { 2436 rcu_read_unlo 2436 rcu_read_unlock(); 2437 return; 2437 return; 2438 } 2438 } 2439 } 2439 } 2440 } 2440 } 2441 rcu_read_unlock(); 2441 rcu_read_unlock(); 2442 2442 2443 if (inode) 2443 if (inode) 2444 handle_one(inode); 2444 handle_one(inode); 2445 2445 2446 /* look for a parent entry first */ 2446 /* look for a parent entry first */ 2447 list_for_each_entry(n, &context->name 2447 list_for_each_entry(n, &context->names_list, list) { 2448 if (!n->name || 2448 if (!n->name || 2449 (n->type != AUDIT_TYPE_PA 2449 (n->type != AUDIT_TYPE_PARENT && 2450 n->type != AUDIT_TYPE_UN 2450 n->type != AUDIT_TYPE_UNKNOWN)) 2451 continue; 2451 continue; 2452 2452 2453 if (n->ino == parent->i_ino & 2453 if (n->ino == parent->i_ino && n->dev == parent->i_sb->s_dev && 2454 !audit_compare_dname_path 2454 !audit_compare_dname_path(dname, 2455 2455 n->name->name, n->name_len)) { 2456 if (n->type == AUDIT_ 2456 if (n->type == AUDIT_TYPE_UNKNOWN) 2457 n->type = AUD 2457 n->type = AUDIT_TYPE_PARENT; 2458 found_parent = n; 2458 found_parent = n; 2459 break; 2459 break; 2460 } 2460 } 2461 } 2461 } 2462 2462 2463 cond_resched(); 2463 cond_resched(); 2464 2464 2465 /* is there a matching child entry? * 2465 /* is there a matching child entry? */ 2466 list_for_each_entry(n, &context->name 2466 list_for_each_entry(n, &context->names_list, list) { 2467 /* can only match entries tha 2467 /* can only match entries that have a name */ 2468 if (!n->name || 2468 if (!n->name || 2469 (n->type != type && n->ty 2469 (n->type != type && n->type != AUDIT_TYPE_UNKNOWN)) 2470 continue; 2470 continue; 2471 2471 2472 if (!strcmp(dname->name, n->n 2472 if (!strcmp(dname->name, n->name->name) || 2473 !audit_compare_dname_path 2473 !audit_compare_dname_path(dname, n->name->name, 2474 2474 found_parent ? 2475 2475 found_parent->name_len : 2476 2476 AUDIT_NAME_FULL)) { 2477 if (n->type == AUDIT_ 2477 if (n->type == AUDIT_TYPE_UNKNOWN) 2478 n->type = typ 2478 n->type = type; 2479 found_child = n; 2479 found_child = n; 2480 break; 2480 break; 2481 } 2481 } 2482 } 2482 } 2483 2483 2484 if (!found_parent) { 2484 if (!found_parent) { 2485 /* create a new, "anonymous" 2485 /* create a new, "anonymous" parent record */ 2486 n = audit_alloc_name(context, 2486 n = audit_alloc_name(context, AUDIT_TYPE_PARENT); 2487 if (!n) 2487 if (!n) 2488 return; 2488 return; 2489 audit_copy_inode(n, NULL, par 2489 audit_copy_inode(n, NULL, parent, 0); 2490 } 2490 } 2491 2491 2492 if (!found_child) { 2492 if (!found_child) { 2493 found_child = audit_alloc_nam 2493 found_child = audit_alloc_name(context, type); 2494 if (!found_child) 2494 if (!found_child) 2495 return; 2495 return; 2496 2496 2497 /* Re-use the name belonging 2497 /* Re-use the name belonging to the slot for a matching parent 2498 * directory. All names for t 2498 * directory. All names for this context are relinquished in 2499 * audit_free_names() */ 2499 * audit_free_names() */ 2500 if (found_parent) { 2500 if (found_parent) { 2501 found_child->name = f 2501 found_child->name = found_parent->name; 2502 found_child->name_len 2502 found_child->name_len = AUDIT_NAME_FULL; 2503 atomic_inc(&found_chi 2503 atomic_inc(&found_child->name->refcnt); 2504 } 2504 } 2505 } 2505 } 2506 2506 2507 if (inode) 2507 if (inode) 2508 audit_copy_inode(found_child, 2508 audit_copy_inode(found_child, dentry, inode, 0); 2509 else 2509 else 2510 found_child->ino = AUDIT_INO_ 2510 found_child->ino = AUDIT_INO_UNSET; 2511 } 2511 } 2512 EXPORT_SYMBOL_GPL(__audit_inode_child); 2512 EXPORT_SYMBOL_GPL(__audit_inode_child); 2513 2513 2514 /** 2514 /** 2515 * auditsc_get_stamp - get local copies of au 2515 * auditsc_get_stamp - get local copies of audit_context values 2516 * @ctx: audit_context for the task 2516 * @ctx: audit_context for the task 2517 * @t: timespec64 to store time recorded in t 2517 * @t: timespec64 to store time recorded in the audit_context 2518 * @serial: serial value that is recorded in 2518 * @serial: serial value that is recorded in the audit_context 2519 * 2519 * 2520 * Also sets the context as auditable. 2520 * Also sets the context as auditable. 2521 */ 2521 */ 2522 int auditsc_get_stamp(struct audit_context *c 2522 int auditsc_get_stamp(struct audit_context *ctx, 2523 struct timespec64 *t, 2523 struct timespec64 *t, unsigned int *serial) 2524 { 2524 { 2525 if (ctx->context == AUDIT_CTX_UNUSED) 2525 if (ctx->context == AUDIT_CTX_UNUSED) 2526 return 0; 2526 return 0; 2527 if (!ctx->serial) 2527 if (!ctx->serial) 2528 ctx->serial = audit_serial(); 2528 ctx->serial = audit_serial(); 2529 t->tv_sec = ctx->ctime.tv_sec; 2529 t->tv_sec = ctx->ctime.tv_sec; 2530 t->tv_nsec = ctx->ctime.tv_nsec; 2530 t->tv_nsec = ctx->ctime.tv_nsec; 2531 *serial = ctx->serial; 2531 *serial = ctx->serial; 2532 if (!ctx->prio) { 2532 if (!ctx->prio) { 2533 ctx->prio = 1; 2533 ctx->prio = 1; 2534 ctx->current_state = AUDIT_ST 2534 ctx->current_state = AUDIT_STATE_RECORD; 2535 } 2535 } 2536 return 1; 2536 return 1; 2537 } 2537 } 2538 2538 2539 /** 2539 /** 2540 * __audit_mq_open - record audit data for a 2540 * __audit_mq_open - record audit data for a POSIX MQ open 2541 * @oflag: open flag 2541 * @oflag: open flag 2542 * @mode: mode bits 2542 * @mode: mode bits 2543 * @attr: queue attributes 2543 * @attr: queue attributes 2544 * 2544 * 2545 */ 2545 */ 2546 void __audit_mq_open(int oflag, umode_t mode, 2546 void __audit_mq_open(int oflag, umode_t mode, struct mq_attr *attr) 2547 { 2547 { 2548 struct audit_context *context = audit 2548 struct audit_context *context = audit_context(); 2549 2549 2550 if (attr) 2550 if (attr) 2551 memcpy(&context->mq_open.attr 2551 memcpy(&context->mq_open.attr, attr, sizeof(struct mq_attr)); 2552 else 2552 else 2553 memset(&context->mq_open.attr 2553 memset(&context->mq_open.attr, 0, sizeof(struct mq_attr)); 2554 2554 2555 context->mq_open.oflag = oflag; 2555 context->mq_open.oflag = oflag; 2556 context->mq_open.mode = mode; 2556 context->mq_open.mode = mode; 2557 2557 2558 context->type = AUDIT_MQ_OPEN; 2558 context->type = AUDIT_MQ_OPEN; 2559 } 2559 } 2560 2560 2561 /** 2561 /** 2562 * __audit_mq_sendrecv - record audit data fo 2562 * __audit_mq_sendrecv - record audit data for a POSIX MQ timed send/receive 2563 * @mqdes: MQ descriptor 2563 * @mqdes: MQ descriptor 2564 * @msg_len: Message length 2564 * @msg_len: Message length 2565 * @msg_prio: Message priority 2565 * @msg_prio: Message priority 2566 * @abs_timeout: Message timeout in absolute 2566 * @abs_timeout: Message timeout in absolute time 2567 * 2567 * 2568 */ 2568 */ 2569 void __audit_mq_sendrecv(mqd_t mqdes, size_t 2569 void __audit_mq_sendrecv(mqd_t mqdes, size_t msg_len, unsigned int msg_prio, 2570 const struct timespec 2570 const struct timespec64 *abs_timeout) 2571 { 2571 { 2572 struct audit_context *context = audit 2572 struct audit_context *context = audit_context(); 2573 struct timespec64 *p = &context->mq_s 2573 struct timespec64 *p = &context->mq_sendrecv.abs_timeout; 2574 2574 2575 if (abs_timeout) 2575 if (abs_timeout) 2576 memcpy(p, abs_timeout, sizeof 2576 memcpy(p, abs_timeout, sizeof(*p)); 2577 else 2577 else 2578 memset(p, 0, sizeof(*p)); 2578 memset(p, 0, sizeof(*p)); 2579 2579 2580 context->mq_sendrecv.mqdes = mqdes; 2580 context->mq_sendrecv.mqdes = mqdes; 2581 context->mq_sendrecv.msg_len = msg_le 2581 context->mq_sendrecv.msg_len = msg_len; 2582 context->mq_sendrecv.msg_prio = msg_p 2582 context->mq_sendrecv.msg_prio = msg_prio; 2583 2583 2584 context->type = AUDIT_MQ_SENDRECV; 2584 context->type = AUDIT_MQ_SENDRECV; 2585 } 2585 } 2586 2586 2587 /** 2587 /** 2588 * __audit_mq_notify - record audit data for 2588 * __audit_mq_notify - record audit data for a POSIX MQ notify 2589 * @mqdes: MQ descriptor 2589 * @mqdes: MQ descriptor 2590 * @notification: Notification event 2590 * @notification: Notification event 2591 * 2591 * 2592 */ 2592 */ 2593 2593 2594 void __audit_mq_notify(mqd_t mqdes, const str 2594 void __audit_mq_notify(mqd_t mqdes, const struct sigevent *notification) 2595 { 2595 { 2596 struct audit_context *context = audit 2596 struct audit_context *context = audit_context(); 2597 2597 2598 if (notification) 2598 if (notification) 2599 context->mq_notify.sigev_sign 2599 context->mq_notify.sigev_signo = notification->sigev_signo; 2600 else 2600 else 2601 context->mq_notify.sigev_sign 2601 context->mq_notify.sigev_signo = 0; 2602 2602 2603 context->mq_notify.mqdes = mqdes; 2603 context->mq_notify.mqdes = mqdes; 2604 context->type = AUDIT_MQ_NOTIFY; 2604 context->type = AUDIT_MQ_NOTIFY; 2605 } 2605 } 2606 2606 2607 /** 2607 /** 2608 * __audit_mq_getsetattr - record audit data 2608 * __audit_mq_getsetattr - record audit data for a POSIX MQ get/set attribute 2609 * @mqdes: MQ descriptor 2609 * @mqdes: MQ descriptor 2610 * @mqstat: MQ flags 2610 * @mqstat: MQ flags 2611 * 2611 * 2612 */ 2612 */ 2613 void __audit_mq_getsetattr(mqd_t mqdes, struc 2613 void __audit_mq_getsetattr(mqd_t mqdes, struct mq_attr *mqstat) 2614 { 2614 { 2615 struct audit_context *context = audit 2615 struct audit_context *context = audit_context(); 2616 2616 2617 context->mq_getsetattr.mqdes = mqdes; 2617 context->mq_getsetattr.mqdes = mqdes; 2618 context->mq_getsetattr.mqstat = *mqst 2618 context->mq_getsetattr.mqstat = *mqstat; 2619 context->type = AUDIT_MQ_GETSETATTR; 2619 context->type = AUDIT_MQ_GETSETATTR; 2620 } 2620 } 2621 2621 2622 /** 2622 /** 2623 * __audit_ipc_obj - record audit data for ip 2623 * __audit_ipc_obj - record audit data for ipc object 2624 * @ipcp: ipc permissions 2624 * @ipcp: ipc permissions 2625 * 2625 * 2626 */ 2626 */ 2627 void __audit_ipc_obj(struct kern_ipc_perm *ip 2627 void __audit_ipc_obj(struct kern_ipc_perm *ipcp) 2628 { 2628 { 2629 struct audit_context *context = audit 2629 struct audit_context *context = audit_context(); 2630 2630 2631 context->ipc.uid = ipcp->uid; 2631 context->ipc.uid = ipcp->uid; 2632 context->ipc.gid = ipcp->gid; 2632 context->ipc.gid = ipcp->gid; 2633 context->ipc.mode = ipcp->mode; 2633 context->ipc.mode = ipcp->mode; 2634 context->ipc.has_perm = 0; 2634 context->ipc.has_perm = 0; 2635 security_ipc_getsecid(ipcp, &context- 2635 security_ipc_getsecid(ipcp, &context->ipc.osid); 2636 context->type = AUDIT_IPC; 2636 context->type = AUDIT_IPC; 2637 } 2637 } 2638 2638 2639 /** 2639 /** 2640 * __audit_ipc_set_perm - record audit data f 2640 * __audit_ipc_set_perm - record audit data for new ipc permissions 2641 * @qbytes: msgq bytes 2641 * @qbytes: msgq bytes 2642 * @uid: msgq user id 2642 * @uid: msgq user id 2643 * @gid: msgq group id 2643 * @gid: msgq group id 2644 * @mode: msgq mode (permissions) 2644 * @mode: msgq mode (permissions) 2645 * 2645 * 2646 * Called only after audit_ipc_obj(). 2646 * Called only after audit_ipc_obj(). 2647 */ 2647 */ 2648 void __audit_ipc_set_perm(unsigned long qbyte 2648 void __audit_ipc_set_perm(unsigned long qbytes, uid_t uid, gid_t gid, umode_t mode) 2649 { 2649 { 2650 struct audit_context *context = audit 2650 struct audit_context *context = audit_context(); 2651 2651 2652 context->ipc.qbytes = qbytes; 2652 context->ipc.qbytes = qbytes; 2653 context->ipc.perm_uid = uid; 2653 context->ipc.perm_uid = uid; 2654 context->ipc.perm_gid = gid; 2654 context->ipc.perm_gid = gid; 2655 context->ipc.perm_mode = mode; 2655 context->ipc.perm_mode = mode; 2656 context->ipc.has_perm = 1; 2656 context->ipc.has_perm = 1; 2657 } 2657 } 2658 2658 2659 void __audit_bprm(struct linux_binprm *bprm) 2659 void __audit_bprm(struct linux_binprm *bprm) 2660 { 2660 { 2661 struct audit_context *context = audit 2661 struct audit_context *context = audit_context(); 2662 2662 2663 context->type = AUDIT_EXECVE; 2663 context->type = AUDIT_EXECVE; 2664 context->execve.argc = bprm->argc; 2664 context->execve.argc = bprm->argc; 2665 } 2665 } 2666 2666 2667 2667 2668 /** 2668 /** 2669 * __audit_socketcall - record audit data for 2669 * __audit_socketcall - record audit data for sys_socketcall 2670 * @nargs: number of args, which should not b 2670 * @nargs: number of args, which should not be more than AUDITSC_ARGS. 2671 * @args: args array 2671 * @args: args array 2672 * 2672 * 2673 */ 2673 */ 2674 int __audit_socketcall(int nargs, unsigned lo 2674 int __audit_socketcall(int nargs, unsigned long *args) 2675 { 2675 { 2676 struct audit_context *context = audit 2676 struct audit_context *context = audit_context(); 2677 2677 2678 if (nargs <= 0 || nargs > AUDITSC_ARG 2678 if (nargs <= 0 || nargs > AUDITSC_ARGS || !args) 2679 return -EINVAL; 2679 return -EINVAL; 2680 context->type = AUDIT_SOCKETCALL; 2680 context->type = AUDIT_SOCKETCALL; 2681 context->socketcall.nargs = nargs; 2681 context->socketcall.nargs = nargs; 2682 memcpy(context->socketcall.args, args 2682 memcpy(context->socketcall.args, args, nargs * sizeof(unsigned long)); 2683 return 0; 2683 return 0; 2684 } 2684 } 2685 2685 2686 /** 2686 /** 2687 * __audit_fd_pair - record audit data for pi 2687 * __audit_fd_pair - record audit data for pipe and socketpair 2688 * @fd1: the first file descriptor 2688 * @fd1: the first file descriptor 2689 * @fd2: the second file descriptor 2689 * @fd2: the second file descriptor 2690 * 2690 * 2691 */ 2691 */ 2692 void __audit_fd_pair(int fd1, int fd2) 2692 void __audit_fd_pair(int fd1, int fd2) 2693 { 2693 { 2694 struct audit_context *context = audit 2694 struct audit_context *context = audit_context(); 2695 2695 2696 context->fds[0] = fd1; 2696 context->fds[0] = fd1; 2697 context->fds[1] = fd2; 2697 context->fds[1] = fd2; 2698 } 2698 } 2699 2699 2700 /** 2700 /** 2701 * __audit_sockaddr - record audit data for s 2701 * __audit_sockaddr - record audit data for sys_bind, sys_connect, sys_sendto 2702 * @len: data length in user space 2702 * @len: data length in user space 2703 * @a: data address in kernel space 2703 * @a: data address in kernel space 2704 * 2704 * 2705 * Returns 0 for success or NULL context or < 2705 * Returns 0 for success or NULL context or < 0 on error. 2706 */ 2706 */ 2707 int __audit_sockaddr(int len, void *a) 2707 int __audit_sockaddr(int len, void *a) 2708 { 2708 { 2709 struct audit_context *context = audit 2709 struct audit_context *context = audit_context(); 2710 2710 2711 if (!context->sockaddr) { 2711 if (!context->sockaddr) { 2712 void *p = kmalloc(sizeof(stru 2712 void *p = kmalloc(sizeof(struct sockaddr_storage), GFP_KERNEL); 2713 2713 2714 if (!p) 2714 if (!p) 2715 return -ENOMEM; 2715 return -ENOMEM; 2716 context->sockaddr = p; 2716 context->sockaddr = p; 2717 } 2717 } 2718 2718 2719 context->sockaddr_len = len; 2719 context->sockaddr_len = len; 2720 memcpy(context->sockaddr, a, len); 2720 memcpy(context->sockaddr, a, len); 2721 return 0; 2721 return 0; 2722 } 2722 } 2723 2723 2724 void __audit_ptrace(struct task_struct *t) 2724 void __audit_ptrace(struct task_struct *t) 2725 { 2725 { 2726 struct audit_context *context = audit 2726 struct audit_context *context = audit_context(); 2727 2727 2728 context->target_pid = task_tgid_nr(t) 2728 context->target_pid = task_tgid_nr(t); 2729 context->target_auid = audit_get_logi 2729 context->target_auid = audit_get_loginuid(t); 2730 context->target_uid = task_uid(t); 2730 context->target_uid = task_uid(t); 2731 context->target_sessionid = audit_get 2731 context->target_sessionid = audit_get_sessionid(t); 2732 security_task_getsecid_obj(t, &contex 2732 security_task_getsecid_obj(t, &context->target_sid); 2733 memcpy(context->target_comm, t->comm, 2733 memcpy(context->target_comm, t->comm, TASK_COMM_LEN); 2734 } 2734 } 2735 2735 2736 /** 2736 /** 2737 * audit_signal_info_syscall - record signal 2737 * audit_signal_info_syscall - record signal info for syscalls 2738 * @t: task being signaled 2738 * @t: task being signaled 2739 * 2739 * 2740 * If the audit subsystem is being terminated 2740 * If the audit subsystem is being terminated, record the task (pid) 2741 * and uid that is doing that. 2741 * and uid that is doing that. 2742 */ 2742 */ 2743 int audit_signal_info_syscall(struct task_str 2743 int audit_signal_info_syscall(struct task_struct *t) 2744 { 2744 { 2745 struct audit_aux_data_pids *axp; 2745 struct audit_aux_data_pids *axp; 2746 struct audit_context *ctx = audit_con 2746 struct audit_context *ctx = audit_context(); 2747 kuid_t t_uid = task_uid(t); 2747 kuid_t t_uid = task_uid(t); 2748 2748 2749 if (!audit_signals || audit_dummy_con 2749 if (!audit_signals || audit_dummy_context()) 2750 return 0; 2750 return 0; 2751 2751 2752 /* optimize the common case by puttin 2752 /* optimize the common case by putting first signal recipient directly 2753 * in audit_context */ 2753 * in audit_context */ 2754 if (!ctx->target_pid) { 2754 if (!ctx->target_pid) { 2755 ctx->target_pid = task_tgid_n 2755 ctx->target_pid = task_tgid_nr(t); 2756 ctx->target_auid = audit_get_ 2756 ctx->target_auid = audit_get_loginuid(t); 2757 ctx->target_uid = t_uid; 2757 ctx->target_uid = t_uid; 2758 ctx->target_sessionid = audit 2758 ctx->target_sessionid = audit_get_sessionid(t); 2759 security_task_getsecid_obj(t, 2759 security_task_getsecid_obj(t, &ctx->target_sid); 2760 memcpy(ctx->target_comm, t->c 2760 memcpy(ctx->target_comm, t->comm, TASK_COMM_LEN); 2761 return 0; 2761 return 0; 2762 } 2762 } 2763 2763 2764 axp = (void *)ctx->aux_pids; 2764 axp = (void *)ctx->aux_pids; 2765 if (!axp || axp->pid_count == AUDIT_A 2765 if (!axp || axp->pid_count == AUDIT_AUX_PIDS) { 2766 axp = kzalloc(sizeof(*axp), G 2766 axp = kzalloc(sizeof(*axp), GFP_ATOMIC); 2767 if (!axp) 2767 if (!axp) 2768 return -ENOMEM; 2768 return -ENOMEM; 2769 2769 2770 axp->d.type = AUDIT_OBJ_PID; 2770 axp->d.type = AUDIT_OBJ_PID; 2771 axp->d.next = ctx->aux_pids; 2771 axp->d.next = ctx->aux_pids; 2772 ctx->aux_pids = (void *)axp; 2772 ctx->aux_pids = (void *)axp; 2773 } 2773 } 2774 BUG_ON(axp->pid_count >= AUDIT_AUX_PI 2774 BUG_ON(axp->pid_count >= AUDIT_AUX_PIDS); 2775 2775 2776 axp->target_pid[axp->pid_count] = tas 2776 axp->target_pid[axp->pid_count] = task_tgid_nr(t); 2777 axp->target_auid[axp->pid_count] = au 2777 axp->target_auid[axp->pid_count] = audit_get_loginuid(t); 2778 axp->target_uid[axp->pid_count] = t_u 2778 axp->target_uid[axp->pid_count] = t_uid; 2779 axp->target_sessionid[axp->pid_count] 2779 axp->target_sessionid[axp->pid_count] = audit_get_sessionid(t); 2780 security_task_getsecid_obj(t, &axp->t 2780 security_task_getsecid_obj(t, &axp->target_sid[axp->pid_count]); 2781 memcpy(axp->target_comm[axp->pid_coun 2781 memcpy(axp->target_comm[axp->pid_count], t->comm, TASK_COMM_LEN); 2782 axp->pid_count++; 2782 axp->pid_count++; 2783 2783 2784 return 0; 2784 return 0; 2785 } 2785 } 2786 2786 2787 /** 2787 /** 2788 * __audit_log_bprm_fcaps - store information 2788 * __audit_log_bprm_fcaps - store information about a loading bprm and relevant fcaps 2789 * @bprm: pointer to the bprm being processed 2789 * @bprm: pointer to the bprm being processed 2790 * @new: the proposed new credentials 2790 * @new: the proposed new credentials 2791 * @old: the old credentials 2791 * @old: the old credentials 2792 * 2792 * 2793 * Simply check if the proc already has the c 2793 * Simply check if the proc already has the caps given by the file and if not 2794 * store the priv escalation info for later a 2794 * store the priv escalation info for later auditing at the end of the syscall 2795 * 2795 * 2796 * -Eric 2796 * -Eric 2797 */ 2797 */ 2798 int __audit_log_bprm_fcaps(struct linux_binpr 2798 int __audit_log_bprm_fcaps(struct linux_binprm *bprm, 2799 const struct cred 2799 const struct cred *new, const struct cred *old) 2800 { 2800 { 2801 struct audit_aux_data_bprm_fcaps *ax; 2801 struct audit_aux_data_bprm_fcaps *ax; 2802 struct audit_context *context = audit 2802 struct audit_context *context = audit_context(); 2803 struct cpu_vfs_cap_data vcaps; 2803 struct cpu_vfs_cap_data vcaps; 2804 2804 2805 ax = kmalloc(sizeof(*ax), GFP_KERNEL) 2805 ax = kmalloc(sizeof(*ax), GFP_KERNEL); 2806 if (!ax) 2806 if (!ax) 2807 return -ENOMEM; 2807 return -ENOMEM; 2808 2808 2809 ax->d.type = AUDIT_BPRM_FCAPS; 2809 ax->d.type = AUDIT_BPRM_FCAPS; 2810 ax->d.next = context->aux; 2810 ax->d.next = context->aux; 2811 context->aux = (void *)ax; 2811 context->aux = (void *)ax; 2812 2812 2813 get_vfs_caps_from_disk(&nop_mnt_idmap 2813 get_vfs_caps_from_disk(&nop_mnt_idmap, 2814 bprm->file->f_ 2814 bprm->file->f_path.dentry, &vcaps); 2815 2815 2816 ax->fcap.permitted = vcaps.permitted; 2816 ax->fcap.permitted = vcaps.permitted; 2817 ax->fcap.inheritable = vcaps.inherita 2817 ax->fcap.inheritable = vcaps.inheritable; 2818 ax->fcap.fE = !!(vcaps.magic_etc & VF 2818 ax->fcap.fE = !!(vcaps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE); 2819 ax->fcap.rootid = vcaps.rootid; 2819 ax->fcap.rootid = vcaps.rootid; 2820 ax->fcap_ver = (vcaps.magic_etc & VFS 2820 ax->fcap_ver = (vcaps.magic_etc & VFS_CAP_REVISION_MASK) >> VFS_CAP_REVISION_SHIFT; 2821 2821 2822 ax->old_pcap.permitted = old->cap_p 2822 ax->old_pcap.permitted = old->cap_permitted; 2823 ax->old_pcap.inheritable = old->cap_i 2823 ax->old_pcap.inheritable = old->cap_inheritable; 2824 ax->old_pcap.effective = old->cap_e 2824 ax->old_pcap.effective = old->cap_effective; 2825 ax->old_pcap.ambient = old->cap_a 2825 ax->old_pcap.ambient = old->cap_ambient; 2826 2826 2827 ax->new_pcap.permitted = new->cap_p 2827 ax->new_pcap.permitted = new->cap_permitted; 2828 ax->new_pcap.inheritable = new->cap_i 2828 ax->new_pcap.inheritable = new->cap_inheritable; 2829 ax->new_pcap.effective = new->cap_e 2829 ax->new_pcap.effective = new->cap_effective; 2830 ax->new_pcap.ambient = new->cap_a 2830 ax->new_pcap.ambient = new->cap_ambient; 2831 return 0; 2831 return 0; 2832 } 2832 } 2833 2833 2834 /** 2834 /** 2835 * __audit_log_capset - store information abo 2835 * __audit_log_capset - store information about the arguments to the capset syscall 2836 * @new: the new credentials 2836 * @new: the new credentials 2837 * @old: the old (current) credentials 2837 * @old: the old (current) credentials 2838 * 2838 * 2839 * Record the arguments userspace sent to sys 2839 * Record the arguments userspace sent to sys_capset for later printing by the 2840 * audit system if applicable 2840 * audit system if applicable 2841 */ 2841 */ 2842 void __audit_log_capset(const struct cred *ne 2842 void __audit_log_capset(const struct cred *new, const struct cred *old) 2843 { 2843 { 2844 struct audit_context *context = audit 2844 struct audit_context *context = audit_context(); 2845 2845 2846 context->capset.pid = task_tgid_nr(cu 2846 context->capset.pid = task_tgid_nr(current); 2847 context->capset.cap.effective = new 2847 context->capset.cap.effective = new->cap_effective; 2848 context->capset.cap.inheritable = new 2848 context->capset.cap.inheritable = new->cap_effective; 2849 context->capset.cap.permitted = new 2849 context->capset.cap.permitted = new->cap_permitted; 2850 context->capset.cap.ambient = new 2850 context->capset.cap.ambient = new->cap_ambient; 2851 context->type = AUDIT_CAPSET; 2851 context->type = AUDIT_CAPSET; 2852 } 2852 } 2853 2853 2854 void __audit_mmap_fd(int fd, int flags) 2854 void __audit_mmap_fd(int fd, int flags) 2855 { 2855 { 2856 struct audit_context *context = audit 2856 struct audit_context *context = audit_context(); 2857 2857 2858 context->mmap.fd = fd; 2858 context->mmap.fd = fd; 2859 context->mmap.flags = flags; 2859 context->mmap.flags = flags; 2860 context->type = AUDIT_MMAP; 2860 context->type = AUDIT_MMAP; 2861 } 2861 } 2862 2862 2863 void __audit_openat2_how(struct open_how *how 2863 void __audit_openat2_how(struct open_how *how) 2864 { 2864 { 2865 struct audit_context *context = audit 2865 struct audit_context *context = audit_context(); 2866 2866 2867 context->openat2.flags = how->flags; 2867 context->openat2.flags = how->flags; 2868 context->openat2.mode = how->mode; 2868 context->openat2.mode = how->mode; 2869 context->openat2.resolve = how->resol 2869 context->openat2.resolve = how->resolve; 2870 context->type = AUDIT_OPENAT2; 2870 context->type = AUDIT_OPENAT2; 2871 } 2871 } 2872 2872 2873 void __audit_log_kern_module(char *name) 2873 void __audit_log_kern_module(char *name) 2874 { 2874 { 2875 struct audit_context *context = audit 2875 struct audit_context *context = audit_context(); 2876 2876 2877 context->module.name = kstrdup(name, 2877 context->module.name = kstrdup(name, GFP_KERNEL); 2878 if (!context->module.name) 2878 if (!context->module.name) 2879 audit_log_lost("out of memory 2879 audit_log_lost("out of memory in __audit_log_kern_module"); 2880 context->type = AUDIT_KERN_MODULE; 2880 context->type = AUDIT_KERN_MODULE; 2881 } 2881 } 2882 2882 2883 void __audit_fanotify(u32 response, struct fa 2883 void __audit_fanotify(u32 response, struct fanotify_response_info_audit_rule *friar) 2884 { 2884 { 2885 /* {subj,obj}_trust values are {0,1,2 2885 /* {subj,obj}_trust values are {0,1,2}: no,yes,unknown */ 2886 switch (friar->hdr.type) { 2886 switch (friar->hdr.type) { 2887 case FAN_RESPONSE_INFO_NONE: 2887 case FAN_RESPONSE_INFO_NONE: 2888 audit_log(audit_context(), GF 2888 audit_log(audit_context(), GFP_KERNEL, AUDIT_FANOTIFY, 2889 "resp=%u fan_type=% 2889 "resp=%u fan_type=%u fan_info=0 subj_trust=2 obj_trust=2", 2890 response, FAN_RESPO 2890 response, FAN_RESPONSE_INFO_NONE); 2891 break; 2891 break; 2892 case FAN_RESPONSE_INFO_AUDIT_RULE: 2892 case FAN_RESPONSE_INFO_AUDIT_RULE: 2893 audit_log(audit_context(), GF 2893 audit_log(audit_context(), GFP_KERNEL, AUDIT_FANOTIFY, 2894 "resp=%u fan_type=% 2894 "resp=%u fan_type=%u fan_info=%X subj_trust=%u obj_trust=%u", 2895 response, friar->hd 2895 response, friar->hdr.type, friar->rule_number, 2896 friar->subj_trust, 2896 friar->subj_trust, friar->obj_trust); 2897 } 2897 } 2898 } 2898 } 2899 2899 2900 void __audit_tk_injoffset(struct timespec64 o 2900 void __audit_tk_injoffset(struct timespec64 offset) 2901 { 2901 { 2902 struct audit_context *context = audit 2902 struct audit_context *context = audit_context(); 2903 2903 2904 /* only set type if not already set b 2904 /* only set type if not already set by NTP */ 2905 if (!context->type) 2905 if (!context->type) 2906 context->type = AUDIT_TIME_IN 2906 context->type = AUDIT_TIME_INJOFFSET; 2907 memcpy(&context->time.tk_injoffset, & 2907 memcpy(&context->time.tk_injoffset, &offset, sizeof(offset)); 2908 } 2908 } 2909 2909 2910 void __audit_ntp_log(const struct audit_ntp_d 2910 void __audit_ntp_log(const struct audit_ntp_data *ad) 2911 { 2911 { 2912 struct audit_context *context = audit 2912 struct audit_context *context = audit_context(); 2913 int type; 2913 int type; 2914 2914 2915 for (type = 0; type < AUDIT_NTP_NVALS 2915 for (type = 0; type < AUDIT_NTP_NVALS; type++) 2916 if (ad->vals[type].newval != 2916 if (ad->vals[type].newval != ad->vals[type].oldval) { 2917 /* unconditionally se 2917 /* unconditionally set type, overwriting TK */ 2918 context->type = AUDIT 2918 context->type = AUDIT_TIME_ADJNTPVAL; 2919 memcpy(&context->time 2919 memcpy(&context->time.ntp_data, ad, sizeof(*ad)); 2920 break; 2920 break; 2921 } 2921 } 2922 } 2922 } 2923 2923 2924 void __audit_log_nfcfg(const char *name, u8 a 2924 void __audit_log_nfcfg(const char *name, u8 af, unsigned int nentries, 2925 enum audit_nfcfgop op, 2925 enum audit_nfcfgop op, gfp_t gfp) 2926 { 2926 { 2927 struct audit_buffer *ab; 2927 struct audit_buffer *ab; 2928 char comm[sizeof(current->comm)]; 2928 char comm[sizeof(current->comm)]; 2929 2929 2930 ab = audit_log_start(audit_context(), 2930 ab = audit_log_start(audit_context(), gfp, AUDIT_NETFILTER_CFG); 2931 if (!ab) 2931 if (!ab) 2932 return; 2932 return; 2933 audit_log_format(ab, "table=%s family 2933 audit_log_format(ab, "table=%s family=%u entries=%u op=%s", 2934 name, af, nentries, 2934 name, af, nentries, audit_nfcfgs[op].s); 2935 2935 2936 audit_log_format(ab, " pid=%u", task_ 2936 audit_log_format(ab, " pid=%u", task_pid_nr(current)); 2937 audit_log_task_context(ab); /* subj= 2937 audit_log_task_context(ab); /* subj= */ 2938 audit_log_format(ab, " comm="); 2938 audit_log_format(ab, " comm="); 2939 audit_log_untrustedstring(ab, get_tas 2939 audit_log_untrustedstring(ab, get_task_comm(comm, current)); 2940 audit_log_end(ab); 2940 audit_log_end(ab); 2941 } 2941 } 2942 EXPORT_SYMBOL_GPL(__audit_log_nfcfg); 2942 EXPORT_SYMBOL_GPL(__audit_log_nfcfg); 2943 2943 2944 static void audit_log_task(struct audit_buffe 2944 static void audit_log_task(struct audit_buffer *ab) 2945 { 2945 { 2946 kuid_t auid, uid; 2946 kuid_t auid, uid; 2947 kgid_t gid; 2947 kgid_t gid; 2948 unsigned int sessionid; 2948 unsigned int sessionid; 2949 char comm[sizeof(current->comm)]; 2949 char comm[sizeof(current->comm)]; 2950 2950 2951 auid = audit_get_loginuid(current); 2951 auid = audit_get_loginuid(current); 2952 sessionid = audit_get_sessionid(curre 2952 sessionid = audit_get_sessionid(current); 2953 current_uid_gid(&uid, &gid); 2953 current_uid_gid(&uid, &gid); 2954 2954 2955 audit_log_format(ab, "auid=%u uid=%u 2955 audit_log_format(ab, "auid=%u uid=%u gid=%u ses=%u", 2956 from_kuid(&init_user 2956 from_kuid(&init_user_ns, auid), 2957 from_kuid(&init_user 2957 from_kuid(&init_user_ns, uid), 2958 from_kgid(&init_user 2958 from_kgid(&init_user_ns, gid), 2959 sessionid); 2959 sessionid); 2960 audit_log_task_context(ab); 2960 audit_log_task_context(ab); 2961 audit_log_format(ab, " pid=%d comm=", 2961 audit_log_format(ab, " pid=%d comm=", task_tgid_nr(current)); 2962 audit_log_untrustedstring(ab, get_tas 2962 audit_log_untrustedstring(ab, get_task_comm(comm, current)); 2963 audit_log_d_path_exe(ab, current->mm) 2963 audit_log_d_path_exe(ab, current->mm); 2964 } 2964 } 2965 2965 2966 /** 2966 /** 2967 * audit_core_dumps - record information abou 2967 * audit_core_dumps - record information about processes that end abnormally 2968 * @signr: signal value 2968 * @signr: signal value 2969 * 2969 * 2970 * If a process ends with a core dump, someth 2970 * If a process ends with a core dump, something fishy is going on and we 2971 * should record the event for investigation. 2971 * should record the event for investigation. 2972 */ 2972 */ 2973 void audit_core_dumps(long signr) 2973 void audit_core_dumps(long signr) 2974 { 2974 { 2975 struct audit_buffer *ab; 2975 struct audit_buffer *ab; 2976 2976 2977 if (!audit_enabled) 2977 if (!audit_enabled) 2978 return; 2978 return; 2979 2979 2980 if (signr == SIGQUIT) /* don't care 2980 if (signr == SIGQUIT) /* don't care for those */ 2981 return; 2981 return; 2982 2982 2983 ab = audit_log_start(audit_context(), 2983 ab = audit_log_start(audit_context(), GFP_KERNEL, AUDIT_ANOM_ABEND); 2984 if (unlikely(!ab)) 2984 if (unlikely(!ab)) 2985 return; 2985 return; 2986 audit_log_task(ab); 2986 audit_log_task(ab); 2987 audit_log_format(ab, " sig=%ld res=1" 2987 audit_log_format(ab, " sig=%ld res=1", signr); 2988 audit_log_end(ab); 2988 audit_log_end(ab); 2989 } 2989 } 2990 2990 2991 /** 2991 /** 2992 * audit_seccomp - record information about a 2992 * audit_seccomp - record information about a seccomp action 2993 * @syscall: syscall number 2993 * @syscall: syscall number 2994 * @signr: signal value 2994 * @signr: signal value 2995 * @code: the seccomp action 2995 * @code: the seccomp action 2996 * 2996 * 2997 * Record the information associated with a s 2997 * Record the information associated with a seccomp action. Event filtering for 2998 * seccomp actions that are not to be logged 2998 * seccomp actions that are not to be logged is done in seccomp_log(). 2999 * Therefore, this function forces auditing i 2999 * Therefore, this function forces auditing independent of the audit_enabled 3000 * and dummy context state because seccomp ac 3000 * and dummy context state because seccomp actions should be logged even when 3001 * audit is not in use. 3001 * audit is not in use. 3002 */ 3002 */ 3003 void audit_seccomp(unsigned long syscall, lon 3003 void audit_seccomp(unsigned long syscall, long signr, int code) 3004 { 3004 { 3005 struct audit_buffer *ab; 3005 struct audit_buffer *ab; 3006 3006 3007 ab = audit_log_start(audit_context(), 3007 ab = audit_log_start(audit_context(), GFP_KERNEL, AUDIT_SECCOMP); 3008 if (unlikely(!ab)) 3008 if (unlikely(!ab)) 3009 return; 3009 return; 3010 audit_log_task(ab); 3010 audit_log_task(ab); 3011 audit_log_format(ab, " sig=%ld arch=% 3011 audit_log_format(ab, " sig=%ld arch=%x syscall=%ld compat=%d ip=0x%lx code=0x%x", 3012 signr, syscall_get_a 3012 signr, syscall_get_arch(current), syscall, 3013 in_compat_syscall(), 3013 in_compat_syscall(), KSTK_EIP(current), code); 3014 audit_log_end(ab); 3014 audit_log_end(ab); 3015 } 3015 } 3016 3016 3017 void audit_seccomp_actions_logged(const char 3017 void audit_seccomp_actions_logged(const char *names, const char *old_names, 3018 int res) 3018 int res) 3019 { 3019 { 3020 struct audit_buffer *ab; 3020 struct audit_buffer *ab; 3021 3021 3022 if (!audit_enabled) 3022 if (!audit_enabled) 3023 return; 3023 return; 3024 3024 3025 ab = audit_log_start(audit_context(), 3025 ab = audit_log_start(audit_context(), GFP_KERNEL, 3026 AUDIT_CONFIG_CHA 3026 AUDIT_CONFIG_CHANGE); 3027 if (unlikely(!ab)) 3027 if (unlikely(!ab)) 3028 return; 3028 return; 3029 3029 3030 audit_log_format(ab, 3030 audit_log_format(ab, 3031 "op=seccomp-logging 3031 "op=seccomp-logging actions=%s old-actions=%s res=%d", 3032 names, old_names, re 3032 names, old_names, res); 3033 audit_log_end(ab); 3033 audit_log_end(ab); 3034 } 3034 } 3035 3035 3036 struct list_head *audit_killed_trees(void) 3036 struct list_head *audit_killed_trees(void) 3037 { 3037 { 3038 struct audit_context *ctx = audit_con 3038 struct audit_context *ctx = audit_context(); 3039 if (likely(!ctx || ctx->context == AU 3039 if (likely(!ctx || ctx->context == AUDIT_CTX_UNUSED)) 3040 return NULL; 3040 return NULL; 3041 return &ctx->killed_trees; 3041 return &ctx->killed_trees; 3042 } 3042 } 3043 3043
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.