1 /* CPU control. 1 /* CPU control. 2 * (C) 2001, 2002, 2003, 2004 Rusty Russell 2 * (C) 2001, 2002, 2003, 2004 Rusty Russell 3 * 3 * 4 * This code is licenced under the GPL. 4 * This code is licenced under the GPL. 5 */ 5 */ 6 #include <linux/sched/mm.h> << 7 #include <linux/proc_fs.h> 6 #include <linux/proc_fs.h> 8 #include <linux/smp.h> 7 #include <linux/smp.h> 9 #include <linux/init.h> 8 #include <linux/init.h> 10 #include <linux/notifier.h> 9 #include <linux/notifier.h> 11 #include <linux/sched/signal.h> 10 #include <linux/sched/signal.h> 12 #include <linux/sched/hotplug.h> 11 #include <linux/sched/hotplug.h> 13 #include <linux/sched/isolation.h> << 14 #include <linux/sched/task.h> 12 #include <linux/sched/task.h> 15 #include <linux/sched/smt.h> << 16 #include <linux/unistd.h> 13 #include <linux/unistd.h> 17 #include <linux/cpu.h> 14 #include <linux/cpu.h> 18 #include <linux/oom.h> 15 #include <linux/oom.h> 19 #include <linux/rcupdate.h> 16 #include <linux/rcupdate.h> 20 #include <linux/delay.h> << 21 #include <linux/export.h> 17 #include <linux/export.h> 22 #include <linux/bug.h> 18 #include <linux/bug.h> 23 #include <linux/kthread.h> 19 #include <linux/kthread.h> 24 #include <linux/stop_machine.h> 20 #include <linux/stop_machine.h> 25 #include <linux/mutex.h> 21 #include <linux/mutex.h> 26 #include <linux/gfp.h> 22 #include <linux/gfp.h> 27 #include <linux/suspend.h> 23 #include <linux/suspend.h> 28 #include <linux/lockdep.h> 24 #include <linux/lockdep.h> 29 #include <linux/tick.h> 25 #include <linux/tick.h> 30 #include <linux/irq.h> 26 #include <linux/irq.h> 31 #include <linux/nmi.h> 27 #include <linux/nmi.h> 32 #include <linux/smpboot.h> 28 #include <linux/smpboot.h> 33 #include <linux/relay.h> 29 #include <linux/relay.h> 34 #include <linux/slab.h> 30 #include <linux/slab.h> 35 #include <linux/scs.h> << 36 #include <linux/percpu-rwsem.h> 31 #include <linux/percpu-rwsem.h> 37 #include <linux/cpuset.h> << 38 #include <linux/random.h> << 39 #include <linux/cc_platform.h> << 40 32 41 #include <trace/events/power.h> 33 #include <trace/events/power.h> 42 #define CREATE_TRACE_POINTS 34 #define CREATE_TRACE_POINTS 43 #include <trace/events/cpuhp.h> 35 #include <trace/events/cpuhp.h> 44 36 45 #include "smpboot.h" 37 #include "smpboot.h" 46 38 47 /** 39 /** 48 * struct cpuhp_cpu_state - Per cpu hotplug st !! 40 * cpuhp_cpu_state - Per cpu hotplug state storage 49 * @state: The current cpu state 41 * @state: The current cpu state 50 * @target: The target state 42 * @target: The target state 51 * @fail: Current CPU hotplug callback s << 52 * @thread: Pointer to the hotplug thread 43 * @thread: Pointer to the hotplug thread 53 * @should_run: Thread should execute 44 * @should_run: Thread should execute 54 * @rollback: Perform a rollback 45 * @rollback: Perform a rollback 55 * @single: Single callback invocation 46 * @single: Single callback invocation 56 * @bringup: Single callback bringup or tea 47 * @bringup: Single callback bringup or teardown selector 57 * @node: Remote CPU node; for multi-ins << 58 * single entry callback for inst << 59 * @last: For multi-instance rollback, r << 60 * @cb_state: The state for a single callbac 48 * @cb_state: The state for a single callback (install/uninstall) 61 * @result: Result of the operation 49 * @result: Result of the operation 62 * @ap_sync_state: State for AP synchroni << 63 * @done_up: Signal completion to the issue 50 * @done_up: Signal completion to the issuer of the task for cpu-up 64 * @done_down: Signal completion to the issue 51 * @done_down: Signal completion to the issuer of the task for cpu-down 65 */ 52 */ 66 struct cpuhp_cpu_state { 53 struct cpuhp_cpu_state { 67 enum cpuhp_state state; 54 enum cpuhp_state state; 68 enum cpuhp_state target; 55 enum cpuhp_state target; 69 enum cpuhp_state fail; 56 enum cpuhp_state fail; 70 #ifdef CONFIG_SMP 57 #ifdef CONFIG_SMP 71 struct task_struct *thread; 58 struct task_struct *thread; 72 bool should_run; 59 bool should_run; 73 bool rollback; 60 bool rollback; 74 bool single; 61 bool single; 75 bool bringup; 62 bool bringup; 76 struct hlist_node *node; 63 struct hlist_node *node; 77 struct hlist_node *last; 64 struct hlist_node *last; 78 enum cpuhp_state cb_state; 65 enum cpuhp_state cb_state; 79 int result; 66 int result; 80 atomic_t ap_sync_state; << 81 struct completion done_up; 67 struct completion done_up; 82 struct completion done_down; 68 struct completion done_down; 83 #endif 69 #endif 84 }; 70 }; 85 71 86 static DEFINE_PER_CPU(struct cpuhp_cpu_state, 72 static DEFINE_PER_CPU(struct cpuhp_cpu_state, cpuhp_state) = { 87 .fail = CPUHP_INVALID, 73 .fail = CPUHP_INVALID, 88 }; 74 }; 89 75 90 #ifdef CONFIG_SMP << 91 cpumask_t cpus_booted_once_mask; << 92 #endif << 93 << 94 #if defined(CONFIG_LOCKDEP) && defined(CONFIG_ 76 #if defined(CONFIG_LOCKDEP) && defined(CONFIG_SMP) 95 static struct lockdep_map cpuhp_state_up_map = 77 static struct lockdep_map cpuhp_state_up_map = 96 STATIC_LOCKDEP_MAP_INIT("cpuhp_state-u 78 STATIC_LOCKDEP_MAP_INIT("cpuhp_state-up", &cpuhp_state_up_map); 97 static struct lockdep_map cpuhp_state_down_map 79 static struct lockdep_map cpuhp_state_down_map = 98 STATIC_LOCKDEP_MAP_INIT("cpuhp_state-d 80 STATIC_LOCKDEP_MAP_INIT("cpuhp_state-down", &cpuhp_state_down_map); 99 81 100 82 101 static inline void cpuhp_lock_acquire(bool bri 83 static inline void cpuhp_lock_acquire(bool bringup) 102 { 84 { 103 lock_map_acquire(bringup ? &cpuhp_stat 85 lock_map_acquire(bringup ? &cpuhp_state_up_map : &cpuhp_state_down_map); 104 } 86 } 105 87 106 static inline void cpuhp_lock_release(bool bri 88 static inline void cpuhp_lock_release(bool bringup) 107 { 89 { 108 lock_map_release(bringup ? &cpuhp_stat 90 lock_map_release(bringup ? &cpuhp_state_up_map : &cpuhp_state_down_map); 109 } 91 } 110 #else 92 #else 111 93 112 static inline void cpuhp_lock_acquire(bool bri 94 static inline void cpuhp_lock_acquire(bool bringup) { } 113 static inline void cpuhp_lock_release(bool bri 95 static inline void cpuhp_lock_release(bool bringup) { } 114 96 115 #endif 97 #endif 116 98 117 /** 99 /** 118 * struct cpuhp_step - Hotplug state machine s !! 100 * cpuhp_step - Hotplug state machine step 119 * @name: Name of the step 101 * @name: Name of the step 120 * @startup: Startup function of the step 102 * @startup: Startup function of the step 121 * @teardown: Teardown function of the step 103 * @teardown: Teardown function of the step >> 104 * @skip_onerr: Do not invoke the functions on error rollback >> 105 * Will go away once the notifiers are gone 122 * @cant_stop: Bringup/teardown can't be stop 106 * @cant_stop: Bringup/teardown can't be stopped at this step 123 * @multi_instance: State has multiple ins << 124 */ 107 */ 125 struct cpuhp_step { 108 struct cpuhp_step { 126 const char *name; 109 const char *name; 127 union { 110 union { 128 int (*single)(unsi 111 int (*single)(unsigned int cpu); 129 int (*multi)(unsig 112 int (*multi)(unsigned int cpu, 130 struc 113 struct hlist_node *node); 131 } startup; 114 } startup; 132 union { 115 union { 133 int (*single)(unsi 116 int (*single)(unsigned int cpu); 134 int (*multi)(unsig 117 int (*multi)(unsigned int cpu, 135 struc 118 struct hlist_node *node); 136 } teardown; 119 } teardown; 137 /* private: */ << 138 struct hlist_head list; 120 struct hlist_head list; 139 /* public: */ !! 121 bool skip_onerr; 140 bool cant_stop; 122 bool cant_stop; 141 bool multi_instance 123 bool multi_instance; 142 }; 124 }; 143 125 144 static DEFINE_MUTEX(cpuhp_state_mutex); 126 static DEFINE_MUTEX(cpuhp_state_mutex); 145 static struct cpuhp_step cpuhp_hp_states[]; !! 127 static struct cpuhp_step cpuhp_bp_states[]; >> 128 static struct cpuhp_step cpuhp_ap_states[]; 146 129 147 static struct cpuhp_step *cpuhp_get_step(enum !! 130 static bool cpuhp_is_ap_state(enum cpuhp_state state) 148 { 131 { 149 return cpuhp_hp_states + state; !! 132 /* >> 133 * The extra check for CPUHP_TEARDOWN_CPU is only for documentation >> 134 * purposes as that state is handled explicitly in cpu_down. >> 135 */ >> 136 return state > CPUHP_BRINGUP_CPU && state != CPUHP_TEARDOWN_CPU; 150 } 137 } 151 138 152 static bool cpuhp_step_empty(bool bringup, str !! 139 static struct cpuhp_step *cpuhp_get_step(enum cpuhp_state state) 153 { 140 { 154 return bringup ? !step->startup.single !! 141 struct cpuhp_step *sp; >> 142 >> 143 sp = cpuhp_is_ap_state(state) ? cpuhp_ap_states : cpuhp_bp_states; >> 144 return sp + state; 155 } 145 } 156 146 157 /** 147 /** 158 * cpuhp_invoke_callback - Invoke the callback !! 148 * cpuhp_invoke_callback _ Invoke the callbacks for a given state 159 * @cpu: The cpu for which the callback 149 * @cpu: The cpu for which the callback should be invoked 160 * @state: The state to do callbacks for 150 * @state: The state to do callbacks for 161 * @bringup: True if the bringup callback s 151 * @bringup: True if the bringup callback should be invoked 162 * @node: For multi-instance, do a singl 152 * @node: For multi-instance, do a single entry callback for install/remove 163 * @lastp: For multi-instance rollback, r 153 * @lastp: For multi-instance rollback, remember how far we got 164 * 154 * 165 * Called from cpu hotplug and from the state 155 * Called from cpu hotplug and from the state register machinery. 166 * << 167 * Return: %0 on success or a negative errno c << 168 */ 156 */ 169 static int cpuhp_invoke_callback(unsigned int 157 static int cpuhp_invoke_callback(unsigned int cpu, enum cpuhp_state state, 170 bool bringup, 158 bool bringup, struct hlist_node *node, 171 struct hlist_ 159 struct hlist_node **lastp) 172 { 160 { 173 struct cpuhp_cpu_state *st = per_cpu_p 161 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 174 struct cpuhp_step *step = cpuhp_get_st 162 struct cpuhp_step *step = cpuhp_get_step(state); 175 int (*cbm)(unsigned int cpu, struct hl 163 int (*cbm)(unsigned int cpu, struct hlist_node *node); 176 int (*cb)(unsigned int cpu); 164 int (*cb)(unsigned int cpu); 177 int ret, cnt; 165 int ret, cnt; 178 166 179 if (st->fail == state) { 167 if (st->fail == state) { 180 st->fail = CPUHP_INVALID; 168 st->fail = CPUHP_INVALID; 181 return -EAGAIN; << 182 } << 183 169 184 if (cpuhp_step_empty(bringup, step)) { !! 170 if (!(bringup ? step->startup.single : step->teardown.single)) 185 WARN_ON_ONCE(1); !! 171 return 0; 186 return 0; !! 172 >> 173 return -EAGAIN; 187 } 174 } 188 175 189 if (!step->multi_instance) { 176 if (!step->multi_instance) { 190 WARN_ON_ONCE(lastp && *lastp); 177 WARN_ON_ONCE(lastp && *lastp); 191 cb = bringup ? step->startup.s 178 cb = bringup ? step->startup.single : step->teardown.single; 192 !! 179 if (!cb) >> 180 return 0; 193 trace_cpuhp_enter(cpu, st->tar 181 trace_cpuhp_enter(cpu, st->target, state, cb); 194 ret = cb(cpu); 182 ret = cb(cpu); 195 trace_cpuhp_exit(cpu, st->stat 183 trace_cpuhp_exit(cpu, st->state, state, ret); 196 return ret; 184 return ret; 197 } 185 } 198 cbm = bringup ? step->startup.multi : 186 cbm = bringup ? step->startup.multi : step->teardown.multi; >> 187 if (!cbm) >> 188 return 0; 199 189 200 /* Single invocation for instance add/ 190 /* Single invocation for instance add/remove */ 201 if (node) { 191 if (node) { 202 WARN_ON_ONCE(lastp && *lastp); 192 WARN_ON_ONCE(lastp && *lastp); 203 trace_cpuhp_multi_enter(cpu, s 193 trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node); 204 ret = cbm(cpu, node); 194 ret = cbm(cpu, node); 205 trace_cpuhp_exit(cpu, st->stat 195 trace_cpuhp_exit(cpu, st->state, state, ret); 206 return ret; 196 return ret; 207 } 197 } 208 198 209 /* State transition. Invoke on all ins 199 /* State transition. Invoke on all instances */ 210 cnt = 0; 200 cnt = 0; 211 hlist_for_each(node, &step->list) { 201 hlist_for_each(node, &step->list) { 212 if (lastp && node == *lastp) 202 if (lastp && node == *lastp) 213 break; 203 break; 214 204 215 trace_cpuhp_multi_enter(cpu, s 205 trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node); 216 ret = cbm(cpu, node); 206 ret = cbm(cpu, node); 217 trace_cpuhp_exit(cpu, st->stat 207 trace_cpuhp_exit(cpu, st->state, state, ret); 218 if (ret) { 208 if (ret) { 219 if (!lastp) 209 if (!lastp) 220 goto err; 210 goto err; 221 211 222 *lastp = node; 212 *lastp = node; 223 return ret; 213 return ret; 224 } 214 } 225 cnt++; 215 cnt++; 226 } 216 } 227 if (lastp) 217 if (lastp) 228 *lastp = NULL; 218 *lastp = NULL; 229 return 0; 219 return 0; 230 err: 220 err: 231 /* Rollback the instances if one faile 221 /* Rollback the instances if one failed */ 232 cbm = !bringup ? step->startup.multi : 222 cbm = !bringup ? step->startup.multi : step->teardown.multi; 233 if (!cbm) 223 if (!cbm) 234 return ret; 224 return ret; 235 225 236 hlist_for_each(node, &step->list) { 226 hlist_for_each(node, &step->list) { 237 if (!cnt--) 227 if (!cnt--) 238 break; 228 break; 239 229 240 trace_cpuhp_multi_enter(cpu, s 230 trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node); 241 ret = cbm(cpu, node); 231 ret = cbm(cpu, node); 242 trace_cpuhp_exit(cpu, st->stat 232 trace_cpuhp_exit(cpu, st->state, state, ret); 243 /* 233 /* 244 * Rollback must not fail, 234 * Rollback must not fail, 245 */ 235 */ 246 WARN_ON_ONCE(ret); 236 WARN_ON_ONCE(ret); 247 } 237 } 248 return ret; 238 return ret; 249 } 239 } 250 240 251 #ifdef CONFIG_SMP 241 #ifdef CONFIG_SMP 252 static bool cpuhp_is_ap_state(enum cpuhp_state << 253 { << 254 /* << 255 * The extra check for CPUHP_TEARDOWN_ << 256 * purposes as that state is handled e << 257 */ << 258 return state > CPUHP_BRINGUP_CPU && st << 259 } << 260 << 261 static inline void wait_for_ap_thread(struct c 242 static inline void wait_for_ap_thread(struct cpuhp_cpu_state *st, bool bringup) 262 { 243 { 263 struct completion *done = bringup ? &s 244 struct completion *done = bringup ? &st->done_up : &st->done_down; 264 wait_for_completion(done); 245 wait_for_completion(done); 265 } 246 } 266 247 267 static inline void complete_ap_thread(struct c 248 static inline void complete_ap_thread(struct cpuhp_cpu_state *st, bool bringup) 268 { 249 { 269 struct completion *done = bringup ? &s 250 struct completion *done = bringup ? &st->done_up : &st->done_down; 270 complete(done); 251 complete(done); 271 } 252 } 272 253 273 /* 254 /* 274 * The former STARTING/DYING states, ran with 255 * The former STARTING/DYING states, ran with IRQs disabled and must not fail. 275 */ 256 */ 276 static bool cpuhp_is_atomic_state(enum cpuhp_s 257 static bool cpuhp_is_atomic_state(enum cpuhp_state state) 277 { 258 { 278 return CPUHP_AP_IDLE_DEAD <= state && 259 return CPUHP_AP_IDLE_DEAD <= state && state < CPUHP_AP_ONLINE; 279 } 260 } 280 261 281 /* Synchronization state management */ << 282 enum cpuhp_sync_state { << 283 SYNC_STATE_DEAD, << 284 SYNC_STATE_KICKED, << 285 SYNC_STATE_SHOULD_DIE, << 286 SYNC_STATE_ALIVE, << 287 SYNC_STATE_SHOULD_ONLINE, << 288 SYNC_STATE_ONLINE, << 289 }; << 290 << 291 #ifdef CONFIG_HOTPLUG_CORE_SYNC << 292 /** << 293 * cpuhp_ap_update_sync_state - Update synchro << 294 * @state: The synchronization state to s << 295 * << 296 * No synchronization point. Just update of th << 297 * a full barrier so that the AP changes are v << 298 */ << 299 static inline void cpuhp_ap_update_sync_state( << 300 { << 301 atomic_t *st = this_cpu_ptr(&cpuhp_sta << 302 << 303 (void)atomic_xchg(st, state); << 304 } << 305 << 306 void __weak arch_cpuhp_sync_state_poll(void) { << 307 << 308 static bool cpuhp_wait_for_sync_state(unsigned << 309 enum cpu << 310 { << 311 atomic_t *st = per_cpu_ptr(&cpuhp_stat << 312 ktime_t now, end, start = ktime_get(); << 313 int sync; << 314 << 315 end = start + 10ULL * NSEC_PER_SEC; << 316 << 317 sync = atomic_read(st); << 318 while (1) { << 319 if (sync == state) { << 320 if (!atomic_try_cmpxch << 321 continue; << 322 return true; << 323 } << 324 << 325 now = ktime_get(); << 326 if (now > end) { << 327 /* Timeout. Leave the << 328 return false; << 329 } else if (now - start < NSEC_ << 330 /* Poll for one millis << 331 arch_cpuhp_sync_state_ << 332 } else { << 333 usleep_range(USEC_PER_ << 334 } << 335 sync = atomic_read(st); << 336 } << 337 return true; << 338 } << 339 #else /* CONFIG_HOTPLUG_CORE_SYNC */ << 340 static inline void cpuhp_ap_update_sync_state( << 341 #endif /* !CONFIG_HOTPLUG_CORE_SYNC */ << 342 << 343 #ifdef CONFIG_HOTPLUG_CORE_SYNC_DEAD << 344 /** << 345 * cpuhp_ap_report_dead - Update synchronizati << 346 * << 347 * No synchronization point. Just update of th << 348 */ << 349 void cpuhp_ap_report_dead(void) << 350 { << 351 cpuhp_ap_update_sync_state(SYNC_STATE_ << 352 } << 353 << 354 void __weak arch_cpuhp_cleanup_dead_cpu(unsign << 355 << 356 /* << 357 * Late CPU shutdown synchronization point. Ca << 358 * because the AP cannot issue complete() at t << 359 */ << 360 static void cpuhp_bp_sync_dead(unsigned int cp << 361 { << 362 atomic_t *st = per_cpu_ptr(&cpuhp_stat << 363 int sync = atomic_read(st); << 364 << 365 do { << 366 /* CPU can have reported dead << 367 if (sync == SYNC_STATE_DEAD) << 368 break; << 369 } while (!atomic_try_cmpxchg(st, &sync << 370 << 371 if (cpuhp_wait_for_sync_state(cpu, SYN << 372 /* CPU reached dead state. Inv << 373 arch_cpuhp_cleanup_dead_cpu(cp << 374 return; << 375 } << 376 << 377 /* No further action possible. Emit me << 378 pr_err("CPU%u failed to report dead st << 379 } << 380 #else /* CONFIG_HOTPLUG_CORE_SYNC_DEAD */ << 381 static inline void cpuhp_bp_sync_dead(unsigned << 382 #endif /* !CONFIG_HOTPLUG_CORE_SYNC_DEAD */ << 383 << 384 #ifdef CONFIG_HOTPLUG_CORE_SYNC_FULL << 385 /** << 386 * cpuhp_ap_sync_alive - Synchronize AP with t << 387 * << 388 * Updates the AP synchronization state to SYN << 389 * for the BP to release it. << 390 */ << 391 void cpuhp_ap_sync_alive(void) << 392 { << 393 atomic_t *st = this_cpu_ptr(&cpuhp_sta << 394 << 395 cpuhp_ap_update_sync_state(SYNC_STATE_ << 396 << 397 /* Wait for the control CPU to release << 398 while (atomic_read(st) != SYNC_STATE_S << 399 cpu_relax(); << 400 } << 401 << 402 static bool cpuhp_can_boot_ap(unsigned int cpu << 403 { << 404 atomic_t *st = per_cpu_ptr(&cpuhp_stat << 405 int sync = atomic_read(st); << 406 << 407 again: << 408 switch (sync) { << 409 case SYNC_STATE_DEAD: << 410 /* CPU is properly dead */ << 411 break; << 412 case SYNC_STATE_KICKED: << 413 /* CPU did not come up in prev << 414 break; << 415 case SYNC_STATE_ALIVE: << 416 /* CPU is stuck cpuhp_ap_sync_ << 417 break; << 418 default: << 419 /* CPU failed to report online << 420 return false; << 421 } << 422 << 423 /* Prepare for booting */ << 424 if (!atomic_try_cmpxchg(st, &sync, SYN << 425 goto again; << 426 << 427 return true; << 428 } << 429 << 430 void __weak arch_cpuhp_cleanup_kick_cpu(unsign << 431 << 432 /* << 433 * Early CPU bringup synchronization point. Ca << 434 * because the AP cannot issue complete() so e << 435 */ << 436 static int cpuhp_bp_sync_alive(unsigned int cp << 437 { << 438 int ret = 0; << 439 << 440 if (!IS_ENABLED(CONFIG_HOTPLUG_CORE_SY << 441 return 0; << 442 << 443 if (!cpuhp_wait_for_sync_state(cpu, SY << 444 pr_err("CPU%u failed to report << 445 ret = -EIO; << 446 } << 447 << 448 /* Let the architecture cleanup the ki << 449 arch_cpuhp_cleanup_kick_cpu(cpu); << 450 return ret; << 451 } << 452 #else /* CONFIG_HOTPLUG_CORE_SYNC_FULL */ << 453 static inline int cpuhp_bp_sync_alive(unsigned << 454 static inline bool cpuhp_can_boot_ap(unsigned << 455 #endif /* !CONFIG_HOTPLUG_CORE_SYNC_FULL */ << 456 << 457 /* Serializes the updates to cpu_online_mask, 262 /* Serializes the updates to cpu_online_mask, cpu_present_mask */ 458 static DEFINE_MUTEX(cpu_add_remove_lock); 263 static DEFINE_MUTEX(cpu_add_remove_lock); 459 bool cpuhp_tasks_frozen; 264 bool cpuhp_tasks_frozen; 460 EXPORT_SYMBOL_GPL(cpuhp_tasks_frozen); 265 EXPORT_SYMBOL_GPL(cpuhp_tasks_frozen); 461 266 462 /* 267 /* 463 * The following two APIs (cpu_maps_update_beg 268 * The following two APIs (cpu_maps_update_begin/done) must be used when 464 * attempting to serialize the updates to cpu_ 269 * attempting to serialize the updates to cpu_online_mask & cpu_present_mask. 465 */ 270 */ 466 void cpu_maps_update_begin(void) 271 void cpu_maps_update_begin(void) 467 { 272 { 468 mutex_lock(&cpu_add_remove_lock); 273 mutex_lock(&cpu_add_remove_lock); 469 } 274 } 470 275 471 void cpu_maps_update_done(void) 276 void cpu_maps_update_done(void) 472 { 277 { 473 mutex_unlock(&cpu_add_remove_lock); 278 mutex_unlock(&cpu_add_remove_lock); 474 } 279 } 475 280 476 /* 281 /* 477 * If set, cpu_up and cpu_down will return -EB 282 * If set, cpu_up and cpu_down will return -EBUSY and do nothing. 478 * Should always be manipulated under cpu_add_ 283 * Should always be manipulated under cpu_add_remove_lock 479 */ 284 */ 480 static int cpu_hotplug_disabled; 285 static int cpu_hotplug_disabled; 481 286 482 #ifdef CONFIG_HOTPLUG_CPU 287 #ifdef CONFIG_HOTPLUG_CPU 483 288 484 DEFINE_STATIC_PERCPU_RWSEM(cpu_hotplug_lock); 289 DEFINE_STATIC_PERCPU_RWSEM(cpu_hotplug_lock); 485 290 486 static bool cpu_hotplug_offline_disabled __ro_ << 487 << 488 void cpus_read_lock(void) 291 void cpus_read_lock(void) 489 { 292 { 490 percpu_down_read(&cpu_hotplug_lock); 293 percpu_down_read(&cpu_hotplug_lock); 491 } 294 } 492 EXPORT_SYMBOL_GPL(cpus_read_lock); 295 EXPORT_SYMBOL_GPL(cpus_read_lock); 493 296 494 int cpus_read_trylock(void) << 495 { << 496 return percpu_down_read_trylock(&cpu_h << 497 } << 498 EXPORT_SYMBOL_GPL(cpus_read_trylock); << 499 << 500 void cpus_read_unlock(void) 297 void cpus_read_unlock(void) 501 { 298 { 502 percpu_up_read(&cpu_hotplug_lock); 299 percpu_up_read(&cpu_hotplug_lock); 503 } 300 } 504 EXPORT_SYMBOL_GPL(cpus_read_unlock); 301 EXPORT_SYMBOL_GPL(cpus_read_unlock); 505 302 506 void cpus_write_lock(void) 303 void cpus_write_lock(void) 507 { 304 { 508 percpu_down_write(&cpu_hotplug_lock); 305 percpu_down_write(&cpu_hotplug_lock); 509 } 306 } 510 307 511 void cpus_write_unlock(void) 308 void cpus_write_unlock(void) 512 { 309 { 513 percpu_up_write(&cpu_hotplug_lock); 310 percpu_up_write(&cpu_hotplug_lock); 514 } 311 } 515 312 516 void lockdep_assert_cpus_held(void) 313 void lockdep_assert_cpus_held(void) 517 { 314 { 518 /* << 519 * We can't have hotplug operations be << 520 * and some init codepaths will knowin << 521 * This is all valid, so mute lockdep << 522 * unheld locks. << 523 */ << 524 if (system_state < SYSTEM_RUNNING) << 525 return; << 526 << 527 percpu_rwsem_assert_held(&cpu_hotplug_ 315 percpu_rwsem_assert_held(&cpu_hotplug_lock); 528 } 316 } 529 317 530 #ifdef CONFIG_LOCKDEP << 531 int lockdep_is_cpus_held(void) << 532 { << 533 return percpu_rwsem_is_held(&cpu_hotpl << 534 } << 535 #endif << 536 << 537 static void lockdep_acquire_cpus_lock(void) << 538 { << 539 rwsem_acquire(&cpu_hotplug_lock.dep_ma << 540 } << 541 << 542 static void lockdep_release_cpus_lock(void) << 543 { << 544 rwsem_release(&cpu_hotplug_lock.dep_ma << 545 } << 546 << 547 /* Declare CPU offlining not supported */ << 548 void cpu_hotplug_disable_offlining(void) << 549 { << 550 cpu_maps_update_begin(); << 551 cpu_hotplug_offline_disabled = true; << 552 cpu_maps_update_done(); << 553 } << 554 << 555 /* 318 /* 556 * Wait for currently running CPU hotplug oper 319 * Wait for currently running CPU hotplug operations to complete (if any) and 557 * disable future CPU hotplug (from sysfs). Th 320 * disable future CPU hotplug (from sysfs). The 'cpu_add_remove_lock' protects 558 * the 'cpu_hotplug_disabled' flag. The same l 321 * the 'cpu_hotplug_disabled' flag. The same lock is also acquired by the 559 * hotplug path before performing hotplug oper 322 * hotplug path before performing hotplug operations. So acquiring that lock 560 * guarantees mutual exclusion from any curren 323 * guarantees mutual exclusion from any currently running hotplug operations. 561 */ 324 */ 562 void cpu_hotplug_disable(void) 325 void cpu_hotplug_disable(void) 563 { 326 { 564 cpu_maps_update_begin(); 327 cpu_maps_update_begin(); 565 cpu_hotplug_disabled++; 328 cpu_hotplug_disabled++; 566 cpu_maps_update_done(); 329 cpu_maps_update_done(); 567 } 330 } 568 EXPORT_SYMBOL_GPL(cpu_hotplug_disable); 331 EXPORT_SYMBOL_GPL(cpu_hotplug_disable); 569 332 570 static void __cpu_hotplug_enable(void) 333 static void __cpu_hotplug_enable(void) 571 { 334 { 572 if (WARN_ONCE(!cpu_hotplug_disabled, " 335 if (WARN_ONCE(!cpu_hotplug_disabled, "Unbalanced cpu hotplug enable\n")) 573 return; 336 return; 574 cpu_hotplug_disabled--; 337 cpu_hotplug_disabled--; 575 } 338 } 576 339 577 void cpu_hotplug_enable(void) 340 void cpu_hotplug_enable(void) 578 { 341 { 579 cpu_maps_update_begin(); 342 cpu_maps_update_begin(); 580 __cpu_hotplug_enable(); 343 __cpu_hotplug_enable(); 581 cpu_maps_update_done(); 344 cpu_maps_update_done(); 582 } 345 } 583 EXPORT_SYMBOL_GPL(cpu_hotplug_enable); 346 EXPORT_SYMBOL_GPL(cpu_hotplug_enable); 584 << 585 #else << 586 << 587 static void lockdep_acquire_cpus_lock(void) << 588 { << 589 } << 590 << 591 static void lockdep_release_cpus_lock(void) << 592 { << 593 } << 594 << 595 #endif /* CONFIG_HOTPLUG_CPU */ 347 #endif /* CONFIG_HOTPLUG_CPU */ 596 348 597 /* << 598 * Architectures that need SMT-specific errata << 599 * should override this. << 600 */ << 601 void __weak arch_smt_update(void) { } << 602 << 603 #ifdef CONFIG_HOTPLUG_SMT << 604 << 605 enum cpuhp_smt_control cpu_smt_control __read_ << 606 static unsigned int cpu_smt_max_threads __ro_a << 607 unsigned int cpu_smt_num_threads __read_mostly << 608 << 609 void __init cpu_smt_disable(bool force) << 610 { << 611 if (!cpu_smt_possible()) << 612 return; << 613 << 614 if (force) { << 615 pr_info("SMT: Force disabled\n << 616 cpu_smt_control = CPU_SMT_FORC << 617 } else { << 618 pr_info("SMT: disabled\n"); << 619 cpu_smt_control = CPU_SMT_DISA << 620 } << 621 cpu_smt_num_threads = 1; << 622 } << 623 << 624 /* << 625 * The decision whether SMT is supported can o << 626 * CPU identification. Called from architectur << 627 */ << 628 void __init cpu_smt_set_num_threads(unsigned i << 629 unsigned i << 630 { << 631 WARN_ON(!num_threads || (num_threads > << 632 << 633 if (max_threads == 1) << 634 cpu_smt_control = CPU_SMT_NOT_ << 635 << 636 cpu_smt_max_threads = max_threads; << 637 << 638 /* << 639 * If SMT has been disabled via the ke << 640 * not supported, set cpu_smt_num_thre << 641 * If enabled, take the architecture r << 642 * to bring up into account. << 643 */ << 644 if (cpu_smt_control != CPU_SMT_ENABLED << 645 cpu_smt_num_threads = 1; << 646 else if (num_threads < cpu_smt_num_thr << 647 cpu_smt_num_threads = num_thre << 648 } << 649 << 650 static int __init smt_cmdline_disable(char *st << 651 { << 652 cpu_smt_disable(str && !strcmp(str, "f << 653 return 0; << 654 } << 655 early_param("nosmt", smt_cmdline_disable); << 656 << 657 /* << 658 * For Archicture supporting partial SMT state << 659 * Otherwise this has already been checked thr << 660 * setting the SMT level. << 661 */ << 662 static inline bool cpu_smt_thread_allowed(unsi << 663 { << 664 #ifdef CONFIG_SMT_NUM_THREADS_DYNAMIC << 665 return topology_smt_thread_allowed(cpu << 666 #else << 667 return true; << 668 #endif << 669 } << 670 << 671 static inline bool cpu_bootable(unsigned int c << 672 { << 673 if (cpu_smt_control == CPU_SMT_ENABLED << 674 return true; << 675 << 676 /* All CPUs are bootable if controls a << 677 if (cpu_smt_control == CPU_SMT_NOT_IMP << 678 return true; << 679 << 680 /* All CPUs are bootable if CPU is not << 681 if (cpu_smt_control == CPU_SMT_NOT_SUP << 682 return true; << 683 << 684 if (topology_is_primary_thread(cpu)) << 685 return true; << 686 << 687 /* << 688 * On x86 it's required to boot all lo << 689 * that the init code can get a chance << 690 * CPU. Otherwise, a broadcasted MCE o << 691 * core will shutdown the machine. << 692 */ << 693 return !cpumask_test_cpu(cpu, &cpus_bo << 694 } << 695 << 696 /* Returns true if SMT is supported and not fo << 697 bool cpu_smt_possible(void) << 698 { << 699 return cpu_smt_control != CPU_SMT_FORC << 700 cpu_smt_control != CPU_SMT_NOT << 701 } << 702 EXPORT_SYMBOL_GPL(cpu_smt_possible); << 703 << 704 #else << 705 static inline bool cpu_bootable(unsigned int c << 706 #endif << 707 << 708 static inline enum cpuhp_state 349 static inline enum cpuhp_state 709 cpuhp_set_state(int cpu, struct cpuhp_cpu_stat !! 350 cpuhp_set_state(struct cpuhp_cpu_state *st, enum cpuhp_state target) 710 { 351 { 711 enum cpuhp_state prev_state = st->stat 352 enum cpuhp_state prev_state = st->state; 712 bool bringup = st->state < target; << 713 353 714 st->rollback = false; 354 st->rollback = false; 715 st->last = NULL; 355 st->last = NULL; 716 356 717 st->target = target; 357 st->target = target; 718 st->single = false; 358 st->single = false; 719 st->bringup = bringup; !! 359 st->bringup = st->state < target; 720 if (cpu_dying(cpu) != !bringup) << 721 set_cpu_dying(cpu, !bringup); << 722 360 723 return prev_state; 361 return prev_state; 724 } 362 } 725 363 726 static inline void 364 static inline void 727 cpuhp_reset_state(int cpu, struct cpuhp_cpu_st !! 365 cpuhp_reset_state(struct cpuhp_cpu_state *st, enum cpuhp_state prev_state) 728 enum cpuhp_state prev_state) << 729 { 366 { 730 bool bringup = !st->bringup; << 731 << 732 st->target = prev_state; << 733 << 734 /* << 735 * Already rolling back. No need inver << 736 * the current state. << 737 */ << 738 if (st->rollback) << 739 return; << 740 << 741 st->rollback = true; 367 st->rollback = true; 742 368 743 /* 369 /* 744 * If we have st->last we need to undo 370 * If we have st->last we need to undo partial multi_instance of this 745 * state first. Otherwise start undo a 371 * state first. Otherwise start undo at the previous state. 746 */ 372 */ 747 if (!st->last) { 373 if (!st->last) { 748 if (st->bringup) 374 if (st->bringup) 749 st->state--; 375 st->state--; 750 else 376 else 751 st->state++; 377 st->state++; 752 } 378 } 753 379 754 st->bringup = bringup; !! 380 st->target = prev_state; 755 if (cpu_dying(cpu) != !bringup) !! 381 st->bringup = !st->bringup; 756 set_cpu_dying(cpu, !bringup); << 757 } 382 } 758 383 759 /* Regular hotplug invocation of the AP hotplu 384 /* Regular hotplug invocation of the AP hotplug thread */ 760 static void __cpuhp_kick_ap(struct cpuhp_cpu_s 385 static void __cpuhp_kick_ap(struct cpuhp_cpu_state *st) 761 { 386 { 762 if (!st->single && st->state == st->ta 387 if (!st->single && st->state == st->target) 763 return; 388 return; 764 389 765 st->result = 0; 390 st->result = 0; 766 /* 391 /* 767 * Make sure the above stores are visi 392 * Make sure the above stores are visible before should_run becomes 768 * true. Paired with the mb() above in 393 * true. Paired with the mb() above in cpuhp_thread_fun() 769 */ 394 */ 770 smp_mb(); 395 smp_mb(); 771 st->should_run = true; 396 st->should_run = true; 772 wake_up_process(st->thread); 397 wake_up_process(st->thread); 773 wait_for_ap_thread(st, st->bringup); 398 wait_for_ap_thread(st, st->bringup); 774 } 399 } 775 400 776 static int cpuhp_kick_ap(int cpu, struct cpuhp !! 401 static int cpuhp_kick_ap(struct cpuhp_cpu_state *st, enum cpuhp_state target) 777 enum cpuhp_state targ << 778 { 402 { 779 enum cpuhp_state prev_state; 403 enum cpuhp_state prev_state; 780 int ret; 404 int ret; 781 405 782 prev_state = cpuhp_set_state(cpu, st, !! 406 prev_state = cpuhp_set_state(st, target); 783 __cpuhp_kick_ap(st); 407 __cpuhp_kick_ap(st); 784 if ((ret = st->result)) { 408 if ((ret = st->result)) { 785 cpuhp_reset_state(cpu, st, pre !! 409 cpuhp_reset_state(st, prev_state); 786 __cpuhp_kick_ap(st); 410 __cpuhp_kick_ap(st); 787 } 411 } 788 412 789 return ret; 413 return ret; 790 } 414 } 791 415 792 static int bringup_wait_for_ap_online(unsigned !! 416 static int bringup_wait_for_ap(unsigned int cpu) 793 { 417 { 794 struct cpuhp_cpu_state *st = per_cpu_p 418 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 795 419 796 /* Wait for the CPU to reach CPUHP_AP_ 420 /* Wait for the CPU to reach CPUHP_AP_ONLINE_IDLE */ 797 wait_for_ap_thread(st, true); 421 wait_for_ap_thread(st, true); 798 if (WARN_ON_ONCE((!cpu_online(cpu)))) 422 if (WARN_ON_ONCE((!cpu_online(cpu)))) 799 return -ECANCELED; 423 return -ECANCELED; 800 424 801 /* Unpark the hotplug thread of the ta !! 425 /* Unpark the stopper thread and the hotplug thread of the target cpu */ >> 426 stop_machine_unpark(cpu); 802 kthread_unpark(st->thread); 427 kthread_unpark(st->thread); 803 428 804 /* << 805 * SMT soft disabling on X86 requires << 806 * BIOS 'wait for SIPI' state in order << 807 * CPU marked itself as booted_once in << 808 * cpu_bootable() check will now retur << 809 * primary sibling. << 810 */ << 811 if (!cpu_bootable(cpu)) << 812 return -ECANCELED; << 813 return 0; << 814 } << 815 << 816 #ifdef CONFIG_HOTPLUG_SPLIT_STARTUP << 817 static int cpuhp_kick_ap_alive(unsigned int cp << 818 { << 819 if (!cpuhp_can_boot_ap(cpu)) << 820 return -EAGAIN; << 821 << 822 return arch_cpuhp_kick_ap_alive(cpu, i << 823 } << 824 << 825 static int cpuhp_bringup_ap(unsigned int cpu) << 826 { << 827 struct cpuhp_cpu_state *st = per_cpu_p << 828 int ret; << 829 << 830 /* << 831 * Some architectures have to walk the << 832 * setup the vector space for the cpu << 833 * Prevent irq alloc/free across the b << 834 */ << 835 irq_lock_sparse(); << 836 << 837 ret = cpuhp_bp_sync_alive(cpu); << 838 if (ret) << 839 goto out_unlock; << 840 << 841 ret = bringup_wait_for_ap_online(cpu); << 842 if (ret) << 843 goto out_unlock; << 844 << 845 irq_unlock_sparse(); << 846 << 847 if (st->target <= CPUHP_AP_ONLINE_IDLE 429 if (st->target <= CPUHP_AP_ONLINE_IDLE) 848 return 0; 430 return 0; 849 431 850 return cpuhp_kick_ap(cpu, st, st->targ !! 432 return cpuhp_kick_ap(st, st->target); 851 << 852 out_unlock: << 853 irq_unlock_sparse(); << 854 return ret; << 855 } 433 } 856 #else !! 434 857 static int bringup_cpu(unsigned int cpu) 435 static int bringup_cpu(unsigned int cpu) 858 { 436 { 859 struct cpuhp_cpu_state *st = per_cpu_p << 860 struct task_struct *idle = idle_thread 437 struct task_struct *idle = idle_thread_get(cpu); 861 int ret; 438 int ret; 862 439 863 if (!cpuhp_can_boot_ap(cpu)) << 864 return -EAGAIN; << 865 << 866 /* 440 /* 867 * Some architectures have to walk the 441 * Some architectures have to walk the irq descriptors to 868 * setup the vector space for the cpu 442 * setup the vector space for the cpu which comes online. 869 * !! 443 * Prevent irq alloc/free across the bringup. 870 * Prevent irq alloc/free across the b << 871 * sparse irq lock. Hold it until the << 872 * startup in cpuhp_online_idle() whic << 873 * intermediate synchronization points << 874 */ 444 */ 875 irq_lock_sparse(); 445 irq_lock_sparse(); 876 446 >> 447 /* Arch-specific enabling code. */ 877 ret = __cpu_up(cpu, idle); 448 ret = __cpu_up(cpu, idle); 878 if (ret) << 879 goto out_unlock; << 880 << 881 ret = cpuhp_bp_sync_alive(cpu); << 882 if (ret) << 883 goto out_unlock; << 884 << 885 ret = bringup_wait_for_ap_online(cpu); << 886 if (ret) << 887 goto out_unlock; << 888 << 889 irq_unlock_sparse(); 449 irq_unlock_sparse(); 890 !! 450 if (ret) 891 if (st->target <= CPUHP_AP_ONLINE_IDLE !! 451 return ret; 892 return 0; !! 452 return bringup_wait_for_ap(cpu); 893 << 894 return cpuhp_kick_ap(cpu, st, st->targ << 895 << 896 out_unlock: << 897 irq_unlock_sparse(); << 898 return ret; << 899 } << 900 #endif << 901 << 902 static int finish_cpu(unsigned int cpu) << 903 { << 904 struct task_struct *idle = idle_thread << 905 struct mm_struct *mm = idle->active_mm << 906 << 907 /* << 908 * idle_task_exit() will have switched << 909 * clean up any remaining active_mm st << 910 */ << 911 if (mm != &init_mm) << 912 idle->active_mm = &init_mm; << 913 mmdrop_lazy_tlb(mm); << 914 return 0; << 915 } 453 } 916 454 917 /* 455 /* 918 * Hotplug state machine related functions 456 * Hotplug state machine related functions 919 */ 457 */ 920 458 921 /* !! 459 static void undo_cpu_up(unsigned int cpu, struct cpuhp_cpu_state *st) 922 * Get the next state to run. Empty ones will << 923 * state must be run. << 924 * << 925 * st->state will be modified ahead of time, t << 926 * has already ran. << 927 */ << 928 static bool cpuhp_next_state(bool bringup, << 929 enum cpuhp_state << 930 struct cpuhp_cpu_ << 931 enum cpuhp_state << 932 { << 933 do { << 934 if (bringup) { << 935 if (st->state >= targe << 936 return false; << 937 << 938 *state_to_run = ++st-> << 939 } else { << 940 if (st->state <= targe << 941 return false; << 942 << 943 *state_to_run = st->st << 944 } << 945 << 946 if (!cpuhp_step_empty(bringup, << 947 break; << 948 } while (true); << 949 << 950 return true; << 951 } << 952 << 953 static int __cpuhp_invoke_callback_range(bool << 954 unsig << 955 struc << 956 enum << 957 bool << 958 { 460 { 959 enum cpuhp_state state; !! 461 for (st->state--; st->state > st->target; st->state--) { 960 int ret = 0; !! 462 struct cpuhp_step *step = cpuhp_get_step(st->state); 961 << 962 while (cpuhp_next_state(bringup, &stat << 963 int err; << 964 << 965 err = cpuhp_invoke_callback(cp << 966 if (!err) << 967 continue; << 968 463 969 if (nofail) { !! 464 if (!step->skip_onerr) 970 pr_warn("CPU %u %s sta !! 465 cpuhp_invoke_callback(cpu, st->state, false, NULL, NULL); 971 cpu, bringup ? << 972 cpuhp_get_step << 973 st->state, err << 974 ret = -1; << 975 } else { << 976 ret = err; << 977 break; << 978 } << 979 } 466 } 980 << 981 return ret; << 982 } << 983 << 984 static inline int cpuhp_invoke_callback_range( << 985 << 986 << 987 << 988 { << 989 return __cpuhp_invoke_callback_range(b << 990 } << 991 << 992 static inline void cpuhp_invoke_callback_range << 993 << 994 << 995 << 996 { << 997 __cpuhp_invoke_callback_range(bringup, << 998 } << 999 << 1000 static inline bool can_rollback_cpu(struct cp << 1001 { << 1002 if (IS_ENABLED(CONFIG_HOTPLUG_CPU)) << 1003 return true; << 1004 /* << 1005 * When CPU hotplug is disabled, then << 1006 * possible because takedown_cpu() an << 1007 * subsystem specific mechanisms are << 1008 * which would be completely unplugge << 1009 * in the current state. << 1010 */ << 1011 return st->state <= CPUHP_BRINGUP_CPU << 1012 } 467 } 1013 468 1014 static int cpuhp_up_callbacks(unsigned int cp 469 static int cpuhp_up_callbacks(unsigned int cpu, struct cpuhp_cpu_state *st, 1015 enum cpuhp_stat 470 enum cpuhp_state target) 1016 { 471 { 1017 enum cpuhp_state prev_state = st->sta 472 enum cpuhp_state prev_state = st->state; 1018 int ret = 0; 473 int ret = 0; 1019 474 1020 ret = cpuhp_invoke_callback_range(tru !! 475 while (st->state < target) { 1021 if (ret) { !! 476 st->state++; 1022 pr_debug("CPU UP failed (%d) !! 477 ret = cpuhp_invoke_callback(cpu, st->state, true, NULL, NULL); 1023 ret, cpu, cpuhp_get_ !! 478 if (ret) { 1024 st->state); !! 479 st->target = prev_state; 1025 !! 480 undo_cpu_up(cpu, st); 1026 cpuhp_reset_state(cpu, st, pr !! 481 break; 1027 if (can_rollback_cpu(st)) !! 482 } 1028 WARN_ON(cpuhp_invoke_ << 1029 << 1030 } 483 } 1031 return ret; 484 return ret; 1032 } 485 } 1033 486 1034 /* 487 /* 1035 * The cpu hotplug threads manage the bringup 488 * The cpu hotplug threads manage the bringup and teardown of the cpus 1036 */ 489 */ >> 490 static void cpuhp_create(unsigned int cpu) >> 491 { >> 492 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); >> 493 >> 494 init_completion(&st->done_up); >> 495 init_completion(&st->done_down); >> 496 } >> 497 1037 static int cpuhp_should_run(unsigned int cpu) 498 static int cpuhp_should_run(unsigned int cpu) 1038 { 499 { 1039 struct cpuhp_cpu_state *st = this_cpu 500 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state); 1040 501 1041 return st->should_run; 502 return st->should_run; 1042 } 503 } 1043 504 1044 /* 505 /* 1045 * Execute teardown/startup callbacks on the 506 * Execute teardown/startup callbacks on the plugged cpu. Also used to invoke 1046 * callbacks when a state gets [un]installed 507 * callbacks when a state gets [un]installed at runtime. 1047 * 508 * 1048 * Each invocation of this function by the sm 509 * Each invocation of this function by the smpboot thread does a single AP 1049 * state callback. 510 * state callback. 1050 * 511 * 1051 * It has 3 modes of operation: 512 * It has 3 modes of operation: 1052 * - single: runs st->cb_state 513 * - single: runs st->cb_state 1053 * - up: runs ++st->state, while st->sta 514 * - up: runs ++st->state, while st->state < st->target 1054 * - down: runs st->state--, while st->sta 515 * - down: runs st->state--, while st->state > st->target 1055 * 516 * 1056 * When complete or on error, should_run is c 517 * When complete or on error, should_run is cleared and the completion is fired. 1057 */ 518 */ 1058 static void cpuhp_thread_fun(unsigned int cpu 519 static void cpuhp_thread_fun(unsigned int cpu) 1059 { 520 { 1060 struct cpuhp_cpu_state *st = this_cpu 521 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state); 1061 bool bringup = st->bringup; 522 bool bringup = st->bringup; 1062 enum cpuhp_state state; 523 enum cpuhp_state state; 1063 524 1064 if (WARN_ON_ONCE(!st->should_run)) << 1065 return; << 1066 << 1067 /* 525 /* 1068 * ACQUIRE for the cpuhp_should_run() 526 * ACQUIRE for the cpuhp_should_run() load of ->should_run. Ensures 1069 * that if we see ->should_run we als 527 * that if we see ->should_run we also see the rest of the state. 1070 */ 528 */ 1071 smp_mb(); 529 smp_mb(); 1072 530 1073 /* !! 531 if (WARN_ON_ONCE(!st->should_run)) 1074 * The BP holds the hotplug lock, but !! 532 return; 1075 * ensure that anybody asserting the !! 533 1076 * it so. << 1077 */ << 1078 lockdep_acquire_cpus_lock(); << 1079 cpuhp_lock_acquire(bringup); 534 cpuhp_lock_acquire(bringup); 1080 535 1081 if (st->single) { 536 if (st->single) { 1082 state = st->cb_state; 537 state = st->cb_state; 1083 st->should_run = false; 538 st->should_run = false; 1084 } else { 539 } else { 1085 st->should_run = cpuhp_next_s !! 540 if (bringup) { 1086 if (!st->should_run) !! 541 st->state++; 1087 goto end; !! 542 state = st->state; >> 543 st->should_run = (st->state < st->target); >> 544 WARN_ON_ONCE(st->state > st->target); >> 545 } else { >> 546 state = st->state; >> 547 st->state--; >> 548 st->should_run = (st->state > st->target); >> 549 WARN_ON_ONCE(st->state < st->target); >> 550 } 1088 } 551 } 1089 552 1090 WARN_ON_ONCE(!cpuhp_is_ap_state(state 553 WARN_ON_ONCE(!cpuhp_is_ap_state(state)); 1091 554 >> 555 if (st->rollback) { >> 556 struct cpuhp_step *step = cpuhp_get_step(state); >> 557 if (step->skip_onerr) >> 558 goto next; >> 559 } >> 560 1092 if (cpuhp_is_atomic_state(state)) { 561 if (cpuhp_is_atomic_state(state)) { 1093 local_irq_disable(); 562 local_irq_disable(); 1094 st->result = cpuhp_invoke_cal 563 st->result = cpuhp_invoke_callback(cpu, state, bringup, st->node, &st->last); 1095 local_irq_enable(); 564 local_irq_enable(); 1096 565 1097 /* 566 /* 1098 * STARTING/DYING must not fa 567 * STARTING/DYING must not fail! 1099 */ 568 */ 1100 WARN_ON_ONCE(st->result); 569 WARN_ON_ONCE(st->result); 1101 } else { 570 } else { 1102 st->result = cpuhp_invoke_cal 571 st->result = cpuhp_invoke_callback(cpu, state, bringup, st->node, &st->last); 1103 } 572 } 1104 573 1105 if (st->result) { 574 if (st->result) { 1106 /* 575 /* 1107 * If we fail on a rollback, 576 * If we fail on a rollback, we're up a creek without no 1108 * paddle, no way forward, no 577 * paddle, no way forward, no way back. We loose, thanks for 1109 * playing. 578 * playing. 1110 */ 579 */ 1111 WARN_ON_ONCE(st->rollback); 580 WARN_ON_ONCE(st->rollback); 1112 st->should_run = false; 581 st->should_run = false; 1113 } 582 } 1114 583 1115 end: !! 584 next: 1116 cpuhp_lock_release(bringup); 585 cpuhp_lock_release(bringup); 1117 lockdep_release_cpus_lock(); << 1118 586 1119 if (!st->should_run) 587 if (!st->should_run) 1120 complete_ap_thread(st, bringu 588 complete_ap_thread(st, bringup); 1121 } 589 } 1122 590 1123 /* Invoke a single callback on a remote cpu * 591 /* Invoke a single callback on a remote cpu */ 1124 static int 592 static int 1125 cpuhp_invoke_ap_callback(int cpu, enum cpuhp_ 593 cpuhp_invoke_ap_callback(int cpu, enum cpuhp_state state, bool bringup, 1126 struct hlist_node *n 594 struct hlist_node *node) 1127 { 595 { 1128 struct cpuhp_cpu_state *st = per_cpu_ 596 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 1129 int ret; 597 int ret; 1130 598 1131 if (!cpu_online(cpu)) 599 if (!cpu_online(cpu)) 1132 return 0; 600 return 0; 1133 601 1134 cpuhp_lock_acquire(false); 602 cpuhp_lock_acquire(false); 1135 cpuhp_lock_release(false); 603 cpuhp_lock_release(false); 1136 604 1137 cpuhp_lock_acquire(true); 605 cpuhp_lock_acquire(true); 1138 cpuhp_lock_release(true); 606 cpuhp_lock_release(true); 1139 607 1140 /* 608 /* 1141 * If we are up and running, use the 609 * If we are up and running, use the hotplug thread. For early calls 1142 * we invoke the thread function dire 610 * we invoke the thread function directly. 1143 */ 611 */ 1144 if (!st->thread) 612 if (!st->thread) 1145 return cpuhp_invoke_callback( 613 return cpuhp_invoke_callback(cpu, state, bringup, node, NULL); 1146 614 1147 st->rollback = false; 615 st->rollback = false; 1148 st->last = NULL; 616 st->last = NULL; 1149 617 1150 st->node = node; 618 st->node = node; 1151 st->bringup = bringup; 619 st->bringup = bringup; 1152 st->cb_state = state; 620 st->cb_state = state; 1153 st->single = true; 621 st->single = true; 1154 622 1155 __cpuhp_kick_ap(st); 623 __cpuhp_kick_ap(st); 1156 624 1157 /* 625 /* 1158 * If we failed and did a partial, do 626 * If we failed and did a partial, do a rollback. 1159 */ 627 */ 1160 if ((ret = st->result) && st->last) { 628 if ((ret = st->result) && st->last) { 1161 st->rollback = true; 629 st->rollback = true; 1162 st->bringup = !bringup; 630 st->bringup = !bringup; 1163 631 1164 __cpuhp_kick_ap(st); 632 __cpuhp_kick_ap(st); 1165 } 633 } 1166 634 1167 /* 635 /* 1168 * Clean up the leftovers so the next 636 * Clean up the leftovers so the next hotplug operation wont use stale 1169 * data. 637 * data. 1170 */ 638 */ 1171 st->node = st->last = NULL; 639 st->node = st->last = NULL; 1172 return ret; 640 return ret; 1173 } 641 } 1174 642 1175 static int cpuhp_kick_ap_work(unsigned int cp 643 static int cpuhp_kick_ap_work(unsigned int cpu) 1176 { 644 { 1177 struct cpuhp_cpu_state *st = per_cpu_ 645 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 1178 enum cpuhp_state prev_state = st->sta 646 enum cpuhp_state prev_state = st->state; 1179 int ret; 647 int ret; 1180 648 1181 cpuhp_lock_acquire(false); 649 cpuhp_lock_acquire(false); 1182 cpuhp_lock_release(false); 650 cpuhp_lock_release(false); 1183 651 1184 cpuhp_lock_acquire(true); 652 cpuhp_lock_acquire(true); 1185 cpuhp_lock_release(true); 653 cpuhp_lock_release(true); 1186 654 1187 trace_cpuhp_enter(cpu, st->target, pr 655 trace_cpuhp_enter(cpu, st->target, prev_state, cpuhp_kick_ap_work); 1188 ret = cpuhp_kick_ap(cpu, st, st->targ !! 656 ret = cpuhp_kick_ap(st, st->target); 1189 trace_cpuhp_exit(cpu, st->state, prev 657 trace_cpuhp_exit(cpu, st->state, prev_state, ret); 1190 658 1191 return ret; 659 return ret; 1192 } 660 } 1193 661 1194 static struct smp_hotplug_thread cpuhp_thread 662 static struct smp_hotplug_thread cpuhp_threads = { 1195 .store = &cpuhp_stat 663 .store = &cpuhp_state.thread, >> 664 .create = &cpuhp_create, 1196 .thread_should_run = cpuhp_shoul 665 .thread_should_run = cpuhp_should_run, 1197 .thread_fn = cpuhp_threa 666 .thread_fn = cpuhp_thread_fun, 1198 .thread_comm = "cpuhp/%u", 667 .thread_comm = "cpuhp/%u", 1199 .selfparking = true, 668 .selfparking = true, 1200 }; 669 }; 1201 670 1202 static __init void cpuhp_init_state(void) << 1203 { << 1204 struct cpuhp_cpu_state *st; << 1205 int cpu; << 1206 << 1207 for_each_possible_cpu(cpu) { << 1208 st = per_cpu_ptr(&cpuhp_state << 1209 init_completion(&st->done_up) << 1210 init_completion(&st->done_dow << 1211 } << 1212 } << 1213 << 1214 void __init cpuhp_threads_init(void) 671 void __init cpuhp_threads_init(void) 1215 { 672 { 1216 cpuhp_init_state(); << 1217 BUG_ON(smpboot_register_percpu_thread 673 BUG_ON(smpboot_register_percpu_thread(&cpuhp_threads)); 1218 kthread_unpark(this_cpu_read(cpuhp_st 674 kthread_unpark(this_cpu_read(cpuhp_state.thread)); 1219 } 675 } 1220 676 1221 #ifdef CONFIG_HOTPLUG_CPU 677 #ifdef CONFIG_HOTPLUG_CPU 1222 #ifndef arch_clear_mm_cpumask_cpu << 1223 #define arch_clear_mm_cpumask_cpu(cpu, mm) cp << 1224 #endif << 1225 << 1226 /** 678 /** 1227 * clear_tasks_mm_cpumask - Safely clear task 679 * clear_tasks_mm_cpumask - Safely clear tasks' mm_cpumask for a CPU 1228 * @cpu: a CPU id 680 * @cpu: a CPU id 1229 * 681 * 1230 * This function walks all processes, finds a 682 * This function walks all processes, finds a valid mm struct for each one and 1231 * then clears a corresponding bit in mm's cp 683 * then clears a corresponding bit in mm's cpumask. While this all sounds 1232 * trivial, there are various non-obvious cor 684 * trivial, there are various non-obvious corner cases, which this function 1233 * tries to solve in a safe manner. 685 * tries to solve in a safe manner. 1234 * 686 * 1235 * Also note that the function uses a somewha 687 * Also note that the function uses a somewhat relaxed locking scheme, so it may 1236 * be called only for an already offlined CPU 688 * be called only for an already offlined CPU. 1237 */ 689 */ 1238 void clear_tasks_mm_cpumask(int cpu) 690 void clear_tasks_mm_cpumask(int cpu) 1239 { 691 { 1240 struct task_struct *p; 692 struct task_struct *p; 1241 693 1242 /* 694 /* 1243 * This function is called after the 695 * This function is called after the cpu is taken down and marked 1244 * offline, so its not like new tasks 696 * offline, so its not like new tasks will ever get this cpu set in 1245 * their mm mask. -- Peter Zijlstra 697 * their mm mask. -- Peter Zijlstra 1246 * Thus, we may use rcu_read_lock() h 698 * Thus, we may use rcu_read_lock() here, instead of grabbing 1247 * full-fledged tasklist_lock. 699 * full-fledged tasklist_lock. 1248 */ 700 */ 1249 WARN_ON(cpu_online(cpu)); 701 WARN_ON(cpu_online(cpu)); 1250 rcu_read_lock(); 702 rcu_read_lock(); 1251 for_each_process(p) { 703 for_each_process(p) { 1252 struct task_struct *t; 704 struct task_struct *t; 1253 705 1254 /* 706 /* 1255 * Main thread might exit, bu 707 * Main thread might exit, but other threads may still have 1256 * a valid mm. Find one. 708 * a valid mm. Find one. 1257 */ 709 */ 1258 t = find_lock_task_mm(p); 710 t = find_lock_task_mm(p); 1259 if (!t) 711 if (!t) 1260 continue; 712 continue; 1261 arch_clear_mm_cpumask_cpu(cpu !! 713 cpumask_clear_cpu(cpu, mm_cpumask(t->mm)); 1262 task_unlock(t); 714 task_unlock(t); 1263 } 715 } 1264 rcu_read_unlock(); 716 rcu_read_unlock(); 1265 } 717 } 1266 718 1267 /* Take this CPU down. */ 719 /* Take this CPU down. */ 1268 static int take_cpu_down(void *_param) 720 static int take_cpu_down(void *_param) 1269 { 721 { 1270 struct cpuhp_cpu_state *st = this_cpu 722 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state); 1271 enum cpuhp_state target = max((int)st 723 enum cpuhp_state target = max((int)st->target, CPUHP_AP_OFFLINE); 1272 int err, cpu = smp_processor_id(); 724 int err, cpu = smp_processor_id(); >> 725 int ret; 1273 726 1274 /* Ensure this CPU doesn't handle any 727 /* Ensure this CPU doesn't handle any more interrupts. */ 1275 err = __cpu_disable(); 728 err = __cpu_disable(); 1276 if (err < 0) 729 if (err < 0) 1277 return err; 730 return err; 1278 731 1279 /* 732 /* 1280 * Must be called from CPUHP_TEARDOWN !! 733 * We get here while we are in CPUHP_TEARDOWN_CPU state and we must not 1281 * down, that the current state is CP !! 734 * do this step again. 1282 */ 735 */ 1283 WARN_ON(st->state != (CPUHP_TEARDOWN_ !! 736 WARN_ON(st->state != CPUHP_TEARDOWN_CPU); 1284 !! 737 st->state--; 1285 /* !! 738 /* Invoke the former CPU_DYING callbacks */ 1286 * Invoke the former CPU_DYING callba !! 739 for (; st->state > target; st->state--) { 1287 */ !! 740 ret = cpuhp_invoke_callback(cpu, st->state, false, NULL, NULL); 1288 cpuhp_invoke_callback_range_nofail(fa !! 741 /* >> 742 * DYING must not fail! >> 743 */ >> 744 WARN_ON_ONCE(ret); >> 745 } 1289 746 >> 747 /* Give up timekeeping duties */ >> 748 tick_handover_do_timer(); 1290 /* Park the stopper thread */ 749 /* Park the stopper thread */ 1291 stop_machine_park(cpu); 750 stop_machine_park(cpu); 1292 return 0; 751 return 0; 1293 } 752 } 1294 753 1295 static int takedown_cpu(unsigned int cpu) 754 static int takedown_cpu(unsigned int cpu) 1296 { 755 { 1297 struct cpuhp_cpu_state *st = per_cpu_ 756 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 1298 int err; 757 int err; 1299 758 1300 /* Park the smpboot threads */ 759 /* Park the smpboot threads */ 1301 kthread_park(st->thread); !! 760 kthread_park(per_cpu_ptr(&cpuhp_state, cpu)->thread); >> 761 smpboot_park_threads(cpu); 1302 762 1303 /* 763 /* 1304 * Prevent irq alloc/free while the d 764 * Prevent irq alloc/free while the dying cpu reorganizes the 1305 * interrupt affinities. 765 * interrupt affinities. 1306 */ 766 */ 1307 irq_lock_sparse(); 767 irq_lock_sparse(); 1308 768 1309 /* 769 /* 1310 * So now all preempt/rcu users must 770 * So now all preempt/rcu users must observe !cpu_active(). 1311 */ 771 */ 1312 err = stop_machine_cpuslocked(take_cp 772 err = stop_machine_cpuslocked(take_cpu_down, NULL, cpumask_of(cpu)); 1313 if (err) { 773 if (err) { 1314 /* CPU refused to die */ 774 /* CPU refused to die */ 1315 irq_unlock_sparse(); 775 irq_unlock_sparse(); 1316 /* Unpark the hotplug thread 776 /* Unpark the hotplug thread so we can rollback there */ 1317 kthread_unpark(st->thread); !! 777 kthread_unpark(per_cpu_ptr(&cpuhp_state, cpu)->thread); 1318 return err; 778 return err; 1319 } 779 } 1320 BUG_ON(cpu_online(cpu)); 780 BUG_ON(cpu_online(cpu)); 1321 781 1322 /* 782 /* 1323 * The teardown callback for CPUHP_AP 783 * The teardown callback for CPUHP_AP_SCHED_STARTING will have removed 1324 * all runnable tasks from the CPU, t 784 * all runnable tasks from the CPU, there's only the idle task left now 1325 * that the migration thread is done 785 * that the migration thread is done doing the stop_machine thing. 1326 * 786 * 1327 * Wait for the stop thread to go awa 787 * Wait for the stop thread to go away. 1328 */ 788 */ 1329 wait_for_ap_thread(st, false); 789 wait_for_ap_thread(st, false); 1330 BUG_ON(st->state != CPUHP_AP_IDLE_DEA 790 BUG_ON(st->state != CPUHP_AP_IDLE_DEAD); 1331 791 1332 /* Interrupts are moved away from the 792 /* Interrupts are moved away from the dying cpu, reenable alloc/free */ 1333 irq_unlock_sparse(); 793 irq_unlock_sparse(); 1334 794 1335 hotplug_cpu__broadcast_tick_pull(cpu) 795 hotplug_cpu__broadcast_tick_pull(cpu); 1336 /* This actually kills the CPU. */ 796 /* This actually kills the CPU. */ 1337 __cpu_die(cpu); 797 __cpu_die(cpu); 1338 798 1339 cpuhp_bp_sync_dead(cpu); << 1340 << 1341 tick_cleanup_dead_cpu(cpu); 799 tick_cleanup_dead_cpu(cpu); 1342 << 1343 /* << 1344 * Callbacks must be re-integrated ri << 1345 * Otherwise an RCU callback could bl << 1346 * waiting for its completion. << 1347 */ << 1348 rcutree_migrate_callbacks(cpu); 800 rcutree_migrate_callbacks(cpu); 1349 << 1350 return 0; 801 return 0; 1351 } 802 } 1352 803 1353 static void cpuhp_complete_idle_dead(void *ar 804 static void cpuhp_complete_idle_dead(void *arg) 1354 { 805 { 1355 struct cpuhp_cpu_state *st = arg; 806 struct cpuhp_cpu_state *st = arg; 1356 807 1357 complete_ap_thread(st, false); 808 complete_ap_thread(st, false); 1358 } 809 } 1359 810 1360 void cpuhp_report_idle_dead(void) 811 void cpuhp_report_idle_dead(void) 1361 { 812 { 1362 struct cpuhp_cpu_state *st = this_cpu 813 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state); 1363 814 1364 BUG_ON(st->state != CPUHP_AP_OFFLINE) 815 BUG_ON(st->state != CPUHP_AP_OFFLINE); 1365 tick_assert_timekeeping_handover(); !! 816 rcu_report_dead(smp_processor_id()); 1366 rcutree_report_cpu_dead(); << 1367 st->state = CPUHP_AP_IDLE_DEAD; 817 st->state = CPUHP_AP_IDLE_DEAD; 1368 /* 818 /* 1369 * We cannot call complete after rcut !! 819 * We cannot call complete after rcu_report_dead() so we delegate it 1370 * to an online cpu. 820 * to an online cpu. 1371 */ 821 */ 1372 smp_call_function_single(cpumask_firs 822 smp_call_function_single(cpumask_first(cpu_online_mask), 1373 cpuhp_comple 823 cpuhp_complete_idle_dead, st, 0); 1374 } 824 } 1375 825 >> 826 static void undo_cpu_down(unsigned int cpu, struct cpuhp_cpu_state *st) >> 827 { >> 828 for (st->state++; st->state < st->target; st->state++) { >> 829 struct cpuhp_step *step = cpuhp_get_step(st->state); >> 830 >> 831 if (!step->skip_onerr) >> 832 cpuhp_invoke_callback(cpu, st->state, true, NULL, NULL); >> 833 } >> 834 } >> 835 1376 static int cpuhp_down_callbacks(unsigned int 836 static int cpuhp_down_callbacks(unsigned int cpu, struct cpuhp_cpu_state *st, 1377 enum cpuhp_st 837 enum cpuhp_state target) 1378 { 838 { 1379 enum cpuhp_state prev_state = st->sta 839 enum cpuhp_state prev_state = st->state; 1380 int ret = 0; 840 int ret = 0; 1381 841 1382 ret = cpuhp_invoke_callback_range(fal !! 842 for (; st->state > target; st->state--) { 1383 if (ret) { !! 843 ret = cpuhp_invoke_callback(cpu, st->state, false, NULL, NULL); 1384 pr_debug("CPU DOWN failed (%d !! 844 if (ret) { 1385 ret, cpu, cpuhp_get_ !! 845 st->target = prev_state; 1386 st->state); !! 846 undo_cpu_down(cpu, st); 1387 !! 847 break; 1388 cpuhp_reset_state(cpu, st, pr !! 848 } 1389 << 1390 if (st->state < prev_state) << 1391 WARN_ON(cpuhp_invoke_ << 1392 << 1393 } 849 } 1394 << 1395 return ret; 850 return ret; 1396 } 851 } 1397 852 1398 /* Requires cpu_add_remove_lock to be held */ 853 /* Requires cpu_add_remove_lock to be held */ 1399 static int __ref _cpu_down(unsigned int cpu, 854 static int __ref _cpu_down(unsigned int cpu, int tasks_frozen, 1400 enum cpuhp_state t 855 enum cpuhp_state target) 1401 { 856 { 1402 struct cpuhp_cpu_state *st = per_cpu_ 857 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 1403 int prev_state, ret = 0; 858 int prev_state, ret = 0; 1404 859 1405 if (num_online_cpus() == 1) 860 if (num_online_cpus() == 1) 1406 return -EBUSY; 861 return -EBUSY; 1407 862 1408 if (!cpu_present(cpu)) 863 if (!cpu_present(cpu)) 1409 return -EINVAL; 864 return -EINVAL; 1410 865 1411 cpus_write_lock(); 866 cpus_write_lock(); 1412 867 1413 cpuhp_tasks_frozen = tasks_frozen; 868 cpuhp_tasks_frozen = tasks_frozen; 1414 869 1415 prev_state = cpuhp_set_state(cpu, st, !! 870 prev_state = cpuhp_set_state(st, target); 1416 /* 871 /* 1417 * If the current CPU state is in the 872 * If the current CPU state is in the range of the AP hotplug thread, 1418 * then we need to kick the thread. 873 * then we need to kick the thread. 1419 */ 874 */ 1420 if (st->state > CPUHP_TEARDOWN_CPU) { 875 if (st->state > CPUHP_TEARDOWN_CPU) { 1421 st->target = max((int)target, 876 st->target = max((int)target, CPUHP_TEARDOWN_CPU); 1422 ret = cpuhp_kick_ap_work(cpu) 877 ret = cpuhp_kick_ap_work(cpu); 1423 /* 878 /* 1424 * The AP side has done the e 879 * The AP side has done the error rollback already. Just 1425 * return the error code.. 880 * return the error code.. 1426 */ 881 */ 1427 if (ret) 882 if (ret) 1428 goto out; 883 goto out; 1429 884 1430 /* 885 /* 1431 * We might have stopped stil 886 * We might have stopped still in the range of the AP hotplug 1432 * thread. Nothing to do anym 887 * thread. Nothing to do anymore. 1433 */ 888 */ 1434 if (st->state > CPUHP_TEARDOW 889 if (st->state > CPUHP_TEARDOWN_CPU) 1435 goto out; 890 goto out; 1436 891 1437 st->target = target; 892 st->target = target; 1438 } 893 } 1439 /* 894 /* 1440 * The AP brought itself down to CPUH 895 * The AP brought itself down to CPUHP_TEARDOWN_CPU. So we need 1441 * to do the further cleanups. 896 * to do the further cleanups. 1442 */ 897 */ 1443 ret = cpuhp_down_callbacks(cpu, st, t 898 ret = cpuhp_down_callbacks(cpu, st, target); 1444 if (ret && st->state < prev_state) { !! 899 if (ret && st->state > CPUHP_TEARDOWN_CPU && st->state < prev_state) { 1445 if (st->state == CPUHP_TEARDO !! 900 cpuhp_reset_state(st, prev_state); 1446 cpuhp_reset_state(cpu !! 901 __cpuhp_kick_ap(st); 1447 __cpuhp_kick_ap(st); << 1448 } else { << 1449 WARN(1, "DEAD callbac << 1450 } << 1451 } 902 } 1452 903 1453 out: 904 out: 1454 cpus_write_unlock(); 905 cpus_write_unlock(); 1455 /* 906 /* 1456 * Do post unplug cleanup. This is st 907 * Do post unplug cleanup. This is still protected against 1457 * concurrent CPU hotplug via cpu_add 908 * concurrent CPU hotplug via cpu_add_remove_lock. 1458 */ 909 */ 1459 lockup_detector_cleanup(); 910 lockup_detector_cleanup(); 1460 arch_smt_update(); << 1461 return ret; 911 return ret; 1462 } 912 } 1463 913 1464 struct cpu_down_work { !! 914 static int do_cpu_down(unsigned int cpu, enum cpuhp_state target) 1465 unsigned int cpu; << 1466 enum cpuhp_state target; << 1467 }; << 1468 << 1469 static long __cpu_down_maps_locked(void *arg) << 1470 { 915 { 1471 struct cpu_down_work *work = arg; !! 916 int err; 1472 << 1473 return _cpu_down(work->cpu, 0, work-> << 1474 } << 1475 << 1476 static int cpu_down_maps_locked(unsigned int << 1477 { << 1478 struct cpu_down_work work = { .cpu = << 1479 917 1480 /* !! 918 cpu_maps_update_begin(); 1481 * If the platform does not support h << 1482 * differentiate it from a transient << 1483 */ << 1484 if (cpu_hotplug_offline_disabled) << 1485 return -EOPNOTSUPP; << 1486 if (cpu_hotplug_disabled) << 1487 return -EBUSY; << 1488 919 1489 /* !! 920 if (cpu_hotplug_disabled) { 1490 * Ensure that the control task does !! 921 err = -EBUSY; 1491 * CPU to prevent a deadlock against !! 922 goto out; 1492 * Also keep at least one housekeepin << 1493 * an empty sched_domain span. << 1494 */ << 1495 for_each_cpu_and(cpu, cpu_online_mask << 1496 if (cpu != work.cpu) << 1497 return work_on_cpu(cp << 1498 } 923 } 1499 return -EBUSY; << 1500 } << 1501 924 1502 static int cpu_down(unsigned int cpu, enum cp !! 925 err = _cpu_down(cpu, 0, target); 1503 { << 1504 int err; << 1505 926 1506 cpu_maps_update_begin(); !! 927 out: 1507 err = cpu_down_maps_locked(cpu, targe << 1508 cpu_maps_update_done(); 928 cpu_maps_update_done(); 1509 return err; 929 return err; 1510 } 930 } 1511 931 1512 /** !! 932 int cpu_down(unsigned int cpu) 1513 * cpu_device_down - Bring down a cpu device << 1514 * @dev: Pointer to the cpu device to offline << 1515 * << 1516 * This function is meant to be used by devic << 1517 * << 1518 * Other subsystems should use remove_cpu() i << 1519 * << 1520 * Return: %0 on success or a negative errno << 1521 */ << 1522 int cpu_device_down(struct device *dev) << 1523 { << 1524 return cpu_down(dev->id, CPUHP_OFFLIN << 1525 } << 1526 << 1527 int remove_cpu(unsigned int cpu) << 1528 { 933 { 1529 int ret; !! 934 return do_cpu_down(cpu, CPUHP_OFFLINE); 1530 << 1531 lock_device_hotplug(); << 1532 ret = device_offline(get_cpu_device(c << 1533 unlock_device_hotplug(); << 1534 << 1535 return ret; << 1536 } << 1537 EXPORT_SYMBOL_GPL(remove_cpu); << 1538 << 1539 void smp_shutdown_nonboot_cpus(unsigned int p << 1540 { << 1541 unsigned int cpu; << 1542 int error; << 1543 << 1544 cpu_maps_update_begin(); << 1545 << 1546 /* << 1547 * Make certain the cpu I'm about to << 1548 * << 1549 * This is inline to what migrate_to_ << 1550 */ << 1551 if (!cpu_online(primary_cpu)) << 1552 primary_cpu = cpumask_first(c << 1553 << 1554 for_each_online_cpu(cpu) { << 1555 if (cpu == primary_cpu) << 1556 continue; << 1557 << 1558 error = cpu_down_maps_locked( << 1559 if (error) { << 1560 pr_err("Failed to off << 1561 cpu, error); << 1562 break; << 1563 } << 1564 } << 1565 << 1566 /* << 1567 * Ensure all but the reboot CPU are << 1568 */ << 1569 BUG_ON(num_online_cpus() > 1); << 1570 << 1571 /* << 1572 * Make sure the CPUs won't be enable << 1573 * point. Kexec will reboot to a new << 1574 * everything along the way. << 1575 */ << 1576 cpu_hotplug_disabled++; << 1577 << 1578 cpu_maps_update_done(); << 1579 } 935 } >> 936 EXPORT_SYMBOL(cpu_down); 1580 937 1581 #else 938 #else 1582 #define takedown_cpu NULL 939 #define takedown_cpu NULL 1583 #endif /*CONFIG_HOTPLUG_CPU*/ 940 #endif /*CONFIG_HOTPLUG_CPU*/ 1584 941 1585 /** 942 /** 1586 * notify_cpu_starting(cpu) - Invoke the call 943 * notify_cpu_starting(cpu) - Invoke the callbacks on the starting CPU 1587 * @cpu: cpu that just started 944 * @cpu: cpu that just started 1588 * 945 * 1589 * It must be called by the arch code on the 946 * It must be called by the arch code on the new cpu, before the new cpu 1590 * enables interrupts and before the "boot" c 947 * enables interrupts and before the "boot" cpu returns from __cpu_up(). 1591 */ 948 */ 1592 void notify_cpu_starting(unsigned int cpu) 949 void notify_cpu_starting(unsigned int cpu) 1593 { 950 { 1594 struct cpuhp_cpu_state *st = per_cpu_ 951 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 1595 enum cpuhp_state target = min((int)st 952 enum cpuhp_state target = min((int)st->target, CPUHP_AP_ONLINE); >> 953 int ret; 1596 954 1597 rcutree_report_cpu_starting(cpu); !! 955 rcu_cpu_starting(cpu); /* Enables RCU usage on this CPU. */ 1598 cpumask_set_cpu(cpu, &cpus_booted_onc !! 956 while (st->state < target) { 1599 !! 957 st->state++; 1600 /* !! 958 ret = cpuhp_invoke_callback(cpu, st->state, true, NULL, NULL); 1601 * STARTING must not fail! !! 959 /* 1602 */ !! 960 * STARTING must not fail! 1603 cpuhp_invoke_callback_range_nofail(tr !! 961 */ >> 962 WARN_ON_ONCE(ret); >> 963 } 1604 } 964 } 1605 965 1606 /* 966 /* 1607 * Called from the idle task. Wake up the con 967 * Called from the idle task. Wake up the controlling task which brings the 1608 * hotplug thread of the upcoming CPU up and !! 968 * stopper and the hotplug thread of the upcoming CPU up and then delegates 1609 * online bringup to the hotplug thread. !! 969 * the rest of the online bringup to the hotplug thread. 1610 */ 970 */ 1611 void cpuhp_online_idle(enum cpuhp_state state 971 void cpuhp_online_idle(enum cpuhp_state state) 1612 { 972 { 1613 struct cpuhp_cpu_state *st = this_cpu 973 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state); 1614 974 1615 /* Happens for the boot cpu */ 975 /* Happens for the boot cpu */ 1616 if (state != CPUHP_AP_ONLINE_IDLE) 976 if (state != CPUHP_AP_ONLINE_IDLE) 1617 return; 977 return; 1618 978 1619 cpuhp_ap_update_sync_state(SYNC_STATE << 1620 << 1621 /* << 1622 * Unpark the stopper thread before w << 1623 * scheduling); this ensures the stop << 1624 */ << 1625 stop_machine_unpark(smp_processor_id( << 1626 << 1627 st->state = CPUHP_AP_ONLINE_IDLE; 979 st->state = CPUHP_AP_ONLINE_IDLE; 1628 complete_ap_thread(st, true); 980 complete_ap_thread(st, true); 1629 } 981 } 1630 982 1631 /* Requires cpu_add_remove_lock to be held */ 983 /* Requires cpu_add_remove_lock to be held */ 1632 static int _cpu_up(unsigned int cpu, int task 984 static int _cpu_up(unsigned int cpu, int tasks_frozen, enum cpuhp_state target) 1633 { 985 { 1634 struct cpuhp_cpu_state *st = per_cpu_ 986 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 1635 struct task_struct *idle; 987 struct task_struct *idle; 1636 int ret = 0; 988 int ret = 0; 1637 989 1638 cpus_write_lock(); 990 cpus_write_lock(); 1639 991 1640 if (!cpu_present(cpu)) { 992 if (!cpu_present(cpu)) { 1641 ret = -EINVAL; 993 ret = -EINVAL; 1642 goto out; 994 goto out; 1643 } 995 } 1644 996 1645 /* 997 /* 1646 * The caller of cpu_up() might have !! 998 * The caller of do_cpu_up might have raced with another 1647 * caller. Nothing to do. !! 999 * caller. Ignore it for now. 1648 */ 1000 */ 1649 if (st->state >= target) 1001 if (st->state >= target) 1650 goto out; 1002 goto out; 1651 1003 1652 if (st->state == CPUHP_OFFLINE) { 1004 if (st->state == CPUHP_OFFLINE) { 1653 /* Let it fail before we try 1005 /* Let it fail before we try to bring the cpu up */ 1654 idle = idle_thread_get(cpu); 1006 idle = idle_thread_get(cpu); 1655 if (IS_ERR(idle)) { 1007 if (IS_ERR(idle)) { 1656 ret = PTR_ERR(idle); 1008 ret = PTR_ERR(idle); 1657 goto out; 1009 goto out; 1658 } 1010 } 1659 << 1660 /* << 1661 * Reset stale stack state fr << 1662 */ << 1663 scs_task_reset(idle); << 1664 kasan_unpoison_task_stack(idl << 1665 } 1011 } 1666 1012 1667 cpuhp_tasks_frozen = tasks_frozen; 1013 cpuhp_tasks_frozen = tasks_frozen; 1668 1014 1669 cpuhp_set_state(cpu, st, target); !! 1015 cpuhp_set_state(st, target); 1670 /* 1016 /* 1671 * If the current CPU state is in the 1017 * If the current CPU state is in the range of the AP hotplug thread, 1672 * then we need to kick the thread on 1018 * then we need to kick the thread once more. 1673 */ 1019 */ 1674 if (st->state > CPUHP_BRINGUP_CPU) { 1020 if (st->state > CPUHP_BRINGUP_CPU) { 1675 ret = cpuhp_kick_ap_work(cpu) 1021 ret = cpuhp_kick_ap_work(cpu); 1676 /* 1022 /* 1677 * The AP side has done the e 1023 * The AP side has done the error rollback already. Just 1678 * return the error code.. 1024 * return the error code.. 1679 */ 1025 */ 1680 if (ret) 1026 if (ret) 1681 goto out; 1027 goto out; 1682 } 1028 } 1683 1029 1684 /* 1030 /* 1685 * Try to reach the target state. We 1031 * Try to reach the target state. We max out on the BP at 1686 * CPUHP_BRINGUP_CPU. After that the 1032 * CPUHP_BRINGUP_CPU. After that the AP hotplug thread is 1687 * responsible for bringing it up to 1033 * responsible for bringing it up to the target state. 1688 */ 1034 */ 1689 target = min((int)target, CPUHP_BRING 1035 target = min((int)target, CPUHP_BRINGUP_CPU); 1690 ret = cpuhp_up_callbacks(cpu, st, tar 1036 ret = cpuhp_up_callbacks(cpu, st, target); 1691 out: 1037 out: 1692 cpus_write_unlock(); 1038 cpus_write_unlock(); 1693 arch_smt_update(); << 1694 return ret; 1039 return ret; 1695 } 1040 } 1696 1041 1697 static int cpu_up(unsigned int cpu, enum cpuh !! 1042 static int do_cpu_up(unsigned int cpu, enum cpuhp_state target) 1698 { 1043 { 1699 int err = 0; 1044 int err = 0; 1700 1045 1701 if (!cpu_possible(cpu)) { 1046 if (!cpu_possible(cpu)) { 1702 pr_err("can't online cpu %d b 1047 pr_err("can't online cpu %d because it is not configured as may-hotadd at boot time\n", 1703 cpu); 1048 cpu); >> 1049 #if defined(CONFIG_IA64) >> 1050 pr_err("please check additional_cpus= boot parameter\n"); >> 1051 #endif 1704 return -EINVAL; 1052 return -EINVAL; 1705 } 1053 } 1706 1054 1707 err = try_online_node(cpu_to_node(cpu 1055 err = try_online_node(cpu_to_node(cpu)); 1708 if (err) 1056 if (err) 1709 return err; 1057 return err; 1710 1058 1711 cpu_maps_update_begin(); 1059 cpu_maps_update_begin(); 1712 1060 1713 if (cpu_hotplug_disabled) { 1061 if (cpu_hotplug_disabled) { 1714 err = -EBUSY; 1062 err = -EBUSY; 1715 goto out; 1063 goto out; 1716 } 1064 } 1717 if (!cpu_bootable(cpu)) { << 1718 err = -EPERM; << 1719 goto out; << 1720 } << 1721 1065 1722 err = _cpu_up(cpu, 0, target); 1066 err = _cpu_up(cpu, 0, target); 1723 out: 1067 out: 1724 cpu_maps_update_done(); 1068 cpu_maps_update_done(); 1725 return err; 1069 return err; 1726 } 1070 } 1727 1071 1728 /** !! 1072 int cpu_up(unsigned int cpu) 1729 * cpu_device_up - Bring up a cpu device << 1730 * @dev: Pointer to the cpu device to online << 1731 * << 1732 * This function is meant to be used by devic << 1733 * << 1734 * Other subsystems should use add_cpu() inst << 1735 * << 1736 * Return: %0 on success or a negative errno << 1737 */ << 1738 int cpu_device_up(struct device *dev) << 1739 { << 1740 return cpu_up(dev->id, CPUHP_ONLINE); << 1741 } << 1742 << 1743 int add_cpu(unsigned int cpu) << 1744 { << 1745 int ret; << 1746 << 1747 lock_device_hotplug(); << 1748 ret = device_online(get_cpu_device(cp << 1749 unlock_device_hotplug(); << 1750 << 1751 return ret; << 1752 } << 1753 EXPORT_SYMBOL_GPL(add_cpu); << 1754 << 1755 /** << 1756 * bringup_hibernate_cpu - Bring up the CPU t << 1757 * @sleep_cpu: The cpu we hibernated on and s << 1758 * << 1759 * On some architectures like arm64, we can h << 1760 * wake up the CPU we hibernated on might be << 1761 * using maxcpus= for example. << 1762 * << 1763 * Return: %0 on success or a negative errno << 1764 */ << 1765 int bringup_hibernate_cpu(unsigned int sleep_ << 1766 { << 1767 int ret; << 1768 << 1769 if (!cpu_online(sleep_cpu)) { << 1770 pr_info("Hibernated on a CPU << 1771 ret = cpu_up(sleep_cpu, CPUHP << 1772 if (ret) { << 1773 pr_err("Failed to bri << 1774 return ret; << 1775 } << 1776 } << 1777 return 0; << 1778 } << 1779 << 1780 static void __init cpuhp_bringup_mask(const s << 1781 enum cp << 1782 { << 1783 unsigned int cpu; << 1784 << 1785 for_each_cpu(cpu, mask) { << 1786 struct cpuhp_cpu_state *st = << 1787 << 1788 if (cpu_up(cpu, target) && ca << 1789 /* << 1790 * If this failed the << 1791 * rolled back to CPU << 1792 * online. Clean it u << 1793 */ << 1794 WARN_ON(cpuhp_invoke_ << 1795 } << 1796 << 1797 if (!--ncpus) << 1798 break; << 1799 } << 1800 } << 1801 << 1802 #ifdef CONFIG_HOTPLUG_PARALLEL << 1803 static bool __cpuhp_parallel_bringup __ro_aft << 1804 << 1805 static int __init parallel_bringup_parse_para << 1806 { << 1807 return kstrtobool(arg, &__cpuhp_paral << 1808 } << 1809 early_param("cpuhp.parallel", parallel_bringu << 1810 << 1811 #ifdef CONFIG_HOTPLUG_SMT << 1812 static inline bool cpuhp_smt_aware(void) << 1813 { << 1814 return cpu_smt_max_threads > 1; << 1815 } << 1816 << 1817 static inline const struct cpumask *cpuhp_get << 1818 { << 1819 return cpu_primary_thread_mask; << 1820 } << 1821 #else << 1822 static inline bool cpuhp_smt_aware(void) << 1823 { << 1824 return false; << 1825 } << 1826 static inline const struct cpumask *cpuhp_get << 1827 { << 1828 return cpu_none_mask; << 1829 } << 1830 #endif << 1831 << 1832 bool __weak arch_cpuhp_init_parallel_bringup( << 1833 { 1073 { 1834 return true; !! 1074 return do_cpu_up(cpu, CPUHP_ONLINE); 1835 } << 1836 << 1837 /* << 1838 * On architectures which have enabled parall << 1839 * prepare states for each of the to be onlin << 1840 * sends the startup IPI to the APs. The APs << 1841 * bringup code in parallel and then wait for << 1842 * them one by one for the final onlining pro << 1843 * << 1844 * This avoids waiting for each AP to respond << 1845 * CPUHP_BRINGUP_CPU. << 1846 */ << 1847 static bool __init cpuhp_bringup_cpus_paralle << 1848 { << 1849 const struct cpumask *mask = cpu_pres << 1850 << 1851 if (__cpuhp_parallel_bringup) << 1852 __cpuhp_parallel_bringup = ar << 1853 if (!__cpuhp_parallel_bringup) << 1854 return false; << 1855 << 1856 if (cpuhp_smt_aware()) { << 1857 const struct cpumask *pmask = << 1858 static struct cpumask tmp_mas << 1859 << 1860 /* << 1861 * X86 requires to prevent th << 1862 * the primary thread does a << 1863 * reasons. Bring the primary << 1864 */ << 1865 cpumask_and(&tmp_mask, mask, << 1866 cpuhp_bringup_mask(&tmp_mask, << 1867 cpuhp_bringup_mask(&tmp_mask, << 1868 /* Account for the online CPU << 1869 ncpus -= num_online_cpus(); << 1870 if (!ncpus) << 1871 return true; << 1872 /* Create the mask for second << 1873 cpumask_andnot(&tmp_mask, mas << 1874 mask = &tmp_mask; << 1875 } << 1876 << 1877 /* Bring the not-yet started CPUs up << 1878 cpuhp_bringup_mask(mask, ncpus, CPUHP << 1879 cpuhp_bringup_mask(mask, ncpus, CPUHP << 1880 return true; << 1881 } << 1882 #else << 1883 static inline bool cpuhp_bringup_cpus_paralle << 1884 #endif /* CONFIG_HOTPLUG_PARALLEL */ << 1885 << 1886 void __init bringup_nonboot_cpus(unsigned int << 1887 { << 1888 if (!max_cpus) << 1889 return; << 1890 << 1891 /* Try parallel bringup optimization << 1892 if (cpuhp_bringup_cpus_parallel(max_c << 1893 return; << 1894 << 1895 /* Full per CPU serialized bringup */ << 1896 cpuhp_bringup_mask(cpu_present_mask, << 1897 } 1075 } >> 1076 EXPORT_SYMBOL_GPL(cpu_up); 1898 1077 1899 #ifdef CONFIG_PM_SLEEP_SMP 1078 #ifdef CONFIG_PM_SLEEP_SMP 1900 static cpumask_var_t frozen_cpus; 1079 static cpumask_var_t frozen_cpus; 1901 1080 1902 int freeze_secondary_cpus(int primary) 1081 int freeze_secondary_cpus(int primary) 1903 { 1082 { 1904 int cpu, error = 0; 1083 int cpu, error = 0; 1905 1084 1906 cpu_maps_update_begin(); 1085 cpu_maps_update_begin(); 1907 if (primary == -1) { !! 1086 if (!cpu_online(primary)) 1908 primary = cpumask_first(cpu_o 1087 primary = cpumask_first(cpu_online_mask); 1909 if (!housekeeping_cpu(primary << 1910 primary = housekeepin << 1911 } else { << 1912 if (!cpu_online(primary)) << 1913 primary = cpumask_fir << 1914 } << 1915 << 1916 /* 1088 /* 1917 * We take down all of the non-boot C 1089 * We take down all of the non-boot CPUs in one shot to avoid races 1918 * with the userspace trying to use t 1090 * with the userspace trying to use the CPU hotplug at the same time 1919 */ 1091 */ 1920 cpumask_clear(frozen_cpus); 1092 cpumask_clear(frozen_cpus); 1921 1093 1922 pr_info("Disabling non-boot CPUs ...\ 1094 pr_info("Disabling non-boot CPUs ...\n"); 1923 for (cpu = nr_cpu_ids - 1; cpu >= 0; !! 1095 for_each_online_cpu(cpu) { 1924 if (!cpu_online(cpu) || cpu = !! 1096 if (cpu == primary) 1925 continue; 1097 continue; 1926 << 1927 if (pm_wakeup_pending()) { << 1928 pr_info("Wakeup pendi << 1929 error = -EBUSY; << 1930 break; << 1931 } << 1932 << 1933 trace_suspend_resume(TPS("CPU 1098 trace_suspend_resume(TPS("CPU_OFF"), cpu, true); 1934 error = _cpu_down(cpu, 1, CPU 1099 error = _cpu_down(cpu, 1, CPUHP_OFFLINE); 1935 trace_suspend_resume(TPS("CPU 1100 trace_suspend_resume(TPS("CPU_OFF"), cpu, false); 1936 if (!error) 1101 if (!error) 1937 cpumask_set_cpu(cpu, 1102 cpumask_set_cpu(cpu, frozen_cpus); 1938 else { 1103 else { 1939 pr_err("Error taking 1104 pr_err("Error taking CPU%d down: %d\n", cpu, error); 1940 break; 1105 break; 1941 } 1106 } 1942 } 1107 } 1943 1108 1944 if (!error) 1109 if (!error) 1945 BUG_ON(num_online_cpus() > 1) 1110 BUG_ON(num_online_cpus() > 1); 1946 else 1111 else 1947 pr_err("Non-boot CPUs are not 1112 pr_err("Non-boot CPUs are not disabled\n"); 1948 1113 1949 /* 1114 /* 1950 * Make sure the CPUs won't be enable 1115 * Make sure the CPUs won't be enabled by someone else. We need to do 1951 * this even in case of failure as al !! 1116 * this even in case of failure as all disable_nonboot_cpus() users are 1952 * supposed to do thaw_secondary_cpus !! 1117 * supposed to do enable_nonboot_cpus() on the failure path. 1953 */ 1118 */ 1954 cpu_hotplug_disabled++; 1119 cpu_hotplug_disabled++; 1955 1120 1956 cpu_maps_update_done(); 1121 cpu_maps_update_done(); 1957 return error; 1122 return error; 1958 } 1123 } 1959 1124 1960 void __weak arch_thaw_secondary_cpus_begin(vo !! 1125 void __weak arch_enable_nonboot_cpus_begin(void) 1961 { 1126 { 1962 } 1127 } 1963 1128 1964 void __weak arch_thaw_secondary_cpus_end(void !! 1129 void __weak arch_enable_nonboot_cpus_end(void) 1965 { 1130 { 1966 } 1131 } 1967 1132 1968 void thaw_secondary_cpus(void) !! 1133 void enable_nonboot_cpus(void) 1969 { 1134 { 1970 int cpu, error; 1135 int cpu, error; 1971 1136 1972 /* Allow everyone to use the CPU hotp 1137 /* Allow everyone to use the CPU hotplug again */ 1973 cpu_maps_update_begin(); 1138 cpu_maps_update_begin(); 1974 __cpu_hotplug_enable(); 1139 __cpu_hotplug_enable(); 1975 if (cpumask_empty(frozen_cpus)) 1140 if (cpumask_empty(frozen_cpus)) 1976 goto out; 1141 goto out; 1977 1142 1978 pr_info("Enabling non-boot CPUs ...\n 1143 pr_info("Enabling non-boot CPUs ...\n"); 1979 1144 1980 arch_thaw_secondary_cpus_begin(); !! 1145 arch_enable_nonboot_cpus_begin(); 1981 1146 1982 for_each_cpu(cpu, frozen_cpus) { 1147 for_each_cpu(cpu, frozen_cpus) { 1983 trace_suspend_resume(TPS("CPU 1148 trace_suspend_resume(TPS("CPU_ON"), cpu, true); 1984 error = _cpu_up(cpu, 1, CPUHP 1149 error = _cpu_up(cpu, 1, CPUHP_ONLINE); 1985 trace_suspend_resume(TPS("CPU 1150 trace_suspend_resume(TPS("CPU_ON"), cpu, false); 1986 if (!error) { 1151 if (!error) { 1987 pr_info("CPU%d is up\ 1152 pr_info("CPU%d is up\n", cpu); 1988 continue; 1153 continue; 1989 } 1154 } 1990 pr_warn("Error taking CPU%d u 1155 pr_warn("Error taking CPU%d up: %d\n", cpu, error); 1991 } 1156 } 1992 1157 1993 arch_thaw_secondary_cpus_end(); !! 1158 arch_enable_nonboot_cpus_end(); 1994 1159 1995 cpumask_clear(frozen_cpus); 1160 cpumask_clear(frozen_cpus); 1996 out: 1161 out: 1997 cpu_maps_update_done(); 1162 cpu_maps_update_done(); 1998 } 1163 } 1999 1164 2000 static int __init alloc_frozen_cpus(void) 1165 static int __init alloc_frozen_cpus(void) 2001 { 1166 { 2002 if (!alloc_cpumask_var(&frozen_cpus, 1167 if (!alloc_cpumask_var(&frozen_cpus, GFP_KERNEL|__GFP_ZERO)) 2003 return -ENOMEM; 1168 return -ENOMEM; 2004 return 0; 1169 return 0; 2005 } 1170 } 2006 core_initcall(alloc_frozen_cpus); 1171 core_initcall(alloc_frozen_cpus); 2007 1172 2008 /* 1173 /* 2009 * When callbacks for CPU hotplug notificatio 1174 * When callbacks for CPU hotplug notifications are being executed, we must 2010 * ensure that the state of the system with r 1175 * ensure that the state of the system with respect to the tasks being frozen 2011 * or not, as reported by the notification, r 1176 * or not, as reported by the notification, remains unchanged *throughout the 2012 * duration* of the execution of the callback 1177 * duration* of the execution of the callbacks. 2013 * Hence we need to prevent the freezer from 1178 * Hence we need to prevent the freezer from racing with regular CPU hotplug. 2014 * 1179 * 2015 * This synchronization is implemented by mut 1180 * This synchronization is implemented by mutually excluding regular CPU 2016 * hotplug and Suspend/Hibernate call paths b 1181 * hotplug and Suspend/Hibernate call paths by hooking onto the Suspend/ 2017 * Hibernate notifications. 1182 * Hibernate notifications. 2018 */ 1183 */ 2019 static int 1184 static int 2020 cpu_hotplug_pm_callback(struct notifier_block 1185 cpu_hotplug_pm_callback(struct notifier_block *nb, 2021 unsigned long action, 1186 unsigned long action, void *ptr) 2022 { 1187 { 2023 switch (action) { 1188 switch (action) { 2024 1189 2025 case PM_SUSPEND_PREPARE: 1190 case PM_SUSPEND_PREPARE: 2026 case PM_HIBERNATION_PREPARE: 1191 case PM_HIBERNATION_PREPARE: 2027 cpu_hotplug_disable(); 1192 cpu_hotplug_disable(); 2028 break; 1193 break; 2029 1194 2030 case PM_POST_SUSPEND: 1195 case PM_POST_SUSPEND: 2031 case PM_POST_HIBERNATION: 1196 case PM_POST_HIBERNATION: 2032 cpu_hotplug_enable(); 1197 cpu_hotplug_enable(); 2033 break; 1198 break; 2034 1199 2035 default: 1200 default: 2036 return NOTIFY_DONE; 1201 return NOTIFY_DONE; 2037 } 1202 } 2038 1203 2039 return NOTIFY_OK; 1204 return NOTIFY_OK; 2040 } 1205 } 2041 1206 2042 1207 2043 static int __init cpu_hotplug_pm_sync_init(vo 1208 static int __init cpu_hotplug_pm_sync_init(void) 2044 { 1209 { 2045 /* 1210 /* 2046 * cpu_hotplug_pm_callback has higher 1211 * cpu_hotplug_pm_callback has higher priority than x86 2047 * bsp_pm_callback which depends on c 1212 * bsp_pm_callback which depends on cpu_hotplug_pm_callback 2048 * to disable cpu hotplug to avoid cp 1213 * to disable cpu hotplug to avoid cpu hotplug race. 2049 */ 1214 */ 2050 pm_notifier(cpu_hotplug_pm_callback, 1215 pm_notifier(cpu_hotplug_pm_callback, 0); 2051 return 0; 1216 return 0; 2052 } 1217 } 2053 core_initcall(cpu_hotplug_pm_sync_init); 1218 core_initcall(cpu_hotplug_pm_sync_init); 2054 1219 2055 #endif /* CONFIG_PM_SLEEP_SMP */ 1220 #endif /* CONFIG_PM_SLEEP_SMP */ 2056 1221 2057 int __boot_cpu_id; 1222 int __boot_cpu_id; 2058 1223 2059 #endif /* CONFIG_SMP */ 1224 #endif /* CONFIG_SMP */ 2060 1225 2061 /* Boot processor state steps */ 1226 /* Boot processor state steps */ 2062 static struct cpuhp_step cpuhp_hp_states[] = !! 1227 static struct cpuhp_step cpuhp_bp_states[] = { 2063 [CPUHP_OFFLINE] = { 1228 [CPUHP_OFFLINE] = { 2064 .name = "of 1229 .name = "offline", 2065 .startup.single = NUL 1230 .startup.single = NULL, 2066 .teardown.single = NUL 1231 .teardown.single = NULL, 2067 }, 1232 }, 2068 #ifdef CONFIG_SMP 1233 #ifdef CONFIG_SMP 2069 [CPUHP_CREATE_THREADS]= { 1234 [CPUHP_CREATE_THREADS]= { 2070 .name = "th 1235 .name = "threads:prepare", 2071 .startup.single = smp 1236 .startup.single = smpboot_create_threads, 2072 .teardown.single = NUL 1237 .teardown.single = NULL, 2073 .cant_stop = tru 1238 .cant_stop = true, 2074 }, 1239 }, 2075 [CPUHP_PERF_PREPARE] = { 1240 [CPUHP_PERF_PREPARE] = { 2076 .name = "pe 1241 .name = "perf:prepare", 2077 .startup.single = per 1242 .startup.single = perf_event_init_cpu, 2078 .teardown.single = per 1243 .teardown.single = perf_event_exit_cpu, 2079 }, 1244 }, 2080 [CPUHP_RANDOM_PREPARE] = { << 2081 .name = "ra << 2082 .startup.single = ran << 2083 .teardown.single = NUL << 2084 }, << 2085 [CPUHP_WORKQUEUE_PREP] = { 1245 [CPUHP_WORKQUEUE_PREP] = { 2086 .name = "wo 1246 .name = "workqueue:prepare", 2087 .startup.single = wor 1247 .startup.single = workqueue_prepare_cpu, 2088 .teardown.single = NUL 1248 .teardown.single = NULL, 2089 }, 1249 }, 2090 [CPUHP_HRTIMERS_PREPARE] = { 1250 [CPUHP_HRTIMERS_PREPARE] = { 2091 .name = "hr 1251 .name = "hrtimers:prepare", 2092 .startup.single = hrt 1252 .startup.single = hrtimers_prepare_cpu, 2093 .teardown.single = NUL !! 1253 .teardown.single = hrtimers_dead_cpu, 2094 }, 1254 }, 2095 [CPUHP_SMPCFD_PREPARE] = { 1255 [CPUHP_SMPCFD_PREPARE] = { 2096 .name = "sm 1256 .name = "smpcfd:prepare", 2097 .startup.single = smp 1257 .startup.single = smpcfd_prepare_cpu, 2098 .teardown.single = smp 1258 .teardown.single = smpcfd_dead_cpu, 2099 }, 1259 }, 2100 [CPUHP_RELAY_PREPARE] = { 1260 [CPUHP_RELAY_PREPARE] = { 2101 .name = "re 1261 .name = "relay:prepare", 2102 .startup.single = rel 1262 .startup.single = relay_prepare_cpu, 2103 .teardown.single = NUL 1263 .teardown.single = NULL, 2104 }, 1264 }, >> 1265 [CPUHP_SLAB_PREPARE] = { >> 1266 .name = "slab:prepare", >> 1267 .startup.single = slab_prepare_cpu, >> 1268 .teardown.single = slab_dead_cpu, >> 1269 }, 2105 [CPUHP_RCUTREE_PREP] = { 1270 [CPUHP_RCUTREE_PREP] = { 2106 .name = "RC 1271 .name = "RCU/tree:prepare", 2107 .startup.single = rcu 1272 .startup.single = rcutree_prepare_cpu, 2108 .teardown.single = rcu 1273 .teardown.single = rcutree_dead_cpu, 2109 }, 1274 }, 2110 /* 1275 /* 2111 * On the tear-down path, timers_dead 1276 * On the tear-down path, timers_dead_cpu() must be invoked 2112 * before blk_mq_queue_reinit_notify( 1277 * before blk_mq_queue_reinit_notify() from notify_dead(), 2113 * otherwise a RCU stall occurs. 1278 * otherwise a RCU stall occurs. 2114 */ 1279 */ 2115 [CPUHP_TIMERS_PREPARE] = { 1280 [CPUHP_TIMERS_PREPARE] = { 2116 .name = "ti !! 1281 .name = "timers:dead", 2117 .startup.single = tim 1282 .startup.single = timers_prepare_cpu, 2118 .teardown.single = tim 1283 .teardown.single = timers_dead_cpu, 2119 }, 1284 }, 2120 !! 1285 /* Kicks the plugged cpu into life */ 2121 #ifdef CONFIG_HOTPLUG_SPLIT_STARTUP << 2122 /* << 2123 * Kicks the AP alive. AP will wait i << 2124 * the next step will release it. << 2125 */ << 2126 [CPUHP_BP_KICK_AP] = { << 2127 .name = "cp << 2128 .startup.single = cpu << 2129 }, << 2130 << 2131 /* << 2132 * Waits for the AP to reach cpuhp_ap << 2133 * releases it for the complete bring << 2134 */ << 2135 [CPUHP_BRINGUP_CPU] = { 1286 [CPUHP_BRINGUP_CPU] = { 2136 .name = "cp 1287 .name = "cpu:bringup", 2137 .startup.single = cpu !! 1288 .startup.single = bringup_cpu, 2138 .teardown.single = fin !! 1289 .teardown.single = NULL, 2139 .cant_stop = tru 1290 .cant_stop = true, 2140 }, 1291 }, 2141 #else << 2142 /* 1292 /* 2143 * All-in-one CPU bringup state which !! 1293 * Handled on controll processor until the plugged processor manages >> 1294 * this itself. 2144 */ 1295 */ 2145 [CPUHP_BRINGUP_CPU] = { !! 1296 [CPUHP_TEARDOWN_CPU] = { 2146 .name = "cp !! 1297 .name = "cpu:teardown", 2147 .startup.single = bri !! 1298 .startup.single = NULL, 2148 .teardown.single = fin !! 1299 .teardown.single = takedown_cpu, 2149 .cant_stop = tru 1300 .cant_stop = true, 2150 }, 1301 }, >> 1302 #else >> 1303 [CPUHP_BRINGUP_CPU] = { }, 2151 #endif 1304 #endif >> 1305 }; >> 1306 >> 1307 /* Application processor state steps */ >> 1308 static struct cpuhp_step cpuhp_ap_states[] = { >> 1309 #ifdef CONFIG_SMP 2152 /* Final state before CPU kills itsel 1310 /* Final state before CPU kills itself */ 2153 [CPUHP_AP_IDLE_DEAD] = { 1311 [CPUHP_AP_IDLE_DEAD] = { 2154 .name = "id 1312 .name = "idle:dead", 2155 }, 1313 }, 2156 /* 1314 /* 2157 * Last state before CPU enters the i 1315 * Last state before CPU enters the idle loop to die. Transient state 2158 * for synchronization. 1316 * for synchronization. 2159 */ 1317 */ 2160 [CPUHP_AP_OFFLINE] = { 1318 [CPUHP_AP_OFFLINE] = { 2161 .name = "ap 1319 .name = "ap:offline", 2162 .cant_stop = tru 1320 .cant_stop = true, 2163 }, 1321 }, 2164 /* First state is scheduler control. 1322 /* First state is scheduler control. Interrupts are disabled */ 2165 [CPUHP_AP_SCHED_STARTING] = { 1323 [CPUHP_AP_SCHED_STARTING] = { 2166 .name = "sc 1324 .name = "sched:starting", 2167 .startup.single = sch 1325 .startup.single = sched_cpu_starting, 2168 .teardown.single = sch 1326 .teardown.single = sched_cpu_dying, 2169 }, 1327 }, 2170 [CPUHP_AP_RCUTREE_DYING] = { 1328 [CPUHP_AP_RCUTREE_DYING] = { 2171 .name = "RC 1329 .name = "RCU/tree:dying", 2172 .startup.single = NUL 1330 .startup.single = NULL, 2173 .teardown.single = rcu 1331 .teardown.single = rcutree_dying_cpu, 2174 }, 1332 }, 2175 [CPUHP_AP_SMPCFD_DYING] = { 1333 [CPUHP_AP_SMPCFD_DYING] = { 2176 .name = "sm 1334 .name = "smpcfd:dying", 2177 .startup.single = NUL 1335 .startup.single = NULL, 2178 .teardown.single = smp 1336 .teardown.single = smpcfd_dying_cpu, 2179 }, 1337 }, 2180 [CPUHP_AP_HRTIMERS_DYING] = { << 2181 .name = "hr << 2182 .startup.single = NUL << 2183 .teardown.single = hrt << 2184 }, << 2185 [CPUHP_AP_TICK_DYING] = { << 2186 .name = "ti << 2187 .startup.single = NUL << 2188 .teardown.single = tic << 2189 }, << 2190 /* Entry state on starting. Interrupt 1338 /* Entry state on starting. Interrupts enabled from here on. Transient 2191 * state for synchronsization */ 1339 * state for synchronsization */ 2192 [CPUHP_AP_ONLINE] = { 1340 [CPUHP_AP_ONLINE] = { 2193 .name = "ap 1341 .name = "ap:online", 2194 }, 1342 }, 2195 /* << 2196 * Handled on control processor until << 2197 * this itself. << 2198 */ << 2199 [CPUHP_TEARDOWN_CPU] = { << 2200 .name = "cp << 2201 .startup.single = NUL << 2202 .teardown.single = tak << 2203 .cant_stop = tru << 2204 }, << 2205 << 2206 [CPUHP_AP_SCHED_WAIT_EMPTY] = { << 2207 .name = "sc << 2208 .startup.single = NUL << 2209 .teardown.single = sch << 2210 }, << 2211 << 2212 /* Handle smpboot threads park/unpark 1343 /* Handle smpboot threads park/unpark */ 2213 [CPUHP_AP_SMPBOOT_THREADS] = { 1344 [CPUHP_AP_SMPBOOT_THREADS] = { 2214 .name = "sm 1345 .name = "smpboot/threads:online", 2215 .startup.single = smp 1346 .startup.single = smpboot_unpark_threads, 2216 .teardown.single = smp !! 1347 .teardown.single = NULL, 2217 }, 1348 }, 2218 [CPUHP_AP_IRQ_AFFINITY_ONLINE] = { 1349 [CPUHP_AP_IRQ_AFFINITY_ONLINE] = { 2219 .name = "ir 1350 .name = "irq/affinity:online", 2220 .startup.single = irq 1351 .startup.single = irq_affinity_online_cpu, 2221 .teardown.single = NUL 1352 .teardown.single = NULL, 2222 }, 1353 }, 2223 [CPUHP_AP_PERF_ONLINE] = { 1354 [CPUHP_AP_PERF_ONLINE] = { 2224 .name = "pe 1355 .name = "perf:online", 2225 .startup.single = per 1356 .startup.single = perf_event_init_cpu, 2226 .teardown.single = per 1357 .teardown.single = perf_event_exit_cpu, 2227 }, 1358 }, 2228 [CPUHP_AP_WATCHDOG_ONLINE] = { << 2229 .name = "lo << 2230 .startup.single = loc << 2231 .teardown.single = loc << 2232 }, << 2233 [CPUHP_AP_WORKQUEUE_ONLINE] = { 1359 [CPUHP_AP_WORKQUEUE_ONLINE] = { 2234 .name = "wo 1360 .name = "workqueue:online", 2235 .startup.single = wor 1361 .startup.single = workqueue_online_cpu, 2236 .teardown.single = wor 1362 .teardown.single = workqueue_offline_cpu, 2237 }, 1363 }, 2238 [CPUHP_AP_RANDOM_ONLINE] = { << 2239 .name = "ra << 2240 .startup.single = ran << 2241 .teardown.single = NUL << 2242 }, << 2243 [CPUHP_AP_RCUTREE_ONLINE] = { 1364 [CPUHP_AP_RCUTREE_ONLINE] = { 2244 .name = "RC 1365 .name = "RCU/tree:online", 2245 .startup.single = rcu 1366 .startup.single = rcutree_online_cpu, 2246 .teardown.single = rcu 1367 .teardown.single = rcutree_offline_cpu, 2247 }, 1368 }, 2248 #endif 1369 #endif 2249 /* 1370 /* 2250 * The dynamically registered state s 1371 * The dynamically registered state space is here 2251 */ 1372 */ 2252 1373 2253 #ifdef CONFIG_SMP 1374 #ifdef CONFIG_SMP 2254 /* Last state is scheduler control se 1375 /* Last state is scheduler control setting the cpu active */ 2255 [CPUHP_AP_ACTIVE] = { 1376 [CPUHP_AP_ACTIVE] = { 2256 .name = "sc 1377 .name = "sched:active", 2257 .startup.single = sch 1378 .startup.single = sched_cpu_activate, 2258 .teardown.single = sch 1379 .teardown.single = sched_cpu_deactivate, 2259 }, 1380 }, 2260 #endif 1381 #endif 2261 1382 2262 /* CPU is fully up and running. */ 1383 /* CPU is fully up and running. */ 2263 [CPUHP_ONLINE] = { 1384 [CPUHP_ONLINE] = { 2264 .name = "on 1385 .name = "online", 2265 .startup.single = NUL 1386 .startup.single = NULL, 2266 .teardown.single = NUL 1387 .teardown.single = NULL, 2267 }, 1388 }, 2268 }; 1389 }; 2269 1390 2270 /* Sanity check for callbacks */ 1391 /* Sanity check for callbacks */ 2271 static int cpuhp_cb_check(enum cpuhp_state st 1392 static int cpuhp_cb_check(enum cpuhp_state state) 2272 { 1393 { 2273 if (state <= CPUHP_OFFLINE || state > 1394 if (state <= CPUHP_OFFLINE || state >= CPUHP_ONLINE) 2274 return -EINVAL; 1395 return -EINVAL; 2275 return 0; 1396 return 0; 2276 } 1397 } 2277 1398 2278 /* 1399 /* 2279 * Returns a free for dynamic slot assignment 1400 * Returns a free for dynamic slot assignment of the Online state. The states 2280 * are protected by the cpuhp_slot_states mut 1401 * are protected by the cpuhp_slot_states mutex and an empty slot is identified 2281 * by having no name assigned. 1402 * by having no name assigned. 2282 */ 1403 */ 2283 static int cpuhp_reserve_state(enum cpuhp_sta 1404 static int cpuhp_reserve_state(enum cpuhp_state state) 2284 { 1405 { 2285 enum cpuhp_state i, end; 1406 enum cpuhp_state i, end; 2286 struct cpuhp_step *step; 1407 struct cpuhp_step *step; 2287 1408 2288 switch (state) { 1409 switch (state) { 2289 case CPUHP_AP_ONLINE_DYN: 1410 case CPUHP_AP_ONLINE_DYN: 2290 step = cpuhp_hp_states + CPUH !! 1411 step = cpuhp_ap_states + CPUHP_AP_ONLINE_DYN; 2291 end = CPUHP_AP_ONLINE_DYN_END 1412 end = CPUHP_AP_ONLINE_DYN_END; 2292 break; 1413 break; 2293 case CPUHP_BP_PREPARE_DYN: 1414 case CPUHP_BP_PREPARE_DYN: 2294 step = cpuhp_hp_states + CPUH !! 1415 step = cpuhp_bp_states + CPUHP_BP_PREPARE_DYN; 2295 end = CPUHP_BP_PREPARE_DYN_EN 1416 end = CPUHP_BP_PREPARE_DYN_END; 2296 break; 1417 break; 2297 default: 1418 default: 2298 return -EINVAL; 1419 return -EINVAL; 2299 } 1420 } 2300 1421 2301 for (i = state; i <= end; i++, step++ 1422 for (i = state; i <= end; i++, step++) { 2302 if (!step->name) 1423 if (!step->name) 2303 return i; 1424 return i; 2304 } 1425 } 2305 WARN(1, "No more dynamic states avail 1426 WARN(1, "No more dynamic states available for CPU hotplug\n"); 2306 return -ENOSPC; 1427 return -ENOSPC; 2307 } 1428 } 2308 1429 2309 static int cpuhp_store_callbacks(enum cpuhp_s 1430 static int cpuhp_store_callbacks(enum cpuhp_state state, const char *name, 2310 int (*startu 1431 int (*startup)(unsigned int cpu), 2311 int (*teardo 1432 int (*teardown)(unsigned int cpu), 2312 bool multi_i 1433 bool multi_instance) 2313 { 1434 { 2314 /* (Un)Install the callbacks for furt 1435 /* (Un)Install the callbacks for further cpu hotplug operations */ 2315 struct cpuhp_step *sp; 1436 struct cpuhp_step *sp; 2316 int ret = 0; 1437 int ret = 0; 2317 1438 2318 /* 1439 /* 2319 * If name is NULL, then the state ge 1440 * If name is NULL, then the state gets removed. 2320 * 1441 * 2321 * CPUHP_AP_ONLINE_DYN and CPUHP_BP_P 1442 * CPUHP_AP_ONLINE_DYN and CPUHP_BP_PREPARE_DYN are handed out on 2322 * the first allocation from these dy 1443 * the first allocation from these dynamic ranges, so the removal 2323 * would trigger a new allocation and 1444 * would trigger a new allocation and clear the wrong (already 2324 * empty) state, leaving the callback 1445 * empty) state, leaving the callbacks of the to be cleared state 2325 * dangling, which causes wreckage on 1446 * dangling, which causes wreckage on the next hotplug operation. 2326 */ 1447 */ 2327 if (name && (state == CPUHP_AP_ONLINE 1448 if (name && (state == CPUHP_AP_ONLINE_DYN || 2328 state == CPUHP_BP_PREPAR 1449 state == CPUHP_BP_PREPARE_DYN)) { 2329 ret = cpuhp_reserve_state(sta 1450 ret = cpuhp_reserve_state(state); 2330 if (ret < 0) 1451 if (ret < 0) 2331 return ret; 1452 return ret; 2332 state = ret; 1453 state = ret; 2333 } 1454 } 2334 sp = cpuhp_get_step(state); 1455 sp = cpuhp_get_step(state); 2335 if (name && sp->name) 1456 if (name && sp->name) 2336 return -EBUSY; 1457 return -EBUSY; 2337 1458 2338 sp->startup.single = startup; 1459 sp->startup.single = startup; 2339 sp->teardown.single = teardown; 1460 sp->teardown.single = teardown; 2340 sp->name = name; 1461 sp->name = name; 2341 sp->multi_instance = multi_instance; 1462 sp->multi_instance = multi_instance; 2342 INIT_HLIST_HEAD(&sp->list); 1463 INIT_HLIST_HEAD(&sp->list); 2343 return ret; 1464 return ret; 2344 } 1465 } 2345 1466 2346 static void *cpuhp_get_teardown_cb(enum cpuhp 1467 static void *cpuhp_get_teardown_cb(enum cpuhp_state state) 2347 { 1468 { 2348 return cpuhp_get_step(state)->teardow 1469 return cpuhp_get_step(state)->teardown.single; 2349 } 1470 } 2350 1471 2351 /* 1472 /* 2352 * Call the startup/teardown function for a s 1473 * Call the startup/teardown function for a step either on the AP or 2353 * on the current CPU. 1474 * on the current CPU. 2354 */ 1475 */ 2355 static int cpuhp_issue_call(int cpu, enum cpu 1476 static int cpuhp_issue_call(int cpu, enum cpuhp_state state, bool bringup, 2356 struct hlist_node 1477 struct hlist_node *node) 2357 { 1478 { 2358 struct cpuhp_step *sp = cpuhp_get_ste 1479 struct cpuhp_step *sp = cpuhp_get_step(state); 2359 int ret; 1480 int ret; 2360 1481 2361 /* 1482 /* 2362 * If there's nothing to do, we done. 1483 * If there's nothing to do, we done. 2363 * Relies on the union for multi_inst 1484 * Relies on the union for multi_instance. 2364 */ 1485 */ 2365 if (cpuhp_step_empty(bringup, sp)) !! 1486 if ((bringup && !sp->startup.single) || >> 1487 (!bringup && !sp->teardown.single)) 2366 return 0; 1488 return 0; 2367 /* 1489 /* 2368 * The non AP bound callbacks can fai 1490 * The non AP bound callbacks can fail on bringup. On teardown 2369 * e.g. module removal we crash for n 1491 * e.g. module removal we crash for now. 2370 */ 1492 */ 2371 #ifdef CONFIG_SMP 1493 #ifdef CONFIG_SMP 2372 if (cpuhp_is_ap_state(state)) 1494 if (cpuhp_is_ap_state(state)) 2373 ret = cpuhp_invoke_ap_callbac 1495 ret = cpuhp_invoke_ap_callback(cpu, state, bringup, node); 2374 else 1496 else 2375 ret = cpuhp_invoke_callback(c 1497 ret = cpuhp_invoke_callback(cpu, state, bringup, node, NULL); 2376 #else 1498 #else 2377 ret = cpuhp_invoke_callback(cpu, stat 1499 ret = cpuhp_invoke_callback(cpu, state, bringup, node, NULL); 2378 #endif 1500 #endif 2379 BUG_ON(ret && !bringup); 1501 BUG_ON(ret && !bringup); 2380 return ret; 1502 return ret; 2381 } 1503 } 2382 1504 2383 /* 1505 /* 2384 * Called from __cpuhp_setup_state on a recov 1506 * Called from __cpuhp_setup_state on a recoverable failure. 2385 * 1507 * 2386 * Note: The teardown callbacks for rollback 1508 * Note: The teardown callbacks for rollback are not allowed to fail! 2387 */ 1509 */ 2388 static void cpuhp_rollback_install(int failed 1510 static void cpuhp_rollback_install(int failedcpu, enum cpuhp_state state, 2389 struct hli 1511 struct hlist_node *node) 2390 { 1512 { 2391 int cpu; 1513 int cpu; 2392 1514 2393 /* Roll back the already executed ste 1515 /* Roll back the already executed steps on the other cpus */ 2394 for_each_present_cpu(cpu) { 1516 for_each_present_cpu(cpu) { 2395 struct cpuhp_cpu_state *st = 1517 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 2396 int cpustate = st->state; 1518 int cpustate = st->state; 2397 1519 2398 if (cpu >= failedcpu) 1520 if (cpu >= failedcpu) 2399 break; 1521 break; 2400 1522 2401 /* Did we invoke the startup 1523 /* Did we invoke the startup call on that cpu ? */ 2402 if (cpustate >= state) 1524 if (cpustate >= state) 2403 cpuhp_issue_call(cpu, 1525 cpuhp_issue_call(cpu, state, false, node); 2404 } 1526 } 2405 } 1527 } 2406 1528 2407 int __cpuhp_state_add_instance_cpuslocked(enu 1529 int __cpuhp_state_add_instance_cpuslocked(enum cpuhp_state state, 2408 str 1530 struct hlist_node *node, 2409 boo 1531 bool invoke) 2410 { 1532 { 2411 struct cpuhp_step *sp; 1533 struct cpuhp_step *sp; 2412 int cpu; 1534 int cpu; 2413 int ret; 1535 int ret; 2414 1536 2415 lockdep_assert_cpus_held(); 1537 lockdep_assert_cpus_held(); 2416 1538 2417 sp = cpuhp_get_step(state); 1539 sp = cpuhp_get_step(state); 2418 if (sp->multi_instance == false) 1540 if (sp->multi_instance == false) 2419 return -EINVAL; 1541 return -EINVAL; 2420 1542 2421 mutex_lock(&cpuhp_state_mutex); 1543 mutex_lock(&cpuhp_state_mutex); 2422 1544 2423 if (!invoke || !sp->startup.multi) 1545 if (!invoke || !sp->startup.multi) 2424 goto add_node; 1546 goto add_node; 2425 1547 2426 /* 1548 /* 2427 * Try to call the startup callback f 1549 * Try to call the startup callback for each present cpu 2428 * depending on the hotplug state of 1550 * depending on the hotplug state of the cpu. 2429 */ 1551 */ 2430 for_each_present_cpu(cpu) { 1552 for_each_present_cpu(cpu) { 2431 struct cpuhp_cpu_state *st = 1553 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 2432 int cpustate = st->state; 1554 int cpustate = st->state; 2433 1555 2434 if (cpustate < state) 1556 if (cpustate < state) 2435 continue; 1557 continue; 2436 1558 2437 ret = cpuhp_issue_call(cpu, s 1559 ret = cpuhp_issue_call(cpu, state, true, node); 2438 if (ret) { 1560 if (ret) { 2439 if (sp->teardown.mult 1561 if (sp->teardown.multi) 2440 cpuhp_rollbac 1562 cpuhp_rollback_install(cpu, state, node); 2441 goto unlock; 1563 goto unlock; 2442 } 1564 } 2443 } 1565 } 2444 add_node: 1566 add_node: 2445 ret = 0; 1567 ret = 0; 2446 hlist_add_head(node, &sp->list); 1568 hlist_add_head(node, &sp->list); 2447 unlock: 1569 unlock: 2448 mutex_unlock(&cpuhp_state_mutex); 1570 mutex_unlock(&cpuhp_state_mutex); 2449 return ret; 1571 return ret; 2450 } 1572 } 2451 1573 2452 int __cpuhp_state_add_instance(enum cpuhp_sta 1574 int __cpuhp_state_add_instance(enum cpuhp_state state, struct hlist_node *node, 2453 bool invoke) 1575 bool invoke) 2454 { 1576 { 2455 int ret; 1577 int ret; 2456 1578 2457 cpus_read_lock(); 1579 cpus_read_lock(); 2458 ret = __cpuhp_state_add_instance_cpus 1580 ret = __cpuhp_state_add_instance_cpuslocked(state, node, invoke); 2459 cpus_read_unlock(); 1581 cpus_read_unlock(); 2460 return ret; 1582 return ret; 2461 } 1583 } 2462 EXPORT_SYMBOL_GPL(__cpuhp_state_add_instance) 1584 EXPORT_SYMBOL_GPL(__cpuhp_state_add_instance); 2463 1585 2464 /** 1586 /** 2465 * __cpuhp_setup_state_cpuslocked - Setup the 1587 * __cpuhp_setup_state_cpuslocked - Setup the callbacks for an hotplug machine state 2466 * @state: The state to setup 1588 * @state: The state to setup 2467 * @name: Name of the step << 2468 * @invoke: If true, the startup 1589 * @invoke: If true, the startup function is invoked for cpus where 2469 * cpu state >= @state 1590 * cpu state >= @state 2470 * @startup: startup callback func 1591 * @startup: startup callback function 2471 * @teardown: teardown callback fun 1592 * @teardown: teardown callback function 2472 * @multi_instance: State is set up for m 1593 * @multi_instance: State is set up for multiple instances which get 2473 * added afterwards. 1594 * added afterwards. 2474 * 1595 * 2475 * The caller needs to hold cpus read locked 1596 * The caller needs to hold cpus read locked while calling this function. 2476 * Return: !! 1597 * Returns: 2477 * On success: 1598 * On success: 2478 * Positive state number if @state is CP !! 1599 * Positive state number if @state is CPUHP_AP_ONLINE_DYN 2479 * 0 for all other states 1600 * 0 for all other states 2480 * On failure: proper (negative) error code 1601 * On failure: proper (negative) error code 2481 */ 1602 */ 2482 int __cpuhp_setup_state_cpuslocked(enum cpuhp 1603 int __cpuhp_setup_state_cpuslocked(enum cpuhp_state state, 2483 const char 1604 const char *name, bool invoke, 2484 int (*star 1605 int (*startup)(unsigned int cpu), 2485 int (*tear 1606 int (*teardown)(unsigned int cpu), 2486 bool multi 1607 bool multi_instance) 2487 { 1608 { 2488 int cpu, ret = 0; 1609 int cpu, ret = 0; 2489 bool dynstate; 1610 bool dynstate; 2490 1611 2491 lockdep_assert_cpus_held(); 1612 lockdep_assert_cpus_held(); 2492 1613 2493 if (cpuhp_cb_check(state) || !name) 1614 if (cpuhp_cb_check(state) || !name) 2494 return -EINVAL; 1615 return -EINVAL; 2495 1616 2496 mutex_lock(&cpuhp_state_mutex); 1617 mutex_lock(&cpuhp_state_mutex); 2497 1618 2498 ret = cpuhp_store_callbacks(state, na 1619 ret = cpuhp_store_callbacks(state, name, startup, teardown, 2499 multi_ins 1620 multi_instance); 2500 1621 2501 dynstate = state == CPUHP_AP_ONLINE_D !! 1622 dynstate = state == CPUHP_AP_ONLINE_DYN; 2502 if (ret > 0 && dynstate) { 1623 if (ret > 0 && dynstate) { 2503 state = ret; 1624 state = ret; 2504 ret = 0; 1625 ret = 0; 2505 } 1626 } 2506 1627 2507 if (ret || !invoke || !startup) 1628 if (ret || !invoke || !startup) 2508 goto out; 1629 goto out; 2509 1630 2510 /* 1631 /* 2511 * Try to call the startup callback f 1632 * Try to call the startup callback for each present cpu 2512 * depending on the hotplug state of 1633 * depending on the hotplug state of the cpu. 2513 */ 1634 */ 2514 for_each_present_cpu(cpu) { 1635 for_each_present_cpu(cpu) { 2515 struct cpuhp_cpu_state *st = 1636 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 2516 int cpustate = st->state; 1637 int cpustate = st->state; 2517 1638 2518 if (cpustate < state) 1639 if (cpustate < state) 2519 continue; 1640 continue; 2520 1641 2521 ret = cpuhp_issue_call(cpu, s 1642 ret = cpuhp_issue_call(cpu, state, true, NULL); 2522 if (ret) { 1643 if (ret) { 2523 if (teardown) 1644 if (teardown) 2524 cpuhp_rollbac 1645 cpuhp_rollback_install(cpu, state, NULL); 2525 cpuhp_store_callbacks 1646 cpuhp_store_callbacks(state, NULL, NULL, NULL, false); 2526 goto out; 1647 goto out; 2527 } 1648 } 2528 } 1649 } 2529 out: 1650 out: 2530 mutex_unlock(&cpuhp_state_mutex); 1651 mutex_unlock(&cpuhp_state_mutex); 2531 /* 1652 /* 2532 * If the requested state is CPUHP_AP !! 1653 * If the requested state is CPUHP_AP_ONLINE_DYN, return the 2533 * return the dynamically allocated s !! 1654 * dynamically allocated state in case of success. 2534 */ 1655 */ 2535 if (!ret && dynstate) 1656 if (!ret && dynstate) 2536 return state; 1657 return state; 2537 return ret; 1658 return ret; 2538 } 1659 } 2539 EXPORT_SYMBOL(__cpuhp_setup_state_cpuslocked) 1660 EXPORT_SYMBOL(__cpuhp_setup_state_cpuslocked); 2540 1661 2541 int __cpuhp_setup_state(enum cpuhp_state stat 1662 int __cpuhp_setup_state(enum cpuhp_state state, 2542 const char *name, boo 1663 const char *name, bool invoke, 2543 int (*startup)(unsign 1664 int (*startup)(unsigned int cpu), 2544 int (*teardown)(unsig 1665 int (*teardown)(unsigned int cpu), 2545 bool multi_instance) 1666 bool multi_instance) 2546 { 1667 { 2547 int ret; 1668 int ret; 2548 1669 2549 cpus_read_lock(); 1670 cpus_read_lock(); 2550 ret = __cpuhp_setup_state_cpuslocked( 1671 ret = __cpuhp_setup_state_cpuslocked(state, name, invoke, startup, 2551 1672 teardown, multi_instance); 2552 cpus_read_unlock(); 1673 cpus_read_unlock(); 2553 return ret; 1674 return ret; 2554 } 1675 } 2555 EXPORT_SYMBOL(__cpuhp_setup_state); 1676 EXPORT_SYMBOL(__cpuhp_setup_state); 2556 1677 2557 int __cpuhp_state_remove_instance(enum cpuhp_ 1678 int __cpuhp_state_remove_instance(enum cpuhp_state state, 2558 struct hlis 1679 struct hlist_node *node, bool invoke) 2559 { 1680 { 2560 struct cpuhp_step *sp = cpuhp_get_ste 1681 struct cpuhp_step *sp = cpuhp_get_step(state); 2561 int cpu; 1682 int cpu; 2562 1683 2563 BUG_ON(cpuhp_cb_check(state)); 1684 BUG_ON(cpuhp_cb_check(state)); 2564 1685 2565 if (!sp->multi_instance) 1686 if (!sp->multi_instance) 2566 return -EINVAL; 1687 return -EINVAL; 2567 1688 2568 cpus_read_lock(); 1689 cpus_read_lock(); 2569 mutex_lock(&cpuhp_state_mutex); 1690 mutex_lock(&cpuhp_state_mutex); 2570 1691 2571 if (!invoke || !cpuhp_get_teardown_cb 1692 if (!invoke || !cpuhp_get_teardown_cb(state)) 2572 goto remove; 1693 goto remove; 2573 /* 1694 /* 2574 * Call the teardown callback for eac 1695 * Call the teardown callback for each present cpu depending 2575 * on the hotplug state of the cpu. T 1696 * on the hotplug state of the cpu. This function is not 2576 * allowed to fail currently! 1697 * allowed to fail currently! 2577 */ 1698 */ 2578 for_each_present_cpu(cpu) { 1699 for_each_present_cpu(cpu) { 2579 struct cpuhp_cpu_state *st = 1700 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 2580 int cpustate = st->state; 1701 int cpustate = st->state; 2581 1702 2582 if (cpustate >= state) 1703 if (cpustate >= state) 2583 cpuhp_issue_call(cpu, 1704 cpuhp_issue_call(cpu, state, false, node); 2584 } 1705 } 2585 1706 2586 remove: 1707 remove: 2587 hlist_del(node); 1708 hlist_del(node); 2588 mutex_unlock(&cpuhp_state_mutex); 1709 mutex_unlock(&cpuhp_state_mutex); 2589 cpus_read_unlock(); 1710 cpus_read_unlock(); 2590 1711 2591 return 0; 1712 return 0; 2592 } 1713 } 2593 EXPORT_SYMBOL_GPL(__cpuhp_state_remove_instan 1714 EXPORT_SYMBOL_GPL(__cpuhp_state_remove_instance); 2594 1715 2595 /** 1716 /** 2596 * __cpuhp_remove_state_cpuslocked - Remove t 1717 * __cpuhp_remove_state_cpuslocked - Remove the callbacks for an hotplug machine state 2597 * @state: The state to remove 1718 * @state: The state to remove 2598 * @invoke: If true, the teardown functio 1719 * @invoke: If true, the teardown function is invoked for cpus where 2599 * cpu state >= @state 1720 * cpu state >= @state 2600 * 1721 * 2601 * The caller needs to hold cpus read locked 1722 * The caller needs to hold cpus read locked while calling this function. 2602 * The teardown callback is currently not all 1723 * The teardown callback is currently not allowed to fail. Think 2603 * about module removal! 1724 * about module removal! 2604 */ 1725 */ 2605 void __cpuhp_remove_state_cpuslocked(enum cpu 1726 void __cpuhp_remove_state_cpuslocked(enum cpuhp_state state, bool invoke) 2606 { 1727 { 2607 struct cpuhp_step *sp = cpuhp_get_ste 1728 struct cpuhp_step *sp = cpuhp_get_step(state); 2608 int cpu; 1729 int cpu; 2609 1730 2610 BUG_ON(cpuhp_cb_check(state)); 1731 BUG_ON(cpuhp_cb_check(state)); 2611 1732 2612 lockdep_assert_cpus_held(); 1733 lockdep_assert_cpus_held(); 2613 1734 2614 mutex_lock(&cpuhp_state_mutex); 1735 mutex_lock(&cpuhp_state_mutex); 2615 if (sp->multi_instance) { 1736 if (sp->multi_instance) { 2616 WARN(!hlist_empty(&sp->list), 1737 WARN(!hlist_empty(&sp->list), 2617 "Error: Removing state % 1738 "Error: Removing state %d which has instances left.\n", 2618 state); 1739 state); 2619 goto remove; 1740 goto remove; 2620 } 1741 } 2621 1742 2622 if (!invoke || !cpuhp_get_teardown_cb 1743 if (!invoke || !cpuhp_get_teardown_cb(state)) 2623 goto remove; 1744 goto remove; 2624 1745 2625 /* 1746 /* 2626 * Call the teardown callback for eac 1747 * Call the teardown callback for each present cpu depending 2627 * on the hotplug state of the cpu. T 1748 * on the hotplug state of the cpu. This function is not 2628 * allowed to fail currently! 1749 * allowed to fail currently! 2629 */ 1750 */ 2630 for_each_present_cpu(cpu) { 1751 for_each_present_cpu(cpu) { 2631 struct cpuhp_cpu_state *st = 1752 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); 2632 int cpustate = st->state; 1753 int cpustate = st->state; 2633 1754 2634 if (cpustate >= state) 1755 if (cpustate >= state) 2635 cpuhp_issue_call(cpu, 1756 cpuhp_issue_call(cpu, state, false, NULL); 2636 } 1757 } 2637 remove: 1758 remove: 2638 cpuhp_store_callbacks(state, NULL, NU 1759 cpuhp_store_callbacks(state, NULL, NULL, NULL, false); 2639 mutex_unlock(&cpuhp_state_mutex); 1760 mutex_unlock(&cpuhp_state_mutex); 2640 } 1761 } 2641 EXPORT_SYMBOL(__cpuhp_remove_state_cpuslocked 1762 EXPORT_SYMBOL(__cpuhp_remove_state_cpuslocked); 2642 1763 2643 void __cpuhp_remove_state(enum cpuhp_state st 1764 void __cpuhp_remove_state(enum cpuhp_state state, bool invoke) 2644 { 1765 { 2645 cpus_read_lock(); 1766 cpus_read_lock(); 2646 __cpuhp_remove_state_cpuslocked(state 1767 __cpuhp_remove_state_cpuslocked(state, invoke); 2647 cpus_read_unlock(); 1768 cpus_read_unlock(); 2648 } 1769 } 2649 EXPORT_SYMBOL(__cpuhp_remove_state); 1770 EXPORT_SYMBOL(__cpuhp_remove_state); 2650 1771 2651 #ifdef CONFIG_HOTPLUG_SMT << 2652 static void cpuhp_offline_cpu_device(unsigned << 2653 { << 2654 struct device *dev = get_cpu_device(c << 2655 << 2656 dev->offline = true; << 2657 /* Tell user space about the state ch << 2658 kobject_uevent(&dev->kobj, KOBJ_OFFLI << 2659 } << 2660 << 2661 static void cpuhp_online_cpu_device(unsigned << 2662 { << 2663 struct device *dev = get_cpu_device(c << 2664 << 2665 dev->offline = false; << 2666 /* Tell user space about the state ch << 2667 kobject_uevent(&dev->kobj, KOBJ_ONLIN << 2668 } << 2669 << 2670 int cpuhp_smt_disable(enum cpuhp_smt_control << 2671 { << 2672 int cpu, ret = 0; << 2673 << 2674 cpu_maps_update_begin(); << 2675 for_each_online_cpu(cpu) { << 2676 if (topology_is_primary_threa << 2677 continue; << 2678 /* << 2679 * Disable can be called with << 2680 * from a higher to lower num << 2681 */ << 2682 if (ctrlval == CPU_SMT_ENABLE << 2683 continue; << 2684 ret = cpu_down_maps_locked(cp << 2685 if (ret) << 2686 break; << 2687 /* << 2688 * As this needs to hold the << 2689 * to call device_offline() b << 2690 * cpu_down() which takes cpu << 2691 * needs to be held as this m << 2692 * abusers of the hotplug mac << 2693 * << 2694 * So nothing would update de << 2695 * leave the sysfs entry stal << 2696 * smt control has been chang << 2697 * called under the sysfs hot << 2698 * serialized against the reg << 2699 */ << 2700 cpuhp_offline_cpu_device(cpu) << 2701 } << 2702 if (!ret) << 2703 cpu_smt_control = ctrlval; << 2704 cpu_maps_update_done(); << 2705 return ret; << 2706 } << 2707 << 2708 /* Check if the core a CPU belongs to is onli << 2709 #if !defined(topology_is_core_online) << 2710 static inline bool topology_is_core_online(un << 2711 { << 2712 return true; << 2713 } << 2714 #endif << 2715 << 2716 int cpuhp_smt_enable(void) << 2717 { << 2718 int cpu, ret = 0; << 2719 << 2720 cpu_maps_update_begin(); << 2721 cpu_smt_control = CPU_SMT_ENABLED; << 2722 for_each_present_cpu(cpu) { << 2723 /* Skip online CPUs and CPUs << 2724 if (cpu_online(cpu) || !node_ << 2725 continue; << 2726 if (!cpu_smt_thread_allowed(c << 2727 continue; << 2728 ret = _cpu_up(cpu, 0, CPUHP_O << 2729 if (ret) << 2730 break; << 2731 /* See comment in cpuhp_smt_d << 2732 cpuhp_online_cpu_device(cpu); << 2733 } << 2734 cpu_maps_update_done(); << 2735 return ret; << 2736 } << 2737 #endif << 2738 << 2739 #if defined(CONFIG_SYSFS) && defined(CONFIG_H 1772 #if defined(CONFIG_SYSFS) && defined(CONFIG_HOTPLUG_CPU) 2740 static ssize_t state_show(struct device *dev, !! 1773 static ssize_t show_cpuhp_state(struct device *dev, 2741 struct device_attri !! 1774 struct device_attribute *attr, char *buf) 2742 { 1775 { 2743 struct cpuhp_cpu_state *st = per_cpu_ 1776 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id); 2744 1777 2745 return sprintf(buf, "%d\n", st->state 1778 return sprintf(buf, "%d\n", st->state); 2746 } 1779 } 2747 static DEVICE_ATTR_RO(state); !! 1780 static DEVICE_ATTR(state, 0444, show_cpuhp_state, NULL); 2748 1781 2749 static ssize_t target_store(struct device *de !! 1782 static ssize_t write_cpuhp_target(struct device *dev, 2750 const char *buf, !! 1783 struct device_attribute *attr, >> 1784 const char *buf, size_t count) 2751 { 1785 { 2752 struct cpuhp_cpu_state *st = per_cpu_ 1786 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id); 2753 struct cpuhp_step *sp; 1787 struct cpuhp_step *sp; 2754 int target, ret; 1788 int target, ret; 2755 1789 2756 ret = kstrtoint(buf, 10, &target); 1790 ret = kstrtoint(buf, 10, &target); 2757 if (ret) 1791 if (ret) 2758 return ret; 1792 return ret; 2759 1793 2760 #ifdef CONFIG_CPU_HOTPLUG_STATE_CONTROL 1794 #ifdef CONFIG_CPU_HOTPLUG_STATE_CONTROL 2761 if (target < CPUHP_OFFLINE || target 1795 if (target < CPUHP_OFFLINE || target > CPUHP_ONLINE) 2762 return -EINVAL; 1796 return -EINVAL; 2763 #else 1797 #else 2764 if (target != CPUHP_OFFLINE && target 1798 if (target != CPUHP_OFFLINE && target != CPUHP_ONLINE) 2765 return -EINVAL; 1799 return -EINVAL; 2766 #endif 1800 #endif 2767 1801 2768 ret = lock_device_hotplug_sysfs(); 1802 ret = lock_device_hotplug_sysfs(); 2769 if (ret) 1803 if (ret) 2770 return ret; 1804 return ret; 2771 1805 2772 mutex_lock(&cpuhp_state_mutex); 1806 mutex_lock(&cpuhp_state_mutex); 2773 sp = cpuhp_get_step(target); 1807 sp = cpuhp_get_step(target); 2774 ret = !sp->name || sp->cant_stop ? -E 1808 ret = !sp->name || sp->cant_stop ? -EINVAL : 0; 2775 mutex_unlock(&cpuhp_state_mutex); 1809 mutex_unlock(&cpuhp_state_mutex); 2776 if (ret) 1810 if (ret) 2777 goto out; 1811 goto out; 2778 1812 2779 if (st->state < target) 1813 if (st->state < target) 2780 ret = cpu_up(dev->id, target) !! 1814 ret = do_cpu_up(dev->id, target); 2781 else if (st->state > target) !! 1815 else 2782 ret = cpu_down(dev->id, targe !! 1816 ret = do_cpu_down(dev->id, target); 2783 else if (WARN_ON(st->target != target << 2784 st->target = target; << 2785 out: 1817 out: 2786 unlock_device_hotplug(); 1818 unlock_device_hotplug(); 2787 return ret ? ret : count; 1819 return ret ? ret : count; 2788 } 1820 } 2789 1821 2790 static ssize_t target_show(struct device *dev !! 1822 static ssize_t show_cpuhp_target(struct device *dev, 2791 struct device_attr !! 1823 struct device_attribute *attr, char *buf) 2792 { 1824 { 2793 struct cpuhp_cpu_state *st = per_cpu_ 1825 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id); 2794 1826 2795 return sprintf(buf, "%d\n", st->targe 1827 return sprintf(buf, "%d\n", st->target); 2796 } 1828 } 2797 static DEVICE_ATTR_RW(target); !! 1829 static DEVICE_ATTR(target, 0644, show_cpuhp_target, write_cpuhp_target); >> 1830 2798 1831 2799 static ssize_t fail_store(struct device *dev, !! 1832 static ssize_t write_cpuhp_fail(struct device *dev, 2800 const char *buf, si !! 1833 struct device_attribute *attr, >> 1834 const char *buf, size_t count) 2801 { 1835 { 2802 struct cpuhp_cpu_state *st = per_cpu_ 1836 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id); 2803 struct cpuhp_step *sp; 1837 struct cpuhp_step *sp; 2804 int fail, ret; 1838 int fail, ret; 2805 1839 2806 ret = kstrtoint(buf, 10, &fail); 1840 ret = kstrtoint(buf, 10, &fail); 2807 if (ret) 1841 if (ret) 2808 return ret; 1842 return ret; 2809 1843 2810 if (fail == CPUHP_INVALID) { << 2811 st->fail = fail; << 2812 return count; << 2813 } << 2814 << 2815 if (fail < CPUHP_OFFLINE || fail > CP << 2816 return -EINVAL; << 2817 << 2818 /* 1844 /* 2819 * Cannot fail STARTING/DYING callbac 1845 * Cannot fail STARTING/DYING callbacks. 2820 */ 1846 */ 2821 if (cpuhp_is_atomic_state(fail)) 1847 if (cpuhp_is_atomic_state(fail)) 2822 return -EINVAL; 1848 return -EINVAL; 2823 1849 2824 /* 1850 /* 2825 * DEAD callbacks cannot fail... << 2826 * ... neither can CPUHP_BRINGUP_CPU << 2827 * triggering STARTING callbacks, a f << 2828 * hinder rollback. << 2829 */ << 2830 if (fail <= CPUHP_BRINGUP_CPU && st-> << 2831 return -EINVAL; << 2832 << 2833 /* << 2834 * Cannot fail anything that doesn't 1851 * Cannot fail anything that doesn't have callbacks. 2835 */ 1852 */ 2836 mutex_lock(&cpuhp_state_mutex); 1853 mutex_lock(&cpuhp_state_mutex); 2837 sp = cpuhp_get_step(fail); 1854 sp = cpuhp_get_step(fail); 2838 if (!sp->startup.single && !sp->teard 1855 if (!sp->startup.single && !sp->teardown.single) 2839 ret = -EINVAL; 1856 ret = -EINVAL; 2840 mutex_unlock(&cpuhp_state_mutex); 1857 mutex_unlock(&cpuhp_state_mutex); 2841 if (ret) 1858 if (ret) 2842 return ret; 1859 return ret; 2843 1860 2844 st->fail = fail; 1861 st->fail = fail; 2845 1862 2846 return count; 1863 return count; 2847 } 1864 } 2848 1865 2849 static ssize_t fail_show(struct device *dev, !! 1866 static ssize_t show_cpuhp_fail(struct device *dev, 2850 struct device_attrib !! 1867 struct device_attribute *attr, char *buf) 2851 { 1868 { 2852 struct cpuhp_cpu_state *st = per_cpu_ 1869 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id); 2853 1870 2854 return sprintf(buf, "%d\n", st->fail) 1871 return sprintf(buf, "%d\n", st->fail); 2855 } 1872 } 2856 1873 2857 static DEVICE_ATTR_RW(fail); !! 1874 static DEVICE_ATTR(fail, 0644, show_cpuhp_fail, write_cpuhp_fail); 2858 1875 2859 static struct attribute *cpuhp_cpu_attrs[] = 1876 static struct attribute *cpuhp_cpu_attrs[] = { 2860 &dev_attr_state.attr, 1877 &dev_attr_state.attr, 2861 &dev_attr_target.attr, 1878 &dev_attr_target.attr, 2862 &dev_attr_fail.attr, 1879 &dev_attr_fail.attr, 2863 NULL 1880 NULL 2864 }; 1881 }; 2865 1882 2866 static const struct attribute_group cpuhp_cpu 1883 static const struct attribute_group cpuhp_cpu_attr_group = { 2867 .attrs = cpuhp_cpu_attrs, 1884 .attrs = cpuhp_cpu_attrs, 2868 .name = "hotplug", 1885 .name = "hotplug", 2869 NULL 1886 NULL 2870 }; 1887 }; 2871 1888 2872 static ssize_t states_show(struct device *dev !! 1889 static ssize_t show_cpuhp_states(struct device *dev, 2873 struct devic 1890 struct device_attribute *attr, char *buf) 2874 { 1891 { 2875 ssize_t cur, res = 0; 1892 ssize_t cur, res = 0; 2876 int i; 1893 int i; 2877 1894 2878 mutex_lock(&cpuhp_state_mutex); 1895 mutex_lock(&cpuhp_state_mutex); 2879 for (i = CPUHP_OFFLINE; i <= CPUHP_ON 1896 for (i = CPUHP_OFFLINE; i <= CPUHP_ONLINE; i++) { 2880 struct cpuhp_step *sp = cpuhp 1897 struct cpuhp_step *sp = cpuhp_get_step(i); 2881 1898 2882 if (sp->name) { 1899 if (sp->name) { 2883 cur = sprintf(buf, "% 1900 cur = sprintf(buf, "%3d: %s\n", i, sp->name); 2884 buf += cur; 1901 buf += cur; 2885 res += cur; 1902 res += cur; 2886 } 1903 } 2887 } 1904 } 2888 mutex_unlock(&cpuhp_state_mutex); 1905 mutex_unlock(&cpuhp_state_mutex); 2889 return res; 1906 return res; 2890 } 1907 } 2891 static DEVICE_ATTR_RO(states); !! 1908 static DEVICE_ATTR(states, 0444, show_cpuhp_states, NULL); 2892 1909 2893 static struct attribute *cpuhp_cpu_root_attrs 1910 static struct attribute *cpuhp_cpu_root_attrs[] = { 2894 &dev_attr_states.attr, 1911 &dev_attr_states.attr, 2895 NULL 1912 NULL 2896 }; 1913 }; 2897 1914 2898 static const struct attribute_group cpuhp_cpu 1915 static const struct attribute_group cpuhp_cpu_root_attr_group = { 2899 .attrs = cpuhp_cpu_root_attrs, 1916 .attrs = cpuhp_cpu_root_attrs, 2900 .name = "hotplug", 1917 .name = "hotplug", 2901 NULL 1918 NULL 2902 }; 1919 }; 2903 1920 2904 #ifdef CONFIG_HOTPLUG_SMT << 2905 << 2906 static bool cpu_smt_num_threads_valid(unsigne << 2907 { << 2908 if (IS_ENABLED(CONFIG_SMT_NUM_THREADS << 2909 return threads >= 1 && thread << 2910 return threads == 1 || threads == cpu << 2911 } << 2912 << 2913 static ssize_t << 2914 __store_smt_control(struct device *dev, struc << 2915 const char *buf, size_t c << 2916 { << 2917 int ctrlval, ret, num_threads, orig_t << 2918 bool force_off; << 2919 << 2920 if (cpu_smt_control == CPU_SMT_FORCE_ << 2921 return -EPERM; << 2922 << 2923 if (cpu_smt_control == CPU_SMT_NOT_SU << 2924 return -ENODEV; << 2925 << 2926 if (sysfs_streq(buf, "on")) { << 2927 ctrlval = CPU_SMT_ENABLED; << 2928 num_threads = cpu_smt_max_thr << 2929 } else if (sysfs_streq(buf, "off")) { << 2930 ctrlval = CPU_SMT_DISABLED; << 2931 num_threads = 1; << 2932 } else if (sysfs_streq(buf, "forceoff << 2933 ctrlval = CPU_SMT_FORCE_DISAB << 2934 num_threads = 1; << 2935 } else if (kstrtoint(buf, 10, &num_th << 2936 if (num_threads == 1) << 2937 ctrlval = CPU_SMT_DIS << 2938 else if (cpu_smt_num_threads_ << 2939 ctrlval = CPU_SMT_ENA << 2940 else << 2941 return -EINVAL; << 2942 } else { << 2943 return -EINVAL; << 2944 } << 2945 << 2946 ret = lock_device_hotplug_sysfs(); << 2947 if (ret) << 2948 return ret; << 2949 << 2950 orig_threads = cpu_smt_num_threads; << 2951 cpu_smt_num_threads = num_threads; << 2952 << 2953 force_off = ctrlval != cpu_smt_contro << 2954 << 2955 if (num_threads > orig_threads) << 2956 ret = cpuhp_smt_enable(); << 2957 else if (num_threads < orig_threads | << 2958 ret = cpuhp_smt_disable(ctrlv << 2959 << 2960 unlock_device_hotplug(); << 2961 return ret ? ret : count; << 2962 } << 2963 << 2964 #else /* !CONFIG_HOTPLUG_SMT */ << 2965 static ssize_t << 2966 __store_smt_control(struct device *dev, struc << 2967 const char *buf, size_t c << 2968 { << 2969 return -ENODEV; << 2970 } << 2971 #endif /* CONFIG_HOTPLUG_SMT */ << 2972 << 2973 static const char *smt_states[] = { << 2974 [CPU_SMT_ENABLED] = "on << 2975 [CPU_SMT_DISABLED] = "of << 2976 [CPU_SMT_FORCE_DISABLED] = "fo << 2977 [CPU_SMT_NOT_SUPPORTED] = "no << 2978 [CPU_SMT_NOT_IMPLEMENTED] = "no << 2979 }; << 2980 << 2981 static ssize_t control_show(struct device *de << 2982 struct device_att << 2983 { << 2984 const char *state = smt_states[cpu_sm << 2985 << 2986 #ifdef CONFIG_HOTPLUG_SMT << 2987 /* << 2988 * If SMT is enabled but not all thre << 2989 * number of threads. If all threads << 2990 * show the state name. << 2991 */ << 2992 if (cpu_smt_control == CPU_SMT_ENABLE << 2993 cpu_smt_num_threads != cpu_smt_ma << 2994 return sysfs_emit(buf, "%d\n" << 2995 #endif << 2996 << 2997 return sysfs_emit(buf, "%s\n", state) << 2998 } << 2999 << 3000 static ssize_t control_store(struct device *d << 3001 const char *buf, << 3002 { << 3003 return __store_smt_control(dev, attr, << 3004 } << 3005 static DEVICE_ATTR_RW(control); << 3006 << 3007 static ssize_t active_show(struct device *dev << 3008 struct device_attr << 3009 { << 3010 return sysfs_emit(buf, "%d\n", sched_ << 3011 } << 3012 static DEVICE_ATTR_RO(active); << 3013 << 3014 static struct attribute *cpuhp_smt_attrs[] = << 3015 &dev_attr_control.attr, << 3016 &dev_attr_active.attr, << 3017 NULL << 3018 }; << 3019 << 3020 static const struct attribute_group cpuhp_smt << 3021 .attrs = cpuhp_smt_attrs, << 3022 .name = "smt", << 3023 NULL << 3024 }; << 3025 << 3026 static int __init cpu_smt_sysfs_init(void) << 3027 { << 3028 struct device *dev_root; << 3029 int ret = -ENODEV; << 3030 << 3031 dev_root = bus_get_dev_root(&cpu_subs << 3032 if (dev_root) { << 3033 ret = sysfs_create_group(&dev << 3034 put_device(dev_root); << 3035 } << 3036 return ret; << 3037 } << 3038 << 3039 static int __init cpuhp_sysfs_init(void) 1921 static int __init cpuhp_sysfs_init(void) 3040 { 1922 { 3041 struct device *dev_root; << 3042 int cpu, ret; 1923 int cpu, ret; 3043 1924 3044 ret = cpu_smt_sysfs_init(); !! 1925 ret = sysfs_create_group(&cpu_subsys.dev_root->kobj, >> 1926 &cpuhp_cpu_root_attr_group); 3045 if (ret) 1927 if (ret) 3046 return ret; 1928 return ret; 3047 1929 3048 dev_root = bus_get_dev_root(&cpu_subs << 3049 if (dev_root) { << 3050 ret = sysfs_create_group(&dev << 3051 put_device(dev_root); << 3052 if (ret) << 3053 return ret; << 3054 } << 3055 << 3056 for_each_possible_cpu(cpu) { 1930 for_each_possible_cpu(cpu) { 3057 struct device *dev = get_cpu_ 1931 struct device *dev = get_cpu_device(cpu); 3058 1932 3059 if (!dev) 1933 if (!dev) 3060 continue; 1934 continue; 3061 ret = sysfs_create_group(&dev 1935 ret = sysfs_create_group(&dev->kobj, &cpuhp_cpu_attr_group); 3062 if (ret) 1936 if (ret) 3063 return ret; 1937 return ret; 3064 } 1938 } 3065 return 0; 1939 return 0; 3066 } 1940 } 3067 device_initcall(cpuhp_sysfs_init); 1941 device_initcall(cpuhp_sysfs_init); 3068 #endif /* CONFIG_SYSFS && CONFIG_HOTPLUG_CPU !! 1942 #endif 3069 1943 3070 /* 1944 /* 3071 * cpu_bit_bitmap[] is a special, "compressed 1945 * cpu_bit_bitmap[] is a special, "compressed" data structure that 3072 * represents all NR_CPUS bits binary values 1946 * represents all NR_CPUS bits binary values of 1<<nr. 3073 * 1947 * 3074 * It is used by cpumask_of() to get a consta 1948 * It is used by cpumask_of() to get a constant address to a CPU 3075 * mask value that has a single bit set only. 1949 * mask value that has a single bit set only. 3076 */ 1950 */ 3077 1951 3078 /* cpu_bit_bitmap[0] is empty - so we can bac 1952 /* cpu_bit_bitmap[0] is empty - so we can back into it */ 3079 #define MASK_DECLARE_1(x) [x+1][0] = (1 1953 #define MASK_DECLARE_1(x) [x+1][0] = (1UL << (x)) 3080 #define MASK_DECLARE_2(x) MASK_DECLARE_ 1954 #define MASK_DECLARE_2(x) MASK_DECLARE_1(x), MASK_DECLARE_1(x+1) 3081 #define MASK_DECLARE_4(x) MASK_DECLARE_ 1955 #define MASK_DECLARE_4(x) MASK_DECLARE_2(x), MASK_DECLARE_2(x+2) 3082 #define MASK_DECLARE_8(x) MASK_DECLARE_ 1956 #define MASK_DECLARE_8(x) MASK_DECLARE_4(x), MASK_DECLARE_4(x+4) 3083 1957 3084 const unsigned long cpu_bit_bitmap[BITS_PER_L 1958 const unsigned long cpu_bit_bitmap[BITS_PER_LONG+1][BITS_TO_LONGS(NR_CPUS)] = { 3085 1959 3086 MASK_DECLARE_8(0), MASK_DECLARE_ 1960 MASK_DECLARE_8(0), MASK_DECLARE_8(8), 3087 MASK_DECLARE_8(16), MASK_DECLARE_ 1961 MASK_DECLARE_8(16), MASK_DECLARE_8(24), 3088 #if BITS_PER_LONG > 32 1962 #if BITS_PER_LONG > 32 3089 MASK_DECLARE_8(32), MASK_DECLARE_ 1963 MASK_DECLARE_8(32), MASK_DECLARE_8(40), 3090 MASK_DECLARE_8(48), MASK_DECLARE_ 1964 MASK_DECLARE_8(48), MASK_DECLARE_8(56), 3091 #endif 1965 #endif 3092 }; 1966 }; 3093 EXPORT_SYMBOL_GPL(cpu_bit_bitmap); 1967 EXPORT_SYMBOL_GPL(cpu_bit_bitmap); 3094 1968 3095 const DECLARE_BITMAP(cpu_all_bits, NR_CPUS) = 1969 const DECLARE_BITMAP(cpu_all_bits, NR_CPUS) = CPU_BITS_ALL; 3096 EXPORT_SYMBOL(cpu_all_bits); 1970 EXPORT_SYMBOL(cpu_all_bits); 3097 1971 3098 #ifdef CONFIG_INIT_ALL_POSSIBLE 1972 #ifdef CONFIG_INIT_ALL_POSSIBLE 3099 struct cpumask __cpu_possible_mask __ro_after !! 1973 struct cpumask __cpu_possible_mask __read_mostly 3100 = {CPU_BITS_ALL}; 1974 = {CPU_BITS_ALL}; 3101 #else 1975 #else 3102 struct cpumask __cpu_possible_mask __ro_after !! 1976 struct cpumask __cpu_possible_mask __read_mostly; 3103 #endif 1977 #endif 3104 EXPORT_SYMBOL(__cpu_possible_mask); 1978 EXPORT_SYMBOL(__cpu_possible_mask); 3105 1979 3106 struct cpumask __cpu_online_mask __read_mostl 1980 struct cpumask __cpu_online_mask __read_mostly; 3107 EXPORT_SYMBOL(__cpu_online_mask); 1981 EXPORT_SYMBOL(__cpu_online_mask); 3108 1982 3109 struct cpumask __cpu_enabled_mask __read_most << 3110 EXPORT_SYMBOL(__cpu_enabled_mask); << 3111 << 3112 struct cpumask __cpu_present_mask __read_most 1983 struct cpumask __cpu_present_mask __read_mostly; 3113 EXPORT_SYMBOL(__cpu_present_mask); 1984 EXPORT_SYMBOL(__cpu_present_mask); 3114 1985 3115 struct cpumask __cpu_active_mask __read_mostl 1986 struct cpumask __cpu_active_mask __read_mostly; 3116 EXPORT_SYMBOL(__cpu_active_mask); 1987 EXPORT_SYMBOL(__cpu_active_mask); 3117 1988 3118 struct cpumask __cpu_dying_mask __read_mostly << 3119 EXPORT_SYMBOL(__cpu_dying_mask); << 3120 << 3121 atomic_t __num_online_cpus __read_mostly; << 3122 EXPORT_SYMBOL(__num_online_cpus); << 3123 << 3124 void init_cpu_present(const struct cpumask *s 1989 void init_cpu_present(const struct cpumask *src) 3125 { 1990 { 3126 cpumask_copy(&__cpu_present_mask, src 1991 cpumask_copy(&__cpu_present_mask, src); 3127 } 1992 } 3128 1993 3129 void init_cpu_possible(const struct cpumask * 1994 void init_cpu_possible(const struct cpumask *src) 3130 { 1995 { 3131 cpumask_copy(&__cpu_possible_mask, sr 1996 cpumask_copy(&__cpu_possible_mask, src); 3132 } 1997 } 3133 1998 3134 void init_cpu_online(const struct cpumask *sr 1999 void init_cpu_online(const struct cpumask *src) 3135 { 2000 { 3136 cpumask_copy(&__cpu_online_mask, src) 2001 cpumask_copy(&__cpu_online_mask, src); 3137 } 2002 } 3138 2003 3139 void set_cpu_online(unsigned int cpu, bool on << 3140 { << 3141 /* << 3142 * atomic_inc/dec() is required to ha << 3143 * function by the reboot and kexec c << 3144 * IPI/NMI broadcasts when shutting d << 3145 * regular CPU hotplug is properly se << 3146 * << 3147 * Note, that the fact that __num_onl << 3148 * does not protect readers which are << 3149 * concurrent hotplug operations. << 3150 */ << 3151 if (online) { << 3152 if (!cpumask_test_and_set_cpu << 3153 atomic_inc(&__num_onl << 3154 } else { << 3155 if (cpumask_test_and_clear_cp << 3156 atomic_dec(&__num_onl << 3157 } << 3158 } << 3159 << 3160 /* 2004 /* 3161 * Activate the first processor. 2005 * Activate the first processor. 3162 */ 2006 */ 3163 void __init boot_cpu_init(void) 2007 void __init boot_cpu_init(void) 3164 { 2008 { 3165 int cpu = smp_processor_id(); 2009 int cpu = smp_processor_id(); 3166 2010 3167 /* Mark the boot cpu "present", "onli 2011 /* Mark the boot cpu "present", "online" etc for SMP and UP case */ 3168 set_cpu_online(cpu, true); 2012 set_cpu_online(cpu, true); 3169 set_cpu_active(cpu, true); 2013 set_cpu_active(cpu, true); 3170 set_cpu_present(cpu, true); 2014 set_cpu_present(cpu, true); 3171 set_cpu_possible(cpu, true); 2015 set_cpu_possible(cpu, true); 3172 2016 3173 #ifdef CONFIG_SMP 2017 #ifdef CONFIG_SMP 3174 __boot_cpu_id = cpu; 2018 __boot_cpu_id = cpu; 3175 #endif 2019 #endif 3176 } 2020 } 3177 2021 3178 /* 2022 /* 3179 * Must be called _AFTER_ setting up the per_ 2023 * Must be called _AFTER_ setting up the per_cpu areas 3180 */ 2024 */ 3181 void __init boot_cpu_hotplug_init(void) !! 2025 void __init boot_cpu_state_init(void) 3182 { 2026 { 3183 #ifdef CONFIG_SMP !! 2027 per_cpu_ptr(&cpuhp_state, smp_processor_id())->state = CPUHP_ONLINE; 3184 cpumask_set_cpu(smp_processor_id(), & << 3185 atomic_set(this_cpu_ptr(&cpuhp_state. << 3186 #endif << 3187 this_cpu_write(cpuhp_state.state, CPU << 3188 this_cpu_write(cpuhp_state.target, CP << 3189 } 2028 } 3190 << 3191 #ifdef CONFIG_CPU_MITIGATIONS << 3192 /* << 3193 * These are used for a global "mitigations=" << 3194 * optional CPU mitigations. << 3195 */ << 3196 enum cpu_mitigations { << 3197 CPU_MITIGATIONS_OFF, << 3198 CPU_MITIGATIONS_AUTO, << 3199 CPU_MITIGATIONS_AUTO_NOSMT, << 3200 }; << 3201 << 3202 static enum cpu_mitigations cpu_mitigations _ << 3203 << 3204 static int __init mitigations_parse_cmdline(c << 3205 { << 3206 if (!strcmp(arg, "off")) << 3207 cpu_mitigations = CPU_MITIGAT << 3208 else if (!strcmp(arg, "auto")) << 3209 cpu_mitigations = CPU_MITIGAT << 3210 else if (!strcmp(arg, "auto,nosmt")) << 3211 cpu_mitigations = CPU_MITIGAT << 3212 else << 3213 pr_crit("Unsupported mitigati << 3214 arg); << 3215 << 3216 return 0; << 3217 } << 3218 << 3219 /* mitigations=off */ << 3220 bool cpu_mitigations_off(void) << 3221 { << 3222 return cpu_mitigations == CPU_MITIGAT << 3223 } << 3224 EXPORT_SYMBOL_GPL(cpu_mitigations_off); << 3225 << 3226 /* mitigations=auto,nosmt */ << 3227 bool cpu_mitigations_auto_nosmt(void) << 3228 { << 3229 return cpu_mitigations == CPU_MITIGAT << 3230 } << 3231 EXPORT_SYMBOL_GPL(cpu_mitigations_auto_nosmt) << 3232 #else << 3233 static int __init mitigations_parse_cmdline(c << 3234 { << 3235 pr_crit("Kernel compiled without miti << 3236 return 0; << 3237 } << 3238 #endif << 3239 early_param("mitigations", mitigations_parse_ << 3240 2029
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.