~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/kernel/dma/direct.c

Version: ~ [ linux-6.12-rc7 ] ~ [ linux-6.11.7 ] ~ [ linux-6.10.14 ] ~ [ linux-6.9.12 ] ~ [ linux-6.8.12 ] ~ [ linux-6.7.12 ] ~ [ linux-6.6.60 ] ~ [ linux-6.5.13 ] ~ [ linux-6.4.16 ] ~ [ linux-6.3.13 ] ~ [ linux-6.2.16 ] ~ [ linux-6.1.116 ] ~ [ linux-6.0.19 ] ~ [ linux-5.19.17 ] ~ [ linux-5.18.19 ] ~ [ linux-5.17.15 ] ~ [ linux-5.16.20 ] ~ [ linux-5.15.171 ] ~ [ linux-5.14.21 ] ~ [ linux-5.13.19 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.229 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.285 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.323 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.336 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.337 ] ~ [ linux-4.4.302 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.12 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

Diff markup

Differences between /kernel/dma/direct.c (Version linux-6.12-rc7) and /kernel/dma/direct.c (Version linux-4.19.323)


  1 // SPDX-License-Identifier: GPL-2.0                 1 // SPDX-License-Identifier: GPL-2.0
  2 /*                                                  2 /*
  3  * Copyright (C) 2018-2020 Christoph Hellwig.  !!   3  * DMA operations that map physical memory directly without using an IOMMU or
  4  *                                             !!   4  * flushing caches.
  5  * DMA operations that map physical memory dir << 
  6  */                                                 5  */
  7 #include <linux/memblock.h> /* for max_pfn */  << 
  8 #include <linux/export.h>                           6 #include <linux/export.h>
  9 #include <linux/mm.h>                               7 #include <linux/mm.h>
 10 #include <linux/dma-map-ops.h>                 !!   8 #include <linux/dma-direct.h>
 11 #include <linux/scatterlist.h>                      9 #include <linux/scatterlist.h>
                                                   >>  10 #include <linux/dma-contiguous.h>
 12 #include <linux/pfn.h>                             11 #include <linux/pfn.h>
 13 #include <linux/vmalloc.h>                     << 
 14 #include <linux/set_memory.h>                      12 #include <linux/set_memory.h>
 15 #include <linux/slab.h>                        !!  13 
 16 #include "direct.h"                            !!  14 #define DIRECT_MAPPING_ERROR            0
 17                                                    15 
 18 /*                                                 16 /*
 19  * Most architectures use ZONE_DMA for the fir !!  17  * Most architectures use ZONE_DMA for the first 16 Megabytes, but
 20  * it for entirely different regions. In that  !!  18  * some use it for entirely different regions:
 21  * override the variable below for dma-direct  << 
 22  */                                                19  */
 23 u64 zone_dma_limit __ro_after_init = DMA_BIT_M !!  20 #ifndef ARCH_ZONE_DMA_BITS
 24                                                !!  21 #define ARCH_ZONE_DMA_BITS 24
 25 static inline dma_addr_t phys_to_dma_direct(st !!  22 #endif
 26                 phys_addr_t phys)              << 
 27 {                                              << 
 28         if (force_dma_unencrypted(dev))        << 
 29                 return phys_to_dma_unencrypted << 
 30         return phys_to_dma(dev, phys);         << 
 31 }                                              << 
 32                                                << 
 33 static inline struct page *dma_direct_to_page( << 
 34                 dma_addr_t dma_addr)           << 
 35 {                                              << 
 36         return pfn_to_page(PHYS_PFN(dma_to_phy << 
 37 }                                              << 
 38                                                    23 
 39 u64 dma_direct_get_required_mask(struct device !!  24 /*
                                                   >>  25  * For AMD SEV all DMA must be to unencrypted addresses.
                                                   >>  26  */
                                                   >>  27 static inline bool force_dma_unencrypted(void)
 40 {                                                  28 {
 41         phys_addr_t phys = (phys_addr_t)(max_p !!  29         return sev_active();
 42         u64 max_dma = phys_to_dma_direct(dev,  << 
 43                                                << 
 44         return (1ULL << (fls64(max_dma) - 1))  << 
 45 }                                                  30 }
 46                                                    31 
 47 static gfp_t dma_direct_optimal_gfp_mask(struc !!  32 static bool
                                                   >>  33 check_addr(struct device *dev, dma_addr_t dma_addr, size_t size,
                                                   >>  34                 const char *caller)
 48 {                                                  35 {
 49         u64 dma_limit = min_not_zero(          !!  36         if (unlikely(dev && !dma_capable(dev, dma_addr, size))) {
 50                 dev->coherent_dma_mask,        !!  37                 if (!dev->dma_mask) {
 51                 dev->bus_dma_limit);           !!  38                         dev_err(dev,
 52                                                !!  39                                 "%s: call on device without dma_mask\n",
 53         /*                                     !!  40                                 caller);
 54          * Optimistically try the zone that th !!  41                         return false;
 55          * into first.  If that returns memory !!  42                 }
 56          * we will fallback to the next lower  << 
 57          *                                     << 
 58          * Note that GFP_DMA32 and GFP_DMA are << 
 59          * zones.                              << 
 60          */                                    << 
 61         *phys_limit = dma_to_phys(dev, dma_lim << 
 62         if (*phys_limit <= zone_dma_limit)     << 
 63                 return GFP_DMA;                << 
 64         if (*phys_limit <= DMA_BIT_MASK(32))   << 
 65                 return GFP_DMA32;              << 
 66         return 0;                              << 
 67 }                                              << 
 68                                                << 
 69 bool dma_coherent_ok(struct device *dev, phys_ << 
 70 {                                              << 
 71         dma_addr_t dma_addr = phys_to_dma_dire << 
 72                                                    43 
 73         if (dma_addr == DMA_MAPPING_ERROR)     !!  44                 if (*dev->dma_mask >= DMA_BIT_MASK(32)) {
                                                   >>  45                         dev_err(dev,
                                                   >>  46                                 "%s: overflow %pad+%zu of device mask %llx\n",
                                                   >>  47                                 caller, &dma_addr, size, *dev->dma_mask);
                                                   >>  48                 }
 74                 return false;                      49                 return false;
 75         return dma_addr + size - 1 <=          !!  50         }
 76                 min_not_zero(dev->coherent_dma !!  51         return true;
 77 }                                              << 
 78                                                << 
 79 static int dma_set_decrypted(struct device *de << 
 80 {                                              << 
 81         if (!force_dma_unencrypted(dev))       << 
 82                 return 0;                      << 
 83         return set_memory_decrypted((unsigned  << 
 84 }                                              << 
 85                                                << 
 86 static int dma_set_encrypted(struct device *de << 
 87 {                                              << 
 88         int ret;                               << 
 89                                                << 
 90         if (!force_dma_unencrypted(dev))       << 
 91                 return 0;                      << 
 92         ret = set_memory_encrypted((unsigned l << 
 93         if (ret)                               << 
 94                 pr_warn_ratelimited("leaking D << 
 95         return ret;                            << 
 96 }                                                  52 }
 97                                                    53 
 98 static void __dma_direct_free_pages(struct dev !!  54 static bool dma_coherent_ok(struct device *dev, phys_addr_t phys, size_t size)
 99                                     size_t siz << 
100 {                                                  55 {
101         if (swiotlb_free(dev, page, size))     !!  56         dma_addr_t addr = force_dma_unencrypted() ?
102                 return;                        !!  57                 __phys_to_dma(dev, phys) : phys_to_dma(dev, phys);
103         dma_free_contiguous(dev, page, size);  !!  58         return addr + size - 1 <= dev->coherent_dma_mask;
104 }                                                  59 }
105                                                    60 
106 static struct page *dma_direct_alloc_swiotlb(s !!  61 void *dma_direct_alloc(struct device *dev, size_t size, dma_addr_t *dma_handle,
                                                   >>  62                 gfp_t gfp, unsigned long attrs)
107 {                                                  63 {
108         struct page *page = swiotlb_alloc(dev, !!  64         unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
109                                                !!  65         int page_order = get_order(size);
110         if (page && !dma_coherent_ok(dev, page << 
111                 swiotlb_free(dev, page, size); << 
112                 return NULL;                   << 
113         }                                      << 
114                                                << 
115         return page;                           << 
116 }                                              << 
117                                                << 
118 static struct page *__dma_direct_alloc_pages(s << 
119                 gfp_t gfp, bool allow_highmem) << 
120 {                                              << 
121         int node = dev_to_node(dev);           << 
122         struct page *page = NULL;                  66         struct page *page = NULL;
123         u64 phys_limit;                        !!  67         void *ret;
124                                                    68 
125         WARN_ON_ONCE(!PAGE_ALIGNED(size));     !!  69         /* we always manually zero the memory once we are done: */
                                                   >>  70         gfp &= ~__GFP_ZERO;
126                                                    71 
127         if (is_swiotlb_for_alloc(dev))         !!  72         /* GFP_DMA32 and GFP_DMA are no ops without the corresponding zones: */
128                 return dma_direct_alloc_swiotl !!  73         if (dev->coherent_dma_mask <= DMA_BIT_MASK(ARCH_ZONE_DMA_BITS))
                                                   >>  74                 gfp |= GFP_DMA;
                                                   >>  75         if (dev->coherent_dma_mask <= DMA_BIT_MASK(32) && !(gfp & GFP_DMA))
                                                   >>  76                 gfp |= GFP_DMA32;
129                                                    77 
130         gfp |= dma_direct_optimal_gfp_mask(dev !!  78 again:
131         page = dma_alloc_contiguous(dev, size, !!  79         /* CMA can be used only in the context which permits sleeping */
132         if (page) {                            !!  80         if (gfpflags_allow_blocking(gfp)) {
133                 if (!dma_coherent_ok(dev, page !!  81                 page = dma_alloc_from_contiguous(dev, count, page_order,
134                     (!allow_highmem && PageHig !!  82                                                  gfp & __GFP_NOWARN);
135                         dma_free_contiguous(de !!  83                 if (page && !dma_coherent_ok(dev, page_to_phys(page), size)) {
                                                   >>  84                         dma_release_from_contiguous(dev, page, count);
136                         page = NULL;               85                         page = NULL;
137                 }                                  86                 }
138         }                                          87         }
139 again:                                         << 
140         if (!page)                                 88         if (!page)
141                 page = alloc_pages_node(node,  !!  89                 page = alloc_pages_node(dev_to_node(dev), gfp, page_order);
                                                   >>  90 
142         if (page && !dma_coherent_ok(dev, page     91         if (page && !dma_coherent_ok(dev, page_to_phys(page), size)) {
143                 __free_pages(page, get_order(s !!  92                 __free_pages(page, page_order);
144                 page = NULL;                       93                 page = NULL;
145                                                    94 
146                 if (IS_ENABLED(CONFIG_ZONE_DMA     95                 if (IS_ENABLED(CONFIG_ZONE_DMA32) &&
147                     phys_limit < DMA_BIT_MASK( !!  96                     dev->coherent_dma_mask < DMA_BIT_MASK(64) &&
148                     !(gfp & (GFP_DMA32 | GFP_D     97                     !(gfp & (GFP_DMA32 | GFP_DMA))) {
149                         gfp |= GFP_DMA32;          98                         gfp |= GFP_DMA32;
150                         goto again;                99                         goto again;
151                 }                                 100                 }
152                                                   101 
153                 if (IS_ENABLED(CONFIG_ZONE_DMA !! 102                 if (IS_ENABLED(CONFIG_ZONE_DMA) &&
                                                   >> 103                     dev->coherent_dma_mask < DMA_BIT_MASK(32) &&
                                                   >> 104                     !(gfp & GFP_DMA)) {
154                         gfp = (gfp & ~GFP_DMA3    105                         gfp = (gfp & ~GFP_DMA32) | GFP_DMA;
155                         goto again;               106                         goto again;
156                 }                                 107                 }
157         }                                         108         }
158                                                   109 
159         return page;                           << 
160 }                                              << 
161                                                << 
162 /*                                             << 
163  * Check if a potentially blocking operations  << 
164  * pools for the given device/gfp.             << 
165  */                                            << 
166 static bool dma_direct_use_pool(struct device  << 
167 {                                              << 
168         return !gfpflags_allow_blocking(gfp) & << 
169 }                                              << 
170                                                << 
171 static void *dma_direct_alloc_from_pool(struct << 
172                 dma_addr_t *dma_handle, gfp_t  << 
173 {                                              << 
174         struct page *page;                     << 
175         u64 phys_limit;                        << 
176         void *ret;                             << 
177                                                << 
178         if (WARN_ON_ONCE(!IS_ENABLED(CONFIG_DM << 
179                 return NULL;                   << 
180                                                << 
181         gfp |= dma_direct_optimal_gfp_mask(dev << 
182         page = dma_alloc_from_pool(dev, size,  << 
183         if (!page)                             << 
184                 return NULL;                   << 
185         *dma_handle = phys_to_dma_direct(dev,  << 
186         return ret;                            << 
187 }                                              << 
188                                                << 
189 static void *dma_direct_alloc_no_mapping(struc << 
190                 dma_addr_t *dma_handle, gfp_t  << 
191 {                                              << 
192         struct page *page;                     << 
193                                                << 
194         page = __dma_direct_alloc_pages(dev, s << 
195         if (!page)                             << 
196                 return NULL;                   << 
197                                                << 
198         /* remove any dirty cache lines on the << 
199         if (!PageHighMem(page))                << 
200                 arch_dma_prep_coherent(page, s << 
201                                                << 
202         /* return the page pointer as the opaq << 
203         *dma_handle = phys_to_dma_direct(dev,  << 
204         return page;                           << 
205 }                                              << 
206                                                << 
207 void *dma_direct_alloc(struct device *dev, siz << 
208                 dma_addr_t *dma_handle, gfp_t  << 
209 {                                              << 
210         bool remap = false, set_uncached = fal << 
211         struct page *page;                     << 
212         void *ret;                             << 
213                                                << 
214         size = PAGE_ALIGN(size);               << 
215         if (attrs & DMA_ATTR_NO_WARN)          << 
216                 gfp |= __GFP_NOWARN;           << 
217                                                << 
218         if ((attrs & DMA_ATTR_NO_KERNEL_MAPPIN << 
219             !force_dma_unencrypted(dev) && !is << 
220                 return dma_direct_alloc_no_map << 
221                                                << 
222         if (!dev_is_dma_coherent(dev)) {       << 
223                 if (IS_ENABLED(CONFIG_ARCH_HAS << 
224                     !is_swiotlb_for_alloc(dev) << 
225                         return arch_dma_alloc( << 
226                                                << 
227                                                << 
228                 /*                             << 
229                  * If there is a global pool,  << 
230                  * non-coherent devices.       << 
231                  */                            << 
232                 if (IS_ENABLED(CONFIG_DMA_GLOB << 
233                         return dma_alloc_from_ << 
234                                         dma_ha << 
235                                                << 
236                 /*                             << 
237                  * Otherwise we require the ar << 
238                  * mark arbitrary parts of the << 
239                  * or remapped it uncached.    << 
240                  */                            << 
241                 set_uncached = IS_ENABLED(CONF << 
242                 remap = IS_ENABLED(CONFIG_DMA_ << 
243                 if (!set_uncached && !remap) { << 
244                         pr_warn_once("coherent << 
245                         return NULL;           << 
246                 }                              << 
247         }                                      << 
248                                                << 
249         /*                                     << 
250          * Remapping or decrypting memory may  << 
251          * the atomic pools instead if we aren << 
252          */                                    << 
253         if ((remap || force_dma_unencrypted(de << 
254             dma_direct_use_pool(dev, gfp))     << 
255                 return dma_direct_alloc_from_p << 
256                                                << 
257         /* we always manually zero the memory  << 
258         page = __dma_direct_alloc_pages(dev, s << 
259         if (!page)                                110         if (!page)
260                 return NULL;                      111                 return NULL;
261                                                !! 112         ret = page_address(page);
262         /*                                     !! 113         if (force_dma_unencrypted()) {
263          * dma_alloc_contiguous can return hig !! 114                 set_memory_decrypted((unsigned long)ret, 1 << page_order);
264          * combination the cma= arguments and  !! 115                 *dma_handle = __phys_to_dma(dev, page_to_phys(page));
265          * remapped to return a kernel virtual << 
266          */                                    << 
267         if (PageHighMem(page)) {               << 
268                 remap = true;                  << 
269                 set_uncached = false;          << 
270         }                                      << 
271                                                << 
272         if (remap) {                           << 
273                 pgprot_t prot = dma_pgprot(dev << 
274                                                << 
275                 if (force_dma_unencrypted(dev) << 
276                         prot = pgprot_decrypte << 
277                                                << 
278                 /* remove any dirty cache line << 
279                 arch_dma_prep_coherent(page, s << 
280                                                << 
281                 /* create a coherent mapping * << 
282                 ret = dma_common_contiguous_re << 
283                                 __builtin_retu << 
284                 if (!ret)                      << 
285                         goto out_free_pages;   << 
286         } else {                                  116         } else {
287                 ret = page_address(page);      !! 117                 *dma_handle = phys_to_dma(dev, page_to_phys(page));
288                 if (dma_set_decrypted(dev, ret << 
289                         goto out_leak_pages;   << 
290         }                                         118         }
291                                                << 
292         memset(ret, 0, size);                     119         memset(ret, 0, size);
293                                                << 
294         if (set_uncached) {                    << 
295                 arch_dma_prep_coherent(page, s << 
296                 ret = arch_dma_set_uncached(re << 
297                 if (IS_ERR(ret))               << 
298                         goto out_encrypt_pages << 
299         }                                      << 
300                                                << 
301         *dma_handle = phys_to_dma_direct(dev,  << 
302         return ret;                               120         return ret;
303                                                << 
304 out_encrypt_pages:                             << 
305         if (dma_set_encrypted(dev, page_addres << 
306                 return NULL;                   << 
307 out_free_pages:                                << 
308         __dma_direct_free_pages(dev, page, siz << 
309         return NULL;                           << 
310 out_leak_pages:                                << 
311         return NULL;                           << 
312 }                                                 121 }
313                                                   122 
314 void dma_direct_free(struct device *dev, size_ !! 123 /*
315                 void *cpu_addr, dma_addr_t dma !! 124  * NOTE: this function must never look at the dma_addr argument, because we want
                                                   >> 125  * to be able to use it as a helper for iommu implementations as well.
                                                   >> 126  */
                                                   >> 127 void dma_direct_free(struct device *dev, size_t size, void *cpu_addr,
                                                   >> 128                 dma_addr_t dma_addr, unsigned long attrs)
316 {                                                 129 {
                                                   >> 130         unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
317         unsigned int page_order = get_order(si    131         unsigned int page_order = get_order(size);
318                                                   132 
319         if ((attrs & DMA_ATTR_NO_KERNEL_MAPPIN !! 133         if (force_dma_unencrypted())
320             !force_dma_unencrypted(dev) && !is !! 134                 set_memory_encrypted((unsigned long)cpu_addr, 1 << page_order);
321                 /* cpu_addr is a struct page c !! 135         if (!dma_release_from_contiguous(dev, virt_to_page(cpu_addr), count))
322                 dma_free_contiguous(dev, cpu_a !! 136                 free_pages((unsigned long)cpu_addr, page_order);
323                 return;                        << 
324         }                                      << 
325                                                << 
326         if (IS_ENABLED(CONFIG_ARCH_HAS_DMA_ALL << 
327             !dev_is_dma_coherent(dev) &&       << 
328             !is_swiotlb_for_alloc(dev)) {      << 
329                 arch_dma_free(dev, size, cpu_a << 
330                 return;                        << 
331         }                                      << 
332                                                << 
333         if (IS_ENABLED(CONFIG_DMA_GLOBAL_POOL) << 
334             !dev_is_dma_coherent(dev)) {       << 
335                 if (!dma_release_from_global_c << 
336                         WARN_ON_ONCE(1);       << 
337                 return;                        << 
338         }                                      << 
339                                                << 
340         /* If cpu_addr is not from an atomic p << 
341         if (IS_ENABLED(CONFIG_DMA_COHERENT_POO << 
342             dma_free_from_pool(dev, cpu_addr,  << 
343                 return;                        << 
344                                                << 
345         if (is_vmalloc_addr(cpu_addr)) {       << 
346                 vunmap(cpu_addr);              << 
347         } else {                               << 
348                 if (IS_ENABLED(CONFIG_ARCH_HAS << 
349                         arch_dma_clear_uncache << 
350                 if (dma_set_encrypted(dev, cpu << 
351                         return;                << 
352         }                                      << 
353                                                << 
354         __dma_direct_free_pages(dev, dma_direc << 
355 }                                                 137 }
356                                                   138 
357 struct page *dma_direct_alloc_pages(struct dev !! 139 dma_addr_t dma_direct_map_page(struct device *dev, struct page *page,
358                 dma_addr_t *dma_handle, enum d !! 140                 unsigned long offset, size_t size, enum dma_data_direction dir,
359 {                                              !! 141                 unsigned long attrs)
360         struct page *page;                     << 
361         void *ret;                             << 
362                                                << 
363         if (force_dma_unencrypted(dev) && dma_ << 
364                 return dma_direct_alloc_from_p << 
365                                                << 
366         page = __dma_direct_alloc_pages(dev, s << 
367         if (!page)                             << 
368                 return NULL;                   << 
369                                                << 
370         ret = page_address(page);              << 
371         if (dma_set_decrypted(dev, ret, size)) << 
372                 goto out_leak_pages;           << 
373         memset(ret, 0, size);                  << 
374         *dma_handle = phys_to_dma_direct(dev,  << 
375         return page;                           << 
376 out_leak_pages:                                << 
377         return NULL;                           << 
378 }                                              << 
379                                                << 
380 void dma_direct_free_pages(struct device *dev, << 
381                 struct page *page, dma_addr_t  << 
382                 enum dma_data_direction dir)   << 
383 {                                              << 
384         void *vaddr = page_address(page);      << 
385                                                << 
386         /* If cpu_addr is not from an atomic p << 
387         if (IS_ENABLED(CONFIG_DMA_COHERENT_POO << 
388             dma_free_from_pool(dev, vaddr, siz << 
389                 return;                        << 
390                                                << 
391         if (dma_set_encrypted(dev, vaddr, size << 
392                 return;                        << 
393         __dma_direct_free_pages(dev, page, siz << 
394 }                                              << 
395                                                << 
396 #if defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_DEVIC << 
397     defined(CONFIG_SWIOTLB)                    << 
398 void dma_direct_sync_sg_for_device(struct devi << 
399                 struct scatterlist *sgl, int n << 
400 {                                              << 
401         struct scatterlist *sg;                << 
402         int i;                                 << 
403                                                << 
404         for_each_sg(sgl, sg, nents, i) {       << 
405                 phys_addr_t paddr = dma_to_phy << 
406                                                << 
407                 swiotlb_sync_single_for_device << 
408                                                << 
409                 if (!dev_is_dma_coherent(dev)) << 
410                         arch_sync_dma_for_devi << 
411                                         dir);  << 
412         }                                      << 
413 }                                              << 
414 #endif                                         << 
415                                                << 
416 #if defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU)  << 
417     defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU_A << 
418     defined(CONFIG_SWIOTLB)                    << 
419 void dma_direct_sync_sg_for_cpu(struct device  << 
420                 struct scatterlist *sgl, int n << 
421 {                                              << 
422         struct scatterlist *sg;                << 
423         int i;                                 << 
424                                                << 
425         for_each_sg(sgl, sg, nents, i) {       << 
426                 phys_addr_t paddr = dma_to_phy << 
427                                                << 
428                 if (!dev_is_dma_coherent(dev)) << 
429                         arch_sync_dma_for_cpu( << 
430                                                << 
431                 swiotlb_sync_single_for_cpu(de << 
432                                                << 
433                 if (dir == DMA_FROM_DEVICE)    << 
434                         arch_dma_mark_clean(pa << 
435         }                                      << 
436                                                << 
437         if (!dev_is_dma_coherent(dev))         << 
438                 arch_sync_dma_for_cpu_all();   << 
439 }                                              << 
440                                                << 
441 /*                                             << 
442  * Unmaps segments, except for ones marked as  << 
443  * require any further action as they contain  << 
444  */                                            << 
445 void dma_direct_unmap_sg(struct device *dev, s << 
446                 int nents, enum dma_data_direc << 
447 {                                                 142 {
448         struct scatterlist *sg;                !! 143         dma_addr_t dma_addr = phys_to_dma(dev, page_to_phys(page)) + offset;
449         int i;                                 << 
450                                                   144 
451         for_each_sg(sgl,  sg, nents, i) {      !! 145         if (!check_addr(dev, dma_addr, size, __func__))
452                 if (sg_dma_is_bus_address(sg)) !! 146                 return DIRECT_MAPPING_ERROR;
453                         sg_dma_unmark_bus_addr !! 147         return dma_addr;
454                 else                           << 
455                         dma_direct_unmap_page( << 
456                                                << 
457         }                                      << 
458 }                                                 148 }
459 #endif                                         << 
460                                                   149 
461 int dma_direct_map_sg(struct device *dev, stru    150 int dma_direct_map_sg(struct device *dev, struct scatterlist *sgl, int nents,
462                 enum dma_data_direction dir, u    151                 enum dma_data_direction dir, unsigned long attrs)
463 {                                                 152 {
464         struct pci_p2pdma_map_state p2pdma_sta !! 153         int i;
465         enum pci_p2pdma_map_type map;          << 
466         struct scatterlist *sg;                   154         struct scatterlist *sg;
467         int i, ret;                            << 
468                                                   155 
469         for_each_sg(sgl, sg, nents, i) {          156         for_each_sg(sgl, sg, nents, i) {
470                 if (is_pci_p2pdma_page(sg_page !! 157                 BUG_ON(!sg_page(sg));
471                         map = pci_p2pdma_map_s << 
472                         switch (map) {         << 
473                         case PCI_P2PDMA_MAP_BU << 
474                                 continue;      << 
475                         case PCI_P2PDMA_MAP_TH << 
476                                 /*             << 
477                                  * Any P2P map << 
478                                  * host bridge << 
479                                  * address and << 
480                                  * done with d << 
481                                  */            << 
482                                 break;         << 
483                         default:               << 
484                                 ret = -EREMOTE << 
485                                 goto out_unmap << 
486                         }                      << 
487                 }                              << 
488                                                   158 
489                 sg->dma_address = dma_direct_m !! 159                 sg_dma_address(sg) = phys_to_dma(dev, sg_phys(sg));
490                                 sg->offset, sg !! 160                 if (!check_addr(dev, sg_dma_address(sg), sg->length, __func__))
491                 if (sg->dma_address == DMA_MAP !! 161                         return 0;
492                         ret = -EIO;            << 
493                         goto out_unmap;        << 
494                 }                              << 
495                 sg_dma_len(sg) = sg->length;      162                 sg_dma_len(sg) = sg->length;
496         }                                         163         }
497                                                   164 
498         return nents;                             165         return nents;
499                                                << 
500 out_unmap:                                     << 
501         dma_direct_unmap_sg(dev, sgl, i, dir,  << 
502         return ret;                            << 
503 }                                              << 
504                                                << 
505 dma_addr_t dma_direct_map_resource(struct devi << 
506                 size_t size, enum dma_data_dir << 
507 {                                              << 
508         dma_addr_t dma_addr = paddr;           << 
509                                                << 
510         if (unlikely(!dma_capable(dev, dma_add << 
511                 dev_err_once(dev,              << 
512                              "DMA addr %pad+%z << 
513                              &dma_addr, size,  << 
514                 WARN_ON_ONCE(1);               << 
515                 return DMA_MAPPING_ERROR;      << 
516         }                                      << 
517                                                << 
518         return dma_addr;                       << 
519 }                                              << 
520                                                << 
521 int dma_direct_get_sgtable(struct device *dev, << 
522                 void *cpu_addr, dma_addr_t dma << 
523                 unsigned long attrs)           << 
524 {                                              << 
525         struct page *page = dma_direct_to_page << 
526         int ret;                               << 
527                                                << 
528         ret = sg_alloc_table(sgt, 1, GFP_KERNE << 
529         if (!ret)                              << 
530                 sg_set_page(sgt->sgl, page, PA << 
531         return ret;                            << 
532 }                                              << 
533                                                << 
534 bool dma_direct_can_mmap(struct device *dev)   << 
535 {                                              << 
536         return dev_is_dma_coherent(dev) ||     << 
537                 IS_ENABLED(CONFIG_DMA_NONCOHER << 
538 }                                              << 
539                                                << 
540 int dma_direct_mmap(struct device *dev, struct << 
541                 void *cpu_addr, dma_addr_t dma << 
542                 unsigned long attrs)           << 
543 {                                              << 
544         unsigned long user_count = vma_pages(v << 
545         unsigned long count = PAGE_ALIGN(size) << 
546         unsigned long pfn = PHYS_PFN(dma_to_ph << 
547         int ret = -ENXIO;                      << 
548                                                << 
549         vma->vm_page_prot = dma_pgprot(dev, vm << 
550         if (force_dma_unencrypted(dev))        << 
551                 vma->vm_page_prot = pgprot_dec << 
552                                                << 
553         if (dma_mmap_from_dev_coherent(dev, vm << 
554                 return ret;                    << 
555         if (dma_mmap_from_global_coherent(vma, << 
556                 return ret;                    << 
557                                                << 
558         if (vma->vm_pgoff >= count || user_cou << 
559                 return -ENXIO;                 << 
560         return remap_pfn_range(vma, vma->vm_st << 
561                         user_count << PAGE_SHI << 
562 }                                                 166 }
563                                                   167 
564 int dma_direct_supported(struct device *dev, u    168 int dma_direct_supported(struct device *dev, u64 mask)
565 {                                                 169 {
566         u64 min_mask = (max_pfn - 1) << PAGE_S !! 170 #ifdef CONFIG_ZONE_DMA
567                                                !! 171         /*
                                                   >> 172          * This check needs to be against the actual bit mask value, so
                                                   >> 173          * use __phys_to_dma() here so that the SME encryption mask isn't
                                                   >> 174          * part of the check.
                                                   >> 175          */
                                                   >> 176         if (mask < __phys_to_dma(dev, DMA_BIT_MASK(ARCH_ZONE_DMA_BITS)))
                                                   >> 177                 return 0;
                                                   >> 178 #else
568         /*                                        179         /*
569          * Because 32-bit DMA masks are so com    180          * Because 32-bit DMA masks are so common we expect every architecture
570          * to be able to satisfy them - either    181          * to be able to satisfy them - either by not supporting more physical
571          * memory, or by providing a ZONE_DMA3    182          * memory, or by providing a ZONE_DMA32.  If neither is the case, the
572          * architecture needs to use an IOMMU     183          * architecture needs to use an IOMMU instead of the direct mapping.
                                                   >> 184          *
                                                   >> 185          * This check needs to be against the actual bit mask value, so
                                                   >> 186          * use __phys_to_dma() here so that the SME encryption mask isn't
                                                   >> 187          * part of the check.
573          */                                       188          */
574         if (mask >= DMA_BIT_MASK(32))          !! 189         if (mask < __phys_to_dma(dev, DMA_BIT_MASK(32)))
575                 return 1;                      !! 190                 return 0;
576                                                !! 191 #endif
577         /*                                        192         /*
578          * This check needs to be against the  !! 193          * Upstream PCI/PCIe bridges or SoC interconnects may not carry
579          * phys_to_dma_unencrypted() here so t !! 194          * as many DMA address bits as the device itself supports.
580          * part of the check.                  << 
581          */                                       195          */
582         if (IS_ENABLED(CONFIG_ZONE_DMA))       !! 196         if (dev->bus_dma_mask && mask > dev->bus_dma_mask)
583                 min_mask = min_t(u64, min_mask !! 197                 return 0;
584         return mask >= phys_to_dma_unencrypted !! 198         return 1;
585 }                                              << 
586                                                << 
587 /*                                             << 
588  * To check whether all ram resource ranges ar << 
589  * Returns 0 when further check is needed      << 
590  * Returns 1 if there is some RAM range can't  << 
591  */                                            << 
592 static int check_ram_in_range_map(unsigned lon << 
593                                   unsigned lon << 
594 {                                              << 
595         unsigned long end_pfn = start_pfn + nr << 
596         const struct bus_dma_region *bdr = NUL << 
597         const struct bus_dma_region *m;        << 
598         struct device *dev = data;             << 
599                                                << 
600         while (start_pfn < end_pfn) {          << 
601                 for (m = dev->dma_range_map; P << 
602                         unsigned long cpu_star << 
603                                                << 
604                         if (start_pfn >= cpu_s << 
605                             start_pfn - cpu_st << 
606                                 bdr = m;       << 
607                                 break;         << 
608                         }                      << 
609                 }                              << 
610                 if (!bdr)                      << 
611                         return 1;              << 
612                                                << 
613                 start_pfn = PFN_DOWN(bdr->cpu_ << 
614         }                                      << 
615                                                << 
616         return 0;                              << 
617 }                                              << 
618                                                << 
619 bool dma_direct_all_ram_mapped(struct device * << 
620 {                                              << 
621         if (!dev->dma_range_map)               << 
622                 return true;                   << 
623         return !walk_system_ram_range(0, PFN_D << 
624                                       check_ra << 
625 }                                              << 
626                                                << 
627 size_t dma_direct_max_mapping_size(struct devi << 
628 {                                              << 
629         /* If SWIOTLB is active, use its maxim << 
630         if (is_swiotlb_active(dev) &&          << 
631             (dma_addressing_limited(dev) || is << 
632                 return swiotlb_max_mapping_siz << 
633         return SIZE_MAX;                       << 
634 }                                                 199 }
635                                                   200 
636 bool dma_direct_need_sync(struct device *dev,  !! 201 int dma_direct_mapping_error(struct device *dev, dma_addr_t dma_addr)
637 {                                                 202 {
638         return !dev_is_dma_coherent(dev) ||    !! 203         return dma_addr == DIRECT_MAPPING_ERROR;
639                swiotlb_find_pool(dev, dma_to_p << 
640 }                                                 204 }
641                                                   205 
642 /**                                            !! 206 const struct dma_map_ops dma_direct_ops = {
643  * dma_direct_set_offset - Assign scalar offse !! 207         .alloc                  = dma_direct_alloc,
644  * @dev:        device pointer; needed to "own !! 208         .free                   = dma_direct_free,
645  * @cpu_start:  beginning of memory region cov !! 209         .map_page               = dma_direct_map_page,
646  * @dma_start:  beginning of DMA/PCI region co !! 210         .map_sg                 = dma_direct_map_sg,
647  * @size:       size of the region.            !! 211         .dma_supported          = dma_direct_supported,
648  *                                             !! 212         .mapping_error          = dma_direct_mapping_error,
649  * This is for the simple case of a uniform of !! 213 };
650  * be discovered by "dma-ranges".              !! 214 EXPORT_SYMBOL(dma_direct_ops);
651  *                                             << 
652  * It returns -ENOMEM if out of memory, -EINVA << 
653  * already exists, 0 otherwise.                << 
654  *                                             << 
655  * Note: any call to this from a driver is a b << 
656  * to be described by the device tree or other << 
657  */                                            << 
658 int dma_direct_set_offset(struct device *dev,  << 
659                          dma_addr_t dma_start, << 
660 {                                              << 
661         struct bus_dma_region *map;            << 
662         u64 offset = (u64)cpu_start - (u64)dma << 
663                                                << 
664         if (dev->dma_range_map) {              << 
665                 dev_err(dev, "attempt to add D << 
666                 return -EINVAL;                << 
667         }                                      << 
668                                                << 
669         if (!offset)                           << 
670                 return 0;                      << 
671                                                << 
672         map = kcalloc(2, sizeof(*map), GFP_KER << 
673         if (!map)                              << 
674                 return -ENOMEM;                << 
675         map[0].cpu_start = cpu_start;          << 
676         map[0].dma_start = dma_start;          << 
677         map[0].size = size;                    << 
678         dev->dma_range_map = map;              << 
679         return 0;                              << 
680 }                                              << 
681                                                   215 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

sflogo.php