1 // SPDX-License-Identifier: GPL-2.0 1 // SPDX-License-Identifier: GPL-2.0 2 /* 2 /* 3 * Copyright (C) 2018-2020 Christoph Hellwig. !! 3 * DMA operations that map physical memory directly without using an IOMMU or 4 * !! 4 * flushing caches. 5 * DMA operations that map physical memory dir << 6 */ 5 */ 7 #include <linux/memblock.h> /* for max_pfn */ << 8 #include <linux/export.h> 6 #include <linux/export.h> 9 #include <linux/mm.h> 7 #include <linux/mm.h> 10 #include <linux/dma-map-ops.h> !! 8 #include <linux/dma-direct.h> 11 #include <linux/scatterlist.h> 9 #include <linux/scatterlist.h> >> 10 #include <linux/dma-contiguous.h> 12 #include <linux/pfn.h> 11 #include <linux/pfn.h> 13 #include <linux/vmalloc.h> << 14 #include <linux/set_memory.h> 12 #include <linux/set_memory.h> 15 #include <linux/slab.h> !! 13 16 #include "direct.h" !! 14 #define DIRECT_MAPPING_ERROR 0 17 15 18 /* 16 /* 19 * Most architectures use ZONE_DMA for the fir !! 17 * Most architectures use ZONE_DMA for the first 16 Megabytes, but 20 * it for entirely different regions. In that !! 18 * some use it for entirely different regions: 21 * override the variable below for dma-direct << 22 */ 19 */ 23 u64 zone_dma_limit __ro_after_init = DMA_BIT_M !! 20 #ifndef ARCH_ZONE_DMA_BITS 24 !! 21 #define ARCH_ZONE_DMA_BITS 24 25 static inline dma_addr_t phys_to_dma_direct(st !! 22 #endif 26 phys_addr_t phys) << 27 { << 28 if (force_dma_unencrypted(dev)) << 29 return phys_to_dma_unencrypted << 30 return phys_to_dma(dev, phys); << 31 } << 32 << 33 static inline struct page *dma_direct_to_page( << 34 dma_addr_t dma_addr) << 35 { << 36 return pfn_to_page(PHYS_PFN(dma_to_phy << 37 } << 38 23 39 u64 dma_direct_get_required_mask(struct device !! 24 /* >> 25 * For AMD SEV all DMA must be to unencrypted addresses. >> 26 */ >> 27 static inline bool force_dma_unencrypted(void) 40 { 28 { 41 phys_addr_t phys = (phys_addr_t)(max_p !! 29 return sev_active(); 42 u64 max_dma = phys_to_dma_direct(dev, << 43 << 44 return (1ULL << (fls64(max_dma) - 1)) << 45 } 30 } 46 31 47 static gfp_t dma_direct_optimal_gfp_mask(struc !! 32 static bool >> 33 check_addr(struct device *dev, dma_addr_t dma_addr, size_t size, >> 34 const char *caller) 48 { 35 { 49 u64 dma_limit = min_not_zero( !! 36 if (unlikely(dev && !dma_capable(dev, dma_addr, size))) { 50 dev->coherent_dma_mask, !! 37 if (!dev->dma_mask) { 51 dev->bus_dma_limit); !! 38 dev_err(dev, 52 !! 39 "%s: call on device without dma_mask\n", 53 /* !! 40 caller); 54 * Optimistically try the zone that th !! 41 return false; 55 * into first. If that returns memory !! 42 } 56 * we will fallback to the next lower << 57 * << 58 * Note that GFP_DMA32 and GFP_DMA are << 59 * zones. << 60 */ << 61 *phys_limit = dma_to_phys(dev, dma_lim << 62 if (*phys_limit <= zone_dma_limit) << 63 return GFP_DMA; << 64 if (*phys_limit <= DMA_BIT_MASK(32)) << 65 return GFP_DMA32; << 66 return 0; << 67 } << 68 << 69 bool dma_coherent_ok(struct device *dev, phys_ << 70 { << 71 dma_addr_t dma_addr = phys_to_dma_dire << 72 43 73 if (dma_addr == DMA_MAPPING_ERROR) !! 44 if (*dev->dma_mask >= DMA_BIT_MASK(32)) { >> 45 dev_err(dev, >> 46 "%s: overflow %pad+%zu of device mask %llx\n", >> 47 caller, &dma_addr, size, *dev->dma_mask); >> 48 } 74 return false; 49 return false; 75 return dma_addr + size - 1 <= !! 50 } 76 min_not_zero(dev->coherent_dma !! 51 return true; 77 } << 78 << 79 static int dma_set_decrypted(struct device *de << 80 { << 81 if (!force_dma_unencrypted(dev)) << 82 return 0; << 83 return set_memory_decrypted((unsigned << 84 } << 85 << 86 static int dma_set_encrypted(struct device *de << 87 { << 88 int ret; << 89 << 90 if (!force_dma_unencrypted(dev)) << 91 return 0; << 92 ret = set_memory_encrypted((unsigned l << 93 if (ret) << 94 pr_warn_ratelimited("leaking D << 95 return ret; << 96 } 52 } 97 53 98 static void __dma_direct_free_pages(struct dev !! 54 static bool dma_coherent_ok(struct device *dev, phys_addr_t phys, size_t size) 99 size_t siz << 100 { 55 { 101 if (swiotlb_free(dev, page, size)) !! 56 dma_addr_t addr = force_dma_unencrypted() ? 102 return; !! 57 __phys_to_dma(dev, phys) : phys_to_dma(dev, phys); 103 dma_free_contiguous(dev, page, size); !! 58 return addr + size - 1 <= dev->coherent_dma_mask; 104 } 59 } 105 60 106 static struct page *dma_direct_alloc_swiotlb(s !! 61 void *dma_direct_alloc(struct device *dev, size_t size, dma_addr_t *dma_handle, >> 62 gfp_t gfp, unsigned long attrs) 107 { 63 { 108 struct page *page = swiotlb_alloc(dev, !! 64 unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT; 109 !! 65 int page_order = get_order(size); 110 if (page && !dma_coherent_ok(dev, page << 111 swiotlb_free(dev, page, size); << 112 return NULL; << 113 } << 114 << 115 return page; << 116 } << 117 << 118 static struct page *__dma_direct_alloc_pages(s << 119 gfp_t gfp, bool allow_highmem) << 120 { << 121 int node = dev_to_node(dev); << 122 struct page *page = NULL; 66 struct page *page = NULL; 123 u64 phys_limit; !! 67 void *ret; 124 68 125 WARN_ON_ONCE(!PAGE_ALIGNED(size)); !! 69 /* we always manually zero the memory once we are done: */ >> 70 gfp &= ~__GFP_ZERO; 126 71 127 if (is_swiotlb_for_alloc(dev)) !! 72 /* GFP_DMA32 and GFP_DMA are no ops without the corresponding zones: */ 128 return dma_direct_alloc_swiotl !! 73 if (dev->coherent_dma_mask <= DMA_BIT_MASK(ARCH_ZONE_DMA_BITS)) >> 74 gfp |= GFP_DMA; >> 75 if (dev->coherent_dma_mask <= DMA_BIT_MASK(32) && !(gfp & GFP_DMA)) >> 76 gfp |= GFP_DMA32; 129 77 130 gfp |= dma_direct_optimal_gfp_mask(dev !! 78 again: 131 page = dma_alloc_contiguous(dev, size, !! 79 /* CMA can be used only in the context which permits sleeping */ 132 if (page) { !! 80 if (gfpflags_allow_blocking(gfp)) { 133 if (!dma_coherent_ok(dev, page !! 81 page = dma_alloc_from_contiguous(dev, count, page_order, 134 (!allow_highmem && PageHig !! 82 gfp & __GFP_NOWARN); 135 dma_free_contiguous(de !! 83 if (page && !dma_coherent_ok(dev, page_to_phys(page), size)) { >> 84 dma_release_from_contiguous(dev, page, count); 136 page = NULL; 85 page = NULL; 137 } 86 } 138 } 87 } 139 again: << 140 if (!page) 88 if (!page) 141 page = alloc_pages_node(node, !! 89 page = alloc_pages_node(dev_to_node(dev), gfp, page_order); >> 90 142 if (page && !dma_coherent_ok(dev, page 91 if (page && !dma_coherent_ok(dev, page_to_phys(page), size)) { 143 __free_pages(page, get_order(s !! 92 __free_pages(page, page_order); 144 page = NULL; 93 page = NULL; 145 94 146 if (IS_ENABLED(CONFIG_ZONE_DMA 95 if (IS_ENABLED(CONFIG_ZONE_DMA32) && 147 phys_limit < DMA_BIT_MASK( !! 96 dev->coherent_dma_mask < DMA_BIT_MASK(64) && 148 !(gfp & (GFP_DMA32 | GFP_D 97 !(gfp & (GFP_DMA32 | GFP_DMA))) { 149 gfp |= GFP_DMA32; 98 gfp |= GFP_DMA32; 150 goto again; 99 goto again; 151 } 100 } 152 101 153 if (IS_ENABLED(CONFIG_ZONE_DMA !! 102 if (IS_ENABLED(CONFIG_ZONE_DMA) && >> 103 dev->coherent_dma_mask < DMA_BIT_MASK(32) && >> 104 !(gfp & GFP_DMA)) { 154 gfp = (gfp & ~GFP_DMA3 105 gfp = (gfp & ~GFP_DMA32) | GFP_DMA; 155 goto again; 106 goto again; 156 } 107 } 157 } 108 } 158 109 159 return page; << 160 } << 161 << 162 /* << 163 * Check if a potentially blocking operations << 164 * pools for the given device/gfp. << 165 */ << 166 static bool dma_direct_use_pool(struct device << 167 { << 168 return !gfpflags_allow_blocking(gfp) & << 169 } << 170 << 171 static void *dma_direct_alloc_from_pool(struct << 172 dma_addr_t *dma_handle, gfp_t << 173 { << 174 struct page *page; << 175 u64 phys_limit; << 176 void *ret; << 177 << 178 if (WARN_ON_ONCE(!IS_ENABLED(CONFIG_DM << 179 return NULL; << 180 << 181 gfp |= dma_direct_optimal_gfp_mask(dev << 182 page = dma_alloc_from_pool(dev, size, << 183 if (!page) << 184 return NULL; << 185 *dma_handle = phys_to_dma_direct(dev, << 186 return ret; << 187 } << 188 << 189 static void *dma_direct_alloc_no_mapping(struc << 190 dma_addr_t *dma_handle, gfp_t << 191 { << 192 struct page *page; << 193 << 194 page = __dma_direct_alloc_pages(dev, s << 195 if (!page) << 196 return NULL; << 197 << 198 /* remove any dirty cache lines on the << 199 if (!PageHighMem(page)) << 200 arch_dma_prep_coherent(page, s << 201 << 202 /* return the page pointer as the opaq << 203 *dma_handle = phys_to_dma_direct(dev, << 204 return page; << 205 } << 206 << 207 void *dma_direct_alloc(struct device *dev, siz << 208 dma_addr_t *dma_handle, gfp_t << 209 { << 210 bool remap = false, set_uncached = fal << 211 struct page *page; << 212 void *ret; << 213 << 214 size = PAGE_ALIGN(size); << 215 if (attrs & DMA_ATTR_NO_WARN) << 216 gfp |= __GFP_NOWARN; << 217 << 218 if ((attrs & DMA_ATTR_NO_KERNEL_MAPPIN << 219 !force_dma_unencrypted(dev) && !is << 220 return dma_direct_alloc_no_map << 221 << 222 if (!dev_is_dma_coherent(dev)) { << 223 if (IS_ENABLED(CONFIG_ARCH_HAS << 224 !is_swiotlb_for_alloc(dev) << 225 return arch_dma_alloc( << 226 << 227 << 228 /* << 229 * If there is a global pool, << 230 * non-coherent devices. << 231 */ << 232 if (IS_ENABLED(CONFIG_DMA_GLOB << 233 return dma_alloc_from_ << 234 dma_ha << 235 << 236 /* << 237 * Otherwise we require the ar << 238 * mark arbitrary parts of the << 239 * or remapped it uncached. << 240 */ << 241 set_uncached = IS_ENABLED(CONF << 242 remap = IS_ENABLED(CONFIG_DMA_ << 243 if (!set_uncached && !remap) { << 244 pr_warn_once("coherent << 245 return NULL; << 246 } << 247 } << 248 << 249 /* << 250 * Remapping or decrypting memory may << 251 * the atomic pools instead if we aren << 252 */ << 253 if ((remap || force_dma_unencrypted(de << 254 dma_direct_use_pool(dev, gfp)) << 255 return dma_direct_alloc_from_p << 256 << 257 /* we always manually zero the memory << 258 page = __dma_direct_alloc_pages(dev, s << 259 if (!page) 110 if (!page) 260 return NULL; 111 return NULL; 261 !! 112 ret = page_address(page); 262 /* !! 113 if (force_dma_unencrypted()) { 263 * dma_alloc_contiguous can return hig !! 114 set_memory_decrypted((unsigned long)ret, 1 << page_order); 264 * combination the cma= arguments and !! 115 *dma_handle = __phys_to_dma(dev, page_to_phys(page)); 265 * remapped to return a kernel virtual << 266 */ << 267 if (PageHighMem(page)) { << 268 remap = true; << 269 set_uncached = false; << 270 } << 271 << 272 if (remap) { << 273 pgprot_t prot = dma_pgprot(dev << 274 << 275 if (force_dma_unencrypted(dev) << 276 prot = pgprot_decrypte << 277 << 278 /* remove any dirty cache line << 279 arch_dma_prep_coherent(page, s << 280 << 281 /* create a coherent mapping * << 282 ret = dma_common_contiguous_re << 283 __builtin_retu << 284 if (!ret) << 285 goto out_free_pages; << 286 } else { 116 } else { 287 ret = page_address(page); !! 117 *dma_handle = phys_to_dma(dev, page_to_phys(page)); 288 if (dma_set_decrypted(dev, ret << 289 goto out_leak_pages; << 290 } 118 } 291 << 292 memset(ret, 0, size); 119 memset(ret, 0, size); 293 << 294 if (set_uncached) { << 295 arch_dma_prep_coherent(page, s << 296 ret = arch_dma_set_uncached(re << 297 if (IS_ERR(ret)) << 298 goto out_encrypt_pages << 299 } << 300 << 301 *dma_handle = phys_to_dma_direct(dev, << 302 return ret; 120 return ret; 303 << 304 out_encrypt_pages: << 305 if (dma_set_encrypted(dev, page_addres << 306 return NULL; << 307 out_free_pages: << 308 __dma_direct_free_pages(dev, page, siz << 309 return NULL; << 310 out_leak_pages: << 311 return NULL; << 312 } 121 } 313 122 314 void dma_direct_free(struct device *dev, size_ !! 123 /* 315 void *cpu_addr, dma_addr_t dma !! 124 * NOTE: this function must never look at the dma_addr argument, because we want >> 125 * to be able to use it as a helper for iommu implementations as well. >> 126 */ >> 127 void dma_direct_free(struct device *dev, size_t size, void *cpu_addr, >> 128 dma_addr_t dma_addr, unsigned long attrs) 316 { 129 { >> 130 unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT; 317 unsigned int page_order = get_order(si 131 unsigned int page_order = get_order(size); 318 132 319 if ((attrs & DMA_ATTR_NO_KERNEL_MAPPIN !! 133 if (force_dma_unencrypted()) 320 !force_dma_unencrypted(dev) && !is !! 134 set_memory_encrypted((unsigned long)cpu_addr, 1 << page_order); 321 /* cpu_addr is a struct page c !! 135 if (!dma_release_from_contiguous(dev, virt_to_page(cpu_addr), count)) 322 dma_free_contiguous(dev, cpu_a !! 136 free_pages((unsigned long)cpu_addr, page_order); 323 return; << 324 } << 325 << 326 if (IS_ENABLED(CONFIG_ARCH_HAS_DMA_ALL << 327 !dev_is_dma_coherent(dev) && << 328 !is_swiotlb_for_alloc(dev)) { << 329 arch_dma_free(dev, size, cpu_a << 330 return; << 331 } << 332 << 333 if (IS_ENABLED(CONFIG_DMA_GLOBAL_POOL) << 334 !dev_is_dma_coherent(dev)) { << 335 if (!dma_release_from_global_c << 336 WARN_ON_ONCE(1); << 337 return; << 338 } << 339 << 340 /* If cpu_addr is not from an atomic p << 341 if (IS_ENABLED(CONFIG_DMA_COHERENT_POO << 342 dma_free_from_pool(dev, cpu_addr, << 343 return; << 344 << 345 if (is_vmalloc_addr(cpu_addr)) { << 346 vunmap(cpu_addr); << 347 } else { << 348 if (IS_ENABLED(CONFIG_ARCH_HAS << 349 arch_dma_clear_uncache << 350 if (dma_set_encrypted(dev, cpu << 351 return; << 352 } << 353 << 354 __dma_direct_free_pages(dev, dma_direc << 355 } 137 } 356 138 357 struct page *dma_direct_alloc_pages(struct dev !! 139 dma_addr_t dma_direct_map_page(struct device *dev, struct page *page, 358 dma_addr_t *dma_handle, enum d !! 140 unsigned long offset, size_t size, enum dma_data_direction dir, 359 { !! 141 unsigned long attrs) 360 struct page *page; << 361 void *ret; << 362 << 363 if (force_dma_unencrypted(dev) && dma_ << 364 return dma_direct_alloc_from_p << 365 << 366 page = __dma_direct_alloc_pages(dev, s << 367 if (!page) << 368 return NULL; << 369 << 370 ret = page_address(page); << 371 if (dma_set_decrypted(dev, ret, size)) << 372 goto out_leak_pages; << 373 memset(ret, 0, size); << 374 *dma_handle = phys_to_dma_direct(dev, << 375 return page; << 376 out_leak_pages: << 377 return NULL; << 378 } << 379 << 380 void dma_direct_free_pages(struct device *dev, << 381 struct page *page, dma_addr_t << 382 enum dma_data_direction dir) << 383 { << 384 void *vaddr = page_address(page); << 385 << 386 /* If cpu_addr is not from an atomic p << 387 if (IS_ENABLED(CONFIG_DMA_COHERENT_POO << 388 dma_free_from_pool(dev, vaddr, siz << 389 return; << 390 << 391 if (dma_set_encrypted(dev, vaddr, size << 392 return; << 393 __dma_direct_free_pages(dev, page, siz << 394 } << 395 << 396 #if defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_DEVIC << 397 defined(CONFIG_SWIOTLB) << 398 void dma_direct_sync_sg_for_device(struct devi << 399 struct scatterlist *sgl, int n << 400 { << 401 struct scatterlist *sg; << 402 int i; << 403 << 404 for_each_sg(sgl, sg, nents, i) { << 405 phys_addr_t paddr = dma_to_phy << 406 << 407 swiotlb_sync_single_for_device << 408 << 409 if (!dev_is_dma_coherent(dev)) << 410 arch_sync_dma_for_devi << 411 dir); << 412 } << 413 } << 414 #endif << 415 << 416 #if defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU) << 417 defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU_A << 418 defined(CONFIG_SWIOTLB) << 419 void dma_direct_sync_sg_for_cpu(struct device << 420 struct scatterlist *sgl, int n << 421 { << 422 struct scatterlist *sg; << 423 int i; << 424 << 425 for_each_sg(sgl, sg, nents, i) { << 426 phys_addr_t paddr = dma_to_phy << 427 << 428 if (!dev_is_dma_coherent(dev)) << 429 arch_sync_dma_for_cpu( << 430 << 431 swiotlb_sync_single_for_cpu(de << 432 << 433 if (dir == DMA_FROM_DEVICE) << 434 arch_dma_mark_clean(pa << 435 } << 436 << 437 if (!dev_is_dma_coherent(dev)) << 438 arch_sync_dma_for_cpu_all(); << 439 } << 440 << 441 /* << 442 * Unmaps segments, except for ones marked as << 443 * require any further action as they contain << 444 */ << 445 void dma_direct_unmap_sg(struct device *dev, s << 446 int nents, enum dma_data_direc << 447 { 142 { 448 struct scatterlist *sg; !! 143 dma_addr_t dma_addr = phys_to_dma(dev, page_to_phys(page)) + offset; 449 int i; << 450 144 451 for_each_sg(sgl, sg, nents, i) { !! 145 if (!check_addr(dev, dma_addr, size, __func__)) 452 if (sg_dma_is_bus_address(sg)) !! 146 return DIRECT_MAPPING_ERROR; 453 sg_dma_unmark_bus_addr !! 147 return dma_addr; 454 else << 455 dma_direct_unmap_page( << 456 << 457 } << 458 } 148 } 459 #endif << 460 149 461 int dma_direct_map_sg(struct device *dev, stru 150 int dma_direct_map_sg(struct device *dev, struct scatterlist *sgl, int nents, 462 enum dma_data_direction dir, u 151 enum dma_data_direction dir, unsigned long attrs) 463 { 152 { 464 struct pci_p2pdma_map_state p2pdma_sta !! 153 int i; 465 enum pci_p2pdma_map_type map; << 466 struct scatterlist *sg; 154 struct scatterlist *sg; 467 int i, ret; << 468 155 469 for_each_sg(sgl, sg, nents, i) { 156 for_each_sg(sgl, sg, nents, i) { 470 if (is_pci_p2pdma_page(sg_page !! 157 BUG_ON(!sg_page(sg)); 471 map = pci_p2pdma_map_s << 472 switch (map) { << 473 case PCI_P2PDMA_MAP_BU << 474 continue; << 475 case PCI_P2PDMA_MAP_TH << 476 /* << 477 * Any P2P map << 478 * host bridge << 479 * address and << 480 * done with d << 481 */ << 482 break; << 483 default: << 484 ret = -EREMOTE << 485 goto out_unmap << 486 } << 487 } << 488 158 489 sg->dma_address = dma_direct_m !! 159 sg_dma_address(sg) = phys_to_dma(dev, sg_phys(sg)); 490 sg->offset, sg !! 160 if (!check_addr(dev, sg_dma_address(sg), sg->length, __func__)) 491 if (sg->dma_address == DMA_MAP !! 161 return 0; 492 ret = -EIO; << 493 goto out_unmap; << 494 } << 495 sg_dma_len(sg) = sg->length; 162 sg_dma_len(sg) = sg->length; 496 } 163 } 497 164 498 return nents; 165 return nents; 499 << 500 out_unmap: << 501 dma_direct_unmap_sg(dev, sgl, i, dir, << 502 return ret; << 503 } << 504 << 505 dma_addr_t dma_direct_map_resource(struct devi << 506 size_t size, enum dma_data_dir << 507 { << 508 dma_addr_t dma_addr = paddr; << 509 << 510 if (unlikely(!dma_capable(dev, dma_add << 511 dev_err_once(dev, << 512 "DMA addr %pad+%z << 513 &dma_addr, size, << 514 WARN_ON_ONCE(1); << 515 return DMA_MAPPING_ERROR; << 516 } << 517 << 518 return dma_addr; << 519 } << 520 << 521 int dma_direct_get_sgtable(struct device *dev, << 522 void *cpu_addr, dma_addr_t dma << 523 unsigned long attrs) << 524 { << 525 struct page *page = dma_direct_to_page << 526 int ret; << 527 << 528 ret = sg_alloc_table(sgt, 1, GFP_KERNE << 529 if (!ret) << 530 sg_set_page(sgt->sgl, page, PA << 531 return ret; << 532 } << 533 << 534 bool dma_direct_can_mmap(struct device *dev) << 535 { << 536 return dev_is_dma_coherent(dev) || << 537 IS_ENABLED(CONFIG_DMA_NONCOHER << 538 } << 539 << 540 int dma_direct_mmap(struct device *dev, struct << 541 void *cpu_addr, dma_addr_t dma << 542 unsigned long attrs) << 543 { << 544 unsigned long user_count = vma_pages(v << 545 unsigned long count = PAGE_ALIGN(size) << 546 unsigned long pfn = PHYS_PFN(dma_to_ph << 547 int ret = -ENXIO; << 548 << 549 vma->vm_page_prot = dma_pgprot(dev, vm << 550 if (force_dma_unencrypted(dev)) << 551 vma->vm_page_prot = pgprot_dec << 552 << 553 if (dma_mmap_from_dev_coherent(dev, vm << 554 return ret; << 555 if (dma_mmap_from_global_coherent(vma, << 556 return ret; << 557 << 558 if (vma->vm_pgoff >= count || user_cou << 559 return -ENXIO; << 560 return remap_pfn_range(vma, vma->vm_st << 561 user_count << PAGE_SHI << 562 } 166 } 563 167 564 int dma_direct_supported(struct device *dev, u 168 int dma_direct_supported(struct device *dev, u64 mask) 565 { 169 { 566 u64 min_mask = (max_pfn - 1) << PAGE_S !! 170 #ifdef CONFIG_ZONE_DMA 567 !! 171 /* >> 172 * This check needs to be against the actual bit mask value, so >> 173 * use __phys_to_dma() here so that the SME encryption mask isn't >> 174 * part of the check. >> 175 */ >> 176 if (mask < __phys_to_dma(dev, DMA_BIT_MASK(ARCH_ZONE_DMA_BITS))) >> 177 return 0; >> 178 #else 568 /* 179 /* 569 * Because 32-bit DMA masks are so com 180 * Because 32-bit DMA masks are so common we expect every architecture 570 * to be able to satisfy them - either 181 * to be able to satisfy them - either by not supporting more physical 571 * memory, or by providing a ZONE_DMA3 182 * memory, or by providing a ZONE_DMA32. If neither is the case, the 572 * architecture needs to use an IOMMU 183 * architecture needs to use an IOMMU instead of the direct mapping. >> 184 * >> 185 * This check needs to be against the actual bit mask value, so >> 186 * use __phys_to_dma() here so that the SME encryption mask isn't >> 187 * part of the check. 573 */ 188 */ 574 if (mask >= DMA_BIT_MASK(32)) !! 189 if (mask < __phys_to_dma(dev, DMA_BIT_MASK(32))) 575 return 1; !! 190 return 0; 576 !! 191 #endif 577 /* 192 /* 578 * This check needs to be against the !! 193 * Upstream PCI/PCIe bridges or SoC interconnects may not carry 579 * phys_to_dma_unencrypted() here so t !! 194 * as many DMA address bits as the device itself supports. 580 * part of the check. << 581 */ 195 */ 582 if (IS_ENABLED(CONFIG_ZONE_DMA)) !! 196 if (dev->bus_dma_mask && mask > dev->bus_dma_mask) 583 min_mask = min_t(u64, min_mask !! 197 return 0; 584 return mask >= phys_to_dma_unencrypted !! 198 return 1; 585 } << 586 << 587 /* << 588 * To check whether all ram resource ranges ar << 589 * Returns 0 when further check is needed << 590 * Returns 1 if there is some RAM range can't << 591 */ << 592 static int check_ram_in_range_map(unsigned lon << 593 unsigned lon << 594 { << 595 unsigned long end_pfn = start_pfn + nr << 596 const struct bus_dma_region *bdr = NUL << 597 const struct bus_dma_region *m; << 598 struct device *dev = data; << 599 << 600 while (start_pfn < end_pfn) { << 601 for (m = dev->dma_range_map; P << 602 unsigned long cpu_star << 603 << 604 if (start_pfn >= cpu_s << 605 start_pfn - cpu_st << 606 bdr = m; << 607 break; << 608 } << 609 } << 610 if (!bdr) << 611 return 1; << 612 << 613 start_pfn = PFN_DOWN(bdr->cpu_ << 614 } << 615 << 616 return 0; << 617 } << 618 << 619 bool dma_direct_all_ram_mapped(struct device * << 620 { << 621 if (!dev->dma_range_map) << 622 return true; << 623 return !walk_system_ram_range(0, PFN_D << 624 check_ra << 625 } << 626 << 627 size_t dma_direct_max_mapping_size(struct devi << 628 { << 629 /* If SWIOTLB is active, use its maxim << 630 if (is_swiotlb_active(dev) && << 631 (dma_addressing_limited(dev) || is << 632 return swiotlb_max_mapping_siz << 633 return SIZE_MAX; << 634 } 199 } 635 200 636 bool dma_direct_need_sync(struct device *dev, !! 201 int dma_direct_mapping_error(struct device *dev, dma_addr_t dma_addr) 637 { 202 { 638 return !dev_is_dma_coherent(dev) || !! 203 return dma_addr == DIRECT_MAPPING_ERROR; 639 swiotlb_find_pool(dev, dma_to_p << 640 } 204 } 641 205 642 /** !! 206 const struct dma_map_ops dma_direct_ops = { 643 * dma_direct_set_offset - Assign scalar offse !! 207 .alloc = dma_direct_alloc, 644 * @dev: device pointer; needed to "own !! 208 .free = dma_direct_free, 645 * @cpu_start: beginning of memory region cov !! 209 .map_page = dma_direct_map_page, 646 * @dma_start: beginning of DMA/PCI region co !! 210 .map_sg = dma_direct_map_sg, 647 * @size: size of the region. !! 211 .dma_supported = dma_direct_supported, 648 * !! 212 .mapping_error = dma_direct_mapping_error, 649 * This is for the simple case of a uniform of !! 213 }; 650 * be discovered by "dma-ranges". !! 214 EXPORT_SYMBOL(dma_direct_ops); 651 * << 652 * It returns -ENOMEM if out of memory, -EINVA << 653 * already exists, 0 otherwise. << 654 * << 655 * Note: any call to this from a driver is a b << 656 * to be described by the device tree or other << 657 */ << 658 int dma_direct_set_offset(struct device *dev, << 659 dma_addr_t dma_start, << 660 { << 661 struct bus_dma_region *map; << 662 u64 offset = (u64)cpu_start - (u64)dma << 663 << 664 if (dev->dma_range_map) { << 665 dev_err(dev, "attempt to add D << 666 return -EINVAL; << 667 } << 668 << 669 if (!offset) << 670 return 0; << 671 << 672 map = kcalloc(2, sizeof(*map), GFP_KER << 673 if (!map) << 674 return -ENOMEM; << 675 map[0].cpu_start = cpu_start; << 676 map[0].dma_start = dma_start; << 677 map[0].size = size; << 678 dev->dma_range_map = map; << 679 return 0; << 680 } << 681 215
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.