1 // SPDX-License-Identifier: GPL-2.0 1 2 /* 3 * Copyright (C) 2018-2020 Christoph Hellwig. 4 * 5 * DMA operations that map physical memory dir 6 */ 7 #include <linux/memblock.h> /* for max_pfn */ 8 #include <linux/export.h> 9 #include <linux/mm.h> 10 #include <linux/dma-map-ops.h> 11 #include <linux/scatterlist.h> 12 #include <linux/pfn.h> 13 #include <linux/vmalloc.h> 14 #include <linux/set_memory.h> 15 #include <linux/slab.h> 16 #include "direct.h" 17 18 /* 19 * Most architectures use ZONE_DMA for the fir 20 * it for entirely different regions. In that 21 * override the variable below for dma-direct 22 */ 23 unsigned int zone_dma_bits __ro_after_init = 2 24 25 static inline dma_addr_t phys_to_dma_direct(st 26 phys_addr_t phys) 27 { 28 if (force_dma_unencrypted(dev)) 29 return phys_to_dma_unencrypted 30 return phys_to_dma(dev, phys); 31 } 32 33 static inline struct page *dma_direct_to_page( 34 dma_addr_t dma_addr) 35 { 36 return pfn_to_page(PHYS_PFN(dma_to_phy 37 } 38 39 u64 dma_direct_get_required_mask(struct device 40 { 41 phys_addr_t phys = (phys_addr_t)(max_p 42 u64 max_dma = phys_to_dma_direct(dev, 43 44 return (1ULL << (fls64(max_dma) - 1)) 45 } 46 47 static gfp_t dma_direct_optimal_gfp_mask(struc 48 { 49 u64 dma_limit = min_not_zero( 50 dev->coherent_dma_mask, 51 dev->bus_dma_limit); 52 53 /* 54 * Optimistically try the zone that th 55 * into first. If that returns memory 56 * we will fallback to the next lower 57 * 58 * Note that GFP_DMA32 and GFP_DMA are 59 * zones. 60 */ 61 *phys_limit = dma_to_phys(dev, dma_lim 62 if (*phys_limit <= DMA_BIT_MASK(zone_d 63 return GFP_DMA; 64 if (*phys_limit <= DMA_BIT_MASK(32)) 65 return GFP_DMA32; 66 return 0; 67 } 68 69 bool dma_coherent_ok(struct device *dev, phys_ 70 { 71 dma_addr_t dma_addr = phys_to_dma_dire 72 73 if (dma_addr == DMA_MAPPING_ERROR) 74 return false; 75 return dma_addr + size - 1 <= 76 min_not_zero(dev->coherent_dma 77 } 78 79 static int dma_set_decrypted(struct device *de 80 { 81 if (!force_dma_unencrypted(dev)) 82 return 0; 83 return set_memory_decrypted((unsigned 84 } 85 86 static int dma_set_encrypted(struct device *de 87 { 88 int ret; 89 90 if (!force_dma_unencrypted(dev)) 91 return 0; 92 ret = set_memory_encrypted((unsigned l 93 if (ret) 94 pr_warn_ratelimited("leaking D 95 return ret; 96 } 97 98 static void __dma_direct_free_pages(struct dev 99 size_t siz 100 { 101 if (swiotlb_free(dev, page, size)) 102 return; 103 dma_free_contiguous(dev, page, size); 104 } 105 106 static struct page *dma_direct_alloc_swiotlb(s 107 { 108 struct page *page = swiotlb_alloc(dev, 109 110 if (page && !dma_coherent_ok(dev, page 111 swiotlb_free(dev, page, size); 112 return NULL; 113 } 114 115 return page; 116 } 117 118 static struct page *__dma_direct_alloc_pages(s 119 gfp_t gfp, bool allow_highmem) 120 { 121 int node = dev_to_node(dev); 122 struct page *page = NULL; 123 u64 phys_limit; 124 125 WARN_ON_ONCE(!PAGE_ALIGNED(size)); 126 127 if (is_swiotlb_for_alloc(dev)) 128 return dma_direct_alloc_swiotl 129 130 gfp |= dma_direct_optimal_gfp_mask(dev 131 page = dma_alloc_contiguous(dev, size, 132 if (page) { 133 if (!dma_coherent_ok(dev, page 134 (!allow_highmem && PageHig 135 dma_free_contiguous(de 136 page = NULL; 137 } 138 } 139 again: 140 if (!page) 141 page = alloc_pages_node(node, 142 if (page && !dma_coherent_ok(dev, page 143 dma_free_contiguous(dev, page, 144 page = NULL; 145 146 if (IS_ENABLED(CONFIG_ZONE_DMA 147 phys_limit < DMA_BIT_MASK( 148 !(gfp & (GFP_DMA32 | GFP_D 149 gfp |= GFP_DMA32; 150 goto again; 151 } 152 153 if (IS_ENABLED(CONFIG_ZONE_DMA 154 gfp = (gfp & ~GFP_DMA3 155 goto again; 156 } 157 } 158 159 return page; 160 } 161 162 /* 163 * Check if a potentially blocking operations 164 * pools for the given device/gfp. 165 */ 166 static bool dma_direct_use_pool(struct device 167 { 168 return !gfpflags_allow_blocking(gfp) & 169 } 170 171 static void *dma_direct_alloc_from_pool(struct 172 dma_addr_t *dma_handle, gfp_t 173 { 174 struct page *page; 175 u64 phys_limit; 176 void *ret; 177 178 if (WARN_ON_ONCE(!IS_ENABLED(CONFIG_DM 179 return NULL; 180 181 gfp |= dma_direct_optimal_gfp_mask(dev 182 page = dma_alloc_from_pool(dev, size, 183 if (!page) 184 return NULL; 185 *dma_handle = phys_to_dma_direct(dev, 186 return ret; 187 } 188 189 static void *dma_direct_alloc_no_mapping(struc 190 dma_addr_t *dma_handle, gfp_t 191 { 192 struct page *page; 193 194 page = __dma_direct_alloc_pages(dev, s 195 if (!page) 196 return NULL; 197 198 /* remove any dirty cache lines on the 199 if (!PageHighMem(page)) 200 arch_dma_prep_coherent(page, s 201 202 /* return the page pointer as the opaq 203 *dma_handle = phys_to_dma_direct(dev, 204 return page; 205 } 206 207 void *dma_direct_alloc(struct device *dev, siz 208 dma_addr_t *dma_handle, gfp_t 209 { 210 bool remap = false, set_uncached = fal 211 struct page *page; 212 void *ret; 213 214 size = PAGE_ALIGN(size); 215 if (attrs & DMA_ATTR_NO_WARN) 216 gfp |= __GFP_NOWARN; 217 218 if ((attrs & DMA_ATTR_NO_KERNEL_MAPPIN 219 !force_dma_unencrypted(dev) && !is 220 return dma_direct_alloc_no_map 221 222 if (!dev_is_dma_coherent(dev)) { 223 if (IS_ENABLED(CONFIG_ARCH_HAS 224 !is_swiotlb_for_alloc(dev) 225 return arch_dma_alloc( 226 227 228 /* 229 * If there is a global pool, 230 * non-coherent devices. 231 */ 232 if (IS_ENABLED(CONFIG_DMA_GLOB 233 return dma_alloc_from_ 234 dma_ha 235 236 /* 237 * Otherwise we require the ar 238 * mark arbitrary parts of the 239 * or remapped it uncached. 240 */ 241 set_uncached = IS_ENABLED(CONF 242 remap = IS_ENABLED(CONFIG_DMA_ 243 if (!set_uncached && !remap) { 244 pr_warn_once("coherent 245 return NULL; 246 } 247 } 248 249 /* 250 * Remapping or decrypting memory may 251 * the atomic pools instead if we aren 252 */ 253 if ((remap || force_dma_unencrypted(de 254 dma_direct_use_pool(dev, gfp)) 255 return dma_direct_alloc_from_p 256 257 /* we always manually zero the memory 258 page = __dma_direct_alloc_pages(dev, s 259 if (!page) 260 return NULL; 261 262 /* 263 * dma_alloc_contiguous can return hig 264 * combination the cma= arguments and 265 * remapped to return a kernel virtual 266 */ 267 if (PageHighMem(page)) { 268 remap = true; 269 set_uncached = false; 270 } 271 272 if (remap) { 273 pgprot_t prot = dma_pgprot(dev 274 275 if (force_dma_unencrypted(dev) 276 prot = pgprot_decrypte 277 278 /* remove any dirty cache line 279 arch_dma_prep_coherent(page, s 280 281 /* create a coherent mapping * 282 ret = dma_common_contiguous_re 283 __builtin_retu 284 if (!ret) 285 goto out_free_pages; 286 } else { 287 ret = page_address(page); 288 if (dma_set_decrypted(dev, ret 289 goto out_leak_pages; 290 } 291 292 memset(ret, 0, size); 293 294 if (set_uncached) { 295 arch_dma_prep_coherent(page, s 296 ret = arch_dma_set_uncached(re 297 if (IS_ERR(ret)) 298 goto out_encrypt_pages 299 } 300 301 *dma_handle = phys_to_dma_direct(dev, 302 return ret; 303 304 out_encrypt_pages: 305 if (dma_set_encrypted(dev, page_addres 306 return NULL; 307 out_free_pages: 308 __dma_direct_free_pages(dev, page, siz 309 return NULL; 310 out_leak_pages: 311 return NULL; 312 } 313 314 void dma_direct_free(struct device *dev, size_ 315 void *cpu_addr, dma_addr_t dma 316 { 317 unsigned int page_order = get_order(si 318 319 if ((attrs & DMA_ATTR_NO_KERNEL_MAPPIN 320 !force_dma_unencrypted(dev) && !is 321 /* cpu_addr is a struct page c 322 dma_free_contiguous(dev, cpu_a 323 return; 324 } 325 326 if (IS_ENABLED(CONFIG_ARCH_HAS_DMA_ALL 327 !dev_is_dma_coherent(dev) && 328 !is_swiotlb_for_alloc(dev)) { 329 arch_dma_free(dev, size, cpu_a 330 return; 331 } 332 333 if (IS_ENABLED(CONFIG_DMA_GLOBAL_POOL) 334 !dev_is_dma_coherent(dev)) { 335 if (!dma_release_from_global_c 336 WARN_ON_ONCE(1); 337 return; 338 } 339 340 /* If cpu_addr is not from an atomic p 341 if (IS_ENABLED(CONFIG_DMA_COHERENT_POO 342 dma_free_from_pool(dev, cpu_addr, 343 return; 344 345 if (is_vmalloc_addr(cpu_addr)) { 346 vunmap(cpu_addr); 347 } else { 348 if (IS_ENABLED(CONFIG_ARCH_HAS 349 arch_dma_clear_uncache 350 if (dma_set_encrypted(dev, cpu 351 return; 352 } 353 354 __dma_direct_free_pages(dev, dma_direc 355 } 356 357 struct page *dma_direct_alloc_pages(struct dev 358 dma_addr_t *dma_handle, enum d 359 { 360 struct page *page; 361 void *ret; 362 363 if (force_dma_unencrypted(dev) && dma_ 364 return dma_direct_alloc_from_p 365 366 page = __dma_direct_alloc_pages(dev, s 367 if (!page) 368 return NULL; 369 370 ret = page_address(page); 371 if (dma_set_decrypted(dev, ret, size)) 372 goto out_leak_pages; 373 memset(ret, 0, size); 374 *dma_handle = phys_to_dma_direct(dev, 375 return page; 376 out_leak_pages: 377 return NULL; 378 } 379 380 void dma_direct_free_pages(struct device *dev, 381 struct page *page, dma_addr_t 382 enum dma_data_direction dir) 383 { 384 void *vaddr = page_address(page); 385 386 /* If cpu_addr is not from an atomic p 387 if (IS_ENABLED(CONFIG_DMA_COHERENT_POO 388 dma_free_from_pool(dev, vaddr, siz 389 return; 390 391 if (dma_set_encrypted(dev, vaddr, size 392 return; 393 __dma_direct_free_pages(dev, page, siz 394 } 395 396 #if defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_DEVIC 397 defined(CONFIG_SWIOTLB) 398 void dma_direct_sync_sg_for_device(struct devi 399 struct scatterlist *sgl, int n 400 { 401 struct scatterlist *sg; 402 int i; 403 404 for_each_sg(sgl, sg, nents, i) { 405 phys_addr_t paddr = dma_to_phy 406 407 swiotlb_sync_single_for_device 408 409 if (!dev_is_dma_coherent(dev)) 410 arch_sync_dma_for_devi 411 dir); 412 } 413 } 414 #endif 415 416 #if defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU) 417 defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU_A 418 defined(CONFIG_SWIOTLB) 419 void dma_direct_sync_sg_for_cpu(struct device 420 struct scatterlist *sgl, int n 421 { 422 struct scatterlist *sg; 423 int i; 424 425 for_each_sg(sgl, sg, nents, i) { 426 phys_addr_t paddr = dma_to_phy 427 428 if (!dev_is_dma_coherent(dev)) 429 arch_sync_dma_for_cpu( 430 431 swiotlb_sync_single_for_cpu(de 432 433 if (dir == DMA_FROM_DEVICE) 434 arch_dma_mark_clean(pa 435 } 436 437 if (!dev_is_dma_coherent(dev)) 438 arch_sync_dma_for_cpu_all(); 439 } 440 441 /* 442 * Unmaps segments, except for ones marked as 443 * require any further action as they contain 444 */ 445 void dma_direct_unmap_sg(struct device *dev, s 446 int nents, enum dma_data_direc 447 { 448 struct scatterlist *sg; 449 int i; 450 451 for_each_sg(sgl, sg, nents, i) { 452 if (sg_dma_is_bus_address(sg)) 453 sg_dma_unmark_bus_addr 454 else 455 dma_direct_unmap_page( 456 457 } 458 } 459 #endif 460 461 int dma_direct_map_sg(struct device *dev, stru 462 enum dma_data_direction dir, u 463 { 464 struct pci_p2pdma_map_state p2pdma_sta 465 enum pci_p2pdma_map_type map; 466 struct scatterlist *sg; 467 int i, ret; 468 469 for_each_sg(sgl, sg, nents, i) { 470 if (is_pci_p2pdma_page(sg_page 471 map = pci_p2pdma_map_s 472 switch (map) { 473 case PCI_P2PDMA_MAP_BU 474 continue; 475 case PCI_P2PDMA_MAP_TH 476 /* 477 * Any P2P map 478 * host bridge 479 * address and 480 * done with d 481 */ 482 break; 483 default: 484 ret = -EREMOTE 485 goto out_unmap 486 } 487 } 488 489 sg->dma_address = dma_direct_m 490 sg->offset, sg 491 if (sg->dma_address == DMA_MAP 492 ret = -EIO; 493 goto out_unmap; 494 } 495 sg_dma_len(sg) = sg->length; 496 } 497 498 return nents; 499 500 out_unmap: 501 dma_direct_unmap_sg(dev, sgl, i, dir, 502 return ret; 503 } 504 505 dma_addr_t dma_direct_map_resource(struct devi 506 size_t size, enum dma_data_dir 507 { 508 dma_addr_t dma_addr = paddr; 509 510 if (unlikely(!dma_capable(dev, dma_add 511 dev_err_once(dev, 512 "DMA addr %pad+%z 513 &dma_addr, size, 514 WARN_ON_ONCE(1); 515 return DMA_MAPPING_ERROR; 516 } 517 518 return dma_addr; 519 } 520 521 int dma_direct_get_sgtable(struct device *dev, 522 void *cpu_addr, dma_addr_t dma 523 unsigned long attrs) 524 { 525 struct page *page = dma_direct_to_page 526 int ret; 527 528 ret = sg_alloc_table(sgt, 1, GFP_KERNE 529 if (!ret) 530 sg_set_page(sgt->sgl, page, PA 531 return ret; 532 } 533 534 bool dma_direct_can_mmap(struct device *dev) 535 { 536 return dev_is_dma_coherent(dev) || 537 IS_ENABLED(CONFIG_DMA_NONCOHER 538 } 539 540 int dma_direct_mmap(struct device *dev, struct 541 void *cpu_addr, dma_addr_t dma 542 unsigned long attrs) 543 { 544 unsigned long user_count = vma_pages(v 545 unsigned long count = PAGE_ALIGN(size) 546 unsigned long pfn = PHYS_PFN(dma_to_ph 547 int ret = -ENXIO; 548 549 vma->vm_page_prot = dma_pgprot(dev, vm 550 if (force_dma_unencrypted(dev)) 551 vma->vm_page_prot = pgprot_dec 552 553 if (dma_mmap_from_dev_coherent(dev, vm 554 return ret; 555 if (dma_mmap_from_global_coherent(vma, 556 return ret; 557 558 if (vma->vm_pgoff >= count || user_cou 559 return -ENXIO; 560 return remap_pfn_range(vma, vma->vm_st 561 user_count << PAGE_SHI 562 } 563 564 int dma_direct_supported(struct device *dev, u 565 { 566 u64 min_mask = (max_pfn - 1) << PAGE_S 567 568 /* 569 * Because 32-bit DMA masks are so com 570 * to be able to satisfy them - either 571 * memory, or by providing a ZONE_DMA3 572 * architecture needs to use an IOMMU 573 */ 574 if (mask >= DMA_BIT_MASK(32)) 575 return 1; 576 577 /* 578 * This check needs to be against the 579 * phys_to_dma_unencrypted() here so t 580 * part of the check. 581 */ 582 if (IS_ENABLED(CONFIG_ZONE_DMA)) 583 min_mask = min_t(u64, min_mask 584 return mask >= phys_to_dma_unencrypted 585 } 586 587 /* 588 * To check whether all ram resource ranges ar 589 * Returns 0 when further check is needed 590 * Returns 1 if there is some RAM range can't 591 */ 592 static int check_ram_in_range_map(unsigned lon 593 unsigned lon 594 { 595 unsigned long end_pfn = start_pfn + nr 596 const struct bus_dma_region *bdr = NUL 597 const struct bus_dma_region *m; 598 struct device *dev = data; 599 600 while (start_pfn < end_pfn) { 601 for (m = dev->dma_range_map; P 602 unsigned long cpu_star 603 604 if (start_pfn >= cpu_s 605 start_pfn - cpu_st 606 bdr = m; 607 break; 608 } 609 } 610 if (!bdr) 611 return 1; 612 613 start_pfn = PFN_DOWN(bdr->cpu_ 614 } 615 616 return 0; 617 } 618 619 bool dma_direct_all_ram_mapped(struct device * 620 { 621 if (!dev->dma_range_map) 622 return true; 623 return !walk_system_ram_range(0, PFN_D 624 check_ra 625 } 626 627 size_t dma_direct_max_mapping_size(struct devi 628 { 629 /* If SWIOTLB is active, use its maxim 630 if (is_swiotlb_active(dev) && 631 (dma_addressing_limited(dev) || is 632 return swiotlb_max_mapping_siz 633 return SIZE_MAX; 634 } 635 636 bool dma_direct_need_sync(struct device *dev, 637 { 638 return !dev_is_dma_coherent(dev) || 639 swiotlb_find_pool(dev, dma_to_p 640 } 641 642 /** 643 * dma_direct_set_offset - Assign scalar offse 644 * @dev: device pointer; needed to "own 645 * @cpu_start: beginning of memory region cov 646 * @dma_start: beginning of DMA/PCI region co 647 * @size: size of the region. 648 * 649 * This is for the simple case of a uniform of 650 * be discovered by "dma-ranges". 651 * 652 * It returns -ENOMEM if out of memory, -EINVA 653 * already exists, 0 otherwise. 654 * 655 * Note: any call to this from a driver is a b 656 * to be described by the device tree or other 657 */ 658 int dma_direct_set_offset(struct device *dev, 659 dma_addr_t dma_start, 660 { 661 struct bus_dma_region *map; 662 u64 offset = (u64)cpu_start - (u64)dma 663 664 if (dev->dma_range_map) { 665 dev_err(dev, "attempt to add D 666 return -EINVAL; 667 } 668 669 if (!offset) 670 return 0; 671 672 map = kcalloc(2, sizeof(*map), GFP_KER 673 if (!map) 674 return -ENOMEM; 675 map[0].cpu_start = cpu_start; 676 map[0].dma_start = dma_start; 677 map[0].size = size; 678 dev->dma_range_map = map; 679 return 0; 680 } 681
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.