1 // SPDX-License-Identifier: GPL-2.0 1 // SPDX-License-Identifier: GPL-2.0 2 /* 2 /* 3 * Copyright (C) 2018-2020 Christoph Hellwig. 3 * Copyright (C) 2018-2020 Christoph Hellwig. 4 * 4 * 5 * DMA operations that map physical memory dir 5 * DMA operations that map physical memory directly without using an IOMMU. 6 */ 6 */ 7 #include <linux/memblock.h> /* for max_pfn */ 7 #include <linux/memblock.h> /* for max_pfn */ 8 #include <linux/export.h> 8 #include <linux/export.h> 9 #include <linux/mm.h> 9 #include <linux/mm.h> 10 #include <linux/dma-map-ops.h> 10 #include <linux/dma-map-ops.h> 11 #include <linux/scatterlist.h> 11 #include <linux/scatterlist.h> 12 #include <linux/pfn.h> 12 #include <linux/pfn.h> 13 #include <linux/vmalloc.h> 13 #include <linux/vmalloc.h> 14 #include <linux/set_memory.h> 14 #include <linux/set_memory.h> 15 #include <linux/slab.h> 15 #include <linux/slab.h> 16 #include "direct.h" 16 #include "direct.h" 17 17 18 /* 18 /* 19 * Most architectures use ZONE_DMA for the fir 19 * Most architectures use ZONE_DMA for the first 16 Megabytes, but some use 20 * it for entirely different regions. In that 20 * it for entirely different regions. In that case the arch code needs to 21 * override the variable below for dma-direct 21 * override the variable below for dma-direct to work properly. 22 */ 22 */ 23 unsigned int zone_dma_bits __ro_after_init = 2 23 unsigned int zone_dma_bits __ro_after_init = 24; 24 24 25 static inline dma_addr_t phys_to_dma_direct(st 25 static inline dma_addr_t phys_to_dma_direct(struct device *dev, 26 phys_addr_t phys) 26 phys_addr_t phys) 27 { 27 { 28 if (force_dma_unencrypted(dev)) 28 if (force_dma_unencrypted(dev)) 29 return phys_to_dma_unencrypted 29 return phys_to_dma_unencrypted(dev, phys); 30 return phys_to_dma(dev, phys); 30 return phys_to_dma(dev, phys); 31 } 31 } 32 32 33 static inline struct page *dma_direct_to_page( 33 static inline struct page *dma_direct_to_page(struct device *dev, 34 dma_addr_t dma_addr) 34 dma_addr_t dma_addr) 35 { 35 { 36 return pfn_to_page(PHYS_PFN(dma_to_phy 36 return pfn_to_page(PHYS_PFN(dma_to_phys(dev, dma_addr))); 37 } 37 } 38 38 39 u64 dma_direct_get_required_mask(struct device 39 u64 dma_direct_get_required_mask(struct device *dev) 40 { 40 { 41 phys_addr_t phys = (phys_addr_t)(max_p 41 phys_addr_t phys = (phys_addr_t)(max_pfn - 1) << PAGE_SHIFT; 42 u64 max_dma = phys_to_dma_direct(dev, 42 u64 max_dma = phys_to_dma_direct(dev, phys); 43 43 44 return (1ULL << (fls64(max_dma) - 1)) 44 return (1ULL << (fls64(max_dma) - 1)) * 2 - 1; 45 } 45 } 46 46 47 static gfp_t dma_direct_optimal_gfp_mask(struc !! 47 static gfp_t dma_direct_optimal_gfp_mask(struct device *dev, u64 dma_mask, >> 48 u64 *phys_limit) 48 { 49 { 49 u64 dma_limit = min_not_zero( !! 50 u64 dma_limit = min_not_zero(dma_mask, dev->bus_dma_limit); 50 dev->coherent_dma_mask, << 51 dev->bus_dma_limit); << 52 51 53 /* 52 /* 54 * Optimistically try the zone that th 53 * Optimistically try the zone that the physical address mask falls 55 * into first. If that returns memory 54 * into first. If that returns memory that isn't actually addressable 56 * we will fallback to the next lower 55 * we will fallback to the next lower zone and try again. 57 * 56 * 58 * Note that GFP_DMA32 and GFP_DMA are 57 * Note that GFP_DMA32 and GFP_DMA are no ops without the corresponding 59 * zones. 58 * zones. 60 */ 59 */ 61 *phys_limit = dma_to_phys(dev, dma_lim 60 *phys_limit = dma_to_phys(dev, dma_limit); 62 if (*phys_limit <= DMA_BIT_MASK(zone_d 61 if (*phys_limit <= DMA_BIT_MASK(zone_dma_bits)) 63 return GFP_DMA; 62 return GFP_DMA; 64 if (*phys_limit <= DMA_BIT_MASK(32)) 63 if (*phys_limit <= DMA_BIT_MASK(32)) 65 return GFP_DMA32; 64 return GFP_DMA32; 66 return 0; 65 return 0; 67 } 66 } 68 67 69 bool dma_coherent_ok(struct device *dev, phys_ !! 68 static bool dma_coherent_ok(struct device *dev, phys_addr_t phys, size_t size) 70 { 69 { 71 dma_addr_t dma_addr = phys_to_dma_dire 70 dma_addr_t dma_addr = phys_to_dma_direct(dev, phys); 72 71 73 if (dma_addr == DMA_MAPPING_ERROR) 72 if (dma_addr == DMA_MAPPING_ERROR) 74 return false; 73 return false; 75 return dma_addr + size - 1 <= 74 return dma_addr + size - 1 <= 76 min_not_zero(dev->coherent_dma 75 min_not_zero(dev->coherent_dma_mask, dev->bus_dma_limit); 77 } 76 } 78 77 79 static int dma_set_decrypted(struct device *de << 80 { << 81 if (!force_dma_unencrypted(dev)) << 82 return 0; << 83 return set_memory_decrypted((unsigned << 84 } << 85 << 86 static int dma_set_encrypted(struct device *de << 87 { << 88 int ret; << 89 << 90 if (!force_dma_unencrypted(dev)) << 91 return 0; << 92 ret = set_memory_encrypted((unsigned l << 93 if (ret) << 94 pr_warn_ratelimited("leaking D << 95 return ret; << 96 } << 97 << 98 static void __dma_direct_free_pages(struct dev << 99 size_t siz << 100 { << 101 if (swiotlb_free(dev, page, size)) << 102 return; << 103 dma_free_contiguous(dev, page, size); << 104 } << 105 << 106 static struct page *dma_direct_alloc_swiotlb(s << 107 { << 108 struct page *page = swiotlb_alloc(dev, << 109 << 110 if (page && !dma_coherent_ok(dev, page << 111 swiotlb_free(dev, page, size); << 112 return NULL; << 113 } << 114 << 115 return page; << 116 } << 117 << 118 static struct page *__dma_direct_alloc_pages(s 78 static struct page *__dma_direct_alloc_pages(struct device *dev, size_t size, 119 gfp_t gfp, bool allow_highmem) !! 79 gfp_t gfp) 120 { 80 { 121 int node = dev_to_node(dev); 81 int node = dev_to_node(dev); 122 struct page *page = NULL; 82 struct page *page = NULL; 123 u64 phys_limit; 83 u64 phys_limit; 124 84 125 WARN_ON_ONCE(!PAGE_ALIGNED(size)); 85 WARN_ON_ONCE(!PAGE_ALIGNED(size)); 126 86 127 if (is_swiotlb_for_alloc(dev)) !! 87 gfp |= dma_direct_optimal_gfp_mask(dev, dev->coherent_dma_mask, 128 return dma_direct_alloc_swiotl !! 88 &phys_limit); 129 << 130 gfp |= dma_direct_optimal_gfp_mask(dev << 131 page = dma_alloc_contiguous(dev, size, 89 page = dma_alloc_contiguous(dev, size, gfp); 132 if (page) { !! 90 if (page && !dma_coherent_ok(dev, page_to_phys(page), size)) { 133 if (!dma_coherent_ok(dev, page !! 91 dma_free_contiguous(dev, page, size); 134 (!allow_highmem && PageHig !! 92 page = NULL; 135 dma_free_contiguous(de << 136 page = NULL; << 137 } << 138 } 93 } 139 again: 94 again: 140 if (!page) 95 if (!page) 141 page = alloc_pages_node(node, 96 page = alloc_pages_node(node, gfp, get_order(size)); 142 if (page && !dma_coherent_ok(dev, page 97 if (page && !dma_coherent_ok(dev, page_to_phys(page), size)) { 143 dma_free_contiguous(dev, page, 98 dma_free_contiguous(dev, page, size); 144 page = NULL; 99 page = NULL; 145 100 146 if (IS_ENABLED(CONFIG_ZONE_DMA 101 if (IS_ENABLED(CONFIG_ZONE_DMA32) && 147 phys_limit < DMA_BIT_MASK( 102 phys_limit < DMA_BIT_MASK(64) && 148 !(gfp & (GFP_DMA32 | GFP_D 103 !(gfp & (GFP_DMA32 | GFP_DMA))) { 149 gfp |= GFP_DMA32; 104 gfp |= GFP_DMA32; 150 goto again; 105 goto again; 151 } 106 } 152 107 153 if (IS_ENABLED(CONFIG_ZONE_DMA 108 if (IS_ENABLED(CONFIG_ZONE_DMA) && !(gfp & GFP_DMA)) { 154 gfp = (gfp & ~GFP_DMA3 109 gfp = (gfp & ~GFP_DMA32) | GFP_DMA; 155 goto again; 110 goto again; 156 } 111 } 157 } 112 } 158 113 159 return page; 114 return page; 160 } 115 } 161 116 162 /* << 163 * Check if a potentially blocking operations << 164 * pools for the given device/gfp. << 165 */ << 166 static bool dma_direct_use_pool(struct device << 167 { << 168 return !gfpflags_allow_blocking(gfp) & << 169 } << 170 << 171 static void *dma_direct_alloc_from_pool(struct 117 static void *dma_direct_alloc_from_pool(struct device *dev, size_t size, 172 dma_addr_t *dma_handle, gfp_t 118 dma_addr_t *dma_handle, gfp_t gfp) 173 { 119 { 174 struct page *page; 120 struct page *page; 175 u64 phys_limit; !! 121 u64 phys_mask; 176 void *ret; 122 void *ret; 177 123 178 if (WARN_ON_ONCE(!IS_ENABLED(CONFIG_DM !! 124 gfp |= dma_direct_optimal_gfp_mask(dev, dev->coherent_dma_mask, 179 return NULL; !! 125 &phys_mask); 180 << 181 gfp |= dma_direct_optimal_gfp_mask(dev << 182 page = dma_alloc_from_pool(dev, size, 126 page = dma_alloc_from_pool(dev, size, &ret, gfp, dma_coherent_ok); 183 if (!page) 127 if (!page) 184 return NULL; 128 return NULL; 185 *dma_handle = phys_to_dma_direct(dev, 129 *dma_handle = phys_to_dma_direct(dev, page_to_phys(page)); 186 return ret; 130 return ret; 187 } 131 } 188 132 189 static void *dma_direct_alloc_no_mapping(struc << 190 dma_addr_t *dma_handle, gfp_t << 191 { << 192 struct page *page; << 193 << 194 page = __dma_direct_alloc_pages(dev, s << 195 if (!page) << 196 return NULL; << 197 << 198 /* remove any dirty cache lines on the << 199 if (!PageHighMem(page)) << 200 arch_dma_prep_coherent(page, s << 201 << 202 /* return the page pointer as the opaq << 203 *dma_handle = phys_to_dma_direct(dev, << 204 return page; << 205 } << 206 << 207 void *dma_direct_alloc(struct device *dev, siz 133 void *dma_direct_alloc(struct device *dev, size_t size, 208 dma_addr_t *dma_handle, gfp_t 134 dma_addr_t *dma_handle, gfp_t gfp, unsigned long attrs) 209 { 135 { 210 bool remap = false, set_uncached = fal << 211 struct page *page; 136 struct page *page; 212 void *ret; 137 void *ret; >> 138 int err; 213 139 214 size = PAGE_ALIGN(size); 140 size = PAGE_ALIGN(size); 215 if (attrs & DMA_ATTR_NO_WARN) 141 if (attrs & DMA_ATTR_NO_WARN) 216 gfp |= __GFP_NOWARN; 142 gfp |= __GFP_NOWARN; 217 143 218 if ((attrs & DMA_ATTR_NO_KERNEL_MAPPIN 144 if ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) && 219 !force_dma_unencrypted(dev) && !is !! 145 !force_dma_unencrypted(dev)) { 220 return dma_direct_alloc_no_map !! 146 page = __dma_direct_alloc_pages(dev, size, gfp & ~__GFP_ZERO); 221 !! 147 if (!page) 222 if (!dev_is_dma_coherent(dev)) { << 223 if (IS_ENABLED(CONFIG_ARCH_HAS << 224 !is_swiotlb_for_alloc(dev) << 225 return arch_dma_alloc( << 226 << 227 << 228 /* << 229 * If there is a global pool, << 230 * non-coherent devices. << 231 */ << 232 if (IS_ENABLED(CONFIG_DMA_GLOB << 233 return dma_alloc_from_ << 234 dma_ha << 235 << 236 /* << 237 * Otherwise we require the ar << 238 * mark arbitrary parts of the << 239 * or remapped it uncached. << 240 */ << 241 set_uncached = IS_ENABLED(CONF << 242 remap = IS_ENABLED(CONFIG_DMA_ << 243 if (!set_uncached && !remap) { << 244 pr_warn_once("coherent << 245 return NULL; 148 return NULL; 246 } !! 149 /* remove any dirty cache lines on the kernel alias */ >> 150 if (!PageHighMem(page)) >> 151 arch_dma_prep_coherent(page, size); >> 152 *dma_handle = phys_to_dma_direct(dev, page_to_phys(page)); >> 153 /* return the page pointer as the opaque cookie */ >> 154 return page; 247 } 155 } 248 156 >> 157 if (!IS_ENABLED(CONFIG_ARCH_HAS_DMA_SET_UNCACHED) && >> 158 !IS_ENABLED(CONFIG_DMA_DIRECT_REMAP) && >> 159 !dev_is_dma_coherent(dev)) >> 160 return arch_dma_alloc(dev, size, dma_handle, gfp, attrs); >> 161 249 /* 162 /* 250 * Remapping or decrypting memory may !! 163 * Remapping or decrypting memory may block. If either is required and 251 * the atomic pools instead if we aren !! 164 * we can't block, allocate the memory from the atomic pools. 252 */ 165 */ 253 if ((remap || force_dma_unencrypted(de !! 166 if (IS_ENABLED(CONFIG_DMA_COHERENT_POOL) && 254 dma_direct_use_pool(dev, gfp)) !! 167 !gfpflags_allow_blocking(gfp) && >> 168 (force_dma_unencrypted(dev) || >> 169 (IS_ENABLED(CONFIG_DMA_DIRECT_REMAP) && !dev_is_dma_coherent(dev)))) 255 return dma_direct_alloc_from_p 170 return dma_direct_alloc_from_pool(dev, size, dma_handle, gfp); 256 171 257 /* we always manually zero the memory 172 /* we always manually zero the memory once we are done */ 258 page = __dma_direct_alloc_pages(dev, s !! 173 page = __dma_direct_alloc_pages(dev, size, gfp & ~__GFP_ZERO); 259 if (!page) 174 if (!page) 260 return NULL; 175 return NULL; 261 176 262 /* !! 177 if ((IS_ENABLED(CONFIG_DMA_DIRECT_REMAP) && 263 * dma_alloc_contiguous can return hig !! 178 !dev_is_dma_coherent(dev)) || 264 * combination the cma= arguments and !! 179 (IS_ENABLED(CONFIG_DMA_REMAP) && PageHighMem(page))) { 265 * remapped to return a kernel virtual << 266 */ << 267 if (PageHighMem(page)) { << 268 remap = true; << 269 set_uncached = false; << 270 } << 271 << 272 if (remap) { << 273 pgprot_t prot = dma_pgprot(dev << 274 << 275 if (force_dma_unencrypted(dev) << 276 prot = pgprot_decrypte << 277 << 278 /* remove any dirty cache line 180 /* remove any dirty cache lines on the kernel alias */ 279 arch_dma_prep_coherent(page, s 181 arch_dma_prep_coherent(page, size); 280 182 281 /* create a coherent mapping * 183 /* create a coherent mapping */ 282 ret = dma_common_contiguous_re !! 184 ret = dma_common_contiguous_remap(page, size, >> 185 dma_pgprot(dev, PAGE_KERNEL, attrs), 283 __builtin_retu 186 __builtin_return_address(0)); 284 if (!ret) 187 if (!ret) 285 goto out_free_pages; 188 goto out_free_pages; 286 } else { !! 189 if (force_dma_unencrypted(dev)) { 287 ret = page_address(page); !! 190 err = set_memory_decrypted((unsigned long)ret, 288 if (dma_set_decrypted(dev, ret !! 191 1 << get_order(size)); 289 goto out_leak_pages; !! 192 if (err) >> 193 goto out_free_pages; >> 194 } >> 195 memset(ret, 0, size); >> 196 goto done; >> 197 } >> 198 >> 199 if (PageHighMem(page)) { >> 200 /* >> 201 * Depending on the cma= arguments and per-arch setup >> 202 * dma_alloc_contiguous could return highmem pages. >> 203 * Without remapping there is no way to return them here, >> 204 * so log an error and fail. >> 205 */ >> 206 dev_info(dev, "Rejecting highmem page from CMA.\n"); >> 207 goto out_free_pages; >> 208 } >> 209 >> 210 ret = page_address(page); >> 211 if (force_dma_unencrypted(dev)) { >> 212 err = set_memory_decrypted((unsigned long)ret, >> 213 1 << get_order(size)); >> 214 if (err) >> 215 goto out_free_pages; 290 } 216 } 291 217 292 memset(ret, 0, size); 218 memset(ret, 0, size); 293 219 294 if (set_uncached) { !! 220 if (IS_ENABLED(CONFIG_ARCH_HAS_DMA_SET_UNCACHED) && >> 221 !dev_is_dma_coherent(dev)) { 295 arch_dma_prep_coherent(page, s 222 arch_dma_prep_coherent(page, size); 296 ret = arch_dma_set_uncached(re 223 ret = arch_dma_set_uncached(ret, size); 297 if (IS_ERR(ret)) 224 if (IS_ERR(ret)) 298 goto out_encrypt_pages 225 goto out_encrypt_pages; 299 } 226 } 300 !! 227 done: 301 *dma_handle = phys_to_dma_direct(dev, 228 *dma_handle = phys_to_dma_direct(dev, page_to_phys(page)); 302 return ret; 229 return ret; 303 230 304 out_encrypt_pages: 231 out_encrypt_pages: 305 if (dma_set_encrypted(dev, page_addres !! 232 if (force_dma_unencrypted(dev)) { 306 return NULL; !! 233 err = set_memory_encrypted((unsigned long)page_address(page), >> 234 1 << get_order(size)); >> 235 /* If memory cannot be re-encrypted, it must be leaked */ >> 236 if (err) >> 237 return NULL; >> 238 } 307 out_free_pages: 239 out_free_pages: 308 __dma_direct_free_pages(dev, page, siz !! 240 dma_free_contiguous(dev, page, size); 309 return NULL; << 310 out_leak_pages: << 311 return NULL; 241 return NULL; 312 } 242 } 313 243 314 void dma_direct_free(struct device *dev, size_ 244 void dma_direct_free(struct device *dev, size_t size, 315 void *cpu_addr, dma_addr_t dma 245 void *cpu_addr, dma_addr_t dma_addr, unsigned long attrs) 316 { 246 { 317 unsigned int page_order = get_order(si 247 unsigned int page_order = get_order(size); 318 248 319 if ((attrs & DMA_ATTR_NO_KERNEL_MAPPIN 249 if ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) && 320 !force_dma_unencrypted(dev) && !is !! 250 !force_dma_unencrypted(dev)) { 321 /* cpu_addr is a struct page c 251 /* cpu_addr is a struct page cookie, not a kernel address */ 322 dma_free_contiguous(dev, cpu_a 252 dma_free_contiguous(dev, cpu_addr, size); 323 return; 253 return; 324 } 254 } 325 255 326 if (IS_ENABLED(CONFIG_ARCH_HAS_DMA_ALL !! 256 if (!IS_ENABLED(CONFIG_ARCH_HAS_DMA_SET_UNCACHED) && 327 !dev_is_dma_coherent(dev) && !! 257 !IS_ENABLED(CONFIG_DMA_DIRECT_REMAP) && 328 !is_swiotlb_for_alloc(dev)) { << 329 arch_dma_free(dev, size, cpu_a << 330 return; << 331 } << 332 << 333 if (IS_ENABLED(CONFIG_DMA_GLOBAL_POOL) << 334 !dev_is_dma_coherent(dev)) { 258 !dev_is_dma_coherent(dev)) { 335 if (!dma_release_from_global_c !! 259 arch_dma_free(dev, size, cpu_addr, dma_addr, attrs); 336 WARN_ON_ONCE(1); << 337 return; 260 return; 338 } 261 } 339 262 340 /* If cpu_addr is not from an atomic p 263 /* If cpu_addr is not from an atomic pool, dma_free_from_pool() fails */ 341 if (IS_ENABLED(CONFIG_DMA_COHERENT_POO 264 if (IS_ENABLED(CONFIG_DMA_COHERENT_POOL) && 342 dma_free_from_pool(dev, cpu_addr, 265 dma_free_from_pool(dev, cpu_addr, PAGE_ALIGN(size))) 343 return; 266 return; 344 267 345 if (is_vmalloc_addr(cpu_addr)) { !! 268 if (force_dma_unencrypted(dev)) >> 269 set_memory_encrypted((unsigned long)cpu_addr, 1 << page_order); >> 270 >> 271 if (IS_ENABLED(CONFIG_DMA_REMAP) && is_vmalloc_addr(cpu_addr)) 346 vunmap(cpu_addr); 272 vunmap(cpu_addr); 347 } else { !! 273 else if (IS_ENABLED(CONFIG_ARCH_HAS_DMA_CLEAR_UNCACHED)) 348 if (IS_ENABLED(CONFIG_ARCH_HAS !! 274 arch_dma_clear_uncached(cpu_addr, size); 349 arch_dma_clear_uncache << 350 if (dma_set_encrypted(dev, cpu << 351 return; << 352 } << 353 275 354 __dma_direct_free_pages(dev, dma_direc !! 276 dma_free_contiguous(dev, dma_direct_to_page(dev, dma_addr), size); 355 } 277 } 356 278 357 struct page *dma_direct_alloc_pages(struct dev 279 struct page *dma_direct_alloc_pages(struct device *dev, size_t size, 358 dma_addr_t *dma_handle, enum d 280 dma_addr_t *dma_handle, enum dma_data_direction dir, gfp_t gfp) 359 { 281 { 360 struct page *page; 282 struct page *page; 361 void *ret; 283 void *ret; 362 284 363 if (force_dma_unencrypted(dev) && dma_ !! 285 if (IS_ENABLED(CONFIG_DMA_COHERENT_POOL) && >> 286 force_dma_unencrypted(dev) && !gfpflags_allow_blocking(gfp)) 364 return dma_direct_alloc_from_p 287 return dma_direct_alloc_from_pool(dev, size, dma_handle, gfp); 365 288 366 page = __dma_direct_alloc_pages(dev, s !! 289 page = __dma_direct_alloc_pages(dev, size, gfp); 367 if (!page) 290 if (!page) 368 return NULL; 291 return NULL; >> 292 if (PageHighMem(page)) { >> 293 /* >> 294 * Depending on the cma= arguments and per-arch setup >> 295 * dma_alloc_contiguous could return highmem pages. >> 296 * Without remapping there is no way to return them here, >> 297 * so log an error and fail. >> 298 */ >> 299 dev_info(dev, "Rejecting highmem page from CMA.\n"); >> 300 goto out_free_pages; >> 301 } 369 302 370 ret = page_address(page); 303 ret = page_address(page); 371 if (dma_set_decrypted(dev, ret, size)) !! 304 if (force_dma_unencrypted(dev)) { 372 goto out_leak_pages; !! 305 if (set_memory_decrypted((unsigned long)ret, >> 306 1 << get_order(size))) >> 307 goto out_free_pages; >> 308 } 373 memset(ret, 0, size); 309 memset(ret, 0, size); 374 *dma_handle = phys_to_dma_direct(dev, 310 *dma_handle = phys_to_dma_direct(dev, page_to_phys(page)); 375 return page; 311 return page; 376 out_leak_pages: !! 312 out_free_pages: >> 313 dma_free_contiguous(dev, page, size); 377 return NULL; 314 return NULL; 378 } 315 } 379 316 380 void dma_direct_free_pages(struct device *dev, 317 void dma_direct_free_pages(struct device *dev, size_t size, 381 struct page *page, dma_addr_t 318 struct page *page, dma_addr_t dma_addr, 382 enum dma_data_direction dir) 319 enum dma_data_direction dir) 383 { 320 { >> 321 unsigned int page_order = get_order(size); 384 void *vaddr = page_address(page); 322 void *vaddr = page_address(page); 385 323 386 /* If cpu_addr is not from an atomic p 324 /* If cpu_addr is not from an atomic pool, dma_free_from_pool() fails */ 387 if (IS_ENABLED(CONFIG_DMA_COHERENT_POO 325 if (IS_ENABLED(CONFIG_DMA_COHERENT_POOL) && 388 dma_free_from_pool(dev, vaddr, siz 326 dma_free_from_pool(dev, vaddr, size)) 389 return; 327 return; 390 328 391 if (dma_set_encrypted(dev, vaddr, size !! 329 if (force_dma_unencrypted(dev)) 392 return; !! 330 set_memory_encrypted((unsigned long)vaddr, 1 << page_order); 393 __dma_direct_free_pages(dev, page, siz !! 331 >> 332 dma_free_contiguous(dev, page, size); 394 } 333 } 395 334 396 #if defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_DEVIC 335 #if defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_DEVICE) || \ 397 defined(CONFIG_SWIOTLB) 336 defined(CONFIG_SWIOTLB) 398 void dma_direct_sync_sg_for_device(struct devi 337 void dma_direct_sync_sg_for_device(struct device *dev, 399 struct scatterlist *sgl, int n 338 struct scatterlist *sgl, int nents, enum dma_data_direction dir) 400 { 339 { 401 struct scatterlist *sg; 340 struct scatterlist *sg; 402 int i; 341 int i; 403 342 404 for_each_sg(sgl, sg, nents, i) { 343 for_each_sg(sgl, sg, nents, i) { 405 phys_addr_t paddr = dma_to_phy 344 phys_addr_t paddr = dma_to_phys(dev, sg_dma_address(sg)); 406 345 407 swiotlb_sync_single_for_device !! 346 if (unlikely(is_swiotlb_buffer(paddr))) >> 347 swiotlb_tbl_sync_single(dev, paddr, sg->length, >> 348 dir, SYNC_FOR_DEVICE); 408 349 409 if (!dev_is_dma_coherent(dev)) 350 if (!dev_is_dma_coherent(dev)) 410 arch_sync_dma_for_devi 351 arch_sync_dma_for_device(paddr, sg->length, 411 dir); 352 dir); 412 } 353 } 413 } 354 } 414 #endif 355 #endif 415 356 416 #if defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU) 357 #if defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU) || \ 417 defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU_A 358 defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU_ALL) || \ 418 defined(CONFIG_SWIOTLB) 359 defined(CONFIG_SWIOTLB) 419 void dma_direct_sync_sg_for_cpu(struct device 360 void dma_direct_sync_sg_for_cpu(struct device *dev, 420 struct scatterlist *sgl, int n 361 struct scatterlist *sgl, int nents, enum dma_data_direction dir) 421 { 362 { 422 struct scatterlist *sg; 363 struct scatterlist *sg; 423 int i; 364 int i; 424 365 425 for_each_sg(sgl, sg, nents, i) { 366 for_each_sg(sgl, sg, nents, i) { 426 phys_addr_t paddr = dma_to_phy 367 phys_addr_t paddr = dma_to_phys(dev, sg_dma_address(sg)); 427 368 428 if (!dev_is_dma_coherent(dev)) 369 if (!dev_is_dma_coherent(dev)) 429 arch_sync_dma_for_cpu( 370 arch_sync_dma_for_cpu(paddr, sg->length, dir); 430 371 431 swiotlb_sync_single_for_cpu(de !! 372 if (unlikely(is_swiotlb_buffer(paddr))) >> 373 swiotlb_tbl_sync_single(dev, paddr, sg->length, dir, >> 374 SYNC_FOR_CPU); 432 375 433 if (dir == DMA_FROM_DEVICE) 376 if (dir == DMA_FROM_DEVICE) 434 arch_dma_mark_clean(pa 377 arch_dma_mark_clean(paddr, sg->length); 435 } 378 } 436 379 437 if (!dev_is_dma_coherent(dev)) 380 if (!dev_is_dma_coherent(dev)) 438 arch_sync_dma_for_cpu_all(); 381 arch_sync_dma_for_cpu_all(); 439 } 382 } 440 383 441 /* << 442 * Unmaps segments, except for ones marked as << 443 * require any further action as they contain << 444 */ << 445 void dma_direct_unmap_sg(struct device *dev, s 384 void dma_direct_unmap_sg(struct device *dev, struct scatterlist *sgl, 446 int nents, enum dma_data_direc 385 int nents, enum dma_data_direction dir, unsigned long attrs) 447 { 386 { 448 struct scatterlist *sg; 387 struct scatterlist *sg; 449 int i; 388 int i; 450 389 451 for_each_sg(sgl, sg, nents, i) { !! 390 for_each_sg(sgl, sg, nents, i) 452 if (sg_dma_is_bus_address(sg)) !! 391 dma_direct_unmap_page(dev, sg->dma_address, sg_dma_len(sg), dir, 453 sg_dma_unmark_bus_addr !! 392 attrs); 454 else << 455 dma_direct_unmap_page( << 456 << 457 } << 458 } 393 } 459 #endif 394 #endif 460 395 461 int dma_direct_map_sg(struct device *dev, stru 396 int dma_direct_map_sg(struct device *dev, struct scatterlist *sgl, int nents, 462 enum dma_data_direction dir, u 397 enum dma_data_direction dir, unsigned long attrs) 463 { 398 { 464 struct pci_p2pdma_map_state p2pdma_sta !! 399 int i; 465 enum pci_p2pdma_map_type map; << 466 struct scatterlist *sg; 400 struct scatterlist *sg; 467 int i, ret; << 468 401 469 for_each_sg(sgl, sg, nents, i) { 402 for_each_sg(sgl, sg, nents, i) { 470 if (is_pci_p2pdma_page(sg_page << 471 map = pci_p2pdma_map_s << 472 switch (map) { << 473 case PCI_P2PDMA_MAP_BU << 474 continue; << 475 case PCI_P2PDMA_MAP_TH << 476 /* << 477 * Any P2P map << 478 * host bridge << 479 * address and << 480 * done with d << 481 */ << 482 break; << 483 default: << 484 ret = -EREMOTE << 485 goto out_unmap << 486 } << 487 } << 488 << 489 sg->dma_address = dma_direct_m 403 sg->dma_address = dma_direct_map_page(dev, sg_page(sg), 490 sg->offset, sg 404 sg->offset, sg->length, dir, attrs); 491 if (sg->dma_address == DMA_MAP !! 405 if (sg->dma_address == DMA_MAPPING_ERROR) 492 ret = -EIO; << 493 goto out_unmap; 406 goto out_unmap; 494 } << 495 sg_dma_len(sg) = sg->length; 407 sg_dma_len(sg) = sg->length; 496 } 408 } 497 409 498 return nents; 410 return nents; 499 411 500 out_unmap: 412 out_unmap: 501 dma_direct_unmap_sg(dev, sgl, i, dir, 413 dma_direct_unmap_sg(dev, sgl, i, dir, attrs | DMA_ATTR_SKIP_CPU_SYNC); 502 return ret; !! 414 return 0; 503 } 415 } 504 416 505 dma_addr_t dma_direct_map_resource(struct devi 417 dma_addr_t dma_direct_map_resource(struct device *dev, phys_addr_t paddr, 506 size_t size, enum dma_data_dir 418 size_t size, enum dma_data_direction dir, unsigned long attrs) 507 { 419 { 508 dma_addr_t dma_addr = paddr; 420 dma_addr_t dma_addr = paddr; 509 421 510 if (unlikely(!dma_capable(dev, dma_add 422 if (unlikely(!dma_capable(dev, dma_addr, size, false))) { 511 dev_err_once(dev, 423 dev_err_once(dev, 512 "DMA addr %pad+%z 424 "DMA addr %pad+%zu overflow (mask %llx, bus limit %llx).\n", 513 &dma_addr, size, 425 &dma_addr, size, *dev->dma_mask, dev->bus_dma_limit); 514 WARN_ON_ONCE(1); 426 WARN_ON_ONCE(1); 515 return DMA_MAPPING_ERROR; 427 return DMA_MAPPING_ERROR; 516 } 428 } 517 429 518 return dma_addr; 430 return dma_addr; 519 } 431 } 520 432 521 int dma_direct_get_sgtable(struct device *dev, 433 int dma_direct_get_sgtable(struct device *dev, struct sg_table *sgt, 522 void *cpu_addr, dma_addr_t dma 434 void *cpu_addr, dma_addr_t dma_addr, size_t size, 523 unsigned long attrs) 435 unsigned long attrs) 524 { 436 { 525 struct page *page = dma_direct_to_page 437 struct page *page = dma_direct_to_page(dev, dma_addr); 526 int ret; 438 int ret; 527 439 528 ret = sg_alloc_table(sgt, 1, GFP_KERNE 440 ret = sg_alloc_table(sgt, 1, GFP_KERNEL); 529 if (!ret) 441 if (!ret) 530 sg_set_page(sgt->sgl, page, PA 442 sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0); 531 return ret; 443 return ret; 532 } 444 } 533 445 534 bool dma_direct_can_mmap(struct device *dev) 446 bool dma_direct_can_mmap(struct device *dev) 535 { 447 { 536 return dev_is_dma_coherent(dev) || 448 return dev_is_dma_coherent(dev) || 537 IS_ENABLED(CONFIG_DMA_NONCOHER 449 IS_ENABLED(CONFIG_DMA_NONCOHERENT_MMAP); 538 } 450 } 539 451 540 int dma_direct_mmap(struct device *dev, struct 452 int dma_direct_mmap(struct device *dev, struct vm_area_struct *vma, 541 void *cpu_addr, dma_addr_t dma 453 void *cpu_addr, dma_addr_t dma_addr, size_t size, 542 unsigned long attrs) 454 unsigned long attrs) 543 { 455 { 544 unsigned long user_count = vma_pages(v 456 unsigned long user_count = vma_pages(vma); 545 unsigned long count = PAGE_ALIGN(size) 457 unsigned long count = PAGE_ALIGN(size) >> PAGE_SHIFT; 546 unsigned long pfn = PHYS_PFN(dma_to_ph 458 unsigned long pfn = PHYS_PFN(dma_to_phys(dev, dma_addr)); 547 int ret = -ENXIO; 459 int ret = -ENXIO; 548 460 549 vma->vm_page_prot = dma_pgprot(dev, vm 461 vma->vm_page_prot = dma_pgprot(dev, vma->vm_page_prot, attrs); 550 if (force_dma_unencrypted(dev)) << 551 vma->vm_page_prot = pgprot_dec << 552 462 553 if (dma_mmap_from_dev_coherent(dev, vm 463 if (dma_mmap_from_dev_coherent(dev, vma, cpu_addr, size, &ret)) 554 return ret; 464 return ret; 555 if (dma_mmap_from_global_coherent(vma, << 556 return ret; << 557 465 558 if (vma->vm_pgoff >= count || user_cou 466 if (vma->vm_pgoff >= count || user_count > count - vma->vm_pgoff) 559 return -ENXIO; 467 return -ENXIO; 560 return remap_pfn_range(vma, vma->vm_st 468 return remap_pfn_range(vma, vma->vm_start, pfn + vma->vm_pgoff, 561 user_count << PAGE_SHI 469 user_count << PAGE_SHIFT, vma->vm_page_prot); 562 } 470 } 563 471 564 int dma_direct_supported(struct device *dev, u 472 int dma_direct_supported(struct device *dev, u64 mask) 565 { 473 { 566 u64 min_mask = (max_pfn - 1) << PAGE_S 474 u64 min_mask = (max_pfn - 1) << PAGE_SHIFT; 567 475 568 /* 476 /* 569 * Because 32-bit DMA masks are so com 477 * Because 32-bit DMA masks are so common we expect every architecture 570 * to be able to satisfy them - either 478 * to be able to satisfy them - either by not supporting more physical 571 * memory, or by providing a ZONE_DMA3 479 * memory, or by providing a ZONE_DMA32. If neither is the case, the 572 * architecture needs to use an IOMMU 480 * architecture needs to use an IOMMU instead of the direct mapping. 573 */ 481 */ 574 if (mask >= DMA_BIT_MASK(32)) 482 if (mask >= DMA_BIT_MASK(32)) 575 return 1; 483 return 1; 576 484 577 /* 485 /* 578 * This check needs to be against the 486 * This check needs to be against the actual bit mask value, so use 579 * phys_to_dma_unencrypted() here so t 487 * phys_to_dma_unencrypted() here so that the SME encryption mask isn't 580 * part of the check. 488 * part of the check. 581 */ 489 */ 582 if (IS_ENABLED(CONFIG_ZONE_DMA)) 490 if (IS_ENABLED(CONFIG_ZONE_DMA)) 583 min_mask = min_t(u64, min_mask 491 min_mask = min_t(u64, min_mask, DMA_BIT_MASK(zone_dma_bits)); 584 return mask >= phys_to_dma_unencrypted 492 return mask >= phys_to_dma_unencrypted(dev, min_mask); 585 } 493 } 586 494 587 /* << 588 * To check whether all ram resource ranges ar << 589 * Returns 0 when further check is needed << 590 * Returns 1 if there is some RAM range can't << 591 */ << 592 static int check_ram_in_range_map(unsigned lon << 593 unsigned lon << 594 { << 595 unsigned long end_pfn = start_pfn + nr << 596 const struct bus_dma_region *bdr = NUL << 597 const struct bus_dma_region *m; << 598 struct device *dev = data; << 599 << 600 while (start_pfn < end_pfn) { << 601 for (m = dev->dma_range_map; P << 602 unsigned long cpu_star << 603 << 604 if (start_pfn >= cpu_s << 605 start_pfn - cpu_st << 606 bdr = m; << 607 break; << 608 } << 609 } << 610 if (!bdr) << 611 return 1; << 612 << 613 start_pfn = PFN_DOWN(bdr->cpu_ << 614 } << 615 << 616 return 0; << 617 } << 618 << 619 bool dma_direct_all_ram_mapped(struct device * << 620 { << 621 if (!dev->dma_range_map) << 622 return true; << 623 return !walk_system_ram_range(0, PFN_D << 624 check_ra << 625 } << 626 << 627 size_t dma_direct_max_mapping_size(struct devi 495 size_t dma_direct_max_mapping_size(struct device *dev) 628 { 496 { 629 /* If SWIOTLB is active, use its maxim 497 /* If SWIOTLB is active, use its maximum mapping size */ 630 if (is_swiotlb_active(dev) && !! 498 if (is_swiotlb_active() && 631 (dma_addressing_limited(dev) || is !! 499 (dma_addressing_limited(dev) || swiotlb_force == SWIOTLB_FORCE)) 632 return swiotlb_max_mapping_siz 500 return swiotlb_max_mapping_size(dev); 633 return SIZE_MAX; 501 return SIZE_MAX; 634 } 502 } 635 503 636 bool dma_direct_need_sync(struct device *dev, 504 bool dma_direct_need_sync(struct device *dev, dma_addr_t dma_addr) 637 { 505 { 638 return !dev_is_dma_coherent(dev) || 506 return !dev_is_dma_coherent(dev) || 639 swiotlb_find_pool(dev, dma_to_p !! 507 is_swiotlb_buffer(dma_to_phys(dev, dma_addr)); 640 } 508 } 641 509 642 /** 510 /** 643 * dma_direct_set_offset - Assign scalar offse 511 * dma_direct_set_offset - Assign scalar offset for a single DMA range. 644 * @dev: device pointer; needed to "own 512 * @dev: device pointer; needed to "own" the alloced memory. 645 * @cpu_start: beginning of memory region cov 513 * @cpu_start: beginning of memory region covered by this offset. 646 * @dma_start: beginning of DMA/PCI region co 514 * @dma_start: beginning of DMA/PCI region covered by this offset. 647 * @size: size of the region. 515 * @size: size of the region. 648 * 516 * 649 * This is for the simple case of a uniform of 517 * This is for the simple case of a uniform offset which cannot 650 * be discovered by "dma-ranges". 518 * be discovered by "dma-ranges". 651 * 519 * 652 * It returns -ENOMEM if out of memory, -EINVA 520 * It returns -ENOMEM if out of memory, -EINVAL if a map 653 * already exists, 0 otherwise. 521 * already exists, 0 otherwise. 654 * 522 * 655 * Note: any call to this from a driver is a b 523 * Note: any call to this from a driver is a bug. The mapping needs 656 * to be described by the device tree or other 524 * to be described by the device tree or other firmware interfaces. 657 */ 525 */ 658 int dma_direct_set_offset(struct device *dev, 526 int dma_direct_set_offset(struct device *dev, phys_addr_t cpu_start, 659 dma_addr_t dma_start, 527 dma_addr_t dma_start, u64 size) 660 { 528 { 661 struct bus_dma_region *map; 529 struct bus_dma_region *map; 662 u64 offset = (u64)cpu_start - (u64)dma 530 u64 offset = (u64)cpu_start - (u64)dma_start; 663 531 664 if (dev->dma_range_map) { 532 if (dev->dma_range_map) { 665 dev_err(dev, "attempt to add D 533 dev_err(dev, "attempt to add DMA range to existing map\n"); 666 return -EINVAL; 534 return -EINVAL; 667 } 535 } 668 536 669 if (!offset) 537 if (!offset) 670 return 0; 538 return 0; 671 539 672 map = kcalloc(2, sizeof(*map), GFP_KER 540 map = kcalloc(2, sizeof(*map), GFP_KERNEL); 673 if (!map) 541 if (!map) 674 return -ENOMEM; 542 return -ENOMEM; 675 map[0].cpu_start = cpu_start; 543 map[0].cpu_start = cpu_start; 676 map[0].dma_start = dma_start; 544 map[0].dma_start = dma_start; >> 545 map[0].offset = offset; 677 map[0].size = size; 546 map[0].size = size; 678 dev->dma_range_map = map; 547 dev->dma_range_map = map; 679 return 0; 548 return 0; 680 } 549 } 681 550
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.