~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/kernel/dma/direct.c

Version: ~ [ linux-6.11.5 ] ~ [ linux-6.10.14 ] ~ [ linux-6.9.12 ] ~ [ linux-6.8.12 ] ~ [ linux-6.7.12 ] ~ [ linux-6.6.58 ] ~ [ linux-6.5.13 ] ~ [ linux-6.4.16 ] ~ [ linux-6.3.13 ] ~ [ linux-6.2.16 ] ~ [ linux-6.1.114 ] ~ [ linux-6.0.19 ] ~ [ linux-5.19.17 ] ~ [ linux-5.18.19 ] ~ [ linux-5.17.15 ] ~ [ linux-5.16.20 ] ~ [ linux-5.15.169 ] ~ [ linux-5.14.21 ] ~ [ linux-5.13.19 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.228 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.284 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.322 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.336 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.337 ] ~ [ linux-4.4.302 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.9 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

Diff markup

Differences between /kernel/dma/direct.c (Version linux-6.11.5) and /kernel/dma/direct.c (Version linux-5.13.19)


  1 // SPDX-License-Identifier: GPL-2.0                 1 // SPDX-License-Identifier: GPL-2.0
  2 /*                                                  2 /*
  3  * Copyright (C) 2018-2020 Christoph Hellwig.       3  * Copyright (C) 2018-2020 Christoph Hellwig.
  4  *                                                  4  *
  5  * DMA operations that map physical memory dir      5  * DMA operations that map physical memory directly without using an IOMMU.
  6  */                                                 6  */
  7 #include <linux/memblock.h> /* for max_pfn */       7 #include <linux/memblock.h> /* for max_pfn */
  8 #include <linux/export.h>                           8 #include <linux/export.h>
  9 #include <linux/mm.h>                               9 #include <linux/mm.h>
 10 #include <linux/dma-map-ops.h>                     10 #include <linux/dma-map-ops.h>
 11 #include <linux/scatterlist.h>                     11 #include <linux/scatterlist.h>
 12 #include <linux/pfn.h>                             12 #include <linux/pfn.h>
 13 #include <linux/vmalloc.h>                         13 #include <linux/vmalloc.h>
 14 #include <linux/set_memory.h>                      14 #include <linux/set_memory.h>
 15 #include <linux/slab.h>                            15 #include <linux/slab.h>
 16 #include "direct.h"                                16 #include "direct.h"
 17                                                    17 
 18 /*                                                 18 /*
 19  * Most architectures use ZONE_DMA for the fir     19  * Most architectures use ZONE_DMA for the first 16 Megabytes, but some use
 20  * it for entirely different regions. In that      20  * it for entirely different regions. In that case the arch code needs to
 21  * override the variable below for dma-direct      21  * override the variable below for dma-direct to work properly.
 22  */                                                22  */
 23 unsigned int zone_dma_bits __ro_after_init = 2     23 unsigned int zone_dma_bits __ro_after_init = 24;
 24                                                    24 
 25 static inline dma_addr_t phys_to_dma_direct(st     25 static inline dma_addr_t phys_to_dma_direct(struct device *dev,
 26                 phys_addr_t phys)                  26                 phys_addr_t phys)
 27 {                                                  27 {
 28         if (force_dma_unencrypted(dev))            28         if (force_dma_unencrypted(dev))
 29                 return phys_to_dma_unencrypted     29                 return phys_to_dma_unencrypted(dev, phys);
 30         return phys_to_dma(dev, phys);             30         return phys_to_dma(dev, phys);
 31 }                                                  31 }
 32                                                    32 
 33 static inline struct page *dma_direct_to_page(     33 static inline struct page *dma_direct_to_page(struct device *dev,
 34                 dma_addr_t dma_addr)               34                 dma_addr_t dma_addr)
 35 {                                                  35 {
 36         return pfn_to_page(PHYS_PFN(dma_to_phy     36         return pfn_to_page(PHYS_PFN(dma_to_phys(dev, dma_addr)));
 37 }                                                  37 }
 38                                                    38 
 39 u64 dma_direct_get_required_mask(struct device     39 u64 dma_direct_get_required_mask(struct device *dev)
 40 {                                                  40 {
 41         phys_addr_t phys = (phys_addr_t)(max_p     41         phys_addr_t phys = (phys_addr_t)(max_pfn - 1) << PAGE_SHIFT;
 42         u64 max_dma = phys_to_dma_direct(dev,      42         u64 max_dma = phys_to_dma_direct(dev, phys);
 43                                                    43 
 44         return (1ULL << (fls64(max_dma) - 1))      44         return (1ULL << (fls64(max_dma) - 1)) * 2 - 1;
 45 }                                                  45 }
 46                                                    46 
 47 static gfp_t dma_direct_optimal_gfp_mask(struc !!  47 static gfp_t dma_direct_optimal_gfp_mask(struct device *dev, u64 dma_mask,
                                                   >>  48                                   u64 *phys_limit)
 48 {                                                  49 {
 49         u64 dma_limit = min_not_zero(          !!  50         u64 dma_limit = min_not_zero(dma_mask, dev->bus_dma_limit);
 50                 dev->coherent_dma_mask,        << 
 51                 dev->bus_dma_limit);           << 
 52                                                    51 
 53         /*                                         52         /*
 54          * Optimistically try the zone that th     53          * Optimistically try the zone that the physical address mask falls
 55          * into first.  If that returns memory     54          * into first.  If that returns memory that isn't actually addressable
 56          * we will fallback to the next lower      55          * we will fallback to the next lower zone and try again.
 57          *                                         56          *
 58          * Note that GFP_DMA32 and GFP_DMA are     57          * Note that GFP_DMA32 and GFP_DMA are no ops without the corresponding
 59          * zones.                                  58          * zones.
 60          */                                        59          */
 61         *phys_limit = dma_to_phys(dev, dma_lim     60         *phys_limit = dma_to_phys(dev, dma_limit);
 62         if (*phys_limit <= DMA_BIT_MASK(zone_d     61         if (*phys_limit <= DMA_BIT_MASK(zone_dma_bits))
 63                 return GFP_DMA;                    62                 return GFP_DMA;
 64         if (*phys_limit <= DMA_BIT_MASK(32))       63         if (*phys_limit <= DMA_BIT_MASK(32))
 65                 return GFP_DMA32;                  64                 return GFP_DMA32;
 66         return 0;                                  65         return 0;
 67 }                                                  66 }
 68                                                    67 
 69 bool dma_coherent_ok(struct device *dev, phys_ !!  68 static bool dma_coherent_ok(struct device *dev, phys_addr_t phys, size_t size)
 70 {                                                  69 {
 71         dma_addr_t dma_addr = phys_to_dma_dire     70         dma_addr_t dma_addr = phys_to_dma_direct(dev, phys);
 72                                                    71 
 73         if (dma_addr == DMA_MAPPING_ERROR)         72         if (dma_addr == DMA_MAPPING_ERROR)
 74                 return false;                      73                 return false;
 75         return dma_addr + size - 1 <=              74         return dma_addr + size - 1 <=
 76                 min_not_zero(dev->coherent_dma     75                 min_not_zero(dev->coherent_dma_mask, dev->bus_dma_limit);
 77 }                                                  76 }
 78                                                    77 
 79 static int dma_set_decrypted(struct device *de << 
 80 {                                              << 
 81         if (!force_dma_unencrypted(dev))       << 
 82                 return 0;                      << 
 83         return set_memory_decrypted((unsigned  << 
 84 }                                              << 
 85                                                << 
 86 static int dma_set_encrypted(struct device *de << 
 87 {                                              << 
 88         int ret;                               << 
 89                                                << 
 90         if (!force_dma_unencrypted(dev))       << 
 91                 return 0;                      << 
 92         ret = set_memory_encrypted((unsigned l << 
 93         if (ret)                               << 
 94                 pr_warn_ratelimited("leaking D << 
 95         return ret;                            << 
 96 }                                              << 
 97                                                << 
 98 static void __dma_direct_free_pages(struct dev << 
 99                                     size_t siz << 
100 {                                              << 
101         if (swiotlb_free(dev, page, size))     << 
102                 return;                        << 
103         dma_free_contiguous(dev, page, size);  << 
104 }                                              << 
105                                                << 
106 static struct page *dma_direct_alloc_swiotlb(s << 
107 {                                              << 
108         struct page *page = swiotlb_alloc(dev, << 
109                                                << 
110         if (page && !dma_coherent_ok(dev, page << 
111                 swiotlb_free(dev, page, size); << 
112                 return NULL;                   << 
113         }                                      << 
114                                                << 
115         return page;                           << 
116 }                                              << 
117                                                << 
118 static struct page *__dma_direct_alloc_pages(s     78 static struct page *__dma_direct_alloc_pages(struct device *dev, size_t size,
119                 gfp_t gfp, bool allow_highmem) !!  79                 gfp_t gfp)
120 {                                                  80 {
121         int node = dev_to_node(dev);               81         int node = dev_to_node(dev);
122         struct page *page = NULL;                  82         struct page *page = NULL;
123         u64 phys_limit;                            83         u64 phys_limit;
124                                                    84 
125         WARN_ON_ONCE(!PAGE_ALIGNED(size));         85         WARN_ON_ONCE(!PAGE_ALIGNED(size));
126                                                    86 
127         if (is_swiotlb_for_alloc(dev))         !!  87         gfp |= dma_direct_optimal_gfp_mask(dev, dev->coherent_dma_mask,
128                 return dma_direct_alloc_swiotl !!  88                                            &phys_limit);
129                                                << 
130         gfp |= dma_direct_optimal_gfp_mask(dev << 
131         page = dma_alloc_contiguous(dev, size,     89         page = dma_alloc_contiguous(dev, size, gfp);
132         if (page) {                            !!  90         if (page && !dma_coherent_ok(dev, page_to_phys(page), size)) {
133                 if (!dma_coherent_ok(dev, page !!  91                 dma_free_contiguous(dev, page, size);
134                     (!allow_highmem && PageHig !!  92                 page = NULL;
135                         dma_free_contiguous(de << 
136                         page = NULL;           << 
137                 }                              << 
138         }                                          93         }
139 again:                                             94 again:
140         if (!page)                                 95         if (!page)
141                 page = alloc_pages_node(node,      96                 page = alloc_pages_node(node, gfp, get_order(size));
142         if (page && !dma_coherent_ok(dev, page     97         if (page && !dma_coherent_ok(dev, page_to_phys(page), size)) {
143                 dma_free_contiguous(dev, page,     98                 dma_free_contiguous(dev, page, size);
144                 page = NULL;                       99                 page = NULL;
145                                                   100 
146                 if (IS_ENABLED(CONFIG_ZONE_DMA    101                 if (IS_ENABLED(CONFIG_ZONE_DMA32) &&
147                     phys_limit < DMA_BIT_MASK(    102                     phys_limit < DMA_BIT_MASK(64) &&
148                     !(gfp & (GFP_DMA32 | GFP_D    103                     !(gfp & (GFP_DMA32 | GFP_DMA))) {
149                         gfp |= GFP_DMA32;         104                         gfp |= GFP_DMA32;
150                         goto again;               105                         goto again;
151                 }                                 106                 }
152                                                   107 
153                 if (IS_ENABLED(CONFIG_ZONE_DMA    108                 if (IS_ENABLED(CONFIG_ZONE_DMA) && !(gfp & GFP_DMA)) {
154                         gfp = (gfp & ~GFP_DMA3    109                         gfp = (gfp & ~GFP_DMA32) | GFP_DMA;
155                         goto again;               110                         goto again;
156                 }                                 111                 }
157         }                                         112         }
158                                                   113 
159         return page;                              114         return page;
160 }                                                 115 }
161                                                   116 
162 /*                                             << 
163  * Check if a potentially blocking operations  << 
164  * pools for the given device/gfp.             << 
165  */                                            << 
166 static bool dma_direct_use_pool(struct device  << 
167 {                                              << 
168         return !gfpflags_allow_blocking(gfp) & << 
169 }                                              << 
170                                                << 
171 static void *dma_direct_alloc_from_pool(struct    117 static void *dma_direct_alloc_from_pool(struct device *dev, size_t size,
172                 dma_addr_t *dma_handle, gfp_t     118                 dma_addr_t *dma_handle, gfp_t gfp)
173 {                                                 119 {
174         struct page *page;                        120         struct page *page;
175         u64 phys_limit;                        !! 121         u64 phys_mask;
176         void *ret;                                122         void *ret;
177                                                   123 
178         if (WARN_ON_ONCE(!IS_ENABLED(CONFIG_DM !! 124         gfp |= dma_direct_optimal_gfp_mask(dev, dev->coherent_dma_mask,
179                 return NULL;                   !! 125                                            &phys_mask);
180                                                << 
181         gfp |= dma_direct_optimal_gfp_mask(dev << 
182         page = dma_alloc_from_pool(dev, size,     126         page = dma_alloc_from_pool(dev, size, &ret, gfp, dma_coherent_ok);
183         if (!page)                                127         if (!page)
184                 return NULL;                      128                 return NULL;
185         *dma_handle = phys_to_dma_direct(dev,     129         *dma_handle = phys_to_dma_direct(dev, page_to_phys(page));
186         return ret;                               130         return ret;
187 }                                                 131 }
188                                                   132 
189 static void *dma_direct_alloc_no_mapping(struc << 
190                 dma_addr_t *dma_handle, gfp_t  << 
191 {                                              << 
192         struct page *page;                     << 
193                                                << 
194         page = __dma_direct_alloc_pages(dev, s << 
195         if (!page)                             << 
196                 return NULL;                   << 
197                                                << 
198         /* remove any dirty cache lines on the << 
199         if (!PageHighMem(page))                << 
200                 arch_dma_prep_coherent(page, s << 
201                                                << 
202         /* return the page pointer as the opaq << 
203         *dma_handle = phys_to_dma_direct(dev,  << 
204         return page;                           << 
205 }                                              << 
206                                                << 
207 void *dma_direct_alloc(struct device *dev, siz    133 void *dma_direct_alloc(struct device *dev, size_t size,
208                 dma_addr_t *dma_handle, gfp_t     134                 dma_addr_t *dma_handle, gfp_t gfp, unsigned long attrs)
209 {                                                 135 {
210         bool remap = false, set_uncached = fal << 
211         struct page *page;                        136         struct page *page;
212         void *ret;                                137         void *ret;
                                                   >> 138         int err;
213                                                   139 
214         size = PAGE_ALIGN(size);                  140         size = PAGE_ALIGN(size);
215         if (attrs & DMA_ATTR_NO_WARN)             141         if (attrs & DMA_ATTR_NO_WARN)
216                 gfp |= __GFP_NOWARN;              142                 gfp |= __GFP_NOWARN;
217                                                   143 
218         if ((attrs & DMA_ATTR_NO_KERNEL_MAPPIN    144         if ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) &&
219             !force_dma_unencrypted(dev) && !is !! 145             !force_dma_unencrypted(dev)) {
220                 return dma_direct_alloc_no_map !! 146                 page = __dma_direct_alloc_pages(dev, size, gfp & ~__GFP_ZERO);
221                                                !! 147                 if (!page)
222         if (!dev_is_dma_coherent(dev)) {       << 
223                 if (IS_ENABLED(CONFIG_ARCH_HAS << 
224                     !is_swiotlb_for_alloc(dev) << 
225                         return arch_dma_alloc( << 
226                                                << 
227                                                << 
228                 /*                             << 
229                  * If there is a global pool,  << 
230                  * non-coherent devices.       << 
231                  */                            << 
232                 if (IS_ENABLED(CONFIG_DMA_GLOB << 
233                         return dma_alloc_from_ << 
234                                         dma_ha << 
235                                                << 
236                 /*                             << 
237                  * Otherwise we require the ar << 
238                  * mark arbitrary parts of the << 
239                  * or remapped it uncached.    << 
240                  */                            << 
241                 set_uncached = IS_ENABLED(CONF << 
242                 remap = IS_ENABLED(CONFIG_DMA_ << 
243                 if (!set_uncached && !remap) { << 
244                         pr_warn_once("coherent << 
245                         return NULL;              148                         return NULL;
246                 }                              !! 149                 /* remove any dirty cache lines on the kernel alias */
                                                   >> 150                 if (!PageHighMem(page))
                                                   >> 151                         arch_dma_prep_coherent(page, size);
                                                   >> 152                 *dma_handle = phys_to_dma_direct(dev, page_to_phys(page));
                                                   >> 153                 /* return the page pointer as the opaque cookie */
                                                   >> 154                 return page;
247         }                                         155         }
248                                                   156 
                                                   >> 157         if (!IS_ENABLED(CONFIG_ARCH_HAS_DMA_SET_UNCACHED) &&
                                                   >> 158             !IS_ENABLED(CONFIG_DMA_DIRECT_REMAP) &&
                                                   >> 159             !dev_is_dma_coherent(dev))
                                                   >> 160                 return arch_dma_alloc(dev, size, dma_handle, gfp, attrs);
                                                   >> 161 
249         /*                                        162         /*
250          * Remapping or decrypting memory may  !! 163          * Remapping or decrypting memory may block. If either is required and
251          * the atomic pools instead if we aren !! 164          * we can't block, allocate the memory from the atomic pools.
252          */                                       165          */
253         if ((remap || force_dma_unencrypted(de !! 166         if (IS_ENABLED(CONFIG_DMA_COHERENT_POOL) &&
254             dma_direct_use_pool(dev, gfp))     !! 167             !gfpflags_allow_blocking(gfp) &&
                                                   >> 168             (force_dma_unencrypted(dev) ||
                                                   >> 169              (IS_ENABLED(CONFIG_DMA_DIRECT_REMAP) && !dev_is_dma_coherent(dev))))
255                 return dma_direct_alloc_from_p    170                 return dma_direct_alloc_from_pool(dev, size, dma_handle, gfp);
256                                                   171 
257         /* we always manually zero the memory     172         /* we always manually zero the memory once we are done */
258         page = __dma_direct_alloc_pages(dev, s !! 173         page = __dma_direct_alloc_pages(dev, size, gfp & ~__GFP_ZERO);
259         if (!page)                                174         if (!page)
260                 return NULL;                      175                 return NULL;
261                                                   176 
262         /*                                     !! 177         if ((IS_ENABLED(CONFIG_DMA_DIRECT_REMAP) &&
263          * dma_alloc_contiguous can return hig !! 178              !dev_is_dma_coherent(dev)) ||
264          * combination the cma= arguments and  !! 179             (IS_ENABLED(CONFIG_DMA_REMAP) && PageHighMem(page))) {
265          * remapped to return a kernel virtual << 
266          */                                    << 
267         if (PageHighMem(page)) {               << 
268                 remap = true;                  << 
269                 set_uncached = false;          << 
270         }                                      << 
271                                                << 
272         if (remap) {                           << 
273                 pgprot_t prot = dma_pgprot(dev << 
274                                                << 
275                 if (force_dma_unencrypted(dev) << 
276                         prot = pgprot_decrypte << 
277                                                << 
278                 /* remove any dirty cache line    180                 /* remove any dirty cache lines on the kernel alias */
279                 arch_dma_prep_coherent(page, s    181                 arch_dma_prep_coherent(page, size);
280                                                   182 
281                 /* create a coherent mapping *    183                 /* create a coherent mapping */
282                 ret = dma_common_contiguous_re !! 184                 ret = dma_common_contiguous_remap(page, size,
                                                   >> 185                                 dma_pgprot(dev, PAGE_KERNEL, attrs),
283                                 __builtin_retu    186                                 __builtin_return_address(0));
284                 if (!ret)                         187                 if (!ret)
285                         goto out_free_pages;      188                         goto out_free_pages;
286         } else {                               !! 189                 if (force_dma_unencrypted(dev)) {
287                 ret = page_address(page);      !! 190                         err = set_memory_decrypted((unsigned long)ret,
288                 if (dma_set_decrypted(dev, ret !! 191                                                    1 << get_order(size));
289                         goto out_leak_pages;   !! 192                         if (err)
                                                   >> 193                                 goto out_free_pages;
                                                   >> 194                 }
                                                   >> 195                 memset(ret, 0, size);
                                                   >> 196                 goto done;
                                                   >> 197         }
                                                   >> 198 
                                                   >> 199         if (PageHighMem(page)) {
                                                   >> 200                 /*
                                                   >> 201                  * Depending on the cma= arguments and per-arch setup
                                                   >> 202                  * dma_alloc_contiguous could return highmem pages.
                                                   >> 203                  * Without remapping there is no way to return them here,
                                                   >> 204                  * so log an error and fail.
                                                   >> 205                  */
                                                   >> 206                 dev_info(dev, "Rejecting highmem page from CMA.\n");
                                                   >> 207                 goto out_free_pages;
                                                   >> 208         }
                                                   >> 209 
                                                   >> 210         ret = page_address(page);
                                                   >> 211         if (force_dma_unencrypted(dev)) {
                                                   >> 212                 err = set_memory_decrypted((unsigned long)ret,
                                                   >> 213                                            1 << get_order(size));
                                                   >> 214                 if (err)
                                                   >> 215                         goto out_free_pages;
290         }                                         216         }
291                                                   217 
292         memset(ret, 0, size);                     218         memset(ret, 0, size);
293                                                   219 
294         if (set_uncached) {                    !! 220         if (IS_ENABLED(CONFIG_ARCH_HAS_DMA_SET_UNCACHED) &&
                                                   >> 221             !dev_is_dma_coherent(dev)) {
295                 arch_dma_prep_coherent(page, s    222                 arch_dma_prep_coherent(page, size);
296                 ret = arch_dma_set_uncached(re    223                 ret = arch_dma_set_uncached(ret, size);
297                 if (IS_ERR(ret))                  224                 if (IS_ERR(ret))
298                         goto out_encrypt_pages    225                         goto out_encrypt_pages;
299         }                                         226         }
300                                                !! 227 done:
301         *dma_handle = phys_to_dma_direct(dev,     228         *dma_handle = phys_to_dma_direct(dev, page_to_phys(page));
302         return ret;                               229         return ret;
303                                                   230 
304 out_encrypt_pages:                                231 out_encrypt_pages:
305         if (dma_set_encrypted(dev, page_addres !! 232         if (force_dma_unencrypted(dev)) {
306                 return NULL;                   !! 233                 err = set_memory_encrypted((unsigned long)page_address(page),
                                                   >> 234                                            1 << get_order(size));
                                                   >> 235                 /* If memory cannot be re-encrypted, it must be leaked */
                                                   >> 236                 if (err)
                                                   >> 237                         return NULL;
                                                   >> 238         }
307 out_free_pages:                                   239 out_free_pages:
308         __dma_direct_free_pages(dev, page, siz !! 240         dma_free_contiguous(dev, page, size);
309         return NULL;                           << 
310 out_leak_pages:                                << 
311         return NULL;                              241         return NULL;
312 }                                                 242 }
313                                                   243 
314 void dma_direct_free(struct device *dev, size_    244 void dma_direct_free(struct device *dev, size_t size,
315                 void *cpu_addr, dma_addr_t dma    245                 void *cpu_addr, dma_addr_t dma_addr, unsigned long attrs)
316 {                                                 246 {
317         unsigned int page_order = get_order(si    247         unsigned int page_order = get_order(size);
318                                                   248 
319         if ((attrs & DMA_ATTR_NO_KERNEL_MAPPIN    249         if ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) &&
320             !force_dma_unencrypted(dev) && !is !! 250             !force_dma_unencrypted(dev)) {
321                 /* cpu_addr is a struct page c    251                 /* cpu_addr is a struct page cookie, not a kernel address */
322                 dma_free_contiguous(dev, cpu_a    252                 dma_free_contiguous(dev, cpu_addr, size);
323                 return;                           253                 return;
324         }                                         254         }
325                                                   255 
326         if (IS_ENABLED(CONFIG_ARCH_HAS_DMA_ALL !! 256         if (!IS_ENABLED(CONFIG_ARCH_HAS_DMA_SET_UNCACHED) &&
327             !dev_is_dma_coherent(dev) &&       !! 257             !IS_ENABLED(CONFIG_DMA_DIRECT_REMAP) &&
328             !is_swiotlb_for_alloc(dev)) {      << 
329                 arch_dma_free(dev, size, cpu_a << 
330                 return;                        << 
331         }                                      << 
332                                                << 
333         if (IS_ENABLED(CONFIG_DMA_GLOBAL_POOL) << 
334             !dev_is_dma_coherent(dev)) {          258             !dev_is_dma_coherent(dev)) {
335                 if (!dma_release_from_global_c !! 259                 arch_dma_free(dev, size, cpu_addr, dma_addr, attrs);
336                         WARN_ON_ONCE(1);       << 
337                 return;                           260                 return;
338         }                                         261         }
339                                                   262 
340         /* If cpu_addr is not from an atomic p    263         /* If cpu_addr is not from an atomic pool, dma_free_from_pool() fails */
341         if (IS_ENABLED(CONFIG_DMA_COHERENT_POO    264         if (IS_ENABLED(CONFIG_DMA_COHERENT_POOL) &&
342             dma_free_from_pool(dev, cpu_addr,     265             dma_free_from_pool(dev, cpu_addr, PAGE_ALIGN(size)))
343                 return;                           266                 return;
344                                                   267 
345         if (is_vmalloc_addr(cpu_addr)) {       !! 268         if (force_dma_unencrypted(dev))
                                                   >> 269                 set_memory_encrypted((unsigned long)cpu_addr, 1 << page_order);
                                                   >> 270 
                                                   >> 271         if (IS_ENABLED(CONFIG_DMA_REMAP) && is_vmalloc_addr(cpu_addr))
346                 vunmap(cpu_addr);                 272                 vunmap(cpu_addr);
347         } else {                               !! 273         else if (IS_ENABLED(CONFIG_ARCH_HAS_DMA_CLEAR_UNCACHED))
348                 if (IS_ENABLED(CONFIG_ARCH_HAS !! 274                 arch_dma_clear_uncached(cpu_addr, size);
349                         arch_dma_clear_uncache << 
350                 if (dma_set_encrypted(dev, cpu << 
351                         return;                << 
352         }                                      << 
353                                                   275 
354         __dma_direct_free_pages(dev, dma_direc !! 276         dma_free_contiguous(dev, dma_direct_to_page(dev, dma_addr), size);
355 }                                                 277 }
356                                                   278 
357 struct page *dma_direct_alloc_pages(struct dev    279 struct page *dma_direct_alloc_pages(struct device *dev, size_t size,
358                 dma_addr_t *dma_handle, enum d    280                 dma_addr_t *dma_handle, enum dma_data_direction dir, gfp_t gfp)
359 {                                                 281 {
360         struct page *page;                        282         struct page *page;
361         void *ret;                                283         void *ret;
362                                                   284 
363         if (force_dma_unencrypted(dev) && dma_ !! 285         if (IS_ENABLED(CONFIG_DMA_COHERENT_POOL) &&
                                                   >> 286             force_dma_unencrypted(dev) && !gfpflags_allow_blocking(gfp))
364                 return dma_direct_alloc_from_p    287                 return dma_direct_alloc_from_pool(dev, size, dma_handle, gfp);
365                                                   288 
366         page = __dma_direct_alloc_pages(dev, s !! 289         page = __dma_direct_alloc_pages(dev, size, gfp);
367         if (!page)                                290         if (!page)
368                 return NULL;                      291                 return NULL;
                                                   >> 292         if (PageHighMem(page)) {
                                                   >> 293                 /*
                                                   >> 294                  * Depending on the cma= arguments and per-arch setup
                                                   >> 295                  * dma_alloc_contiguous could return highmem pages.
                                                   >> 296                  * Without remapping there is no way to return them here,
                                                   >> 297                  * so log an error and fail.
                                                   >> 298                  */
                                                   >> 299                 dev_info(dev, "Rejecting highmem page from CMA.\n");
                                                   >> 300                 goto out_free_pages;
                                                   >> 301         }
369                                                   302 
370         ret = page_address(page);                 303         ret = page_address(page);
371         if (dma_set_decrypted(dev, ret, size)) !! 304         if (force_dma_unencrypted(dev)) {
372                 goto out_leak_pages;           !! 305                 if (set_memory_decrypted((unsigned long)ret,
                                                   >> 306                                 1 << get_order(size)))
                                                   >> 307                         goto out_free_pages;
                                                   >> 308         }
373         memset(ret, 0, size);                     309         memset(ret, 0, size);
374         *dma_handle = phys_to_dma_direct(dev,     310         *dma_handle = phys_to_dma_direct(dev, page_to_phys(page));
375         return page;                              311         return page;
376 out_leak_pages:                                !! 312 out_free_pages:
                                                   >> 313         dma_free_contiguous(dev, page, size);
377         return NULL;                              314         return NULL;
378 }                                                 315 }
379                                                   316 
380 void dma_direct_free_pages(struct device *dev,    317 void dma_direct_free_pages(struct device *dev, size_t size,
381                 struct page *page, dma_addr_t     318                 struct page *page, dma_addr_t dma_addr,
382                 enum dma_data_direction dir)      319                 enum dma_data_direction dir)
383 {                                                 320 {
                                                   >> 321         unsigned int page_order = get_order(size);
384         void *vaddr = page_address(page);         322         void *vaddr = page_address(page);
385                                                   323 
386         /* If cpu_addr is not from an atomic p    324         /* If cpu_addr is not from an atomic pool, dma_free_from_pool() fails */
387         if (IS_ENABLED(CONFIG_DMA_COHERENT_POO    325         if (IS_ENABLED(CONFIG_DMA_COHERENT_POOL) &&
388             dma_free_from_pool(dev, vaddr, siz    326             dma_free_from_pool(dev, vaddr, size))
389                 return;                           327                 return;
390                                                   328 
391         if (dma_set_encrypted(dev, vaddr, size !! 329         if (force_dma_unencrypted(dev))
392                 return;                        !! 330                 set_memory_encrypted((unsigned long)vaddr, 1 << page_order);
393         __dma_direct_free_pages(dev, page, siz !! 331 
                                                   >> 332         dma_free_contiguous(dev, page, size);
394 }                                                 333 }
395                                                   334 
396 #if defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_DEVIC    335 #if defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_DEVICE) || \
397     defined(CONFIG_SWIOTLB)                       336     defined(CONFIG_SWIOTLB)
398 void dma_direct_sync_sg_for_device(struct devi    337 void dma_direct_sync_sg_for_device(struct device *dev,
399                 struct scatterlist *sgl, int n    338                 struct scatterlist *sgl, int nents, enum dma_data_direction dir)
400 {                                                 339 {
401         struct scatterlist *sg;                   340         struct scatterlist *sg;
402         int i;                                    341         int i;
403                                                   342 
404         for_each_sg(sgl, sg, nents, i) {          343         for_each_sg(sgl, sg, nents, i) {
405                 phys_addr_t paddr = dma_to_phy    344                 phys_addr_t paddr = dma_to_phys(dev, sg_dma_address(sg));
406                                                   345 
407                 swiotlb_sync_single_for_device !! 346                 if (unlikely(is_swiotlb_buffer(paddr)))
                                                   >> 347                         swiotlb_sync_single_for_device(dev, paddr, sg->length,
                                                   >> 348                                                        dir);
408                                                   349 
409                 if (!dev_is_dma_coherent(dev))    350                 if (!dev_is_dma_coherent(dev))
410                         arch_sync_dma_for_devi    351                         arch_sync_dma_for_device(paddr, sg->length,
411                                         dir);     352                                         dir);
412         }                                         353         }
413 }                                                 354 }
414 #endif                                            355 #endif
415                                                   356 
416 #if defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU)     357 #if defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU) || \
417     defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU_A    358     defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU_ALL) || \
418     defined(CONFIG_SWIOTLB)                       359     defined(CONFIG_SWIOTLB)
419 void dma_direct_sync_sg_for_cpu(struct device     360 void dma_direct_sync_sg_for_cpu(struct device *dev,
420                 struct scatterlist *sgl, int n    361                 struct scatterlist *sgl, int nents, enum dma_data_direction dir)
421 {                                                 362 {
422         struct scatterlist *sg;                   363         struct scatterlist *sg;
423         int i;                                    364         int i;
424                                                   365 
425         for_each_sg(sgl, sg, nents, i) {          366         for_each_sg(sgl, sg, nents, i) {
426                 phys_addr_t paddr = dma_to_phy    367                 phys_addr_t paddr = dma_to_phys(dev, sg_dma_address(sg));
427                                                   368 
428                 if (!dev_is_dma_coherent(dev))    369                 if (!dev_is_dma_coherent(dev))
429                         arch_sync_dma_for_cpu(    370                         arch_sync_dma_for_cpu(paddr, sg->length, dir);
430                                                   371 
431                 swiotlb_sync_single_for_cpu(de !! 372                 if (unlikely(is_swiotlb_buffer(paddr)))
                                                   >> 373                         swiotlb_sync_single_for_cpu(dev, paddr, sg->length,
                                                   >> 374                                                     dir);
432                                                   375 
433                 if (dir == DMA_FROM_DEVICE)       376                 if (dir == DMA_FROM_DEVICE)
434                         arch_dma_mark_clean(pa    377                         arch_dma_mark_clean(paddr, sg->length);
435         }                                         378         }
436                                                   379 
437         if (!dev_is_dma_coherent(dev))            380         if (!dev_is_dma_coherent(dev))
438                 arch_sync_dma_for_cpu_all();      381                 arch_sync_dma_for_cpu_all();
439 }                                                 382 }
440                                                   383 
441 /*                                             << 
442  * Unmaps segments, except for ones marked as  << 
443  * require any further action as they contain  << 
444  */                                            << 
445 void dma_direct_unmap_sg(struct device *dev, s    384 void dma_direct_unmap_sg(struct device *dev, struct scatterlist *sgl,
446                 int nents, enum dma_data_direc    385                 int nents, enum dma_data_direction dir, unsigned long attrs)
447 {                                                 386 {
448         struct scatterlist *sg;                   387         struct scatterlist *sg;
449         int i;                                    388         int i;
450                                                   389 
451         for_each_sg(sgl,  sg, nents, i) {      !! 390         for_each_sg(sgl, sg, nents, i)
452                 if (sg_dma_is_bus_address(sg)) !! 391                 dma_direct_unmap_page(dev, sg->dma_address, sg_dma_len(sg), dir,
453                         sg_dma_unmark_bus_addr !! 392                              attrs);
454                 else                           << 
455                         dma_direct_unmap_page( << 
456                                                << 
457         }                                      << 
458 }                                                 393 }
459 #endif                                            394 #endif
460                                                   395 
461 int dma_direct_map_sg(struct device *dev, stru    396 int dma_direct_map_sg(struct device *dev, struct scatterlist *sgl, int nents,
462                 enum dma_data_direction dir, u    397                 enum dma_data_direction dir, unsigned long attrs)
463 {                                                 398 {
464         struct pci_p2pdma_map_state p2pdma_sta !! 399         int i;
465         enum pci_p2pdma_map_type map;          << 
466         struct scatterlist *sg;                   400         struct scatterlist *sg;
467         int i, ret;                            << 
468                                                   401 
469         for_each_sg(sgl, sg, nents, i) {          402         for_each_sg(sgl, sg, nents, i) {
470                 if (is_pci_p2pdma_page(sg_page << 
471                         map = pci_p2pdma_map_s << 
472                         switch (map) {         << 
473                         case PCI_P2PDMA_MAP_BU << 
474                                 continue;      << 
475                         case PCI_P2PDMA_MAP_TH << 
476                                 /*             << 
477                                  * Any P2P map << 
478                                  * host bridge << 
479                                  * address and << 
480                                  * done with d << 
481                                  */            << 
482                                 break;         << 
483                         default:               << 
484                                 ret = -EREMOTE << 
485                                 goto out_unmap << 
486                         }                      << 
487                 }                              << 
488                                                << 
489                 sg->dma_address = dma_direct_m    403                 sg->dma_address = dma_direct_map_page(dev, sg_page(sg),
490                                 sg->offset, sg    404                                 sg->offset, sg->length, dir, attrs);
491                 if (sg->dma_address == DMA_MAP !! 405                 if (sg->dma_address == DMA_MAPPING_ERROR)
492                         ret = -EIO;            << 
493                         goto out_unmap;           406                         goto out_unmap;
494                 }                              << 
495                 sg_dma_len(sg) = sg->length;      407                 sg_dma_len(sg) = sg->length;
496         }                                         408         }
497                                                   409 
498         return nents;                             410         return nents;
499                                                   411 
500 out_unmap:                                        412 out_unmap:
501         dma_direct_unmap_sg(dev, sgl, i, dir,     413         dma_direct_unmap_sg(dev, sgl, i, dir, attrs | DMA_ATTR_SKIP_CPU_SYNC);
502         return ret;                            !! 414         return 0;
503 }                                                 415 }
504                                                   416 
505 dma_addr_t dma_direct_map_resource(struct devi    417 dma_addr_t dma_direct_map_resource(struct device *dev, phys_addr_t paddr,
506                 size_t size, enum dma_data_dir    418                 size_t size, enum dma_data_direction dir, unsigned long attrs)
507 {                                                 419 {
508         dma_addr_t dma_addr = paddr;              420         dma_addr_t dma_addr = paddr;
509                                                   421 
510         if (unlikely(!dma_capable(dev, dma_add    422         if (unlikely(!dma_capable(dev, dma_addr, size, false))) {
511                 dev_err_once(dev,                 423                 dev_err_once(dev,
512                              "DMA addr %pad+%z    424                              "DMA addr %pad+%zu overflow (mask %llx, bus limit %llx).\n",
513                              &dma_addr, size,     425                              &dma_addr, size, *dev->dma_mask, dev->bus_dma_limit);
514                 WARN_ON_ONCE(1);                  426                 WARN_ON_ONCE(1);
515                 return DMA_MAPPING_ERROR;         427                 return DMA_MAPPING_ERROR;
516         }                                         428         }
517                                                   429 
518         return dma_addr;                          430         return dma_addr;
519 }                                                 431 }
520                                                   432 
521 int dma_direct_get_sgtable(struct device *dev,    433 int dma_direct_get_sgtable(struct device *dev, struct sg_table *sgt,
522                 void *cpu_addr, dma_addr_t dma    434                 void *cpu_addr, dma_addr_t dma_addr, size_t size,
523                 unsigned long attrs)              435                 unsigned long attrs)
524 {                                                 436 {
525         struct page *page = dma_direct_to_page    437         struct page *page = dma_direct_to_page(dev, dma_addr);
526         int ret;                                  438         int ret;
527                                                   439 
528         ret = sg_alloc_table(sgt, 1, GFP_KERNE    440         ret = sg_alloc_table(sgt, 1, GFP_KERNEL);
529         if (!ret)                                 441         if (!ret)
530                 sg_set_page(sgt->sgl, page, PA    442                 sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0);
531         return ret;                               443         return ret;
532 }                                                 444 }
533                                                   445 
534 bool dma_direct_can_mmap(struct device *dev)      446 bool dma_direct_can_mmap(struct device *dev)
535 {                                                 447 {
536         return dev_is_dma_coherent(dev) ||        448         return dev_is_dma_coherent(dev) ||
537                 IS_ENABLED(CONFIG_DMA_NONCOHER    449                 IS_ENABLED(CONFIG_DMA_NONCOHERENT_MMAP);
538 }                                                 450 }
539                                                   451 
540 int dma_direct_mmap(struct device *dev, struct    452 int dma_direct_mmap(struct device *dev, struct vm_area_struct *vma,
541                 void *cpu_addr, dma_addr_t dma    453                 void *cpu_addr, dma_addr_t dma_addr, size_t size,
542                 unsigned long attrs)              454                 unsigned long attrs)
543 {                                                 455 {
544         unsigned long user_count = vma_pages(v    456         unsigned long user_count = vma_pages(vma);
545         unsigned long count = PAGE_ALIGN(size)    457         unsigned long count = PAGE_ALIGN(size) >> PAGE_SHIFT;
546         unsigned long pfn = PHYS_PFN(dma_to_ph    458         unsigned long pfn = PHYS_PFN(dma_to_phys(dev, dma_addr));
547         int ret = -ENXIO;                         459         int ret = -ENXIO;
548                                                   460 
549         vma->vm_page_prot = dma_pgprot(dev, vm    461         vma->vm_page_prot = dma_pgprot(dev, vma->vm_page_prot, attrs);
550         if (force_dma_unencrypted(dev))        << 
551                 vma->vm_page_prot = pgprot_dec << 
552                                                   462 
553         if (dma_mmap_from_dev_coherent(dev, vm    463         if (dma_mmap_from_dev_coherent(dev, vma, cpu_addr, size, &ret))
554                 return ret;                       464                 return ret;
555         if (dma_mmap_from_global_coherent(vma, << 
556                 return ret;                    << 
557                                                   465 
558         if (vma->vm_pgoff >= count || user_cou    466         if (vma->vm_pgoff >= count || user_count > count - vma->vm_pgoff)
559                 return -ENXIO;                    467                 return -ENXIO;
560         return remap_pfn_range(vma, vma->vm_st    468         return remap_pfn_range(vma, vma->vm_start, pfn + vma->vm_pgoff,
561                         user_count << PAGE_SHI    469                         user_count << PAGE_SHIFT, vma->vm_page_prot);
562 }                                                 470 }
563                                                   471 
564 int dma_direct_supported(struct device *dev, u    472 int dma_direct_supported(struct device *dev, u64 mask)
565 {                                                 473 {
566         u64 min_mask = (max_pfn - 1) << PAGE_S    474         u64 min_mask = (max_pfn - 1) << PAGE_SHIFT;
567                                                   475 
568         /*                                        476         /*
569          * Because 32-bit DMA masks are so com    477          * Because 32-bit DMA masks are so common we expect every architecture
570          * to be able to satisfy them - either    478          * to be able to satisfy them - either by not supporting more physical
571          * memory, or by providing a ZONE_DMA3    479          * memory, or by providing a ZONE_DMA32.  If neither is the case, the
572          * architecture needs to use an IOMMU     480          * architecture needs to use an IOMMU instead of the direct mapping.
573          */                                       481          */
574         if (mask >= DMA_BIT_MASK(32))             482         if (mask >= DMA_BIT_MASK(32))
575                 return 1;                         483                 return 1;
576                                                   484 
577         /*                                        485         /*
578          * This check needs to be against the     486          * This check needs to be against the actual bit mask value, so use
579          * phys_to_dma_unencrypted() here so t    487          * phys_to_dma_unencrypted() here so that the SME encryption mask isn't
580          * part of the check.                     488          * part of the check.
581          */                                       489          */
582         if (IS_ENABLED(CONFIG_ZONE_DMA))          490         if (IS_ENABLED(CONFIG_ZONE_DMA))
583                 min_mask = min_t(u64, min_mask    491                 min_mask = min_t(u64, min_mask, DMA_BIT_MASK(zone_dma_bits));
584         return mask >= phys_to_dma_unencrypted    492         return mask >= phys_to_dma_unencrypted(dev, min_mask);
585 }                                                 493 }
586                                                   494 
587 /*                                             << 
588  * To check whether all ram resource ranges ar << 
589  * Returns 0 when further check is needed      << 
590  * Returns 1 if there is some RAM range can't  << 
591  */                                            << 
592 static int check_ram_in_range_map(unsigned lon << 
593                                   unsigned lon << 
594 {                                              << 
595         unsigned long end_pfn = start_pfn + nr << 
596         const struct bus_dma_region *bdr = NUL << 
597         const struct bus_dma_region *m;        << 
598         struct device *dev = data;             << 
599                                                << 
600         while (start_pfn < end_pfn) {          << 
601                 for (m = dev->dma_range_map; P << 
602                         unsigned long cpu_star << 
603                                                << 
604                         if (start_pfn >= cpu_s << 
605                             start_pfn - cpu_st << 
606                                 bdr = m;       << 
607                                 break;         << 
608                         }                      << 
609                 }                              << 
610                 if (!bdr)                      << 
611                         return 1;              << 
612                                                << 
613                 start_pfn = PFN_DOWN(bdr->cpu_ << 
614         }                                      << 
615                                                << 
616         return 0;                              << 
617 }                                              << 
618                                                << 
619 bool dma_direct_all_ram_mapped(struct device * << 
620 {                                              << 
621         if (!dev->dma_range_map)               << 
622                 return true;                   << 
623         return !walk_system_ram_range(0, PFN_D << 
624                                       check_ra << 
625 }                                              << 
626                                                << 
627 size_t dma_direct_max_mapping_size(struct devi    495 size_t dma_direct_max_mapping_size(struct device *dev)
628 {                                                 496 {
629         /* If SWIOTLB is active, use its maxim    497         /* If SWIOTLB is active, use its maximum mapping size */
630         if (is_swiotlb_active(dev) &&          !! 498         if (is_swiotlb_active() &&
631             (dma_addressing_limited(dev) || is !! 499             (dma_addressing_limited(dev) || swiotlb_force == SWIOTLB_FORCE))
632                 return swiotlb_max_mapping_siz    500                 return swiotlb_max_mapping_size(dev);
633         return SIZE_MAX;                          501         return SIZE_MAX;
634 }                                                 502 }
635                                                   503 
636 bool dma_direct_need_sync(struct device *dev,     504 bool dma_direct_need_sync(struct device *dev, dma_addr_t dma_addr)
637 {                                                 505 {
638         return !dev_is_dma_coherent(dev) ||       506         return !dev_is_dma_coherent(dev) ||
639                swiotlb_find_pool(dev, dma_to_p !! 507                 is_swiotlb_buffer(dma_to_phys(dev, dma_addr));
640 }                                                 508 }
641                                                   509 
642 /**                                               510 /**
643  * dma_direct_set_offset - Assign scalar offse    511  * dma_direct_set_offset - Assign scalar offset for a single DMA range.
644  * @dev:        device pointer; needed to "own    512  * @dev:        device pointer; needed to "own" the alloced memory.
645  * @cpu_start:  beginning of memory region cov    513  * @cpu_start:  beginning of memory region covered by this offset.
646  * @dma_start:  beginning of DMA/PCI region co    514  * @dma_start:  beginning of DMA/PCI region covered by this offset.
647  * @size:       size of the region.               515  * @size:       size of the region.
648  *                                                516  *
649  * This is for the simple case of a uniform of    517  * This is for the simple case of a uniform offset which cannot
650  * be discovered by "dma-ranges".                 518  * be discovered by "dma-ranges".
651  *                                                519  *
652  * It returns -ENOMEM if out of memory, -EINVA    520  * It returns -ENOMEM if out of memory, -EINVAL if a map
653  * already exists, 0 otherwise.                   521  * already exists, 0 otherwise.
654  *                                                522  *
655  * Note: any call to this from a driver is a b    523  * Note: any call to this from a driver is a bug.  The mapping needs
656  * to be described by the device tree or other    524  * to be described by the device tree or other firmware interfaces.
657  */                                               525  */
658 int dma_direct_set_offset(struct device *dev,     526 int dma_direct_set_offset(struct device *dev, phys_addr_t cpu_start,
659                          dma_addr_t dma_start,    527                          dma_addr_t dma_start, u64 size)
660 {                                                 528 {
661         struct bus_dma_region *map;               529         struct bus_dma_region *map;
662         u64 offset = (u64)cpu_start - (u64)dma    530         u64 offset = (u64)cpu_start - (u64)dma_start;
663                                                   531 
664         if (dev->dma_range_map) {                 532         if (dev->dma_range_map) {
665                 dev_err(dev, "attempt to add D    533                 dev_err(dev, "attempt to add DMA range to existing map\n");
666                 return -EINVAL;                   534                 return -EINVAL;
667         }                                         535         }
668                                                   536 
669         if (!offset)                              537         if (!offset)
670                 return 0;                         538                 return 0;
671                                                   539 
672         map = kcalloc(2, sizeof(*map), GFP_KER    540         map = kcalloc(2, sizeof(*map), GFP_KERNEL);
673         if (!map)                                 541         if (!map)
674                 return -ENOMEM;                   542                 return -ENOMEM;
675         map[0].cpu_start = cpu_start;             543         map[0].cpu_start = cpu_start;
676         map[0].dma_start = dma_start;             544         map[0].dma_start = dma_start;
                                                   >> 545         map[0].offset = offset;
677         map[0].size = size;                       546         map[0].size = size;
678         dev->dma_range_map = map;                 547         dev->dma_range_map = map;
679         return 0;                                 548         return 0;
680 }                                                 549 }
681                                                   550 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

sflogo.php