~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/kernel/dma/direct.c

Version: ~ [ linux-6.11-rc3 ] ~ [ linux-6.10.4 ] ~ [ linux-6.9.12 ] ~ [ linux-6.8.12 ] ~ [ linux-6.7.12 ] ~ [ linux-6.6.45 ] ~ [ linux-6.5.13 ] ~ [ linux-6.4.16 ] ~ [ linux-6.3.13 ] ~ [ linux-6.2.16 ] ~ [ linux-6.1.104 ] ~ [ linux-6.0.19 ] ~ [ linux-5.19.17 ] ~ [ linux-5.18.19 ] ~ [ linux-5.17.15 ] ~ [ linux-5.16.20 ] ~ [ linux-5.15.164 ] ~ [ linux-5.14.21 ] ~ [ linux-5.13.19 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.223 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.281 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.319 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.336 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.337 ] ~ [ linux-4.4.302 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.9 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

Diff markup

Differences between /kernel/dma/direct.c (Version linux-6.11-rc3) and /kernel/dma/direct.c (Version linux-5.16.20)


  1 // SPDX-License-Identifier: GPL-2.0                 1 // SPDX-License-Identifier: GPL-2.0
  2 /*                                                  2 /*
  3  * Copyright (C) 2018-2020 Christoph Hellwig.       3  * Copyright (C) 2018-2020 Christoph Hellwig.
  4  *                                                  4  *
  5  * DMA operations that map physical memory dir      5  * DMA operations that map physical memory directly without using an IOMMU.
  6  */                                                 6  */
  7 #include <linux/memblock.h> /* for max_pfn */       7 #include <linux/memblock.h> /* for max_pfn */
  8 #include <linux/export.h>                           8 #include <linux/export.h>
  9 #include <linux/mm.h>                               9 #include <linux/mm.h>
 10 #include <linux/dma-map-ops.h>                     10 #include <linux/dma-map-ops.h>
 11 #include <linux/scatterlist.h>                     11 #include <linux/scatterlist.h>
 12 #include <linux/pfn.h>                             12 #include <linux/pfn.h>
 13 #include <linux/vmalloc.h>                         13 #include <linux/vmalloc.h>
 14 #include <linux/set_memory.h>                      14 #include <linux/set_memory.h>
 15 #include <linux/slab.h>                            15 #include <linux/slab.h>
 16 #include "direct.h"                                16 #include "direct.h"
 17                                                    17 
 18 /*                                                 18 /*
 19  * Most architectures use ZONE_DMA for the fir     19  * Most architectures use ZONE_DMA for the first 16 Megabytes, but some use
 20  * it for entirely different regions. In that      20  * it for entirely different regions. In that case the arch code needs to
 21  * override the variable below for dma-direct      21  * override the variable below for dma-direct to work properly.
 22  */                                                22  */
 23 unsigned int zone_dma_bits __ro_after_init = 2     23 unsigned int zone_dma_bits __ro_after_init = 24;
 24                                                    24 
 25 static inline dma_addr_t phys_to_dma_direct(st     25 static inline dma_addr_t phys_to_dma_direct(struct device *dev,
 26                 phys_addr_t phys)                  26                 phys_addr_t phys)
 27 {                                                  27 {
 28         if (force_dma_unencrypted(dev))            28         if (force_dma_unencrypted(dev))
 29                 return phys_to_dma_unencrypted     29                 return phys_to_dma_unencrypted(dev, phys);
 30         return phys_to_dma(dev, phys);             30         return phys_to_dma(dev, phys);
 31 }                                                  31 }
 32                                                    32 
 33 static inline struct page *dma_direct_to_page(     33 static inline struct page *dma_direct_to_page(struct device *dev,
 34                 dma_addr_t dma_addr)               34                 dma_addr_t dma_addr)
 35 {                                                  35 {
 36         return pfn_to_page(PHYS_PFN(dma_to_phy     36         return pfn_to_page(PHYS_PFN(dma_to_phys(dev, dma_addr)));
 37 }                                                  37 }
 38                                                    38 
 39 u64 dma_direct_get_required_mask(struct device     39 u64 dma_direct_get_required_mask(struct device *dev)
 40 {                                                  40 {
 41         phys_addr_t phys = (phys_addr_t)(max_p     41         phys_addr_t phys = (phys_addr_t)(max_pfn - 1) << PAGE_SHIFT;
 42         u64 max_dma = phys_to_dma_direct(dev,      42         u64 max_dma = phys_to_dma_direct(dev, phys);
 43                                                    43 
 44         return (1ULL << (fls64(max_dma) - 1))      44         return (1ULL << (fls64(max_dma) - 1)) * 2 - 1;
 45 }                                                  45 }
 46                                                    46 
 47 static gfp_t dma_direct_optimal_gfp_mask(struc !!  47 static gfp_t dma_direct_optimal_gfp_mask(struct device *dev, u64 dma_mask,
                                                   >>  48                                   u64 *phys_limit)
 48 {                                                  49 {
 49         u64 dma_limit = min_not_zero(          !!  50         u64 dma_limit = min_not_zero(dma_mask, dev->bus_dma_limit);
 50                 dev->coherent_dma_mask,        << 
 51                 dev->bus_dma_limit);           << 
 52                                                    51 
 53         /*                                         52         /*
 54          * Optimistically try the zone that th     53          * Optimistically try the zone that the physical address mask falls
 55          * into first.  If that returns memory     54          * into first.  If that returns memory that isn't actually addressable
 56          * we will fallback to the next lower      55          * we will fallback to the next lower zone and try again.
 57          *                                         56          *
 58          * Note that GFP_DMA32 and GFP_DMA are     57          * Note that GFP_DMA32 and GFP_DMA are no ops without the corresponding
 59          * zones.                                  58          * zones.
 60          */                                        59          */
 61         *phys_limit = dma_to_phys(dev, dma_lim     60         *phys_limit = dma_to_phys(dev, dma_limit);
 62         if (*phys_limit <= DMA_BIT_MASK(zone_d     61         if (*phys_limit <= DMA_BIT_MASK(zone_dma_bits))
 63                 return GFP_DMA;                    62                 return GFP_DMA;
 64         if (*phys_limit <= DMA_BIT_MASK(32))       63         if (*phys_limit <= DMA_BIT_MASK(32))
 65                 return GFP_DMA32;                  64                 return GFP_DMA32;
 66         return 0;                                  65         return 0;
 67 }                                                  66 }
 68                                                    67 
 69 bool dma_coherent_ok(struct device *dev, phys_ !!  68 static bool dma_coherent_ok(struct device *dev, phys_addr_t phys, size_t size)
 70 {                                                  69 {
 71         dma_addr_t dma_addr = phys_to_dma_dire     70         dma_addr_t dma_addr = phys_to_dma_direct(dev, phys);
 72                                                    71 
 73         if (dma_addr == DMA_MAPPING_ERROR)         72         if (dma_addr == DMA_MAPPING_ERROR)
 74                 return false;                      73                 return false;
 75         return dma_addr + size - 1 <=              74         return dma_addr + size - 1 <=
 76                 min_not_zero(dev->coherent_dma     75                 min_not_zero(dev->coherent_dma_mask, dev->bus_dma_limit);
 77 }                                                  76 }
 78                                                    77 
 79 static int dma_set_decrypted(struct device *de << 
 80 {                                              << 
 81         if (!force_dma_unencrypted(dev))       << 
 82                 return 0;                      << 
 83         return set_memory_decrypted((unsigned  << 
 84 }                                              << 
 85                                                << 
 86 static int dma_set_encrypted(struct device *de << 
 87 {                                              << 
 88         int ret;                               << 
 89                                                << 
 90         if (!force_dma_unencrypted(dev))       << 
 91                 return 0;                      << 
 92         ret = set_memory_encrypted((unsigned l << 
 93         if (ret)                               << 
 94                 pr_warn_ratelimited("leaking D << 
 95         return ret;                            << 
 96 }                                              << 
 97                                                << 
 98 static void __dma_direct_free_pages(struct dev     78 static void __dma_direct_free_pages(struct device *dev, struct page *page,
 99                                     size_t siz     79                                     size_t size)
100 {                                                  80 {
101         if (swiotlb_free(dev, page, size))     !!  81         if (IS_ENABLED(CONFIG_DMA_RESTRICTED_POOL) &&
                                                   >>  82             swiotlb_free(dev, page, size))
102                 return;                            83                 return;
103         dma_free_contiguous(dev, page, size);      84         dma_free_contiguous(dev, page, size);
104 }                                                  85 }
105                                                    86 
106 static struct page *dma_direct_alloc_swiotlb(s << 
107 {                                              << 
108         struct page *page = swiotlb_alloc(dev, << 
109                                                << 
110         if (page && !dma_coherent_ok(dev, page << 
111                 swiotlb_free(dev, page, size); << 
112                 return NULL;                   << 
113         }                                      << 
114                                                << 
115         return page;                           << 
116 }                                              << 
117                                                << 
118 static struct page *__dma_direct_alloc_pages(s     87 static struct page *__dma_direct_alloc_pages(struct device *dev, size_t size,
119                 gfp_t gfp, bool allow_highmem) !!  88                 gfp_t gfp)
120 {                                                  89 {
121         int node = dev_to_node(dev);               90         int node = dev_to_node(dev);
122         struct page *page = NULL;                  91         struct page *page = NULL;
123         u64 phys_limit;                            92         u64 phys_limit;
124                                                    93 
125         WARN_ON_ONCE(!PAGE_ALIGNED(size));         94         WARN_ON_ONCE(!PAGE_ALIGNED(size));
126                                                    95 
127         if (is_swiotlb_for_alloc(dev))         !!  96         gfp |= dma_direct_optimal_gfp_mask(dev, dev->coherent_dma_mask,
128                 return dma_direct_alloc_swiotl !!  97                                            &phys_limit);
                                                   >>  98         if (IS_ENABLED(CONFIG_DMA_RESTRICTED_POOL) &&
                                                   >>  99             is_swiotlb_for_alloc(dev)) {
                                                   >> 100                 page = swiotlb_alloc(dev, size);
                                                   >> 101                 if (page && !dma_coherent_ok(dev, page_to_phys(page), size)) {
                                                   >> 102                         __dma_direct_free_pages(dev, page, size);
                                                   >> 103                         return NULL;
                                                   >> 104                 }
                                                   >> 105                 return page;
                                                   >> 106         }
129                                                   107 
130         gfp |= dma_direct_optimal_gfp_mask(dev << 
131         page = dma_alloc_contiguous(dev, size,    108         page = dma_alloc_contiguous(dev, size, gfp);
132         if (page) {                            !! 109         if (page && !dma_coherent_ok(dev, page_to_phys(page), size)) {
133                 if (!dma_coherent_ok(dev, page !! 110                 dma_free_contiguous(dev, page, size);
134                     (!allow_highmem && PageHig !! 111                 page = NULL;
135                         dma_free_contiguous(de << 
136                         page = NULL;           << 
137                 }                              << 
138         }                                         112         }
139 again:                                            113 again:
140         if (!page)                                114         if (!page)
141                 page = alloc_pages_node(node,     115                 page = alloc_pages_node(node, gfp, get_order(size));
142         if (page && !dma_coherent_ok(dev, page    116         if (page && !dma_coherent_ok(dev, page_to_phys(page), size)) {
143                 dma_free_contiguous(dev, page,    117                 dma_free_contiguous(dev, page, size);
144                 page = NULL;                      118                 page = NULL;
145                                                   119 
146                 if (IS_ENABLED(CONFIG_ZONE_DMA    120                 if (IS_ENABLED(CONFIG_ZONE_DMA32) &&
147                     phys_limit < DMA_BIT_MASK(    121                     phys_limit < DMA_BIT_MASK(64) &&
148                     !(gfp & (GFP_DMA32 | GFP_D    122                     !(gfp & (GFP_DMA32 | GFP_DMA))) {
149                         gfp |= GFP_DMA32;         123                         gfp |= GFP_DMA32;
150                         goto again;               124                         goto again;
151                 }                                 125                 }
152                                                   126 
153                 if (IS_ENABLED(CONFIG_ZONE_DMA    127                 if (IS_ENABLED(CONFIG_ZONE_DMA) && !(gfp & GFP_DMA)) {
154                         gfp = (gfp & ~GFP_DMA3    128                         gfp = (gfp & ~GFP_DMA32) | GFP_DMA;
155                         goto again;               129                         goto again;
156                 }                                 130                 }
157         }                                         131         }
158                                                   132 
159         return page;                              133         return page;
160 }                                                 134 }
161                                                   135 
162 /*                                             << 
163  * Check if a potentially blocking operations  << 
164  * pools for the given device/gfp.             << 
165  */                                            << 
166 static bool dma_direct_use_pool(struct device  << 
167 {                                              << 
168         return !gfpflags_allow_blocking(gfp) & << 
169 }                                              << 
170                                                << 
171 static void *dma_direct_alloc_from_pool(struct    136 static void *dma_direct_alloc_from_pool(struct device *dev, size_t size,
172                 dma_addr_t *dma_handle, gfp_t     137                 dma_addr_t *dma_handle, gfp_t gfp)
173 {                                                 138 {
174         struct page *page;                        139         struct page *page;
175         u64 phys_limit;                        !! 140         u64 phys_mask;
176         void *ret;                                141         void *ret;
177                                                   142 
178         if (WARN_ON_ONCE(!IS_ENABLED(CONFIG_DM !! 143         gfp |= dma_direct_optimal_gfp_mask(dev, dev->coherent_dma_mask,
179                 return NULL;                   !! 144                                            &phys_mask);
180                                                << 
181         gfp |= dma_direct_optimal_gfp_mask(dev << 
182         page = dma_alloc_from_pool(dev, size,     145         page = dma_alloc_from_pool(dev, size, &ret, gfp, dma_coherent_ok);
183         if (!page)                                146         if (!page)
184                 return NULL;                      147                 return NULL;
185         *dma_handle = phys_to_dma_direct(dev,     148         *dma_handle = phys_to_dma_direct(dev, page_to_phys(page));
186         return ret;                               149         return ret;
187 }                                                 150 }
188                                                   151 
189 static void *dma_direct_alloc_no_mapping(struc << 
190                 dma_addr_t *dma_handle, gfp_t  << 
191 {                                              << 
192         struct page *page;                     << 
193                                                << 
194         page = __dma_direct_alloc_pages(dev, s << 
195         if (!page)                             << 
196                 return NULL;                   << 
197                                                << 
198         /* remove any dirty cache lines on the << 
199         if (!PageHighMem(page))                << 
200                 arch_dma_prep_coherent(page, s << 
201                                                << 
202         /* return the page pointer as the opaq << 
203         *dma_handle = phys_to_dma_direct(dev,  << 
204         return page;                           << 
205 }                                              << 
206                                                << 
207 void *dma_direct_alloc(struct device *dev, siz    152 void *dma_direct_alloc(struct device *dev, size_t size,
208                 dma_addr_t *dma_handle, gfp_t     153                 dma_addr_t *dma_handle, gfp_t gfp, unsigned long attrs)
209 {                                                 154 {
210         bool remap = false, set_uncached = fal << 
211         struct page *page;                        155         struct page *page;
212         void *ret;                                156         void *ret;
                                                   >> 157         int err;
213                                                   158 
214         size = PAGE_ALIGN(size);                  159         size = PAGE_ALIGN(size);
215         if (attrs & DMA_ATTR_NO_WARN)             160         if (attrs & DMA_ATTR_NO_WARN)
216                 gfp |= __GFP_NOWARN;              161                 gfp |= __GFP_NOWARN;
217                                                   162 
218         if ((attrs & DMA_ATTR_NO_KERNEL_MAPPIN    163         if ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) &&
219             !force_dma_unencrypted(dev) && !is !! 164             !force_dma_unencrypted(dev) && !is_swiotlb_for_alloc(dev)) {
220                 return dma_direct_alloc_no_map !! 165                 page = __dma_direct_alloc_pages(dev, size, gfp & ~__GFP_ZERO);
221                                                !! 166                 if (!page)
222         if (!dev_is_dma_coherent(dev)) {       << 
223                 if (IS_ENABLED(CONFIG_ARCH_HAS << 
224                     !is_swiotlb_for_alloc(dev) << 
225                         return arch_dma_alloc( << 
226                                                << 
227                                                << 
228                 /*                             << 
229                  * If there is a global pool,  << 
230                  * non-coherent devices.       << 
231                  */                            << 
232                 if (IS_ENABLED(CONFIG_DMA_GLOB << 
233                         return dma_alloc_from_ << 
234                                         dma_ha << 
235                                                << 
236                 /*                             << 
237                  * Otherwise we require the ar << 
238                  * mark arbitrary parts of the << 
239                  * or remapped it uncached.    << 
240                  */                            << 
241                 set_uncached = IS_ENABLED(CONF << 
242                 remap = IS_ENABLED(CONFIG_DMA_ << 
243                 if (!set_uncached && !remap) { << 
244                         pr_warn_once("coherent << 
245                         return NULL;              167                         return NULL;
246                 }                              !! 168                 /* remove any dirty cache lines on the kernel alias */
                                                   >> 169                 if (!PageHighMem(page))
                                                   >> 170                         arch_dma_prep_coherent(page, size);
                                                   >> 171                 *dma_handle = phys_to_dma_direct(dev, page_to_phys(page));
                                                   >> 172                 /* return the page pointer as the opaque cookie */
                                                   >> 173                 return page;
247         }                                         174         }
248                                                   175 
                                                   >> 176         if (!IS_ENABLED(CONFIG_ARCH_HAS_DMA_SET_UNCACHED) &&
                                                   >> 177             !IS_ENABLED(CONFIG_DMA_DIRECT_REMAP) &&
                                                   >> 178             !IS_ENABLED(CONFIG_DMA_GLOBAL_POOL) &&
                                                   >> 179             !dev_is_dma_coherent(dev) &&
                                                   >> 180             !is_swiotlb_for_alloc(dev))
                                                   >> 181                 return arch_dma_alloc(dev, size, dma_handle, gfp, attrs);
                                                   >> 182 
                                                   >> 183         if (IS_ENABLED(CONFIG_DMA_GLOBAL_POOL) &&
                                                   >> 184             !dev_is_dma_coherent(dev))
                                                   >> 185                 return dma_alloc_from_global_coherent(dev, size, dma_handle);
                                                   >> 186 
249         /*                                        187         /*
250          * Remapping or decrypting memory may  !! 188          * Remapping or decrypting memory may block. If either is required and
251          * the atomic pools instead if we aren !! 189          * we can't block, allocate the memory from the atomic pools.
                                                   >> 190          * If restricted DMA (i.e., is_swiotlb_for_alloc) is required, one must
                                                   >> 191          * set up another device coherent pool by shared-dma-pool and use
                                                   >> 192          * dma_alloc_from_dev_coherent instead.
252          */                                       193          */
253         if ((remap || force_dma_unencrypted(de !! 194         if (IS_ENABLED(CONFIG_DMA_COHERENT_POOL) &&
254             dma_direct_use_pool(dev, gfp))     !! 195             !gfpflags_allow_blocking(gfp) &&
                                                   >> 196             (force_dma_unencrypted(dev) ||
                                                   >> 197              (IS_ENABLED(CONFIG_DMA_DIRECT_REMAP) &&
                                                   >> 198               !dev_is_dma_coherent(dev))) &&
                                                   >> 199             !is_swiotlb_for_alloc(dev))
255                 return dma_direct_alloc_from_p    200                 return dma_direct_alloc_from_pool(dev, size, dma_handle, gfp);
256                                                   201 
257         /* we always manually zero the memory     202         /* we always manually zero the memory once we are done */
258         page = __dma_direct_alloc_pages(dev, s !! 203         page = __dma_direct_alloc_pages(dev, size, gfp & ~__GFP_ZERO);
259         if (!page)                                204         if (!page)
260                 return NULL;                      205                 return NULL;
261                                                   206 
262         /*                                     !! 207         if ((IS_ENABLED(CONFIG_DMA_DIRECT_REMAP) &&
263          * dma_alloc_contiguous can return hig !! 208              !dev_is_dma_coherent(dev)) ||
264          * combination the cma= arguments and  !! 209             (IS_ENABLED(CONFIG_DMA_REMAP) && PageHighMem(page))) {
265          * remapped to return a kernel virtual << 
266          */                                    << 
267         if (PageHighMem(page)) {               << 
268                 remap = true;                  << 
269                 set_uncached = false;          << 
270         }                                      << 
271                                                << 
272         if (remap) {                           << 
273                 pgprot_t prot = dma_pgprot(dev << 
274                                                << 
275                 if (force_dma_unencrypted(dev) << 
276                         prot = pgprot_decrypte << 
277                                                << 
278                 /* remove any dirty cache line    210                 /* remove any dirty cache lines on the kernel alias */
279                 arch_dma_prep_coherent(page, s    211                 arch_dma_prep_coherent(page, size);
280                                                   212 
281                 /* create a coherent mapping *    213                 /* create a coherent mapping */
282                 ret = dma_common_contiguous_re !! 214                 ret = dma_common_contiguous_remap(page, size,
                                                   >> 215                                 dma_pgprot(dev, PAGE_KERNEL, attrs),
283                                 __builtin_retu    216                                 __builtin_return_address(0));
284                 if (!ret)                         217                 if (!ret)
285                         goto out_free_pages;      218                         goto out_free_pages;
286         } else {                               !! 219                 if (force_dma_unencrypted(dev)) {
287                 ret = page_address(page);      !! 220                         err = set_memory_decrypted((unsigned long)ret,
288                 if (dma_set_decrypted(dev, ret !! 221                                                    1 << get_order(size));
289                         goto out_leak_pages;   !! 222                         if (err)
                                                   >> 223                                 goto out_free_pages;
                                                   >> 224                 }
                                                   >> 225                 memset(ret, 0, size);
                                                   >> 226                 goto done;
                                                   >> 227         }
                                                   >> 228 
                                                   >> 229         if (PageHighMem(page)) {
                                                   >> 230                 /*
                                                   >> 231                  * Depending on the cma= arguments and per-arch setup
                                                   >> 232                  * dma_alloc_contiguous could return highmem pages.
                                                   >> 233                  * Without remapping there is no way to return them here,
                                                   >> 234                  * so log an error and fail.
                                                   >> 235                  */
                                                   >> 236                 dev_info(dev, "Rejecting highmem page from CMA.\n");
                                                   >> 237                 goto out_free_pages;
                                                   >> 238         }
                                                   >> 239 
                                                   >> 240         ret = page_address(page);
                                                   >> 241         if (force_dma_unencrypted(dev)) {
                                                   >> 242                 err = set_memory_decrypted((unsigned long)ret,
                                                   >> 243                                            1 << get_order(size));
                                                   >> 244                 if (err)
                                                   >> 245                         goto out_free_pages;
290         }                                         246         }
291                                                   247 
292         memset(ret, 0, size);                     248         memset(ret, 0, size);
293                                                   249 
294         if (set_uncached) {                    !! 250         if (IS_ENABLED(CONFIG_ARCH_HAS_DMA_SET_UNCACHED) &&
                                                   >> 251             !dev_is_dma_coherent(dev)) {
295                 arch_dma_prep_coherent(page, s    252                 arch_dma_prep_coherent(page, size);
296                 ret = arch_dma_set_uncached(re    253                 ret = arch_dma_set_uncached(ret, size);
297                 if (IS_ERR(ret))                  254                 if (IS_ERR(ret))
298                         goto out_encrypt_pages    255                         goto out_encrypt_pages;
299         }                                         256         }
300                                                !! 257 done:
301         *dma_handle = phys_to_dma_direct(dev,     258         *dma_handle = phys_to_dma_direct(dev, page_to_phys(page));
302         return ret;                               259         return ret;
303                                                   260 
304 out_encrypt_pages:                                261 out_encrypt_pages:
305         if (dma_set_encrypted(dev, page_addres !! 262         if (force_dma_unencrypted(dev)) {
306                 return NULL;                   !! 263                 err = set_memory_encrypted((unsigned long)page_address(page),
                                                   >> 264                                            1 << get_order(size));
                                                   >> 265                 /* If memory cannot be re-encrypted, it must be leaked */
                                                   >> 266                 if (err)
                                                   >> 267                         return NULL;
                                                   >> 268         }
307 out_free_pages:                                   269 out_free_pages:
308         __dma_direct_free_pages(dev, page, siz    270         __dma_direct_free_pages(dev, page, size);
309         return NULL;                              271         return NULL;
310 out_leak_pages:                                << 
311         return NULL;                           << 
312 }                                                 272 }
313                                                   273 
314 void dma_direct_free(struct device *dev, size_    274 void dma_direct_free(struct device *dev, size_t size,
315                 void *cpu_addr, dma_addr_t dma    275                 void *cpu_addr, dma_addr_t dma_addr, unsigned long attrs)
316 {                                                 276 {
317         unsigned int page_order = get_order(si    277         unsigned int page_order = get_order(size);
318                                                   278 
319         if ((attrs & DMA_ATTR_NO_KERNEL_MAPPIN    279         if ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) &&
320             !force_dma_unencrypted(dev) && !is    280             !force_dma_unencrypted(dev) && !is_swiotlb_for_alloc(dev)) {
321                 /* cpu_addr is a struct page c    281                 /* cpu_addr is a struct page cookie, not a kernel address */
322                 dma_free_contiguous(dev, cpu_a    282                 dma_free_contiguous(dev, cpu_addr, size);
323                 return;                           283                 return;
324         }                                         284         }
325                                                   285 
326         if (IS_ENABLED(CONFIG_ARCH_HAS_DMA_ALL !! 286         if (!IS_ENABLED(CONFIG_ARCH_HAS_DMA_SET_UNCACHED) &&
                                                   >> 287             !IS_ENABLED(CONFIG_DMA_DIRECT_REMAP) &&
                                                   >> 288             !IS_ENABLED(CONFIG_DMA_GLOBAL_POOL) &&
327             !dev_is_dma_coherent(dev) &&          289             !dev_is_dma_coherent(dev) &&
328             !is_swiotlb_for_alloc(dev)) {         290             !is_swiotlb_for_alloc(dev)) {
329                 arch_dma_free(dev, size, cpu_a    291                 arch_dma_free(dev, size, cpu_addr, dma_addr, attrs);
330                 return;                           292                 return;
331         }                                         293         }
332                                                   294 
333         if (IS_ENABLED(CONFIG_DMA_GLOBAL_POOL)    295         if (IS_ENABLED(CONFIG_DMA_GLOBAL_POOL) &&
334             !dev_is_dma_coherent(dev)) {          296             !dev_is_dma_coherent(dev)) {
335                 if (!dma_release_from_global_c    297                 if (!dma_release_from_global_coherent(page_order, cpu_addr))
336                         WARN_ON_ONCE(1);          298                         WARN_ON_ONCE(1);
337                 return;                           299                 return;
338         }                                         300         }
339                                                   301 
340         /* If cpu_addr is not from an atomic p    302         /* If cpu_addr is not from an atomic pool, dma_free_from_pool() fails */
341         if (IS_ENABLED(CONFIG_DMA_COHERENT_POO    303         if (IS_ENABLED(CONFIG_DMA_COHERENT_POOL) &&
342             dma_free_from_pool(dev, cpu_addr,     304             dma_free_from_pool(dev, cpu_addr, PAGE_ALIGN(size)))
343                 return;                           305                 return;
344                                                   306 
345         if (is_vmalloc_addr(cpu_addr)) {       !! 307         if (force_dma_unencrypted(dev))
                                                   >> 308                 set_memory_encrypted((unsigned long)cpu_addr, 1 << page_order);
                                                   >> 309 
                                                   >> 310         if (IS_ENABLED(CONFIG_DMA_REMAP) && is_vmalloc_addr(cpu_addr))
346                 vunmap(cpu_addr);                 311                 vunmap(cpu_addr);
347         } else {                               !! 312         else if (IS_ENABLED(CONFIG_ARCH_HAS_DMA_CLEAR_UNCACHED))
348                 if (IS_ENABLED(CONFIG_ARCH_HAS !! 313                 arch_dma_clear_uncached(cpu_addr, size);
349                         arch_dma_clear_uncache << 
350                 if (dma_set_encrypted(dev, cpu << 
351                         return;                << 
352         }                                      << 
353                                                   314 
354         __dma_direct_free_pages(dev, dma_direc    315         __dma_direct_free_pages(dev, dma_direct_to_page(dev, dma_addr), size);
355 }                                                 316 }
356                                                   317 
357 struct page *dma_direct_alloc_pages(struct dev    318 struct page *dma_direct_alloc_pages(struct device *dev, size_t size,
358                 dma_addr_t *dma_handle, enum d    319                 dma_addr_t *dma_handle, enum dma_data_direction dir, gfp_t gfp)
359 {                                                 320 {
360         struct page *page;                        321         struct page *page;
361         void *ret;                                322         void *ret;
362                                                   323 
363         if (force_dma_unencrypted(dev) && dma_ !! 324         if (IS_ENABLED(CONFIG_DMA_COHERENT_POOL) &&
                                                   >> 325             force_dma_unencrypted(dev) && !gfpflags_allow_blocking(gfp) &&
                                                   >> 326             !is_swiotlb_for_alloc(dev))
364                 return dma_direct_alloc_from_p    327                 return dma_direct_alloc_from_pool(dev, size, dma_handle, gfp);
365                                                   328 
366         page = __dma_direct_alloc_pages(dev, s !! 329         page = __dma_direct_alloc_pages(dev, size, gfp);
367         if (!page)                                330         if (!page)
368                 return NULL;                      331                 return NULL;
                                                   >> 332         if (PageHighMem(page)) {
                                                   >> 333                 /*
                                                   >> 334                  * Depending on the cma= arguments and per-arch setup
                                                   >> 335                  * dma_alloc_contiguous could return highmem pages.
                                                   >> 336                  * Without remapping there is no way to return them here,
                                                   >> 337                  * so log an error and fail.
                                                   >> 338                  */
                                                   >> 339                 dev_info(dev, "Rejecting highmem page from CMA.\n");
                                                   >> 340                 goto out_free_pages;
                                                   >> 341         }
369                                                   342 
370         ret = page_address(page);                 343         ret = page_address(page);
371         if (dma_set_decrypted(dev, ret, size)) !! 344         if (force_dma_unencrypted(dev)) {
372                 goto out_leak_pages;           !! 345                 if (set_memory_decrypted((unsigned long)ret,
                                                   >> 346                                 1 << get_order(size)))
                                                   >> 347                         goto out_free_pages;
                                                   >> 348         }
373         memset(ret, 0, size);                     349         memset(ret, 0, size);
374         *dma_handle = phys_to_dma_direct(dev,     350         *dma_handle = phys_to_dma_direct(dev, page_to_phys(page));
375         return page;                              351         return page;
376 out_leak_pages:                                !! 352 out_free_pages:
                                                   >> 353         __dma_direct_free_pages(dev, page, size);
377         return NULL;                              354         return NULL;
378 }                                                 355 }
379                                                   356 
380 void dma_direct_free_pages(struct device *dev,    357 void dma_direct_free_pages(struct device *dev, size_t size,
381                 struct page *page, dma_addr_t     358                 struct page *page, dma_addr_t dma_addr,
382                 enum dma_data_direction dir)      359                 enum dma_data_direction dir)
383 {                                                 360 {
                                                   >> 361         unsigned int page_order = get_order(size);
384         void *vaddr = page_address(page);         362         void *vaddr = page_address(page);
385                                                   363 
386         /* If cpu_addr is not from an atomic p    364         /* If cpu_addr is not from an atomic pool, dma_free_from_pool() fails */
387         if (IS_ENABLED(CONFIG_DMA_COHERENT_POO    365         if (IS_ENABLED(CONFIG_DMA_COHERENT_POOL) &&
388             dma_free_from_pool(dev, vaddr, siz    366             dma_free_from_pool(dev, vaddr, size))
389                 return;                           367                 return;
390                                                   368 
391         if (dma_set_encrypted(dev, vaddr, size !! 369         if (force_dma_unencrypted(dev))
392                 return;                        !! 370                 set_memory_encrypted((unsigned long)vaddr, 1 << page_order);
                                                   >> 371 
393         __dma_direct_free_pages(dev, page, siz    372         __dma_direct_free_pages(dev, page, size);
394 }                                                 373 }
395                                                   374 
396 #if defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_DEVIC    375 #if defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_DEVICE) || \
397     defined(CONFIG_SWIOTLB)                       376     defined(CONFIG_SWIOTLB)
398 void dma_direct_sync_sg_for_device(struct devi    377 void dma_direct_sync_sg_for_device(struct device *dev,
399                 struct scatterlist *sgl, int n    378                 struct scatterlist *sgl, int nents, enum dma_data_direction dir)
400 {                                                 379 {
401         struct scatterlist *sg;                   380         struct scatterlist *sg;
402         int i;                                    381         int i;
403                                                   382 
404         for_each_sg(sgl, sg, nents, i) {          383         for_each_sg(sgl, sg, nents, i) {
405                 phys_addr_t paddr = dma_to_phy    384                 phys_addr_t paddr = dma_to_phys(dev, sg_dma_address(sg));
406                                                   385 
407                 swiotlb_sync_single_for_device !! 386                 if (unlikely(is_swiotlb_buffer(dev, paddr)))
                                                   >> 387                         swiotlb_sync_single_for_device(dev, paddr, sg->length,
                                                   >> 388                                                        dir);
408                                                   389 
409                 if (!dev_is_dma_coherent(dev))    390                 if (!dev_is_dma_coherent(dev))
410                         arch_sync_dma_for_devi    391                         arch_sync_dma_for_device(paddr, sg->length,
411                                         dir);     392                                         dir);
412         }                                         393         }
413 }                                                 394 }
414 #endif                                            395 #endif
415                                                   396 
416 #if defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU)     397 #if defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU) || \
417     defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU_A    398     defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU_ALL) || \
418     defined(CONFIG_SWIOTLB)                       399     defined(CONFIG_SWIOTLB)
419 void dma_direct_sync_sg_for_cpu(struct device     400 void dma_direct_sync_sg_for_cpu(struct device *dev,
420                 struct scatterlist *sgl, int n    401                 struct scatterlist *sgl, int nents, enum dma_data_direction dir)
421 {                                                 402 {
422         struct scatterlist *sg;                   403         struct scatterlist *sg;
423         int i;                                    404         int i;
424                                                   405 
425         for_each_sg(sgl, sg, nents, i) {          406         for_each_sg(sgl, sg, nents, i) {
426                 phys_addr_t paddr = dma_to_phy    407                 phys_addr_t paddr = dma_to_phys(dev, sg_dma_address(sg));
427                                                   408 
428                 if (!dev_is_dma_coherent(dev))    409                 if (!dev_is_dma_coherent(dev))
429                         arch_sync_dma_for_cpu(    410                         arch_sync_dma_for_cpu(paddr, sg->length, dir);
430                                                   411 
431                 swiotlb_sync_single_for_cpu(de !! 412                 if (unlikely(is_swiotlb_buffer(dev, paddr)))
                                                   >> 413                         swiotlb_sync_single_for_cpu(dev, paddr, sg->length,
                                                   >> 414                                                     dir);
432                                                   415 
433                 if (dir == DMA_FROM_DEVICE)       416                 if (dir == DMA_FROM_DEVICE)
434                         arch_dma_mark_clean(pa    417                         arch_dma_mark_clean(paddr, sg->length);
435         }                                         418         }
436                                                   419 
437         if (!dev_is_dma_coherent(dev))            420         if (!dev_is_dma_coherent(dev))
438                 arch_sync_dma_for_cpu_all();      421                 arch_sync_dma_for_cpu_all();
439 }                                                 422 }
440                                                   423 
441 /*                                             << 
442  * Unmaps segments, except for ones marked as  << 
443  * require any further action as they contain  << 
444  */                                            << 
445 void dma_direct_unmap_sg(struct device *dev, s    424 void dma_direct_unmap_sg(struct device *dev, struct scatterlist *sgl,
446                 int nents, enum dma_data_direc    425                 int nents, enum dma_data_direction dir, unsigned long attrs)
447 {                                                 426 {
448         struct scatterlist *sg;                   427         struct scatterlist *sg;
449         int i;                                    428         int i;
450                                                   429 
451         for_each_sg(sgl,  sg, nents, i) {      !! 430         for_each_sg(sgl, sg, nents, i)
452                 if (sg_dma_is_bus_address(sg)) !! 431                 dma_direct_unmap_page(dev, sg->dma_address, sg_dma_len(sg), dir,
453                         sg_dma_unmark_bus_addr !! 432                              attrs);
454                 else                           << 
455                         dma_direct_unmap_page( << 
456                                                << 
457         }                                      << 
458 }                                                 433 }
459 #endif                                            434 #endif
460                                                   435 
461 int dma_direct_map_sg(struct device *dev, stru    436 int dma_direct_map_sg(struct device *dev, struct scatterlist *sgl, int nents,
462                 enum dma_data_direction dir, u    437                 enum dma_data_direction dir, unsigned long attrs)
463 {                                                 438 {
464         struct pci_p2pdma_map_state p2pdma_sta !! 439         int i;
465         enum pci_p2pdma_map_type map;          << 
466         struct scatterlist *sg;                   440         struct scatterlist *sg;
467         int i, ret;                            << 
468                                                   441 
469         for_each_sg(sgl, sg, nents, i) {          442         for_each_sg(sgl, sg, nents, i) {
470                 if (is_pci_p2pdma_page(sg_page << 
471                         map = pci_p2pdma_map_s << 
472                         switch (map) {         << 
473                         case PCI_P2PDMA_MAP_BU << 
474                                 continue;      << 
475                         case PCI_P2PDMA_MAP_TH << 
476                                 /*             << 
477                                  * Any P2P map << 
478                                  * host bridge << 
479                                  * address and << 
480                                  * done with d << 
481                                  */            << 
482                                 break;         << 
483                         default:               << 
484                                 ret = -EREMOTE << 
485                                 goto out_unmap << 
486                         }                      << 
487                 }                              << 
488                                                << 
489                 sg->dma_address = dma_direct_m    443                 sg->dma_address = dma_direct_map_page(dev, sg_page(sg),
490                                 sg->offset, sg    444                                 sg->offset, sg->length, dir, attrs);
491                 if (sg->dma_address == DMA_MAP !! 445                 if (sg->dma_address == DMA_MAPPING_ERROR)
492                         ret = -EIO;            << 
493                         goto out_unmap;           446                         goto out_unmap;
494                 }                              << 
495                 sg_dma_len(sg) = sg->length;      447                 sg_dma_len(sg) = sg->length;
496         }                                         448         }
497                                                   449 
498         return nents;                             450         return nents;
499                                                   451 
500 out_unmap:                                        452 out_unmap:
501         dma_direct_unmap_sg(dev, sgl, i, dir,     453         dma_direct_unmap_sg(dev, sgl, i, dir, attrs | DMA_ATTR_SKIP_CPU_SYNC);
502         return ret;                            !! 454         return -EIO;
503 }                                                 455 }
504                                                   456 
505 dma_addr_t dma_direct_map_resource(struct devi    457 dma_addr_t dma_direct_map_resource(struct device *dev, phys_addr_t paddr,
506                 size_t size, enum dma_data_dir    458                 size_t size, enum dma_data_direction dir, unsigned long attrs)
507 {                                                 459 {
508         dma_addr_t dma_addr = paddr;              460         dma_addr_t dma_addr = paddr;
509                                                   461 
510         if (unlikely(!dma_capable(dev, dma_add    462         if (unlikely(!dma_capable(dev, dma_addr, size, false))) {
511                 dev_err_once(dev,                 463                 dev_err_once(dev,
512                              "DMA addr %pad+%z    464                              "DMA addr %pad+%zu overflow (mask %llx, bus limit %llx).\n",
513                              &dma_addr, size,     465                              &dma_addr, size, *dev->dma_mask, dev->bus_dma_limit);
514                 WARN_ON_ONCE(1);                  466                 WARN_ON_ONCE(1);
515                 return DMA_MAPPING_ERROR;         467                 return DMA_MAPPING_ERROR;
516         }                                         468         }
517                                                   469 
518         return dma_addr;                          470         return dma_addr;
519 }                                                 471 }
520                                                   472 
521 int dma_direct_get_sgtable(struct device *dev,    473 int dma_direct_get_sgtable(struct device *dev, struct sg_table *sgt,
522                 void *cpu_addr, dma_addr_t dma    474                 void *cpu_addr, dma_addr_t dma_addr, size_t size,
523                 unsigned long attrs)              475                 unsigned long attrs)
524 {                                                 476 {
525         struct page *page = dma_direct_to_page    477         struct page *page = dma_direct_to_page(dev, dma_addr);
526         int ret;                                  478         int ret;
527                                                   479 
528         ret = sg_alloc_table(sgt, 1, GFP_KERNE    480         ret = sg_alloc_table(sgt, 1, GFP_KERNEL);
529         if (!ret)                                 481         if (!ret)
530                 sg_set_page(sgt->sgl, page, PA    482                 sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0);
531         return ret;                               483         return ret;
532 }                                                 484 }
533                                                   485 
534 bool dma_direct_can_mmap(struct device *dev)      486 bool dma_direct_can_mmap(struct device *dev)
535 {                                                 487 {
536         return dev_is_dma_coherent(dev) ||        488         return dev_is_dma_coherent(dev) ||
537                 IS_ENABLED(CONFIG_DMA_NONCOHER    489                 IS_ENABLED(CONFIG_DMA_NONCOHERENT_MMAP);
538 }                                                 490 }
539                                                   491 
540 int dma_direct_mmap(struct device *dev, struct    492 int dma_direct_mmap(struct device *dev, struct vm_area_struct *vma,
541                 void *cpu_addr, dma_addr_t dma    493                 void *cpu_addr, dma_addr_t dma_addr, size_t size,
542                 unsigned long attrs)              494                 unsigned long attrs)
543 {                                                 495 {
544         unsigned long user_count = vma_pages(v    496         unsigned long user_count = vma_pages(vma);
545         unsigned long count = PAGE_ALIGN(size)    497         unsigned long count = PAGE_ALIGN(size) >> PAGE_SHIFT;
546         unsigned long pfn = PHYS_PFN(dma_to_ph    498         unsigned long pfn = PHYS_PFN(dma_to_phys(dev, dma_addr));
547         int ret = -ENXIO;                         499         int ret = -ENXIO;
548                                                   500 
549         vma->vm_page_prot = dma_pgprot(dev, vm    501         vma->vm_page_prot = dma_pgprot(dev, vma->vm_page_prot, attrs);
550         if (force_dma_unencrypted(dev))        << 
551                 vma->vm_page_prot = pgprot_dec << 
552                                                   502 
553         if (dma_mmap_from_dev_coherent(dev, vm    503         if (dma_mmap_from_dev_coherent(dev, vma, cpu_addr, size, &ret))
554                 return ret;                       504                 return ret;
555         if (dma_mmap_from_global_coherent(vma,    505         if (dma_mmap_from_global_coherent(vma, cpu_addr, size, &ret))
556                 return ret;                       506                 return ret;
557                                                   507 
558         if (vma->vm_pgoff >= count || user_cou    508         if (vma->vm_pgoff >= count || user_count > count - vma->vm_pgoff)
559                 return -ENXIO;                    509                 return -ENXIO;
560         return remap_pfn_range(vma, vma->vm_st    510         return remap_pfn_range(vma, vma->vm_start, pfn + vma->vm_pgoff,
561                         user_count << PAGE_SHI    511                         user_count << PAGE_SHIFT, vma->vm_page_prot);
562 }                                                 512 }
563                                                   513 
564 int dma_direct_supported(struct device *dev, u    514 int dma_direct_supported(struct device *dev, u64 mask)
565 {                                                 515 {
566         u64 min_mask = (max_pfn - 1) << PAGE_S    516         u64 min_mask = (max_pfn - 1) << PAGE_SHIFT;
567                                                   517 
568         /*                                        518         /*
569          * Because 32-bit DMA masks are so com    519          * Because 32-bit DMA masks are so common we expect every architecture
570          * to be able to satisfy them - either    520          * to be able to satisfy them - either by not supporting more physical
571          * memory, or by providing a ZONE_DMA3    521          * memory, or by providing a ZONE_DMA32.  If neither is the case, the
572          * architecture needs to use an IOMMU     522          * architecture needs to use an IOMMU instead of the direct mapping.
573          */                                       523          */
574         if (mask >= DMA_BIT_MASK(32))             524         if (mask >= DMA_BIT_MASK(32))
575                 return 1;                         525                 return 1;
576                                                   526 
577         /*                                        527         /*
578          * This check needs to be against the     528          * This check needs to be against the actual bit mask value, so use
579          * phys_to_dma_unencrypted() here so t    529          * phys_to_dma_unencrypted() here so that the SME encryption mask isn't
580          * part of the check.                     530          * part of the check.
581          */                                       531          */
582         if (IS_ENABLED(CONFIG_ZONE_DMA))          532         if (IS_ENABLED(CONFIG_ZONE_DMA))
583                 min_mask = min_t(u64, min_mask    533                 min_mask = min_t(u64, min_mask, DMA_BIT_MASK(zone_dma_bits));
584         return mask >= phys_to_dma_unencrypted    534         return mask >= phys_to_dma_unencrypted(dev, min_mask);
585 }                                                 535 }
586                                                   536 
587 /*                                             << 
588  * To check whether all ram resource ranges ar << 
589  * Returns 0 when further check is needed      << 
590  * Returns 1 if there is some RAM range can't  << 
591  */                                            << 
592 static int check_ram_in_range_map(unsigned lon << 
593                                   unsigned lon << 
594 {                                              << 
595         unsigned long end_pfn = start_pfn + nr << 
596         const struct bus_dma_region *bdr = NUL << 
597         const struct bus_dma_region *m;        << 
598         struct device *dev = data;             << 
599                                                << 
600         while (start_pfn < end_pfn) {          << 
601                 for (m = dev->dma_range_map; P << 
602                         unsigned long cpu_star << 
603                                                << 
604                         if (start_pfn >= cpu_s << 
605                             start_pfn - cpu_st << 
606                                 bdr = m;       << 
607                                 break;         << 
608                         }                      << 
609                 }                              << 
610                 if (!bdr)                      << 
611                         return 1;              << 
612                                                << 
613                 start_pfn = PFN_DOWN(bdr->cpu_ << 
614         }                                      << 
615                                                << 
616         return 0;                              << 
617 }                                              << 
618                                                << 
619 bool dma_direct_all_ram_mapped(struct device * << 
620 {                                              << 
621         if (!dev->dma_range_map)               << 
622                 return true;                   << 
623         return !walk_system_ram_range(0, PFN_D << 
624                                       check_ra << 
625 }                                              << 
626                                                << 
627 size_t dma_direct_max_mapping_size(struct devi    537 size_t dma_direct_max_mapping_size(struct device *dev)
628 {                                                 538 {
629         /* If SWIOTLB is active, use its maxim    539         /* If SWIOTLB is active, use its maximum mapping size */
630         if (is_swiotlb_active(dev) &&             540         if (is_swiotlb_active(dev) &&
631             (dma_addressing_limited(dev) || is    541             (dma_addressing_limited(dev) || is_swiotlb_force_bounce(dev)))
632                 return swiotlb_max_mapping_siz    542                 return swiotlb_max_mapping_size(dev);
633         return SIZE_MAX;                          543         return SIZE_MAX;
634 }                                                 544 }
635                                                   545 
636 bool dma_direct_need_sync(struct device *dev,     546 bool dma_direct_need_sync(struct device *dev, dma_addr_t dma_addr)
637 {                                                 547 {
638         return !dev_is_dma_coherent(dev) ||       548         return !dev_is_dma_coherent(dev) ||
639                swiotlb_find_pool(dev, dma_to_p !! 549                is_swiotlb_buffer(dev, dma_to_phys(dev, dma_addr));
640 }                                                 550 }
641                                                   551 
642 /**                                               552 /**
643  * dma_direct_set_offset - Assign scalar offse    553  * dma_direct_set_offset - Assign scalar offset for a single DMA range.
644  * @dev:        device pointer; needed to "own    554  * @dev:        device pointer; needed to "own" the alloced memory.
645  * @cpu_start:  beginning of memory region cov    555  * @cpu_start:  beginning of memory region covered by this offset.
646  * @dma_start:  beginning of DMA/PCI region co    556  * @dma_start:  beginning of DMA/PCI region covered by this offset.
647  * @size:       size of the region.               557  * @size:       size of the region.
648  *                                                558  *
649  * This is for the simple case of a uniform of    559  * This is for the simple case of a uniform offset which cannot
650  * be discovered by "dma-ranges".                 560  * be discovered by "dma-ranges".
651  *                                                561  *
652  * It returns -ENOMEM if out of memory, -EINVA    562  * It returns -ENOMEM if out of memory, -EINVAL if a map
653  * already exists, 0 otherwise.                   563  * already exists, 0 otherwise.
654  *                                                564  *
655  * Note: any call to this from a driver is a b    565  * Note: any call to this from a driver is a bug.  The mapping needs
656  * to be described by the device tree or other    566  * to be described by the device tree or other firmware interfaces.
657  */                                               567  */
658 int dma_direct_set_offset(struct device *dev,     568 int dma_direct_set_offset(struct device *dev, phys_addr_t cpu_start,
659                          dma_addr_t dma_start,    569                          dma_addr_t dma_start, u64 size)
660 {                                                 570 {
661         struct bus_dma_region *map;               571         struct bus_dma_region *map;
662         u64 offset = (u64)cpu_start - (u64)dma    572         u64 offset = (u64)cpu_start - (u64)dma_start;
663                                                   573 
664         if (dev->dma_range_map) {                 574         if (dev->dma_range_map) {
665                 dev_err(dev, "attempt to add D    575                 dev_err(dev, "attempt to add DMA range to existing map\n");
666                 return -EINVAL;                   576                 return -EINVAL;
667         }                                         577         }
668                                                   578 
669         if (!offset)                              579         if (!offset)
670                 return 0;                         580                 return 0;
671                                                   581 
672         map = kcalloc(2, sizeof(*map), GFP_KER    582         map = kcalloc(2, sizeof(*map), GFP_KERNEL);
673         if (!map)                                 583         if (!map)
674                 return -ENOMEM;                   584                 return -ENOMEM;
675         map[0].cpu_start = cpu_start;             585         map[0].cpu_start = cpu_start;
676         map[0].dma_start = dma_start;             586         map[0].dma_start = dma_start;
                                                   >> 587         map[0].offset = offset;
677         map[0].size = size;                       588         map[0].size = size;
678         dev->dma_range_map = map;                 589         dev->dma_range_map = map;
679         return 0;                                 590         return 0;
680 }                                                 591 }
681                                                   592 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

sflogo.php