~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/kernel/dma/direct.c

Version: ~ [ linux-6.11-rc3 ] ~ [ linux-6.10.4 ] ~ [ linux-6.9.12 ] ~ [ linux-6.8.12 ] ~ [ linux-6.7.12 ] ~ [ linux-6.6.45 ] ~ [ linux-6.5.13 ] ~ [ linux-6.4.16 ] ~ [ linux-6.3.13 ] ~ [ linux-6.2.16 ] ~ [ linux-6.1.104 ] ~ [ linux-6.0.19 ] ~ [ linux-5.19.17 ] ~ [ linux-5.18.19 ] ~ [ linux-5.17.15 ] ~ [ linux-5.16.20 ] ~ [ linux-5.15.164 ] ~ [ linux-5.14.21 ] ~ [ linux-5.13.19 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.223 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.281 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.319 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.336 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.337 ] ~ [ linux-4.4.302 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.9 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

Diff markup

Differences between /kernel/dma/direct.c (Version linux-6.11-rc3) and /kernel/dma/direct.c (Version linux-5.17.15)


  1 // SPDX-License-Identifier: GPL-2.0                 1 // SPDX-License-Identifier: GPL-2.0
  2 /*                                                  2 /*
  3  * Copyright (C) 2018-2020 Christoph Hellwig.       3  * Copyright (C) 2018-2020 Christoph Hellwig.
  4  *                                                  4  *
  5  * DMA operations that map physical memory dir      5  * DMA operations that map physical memory directly without using an IOMMU.
  6  */                                                 6  */
  7 #include <linux/memblock.h> /* for max_pfn */       7 #include <linux/memblock.h> /* for max_pfn */
  8 #include <linux/export.h>                           8 #include <linux/export.h>
  9 #include <linux/mm.h>                               9 #include <linux/mm.h>
 10 #include <linux/dma-map-ops.h>                     10 #include <linux/dma-map-ops.h>
 11 #include <linux/scatterlist.h>                     11 #include <linux/scatterlist.h>
 12 #include <linux/pfn.h>                             12 #include <linux/pfn.h>
 13 #include <linux/vmalloc.h>                         13 #include <linux/vmalloc.h>
 14 #include <linux/set_memory.h>                      14 #include <linux/set_memory.h>
 15 #include <linux/slab.h>                            15 #include <linux/slab.h>
 16 #include "direct.h"                                16 #include "direct.h"
 17                                                    17 
 18 /*                                                 18 /*
 19  * Most architectures use ZONE_DMA for the fir     19  * Most architectures use ZONE_DMA for the first 16 Megabytes, but some use
 20  * it for entirely different regions. In that      20  * it for entirely different regions. In that case the arch code needs to
 21  * override the variable below for dma-direct      21  * override the variable below for dma-direct to work properly.
 22  */                                                22  */
 23 unsigned int zone_dma_bits __ro_after_init = 2     23 unsigned int zone_dma_bits __ro_after_init = 24;
 24                                                    24 
 25 static inline dma_addr_t phys_to_dma_direct(st     25 static inline dma_addr_t phys_to_dma_direct(struct device *dev,
 26                 phys_addr_t phys)                  26                 phys_addr_t phys)
 27 {                                                  27 {
 28         if (force_dma_unencrypted(dev))            28         if (force_dma_unencrypted(dev))
 29                 return phys_to_dma_unencrypted     29                 return phys_to_dma_unencrypted(dev, phys);
 30         return phys_to_dma(dev, phys);             30         return phys_to_dma(dev, phys);
 31 }                                                  31 }
 32                                                    32 
 33 static inline struct page *dma_direct_to_page(     33 static inline struct page *dma_direct_to_page(struct device *dev,
 34                 dma_addr_t dma_addr)               34                 dma_addr_t dma_addr)
 35 {                                                  35 {
 36         return pfn_to_page(PHYS_PFN(dma_to_phy     36         return pfn_to_page(PHYS_PFN(dma_to_phys(dev, dma_addr)));
 37 }                                                  37 }
 38                                                    38 
 39 u64 dma_direct_get_required_mask(struct device     39 u64 dma_direct_get_required_mask(struct device *dev)
 40 {                                                  40 {
 41         phys_addr_t phys = (phys_addr_t)(max_p     41         phys_addr_t phys = (phys_addr_t)(max_pfn - 1) << PAGE_SHIFT;
 42         u64 max_dma = phys_to_dma_direct(dev,      42         u64 max_dma = phys_to_dma_direct(dev, phys);
 43                                                    43 
 44         return (1ULL << (fls64(max_dma) - 1))      44         return (1ULL << (fls64(max_dma) - 1)) * 2 - 1;
 45 }                                                  45 }
 46                                                    46 
 47 static gfp_t dma_direct_optimal_gfp_mask(struc !!  47 static gfp_t dma_direct_optimal_gfp_mask(struct device *dev, u64 dma_mask,
                                                   >>  48                                   u64 *phys_limit)
 48 {                                                  49 {
 49         u64 dma_limit = min_not_zero(          !!  50         u64 dma_limit = min_not_zero(dma_mask, dev->bus_dma_limit);
 50                 dev->coherent_dma_mask,        << 
 51                 dev->bus_dma_limit);           << 
 52                                                    51 
 53         /*                                         52         /*
 54          * Optimistically try the zone that th     53          * Optimistically try the zone that the physical address mask falls
 55          * into first.  If that returns memory     54          * into first.  If that returns memory that isn't actually addressable
 56          * we will fallback to the next lower      55          * we will fallback to the next lower zone and try again.
 57          *                                         56          *
 58          * Note that GFP_DMA32 and GFP_DMA are     57          * Note that GFP_DMA32 and GFP_DMA are no ops without the corresponding
 59          * zones.                                  58          * zones.
 60          */                                        59          */
 61         *phys_limit = dma_to_phys(dev, dma_lim     60         *phys_limit = dma_to_phys(dev, dma_limit);
 62         if (*phys_limit <= DMA_BIT_MASK(zone_d     61         if (*phys_limit <= DMA_BIT_MASK(zone_dma_bits))
 63                 return GFP_DMA;                    62                 return GFP_DMA;
 64         if (*phys_limit <= DMA_BIT_MASK(32))       63         if (*phys_limit <= DMA_BIT_MASK(32))
 65                 return GFP_DMA32;                  64                 return GFP_DMA32;
 66         return 0;                                  65         return 0;
 67 }                                                  66 }
 68                                                    67 
 69 bool dma_coherent_ok(struct device *dev, phys_ !!  68 static bool dma_coherent_ok(struct device *dev, phys_addr_t phys, size_t size)
 70 {                                                  69 {
 71         dma_addr_t dma_addr = phys_to_dma_dire     70         dma_addr_t dma_addr = phys_to_dma_direct(dev, phys);
 72                                                    71 
 73         if (dma_addr == DMA_MAPPING_ERROR)         72         if (dma_addr == DMA_MAPPING_ERROR)
 74                 return false;                      73                 return false;
 75         return dma_addr + size - 1 <=              74         return dma_addr + size - 1 <=
 76                 min_not_zero(dev->coherent_dma     75                 min_not_zero(dev->coherent_dma_mask, dev->bus_dma_limit);
 77 }                                                  76 }
 78                                                    77 
 79 static int dma_set_decrypted(struct device *de     78 static int dma_set_decrypted(struct device *dev, void *vaddr, size_t size)
 80 {                                                  79 {
 81         if (!force_dma_unencrypted(dev))           80         if (!force_dma_unencrypted(dev))
 82                 return 0;                          81                 return 0;
 83         return set_memory_decrypted((unsigned      82         return set_memory_decrypted((unsigned long)vaddr, PFN_UP(size));
 84 }                                                  83 }
 85                                                    84 
 86 static int dma_set_encrypted(struct device *de     85 static int dma_set_encrypted(struct device *dev, void *vaddr, size_t size)
 87 {                                                  86 {
 88         int ret;                                   87         int ret;
 89                                                    88 
 90         if (!force_dma_unencrypted(dev))           89         if (!force_dma_unencrypted(dev))
 91                 return 0;                          90                 return 0;
 92         ret = set_memory_encrypted((unsigned l     91         ret = set_memory_encrypted((unsigned long)vaddr, PFN_UP(size));
 93         if (ret)                                   92         if (ret)
 94                 pr_warn_ratelimited("leaking D     93                 pr_warn_ratelimited("leaking DMA memory that can't be re-encrypted\n");
 95         return ret;                                94         return ret;
 96 }                                                  95 }
 97                                                    96 
 98 static void __dma_direct_free_pages(struct dev     97 static void __dma_direct_free_pages(struct device *dev, struct page *page,
 99                                     size_t siz     98                                     size_t size)
100 {                                                  99 {
101         if (swiotlb_free(dev, page, size))        100         if (swiotlb_free(dev, page, size))
102                 return;                           101                 return;
103         dma_free_contiguous(dev, page, size);     102         dma_free_contiguous(dev, page, size);
104 }                                                 103 }
105                                                   104 
106 static struct page *dma_direct_alloc_swiotlb(s    105 static struct page *dma_direct_alloc_swiotlb(struct device *dev, size_t size)
107 {                                                 106 {
108         struct page *page = swiotlb_alloc(dev,    107         struct page *page = swiotlb_alloc(dev, size);
109                                                   108 
110         if (page && !dma_coherent_ok(dev, page    109         if (page && !dma_coherent_ok(dev, page_to_phys(page), size)) {
111                 swiotlb_free(dev, page, size);    110                 swiotlb_free(dev, page, size);
112                 return NULL;                      111                 return NULL;
113         }                                         112         }
114                                                   113 
115         return page;                              114         return page;
116 }                                                 115 }
117                                                   116 
118 static struct page *__dma_direct_alloc_pages(s    117 static struct page *__dma_direct_alloc_pages(struct device *dev, size_t size,
119                 gfp_t gfp, bool allow_highmem)    118                 gfp_t gfp, bool allow_highmem)
120 {                                                 119 {
121         int node = dev_to_node(dev);              120         int node = dev_to_node(dev);
122         struct page *page = NULL;                 121         struct page *page = NULL;
123         u64 phys_limit;                           122         u64 phys_limit;
124                                                   123 
125         WARN_ON_ONCE(!PAGE_ALIGNED(size));        124         WARN_ON_ONCE(!PAGE_ALIGNED(size));
126                                                   125 
127         if (is_swiotlb_for_alloc(dev))            126         if (is_swiotlb_for_alloc(dev))
128                 return dma_direct_alloc_swiotl    127                 return dma_direct_alloc_swiotlb(dev, size);
129                                                   128 
130         gfp |= dma_direct_optimal_gfp_mask(dev !! 129         gfp |= dma_direct_optimal_gfp_mask(dev, dev->coherent_dma_mask,
                                                   >> 130                                            &phys_limit);
131         page = dma_alloc_contiguous(dev, size,    131         page = dma_alloc_contiguous(dev, size, gfp);
132         if (page) {                               132         if (page) {
133                 if (!dma_coherent_ok(dev, page    133                 if (!dma_coherent_ok(dev, page_to_phys(page), size) ||
134                     (!allow_highmem && PageHig    134                     (!allow_highmem && PageHighMem(page))) {
135                         dma_free_contiguous(de    135                         dma_free_contiguous(dev, page, size);
136                         page = NULL;              136                         page = NULL;
137                 }                                 137                 }
138         }                                         138         }
139 again:                                            139 again:
140         if (!page)                                140         if (!page)
141                 page = alloc_pages_node(node,     141                 page = alloc_pages_node(node, gfp, get_order(size));
142         if (page && !dma_coherent_ok(dev, page    142         if (page && !dma_coherent_ok(dev, page_to_phys(page), size)) {
143                 dma_free_contiguous(dev, page,    143                 dma_free_contiguous(dev, page, size);
144                 page = NULL;                      144                 page = NULL;
145                                                   145 
146                 if (IS_ENABLED(CONFIG_ZONE_DMA    146                 if (IS_ENABLED(CONFIG_ZONE_DMA32) &&
147                     phys_limit < DMA_BIT_MASK(    147                     phys_limit < DMA_BIT_MASK(64) &&
148                     !(gfp & (GFP_DMA32 | GFP_D    148                     !(gfp & (GFP_DMA32 | GFP_DMA))) {
149                         gfp |= GFP_DMA32;         149                         gfp |= GFP_DMA32;
150                         goto again;               150                         goto again;
151                 }                                 151                 }
152                                                   152 
153                 if (IS_ENABLED(CONFIG_ZONE_DMA    153                 if (IS_ENABLED(CONFIG_ZONE_DMA) && !(gfp & GFP_DMA)) {
154                         gfp = (gfp & ~GFP_DMA3    154                         gfp = (gfp & ~GFP_DMA32) | GFP_DMA;
155                         goto again;               155                         goto again;
156                 }                                 156                 }
157         }                                         157         }
158                                                   158 
159         return page;                              159         return page;
160 }                                                 160 }
161                                                   161 
162 /*                                                162 /*
163  * Check if a potentially blocking operations     163  * Check if a potentially blocking operations needs to dip into the atomic
164  * pools for the given device/gfp.                164  * pools for the given device/gfp.
165  */                                               165  */
166 static bool dma_direct_use_pool(struct device     166 static bool dma_direct_use_pool(struct device *dev, gfp_t gfp)
167 {                                                 167 {
168         return !gfpflags_allow_blocking(gfp) &    168         return !gfpflags_allow_blocking(gfp) && !is_swiotlb_for_alloc(dev);
169 }                                                 169 }
170                                                   170 
171 static void *dma_direct_alloc_from_pool(struct    171 static void *dma_direct_alloc_from_pool(struct device *dev, size_t size,
172                 dma_addr_t *dma_handle, gfp_t     172                 dma_addr_t *dma_handle, gfp_t gfp)
173 {                                                 173 {
174         struct page *page;                        174         struct page *page;
175         u64 phys_limit;                        !! 175         u64 phys_mask;
176         void *ret;                                176         void *ret;
177                                                   177 
178         if (WARN_ON_ONCE(!IS_ENABLED(CONFIG_DM    178         if (WARN_ON_ONCE(!IS_ENABLED(CONFIG_DMA_COHERENT_POOL)))
179                 return NULL;                      179                 return NULL;
180                                                   180 
181         gfp |= dma_direct_optimal_gfp_mask(dev !! 181         gfp |= dma_direct_optimal_gfp_mask(dev, dev->coherent_dma_mask,
                                                   >> 182                                            &phys_mask);
182         page = dma_alloc_from_pool(dev, size,     183         page = dma_alloc_from_pool(dev, size, &ret, gfp, dma_coherent_ok);
183         if (!page)                                184         if (!page)
184                 return NULL;                      185                 return NULL;
185         *dma_handle = phys_to_dma_direct(dev,     186         *dma_handle = phys_to_dma_direct(dev, page_to_phys(page));
186         return ret;                               187         return ret;
187 }                                                 188 }
188                                                   189 
189 static void *dma_direct_alloc_no_mapping(struc    190 static void *dma_direct_alloc_no_mapping(struct device *dev, size_t size,
190                 dma_addr_t *dma_handle, gfp_t     191                 dma_addr_t *dma_handle, gfp_t gfp)
191 {                                                 192 {
192         struct page *page;                        193         struct page *page;
193                                                   194 
194         page = __dma_direct_alloc_pages(dev, s    195         page = __dma_direct_alloc_pages(dev, size, gfp & ~__GFP_ZERO, true);
195         if (!page)                                196         if (!page)
196                 return NULL;                      197                 return NULL;
197                                                   198 
198         /* remove any dirty cache lines on the    199         /* remove any dirty cache lines on the kernel alias */
199         if (!PageHighMem(page))                   200         if (!PageHighMem(page))
200                 arch_dma_prep_coherent(page, s    201                 arch_dma_prep_coherent(page, size);
201                                                   202 
202         /* return the page pointer as the opaq    203         /* return the page pointer as the opaque cookie */
203         *dma_handle = phys_to_dma_direct(dev,     204         *dma_handle = phys_to_dma_direct(dev, page_to_phys(page));
204         return page;                              205         return page;
205 }                                                 206 }
206                                                   207 
207 void *dma_direct_alloc(struct device *dev, siz    208 void *dma_direct_alloc(struct device *dev, size_t size,
208                 dma_addr_t *dma_handle, gfp_t     209                 dma_addr_t *dma_handle, gfp_t gfp, unsigned long attrs)
209 {                                                 210 {
210         bool remap = false, set_uncached = fal    211         bool remap = false, set_uncached = false;
211         struct page *page;                        212         struct page *page;
212         void *ret;                                213         void *ret;
213                                                   214 
214         size = PAGE_ALIGN(size);                  215         size = PAGE_ALIGN(size);
215         if (attrs & DMA_ATTR_NO_WARN)             216         if (attrs & DMA_ATTR_NO_WARN)
216                 gfp |= __GFP_NOWARN;              217                 gfp |= __GFP_NOWARN;
217                                                   218 
218         if ((attrs & DMA_ATTR_NO_KERNEL_MAPPIN    219         if ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) &&
219             !force_dma_unencrypted(dev) && !is    220             !force_dma_unencrypted(dev) && !is_swiotlb_for_alloc(dev))
220                 return dma_direct_alloc_no_map    221                 return dma_direct_alloc_no_mapping(dev, size, dma_handle, gfp);
221                                                   222 
222         if (!dev_is_dma_coherent(dev)) {          223         if (!dev_is_dma_coherent(dev)) {
223                 if (IS_ENABLED(CONFIG_ARCH_HAS !! 224                 /*
                                                   >> 225                  * Fallback to the arch handler if it exists.  This should
                                                   >> 226                  * eventually go away.
                                                   >> 227                  */
                                                   >> 228                 if (!IS_ENABLED(CONFIG_ARCH_HAS_DMA_SET_UNCACHED) &&
                                                   >> 229                     !IS_ENABLED(CONFIG_DMA_DIRECT_REMAP) &&
                                                   >> 230                     !IS_ENABLED(CONFIG_DMA_GLOBAL_POOL) &&
224                     !is_swiotlb_for_alloc(dev)    231                     !is_swiotlb_for_alloc(dev))
225                         return arch_dma_alloc(    232                         return arch_dma_alloc(dev, size, dma_handle, gfp,
226                                                   233                                               attrs);
227                                                   234 
228                 /*                                235                 /*
229                  * If there is a global pool,     236                  * If there is a global pool, always allocate from it for
230                  * non-coherent devices.          237                  * non-coherent devices.
231                  */                               238                  */
232                 if (IS_ENABLED(CONFIG_DMA_GLOB    239                 if (IS_ENABLED(CONFIG_DMA_GLOBAL_POOL))
233                         return dma_alloc_from_    240                         return dma_alloc_from_global_coherent(dev, size,
234                                         dma_ha    241                                         dma_handle);
235                                                   242 
236                 /*                                243                 /*
237                  * Otherwise we require the ar !! 244                  * Otherwise remap if the architecture is asking for it.  But
238                  * mark arbitrary parts of the !! 245                  * given that remapping memory is a blocking operation we'll
239                  * or remapped it uncached.    !! 246                  * instead have to dip into the atomic pools.
240                  */                               247                  */
241                 set_uncached = IS_ENABLED(CONF << 
242                 remap = IS_ENABLED(CONFIG_DMA_    248                 remap = IS_ENABLED(CONFIG_DMA_DIRECT_REMAP);
243                 if (!set_uncached && !remap) { !! 249                 if (remap) {
244                         pr_warn_once("coherent !! 250                         if (dma_direct_use_pool(dev, gfp))
245                         return NULL;           !! 251                                 return dma_direct_alloc_from_pool(dev, size,
                                                   >> 252                                                 dma_handle, gfp);
                                                   >> 253                 } else {
                                                   >> 254                         if (!IS_ENABLED(CONFIG_ARCH_HAS_DMA_SET_UNCACHED))
                                                   >> 255                                 return NULL;
                                                   >> 256                         set_uncached = true;
246                 }                                 257                 }
247         }                                         258         }
248                                                   259 
249         /*                                        260         /*
250          * Remapping or decrypting memory may  !! 261          * Decrypting memory may block, so allocate the memory from the atomic
251          * the atomic pools instead if we aren !! 262          * pools if we can't block.
252          */                                       263          */
253         if ((remap || force_dma_unencrypted(de !! 264         if (force_dma_unencrypted(dev) && dma_direct_use_pool(dev, gfp))
254             dma_direct_use_pool(dev, gfp))     << 
255                 return dma_direct_alloc_from_p    265                 return dma_direct_alloc_from_pool(dev, size, dma_handle, gfp);
256                                                   266 
257         /* we always manually zero the memory     267         /* we always manually zero the memory once we are done */
258         page = __dma_direct_alloc_pages(dev, s    268         page = __dma_direct_alloc_pages(dev, size, gfp & ~__GFP_ZERO, true);
259         if (!page)                                269         if (!page)
260                 return NULL;                      270                 return NULL;
261                                                << 
262         /*                                     << 
263          * dma_alloc_contiguous can return hig << 
264          * combination the cma= arguments and  << 
265          * remapped to return a kernel virtual << 
266          */                                    << 
267         if (PageHighMem(page)) {                  271         if (PageHighMem(page)) {
                                                   >> 272                 /*
                                                   >> 273                  * Depending on the cma= arguments and per-arch setup,
                                                   >> 274                  * dma_alloc_contiguous could return highmem pages.
                                                   >> 275                  * Without remapping there is no way to return them here, so
                                                   >> 276                  * log an error and fail.
                                                   >> 277                  */
                                                   >> 278                 if (!IS_ENABLED(CONFIG_DMA_REMAP)) {
                                                   >> 279                         dev_info(dev, "Rejecting highmem page from CMA.\n");
                                                   >> 280                         goto out_free_pages;
                                                   >> 281                 }
268                 remap = true;                     282                 remap = true;
269                 set_uncached = false;             283                 set_uncached = false;
270         }                                         284         }
271                                                   285 
272         if (remap) {                              286         if (remap) {
273                 pgprot_t prot = dma_pgprot(dev << 
274                                                << 
275                 if (force_dma_unencrypted(dev) << 
276                         prot = pgprot_decrypte << 
277                                                << 
278                 /* remove any dirty cache line    287                 /* remove any dirty cache lines on the kernel alias */
279                 arch_dma_prep_coherent(page, s    288                 arch_dma_prep_coherent(page, size);
280                                                   289 
281                 /* create a coherent mapping *    290                 /* create a coherent mapping */
282                 ret = dma_common_contiguous_re !! 291                 ret = dma_common_contiguous_remap(page, size,
                                                   >> 292                                 dma_pgprot(dev, PAGE_KERNEL, attrs),
283                                 __builtin_retu    293                                 __builtin_return_address(0));
284                 if (!ret)                         294                 if (!ret)
285                         goto out_free_pages;      295                         goto out_free_pages;
286         } else {                                  296         } else {
287                 ret = page_address(page);         297                 ret = page_address(page);
288                 if (dma_set_decrypted(dev, ret    298                 if (dma_set_decrypted(dev, ret, size))
289                         goto out_leak_pages;   !! 299                         goto out_free_pages;
290         }                                         300         }
291                                                   301 
292         memset(ret, 0, size);                     302         memset(ret, 0, size);
293                                                   303 
294         if (set_uncached) {                       304         if (set_uncached) {
295                 arch_dma_prep_coherent(page, s    305                 arch_dma_prep_coherent(page, size);
296                 ret = arch_dma_set_uncached(re    306                 ret = arch_dma_set_uncached(ret, size);
297                 if (IS_ERR(ret))                  307                 if (IS_ERR(ret))
298                         goto out_encrypt_pages    308                         goto out_encrypt_pages;
299         }                                         309         }
300                                                   310 
301         *dma_handle = phys_to_dma_direct(dev,     311         *dma_handle = phys_to_dma_direct(dev, page_to_phys(page));
302         return ret;                               312         return ret;
303                                                   313 
304 out_encrypt_pages:                                314 out_encrypt_pages:
305         if (dma_set_encrypted(dev, page_addres    315         if (dma_set_encrypted(dev, page_address(page), size))
306                 return NULL;                      316                 return NULL;
307 out_free_pages:                                   317 out_free_pages:
308         __dma_direct_free_pages(dev, page, siz    318         __dma_direct_free_pages(dev, page, size);
309         return NULL;                              319         return NULL;
310 out_leak_pages:                                << 
311         return NULL;                           << 
312 }                                                 320 }
313                                                   321 
314 void dma_direct_free(struct device *dev, size_    322 void dma_direct_free(struct device *dev, size_t size,
315                 void *cpu_addr, dma_addr_t dma    323                 void *cpu_addr, dma_addr_t dma_addr, unsigned long attrs)
316 {                                                 324 {
317         unsigned int page_order = get_order(si    325         unsigned int page_order = get_order(size);
318                                                   326 
319         if ((attrs & DMA_ATTR_NO_KERNEL_MAPPIN    327         if ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) &&
320             !force_dma_unencrypted(dev) && !is    328             !force_dma_unencrypted(dev) && !is_swiotlb_for_alloc(dev)) {
321                 /* cpu_addr is a struct page c    329                 /* cpu_addr is a struct page cookie, not a kernel address */
322                 dma_free_contiguous(dev, cpu_a    330                 dma_free_contiguous(dev, cpu_addr, size);
323                 return;                           331                 return;
324         }                                         332         }
325                                                   333 
326         if (IS_ENABLED(CONFIG_ARCH_HAS_DMA_ALL !! 334         if (!IS_ENABLED(CONFIG_ARCH_HAS_DMA_SET_UNCACHED) &&
                                                   >> 335             !IS_ENABLED(CONFIG_DMA_DIRECT_REMAP) &&
                                                   >> 336             !IS_ENABLED(CONFIG_DMA_GLOBAL_POOL) &&
327             !dev_is_dma_coherent(dev) &&          337             !dev_is_dma_coherent(dev) &&
328             !is_swiotlb_for_alloc(dev)) {         338             !is_swiotlb_for_alloc(dev)) {
329                 arch_dma_free(dev, size, cpu_a    339                 arch_dma_free(dev, size, cpu_addr, dma_addr, attrs);
330                 return;                           340                 return;
331         }                                         341         }
332                                                   342 
333         if (IS_ENABLED(CONFIG_DMA_GLOBAL_POOL)    343         if (IS_ENABLED(CONFIG_DMA_GLOBAL_POOL) &&
334             !dev_is_dma_coherent(dev)) {          344             !dev_is_dma_coherent(dev)) {
335                 if (!dma_release_from_global_c    345                 if (!dma_release_from_global_coherent(page_order, cpu_addr))
336                         WARN_ON_ONCE(1);          346                         WARN_ON_ONCE(1);
337                 return;                           347                 return;
338         }                                         348         }
339                                                   349 
340         /* If cpu_addr is not from an atomic p    350         /* If cpu_addr is not from an atomic pool, dma_free_from_pool() fails */
341         if (IS_ENABLED(CONFIG_DMA_COHERENT_POO    351         if (IS_ENABLED(CONFIG_DMA_COHERENT_POOL) &&
342             dma_free_from_pool(dev, cpu_addr,     352             dma_free_from_pool(dev, cpu_addr, PAGE_ALIGN(size)))
343                 return;                           353                 return;
344                                                   354 
345         if (is_vmalloc_addr(cpu_addr)) {       !! 355         if (IS_ENABLED(CONFIG_DMA_REMAP) && is_vmalloc_addr(cpu_addr)) {
346                 vunmap(cpu_addr);                 356                 vunmap(cpu_addr);
347         } else {                                  357         } else {
348                 if (IS_ENABLED(CONFIG_ARCH_HAS    358                 if (IS_ENABLED(CONFIG_ARCH_HAS_DMA_CLEAR_UNCACHED))
349                         arch_dma_clear_uncache    359                         arch_dma_clear_uncached(cpu_addr, size);
350                 if (dma_set_encrypted(dev, cpu !! 360                 if (dma_set_encrypted(dev, cpu_addr, 1 << page_order))
351                         return;                   361                         return;
352         }                                         362         }
353                                                   363 
354         __dma_direct_free_pages(dev, dma_direc    364         __dma_direct_free_pages(dev, dma_direct_to_page(dev, dma_addr), size);
355 }                                                 365 }
356                                                   366 
357 struct page *dma_direct_alloc_pages(struct dev    367 struct page *dma_direct_alloc_pages(struct device *dev, size_t size,
358                 dma_addr_t *dma_handle, enum d    368                 dma_addr_t *dma_handle, enum dma_data_direction dir, gfp_t gfp)
359 {                                                 369 {
360         struct page *page;                        370         struct page *page;
361         void *ret;                                371         void *ret;
362                                                   372 
363         if (force_dma_unencrypted(dev) && dma_    373         if (force_dma_unencrypted(dev) && dma_direct_use_pool(dev, gfp))
364                 return dma_direct_alloc_from_p    374                 return dma_direct_alloc_from_pool(dev, size, dma_handle, gfp);
365                                                   375 
366         page = __dma_direct_alloc_pages(dev, s    376         page = __dma_direct_alloc_pages(dev, size, gfp, false);
367         if (!page)                                377         if (!page)
368                 return NULL;                      378                 return NULL;
369                                                   379 
370         ret = page_address(page);                 380         ret = page_address(page);
371         if (dma_set_decrypted(dev, ret, size))    381         if (dma_set_decrypted(dev, ret, size))
372                 goto out_leak_pages;           !! 382                 goto out_free_pages;
373         memset(ret, 0, size);                     383         memset(ret, 0, size);
374         *dma_handle = phys_to_dma_direct(dev,     384         *dma_handle = phys_to_dma_direct(dev, page_to_phys(page));
375         return page;                              385         return page;
376 out_leak_pages:                                !! 386 out_free_pages:
                                                   >> 387         __dma_direct_free_pages(dev, page, size);
377         return NULL;                              388         return NULL;
378 }                                                 389 }
379                                                   390 
380 void dma_direct_free_pages(struct device *dev,    391 void dma_direct_free_pages(struct device *dev, size_t size,
381                 struct page *page, dma_addr_t     392                 struct page *page, dma_addr_t dma_addr,
382                 enum dma_data_direction dir)      393                 enum dma_data_direction dir)
383 {                                                 394 {
                                                   >> 395         unsigned int page_order = get_order(size);
384         void *vaddr = page_address(page);         396         void *vaddr = page_address(page);
385                                                   397 
386         /* If cpu_addr is not from an atomic p    398         /* If cpu_addr is not from an atomic pool, dma_free_from_pool() fails */
387         if (IS_ENABLED(CONFIG_DMA_COHERENT_POO    399         if (IS_ENABLED(CONFIG_DMA_COHERENT_POOL) &&
388             dma_free_from_pool(dev, vaddr, siz    400             dma_free_from_pool(dev, vaddr, size))
389                 return;                           401                 return;
390                                                   402 
391         if (dma_set_encrypted(dev, vaddr, size !! 403         if (dma_set_encrypted(dev, vaddr, 1 << page_order))
392                 return;                           404                 return;
393         __dma_direct_free_pages(dev, page, siz    405         __dma_direct_free_pages(dev, page, size);
394 }                                                 406 }
395                                                   407 
396 #if defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_DEVIC    408 #if defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_DEVICE) || \
397     defined(CONFIG_SWIOTLB)                       409     defined(CONFIG_SWIOTLB)
398 void dma_direct_sync_sg_for_device(struct devi    410 void dma_direct_sync_sg_for_device(struct device *dev,
399                 struct scatterlist *sgl, int n    411                 struct scatterlist *sgl, int nents, enum dma_data_direction dir)
400 {                                                 412 {
401         struct scatterlist *sg;                   413         struct scatterlist *sg;
402         int i;                                    414         int i;
403                                                   415 
404         for_each_sg(sgl, sg, nents, i) {          416         for_each_sg(sgl, sg, nents, i) {
405                 phys_addr_t paddr = dma_to_phy    417                 phys_addr_t paddr = dma_to_phys(dev, sg_dma_address(sg));
406                                                   418 
407                 swiotlb_sync_single_for_device !! 419                 if (unlikely(is_swiotlb_buffer(dev, paddr)))
                                                   >> 420                         swiotlb_sync_single_for_device(dev, paddr, sg->length,
                                                   >> 421                                                        dir);
408                                                   422 
409                 if (!dev_is_dma_coherent(dev))    423                 if (!dev_is_dma_coherent(dev))
410                         arch_sync_dma_for_devi    424                         arch_sync_dma_for_device(paddr, sg->length,
411                                         dir);     425                                         dir);
412         }                                         426         }
413 }                                                 427 }
414 #endif                                            428 #endif
415                                                   429 
416 #if defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU)     430 #if defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU) || \
417     defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU_A    431     defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU_ALL) || \
418     defined(CONFIG_SWIOTLB)                       432     defined(CONFIG_SWIOTLB)
419 void dma_direct_sync_sg_for_cpu(struct device     433 void dma_direct_sync_sg_for_cpu(struct device *dev,
420                 struct scatterlist *sgl, int n    434                 struct scatterlist *sgl, int nents, enum dma_data_direction dir)
421 {                                                 435 {
422         struct scatterlist *sg;                   436         struct scatterlist *sg;
423         int i;                                    437         int i;
424                                                   438 
425         for_each_sg(sgl, sg, nents, i) {          439         for_each_sg(sgl, sg, nents, i) {
426                 phys_addr_t paddr = dma_to_phy    440                 phys_addr_t paddr = dma_to_phys(dev, sg_dma_address(sg));
427                                                   441 
428                 if (!dev_is_dma_coherent(dev))    442                 if (!dev_is_dma_coherent(dev))
429                         arch_sync_dma_for_cpu(    443                         arch_sync_dma_for_cpu(paddr, sg->length, dir);
430                                                   444 
431                 swiotlb_sync_single_for_cpu(de !! 445                 if (unlikely(is_swiotlb_buffer(dev, paddr)))
                                                   >> 446                         swiotlb_sync_single_for_cpu(dev, paddr, sg->length,
                                                   >> 447                                                     dir);
432                                                   448 
433                 if (dir == DMA_FROM_DEVICE)       449                 if (dir == DMA_FROM_DEVICE)
434                         arch_dma_mark_clean(pa    450                         arch_dma_mark_clean(paddr, sg->length);
435         }                                         451         }
436                                                   452 
437         if (!dev_is_dma_coherent(dev))            453         if (!dev_is_dma_coherent(dev))
438                 arch_sync_dma_for_cpu_all();      454                 arch_sync_dma_for_cpu_all();
439 }                                                 455 }
440                                                   456 
441 /*                                             << 
442  * Unmaps segments, except for ones marked as  << 
443  * require any further action as they contain  << 
444  */                                            << 
445 void dma_direct_unmap_sg(struct device *dev, s    457 void dma_direct_unmap_sg(struct device *dev, struct scatterlist *sgl,
446                 int nents, enum dma_data_direc    458                 int nents, enum dma_data_direction dir, unsigned long attrs)
447 {                                                 459 {
448         struct scatterlist *sg;                   460         struct scatterlist *sg;
449         int i;                                    461         int i;
450                                                   462 
451         for_each_sg(sgl,  sg, nents, i) {      !! 463         for_each_sg(sgl, sg, nents, i)
452                 if (sg_dma_is_bus_address(sg)) !! 464                 dma_direct_unmap_page(dev, sg->dma_address, sg_dma_len(sg), dir,
453                         sg_dma_unmark_bus_addr !! 465                              attrs);
454                 else                           << 
455                         dma_direct_unmap_page( << 
456                                                << 
457         }                                      << 
458 }                                                 466 }
459 #endif                                            467 #endif
460                                                   468 
461 int dma_direct_map_sg(struct device *dev, stru    469 int dma_direct_map_sg(struct device *dev, struct scatterlist *sgl, int nents,
462                 enum dma_data_direction dir, u    470                 enum dma_data_direction dir, unsigned long attrs)
463 {                                                 471 {
464         struct pci_p2pdma_map_state p2pdma_sta !! 472         int i;
465         enum pci_p2pdma_map_type map;          << 
466         struct scatterlist *sg;                   473         struct scatterlist *sg;
467         int i, ret;                            << 
468                                                   474 
469         for_each_sg(sgl, sg, nents, i) {          475         for_each_sg(sgl, sg, nents, i) {
470                 if (is_pci_p2pdma_page(sg_page << 
471                         map = pci_p2pdma_map_s << 
472                         switch (map) {         << 
473                         case PCI_P2PDMA_MAP_BU << 
474                                 continue;      << 
475                         case PCI_P2PDMA_MAP_TH << 
476                                 /*             << 
477                                  * Any P2P map << 
478                                  * host bridge << 
479                                  * address and << 
480                                  * done with d << 
481                                  */            << 
482                                 break;         << 
483                         default:               << 
484                                 ret = -EREMOTE << 
485                                 goto out_unmap << 
486                         }                      << 
487                 }                              << 
488                                                << 
489                 sg->dma_address = dma_direct_m    476                 sg->dma_address = dma_direct_map_page(dev, sg_page(sg),
490                                 sg->offset, sg    477                                 sg->offset, sg->length, dir, attrs);
491                 if (sg->dma_address == DMA_MAP !! 478                 if (sg->dma_address == DMA_MAPPING_ERROR)
492                         ret = -EIO;            << 
493                         goto out_unmap;           479                         goto out_unmap;
494                 }                              << 
495                 sg_dma_len(sg) = sg->length;      480                 sg_dma_len(sg) = sg->length;
496         }                                         481         }
497                                                   482 
498         return nents;                             483         return nents;
499                                                   484 
500 out_unmap:                                        485 out_unmap:
501         dma_direct_unmap_sg(dev, sgl, i, dir,     486         dma_direct_unmap_sg(dev, sgl, i, dir, attrs | DMA_ATTR_SKIP_CPU_SYNC);
502         return ret;                            !! 487         return -EIO;
503 }                                                 488 }
504                                                   489 
505 dma_addr_t dma_direct_map_resource(struct devi    490 dma_addr_t dma_direct_map_resource(struct device *dev, phys_addr_t paddr,
506                 size_t size, enum dma_data_dir    491                 size_t size, enum dma_data_direction dir, unsigned long attrs)
507 {                                                 492 {
508         dma_addr_t dma_addr = paddr;              493         dma_addr_t dma_addr = paddr;
509                                                   494 
510         if (unlikely(!dma_capable(dev, dma_add    495         if (unlikely(!dma_capable(dev, dma_addr, size, false))) {
511                 dev_err_once(dev,                 496                 dev_err_once(dev,
512                              "DMA addr %pad+%z    497                              "DMA addr %pad+%zu overflow (mask %llx, bus limit %llx).\n",
513                              &dma_addr, size,     498                              &dma_addr, size, *dev->dma_mask, dev->bus_dma_limit);
514                 WARN_ON_ONCE(1);                  499                 WARN_ON_ONCE(1);
515                 return DMA_MAPPING_ERROR;         500                 return DMA_MAPPING_ERROR;
516         }                                         501         }
517                                                   502 
518         return dma_addr;                          503         return dma_addr;
519 }                                                 504 }
520                                                   505 
521 int dma_direct_get_sgtable(struct device *dev,    506 int dma_direct_get_sgtable(struct device *dev, struct sg_table *sgt,
522                 void *cpu_addr, dma_addr_t dma    507                 void *cpu_addr, dma_addr_t dma_addr, size_t size,
523                 unsigned long attrs)              508                 unsigned long attrs)
524 {                                                 509 {
525         struct page *page = dma_direct_to_page    510         struct page *page = dma_direct_to_page(dev, dma_addr);
526         int ret;                                  511         int ret;
527                                                   512 
528         ret = sg_alloc_table(sgt, 1, GFP_KERNE    513         ret = sg_alloc_table(sgt, 1, GFP_KERNEL);
529         if (!ret)                                 514         if (!ret)
530                 sg_set_page(sgt->sgl, page, PA    515                 sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0);
531         return ret;                               516         return ret;
532 }                                                 517 }
533                                                   518 
534 bool dma_direct_can_mmap(struct device *dev)      519 bool dma_direct_can_mmap(struct device *dev)
535 {                                                 520 {
536         return dev_is_dma_coherent(dev) ||        521         return dev_is_dma_coherent(dev) ||
537                 IS_ENABLED(CONFIG_DMA_NONCOHER    522                 IS_ENABLED(CONFIG_DMA_NONCOHERENT_MMAP);
538 }                                                 523 }
539                                                   524 
540 int dma_direct_mmap(struct device *dev, struct    525 int dma_direct_mmap(struct device *dev, struct vm_area_struct *vma,
541                 void *cpu_addr, dma_addr_t dma    526                 void *cpu_addr, dma_addr_t dma_addr, size_t size,
542                 unsigned long attrs)              527                 unsigned long attrs)
543 {                                                 528 {
544         unsigned long user_count = vma_pages(v    529         unsigned long user_count = vma_pages(vma);
545         unsigned long count = PAGE_ALIGN(size)    530         unsigned long count = PAGE_ALIGN(size) >> PAGE_SHIFT;
546         unsigned long pfn = PHYS_PFN(dma_to_ph    531         unsigned long pfn = PHYS_PFN(dma_to_phys(dev, dma_addr));
547         int ret = -ENXIO;                         532         int ret = -ENXIO;
548                                                   533 
549         vma->vm_page_prot = dma_pgprot(dev, vm    534         vma->vm_page_prot = dma_pgprot(dev, vma->vm_page_prot, attrs);
550         if (force_dma_unencrypted(dev))        << 
551                 vma->vm_page_prot = pgprot_dec << 
552                                                   535 
553         if (dma_mmap_from_dev_coherent(dev, vm    536         if (dma_mmap_from_dev_coherent(dev, vma, cpu_addr, size, &ret))
554                 return ret;                       537                 return ret;
555         if (dma_mmap_from_global_coherent(vma,    538         if (dma_mmap_from_global_coherent(vma, cpu_addr, size, &ret))
556                 return ret;                       539                 return ret;
557                                                   540 
558         if (vma->vm_pgoff >= count || user_cou    541         if (vma->vm_pgoff >= count || user_count > count - vma->vm_pgoff)
559                 return -ENXIO;                    542                 return -ENXIO;
560         return remap_pfn_range(vma, vma->vm_st    543         return remap_pfn_range(vma, vma->vm_start, pfn + vma->vm_pgoff,
561                         user_count << PAGE_SHI    544                         user_count << PAGE_SHIFT, vma->vm_page_prot);
562 }                                                 545 }
563                                                   546 
564 int dma_direct_supported(struct device *dev, u    547 int dma_direct_supported(struct device *dev, u64 mask)
565 {                                                 548 {
566         u64 min_mask = (max_pfn - 1) << PAGE_S    549         u64 min_mask = (max_pfn - 1) << PAGE_SHIFT;
567                                                   550 
568         /*                                        551         /*
569          * Because 32-bit DMA masks are so com    552          * Because 32-bit DMA masks are so common we expect every architecture
570          * to be able to satisfy them - either    553          * to be able to satisfy them - either by not supporting more physical
571          * memory, or by providing a ZONE_DMA3    554          * memory, or by providing a ZONE_DMA32.  If neither is the case, the
572          * architecture needs to use an IOMMU     555          * architecture needs to use an IOMMU instead of the direct mapping.
573          */                                       556          */
574         if (mask >= DMA_BIT_MASK(32))             557         if (mask >= DMA_BIT_MASK(32))
575                 return 1;                         558                 return 1;
576                                                   559 
577         /*                                        560         /*
578          * This check needs to be against the     561          * This check needs to be against the actual bit mask value, so use
579          * phys_to_dma_unencrypted() here so t    562          * phys_to_dma_unencrypted() here so that the SME encryption mask isn't
580          * part of the check.                     563          * part of the check.
581          */                                       564          */
582         if (IS_ENABLED(CONFIG_ZONE_DMA))          565         if (IS_ENABLED(CONFIG_ZONE_DMA))
583                 min_mask = min_t(u64, min_mask    566                 min_mask = min_t(u64, min_mask, DMA_BIT_MASK(zone_dma_bits));
584         return mask >= phys_to_dma_unencrypted    567         return mask >= phys_to_dma_unencrypted(dev, min_mask);
585 }                                                 568 }
586                                                   569 
587 /*                                             << 
588  * To check whether all ram resource ranges ar << 
589  * Returns 0 when further check is needed      << 
590  * Returns 1 if there is some RAM range can't  << 
591  */                                            << 
592 static int check_ram_in_range_map(unsigned lon << 
593                                   unsigned lon << 
594 {                                              << 
595         unsigned long end_pfn = start_pfn + nr << 
596         const struct bus_dma_region *bdr = NUL << 
597         const struct bus_dma_region *m;        << 
598         struct device *dev = data;             << 
599                                                << 
600         while (start_pfn < end_pfn) {          << 
601                 for (m = dev->dma_range_map; P << 
602                         unsigned long cpu_star << 
603                                                << 
604                         if (start_pfn >= cpu_s << 
605                             start_pfn - cpu_st << 
606                                 bdr = m;       << 
607                                 break;         << 
608                         }                      << 
609                 }                              << 
610                 if (!bdr)                      << 
611                         return 1;              << 
612                                                << 
613                 start_pfn = PFN_DOWN(bdr->cpu_ << 
614         }                                      << 
615                                                << 
616         return 0;                              << 
617 }                                              << 
618                                                << 
619 bool dma_direct_all_ram_mapped(struct device * << 
620 {                                              << 
621         if (!dev->dma_range_map)               << 
622                 return true;                   << 
623         return !walk_system_ram_range(0, PFN_D << 
624                                       check_ra << 
625 }                                              << 
626                                                << 
627 size_t dma_direct_max_mapping_size(struct devi    570 size_t dma_direct_max_mapping_size(struct device *dev)
628 {                                                 571 {
629         /* If SWIOTLB is active, use its maxim    572         /* If SWIOTLB is active, use its maximum mapping size */
630         if (is_swiotlb_active(dev) &&             573         if (is_swiotlb_active(dev) &&
631             (dma_addressing_limited(dev) || is    574             (dma_addressing_limited(dev) || is_swiotlb_force_bounce(dev)))
632                 return swiotlb_max_mapping_siz    575                 return swiotlb_max_mapping_size(dev);
633         return SIZE_MAX;                          576         return SIZE_MAX;
634 }                                                 577 }
635                                                   578 
636 bool dma_direct_need_sync(struct device *dev,     579 bool dma_direct_need_sync(struct device *dev, dma_addr_t dma_addr)
637 {                                                 580 {
638         return !dev_is_dma_coherent(dev) ||       581         return !dev_is_dma_coherent(dev) ||
639                swiotlb_find_pool(dev, dma_to_p !! 582                is_swiotlb_buffer(dev, dma_to_phys(dev, dma_addr));
640 }                                                 583 }
641                                                   584 
642 /**                                               585 /**
643  * dma_direct_set_offset - Assign scalar offse    586  * dma_direct_set_offset - Assign scalar offset for a single DMA range.
644  * @dev:        device pointer; needed to "own    587  * @dev:        device pointer; needed to "own" the alloced memory.
645  * @cpu_start:  beginning of memory region cov    588  * @cpu_start:  beginning of memory region covered by this offset.
646  * @dma_start:  beginning of DMA/PCI region co    589  * @dma_start:  beginning of DMA/PCI region covered by this offset.
647  * @size:       size of the region.               590  * @size:       size of the region.
648  *                                                591  *
649  * This is for the simple case of a uniform of    592  * This is for the simple case of a uniform offset which cannot
650  * be discovered by "dma-ranges".                 593  * be discovered by "dma-ranges".
651  *                                                594  *
652  * It returns -ENOMEM if out of memory, -EINVA    595  * It returns -ENOMEM if out of memory, -EINVAL if a map
653  * already exists, 0 otherwise.                   596  * already exists, 0 otherwise.
654  *                                                597  *
655  * Note: any call to this from a driver is a b    598  * Note: any call to this from a driver is a bug.  The mapping needs
656  * to be described by the device tree or other    599  * to be described by the device tree or other firmware interfaces.
657  */                                               600  */
658 int dma_direct_set_offset(struct device *dev,     601 int dma_direct_set_offset(struct device *dev, phys_addr_t cpu_start,
659                          dma_addr_t dma_start,    602                          dma_addr_t dma_start, u64 size)
660 {                                                 603 {
661         struct bus_dma_region *map;               604         struct bus_dma_region *map;
662         u64 offset = (u64)cpu_start - (u64)dma    605         u64 offset = (u64)cpu_start - (u64)dma_start;
663                                                   606 
664         if (dev->dma_range_map) {                 607         if (dev->dma_range_map) {
665                 dev_err(dev, "attempt to add D    608                 dev_err(dev, "attempt to add DMA range to existing map\n");
666                 return -EINVAL;                   609                 return -EINVAL;
667         }                                         610         }
668                                                   611 
669         if (!offset)                              612         if (!offset)
670                 return 0;                         613                 return 0;
671                                                   614 
672         map = kcalloc(2, sizeof(*map), GFP_KER    615         map = kcalloc(2, sizeof(*map), GFP_KERNEL);
673         if (!map)                                 616         if (!map)
674                 return -ENOMEM;                   617                 return -ENOMEM;
675         map[0].cpu_start = cpu_start;             618         map[0].cpu_start = cpu_start;
676         map[0].dma_start = dma_start;             619         map[0].dma_start = dma_start;
                                                   >> 620         map[0].offset = offset;
677         map[0].size = size;                       621         map[0].size = size;
678         dev->dma_range_map = map;                 622         dev->dma_range_map = map;
679         return 0;                                 623         return 0;
680 }                                                 624 }
681                                                   625 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

sflogo.php