~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/kernel/dma/direct.c

Version: ~ [ linux-6.11-rc3 ] ~ [ linux-6.10.4 ] ~ [ linux-6.9.12 ] ~ [ linux-6.8.12 ] ~ [ linux-6.7.12 ] ~ [ linux-6.6.45 ] ~ [ linux-6.5.13 ] ~ [ linux-6.4.16 ] ~ [ linux-6.3.13 ] ~ [ linux-6.2.16 ] ~ [ linux-6.1.104 ] ~ [ linux-6.0.19 ] ~ [ linux-5.19.17 ] ~ [ linux-5.18.19 ] ~ [ linux-5.17.15 ] ~ [ linux-5.16.20 ] ~ [ linux-5.15.164 ] ~ [ linux-5.14.21 ] ~ [ linux-5.13.19 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.223 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.281 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.319 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.336 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.337 ] ~ [ linux-4.4.302 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.9 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

Diff markup

Differences between /kernel/dma/direct.c (Version linux-6.11-rc3) and /kernel/dma/direct.c (Version linux-5.6.19)


  1 // SPDX-License-Identifier: GPL-2.0                 1 // SPDX-License-Identifier: GPL-2.0
  2 /*                                                  2 /*
  3  * Copyright (C) 2018-2020 Christoph Hellwig.  !!   3  * Copyright (C) 2018 Christoph Hellwig.
  4  *                                                  4  *
  5  * DMA operations that map physical memory dir      5  * DMA operations that map physical memory directly without using an IOMMU.
  6  */                                                 6  */
  7 #include <linux/memblock.h> /* for max_pfn */       7 #include <linux/memblock.h> /* for max_pfn */
  8 #include <linux/export.h>                           8 #include <linux/export.h>
  9 #include <linux/mm.h>                               9 #include <linux/mm.h>
 10 #include <linux/dma-map-ops.h>                 !!  10 #include <linux/dma-direct.h>
 11 #include <linux/scatterlist.h>                     11 #include <linux/scatterlist.h>
                                                   >>  12 #include <linux/dma-contiguous.h>
                                                   >>  13 #include <linux/dma-noncoherent.h>
 12 #include <linux/pfn.h>                             14 #include <linux/pfn.h>
 13 #include <linux/vmalloc.h>                         15 #include <linux/vmalloc.h>
 14 #include <linux/set_memory.h>                      16 #include <linux/set_memory.h>
 15 #include <linux/slab.h>                        !!  17 #include <linux/swiotlb.h>
 16 #include "direct.h"                            << 
 17                                                    18 
 18 /*                                                 19 /*
 19  * Most architectures use ZONE_DMA for the fir !!  20  * Most architectures use ZONE_DMA for the first 16 Megabytes, but some use it
 20  * it for entirely different regions. In that      21  * it for entirely different regions. In that case the arch code needs to
 21  * override the variable below for dma-direct      22  * override the variable below for dma-direct to work properly.
 22  */                                                23  */
 23 unsigned int zone_dma_bits __ro_after_init = 2     24 unsigned int zone_dma_bits __ro_after_init = 24;
 24                                                    25 
 25 static inline dma_addr_t phys_to_dma_direct(st     26 static inline dma_addr_t phys_to_dma_direct(struct device *dev,
 26                 phys_addr_t phys)                  27                 phys_addr_t phys)
 27 {                                                  28 {
 28         if (force_dma_unencrypted(dev))            29         if (force_dma_unencrypted(dev))
 29                 return phys_to_dma_unencrypted !!  30                 return __phys_to_dma(dev, phys);
 30         return phys_to_dma(dev, phys);             31         return phys_to_dma(dev, phys);
 31 }                                                  32 }
 32                                                    33 
 33 static inline struct page *dma_direct_to_page(     34 static inline struct page *dma_direct_to_page(struct device *dev,
 34                 dma_addr_t dma_addr)               35                 dma_addr_t dma_addr)
 35 {                                                  36 {
 36         return pfn_to_page(PHYS_PFN(dma_to_phy     37         return pfn_to_page(PHYS_PFN(dma_to_phys(dev, dma_addr)));
 37 }                                                  38 }
 38                                                    39 
 39 u64 dma_direct_get_required_mask(struct device     40 u64 dma_direct_get_required_mask(struct device *dev)
 40 {                                                  41 {
 41         phys_addr_t phys = (phys_addr_t)(max_p     42         phys_addr_t phys = (phys_addr_t)(max_pfn - 1) << PAGE_SHIFT;
 42         u64 max_dma = phys_to_dma_direct(dev,      43         u64 max_dma = phys_to_dma_direct(dev, phys);
 43                                                    44 
 44         return (1ULL << (fls64(max_dma) - 1))      45         return (1ULL << (fls64(max_dma) - 1)) * 2 - 1;
 45 }                                                  46 }
 46                                                    47 
 47 static gfp_t dma_direct_optimal_gfp_mask(struc !!  48 static gfp_t __dma_direct_optimal_gfp_mask(struct device *dev, u64 dma_mask,
                                                   >>  49                 u64 *phys_limit)
 48 {                                                  50 {
 49         u64 dma_limit = min_not_zero(          !!  51         u64 dma_limit = min_not_zero(dma_mask, dev->bus_dma_limit);
 50                 dev->coherent_dma_mask,        !!  52 
 51                 dev->bus_dma_limit);           !!  53         if (force_dma_unencrypted(dev))
                                                   >>  54                 *phys_limit = __dma_to_phys(dev, dma_limit);
                                                   >>  55         else
                                                   >>  56                 *phys_limit = dma_to_phys(dev, dma_limit);
 52                                                    57 
 53         /*                                         58         /*
 54          * Optimistically try the zone that th     59          * Optimistically try the zone that the physical address mask falls
 55          * into first.  If that returns memory     60          * into first.  If that returns memory that isn't actually addressable
 56          * we will fallback to the next lower      61          * we will fallback to the next lower zone and try again.
 57          *                                         62          *
 58          * Note that GFP_DMA32 and GFP_DMA are     63          * Note that GFP_DMA32 and GFP_DMA are no ops without the corresponding
 59          * zones.                                  64          * zones.
 60          */                                        65          */
 61         *phys_limit = dma_to_phys(dev, dma_lim << 
 62         if (*phys_limit <= DMA_BIT_MASK(zone_d     66         if (*phys_limit <= DMA_BIT_MASK(zone_dma_bits))
 63                 return GFP_DMA;                    67                 return GFP_DMA;
 64         if (*phys_limit <= DMA_BIT_MASK(32))       68         if (*phys_limit <= DMA_BIT_MASK(32))
 65                 return GFP_DMA32;                  69                 return GFP_DMA32;
 66         return 0;                                  70         return 0;
 67 }                                                  71 }
 68                                                    72 
 69 bool dma_coherent_ok(struct device *dev, phys_ !!  73 static bool dma_coherent_ok(struct device *dev, phys_addr_t phys, size_t size)
 70 {                                              << 
 71         dma_addr_t dma_addr = phys_to_dma_dire << 
 72                                                << 
 73         if (dma_addr == DMA_MAPPING_ERROR)     << 
 74                 return false;                  << 
 75         return dma_addr + size - 1 <=          << 
 76                 min_not_zero(dev->coherent_dma << 
 77 }                                              << 
 78                                                << 
 79 static int dma_set_decrypted(struct device *de << 
 80 {                                              << 
 81         if (!force_dma_unencrypted(dev))       << 
 82                 return 0;                      << 
 83         return set_memory_decrypted((unsigned  << 
 84 }                                              << 
 85                                                << 
 86 static int dma_set_encrypted(struct device *de << 
 87 {                                                  74 {
 88         int ret;                               !!  75         return phys_to_dma_direct(dev, phys) + size - 1 <=
 89                                                !!  76                         min_not_zero(dev->coherent_dma_mask, dev->bus_dma_limit);
 90         if (!force_dma_unencrypted(dev))       << 
 91                 return 0;                      << 
 92         ret = set_memory_encrypted((unsigned l << 
 93         if (ret)                               << 
 94                 pr_warn_ratelimited("leaking D << 
 95         return ret;                            << 
 96 }                                                  77 }
 97                                                    78 
 98 static void __dma_direct_free_pages(struct dev !!  79 struct page *__dma_direct_alloc_pages(struct device *dev, size_t size,
 99                                     size_t siz !!  80                 gfp_t gfp, unsigned long attrs)
100 {                                              << 
101         if (swiotlb_free(dev, page, size))     << 
102                 return;                        << 
103         dma_free_contiguous(dev, page, size);  << 
104 }                                              << 
105                                                << 
106 static struct page *dma_direct_alloc_swiotlb(s << 
107 {                                              << 
108         struct page *page = swiotlb_alloc(dev, << 
109                                                << 
110         if (page && !dma_coherent_ok(dev, page << 
111                 swiotlb_free(dev, page, size); << 
112                 return NULL;                   << 
113         }                                      << 
114                                                << 
115         return page;                           << 
116 }                                              << 
117                                                << 
118 static struct page *__dma_direct_alloc_pages(s << 
119                 gfp_t gfp, bool allow_highmem) << 
120 {                                                  81 {
                                                   >>  82         size_t alloc_size = PAGE_ALIGN(size);
121         int node = dev_to_node(dev);               83         int node = dev_to_node(dev);
122         struct page *page = NULL;                  84         struct page *page = NULL;
123         u64 phys_limit;                            85         u64 phys_limit;
124                                                    86 
125         WARN_ON_ONCE(!PAGE_ALIGNED(size));     !!  87         if (attrs & DMA_ATTR_NO_WARN)
126                                                !!  88                 gfp |= __GFP_NOWARN;
127         if (is_swiotlb_for_alloc(dev))         << 
128                 return dma_direct_alloc_swiotl << 
129                                                    89 
130         gfp |= dma_direct_optimal_gfp_mask(dev !!  90         /* we always manually zero the memory once we are done: */
131         page = dma_alloc_contiguous(dev, size, !!  91         gfp &= ~__GFP_ZERO;
132         if (page) {                            !!  92         gfp |= __dma_direct_optimal_gfp_mask(dev, dev->coherent_dma_mask,
133                 if (!dma_coherent_ok(dev, page !!  93                         &phys_limit);
134                     (!allow_highmem && PageHig !!  94         page = dma_alloc_contiguous(dev, alloc_size, gfp);
135                         dma_free_contiguous(de !!  95         if (page && !dma_coherent_ok(dev, page_to_phys(page), size)) {
136                         page = NULL;           !!  96                 dma_free_contiguous(dev, page, alloc_size);
137                 }                              !!  97                 page = NULL;
138         }                                          98         }
139 again:                                             99 again:
140         if (!page)                                100         if (!page)
141                 page = alloc_pages_node(node,  !! 101                 page = alloc_pages_node(node, gfp, get_order(alloc_size));
142         if (page && !dma_coherent_ok(dev, page    102         if (page && !dma_coherent_ok(dev, page_to_phys(page), size)) {
143                 dma_free_contiguous(dev, page,    103                 dma_free_contiguous(dev, page, size);
144                 page = NULL;                      104                 page = NULL;
145                                                   105 
146                 if (IS_ENABLED(CONFIG_ZONE_DMA    106                 if (IS_ENABLED(CONFIG_ZONE_DMA32) &&
147                     phys_limit < DMA_BIT_MASK(    107                     phys_limit < DMA_BIT_MASK(64) &&
148                     !(gfp & (GFP_DMA32 | GFP_D    108                     !(gfp & (GFP_DMA32 | GFP_DMA))) {
149                         gfp |= GFP_DMA32;         109                         gfp |= GFP_DMA32;
150                         goto again;               110                         goto again;
151                 }                                 111                 }
152                                                   112 
153                 if (IS_ENABLED(CONFIG_ZONE_DMA    113                 if (IS_ENABLED(CONFIG_ZONE_DMA) && !(gfp & GFP_DMA)) {
154                         gfp = (gfp & ~GFP_DMA3    114                         gfp = (gfp & ~GFP_DMA32) | GFP_DMA;
155                         goto again;               115                         goto again;
156                 }                                 116                 }
157         }                                         117         }
158                                                   118 
159         return page;                              119         return page;
160 }                                                 120 }
161                                                   121 
162 /*                                             !! 122 void *dma_direct_alloc_pages(struct device *dev, size_t size,
163  * Check if a potentially blocking operations  << 
164  * pools for the given device/gfp.             << 
165  */                                            << 
166 static bool dma_direct_use_pool(struct device  << 
167 {                                              << 
168         return !gfpflags_allow_blocking(gfp) & << 
169 }                                              << 
170                                                << 
171 static void *dma_direct_alloc_from_pool(struct << 
172                 dma_addr_t *dma_handle, gfp_t  << 
173 {                                              << 
174         struct page *page;                     << 
175         u64 phys_limit;                        << 
176         void *ret;                             << 
177                                                << 
178         if (WARN_ON_ONCE(!IS_ENABLED(CONFIG_DM << 
179                 return NULL;                   << 
180                                                << 
181         gfp |= dma_direct_optimal_gfp_mask(dev << 
182         page = dma_alloc_from_pool(dev, size,  << 
183         if (!page)                             << 
184                 return NULL;                   << 
185         *dma_handle = phys_to_dma_direct(dev,  << 
186         return ret;                            << 
187 }                                              << 
188                                                << 
189 static void *dma_direct_alloc_no_mapping(struc << 
190                 dma_addr_t *dma_handle, gfp_t  << 
191 {                                              << 
192         struct page *page;                     << 
193                                                << 
194         page = __dma_direct_alloc_pages(dev, s << 
195         if (!page)                             << 
196                 return NULL;                   << 
197                                                << 
198         /* remove any dirty cache lines on the << 
199         if (!PageHighMem(page))                << 
200                 arch_dma_prep_coherent(page, s << 
201                                                << 
202         /* return the page pointer as the opaq << 
203         *dma_handle = phys_to_dma_direct(dev,  << 
204         return page;                           << 
205 }                                              << 
206                                                << 
207 void *dma_direct_alloc(struct device *dev, siz << 
208                 dma_addr_t *dma_handle, gfp_t     123                 dma_addr_t *dma_handle, gfp_t gfp, unsigned long attrs)
209 {                                                 124 {
210         bool remap = false, set_uncached = fal << 
211         struct page *page;                        125         struct page *page;
212         void *ret;                                126         void *ret;
213                                                   127 
214         size = PAGE_ALIGN(size);               !! 128         if (IS_ENABLED(CONFIG_DMA_DIRECT_REMAP) &&
215         if (attrs & DMA_ATTR_NO_WARN)          !! 129             dma_alloc_need_uncached(dev, attrs) &&
216                 gfp |= __GFP_NOWARN;           !! 130             !gfpflags_allow_blocking(gfp)) {
217                                                !! 131                 ret = dma_alloc_from_pool(PAGE_ALIGN(size), &page, gfp);
218         if ((attrs & DMA_ATTR_NO_KERNEL_MAPPIN !! 132                 if (!ret)
219             !force_dma_unencrypted(dev) && !is << 
220                 return dma_direct_alloc_no_map << 
221                                                << 
222         if (!dev_is_dma_coherent(dev)) {       << 
223                 if (IS_ENABLED(CONFIG_ARCH_HAS << 
224                     !is_swiotlb_for_alloc(dev) << 
225                         return arch_dma_alloc( << 
226                                                << 
227                                                << 
228                 /*                             << 
229                  * If there is a global pool,  << 
230                  * non-coherent devices.       << 
231                  */                            << 
232                 if (IS_ENABLED(CONFIG_DMA_GLOB << 
233                         return dma_alloc_from_ << 
234                                         dma_ha << 
235                                                << 
236                 /*                             << 
237                  * Otherwise we require the ar << 
238                  * mark arbitrary parts of the << 
239                  * or remapped it uncached.    << 
240                  */                            << 
241                 set_uncached = IS_ENABLED(CONF << 
242                 remap = IS_ENABLED(CONFIG_DMA_ << 
243                 if (!set_uncached && !remap) { << 
244                         pr_warn_once("coherent << 
245                         return NULL;              133                         return NULL;
246                 }                              !! 134                 goto done;
247         }                                         135         }
248                                                   136 
249         /*                                     !! 137         page = __dma_direct_alloc_pages(dev, size, gfp, attrs);
250          * Remapping or decrypting memory may  << 
251          * the atomic pools instead if we aren << 
252          */                                    << 
253         if ((remap || force_dma_unencrypted(de << 
254             dma_direct_use_pool(dev, gfp))     << 
255                 return dma_direct_alloc_from_p << 
256                                                << 
257         /* we always manually zero the memory  << 
258         page = __dma_direct_alloc_pages(dev, s << 
259         if (!page)                                138         if (!page)
260                 return NULL;                      139                 return NULL;
261                                                   140 
262         /*                                     !! 141         if ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) &&
263          * dma_alloc_contiguous can return hig !! 142             !force_dma_unencrypted(dev)) {
264          * combination the cma= arguments and  !! 143                 /* remove any dirty cache lines on the kernel alias */
265          * remapped to return a kernel virtual !! 144                 if (!PageHighMem(page))
266          */                                    !! 145                         arch_dma_prep_coherent(page, size);
267         if (PageHighMem(page)) {               !! 146                 /* return the page pointer as the opaque cookie */
268                 remap = true;                  !! 147                 ret = page;
269                 set_uncached = false;          !! 148                 goto done;
270         }                                         149         }
271                                                   150 
272         if (remap) {                           !! 151         if ((IS_ENABLED(CONFIG_DMA_DIRECT_REMAP) &&
273                 pgprot_t prot = dma_pgprot(dev !! 152              dma_alloc_need_uncached(dev, attrs)) ||
274                                                !! 153             (IS_ENABLED(CONFIG_DMA_REMAP) && PageHighMem(page))) {
275                 if (force_dma_unencrypted(dev) << 
276                         prot = pgprot_decrypte << 
277                                                << 
278                 /* remove any dirty cache line    154                 /* remove any dirty cache lines on the kernel alias */
279                 arch_dma_prep_coherent(page, s !! 155                 arch_dma_prep_coherent(page, PAGE_ALIGN(size));
280                                                   156 
281                 /* create a coherent mapping *    157                 /* create a coherent mapping */
282                 ret = dma_common_contiguous_re !! 158                 ret = dma_common_contiguous_remap(page, PAGE_ALIGN(size),
                                                   >> 159                                 dma_pgprot(dev, PAGE_KERNEL, attrs),
283                                 __builtin_retu    160                                 __builtin_return_address(0));
284                 if (!ret)                      !! 161                 if (!ret) {
285                         goto out_free_pages;   !! 162                         dma_free_contiguous(dev, page, size);
286         } else {                               !! 163                         return ret;
287                 ret = page_address(page);      !! 164                 }
288                 if (dma_set_decrypted(dev, ret !! 165 
289                         goto out_leak_pages;   !! 166                 memset(ret, 0, size);
                                                   >> 167                 goto done;
                                                   >> 168         }
                                                   >> 169 
                                                   >> 170         if (PageHighMem(page)) {
                                                   >> 171                 /*
                                                   >> 172                  * Depending on the cma= arguments and per-arch setup
                                                   >> 173                  * dma_alloc_contiguous could return highmem pages.
                                                   >> 174                  * Without remapping there is no way to return them here,
                                                   >> 175                  * so log an error and fail.
                                                   >> 176                  */
                                                   >> 177                 dev_info(dev, "Rejecting highmem page from CMA.\n");
                                                   >> 178                 dma_free_contiguous(dev, page, size);
                                                   >> 179                 return NULL;
290         }                                         180         }
291                                                   181 
                                                   >> 182         ret = page_address(page);
                                                   >> 183         if (force_dma_unencrypted(dev))
                                                   >> 184                 set_memory_decrypted((unsigned long)ret, 1 << get_order(size));
                                                   >> 185 
292         memset(ret, 0, size);                     186         memset(ret, 0, size);
293                                                   187 
294         if (set_uncached) {                    !! 188         if (IS_ENABLED(CONFIG_ARCH_HAS_UNCACHED_SEGMENT) &&
                                                   >> 189             dma_alloc_need_uncached(dev, attrs)) {
295                 arch_dma_prep_coherent(page, s    190                 arch_dma_prep_coherent(page, size);
296                 ret = arch_dma_set_uncached(re !! 191                 ret = uncached_kernel_address(ret);
297                 if (IS_ERR(ret))               << 
298                         goto out_encrypt_pages << 
299         }                                         192         }
300                                                !! 193 done:
301         *dma_handle = phys_to_dma_direct(dev,  !! 194         if (force_dma_unencrypted(dev))
                                                   >> 195                 *dma_handle = __phys_to_dma(dev, page_to_phys(page));
                                                   >> 196         else
                                                   >> 197                 *dma_handle = phys_to_dma(dev, page_to_phys(page));
302         return ret;                               198         return ret;
303                                                << 
304 out_encrypt_pages:                             << 
305         if (dma_set_encrypted(dev, page_addres << 
306                 return NULL;                   << 
307 out_free_pages:                                << 
308         __dma_direct_free_pages(dev, page, siz << 
309         return NULL;                           << 
310 out_leak_pages:                                << 
311         return NULL;                           << 
312 }                                                 199 }
313                                                   200 
314 void dma_direct_free(struct device *dev, size_ !! 201 void dma_direct_free_pages(struct device *dev, size_t size, void *cpu_addr,
315                 void *cpu_addr, dma_addr_t dma !! 202                 dma_addr_t dma_addr, unsigned long attrs)
316 {                                                 203 {
317         unsigned int page_order = get_order(si    204         unsigned int page_order = get_order(size);
318                                                   205 
319         if ((attrs & DMA_ATTR_NO_KERNEL_MAPPIN    206         if ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) &&
320             !force_dma_unencrypted(dev) && !is !! 207             !force_dma_unencrypted(dev)) {
321                 /* cpu_addr is a struct page c    208                 /* cpu_addr is a struct page cookie, not a kernel address */
322                 dma_free_contiguous(dev, cpu_a    209                 dma_free_contiguous(dev, cpu_addr, size);
323                 return;                           210                 return;
324         }                                         211         }
325                                                   212 
326         if (IS_ENABLED(CONFIG_ARCH_HAS_DMA_ALL !! 213         if (IS_ENABLED(CONFIG_DMA_DIRECT_REMAP) &&
327             !dev_is_dma_coherent(dev) &&       !! 214             dma_free_from_pool(cpu_addr, PAGE_ALIGN(size)))
328             !is_swiotlb_for_alloc(dev)) {      << 
329                 arch_dma_free(dev, size, cpu_a << 
330                 return;                           215                 return;
331         }                                      << 
332                                                   216 
333         if (IS_ENABLED(CONFIG_DMA_GLOBAL_POOL) !! 217         if (force_dma_unencrypted(dev))
334             !dev_is_dma_coherent(dev)) {       !! 218                 set_memory_encrypted((unsigned long)cpu_addr, 1 << page_order);
335                 if (!dma_release_from_global_c << 
336                         WARN_ON_ONCE(1);       << 
337                 return;                        << 
338         }                                      << 
339                                                << 
340         /* If cpu_addr is not from an atomic p << 
341         if (IS_ENABLED(CONFIG_DMA_COHERENT_POO << 
342             dma_free_from_pool(dev, cpu_addr,  << 
343                 return;                        << 
344                                                   219 
345         if (is_vmalloc_addr(cpu_addr)) {       !! 220         if (IS_ENABLED(CONFIG_DMA_REMAP) && is_vmalloc_addr(cpu_addr))
346                 vunmap(cpu_addr);                 221                 vunmap(cpu_addr);
347         } else {                               << 
348                 if (IS_ENABLED(CONFIG_ARCH_HAS << 
349                         arch_dma_clear_uncache << 
350                 if (dma_set_encrypted(dev, cpu << 
351                         return;                << 
352         }                                      << 
353                                                   222 
354         __dma_direct_free_pages(dev, dma_direc !! 223         dma_free_contiguous(dev, dma_direct_to_page(dev, dma_addr), size);
355 }                                                 224 }
356                                                   225 
357 struct page *dma_direct_alloc_pages(struct dev !! 226 void *dma_direct_alloc(struct device *dev, size_t size,
358                 dma_addr_t *dma_handle, enum d !! 227                 dma_addr_t *dma_handle, gfp_t gfp, unsigned long attrs)
359 {                                                 228 {
360         struct page *page;                     !! 229         if (!IS_ENABLED(CONFIG_ARCH_HAS_UNCACHED_SEGMENT) &&
361         void *ret;                             !! 230             !IS_ENABLED(CONFIG_DMA_DIRECT_REMAP) &&
362                                                !! 231             dma_alloc_need_uncached(dev, attrs))
363         if (force_dma_unencrypted(dev) && dma_ !! 232                 return arch_dma_alloc(dev, size, dma_handle, gfp, attrs);
364                 return dma_direct_alloc_from_p !! 233         return dma_direct_alloc_pages(dev, size, dma_handle, gfp, attrs);
365                                                !! 234 }
366         page = __dma_direct_alloc_pages(dev, s << 
367         if (!page)                             << 
368                 return NULL;                   << 
369                                                   235 
370         ret = page_address(page);              !! 236 void dma_direct_free(struct device *dev, size_t size,
371         if (dma_set_decrypted(dev, ret, size)) !! 237                 void *cpu_addr, dma_addr_t dma_addr, unsigned long attrs)
372                 goto out_leak_pages;           !! 238 {
373         memset(ret, 0, size);                  !! 239         if (!IS_ENABLED(CONFIG_ARCH_HAS_UNCACHED_SEGMENT) &&
374         *dma_handle = phys_to_dma_direct(dev,  !! 240             !IS_ENABLED(CONFIG_DMA_DIRECT_REMAP) &&
375         return page;                           !! 241             dma_alloc_need_uncached(dev, attrs))
376 out_leak_pages:                                !! 242                 arch_dma_free(dev, size, cpu_addr, dma_addr, attrs);
377         return NULL;                           !! 243         else
                                                   >> 244                 dma_direct_free_pages(dev, size, cpu_addr, dma_addr, attrs);
378 }                                                 245 }
379                                                   246 
380 void dma_direct_free_pages(struct device *dev, !! 247 #if defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_DEVICE) || \
381                 struct page *page, dma_addr_t  !! 248     defined(CONFIG_SWIOTLB)
382                 enum dma_data_direction dir)   !! 249 void dma_direct_sync_single_for_device(struct device *dev,
                                                   >> 250                 dma_addr_t addr, size_t size, enum dma_data_direction dir)
383 {                                                 251 {
384         void *vaddr = page_address(page);      !! 252         phys_addr_t paddr = dma_to_phys(dev, addr);
385                                                   253 
386         /* If cpu_addr is not from an atomic p !! 254         if (unlikely(is_swiotlb_buffer(paddr)))
387         if (IS_ENABLED(CONFIG_DMA_COHERENT_POO !! 255                 swiotlb_tbl_sync_single(dev, paddr, size, dir, SYNC_FOR_DEVICE);
388             dma_free_from_pool(dev, vaddr, siz << 
389                 return;                        << 
390                                                   256 
391         if (dma_set_encrypted(dev, vaddr, size !! 257         if (!dev_is_dma_coherent(dev))
392                 return;                        !! 258                 arch_sync_dma_for_device(paddr, size, dir);
393         __dma_direct_free_pages(dev, page, siz << 
394 }                                                 259 }
                                                   >> 260 EXPORT_SYMBOL(dma_direct_sync_single_for_device);
395                                                   261 
396 #if defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_DEVIC << 
397     defined(CONFIG_SWIOTLB)                    << 
398 void dma_direct_sync_sg_for_device(struct devi    262 void dma_direct_sync_sg_for_device(struct device *dev,
399                 struct scatterlist *sgl, int n    263                 struct scatterlist *sgl, int nents, enum dma_data_direction dir)
400 {                                                 264 {
401         struct scatterlist *sg;                   265         struct scatterlist *sg;
402         int i;                                    266         int i;
403                                                   267 
404         for_each_sg(sgl, sg, nents, i) {          268         for_each_sg(sgl, sg, nents, i) {
405                 phys_addr_t paddr = dma_to_phy    269                 phys_addr_t paddr = dma_to_phys(dev, sg_dma_address(sg));
406                                                   270 
407                 swiotlb_sync_single_for_device !! 271                 if (unlikely(is_swiotlb_buffer(paddr)))
                                                   >> 272                         swiotlb_tbl_sync_single(dev, paddr, sg->length,
                                                   >> 273                                         dir, SYNC_FOR_DEVICE);
408                                                   274 
409                 if (!dev_is_dma_coherent(dev))    275                 if (!dev_is_dma_coherent(dev))
410                         arch_sync_dma_for_devi    276                         arch_sync_dma_for_device(paddr, sg->length,
411                                         dir);     277                                         dir);
412         }                                         278         }
413 }                                                 279 }
                                                   >> 280 EXPORT_SYMBOL(dma_direct_sync_sg_for_device);
414 #endif                                            281 #endif
415                                                   282 
416 #if defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU)     283 #if defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU) || \
417     defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU_A    284     defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU_ALL) || \
418     defined(CONFIG_SWIOTLB)                       285     defined(CONFIG_SWIOTLB)
                                                   >> 286 void dma_direct_sync_single_for_cpu(struct device *dev,
                                                   >> 287                 dma_addr_t addr, size_t size, enum dma_data_direction dir)
                                                   >> 288 {
                                                   >> 289         phys_addr_t paddr = dma_to_phys(dev, addr);
                                                   >> 290 
                                                   >> 291         if (!dev_is_dma_coherent(dev)) {
                                                   >> 292                 arch_sync_dma_for_cpu(paddr, size, dir);
                                                   >> 293                 arch_sync_dma_for_cpu_all();
                                                   >> 294         }
                                                   >> 295 
                                                   >> 296         if (unlikely(is_swiotlb_buffer(paddr)))
                                                   >> 297                 swiotlb_tbl_sync_single(dev, paddr, size, dir, SYNC_FOR_CPU);
                                                   >> 298 }
                                                   >> 299 EXPORT_SYMBOL(dma_direct_sync_single_for_cpu);
                                                   >> 300 
419 void dma_direct_sync_sg_for_cpu(struct device     301 void dma_direct_sync_sg_for_cpu(struct device *dev,
420                 struct scatterlist *sgl, int n    302                 struct scatterlist *sgl, int nents, enum dma_data_direction dir)
421 {                                                 303 {
422         struct scatterlist *sg;                   304         struct scatterlist *sg;
423         int i;                                    305         int i;
424                                                   306 
425         for_each_sg(sgl, sg, nents, i) {          307         for_each_sg(sgl, sg, nents, i) {
426                 phys_addr_t paddr = dma_to_phy    308                 phys_addr_t paddr = dma_to_phys(dev, sg_dma_address(sg));
427                                                   309 
428                 if (!dev_is_dma_coherent(dev))    310                 if (!dev_is_dma_coherent(dev))
429                         arch_sync_dma_for_cpu(    311                         arch_sync_dma_for_cpu(paddr, sg->length, dir);
430                                                   312 
431                 swiotlb_sync_single_for_cpu(de !! 313                 if (unlikely(is_swiotlb_buffer(paddr)))
432                                                !! 314                         swiotlb_tbl_sync_single(dev, paddr, sg->length, dir,
433                 if (dir == DMA_FROM_DEVICE)    !! 315                                         SYNC_FOR_CPU);
434                         arch_dma_mark_clean(pa << 
435         }                                         316         }
436                                                   317 
437         if (!dev_is_dma_coherent(dev))            318         if (!dev_is_dma_coherent(dev))
438                 arch_sync_dma_for_cpu_all();      319                 arch_sync_dma_for_cpu_all();
439 }                                                 320 }
                                                   >> 321 EXPORT_SYMBOL(dma_direct_sync_sg_for_cpu);
                                                   >> 322 
                                                   >> 323 void dma_direct_unmap_page(struct device *dev, dma_addr_t addr,
                                                   >> 324                 size_t size, enum dma_data_direction dir, unsigned long attrs)
                                                   >> 325 {
                                                   >> 326         phys_addr_t phys = dma_to_phys(dev, addr);
                                                   >> 327 
                                                   >> 328         if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC))
                                                   >> 329                 dma_direct_sync_single_for_cpu(dev, addr, size, dir);
                                                   >> 330 
                                                   >> 331         if (unlikely(is_swiotlb_buffer(phys)))
                                                   >> 332                 swiotlb_tbl_unmap_single(dev, phys, size, size, dir, attrs);
                                                   >> 333 }
                                                   >> 334 EXPORT_SYMBOL(dma_direct_unmap_page);
440                                                   335 
441 /*                                             << 
442  * Unmaps segments, except for ones marked as  << 
443  * require any further action as they contain  << 
444  */                                            << 
445 void dma_direct_unmap_sg(struct device *dev, s    336 void dma_direct_unmap_sg(struct device *dev, struct scatterlist *sgl,
446                 int nents, enum dma_data_direc    337                 int nents, enum dma_data_direction dir, unsigned long attrs)
447 {                                                 338 {
448         struct scatterlist *sg;                   339         struct scatterlist *sg;
449         int i;                                    340         int i;
450                                                   341 
451         for_each_sg(sgl,  sg, nents, i) {      !! 342         for_each_sg(sgl, sg, nents, i)
452                 if (sg_dma_is_bus_address(sg)) !! 343                 dma_direct_unmap_page(dev, sg->dma_address, sg_dma_len(sg), dir,
453                         sg_dma_unmark_bus_addr !! 344                              attrs);
454                 else                           << 
455                         dma_direct_unmap_page( << 
456                                                << 
457         }                                      << 
458 }                                                 345 }
                                                   >> 346 EXPORT_SYMBOL(dma_direct_unmap_sg);
459 #endif                                            347 #endif
460                                                   348 
                                                   >> 349 dma_addr_t dma_direct_map_page(struct device *dev, struct page *page,
                                                   >> 350                 unsigned long offset, size_t size, enum dma_data_direction dir,
                                                   >> 351                 unsigned long attrs)
                                                   >> 352 {
                                                   >> 353         phys_addr_t phys = page_to_phys(page) + offset;
                                                   >> 354         dma_addr_t dma_addr = phys_to_dma(dev, phys);
                                                   >> 355 
                                                   >> 356         if (unlikely(swiotlb_force == SWIOTLB_FORCE))
                                                   >> 357                 return swiotlb_map(dev, phys, size, dir, attrs);
                                                   >> 358 
                                                   >> 359         if (unlikely(!dma_capable(dev, dma_addr, size, true))) {
                                                   >> 360                 if (swiotlb_force != SWIOTLB_NO_FORCE)
                                                   >> 361                         return swiotlb_map(dev, phys, size, dir, attrs);
                                                   >> 362 
                                                   >> 363                 dev_WARN_ONCE(dev, 1,
                                                   >> 364                              "DMA addr %pad+%zu overflow (mask %llx, bus limit %llx).\n",
                                                   >> 365                              &dma_addr, size, *dev->dma_mask, dev->bus_dma_limit);
                                                   >> 366                 return DMA_MAPPING_ERROR;
                                                   >> 367         }
                                                   >> 368 
                                                   >> 369         if (!dev_is_dma_coherent(dev) && !(attrs & DMA_ATTR_SKIP_CPU_SYNC))
                                                   >> 370                 arch_sync_dma_for_device(phys, size, dir);
                                                   >> 371         return dma_addr;
                                                   >> 372 }
                                                   >> 373 EXPORT_SYMBOL(dma_direct_map_page);
                                                   >> 374 
461 int dma_direct_map_sg(struct device *dev, stru    375 int dma_direct_map_sg(struct device *dev, struct scatterlist *sgl, int nents,
462                 enum dma_data_direction dir, u    376                 enum dma_data_direction dir, unsigned long attrs)
463 {                                                 377 {
464         struct pci_p2pdma_map_state p2pdma_sta !! 378         int i;
465         enum pci_p2pdma_map_type map;          << 
466         struct scatterlist *sg;                   379         struct scatterlist *sg;
467         int i, ret;                            << 
468                                                   380 
469         for_each_sg(sgl, sg, nents, i) {          381         for_each_sg(sgl, sg, nents, i) {
470                 if (is_pci_p2pdma_page(sg_page << 
471                         map = pci_p2pdma_map_s << 
472                         switch (map) {         << 
473                         case PCI_P2PDMA_MAP_BU << 
474                                 continue;      << 
475                         case PCI_P2PDMA_MAP_TH << 
476                                 /*             << 
477                                  * Any P2P map << 
478                                  * host bridge << 
479                                  * address and << 
480                                  * done with d << 
481                                  */            << 
482                                 break;         << 
483                         default:               << 
484                                 ret = -EREMOTE << 
485                                 goto out_unmap << 
486                         }                      << 
487                 }                              << 
488                                                << 
489                 sg->dma_address = dma_direct_m    382                 sg->dma_address = dma_direct_map_page(dev, sg_page(sg),
490                                 sg->offset, sg    383                                 sg->offset, sg->length, dir, attrs);
491                 if (sg->dma_address == DMA_MAP !! 384                 if (sg->dma_address == DMA_MAPPING_ERROR)
492                         ret = -EIO;            << 
493                         goto out_unmap;           385                         goto out_unmap;
494                 }                              << 
495                 sg_dma_len(sg) = sg->length;      386                 sg_dma_len(sg) = sg->length;
496         }                                         387         }
497                                                   388 
498         return nents;                             389         return nents;
499                                                   390 
500 out_unmap:                                        391 out_unmap:
501         dma_direct_unmap_sg(dev, sgl, i, dir,     392         dma_direct_unmap_sg(dev, sgl, i, dir, attrs | DMA_ATTR_SKIP_CPU_SYNC);
502         return ret;                            !! 393         return 0;
503 }                                                 394 }
                                                   >> 395 EXPORT_SYMBOL(dma_direct_map_sg);
504                                                   396 
505 dma_addr_t dma_direct_map_resource(struct devi    397 dma_addr_t dma_direct_map_resource(struct device *dev, phys_addr_t paddr,
506                 size_t size, enum dma_data_dir    398                 size_t size, enum dma_data_direction dir, unsigned long attrs)
507 {                                                 399 {
508         dma_addr_t dma_addr = paddr;              400         dma_addr_t dma_addr = paddr;
509                                                   401 
510         if (unlikely(!dma_capable(dev, dma_add    402         if (unlikely(!dma_capable(dev, dma_addr, size, false))) {
511                 dev_err_once(dev,                 403                 dev_err_once(dev,
512                              "DMA addr %pad+%z    404                              "DMA addr %pad+%zu overflow (mask %llx, bus limit %llx).\n",
513                              &dma_addr, size,     405                              &dma_addr, size, *dev->dma_mask, dev->bus_dma_limit);
514                 WARN_ON_ONCE(1);                  406                 WARN_ON_ONCE(1);
515                 return DMA_MAPPING_ERROR;         407                 return DMA_MAPPING_ERROR;
516         }                                         408         }
517                                                   409 
518         return dma_addr;                          410         return dma_addr;
519 }                                                 411 }
                                                   >> 412 EXPORT_SYMBOL(dma_direct_map_resource);
520                                                   413 
521 int dma_direct_get_sgtable(struct device *dev,    414 int dma_direct_get_sgtable(struct device *dev, struct sg_table *sgt,
522                 void *cpu_addr, dma_addr_t dma    415                 void *cpu_addr, dma_addr_t dma_addr, size_t size,
523                 unsigned long attrs)              416                 unsigned long attrs)
524 {                                                 417 {
525         struct page *page = dma_direct_to_page    418         struct page *page = dma_direct_to_page(dev, dma_addr);
526         int ret;                                  419         int ret;
527                                                   420 
528         ret = sg_alloc_table(sgt, 1, GFP_KERNE    421         ret = sg_alloc_table(sgt, 1, GFP_KERNEL);
529         if (!ret)                                 422         if (!ret)
530                 sg_set_page(sgt->sgl, page, PA    423                 sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0);
531         return ret;                               424         return ret;
532 }                                                 425 }
533                                                   426 
                                                   >> 427 #ifdef CONFIG_MMU
534 bool dma_direct_can_mmap(struct device *dev)      428 bool dma_direct_can_mmap(struct device *dev)
535 {                                                 429 {
536         return dev_is_dma_coherent(dev) ||        430         return dev_is_dma_coherent(dev) ||
537                 IS_ENABLED(CONFIG_DMA_NONCOHER    431                 IS_ENABLED(CONFIG_DMA_NONCOHERENT_MMAP);
538 }                                                 432 }
539                                                   433 
540 int dma_direct_mmap(struct device *dev, struct    434 int dma_direct_mmap(struct device *dev, struct vm_area_struct *vma,
541                 void *cpu_addr, dma_addr_t dma    435                 void *cpu_addr, dma_addr_t dma_addr, size_t size,
542                 unsigned long attrs)              436                 unsigned long attrs)
543 {                                                 437 {
544         unsigned long user_count = vma_pages(v    438         unsigned long user_count = vma_pages(vma);
545         unsigned long count = PAGE_ALIGN(size)    439         unsigned long count = PAGE_ALIGN(size) >> PAGE_SHIFT;
546         unsigned long pfn = PHYS_PFN(dma_to_ph    440         unsigned long pfn = PHYS_PFN(dma_to_phys(dev, dma_addr));
547         int ret = -ENXIO;                         441         int ret = -ENXIO;
548                                                   442 
549         vma->vm_page_prot = dma_pgprot(dev, vm    443         vma->vm_page_prot = dma_pgprot(dev, vma->vm_page_prot, attrs);
550         if (force_dma_unencrypted(dev))        << 
551                 vma->vm_page_prot = pgprot_dec << 
552                                                   444 
553         if (dma_mmap_from_dev_coherent(dev, vm    445         if (dma_mmap_from_dev_coherent(dev, vma, cpu_addr, size, &ret))
554                 return ret;                       446                 return ret;
555         if (dma_mmap_from_global_coherent(vma, << 
556                 return ret;                    << 
557                                                   447 
558         if (vma->vm_pgoff >= count || user_cou    448         if (vma->vm_pgoff >= count || user_count > count - vma->vm_pgoff)
559                 return -ENXIO;                    449                 return -ENXIO;
560         return remap_pfn_range(vma, vma->vm_st    450         return remap_pfn_range(vma, vma->vm_start, pfn + vma->vm_pgoff,
561                         user_count << PAGE_SHI    451                         user_count << PAGE_SHIFT, vma->vm_page_prot);
562 }                                                 452 }
                                                   >> 453 #else /* CONFIG_MMU */
                                                   >> 454 bool dma_direct_can_mmap(struct device *dev)
                                                   >> 455 {
                                                   >> 456         return false;
                                                   >> 457 }
                                                   >> 458 
                                                   >> 459 int dma_direct_mmap(struct device *dev, struct vm_area_struct *vma,
                                                   >> 460                 void *cpu_addr, dma_addr_t dma_addr, size_t size,
                                                   >> 461                 unsigned long attrs)
                                                   >> 462 {
                                                   >> 463         return -ENXIO;
                                                   >> 464 }
                                                   >> 465 #endif /* CONFIG_MMU */
563                                                   466 
564 int dma_direct_supported(struct device *dev, u    467 int dma_direct_supported(struct device *dev, u64 mask)
565 {                                                 468 {
566         u64 min_mask = (max_pfn - 1) << PAGE_S    469         u64 min_mask = (max_pfn - 1) << PAGE_SHIFT;
567                                                   470 
568         /*                                        471         /*
569          * Because 32-bit DMA masks are so com    472          * Because 32-bit DMA masks are so common we expect every architecture
570          * to be able to satisfy them - either    473          * to be able to satisfy them - either by not supporting more physical
571          * memory, or by providing a ZONE_DMA3    474          * memory, or by providing a ZONE_DMA32.  If neither is the case, the
572          * architecture needs to use an IOMMU     475          * architecture needs to use an IOMMU instead of the direct mapping.
573          */                                       476          */
574         if (mask >= DMA_BIT_MASK(32))             477         if (mask >= DMA_BIT_MASK(32))
575                 return 1;                         478                 return 1;
576                                                   479 
577         /*                                        480         /*
578          * This check needs to be against the  !! 481          * This check needs to be against the actual bit mask value, so
579          * phys_to_dma_unencrypted() here so t !! 482          * use __phys_to_dma() here so that the SME encryption mask isn't
580          * part of the check.                     483          * part of the check.
581          */                                       484          */
582         if (IS_ENABLED(CONFIG_ZONE_DMA))          485         if (IS_ENABLED(CONFIG_ZONE_DMA))
583                 min_mask = min_t(u64, min_mask    486                 min_mask = min_t(u64, min_mask, DMA_BIT_MASK(zone_dma_bits));
584         return mask >= phys_to_dma_unencrypted !! 487         return mask >= __phys_to_dma(dev, min_mask);
585 }                                              << 
586                                                << 
587 /*                                             << 
588  * To check whether all ram resource ranges ar << 
589  * Returns 0 when further check is needed      << 
590  * Returns 1 if there is some RAM range can't  << 
591  */                                            << 
592 static int check_ram_in_range_map(unsigned lon << 
593                                   unsigned lon << 
594 {                                              << 
595         unsigned long end_pfn = start_pfn + nr << 
596         const struct bus_dma_region *bdr = NUL << 
597         const struct bus_dma_region *m;        << 
598         struct device *dev = data;             << 
599                                                << 
600         while (start_pfn < end_pfn) {          << 
601                 for (m = dev->dma_range_map; P << 
602                         unsigned long cpu_star << 
603                                                << 
604                         if (start_pfn >= cpu_s << 
605                             start_pfn - cpu_st << 
606                                 bdr = m;       << 
607                                 break;         << 
608                         }                      << 
609                 }                              << 
610                 if (!bdr)                      << 
611                         return 1;              << 
612                                                << 
613                 start_pfn = PFN_DOWN(bdr->cpu_ << 
614         }                                      << 
615                                                << 
616         return 0;                              << 
617 }                                              << 
618                                                << 
619 bool dma_direct_all_ram_mapped(struct device * << 
620 {                                              << 
621         if (!dev->dma_range_map)               << 
622                 return true;                   << 
623         return !walk_system_ram_range(0, PFN_D << 
624                                       check_ra << 
625 }                                                 488 }
626                                                   489 
627 size_t dma_direct_max_mapping_size(struct devi    490 size_t dma_direct_max_mapping_size(struct device *dev)
628 {                                                 491 {
629         /* If SWIOTLB is active, use its maxim    492         /* If SWIOTLB is active, use its maximum mapping size */
630         if (is_swiotlb_active(dev) &&          !! 493         if (is_swiotlb_active() &&
631             (dma_addressing_limited(dev) || is !! 494             (dma_addressing_limited(dev) || swiotlb_force == SWIOTLB_FORCE))
632                 return swiotlb_max_mapping_siz    495                 return swiotlb_max_mapping_size(dev);
633         return SIZE_MAX;                          496         return SIZE_MAX;
634 }                                              << 
635                                                << 
636 bool dma_direct_need_sync(struct device *dev,  << 
637 {                                              << 
638         return !dev_is_dma_coherent(dev) ||    << 
639                swiotlb_find_pool(dev, dma_to_p << 
640 }                                              << 
641                                                << 
642 /**                                            << 
643  * dma_direct_set_offset - Assign scalar offse << 
644  * @dev:        device pointer; needed to "own << 
645  * @cpu_start:  beginning of memory region cov << 
646  * @dma_start:  beginning of DMA/PCI region co << 
647  * @size:       size of the region.            << 
648  *                                             << 
649  * This is for the simple case of a uniform of << 
650  * be discovered by "dma-ranges".              << 
651  *                                             << 
652  * It returns -ENOMEM if out of memory, -EINVA << 
653  * already exists, 0 otherwise.                << 
654  *                                             << 
655  * Note: any call to this from a driver is a b << 
656  * to be described by the device tree or other << 
657  */                                            << 
658 int dma_direct_set_offset(struct device *dev,  << 
659                          dma_addr_t dma_start, << 
660 {                                              << 
661         struct bus_dma_region *map;            << 
662         u64 offset = (u64)cpu_start - (u64)dma << 
663                                                << 
664         if (dev->dma_range_map) {              << 
665                 dev_err(dev, "attempt to add D << 
666                 return -EINVAL;                << 
667         }                                      << 
668                                                << 
669         if (!offset)                           << 
670                 return 0;                      << 
671                                                << 
672         map = kcalloc(2, sizeof(*map), GFP_KER << 
673         if (!map)                              << 
674                 return -ENOMEM;                << 
675         map[0].cpu_start = cpu_start;          << 
676         map[0].dma_start = dma_start;          << 
677         map[0].size = size;                    << 
678         dev->dma_range_map = map;              << 
679         return 0;                              << 
680 }                                                 497 }
681                                                   498 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

sflogo.php