~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/kernel/dma/direct.c

Version: ~ [ linux-6.11.5 ] ~ [ linux-6.10.14 ] ~ [ linux-6.9.12 ] ~ [ linux-6.8.12 ] ~ [ linux-6.7.12 ] ~ [ linux-6.6.58 ] ~ [ linux-6.5.13 ] ~ [ linux-6.4.16 ] ~ [ linux-6.3.13 ] ~ [ linux-6.2.16 ] ~ [ linux-6.1.114 ] ~ [ linux-6.0.19 ] ~ [ linux-5.19.17 ] ~ [ linux-5.18.19 ] ~ [ linux-5.17.15 ] ~ [ linux-5.16.20 ] ~ [ linux-5.15.169 ] ~ [ linux-5.14.21 ] ~ [ linux-5.13.19 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.228 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.284 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.322 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.336 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.337 ] ~ [ linux-4.4.302 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.9 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

Diff markup

Differences between /kernel/dma/direct.c (Version linux-6.11.5) and /kernel/dma/direct.c (Version linux-5.8.18)


  1 // SPDX-License-Identifier: GPL-2.0                 1 // SPDX-License-Identifier: GPL-2.0
  2 /*                                                  2 /*
  3  * Copyright (C) 2018-2020 Christoph Hellwig.  !!   3  * Copyright (C) 2018 Christoph Hellwig.
  4  *                                                  4  *
  5  * DMA operations that map physical memory dir      5  * DMA operations that map physical memory directly without using an IOMMU.
  6  */                                                 6  */
  7 #include <linux/memblock.h> /* for max_pfn */       7 #include <linux/memblock.h> /* for max_pfn */
  8 #include <linux/export.h>                           8 #include <linux/export.h>
  9 #include <linux/mm.h>                               9 #include <linux/mm.h>
 10 #include <linux/dma-map-ops.h>                 !!  10 #include <linux/dma-direct.h>
 11 #include <linux/scatterlist.h>                     11 #include <linux/scatterlist.h>
                                                   >>  12 #include <linux/dma-contiguous.h>
                                                   >>  13 #include <linux/dma-noncoherent.h>
 12 #include <linux/pfn.h>                             14 #include <linux/pfn.h>
 13 #include <linux/vmalloc.h>                         15 #include <linux/vmalloc.h>
 14 #include <linux/set_memory.h>                      16 #include <linux/set_memory.h>
 15 #include <linux/slab.h>                        !!  17 #include <linux/swiotlb.h>
 16 #include "direct.h"                            << 
 17                                                    18 
 18 /*                                                 19 /*
 19  * Most architectures use ZONE_DMA for the fir !!  20  * Most architectures use ZONE_DMA for the first 16 Megabytes, but some use it
 20  * it for entirely different regions. In that      21  * it for entirely different regions. In that case the arch code needs to
 21  * override the variable below for dma-direct      22  * override the variable below for dma-direct to work properly.
 22  */                                                23  */
 23 unsigned int zone_dma_bits __ro_after_init = 2     24 unsigned int zone_dma_bits __ro_after_init = 24;
 24                                                    25 
 25 static inline dma_addr_t phys_to_dma_direct(st     26 static inline dma_addr_t phys_to_dma_direct(struct device *dev,
 26                 phys_addr_t phys)                  27                 phys_addr_t phys)
 27 {                                                  28 {
 28         if (force_dma_unencrypted(dev))            29         if (force_dma_unencrypted(dev))
 29                 return phys_to_dma_unencrypted !!  30                 return __phys_to_dma(dev, phys);
 30         return phys_to_dma(dev, phys);             31         return phys_to_dma(dev, phys);
 31 }                                                  32 }
 32                                                    33 
 33 static inline struct page *dma_direct_to_page(     34 static inline struct page *dma_direct_to_page(struct device *dev,
 34                 dma_addr_t dma_addr)               35                 dma_addr_t dma_addr)
 35 {                                                  36 {
 36         return pfn_to_page(PHYS_PFN(dma_to_phy     37         return pfn_to_page(PHYS_PFN(dma_to_phys(dev, dma_addr)));
 37 }                                                  38 }
 38                                                    39 
 39 u64 dma_direct_get_required_mask(struct device     40 u64 dma_direct_get_required_mask(struct device *dev)
 40 {                                                  41 {
 41         phys_addr_t phys = (phys_addr_t)(max_p     42         phys_addr_t phys = (phys_addr_t)(max_pfn - 1) << PAGE_SHIFT;
 42         u64 max_dma = phys_to_dma_direct(dev,      43         u64 max_dma = phys_to_dma_direct(dev, phys);
 43                                                    44 
 44         return (1ULL << (fls64(max_dma) - 1))      45         return (1ULL << (fls64(max_dma) - 1)) * 2 - 1;
 45 }                                                  46 }
 46                                                    47 
 47 static gfp_t dma_direct_optimal_gfp_mask(struc !!  48 static gfp_t dma_direct_optimal_gfp_mask(struct device *dev, u64 dma_mask,
                                                   >>  49                                   u64 *phys_limit)
 48 {                                                  50 {
 49         u64 dma_limit = min_not_zero(          !!  51         u64 dma_limit = min_not_zero(dma_mask, dev->bus_dma_limit);
 50                 dev->coherent_dma_mask,        !!  52 
 51                 dev->bus_dma_limit);           !!  53         if (force_dma_unencrypted(dev))
                                                   >>  54                 *phys_limit = __dma_to_phys(dev, dma_limit);
                                                   >>  55         else
                                                   >>  56                 *phys_limit = dma_to_phys(dev, dma_limit);
 52                                                    57 
 53         /*                                         58         /*
 54          * Optimistically try the zone that th     59          * Optimistically try the zone that the physical address mask falls
 55          * into first.  If that returns memory     60          * into first.  If that returns memory that isn't actually addressable
 56          * we will fallback to the next lower      61          * we will fallback to the next lower zone and try again.
 57          *                                         62          *
 58          * Note that GFP_DMA32 and GFP_DMA are     63          * Note that GFP_DMA32 and GFP_DMA are no ops without the corresponding
 59          * zones.                                  64          * zones.
 60          */                                        65          */
 61         *phys_limit = dma_to_phys(dev, dma_lim << 
 62         if (*phys_limit <= DMA_BIT_MASK(zone_d     66         if (*phys_limit <= DMA_BIT_MASK(zone_dma_bits))
 63                 return GFP_DMA;                    67                 return GFP_DMA;
 64         if (*phys_limit <= DMA_BIT_MASK(32))       68         if (*phys_limit <= DMA_BIT_MASK(32))
 65                 return GFP_DMA32;                  69                 return GFP_DMA32;
 66         return 0;                                  70         return 0;
 67 }                                                  71 }
 68                                                    72 
 69 bool dma_coherent_ok(struct device *dev, phys_ !!  73 static bool dma_coherent_ok(struct device *dev, phys_addr_t phys, size_t size)
 70 {                                              << 
 71         dma_addr_t dma_addr = phys_to_dma_dire << 
 72                                                << 
 73         if (dma_addr == DMA_MAPPING_ERROR)     << 
 74                 return false;                  << 
 75         return dma_addr + size - 1 <=          << 
 76                 min_not_zero(dev->coherent_dma << 
 77 }                                              << 
 78                                                << 
 79 static int dma_set_decrypted(struct device *de << 
 80 {                                                  74 {
 81         if (!force_dma_unencrypted(dev))       !!  75         return phys_to_dma_direct(dev, phys) + size - 1 <=
 82                 return 0;                      !!  76                         min_not_zero(dev->coherent_dma_mask, dev->bus_dma_limit);
 83         return set_memory_decrypted((unsigned  << 
 84 }                                                  77 }
 85                                                    78 
 86 static int dma_set_encrypted(struct device *de !!  79 /*
 87 {                                              !!  80  * Decrypting memory is allowed to block, so if this device requires
 88         int ret;                               !!  81  * unencrypted memory it must come from atomic pools.
 89                                                !!  82  */
 90         if (!force_dma_unencrypted(dev))       !!  83 static inline bool dma_should_alloc_from_pool(struct device *dev, gfp_t gfp,
 91                 return 0;                      !!  84                                               unsigned long attrs)
 92         ret = set_memory_encrypted((unsigned l << 
 93         if (ret)                               << 
 94                 pr_warn_ratelimited("leaking D << 
 95         return ret;                            << 
 96 }                                              << 
 97                                                << 
 98 static void __dma_direct_free_pages(struct dev << 
 99                                     size_t siz << 
100 {                                                  85 {
101         if (swiotlb_free(dev, page, size))     !!  86         if (!IS_ENABLED(CONFIG_DMA_COHERENT_POOL))
102                 return;                        !!  87                 return false;
103         dma_free_contiguous(dev, page, size);  !!  88         if (gfpflags_allow_blocking(gfp))
                                                   >>  89                 return false;
                                                   >>  90         if (force_dma_unencrypted(dev))
                                                   >>  91                 return true;
                                                   >>  92         if (!IS_ENABLED(CONFIG_DMA_DIRECT_REMAP))
                                                   >>  93                 return false;
                                                   >>  94         if (dma_alloc_need_uncached(dev, attrs))
                                                   >>  95                 return true;
                                                   >>  96         return false;
104 }                                                  97 }
105                                                    98 
106 static struct page *dma_direct_alloc_swiotlb(s !!  99 static inline bool dma_should_free_from_pool(struct device *dev,
                                                   >> 100                                              unsigned long attrs)
107 {                                                 101 {
108         struct page *page = swiotlb_alloc(dev, !! 102         if (IS_ENABLED(CONFIG_DMA_COHERENT_POOL))
109                                                !! 103                 return true;
110         if (page && !dma_coherent_ok(dev, page !! 104         if ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) &&
111                 swiotlb_free(dev, page, size); !! 105             !force_dma_unencrypted(dev))
112                 return NULL;                   !! 106                 return false;
113         }                                      !! 107         if (IS_ENABLED(CONFIG_DMA_DIRECT_REMAP))
114                                                !! 108                 return true;
115         return page;                           !! 109         return false;
116 }                                                 110 }
117                                                   111 
118 static struct page *__dma_direct_alloc_pages(s    112 static struct page *__dma_direct_alloc_pages(struct device *dev, size_t size,
119                 gfp_t gfp, bool allow_highmem) !! 113                 gfp_t gfp, unsigned long attrs)
120 {                                                 114 {
121         int node = dev_to_node(dev);              115         int node = dev_to_node(dev);
122         struct page *page = NULL;                 116         struct page *page = NULL;
123         u64 phys_limit;                           117         u64 phys_limit;
124                                                   118 
125         WARN_ON_ONCE(!PAGE_ALIGNED(size));        119         WARN_ON_ONCE(!PAGE_ALIGNED(size));
126                                                   120 
127         if (is_swiotlb_for_alloc(dev))         !! 121         if (attrs & DMA_ATTR_NO_WARN)
128                 return dma_direct_alloc_swiotl !! 122                 gfp |= __GFP_NOWARN;
129                                                   123 
130         gfp |= dma_direct_optimal_gfp_mask(dev !! 124         /* we always manually zero the memory once we are done: */
                                                   >> 125         gfp &= ~__GFP_ZERO;
                                                   >> 126         gfp |= dma_direct_optimal_gfp_mask(dev, dev->coherent_dma_mask,
                                                   >> 127                                            &phys_limit);
131         page = dma_alloc_contiguous(dev, size,    128         page = dma_alloc_contiguous(dev, size, gfp);
132         if (page) {                            !! 129         if (page && !dma_coherent_ok(dev, page_to_phys(page), size)) {
133                 if (!dma_coherent_ok(dev, page !! 130                 dma_free_contiguous(dev, page, size);
134                     (!allow_highmem && PageHig !! 131                 page = NULL;
135                         dma_free_contiguous(de << 
136                         page = NULL;           << 
137                 }                              << 
138         }                                         132         }
139 again:                                            133 again:
140         if (!page)                                134         if (!page)
141                 page = alloc_pages_node(node,     135                 page = alloc_pages_node(node, gfp, get_order(size));
142         if (page && !dma_coherent_ok(dev, page    136         if (page && !dma_coherent_ok(dev, page_to_phys(page), size)) {
143                 dma_free_contiguous(dev, page,    137                 dma_free_contiguous(dev, page, size);
144                 page = NULL;                      138                 page = NULL;
145                                                   139 
146                 if (IS_ENABLED(CONFIG_ZONE_DMA    140                 if (IS_ENABLED(CONFIG_ZONE_DMA32) &&
147                     phys_limit < DMA_BIT_MASK(    141                     phys_limit < DMA_BIT_MASK(64) &&
148                     !(gfp & (GFP_DMA32 | GFP_D    142                     !(gfp & (GFP_DMA32 | GFP_DMA))) {
149                         gfp |= GFP_DMA32;         143                         gfp |= GFP_DMA32;
150                         goto again;               144                         goto again;
151                 }                                 145                 }
152                                                   146 
153                 if (IS_ENABLED(CONFIG_ZONE_DMA    147                 if (IS_ENABLED(CONFIG_ZONE_DMA) && !(gfp & GFP_DMA)) {
154                         gfp = (gfp & ~GFP_DMA3    148                         gfp = (gfp & ~GFP_DMA32) | GFP_DMA;
155                         goto again;               149                         goto again;
156                 }                                 150                 }
157         }                                         151         }
158                                                   152 
159         return page;                              153         return page;
160 }                                                 154 }
161                                                   155 
162 /*                                             !! 156 void *dma_direct_alloc_pages(struct device *dev, size_t size,
163  * Check if a potentially blocking operations  << 
164  * pools for the given device/gfp.             << 
165  */                                            << 
166 static bool dma_direct_use_pool(struct device  << 
167 {                                              << 
168         return !gfpflags_allow_blocking(gfp) & << 
169 }                                              << 
170                                                << 
171 static void *dma_direct_alloc_from_pool(struct << 
172                 dma_addr_t *dma_handle, gfp_t  << 
173 {                                              << 
174         struct page *page;                     << 
175         u64 phys_limit;                        << 
176         void *ret;                             << 
177                                                << 
178         if (WARN_ON_ONCE(!IS_ENABLED(CONFIG_DM << 
179                 return NULL;                   << 
180                                                << 
181         gfp |= dma_direct_optimal_gfp_mask(dev << 
182         page = dma_alloc_from_pool(dev, size,  << 
183         if (!page)                             << 
184                 return NULL;                   << 
185         *dma_handle = phys_to_dma_direct(dev,  << 
186         return ret;                            << 
187 }                                              << 
188                                                << 
189 static void *dma_direct_alloc_no_mapping(struc << 
190                 dma_addr_t *dma_handle, gfp_t  << 
191 {                                              << 
192         struct page *page;                     << 
193                                                << 
194         page = __dma_direct_alloc_pages(dev, s << 
195         if (!page)                             << 
196                 return NULL;                   << 
197                                                << 
198         /* remove any dirty cache lines on the << 
199         if (!PageHighMem(page))                << 
200                 arch_dma_prep_coherent(page, s << 
201                                                << 
202         /* return the page pointer as the opaq << 
203         *dma_handle = phys_to_dma_direct(dev,  << 
204         return page;                           << 
205 }                                              << 
206                                                << 
207 void *dma_direct_alloc(struct device *dev, siz << 
208                 dma_addr_t *dma_handle, gfp_t     157                 dma_addr_t *dma_handle, gfp_t gfp, unsigned long attrs)
209 {                                                 158 {
210         bool remap = false, set_uncached = fal << 
211         struct page *page;                        159         struct page *page;
212         void *ret;                                160         void *ret;
                                                   >> 161         int err;
213                                                   162 
214         size = PAGE_ALIGN(size);                  163         size = PAGE_ALIGN(size);
215         if (attrs & DMA_ATTR_NO_WARN)          << 
216                 gfp |= __GFP_NOWARN;           << 
217                                                   164 
218         if ((attrs & DMA_ATTR_NO_KERNEL_MAPPIN !! 165         if (dma_should_alloc_from_pool(dev, gfp, attrs)) {
219             !force_dma_unencrypted(dev) && !is !! 166                 u64 phys_mask;
220                 return dma_direct_alloc_no_map << 
221                                                   167 
222         if (!dev_is_dma_coherent(dev)) {       !! 168                 gfp |= dma_direct_optimal_gfp_mask(dev, dev->coherent_dma_mask,
223                 if (IS_ENABLED(CONFIG_ARCH_HAS !! 169                                 &phys_mask);
224                     !is_swiotlb_for_alloc(dev) !! 170                 page = dma_alloc_from_pool(dev, size, &ret, gfp,
225                         return arch_dma_alloc( !! 171                                 dma_coherent_ok);
226                                                !! 172                 if (!page)
227                                                << 
228                 /*                             << 
229                  * If there is a global pool,  << 
230                  * non-coherent devices.       << 
231                  */                            << 
232                 if (IS_ENABLED(CONFIG_DMA_GLOB << 
233                         return dma_alloc_from_ << 
234                                         dma_ha << 
235                                                << 
236                 /*                             << 
237                  * Otherwise we require the ar << 
238                  * mark arbitrary parts of the << 
239                  * or remapped it uncached.    << 
240                  */                            << 
241                 set_uncached = IS_ENABLED(CONF << 
242                 remap = IS_ENABLED(CONFIG_DMA_ << 
243                 if (!set_uncached && !remap) { << 
244                         pr_warn_once("coherent << 
245                         return NULL;              173                         return NULL;
246                 }                              !! 174                 goto done;
247         }                                         175         }
248                                                   176 
249         /*                                     !! 177         page = __dma_direct_alloc_pages(dev, size, gfp, attrs);
250          * Remapping or decrypting memory may  << 
251          * the atomic pools instead if we aren << 
252          */                                    << 
253         if ((remap || force_dma_unencrypted(de << 
254             dma_direct_use_pool(dev, gfp))     << 
255                 return dma_direct_alloc_from_p << 
256                                                << 
257         /* we always manually zero the memory  << 
258         page = __dma_direct_alloc_pages(dev, s << 
259         if (!page)                                178         if (!page)
260                 return NULL;                      179                 return NULL;
261                                                   180 
262         /*                                     !! 181         if ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) &&
263          * dma_alloc_contiguous can return hig !! 182             !force_dma_unencrypted(dev)) {
264          * combination the cma= arguments and  !! 183                 /* remove any dirty cache lines on the kernel alias */
265          * remapped to return a kernel virtual !! 184                 if (!PageHighMem(page))
266          */                                    !! 185                         arch_dma_prep_coherent(page, size);
267         if (PageHighMem(page)) {               !! 186                 /* return the page pointer as the opaque cookie */
268                 remap = true;                  !! 187                 ret = page;
269                 set_uncached = false;          !! 188                 goto done;
270         }                                         189         }
271                                                   190 
272         if (remap) {                           !! 191         if ((IS_ENABLED(CONFIG_DMA_DIRECT_REMAP) &&
273                 pgprot_t prot = dma_pgprot(dev !! 192              dma_alloc_need_uncached(dev, attrs)) ||
274                                                !! 193             (IS_ENABLED(CONFIG_DMA_REMAP) && PageHighMem(page))) {
275                 if (force_dma_unencrypted(dev) << 
276                         prot = pgprot_decrypte << 
277                                                << 
278                 /* remove any dirty cache line    194                 /* remove any dirty cache lines on the kernel alias */
279                 arch_dma_prep_coherent(page, s    195                 arch_dma_prep_coherent(page, size);
280                                                   196 
281                 /* create a coherent mapping *    197                 /* create a coherent mapping */
282                 ret = dma_common_contiguous_re !! 198                 ret = dma_common_contiguous_remap(page, size,
                                                   >> 199                                 dma_pgprot(dev, PAGE_KERNEL, attrs),
283                                 __builtin_retu    200                                 __builtin_return_address(0));
284                 if (!ret)                         201                 if (!ret)
285                         goto out_free_pages;      202                         goto out_free_pages;
286         } else {                               !! 203                 if (force_dma_unencrypted(dev)) {
287                 ret = page_address(page);      !! 204                         err = set_memory_decrypted((unsigned long)ret,
288                 if (dma_set_decrypted(dev, ret !! 205                                                    1 << get_order(size));
289                         goto out_leak_pages;   !! 206                         if (err)
                                                   >> 207                                 goto out_free_pages;
                                                   >> 208                 }
                                                   >> 209                 memset(ret, 0, size);
                                                   >> 210                 goto done;
                                                   >> 211         }
                                                   >> 212 
                                                   >> 213         if (PageHighMem(page)) {
                                                   >> 214                 /*
                                                   >> 215                  * Depending on the cma= arguments and per-arch setup
                                                   >> 216                  * dma_alloc_contiguous could return highmem pages.
                                                   >> 217                  * Without remapping there is no way to return them here,
                                                   >> 218                  * so log an error and fail.
                                                   >> 219                  */
                                                   >> 220                 dev_info(dev, "Rejecting highmem page from CMA.\n");
                                                   >> 221                 goto out_free_pages;
                                                   >> 222         }
                                                   >> 223 
                                                   >> 224         ret = page_address(page);
                                                   >> 225         if (force_dma_unencrypted(dev)) {
                                                   >> 226                 err = set_memory_decrypted((unsigned long)ret,
                                                   >> 227                                            1 << get_order(size));
                                                   >> 228                 if (err)
                                                   >> 229                         goto out_free_pages;
290         }                                         230         }
291                                                   231 
292         memset(ret, 0, size);                     232         memset(ret, 0, size);
293                                                   233 
294         if (set_uncached) {                    !! 234         if (IS_ENABLED(CONFIG_ARCH_HAS_DMA_SET_UNCACHED) &&
                                                   >> 235             dma_alloc_need_uncached(dev, attrs)) {
295                 arch_dma_prep_coherent(page, s    236                 arch_dma_prep_coherent(page, size);
296                 ret = arch_dma_set_uncached(re    237                 ret = arch_dma_set_uncached(ret, size);
297                 if (IS_ERR(ret))                  238                 if (IS_ERR(ret))
298                         goto out_encrypt_pages    239                         goto out_encrypt_pages;
299         }                                         240         }
300                                                !! 241 done:
301         *dma_handle = phys_to_dma_direct(dev,  !! 242         if (force_dma_unencrypted(dev))
                                                   >> 243                 *dma_handle = __phys_to_dma(dev, page_to_phys(page));
                                                   >> 244         else
                                                   >> 245                 *dma_handle = phys_to_dma(dev, page_to_phys(page));
302         return ret;                               246         return ret;
303                                                   247 
304 out_encrypt_pages:                                248 out_encrypt_pages:
305         if (dma_set_encrypted(dev, page_addres !! 249         if (force_dma_unencrypted(dev)) {
306                 return NULL;                   !! 250                 err = set_memory_encrypted((unsigned long)page_address(page),
                                                   >> 251                                            1 << get_order(size));
                                                   >> 252                 /* If memory cannot be re-encrypted, it must be leaked */
                                                   >> 253                 if (err)
                                                   >> 254                         return NULL;
                                                   >> 255         }
307 out_free_pages:                                   256 out_free_pages:
308         __dma_direct_free_pages(dev, page, siz !! 257         dma_free_contiguous(dev, page, size);
309         return NULL;                           << 
310 out_leak_pages:                                << 
311         return NULL;                              258         return NULL;
312 }                                                 259 }
313                                                   260 
314 void dma_direct_free(struct device *dev, size_ !! 261 void dma_direct_free_pages(struct device *dev, size_t size, void *cpu_addr,
315                 void *cpu_addr, dma_addr_t dma !! 262                 dma_addr_t dma_addr, unsigned long attrs)
316 {                                                 263 {
317         unsigned int page_order = get_order(si    264         unsigned int page_order = get_order(size);
318                                                   265 
                                                   >> 266         /* If cpu_addr is not from an atomic pool, dma_free_from_pool() fails */
                                                   >> 267         if (dma_should_free_from_pool(dev, attrs) &&
                                                   >> 268             dma_free_from_pool(dev, cpu_addr, PAGE_ALIGN(size)))
                                                   >> 269                 return;
                                                   >> 270 
319         if ((attrs & DMA_ATTR_NO_KERNEL_MAPPIN    271         if ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) &&
320             !force_dma_unencrypted(dev) && !is !! 272             !force_dma_unencrypted(dev)) {
321                 /* cpu_addr is a struct page c    273                 /* cpu_addr is a struct page cookie, not a kernel address */
322                 dma_free_contiguous(dev, cpu_a    274                 dma_free_contiguous(dev, cpu_addr, size);
323                 return;                           275                 return;
324         }                                         276         }
325                                                   277 
326         if (IS_ENABLED(CONFIG_ARCH_HAS_DMA_ALL !! 278         if (force_dma_unencrypted(dev))
327             !dev_is_dma_coherent(dev) &&       !! 279                 set_memory_encrypted((unsigned long)cpu_addr, 1 << page_order);
328             !is_swiotlb_for_alloc(dev)) {      << 
329                 arch_dma_free(dev, size, cpu_a << 
330                 return;                        << 
331         }                                      << 
332                                                << 
333         if (IS_ENABLED(CONFIG_DMA_GLOBAL_POOL) << 
334             !dev_is_dma_coherent(dev)) {       << 
335                 if (!dma_release_from_global_c << 
336                         WARN_ON_ONCE(1);       << 
337                 return;                        << 
338         }                                      << 
339                                                << 
340         /* If cpu_addr is not from an atomic p << 
341         if (IS_ENABLED(CONFIG_DMA_COHERENT_POO << 
342             dma_free_from_pool(dev, cpu_addr,  << 
343                 return;                        << 
344                                                   280 
345         if (is_vmalloc_addr(cpu_addr)) {       !! 281         if (IS_ENABLED(CONFIG_DMA_REMAP) && is_vmalloc_addr(cpu_addr))
346                 vunmap(cpu_addr);                 282                 vunmap(cpu_addr);
347         } else {                               !! 283         else if (IS_ENABLED(CONFIG_ARCH_HAS_DMA_CLEAR_UNCACHED))
348                 if (IS_ENABLED(CONFIG_ARCH_HAS !! 284                 arch_dma_clear_uncached(cpu_addr, size);
349                         arch_dma_clear_uncache << 
350                 if (dma_set_encrypted(dev, cpu << 
351                         return;                << 
352         }                                      << 
353                                                   285 
354         __dma_direct_free_pages(dev, dma_direc !! 286         dma_free_contiguous(dev, dma_direct_to_page(dev, dma_addr), size);
355 }                                                 287 }
356                                                   288 
357 struct page *dma_direct_alloc_pages(struct dev !! 289 void *dma_direct_alloc(struct device *dev, size_t size,
358                 dma_addr_t *dma_handle, enum d !! 290                 dma_addr_t *dma_handle, gfp_t gfp, unsigned long attrs)
359 {                                                 291 {
360         struct page *page;                     !! 292         if (!IS_ENABLED(CONFIG_ARCH_HAS_DMA_SET_UNCACHED) &&
361         void *ret;                             !! 293             !IS_ENABLED(CONFIG_DMA_DIRECT_REMAP) &&
362                                                !! 294             dma_alloc_need_uncached(dev, attrs))
363         if (force_dma_unencrypted(dev) && dma_ !! 295                 return arch_dma_alloc(dev, size, dma_handle, gfp, attrs);
364                 return dma_direct_alloc_from_p !! 296         return dma_direct_alloc_pages(dev, size, dma_handle, gfp, attrs);
365                                                !! 297 }
366         page = __dma_direct_alloc_pages(dev, s << 
367         if (!page)                             << 
368                 return NULL;                   << 
369                                                   298 
370         ret = page_address(page);              !! 299 void dma_direct_free(struct device *dev, size_t size,
371         if (dma_set_decrypted(dev, ret, size)) !! 300                 void *cpu_addr, dma_addr_t dma_addr, unsigned long attrs)
372                 goto out_leak_pages;           !! 301 {
373         memset(ret, 0, size);                  !! 302         if (!IS_ENABLED(CONFIG_ARCH_HAS_DMA_SET_UNCACHED) &&
374         *dma_handle = phys_to_dma_direct(dev,  !! 303             !IS_ENABLED(CONFIG_DMA_DIRECT_REMAP) &&
375         return page;                           !! 304             dma_alloc_need_uncached(dev, attrs))
376 out_leak_pages:                                !! 305                 arch_dma_free(dev, size, cpu_addr, dma_addr, attrs);
377         return NULL;                           !! 306         else
                                                   >> 307                 dma_direct_free_pages(dev, size, cpu_addr, dma_addr, attrs);
378 }                                                 308 }
379                                                   309 
380 void dma_direct_free_pages(struct device *dev, !! 310 #if defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_DEVICE) || \
381                 struct page *page, dma_addr_t  !! 311     defined(CONFIG_SWIOTLB)
382                 enum dma_data_direction dir)   !! 312 void dma_direct_sync_single_for_device(struct device *dev,
                                                   >> 313                 dma_addr_t addr, size_t size, enum dma_data_direction dir)
383 {                                                 314 {
384         void *vaddr = page_address(page);      !! 315         phys_addr_t paddr = dma_to_phys(dev, addr);
385                                                   316 
386         /* If cpu_addr is not from an atomic p !! 317         if (unlikely(is_swiotlb_buffer(paddr)))
387         if (IS_ENABLED(CONFIG_DMA_COHERENT_POO !! 318                 swiotlb_tbl_sync_single(dev, paddr, size, dir, SYNC_FOR_DEVICE);
388             dma_free_from_pool(dev, vaddr, siz << 
389                 return;                        << 
390                                                   319 
391         if (dma_set_encrypted(dev, vaddr, size !! 320         if (!dev_is_dma_coherent(dev))
392                 return;                        !! 321                 arch_sync_dma_for_device(paddr, size, dir);
393         __dma_direct_free_pages(dev, page, siz << 
394 }                                                 322 }
                                                   >> 323 EXPORT_SYMBOL(dma_direct_sync_single_for_device);
395                                                   324 
396 #if defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_DEVIC << 
397     defined(CONFIG_SWIOTLB)                    << 
398 void dma_direct_sync_sg_for_device(struct devi    325 void dma_direct_sync_sg_for_device(struct device *dev,
399                 struct scatterlist *sgl, int n    326                 struct scatterlist *sgl, int nents, enum dma_data_direction dir)
400 {                                                 327 {
401         struct scatterlist *sg;                   328         struct scatterlist *sg;
402         int i;                                    329         int i;
403                                                   330 
404         for_each_sg(sgl, sg, nents, i) {          331         for_each_sg(sgl, sg, nents, i) {
405                 phys_addr_t paddr = dma_to_phy    332                 phys_addr_t paddr = dma_to_phys(dev, sg_dma_address(sg));
406                                                   333 
407                 swiotlb_sync_single_for_device !! 334                 if (unlikely(is_swiotlb_buffer(paddr)))
                                                   >> 335                         swiotlb_tbl_sync_single(dev, paddr, sg->length,
                                                   >> 336                                         dir, SYNC_FOR_DEVICE);
408                                                   337 
409                 if (!dev_is_dma_coherent(dev))    338                 if (!dev_is_dma_coherent(dev))
410                         arch_sync_dma_for_devi    339                         arch_sync_dma_for_device(paddr, sg->length,
411                                         dir);     340                                         dir);
412         }                                         341         }
413 }                                                 342 }
                                                   >> 343 EXPORT_SYMBOL(dma_direct_sync_sg_for_device);
414 #endif                                            344 #endif
415                                                   345 
416 #if defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU)     346 #if defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU) || \
417     defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU_A    347     defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU_ALL) || \
418     defined(CONFIG_SWIOTLB)                       348     defined(CONFIG_SWIOTLB)
                                                   >> 349 void dma_direct_sync_single_for_cpu(struct device *dev,
                                                   >> 350                 dma_addr_t addr, size_t size, enum dma_data_direction dir)
                                                   >> 351 {
                                                   >> 352         phys_addr_t paddr = dma_to_phys(dev, addr);
                                                   >> 353 
                                                   >> 354         if (!dev_is_dma_coherent(dev)) {
                                                   >> 355                 arch_sync_dma_for_cpu(paddr, size, dir);
                                                   >> 356                 arch_sync_dma_for_cpu_all();
                                                   >> 357         }
                                                   >> 358 
                                                   >> 359         if (unlikely(is_swiotlb_buffer(paddr)))
                                                   >> 360                 swiotlb_tbl_sync_single(dev, paddr, size, dir, SYNC_FOR_CPU);
                                                   >> 361 }
                                                   >> 362 EXPORT_SYMBOL(dma_direct_sync_single_for_cpu);
                                                   >> 363 
419 void dma_direct_sync_sg_for_cpu(struct device     364 void dma_direct_sync_sg_for_cpu(struct device *dev,
420                 struct scatterlist *sgl, int n    365                 struct scatterlist *sgl, int nents, enum dma_data_direction dir)
421 {                                                 366 {
422         struct scatterlist *sg;                   367         struct scatterlist *sg;
423         int i;                                    368         int i;
424                                                   369 
425         for_each_sg(sgl, sg, nents, i) {          370         for_each_sg(sgl, sg, nents, i) {
426                 phys_addr_t paddr = dma_to_phy    371                 phys_addr_t paddr = dma_to_phys(dev, sg_dma_address(sg));
427                                                   372 
428                 if (!dev_is_dma_coherent(dev))    373                 if (!dev_is_dma_coherent(dev))
429                         arch_sync_dma_for_cpu(    374                         arch_sync_dma_for_cpu(paddr, sg->length, dir);
430                                                   375 
431                 swiotlb_sync_single_for_cpu(de !! 376                 if (unlikely(is_swiotlb_buffer(paddr)))
432                                                !! 377                         swiotlb_tbl_sync_single(dev, paddr, sg->length, dir,
433                 if (dir == DMA_FROM_DEVICE)    !! 378                                         SYNC_FOR_CPU);
434                         arch_dma_mark_clean(pa << 
435         }                                         379         }
436                                                   380 
437         if (!dev_is_dma_coherent(dev))            381         if (!dev_is_dma_coherent(dev))
438                 arch_sync_dma_for_cpu_all();      382                 arch_sync_dma_for_cpu_all();
439 }                                                 383 }
                                                   >> 384 EXPORT_SYMBOL(dma_direct_sync_sg_for_cpu);
                                                   >> 385 
                                                   >> 386 void dma_direct_unmap_page(struct device *dev, dma_addr_t addr,
                                                   >> 387                 size_t size, enum dma_data_direction dir, unsigned long attrs)
                                                   >> 388 {
                                                   >> 389         phys_addr_t phys = dma_to_phys(dev, addr);
                                                   >> 390 
                                                   >> 391         if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC))
                                                   >> 392                 dma_direct_sync_single_for_cpu(dev, addr, size, dir);
                                                   >> 393 
                                                   >> 394         if (unlikely(is_swiotlb_buffer(phys)))
                                                   >> 395                 swiotlb_tbl_unmap_single(dev, phys, size, size, dir, attrs);
                                                   >> 396 }
                                                   >> 397 EXPORT_SYMBOL(dma_direct_unmap_page);
440                                                   398 
441 /*                                             << 
442  * Unmaps segments, except for ones marked as  << 
443  * require any further action as they contain  << 
444  */                                            << 
445 void dma_direct_unmap_sg(struct device *dev, s    399 void dma_direct_unmap_sg(struct device *dev, struct scatterlist *sgl,
446                 int nents, enum dma_data_direc    400                 int nents, enum dma_data_direction dir, unsigned long attrs)
447 {                                                 401 {
448         struct scatterlist *sg;                   402         struct scatterlist *sg;
449         int i;                                    403         int i;
450                                                   404 
451         for_each_sg(sgl,  sg, nents, i) {      !! 405         for_each_sg(sgl, sg, nents, i)
452                 if (sg_dma_is_bus_address(sg)) !! 406                 dma_direct_unmap_page(dev, sg->dma_address, sg_dma_len(sg), dir,
453                         sg_dma_unmark_bus_addr !! 407                              attrs);
454                 else                           << 
455                         dma_direct_unmap_page( << 
456                                                << 
457         }                                      << 
458 }                                                 408 }
                                                   >> 409 EXPORT_SYMBOL(dma_direct_unmap_sg);
459 #endif                                            410 #endif
460                                                   411 
                                                   >> 412 dma_addr_t dma_direct_map_page(struct device *dev, struct page *page,
                                                   >> 413                 unsigned long offset, size_t size, enum dma_data_direction dir,
                                                   >> 414                 unsigned long attrs)
                                                   >> 415 {
                                                   >> 416         phys_addr_t phys = page_to_phys(page) + offset;
                                                   >> 417         dma_addr_t dma_addr = phys_to_dma(dev, phys);
                                                   >> 418 
                                                   >> 419         if (unlikely(swiotlb_force == SWIOTLB_FORCE))
                                                   >> 420                 return swiotlb_map(dev, phys, size, dir, attrs);
                                                   >> 421 
                                                   >> 422         if (unlikely(!dma_capable(dev, dma_addr, size, true))) {
                                                   >> 423                 if (swiotlb_force != SWIOTLB_NO_FORCE)
                                                   >> 424                         return swiotlb_map(dev, phys, size, dir, attrs);
                                                   >> 425 
                                                   >> 426                 dev_WARN_ONCE(dev, 1,
                                                   >> 427                              "DMA addr %pad+%zu overflow (mask %llx, bus limit %llx).\n",
                                                   >> 428                              &dma_addr, size, *dev->dma_mask, dev->bus_dma_limit);
                                                   >> 429                 return DMA_MAPPING_ERROR;
                                                   >> 430         }
                                                   >> 431 
                                                   >> 432         if (!dev_is_dma_coherent(dev) && !(attrs & DMA_ATTR_SKIP_CPU_SYNC))
                                                   >> 433                 arch_sync_dma_for_device(phys, size, dir);
                                                   >> 434         return dma_addr;
                                                   >> 435 }
                                                   >> 436 EXPORT_SYMBOL(dma_direct_map_page);
                                                   >> 437 
461 int dma_direct_map_sg(struct device *dev, stru    438 int dma_direct_map_sg(struct device *dev, struct scatterlist *sgl, int nents,
462                 enum dma_data_direction dir, u    439                 enum dma_data_direction dir, unsigned long attrs)
463 {                                                 440 {
464         struct pci_p2pdma_map_state p2pdma_sta !! 441         int i;
465         enum pci_p2pdma_map_type map;          << 
466         struct scatterlist *sg;                   442         struct scatterlist *sg;
467         int i, ret;                            << 
468                                                   443 
469         for_each_sg(sgl, sg, nents, i) {          444         for_each_sg(sgl, sg, nents, i) {
470                 if (is_pci_p2pdma_page(sg_page << 
471                         map = pci_p2pdma_map_s << 
472                         switch (map) {         << 
473                         case PCI_P2PDMA_MAP_BU << 
474                                 continue;      << 
475                         case PCI_P2PDMA_MAP_TH << 
476                                 /*             << 
477                                  * Any P2P map << 
478                                  * host bridge << 
479                                  * address and << 
480                                  * done with d << 
481                                  */            << 
482                                 break;         << 
483                         default:               << 
484                                 ret = -EREMOTE << 
485                                 goto out_unmap << 
486                         }                      << 
487                 }                              << 
488                                                << 
489                 sg->dma_address = dma_direct_m    445                 sg->dma_address = dma_direct_map_page(dev, sg_page(sg),
490                                 sg->offset, sg    446                                 sg->offset, sg->length, dir, attrs);
491                 if (sg->dma_address == DMA_MAP !! 447                 if (sg->dma_address == DMA_MAPPING_ERROR)
492                         ret = -EIO;            << 
493                         goto out_unmap;           448                         goto out_unmap;
494                 }                              << 
495                 sg_dma_len(sg) = sg->length;      449                 sg_dma_len(sg) = sg->length;
496         }                                         450         }
497                                                   451 
498         return nents;                             452         return nents;
499                                                   453 
500 out_unmap:                                        454 out_unmap:
501         dma_direct_unmap_sg(dev, sgl, i, dir,     455         dma_direct_unmap_sg(dev, sgl, i, dir, attrs | DMA_ATTR_SKIP_CPU_SYNC);
502         return ret;                            !! 456         return 0;
503 }                                                 457 }
                                                   >> 458 EXPORT_SYMBOL(dma_direct_map_sg);
504                                                   459 
505 dma_addr_t dma_direct_map_resource(struct devi    460 dma_addr_t dma_direct_map_resource(struct device *dev, phys_addr_t paddr,
506                 size_t size, enum dma_data_dir    461                 size_t size, enum dma_data_direction dir, unsigned long attrs)
507 {                                                 462 {
508         dma_addr_t dma_addr = paddr;              463         dma_addr_t dma_addr = paddr;
509                                                   464 
510         if (unlikely(!dma_capable(dev, dma_add    465         if (unlikely(!dma_capable(dev, dma_addr, size, false))) {
511                 dev_err_once(dev,                 466                 dev_err_once(dev,
512                              "DMA addr %pad+%z    467                              "DMA addr %pad+%zu overflow (mask %llx, bus limit %llx).\n",
513                              &dma_addr, size,     468                              &dma_addr, size, *dev->dma_mask, dev->bus_dma_limit);
514                 WARN_ON_ONCE(1);                  469                 WARN_ON_ONCE(1);
515                 return DMA_MAPPING_ERROR;         470                 return DMA_MAPPING_ERROR;
516         }                                         471         }
517                                                   472 
518         return dma_addr;                          473         return dma_addr;
519 }                                                 474 }
                                                   >> 475 EXPORT_SYMBOL(dma_direct_map_resource);
520                                                   476 
521 int dma_direct_get_sgtable(struct device *dev,    477 int dma_direct_get_sgtable(struct device *dev, struct sg_table *sgt,
522                 void *cpu_addr, dma_addr_t dma    478                 void *cpu_addr, dma_addr_t dma_addr, size_t size,
523                 unsigned long attrs)              479                 unsigned long attrs)
524 {                                                 480 {
525         struct page *page = dma_direct_to_page    481         struct page *page = dma_direct_to_page(dev, dma_addr);
526         int ret;                                  482         int ret;
527                                                   483 
528         ret = sg_alloc_table(sgt, 1, GFP_KERNE    484         ret = sg_alloc_table(sgt, 1, GFP_KERNEL);
529         if (!ret)                                 485         if (!ret)
530                 sg_set_page(sgt->sgl, page, PA    486                 sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0);
531         return ret;                               487         return ret;
532 }                                                 488 }
533                                                   489 
534 bool dma_direct_can_mmap(struct device *dev)      490 bool dma_direct_can_mmap(struct device *dev)
535 {                                                 491 {
536         return dev_is_dma_coherent(dev) ||        492         return dev_is_dma_coherent(dev) ||
537                 IS_ENABLED(CONFIG_DMA_NONCOHER    493                 IS_ENABLED(CONFIG_DMA_NONCOHERENT_MMAP);
538 }                                                 494 }
539                                                   495 
540 int dma_direct_mmap(struct device *dev, struct    496 int dma_direct_mmap(struct device *dev, struct vm_area_struct *vma,
541                 void *cpu_addr, dma_addr_t dma    497                 void *cpu_addr, dma_addr_t dma_addr, size_t size,
542                 unsigned long attrs)              498                 unsigned long attrs)
543 {                                                 499 {
544         unsigned long user_count = vma_pages(v    500         unsigned long user_count = vma_pages(vma);
545         unsigned long count = PAGE_ALIGN(size)    501         unsigned long count = PAGE_ALIGN(size) >> PAGE_SHIFT;
546         unsigned long pfn = PHYS_PFN(dma_to_ph    502         unsigned long pfn = PHYS_PFN(dma_to_phys(dev, dma_addr));
547         int ret = -ENXIO;                         503         int ret = -ENXIO;
548                                                   504 
549         vma->vm_page_prot = dma_pgprot(dev, vm    505         vma->vm_page_prot = dma_pgprot(dev, vma->vm_page_prot, attrs);
550         if (force_dma_unencrypted(dev))        << 
551                 vma->vm_page_prot = pgprot_dec << 
552                                                   506 
553         if (dma_mmap_from_dev_coherent(dev, vm    507         if (dma_mmap_from_dev_coherent(dev, vma, cpu_addr, size, &ret))
554                 return ret;                       508                 return ret;
555         if (dma_mmap_from_global_coherent(vma, << 
556                 return ret;                    << 
557                                                   509 
558         if (vma->vm_pgoff >= count || user_cou    510         if (vma->vm_pgoff >= count || user_count > count - vma->vm_pgoff)
559                 return -ENXIO;                    511                 return -ENXIO;
560         return remap_pfn_range(vma, vma->vm_st    512         return remap_pfn_range(vma, vma->vm_start, pfn + vma->vm_pgoff,
561                         user_count << PAGE_SHI    513                         user_count << PAGE_SHIFT, vma->vm_page_prot);
562 }                                                 514 }
563                                                   515 
564 int dma_direct_supported(struct device *dev, u    516 int dma_direct_supported(struct device *dev, u64 mask)
565 {                                                 517 {
566         u64 min_mask = (max_pfn - 1) << PAGE_S    518         u64 min_mask = (max_pfn - 1) << PAGE_SHIFT;
567                                                   519 
568         /*                                        520         /*
569          * Because 32-bit DMA masks are so com    521          * Because 32-bit DMA masks are so common we expect every architecture
570          * to be able to satisfy them - either    522          * to be able to satisfy them - either by not supporting more physical
571          * memory, or by providing a ZONE_DMA3    523          * memory, or by providing a ZONE_DMA32.  If neither is the case, the
572          * architecture needs to use an IOMMU     524          * architecture needs to use an IOMMU instead of the direct mapping.
573          */                                       525          */
574         if (mask >= DMA_BIT_MASK(32))             526         if (mask >= DMA_BIT_MASK(32))
575                 return 1;                         527                 return 1;
576                                                   528 
577         /*                                        529         /*
578          * This check needs to be against the  !! 530          * This check needs to be against the actual bit mask value, so
579          * phys_to_dma_unencrypted() here so t !! 531          * use __phys_to_dma() here so that the SME encryption mask isn't
580          * part of the check.                     532          * part of the check.
581          */                                       533          */
582         if (IS_ENABLED(CONFIG_ZONE_DMA))          534         if (IS_ENABLED(CONFIG_ZONE_DMA))
583                 min_mask = min_t(u64, min_mask    535                 min_mask = min_t(u64, min_mask, DMA_BIT_MASK(zone_dma_bits));
584         return mask >= phys_to_dma_unencrypted !! 536         return mask >= __phys_to_dma(dev, min_mask);
585 }                                              << 
586                                                << 
587 /*                                             << 
588  * To check whether all ram resource ranges ar << 
589  * Returns 0 when further check is needed      << 
590  * Returns 1 if there is some RAM range can't  << 
591  */                                            << 
592 static int check_ram_in_range_map(unsigned lon << 
593                                   unsigned lon << 
594 {                                              << 
595         unsigned long end_pfn = start_pfn + nr << 
596         const struct bus_dma_region *bdr = NUL << 
597         const struct bus_dma_region *m;        << 
598         struct device *dev = data;             << 
599                                                << 
600         while (start_pfn < end_pfn) {          << 
601                 for (m = dev->dma_range_map; P << 
602                         unsigned long cpu_star << 
603                                                << 
604                         if (start_pfn >= cpu_s << 
605                             start_pfn - cpu_st << 
606                                 bdr = m;       << 
607                                 break;         << 
608                         }                      << 
609                 }                              << 
610                 if (!bdr)                      << 
611                         return 1;              << 
612                                                << 
613                 start_pfn = PFN_DOWN(bdr->cpu_ << 
614         }                                      << 
615                                                << 
616         return 0;                              << 
617 }                                              << 
618                                                << 
619 bool dma_direct_all_ram_mapped(struct device * << 
620 {                                              << 
621         if (!dev->dma_range_map)               << 
622                 return true;                   << 
623         return !walk_system_ram_range(0, PFN_D << 
624                                       check_ra << 
625 }                                                 537 }
626                                                   538 
627 size_t dma_direct_max_mapping_size(struct devi    539 size_t dma_direct_max_mapping_size(struct device *dev)
628 {                                                 540 {
629         /* If SWIOTLB is active, use its maxim    541         /* If SWIOTLB is active, use its maximum mapping size */
630         if (is_swiotlb_active(dev) &&          !! 542         if (is_swiotlb_active() &&
631             (dma_addressing_limited(dev) || is !! 543             (dma_addressing_limited(dev) || swiotlb_force == SWIOTLB_FORCE))
632                 return swiotlb_max_mapping_siz    544                 return swiotlb_max_mapping_size(dev);
633         return SIZE_MAX;                          545         return SIZE_MAX;
634 }                                                 546 }
635                                                   547 
636 bool dma_direct_need_sync(struct device *dev,     548 bool dma_direct_need_sync(struct device *dev, dma_addr_t dma_addr)
637 {                                                 549 {
638         return !dev_is_dma_coherent(dev) ||       550         return !dev_is_dma_coherent(dev) ||
639                swiotlb_find_pool(dev, dma_to_p !! 551                 is_swiotlb_buffer(dma_to_phys(dev, dma_addr));
640 }                                              << 
641                                                << 
642 /**                                            << 
643  * dma_direct_set_offset - Assign scalar offse << 
644  * @dev:        device pointer; needed to "own << 
645  * @cpu_start:  beginning of memory region cov << 
646  * @dma_start:  beginning of DMA/PCI region co << 
647  * @size:       size of the region.            << 
648  *                                             << 
649  * This is for the simple case of a uniform of << 
650  * be discovered by "dma-ranges".              << 
651  *                                             << 
652  * It returns -ENOMEM if out of memory, -EINVA << 
653  * already exists, 0 otherwise.                << 
654  *                                             << 
655  * Note: any call to this from a driver is a b << 
656  * to be described by the device tree or other << 
657  */                                            << 
658 int dma_direct_set_offset(struct device *dev,  << 
659                          dma_addr_t dma_start, << 
660 {                                              << 
661         struct bus_dma_region *map;            << 
662         u64 offset = (u64)cpu_start - (u64)dma << 
663                                                << 
664         if (dev->dma_range_map) {              << 
665                 dev_err(dev, "attempt to add D << 
666                 return -EINVAL;                << 
667         }                                      << 
668                                                << 
669         if (!offset)                           << 
670                 return 0;                      << 
671                                                << 
672         map = kcalloc(2, sizeof(*map), GFP_KER << 
673         if (!map)                              << 
674                 return -ENOMEM;                << 
675         map[0].cpu_start = cpu_start;          << 
676         map[0].dma_start = dma_start;          << 
677         map[0].size = size;                    << 
678         dev->dma_range_map = map;              << 
679         return 0;                              << 
680 }                                                 552 }
681                                                   553 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

sflogo.php