1 // SPDX-License-Identifier: GPL-2.0+ 1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 2 /* 3 * User-space Probes (UProbes) 3 * User-space Probes (UProbes) 4 * 4 * 5 * Copyright (C) IBM Corporation, 2008-2012 5 * Copyright (C) IBM Corporation, 2008-2012 6 * Authors: 6 * Authors: 7 * Srikar Dronamraju 7 * Srikar Dronamraju 8 * Jim Keniston 8 * Jim Keniston 9 * Copyright (C) 2011-2012 Red Hat, Inc., Pete 9 * Copyright (C) 2011-2012 Red Hat, Inc., Peter Zijlstra 10 */ 10 */ 11 11 12 #include <linux/kernel.h> 12 #include <linux/kernel.h> 13 #include <linux/highmem.h> 13 #include <linux/highmem.h> 14 #include <linux/pagemap.h> /* read_mappin 14 #include <linux/pagemap.h> /* read_mapping_page */ 15 #include <linux/slab.h> 15 #include <linux/slab.h> 16 #include <linux/sched.h> 16 #include <linux/sched.h> 17 #include <linux/sched/mm.h> 17 #include <linux/sched/mm.h> 18 #include <linux/sched/coredump.h> 18 #include <linux/sched/coredump.h> 19 #include <linux/export.h> 19 #include <linux/export.h> 20 #include <linux/rmap.h> /* anon_vma_pr 20 #include <linux/rmap.h> /* anon_vma_prepare */ 21 #include <linux/mmu_notifier.h> !! 21 #include <linux/mmu_notifier.h> /* set_pte_at_notify */ 22 #include <linux/swap.h> /* folio_free_ !! 22 #include <linux/swap.h> /* try_to_free_swap */ 23 #include <linux/ptrace.h> /* user_enable 23 #include <linux/ptrace.h> /* user_enable_single_step */ 24 #include <linux/kdebug.h> /* notifier me 24 #include <linux/kdebug.h> /* notifier mechanism */ >> 25 #include "../../mm/internal.h" /* munlock_vma_page */ 25 #include <linux/percpu-rwsem.h> 26 #include <linux/percpu-rwsem.h> 26 #include <linux/task_work.h> 27 #include <linux/task_work.h> 27 #include <linux/shmem_fs.h> 28 #include <linux/shmem_fs.h> 28 #include <linux/khugepaged.h> 29 #include <linux/khugepaged.h> 29 30 30 #include <linux/uprobes.h> 31 #include <linux/uprobes.h> 31 32 32 #define UINSNS_PER_PAGE (PAGE_ 33 #define UINSNS_PER_PAGE (PAGE_SIZE/UPROBE_XOL_SLOT_BYTES) 33 #define MAX_UPROBE_XOL_SLOTS UINSNS 34 #define MAX_UPROBE_XOL_SLOTS UINSNS_PER_PAGE 34 35 35 static struct rb_root uprobes_tree = RB_ROOT; 36 static struct rb_root uprobes_tree = RB_ROOT; 36 /* 37 /* 37 * allows us to skip the uprobe_mmap if there 38 * allows us to skip the uprobe_mmap if there are no uprobe events active 38 * at this time. Probably a fine grained per 39 * at this time. Probably a fine grained per inode count is better? 39 */ 40 */ 40 #define no_uprobe_events() RB_EMPTY_ROOT( 41 #define no_uprobe_events() RB_EMPTY_ROOT(&uprobes_tree) 41 42 42 static DEFINE_RWLOCK(uprobes_treelock); /* ser !! 43 static DEFINE_SPINLOCK(uprobes_treelock); /* serialize rbtree access */ 43 static seqcount_rwlock_t uprobes_seqcount = SE << 44 << 45 DEFINE_STATIC_SRCU(uprobes_srcu); << 46 44 47 #define UPROBES_HASH_SZ 13 45 #define UPROBES_HASH_SZ 13 48 /* serialize uprobe->pending_list */ 46 /* serialize uprobe->pending_list */ 49 static struct mutex uprobes_mmap_mutex[UPROBES 47 static struct mutex uprobes_mmap_mutex[UPROBES_HASH_SZ]; 50 #define uprobes_mmap_hash(v) (&uprobes_mmap 48 #define uprobes_mmap_hash(v) (&uprobes_mmap_mutex[((unsigned long)(v)) % UPROBES_HASH_SZ]) 51 49 52 DEFINE_STATIC_PERCPU_RWSEM(dup_mmap_sem); 50 DEFINE_STATIC_PERCPU_RWSEM(dup_mmap_sem); 53 51 54 /* Have a copy of original instruction */ 52 /* Have a copy of original instruction */ 55 #define UPROBE_COPY_INSN 0 53 #define UPROBE_COPY_INSN 0 56 54 57 struct uprobe { 55 struct uprobe { 58 struct rb_node rb_node; 56 struct rb_node rb_node; /* node in the rb tree */ 59 refcount_t ref; 57 refcount_t ref; 60 struct rw_semaphore register_rwsem 58 struct rw_semaphore register_rwsem; 61 struct rw_semaphore consumer_rwsem 59 struct rw_semaphore consumer_rwsem; 62 struct list_head pending_list; 60 struct list_head pending_list; 63 struct list_head consumers; !! 61 struct uprobe_consumer *consumers; 64 struct inode *inode; 62 struct inode *inode; /* Also hold a ref to inode */ 65 struct rcu_head rcu; << 66 loff_t offset; 63 loff_t offset; 67 loff_t ref_ctr_offset 64 loff_t ref_ctr_offset; 68 unsigned long flags; 65 unsigned long flags; 69 66 70 /* 67 /* 71 * The generic code assumes that it ha 68 * The generic code assumes that it has two members of unknown type 72 * owned by the arch-specific code: 69 * owned by the arch-specific code: 73 * 70 * 74 * insn - copy_insn() saves the 71 * insn - copy_insn() saves the original instruction here for 75 * arch_uprobe_analyze_in 72 * arch_uprobe_analyze_insn(). 76 * 73 * 77 * ixol - potentially modified i 74 * ixol - potentially modified instruction to execute out of 78 * line, copied to xol_ar 75 * line, copied to xol_area by xol_get_insn_slot(). 79 */ 76 */ 80 struct arch_uprobe arch; 77 struct arch_uprobe arch; 81 }; 78 }; 82 79 83 struct delayed_uprobe { 80 struct delayed_uprobe { 84 struct list_head list; 81 struct list_head list; 85 struct uprobe *uprobe; 82 struct uprobe *uprobe; 86 struct mm_struct *mm; 83 struct mm_struct *mm; 87 }; 84 }; 88 85 89 static DEFINE_MUTEX(delayed_uprobe_lock); 86 static DEFINE_MUTEX(delayed_uprobe_lock); 90 static LIST_HEAD(delayed_uprobe_list); 87 static LIST_HEAD(delayed_uprobe_list); 91 88 92 /* 89 /* 93 * Execute out of line area: anonymous executa 90 * Execute out of line area: anonymous executable mapping installed 94 * by the probed task to execute the copy of t 91 * by the probed task to execute the copy of the original instruction 95 * mangled by set_swbp(). 92 * mangled by set_swbp(). 96 * 93 * 97 * On a breakpoint hit, thread contests for a 94 * On a breakpoint hit, thread contests for a slot. It frees the 98 * slot after singlestep. Currently a fixed nu 95 * slot after singlestep. Currently a fixed number of slots are 99 * allocated. 96 * allocated. 100 */ 97 */ 101 struct xol_area { 98 struct xol_area { 102 wait_queue_head_t wq; 99 wait_queue_head_t wq; /* if all slots are busy */ 103 atomic_t slot_c 100 atomic_t slot_count; /* number of in-use slots */ 104 unsigned long *bitma 101 unsigned long *bitmap; /* 0 = free slot */ 105 102 106 struct page *page; !! 103 struct vm_special_mapping xol_mapping; >> 104 struct page *pages[2]; 107 /* 105 /* 108 * We keep the vma's vm_start rather t 106 * We keep the vma's vm_start rather than a pointer to the vma 109 * itself. The probed process or a na 107 * itself. The probed process or a naughty kernel module could make 110 * the vma go away, and we must handle 108 * the vma go away, and we must handle that reasonably gracefully. 111 */ 109 */ 112 unsigned long vaddr; 110 unsigned long vaddr; /* Page(s) of instruction slots */ 113 }; 111 }; 114 112 115 static void uprobe_warn(struct task_struct *t, << 116 { << 117 pr_warn("uprobe: %s:%d failed to %s\n" << 118 } << 119 << 120 /* 113 /* 121 * valid_vma: Verify if the specified vma is a 114 * valid_vma: Verify if the specified vma is an executable vma 122 * Relax restrictions while unregistering: vm_ 115 * Relax restrictions while unregistering: vm_flags might have 123 * changed after breakpoint was inserted. 116 * changed after breakpoint was inserted. 124 * - is_register: indicates if we are in 117 * - is_register: indicates if we are in register context. 125 * - Return 1 if the specified virtual ad 118 * - Return 1 if the specified virtual address is in an 126 * executable vma. 119 * executable vma. 127 */ 120 */ 128 static bool valid_vma(struct vm_area_struct *v 121 static bool valid_vma(struct vm_area_struct *vma, bool is_register) 129 { 122 { 130 vm_flags_t flags = VM_HUGETLB | VM_MAY 123 vm_flags_t flags = VM_HUGETLB | VM_MAYEXEC | VM_MAYSHARE; 131 124 132 if (is_register) 125 if (is_register) 133 flags |= VM_WRITE; 126 flags |= VM_WRITE; 134 127 135 return vma->vm_file && (vma->vm_flags 128 return vma->vm_file && (vma->vm_flags & flags) == VM_MAYEXEC; 136 } 129 } 137 130 138 static unsigned long offset_to_vaddr(struct vm 131 static unsigned long offset_to_vaddr(struct vm_area_struct *vma, loff_t offset) 139 { 132 { 140 return vma->vm_start + offset - ((loff 133 return vma->vm_start + offset - ((loff_t)vma->vm_pgoff << PAGE_SHIFT); 141 } 134 } 142 135 143 static loff_t vaddr_to_offset(struct vm_area_s 136 static loff_t vaddr_to_offset(struct vm_area_struct *vma, unsigned long vaddr) 144 { 137 { 145 return ((loff_t)vma->vm_pgoff << PAGE_ 138 return ((loff_t)vma->vm_pgoff << PAGE_SHIFT) + (vaddr - vma->vm_start); 146 } 139 } 147 140 148 /** 141 /** 149 * __replace_page - replace page in vma by new 142 * __replace_page - replace page in vma by new page. 150 * based on replace_page in mm/ksm.c 143 * based on replace_page in mm/ksm.c 151 * 144 * 152 * @vma: vma that holds the pte pointing 145 * @vma: vma that holds the pte pointing to page 153 * @addr: address the old @page is mapped 146 * @addr: address the old @page is mapped at 154 * @old_page: the page we are replacing by new 147 * @old_page: the page we are replacing by new_page 155 * @new_page: the modified page we replace pag 148 * @new_page: the modified page we replace page by 156 * 149 * 157 * If @new_page is NULL, only unmap @old_page. 150 * If @new_page is NULL, only unmap @old_page. 158 * 151 * 159 * Returns 0 on success, negative error code o 152 * Returns 0 on success, negative error code otherwise. 160 */ 153 */ 161 static int __replace_page(struct vm_area_struc 154 static int __replace_page(struct vm_area_struct *vma, unsigned long addr, 162 struct page *o 155 struct page *old_page, struct page *new_page) 163 { 156 { 164 struct folio *old_folio = page_folio(o << 165 struct folio *new_folio; << 166 struct mm_struct *mm = vma->vm_mm; 157 struct mm_struct *mm = vma->vm_mm; 167 DEFINE_FOLIO_VMA_WALK(pvmw, old_folio, !! 158 struct page_vma_mapped_walk pvmw = { >> 159 .page = compound_head(old_page), >> 160 .vma = vma, >> 161 .address = addr, >> 162 }; 168 int err; 163 int err; 169 struct mmu_notifier_range range; 164 struct mmu_notifier_range range; 170 165 171 mmu_notifier_range_init(&range, MMU_NO !! 166 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, addr, 172 addr + PAGE_SI 167 addr + PAGE_SIZE); 173 168 174 if (new_page) { 169 if (new_page) { 175 new_folio = page_folio(new_pag !! 170 err = mem_cgroup_charge(page_folio(new_page), vma->vm_mm, 176 err = mem_cgroup_charge(new_fo !! 171 GFP_KERNEL); 177 if (err) 172 if (err) 178 return err; 173 return err; 179 } 174 } 180 175 181 /* For folio_free_swap() below */ !! 176 /* For try_to_free_swap() and munlock_vma_page() below */ 182 folio_lock(old_folio); !! 177 lock_page(old_page); 183 178 184 mmu_notifier_invalidate_range_start(&r 179 mmu_notifier_invalidate_range_start(&range); 185 err = -EAGAIN; 180 err = -EAGAIN; 186 if (!page_vma_mapped_walk(&pvmw)) 181 if (!page_vma_mapped_walk(&pvmw)) 187 goto unlock; 182 goto unlock; 188 VM_BUG_ON_PAGE(addr != pvmw.address, o 183 VM_BUG_ON_PAGE(addr != pvmw.address, old_page); 189 184 190 if (new_page) { 185 if (new_page) { 191 folio_get(new_folio); !! 186 get_page(new_page); 192 folio_add_new_anon_rmap(new_fo !! 187 page_add_new_anon_rmap(new_page, vma, addr, false); 193 folio_add_lru_vma(new_folio, v !! 188 lru_cache_add_inactive_or_unevictable(new_page, vma); 194 } else 189 } else 195 /* no new page, just dec_mm_co 190 /* no new page, just dec_mm_counter for old_page */ 196 dec_mm_counter(mm, MM_ANONPAGE 191 dec_mm_counter(mm, MM_ANONPAGES); 197 192 198 if (!folio_test_anon(old_folio)) { !! 193 if (!PageAnon(old_page)) { 199 dec_mm_counter(mm, mm_counter_ !! 194 dec_mm_counter(mm, mm_counter_file(old_page)); 200 inc_mm_counter(mm, MM_ANONPAGE 195 inc_mm_counter(mm, MM_ANONPAGES); 201 } 196 } 202 197 203 flush_cache_page(vma, addr, pte_pfn(pt !! 198 flush_cache_page(vma, addr, pte_pfn(*pvmw.pte)); 204 ptep_clear_flush(vma, addr, pvmw.pte); !! 199 ptep_clear_flush_notify(vma, addr, pvmw.pte); 205 if (new_page) 200 if (new_page) 206 set_pte_at(mm, addr, pvmw.pte, !! 201 set_pte_at_notify(mm, addr, pvmw.pte, 207 mk_pte(new_page, vm !! 202 mk_pte(new_page, vma->vm_page_prot)); 208 203 209 folio_remove_rmap_pte(old_folio, old_p !! 204 page_remove_rmap(old_page, false); 210 if (!folio_mapped(old_folio)) !! 205 if (!page_mapped(old_page)) 211 folio_free_swap(old_folio); !! 206 try_to_free_swap(old_page); 212 page_vma_mapped_walk_done(&pvmw); 207 page_vma_mapped_walk_done(&pvmw); 213 folio_put(old_folio); !! 208 >> 209 if ((vma->vm_flags & VM_LOCKED) && !PageCompound(old_page)) >> 210 munlock_vma_page(old_page); >> 211 put_page(old_page); 214 212 215 err = 0; 213 err = 0; 216 unlock: 214 unlock: 217 mmu_notifier_invalidate_range_end(&ran 215 mmu_notifier_invalidate_range_end(&range); 218 folio_unlock(old_folio); !! 216 unlock_page(old_page); 219 return err; 217 return err; 220 } 218 } 221 219 222 /** 220 /** 223 * is_swbp_insn - check if instruction is brea 221 * is_swbp_insn - check if instruction is breakpoint instruction. 224 * @insn: instruction to be checked. 222 * @insn: instruction to be checked. 225 * Default implementation of is_swbp_insn 223 * Default implementation of is_swbp_insn 226 * Returns true if @insn is a breakpoint instr 224 * Returns true if @insn is a breakpoint instruction. 227 */ 225 */ 228 bool __weak is_swbp_insn(uprobe_opcode_t *insn 226 bool __weak is_swbp_insn(uprobe_opcode_t *insn) 229 { 227 { 230 return *insn == UPROBE_SWBP_INSN; 228 return *insn == UPROBE_SWBP_INSN; 231 } 229 } 232 230 233 /** 231 /** 234 * is_trap_insn - check if instruction is brea 232 * is_trap_insn - check if instruction is breakpoint instruction. 235 * @insn: instruction to be checked. 233 * @insn: instruction to be checked. 236 * Default implementation of is_trap_insn 234 * Default implementation of is_trap_insn 237 * Returns true if @insn is a breakpoint instr 235 * Returns true if @insn is a breakpoint instruction. 238 * 236 * 239 * This function is needed for the case where 237 * This function is needed for the case where an architecture has multiple 240 * trap instructions (like powerpc). 238 * trap instructions (like powerpc). 241 */ 239 */ 242 bool __weak is_trap_insn(uprobe_opcode_t *insn 240 bool __weak is_trap_insn(uprobe_opcode_t *insn) 243 { 241 { 244 return is_swbp_insn(insn); 242 return is_swbp_insn(insn); 245 } 243 } 246 244 247 static void copy_from_page(struct page *page, 245 static void copy_from_page(struct page *page, unsigned long vaddr, void *dst, int len) 248 { 246 { 249 void *kaddr = kmap_atomic(page); 247 void *kaddr = kmap_atomic(page); 250 memcpy(dst, kaddr + (vaddr & ~PAGE_MAS 248 memcpy(dst, kaddr + (vaddr & ~PAGE_MASK), len); 251 kunmap_atomic(kaddr); 249 kunmap_atomic(kaddr); 252 } 250 } 253 251 254 static void copy_to_page(struct page *page, un 252 static void copy_to_page(struct page *page, unsigned long vaddr, const void *src, int len) 255 { 253 { 256 void *kaddr = kmap_atomic(page); 254 void *kaddr = kmap_atomic(page); 257 memcpy(kaddr + (vaddr & ~PAGE_MASK), s 255 memcpy(kaddr + (vaddr & ~PAGE_MASK), src, len); 258 kunmap_atomic(kaddr); 256 kunmap_atomic(kaddr); 259 } 257 } 260 258 261 static int verify_opcode(struct page *page, un 259 static int verify_opcode(struct page *page, unsigned long vaddr, uprobe_opcode_t *new_opcode) 262 { 260 { 263 uprobe_opcode_t old_opcode; 261 uprobe_opcode_t old_opcode; 264 bool is_swbp; 262 bool is_swbp; 265 263 266 /* 264 /* 267 * Note: We only check if the old_opco 265 * Note: We only check if the old_opcode is UPROBE_SWBP_INSN here. 268 * We do not check if it is any other 266 * We do not check if it is any other 'trap variant' which could 269 * be conditional trap instruction suc 267 * be conditional trap instruction such as the one powerpc supports. 270 * 268 * 271 * The logic is that we do not care if 269 * The logic is that we do not care if the underlying instruction 272 * is a trap variant; uprobes always w 270 * is a trap variant; uprobes always wins over any other (gdb) 273 * breakpoint. 271 * breakpoint. 274 */ 272 */ 275 copy_from_page(page, vaddr, &old_opcod 273 copy_from_page(page, vaddr, &old_opcode, UPROBE_SWBP_INSN_SIZE); 276 is_swbp = is_swbp_insn(&old_opcode); 274 is_swbp = is_swbp_insn(&old_opcode); 277 275 278 if (is_swbp_insn(new_opcode)) { 276 if (is_swbp_insn(new_opcode)) { 279 if (is_swbp) /* reg 277 if (is_swbp) /* register: already installed? */ 280 return 0; 278 return 0; 281 } else { 279 } else { 282 if (!is_swbp) /* unr 280 if (!is_swbp) /* unregister: was it changed by us? */ 283 return 0; 281 return 0; 284 } 282 } 285 283 286 return 1; 284 return 1; 287 } 285 } 288 286 289 static struct delayed_uprobe * 287 static struct delayed_uprobe * 290 delayed_uprobe_check(struct uprobe *uprobe, st 288 delayed_uprobe_check(struct uprobe *uprobe, struct mm_struct *mm) 291 { 289 { 292 struct delayed_uprobe *du; 290 struct delayed_uprobe *du; 293 291 294 list_for_each_entry(du, &delayed_uprob 292 list_for_each_entry(du, &delayed_uprobe_list, list) 295 if (du->uprobe == uprobe && du 293 if (du->uprobe == uprobe && du->mm == mm) 296 return du; 294 return du; 297 return NULL; 295 return NULL; 298 } 296 } 299 297 300 static int delayed_uprobe_add(struct uprobe *u 298 static int delayed_uprobe_add(struct uprobe *uprobe, struct mm_struct *mm) 301 { 299 { 302 struct delayed_uprobe *du; 300 struct delayed_uprobe *du; 303 301 304 if (delayed_uprobe_check(uprobe, mm)) 302 if (delayed_uprobe_check(uprobe, mm)) 305 return 0; 303 return 0; 306 304 307 du = kzalloc(sizeof(*du), GFP_KERNEL) 305 du = kzalloc(sizeof(*du), GFP_KERNEL); 308 if (!du) 306 if (!du) 309 return -ENOMEM; 307 return -ENOMEM; 310 308 311 du->uprobe = uprobe; 309 du->uprobe = uprobe; 312 du->mm = mm; 310 du->mm = mm; 313 list_add(&du->list, &delayed_uprobe_li 311 list_add(&du->list, &delayed_uprobe_list); 314 return 0; 312 return 0; 315 } 313 } 316 314 317 static void delayed_uprobe_delete(struct delay 315 static void delayed_uprobe_delete(struct delayed_uprobe *du) 318 { 316 { 319 if (WARN_ON(!du)) 317 if (WARN_ON(!du)) 320 return; 318 return; 321 list_del(&du->list); 319 list_del(&du->list); 322 kfree(du); 320 kfree(du); 323 } 321 } 324 322 325 static void delayed_uprobe_remove(struct uprob 323 static void delayed_uprobe_remove(struct uprobe *uprobe, struct mm_struct *mm) 326 { 324 { 327 struct list_head *pos, *q; 325 struct list_head *pos, *q; 328 struct delayed_uprobe *du; 326 struct delayed_uprobe *du; 329 327 330 if (!uprobe && !mm) 328 if (!uprobe && !mm) 331 return; 329 return; 332 330 333 list_for_each_safe(pos, q, &delayed_up 331 list_for_each_safe(pos, q, &delayed_uprobe_list) { 334 du = list_entry(pos, struct de 332 du = list_entry(pos, struct delayed_uprobe, list); 335 333 336 if (uprobe && du->uprobe != up 334 if (uprobe && du->uprobe != uprobe) 337 continue; 335 continue; 338 if (mm && du->mm != mm) 336 if (mm && du->mm != mm) 339 continue; 337 continue; 340 338 341 delayed_uprobe_delete(du); 339 delayed_uprobe_delete(du); 342 } 340 } 343 } 341 } 344 342 345 static bool valid_ref_ctr_vma(struct uprobe *u 343 static bool valid_ref_ctr_vma(struct uprobe *uprobe, 346 struct vm_area_s 344 struct vm_area_struct *vma) 347 { 345 { 348 unsigned long vaddr = offset_to_vaddr( 346 unsigned long vaddr = offset_to_vaddr(vma, uprobe->ref_ctr_offset); 349 347 350 return uprobe->ref_ctr_offset && 348 return uprobe->ref_ctr_offset && 351 vma->vm_file && 349 vma->vm_file && 352 file_inode(vma->vm_file) == up 350 file_inode(vma->vm_file) == uprobe->inode && 353 (vma->vm_flags & (VM_WRITE|VM_ 351 (vma->vm_flags & (VM_WRITE|VM_SHARED)) == VM_WRITE && 354 vma->vm_start <= vaddr && 352 vma->vm_start <= vaddr && 355 vma->vm_end > vaddr; 353 vma->vm_end > vaddr; 356 } 354 } 357 355 358 static struct vm_area_struct * 356 static struct vm_area_struct * 359 find_ref_ctr_vma(struct uprobe *uprobe, struct 357 find_ref_ctr_vma(struct uprobe *uprobe, struct mm_struct *mm) 360 { 358 { 361 VMA_ITERATOR(vmi, mm, 0); << 362 struct vm_area_struct *tmp; 359 struct vm_area_struct *tmp; 363 360 364 for_each_vma(vmi, tmp) !! 361 for (tmp = mm->mmap; tmp; tmp = tmp->vm_next) 365 if (valid_ref_ctr_vma(uprobe, 362 if (valid_ref_ctr_vma(uprobe, tmp)) 366 return tmp; 363 return tmp; 367 364 368 return NULL; 365 return NULL; 369 } 366 } 370 367 371 static int 368 static int 372 __update_ref_ctr(struct mm_struct *mm, unsigne 369 __update_ref_ctr(struct mm_struct *mm, unsigned long vaddr, short d) 373 { 370 { 374 void *kaddr; 371 void *kaddr; 375 struct page *page; 372 struct page *page; >> 373 struct vm_area_struct *vma; 376 int ret; 374 int ret; 377 short *ptr; 375 short *ptr; 378 376 379 if (!vaddr || !d) 377 if (!vaddr || !d) 380 return -EINVAL; 378 return -EINVAL; 381 379 382 ret = get_user_pages_remote(mm, vaddr, 380 ret = get_user_pages_remote(mm, vaddr, 1, 383 FOLL_WRITE !! 381 FOLL_WRITE, &page, &vma, NULL); 384 if (unlikely(ret <= 0)) { 382 if (unlikely(ret <= 0)) { 385 /* 383 /* 386 * We are asking for 1 page. I 384 * We are asking for 1 page. If get_user_pages_remote() fails, 387 * it may return 0, in that ca 385 * it may return 0, in that case we have to return error. 388 */ 386 */ 389 return ret == 0 ? -EBUSY : ret 387 return ret == 0 ? -EBUSY : ret; 390 } 388 } 391 389 392 kaddr = kmap_atomic(page); 390 kaddr = kmap_atomic(page); 393 ptr = kaddr + (vaddr & ~PAGE_MASK); 391 ptr = kaddr + (vaddr & ~PAGE_MASK); 394 392 395 if (unlikely(*ptr + d < 0)) { 393 if (unlikely(*ptr + d < 0)) { 396 pr_warn("ref_ctr going negativ 394 pr_warn("ref_ctr going negative. vaddr: 0x%lx, " 397 "curr val: %d, delta: 395 "curr val: %d, delta: %d\n", vaddr, *ptr, d); 398 ret = -EINVAL; 396 ret = -EINVAL; 399 goto out; 397 goto out; 400 } 398 } 401 399 402 *ptr += d; 400 *ptr += d; 403 ret = 0; 401 ret = 0; 404 out: 402 out: 405 kunmap_atomic(kaddr); 403 kunmap_atomic(kaddr); 406 put_page(page); 404 put_page(page); 407 return ret; 405 return ret; 408 } 406 } 409 407 410 static void update_ref_ctr_warn(struct uprobe 408 static void update_ref_ctr_warn(struct uprobe *uprobe, 411 struct mm_stru 409 struct mm_struct *mm, short d) 412 { 410 { 413 pr_warn("ref_ctr %s failed for inode: 411 pr_warn("ref_ctr %s failed for inode: 0x%lx offset: " 414 "0x%llx ref_ctr_offset: 0x%llx 412 "0x%llx ref_ctr_offset: 0x%llx of mm: 0x%pK\n", 415 d > 0 ? "increment" : "decreme 413 d > 0 ? "increment" : "decrement", uprobe->inode->i_ino, 416 (unsigned long long) uprobe->o 414 (unsigned long long) uprobe->offset, 417 (unsigned long long) uprobe->r 415 (unsigned long long) uprobe->ref_ctr_offset, mm); 418 } 416 } 419 417 420 static int update_ref_ctr(struct uprobe *uprob 418 static int update_ref_ctr(struct uprobe *uprobe, struct mm_struct *mm, 421 short d) 419 short d) 422 { 420 { 423 struct vm_area_struct *rc_vma; 421 struct vm_area_struct *rc_vma; 424 unsigned long rc_vaddr; 422 unsigned long rc_vaddr; 425 int ret = 0; 423 int ret = 0; 426 424 427 rc_vma = find_ref_ctr_vma(uprobe, mm); 425 rc_vma = find_ref_ctr_vma(uprobe, mm); 428 426 429 if (rc_vma) { 427 if (rc_vma) { 430 rc_vaddr = offset_to_vaddr(rc_ 428 rc_vaddr = offset_to_vaddr(rc_vma, uprobe->ref_ctr_offset); 431 ret = __update_ref_ctr(mm, rc_ 429 ret = __update_ref_ctr(mm, rc_vaddr, d); 432 if (ret) 430 if (ret) 433 update_ref_ctr_warn(up 431 update_ref_ctr_warn(uprobe, mm, d); 434 432 435 if (d > 0) 433 if (d > 0) 436 return ret; 434 return ret; 437 } 435 } 438 436 439 mutex_lock(&delayed_uprobe_lock); 437 mutex_lock(&delayed_uprobe_lock); 440 if (d > 0) 438 if (d > 0) 441 ret = delayed_uprobe_add(uprob 439 ret = delayed_uprobe_add(uprobe, mm); 442 else 440 else 443 delayed_uprobe_remove(uprobe, 441 delayed_uprobe_remove(uprobe, mm); 444 mutex_unlock(&delayed_uprobe_lock); 442 mutex_unlock(&delayed_uprobe_lock); 445 443 446 return ret; 444 return ret; 447 } 445 } 448 446 449 /* 447 /* 450 * NOTE: 448 * NOTE: 451 * Expect the breakpoint instruction to be the 449 * Expect the breakpoint instruction to be the smallest size instruction for 452 * the architecture. If an arch has variable l 450 * the architecture. If an arch has variable length instruction and the 453 * breakpoint instruction is not of the smalle 451 * breakpoint instruction is not of the smallest length instruction 454 * supported by that architecture then we need 452 * supported by that architecture then we need to modify is_trap_at_addr and 455 * uprobe_write_opcode accordingly. This would 453 * uprobe_write_opcode accordingly. This would never be a problem for archs 456 * that have fixed length instructions. 454 * that have fixed length instructions. 457 * 455 * 458 * uprobe_write_opcode - write the opcode at a 456 * uprobe_write_opcode - write the opcode at a given virtual address. 459 * @auprobe: arch specific probepoint informat 457 * @auprobe: arch specific probepoint information. 460 * @mm: the probed process address space. 458 * @mm: the probed process address space. 461 * @vaddr: the virtual address to store the op 459 * @vaddr: the virtual address to store the opcode. 462 * @opcode: opcode to be written at @vaddr. 460 * @opcode: opcode to be written at @vaddr. 463 * 461 * 464 * Called with mm->mmap_lock held for read or !! 462 * Called with mm->mmap_lock held for write. 465 * Return 0 (success) or a negative errno. 463 * Return 0 (success) or a negative errno. 466 */ 464 */ 467 int uprobe_write_opcode(struct arch_uprobe *au 465 int uprobe_write_opcode(struct arch_uprobe *auprobe, struct mm_struct *mm, 468 unsigned long vaddr, u 466 unsigned long vaddr, uprobe_opcode_t opcode) 469 { 467 { 470 struct uprobe *uprobe; 468 struct uprobe *uprobe; 471 struct page *old_page, *new_page; 469 struct page *old_page, *new_page; 472 struct vm_area_struct *vma; 470 struct vm_area_struct *vma; 473 int ret, is_register, ref_ctr_updated 471 int ret, is_register, ref_ctr_updated = 0; 474 bool orig_page_huge = false; 472 bool orig_page_huge = false; 475 unsigned int gup_flags = FOLL_FORCE; 473 unsigned int gup_flags = FOLL_FORCE; 476 474 477 is_register = is_swbp_insn(&opcode); 475 is_register = is_swbp_insn(&opcode); 478 uprobe = container_of(auprobe, struct 476 uprobe = container_of(auprobe, struct uprobe, arch); 479 477 480 retry: 478 retry: 481 if (is_register) 479 if (is_register) 482 gup_flags |= FOLL_SPLIT_PMD; 480 gup_flags |= FOLL_SPLIT_PMD; 483 /* Read the page with vaddr into memor 481 /* Read the page with vaddr into memory */ 484 old_page = get_user_page_vma_remote(mm !! 482 ret = get_user_pages_remote(mm, vaddr, 1, gup_flags, 485 if (IS_ERR(old_page)) !! 483 &old_page, &vma, NULL); 486 return PTR_ERR(old_page); !! 484 if (ret <= 0) >> 485 return ret; 487 486 488 ret = verify_opcode(old_page, vaddr, & 487 ret = verify_opcode(old_page, vaddr, &opcode); 489 if (ret <= 0) 488 if (ret <= 0) 490 goto put_old; 489 goto put_old; 491 490 492 if (WARN(!is_register && PageCompound( 491 if (WARN(!is_register && PageCompound(old_page), 493 "uprobe unregister should nev 492 "uprobe unregister should never work on compound page\n")) { 494 ret = -EINVAL; 493 ret = -EINVAL; 495 goto put_old; 494 goto put_old; 496 } 495 } 497 496 498 /* We are going to replace instruction 497 /* We are going to replace instruction, update ref_ctr. */ 499 if (!ref_ctr_updated && uprobe->ref_ct 498 if (!ref_ctr_updated && uprobe->ref_ctr_offset) { 500 ret = update_ref_ctr(uprobe, m 499 ret = update_ref_ctr(uprobe, mm, is_register ? 1 : -1); 501 if (ret) 500 if (ret) 502 goto put_old; 501 goto put_old; 503 502 504 ref_ctr_updated = 1; 503 ref_ctr_updated = 1; 505 } 504 } 506 505 507 ret = 0; 506 ret = 0; 508 if (!is_register && !PageAnon(old_page 507 if (!is_register && !PageAnon(old_page)) 509 goto put_old; 508 goto put_old; 510 509 511 ret = anon_vma_prepare(vma); 510 ret = anon_vma_prepare(vma); 512 if (ret) 511 if (ret) 513 goto put_old; 512 goto put_old; 514 513 515 ret = -ENOMEM; 514 ret = -ENOMEM; 516 new_page = alloc_page_vma(GFP_HIGHUSER 515 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vaddr); 517 if (!new_page) 516 if (!new_page) 518 goto put_old; 517 goto put_old; 519 518 520 __SetPageUptodate(new_page); 519 __SetPageUptodate(new_page); 521 copy_highpage(new_page, old_page); 520 copy_highpage(new_page, old_page); 522 copy_to_page(new_page, vaddr, &opcode, 521 copy_to_page(new_page, vaddr, &opcode, UPROBE_SWBP_INSN_SIZE); 523 522 524 if (!is_register) { 523 if (!is_register) { 525 struct page *orig_page; 524 struct page *orig_page; 526 pgoff_t index; 525 pgoff_t index; 527 526 528 VM_BUG_ON_PAGE(!PageAnon(old_p 527 VM_BUG_ON_PAGE(!PageAnon(old_page), old_page); 529 528 530 index = vaddr_to_offset(vma, v 529 index = vaddr_to_offset(vma, vaddr & PAGE_MASK) >> PAGE_SHIFT; 531 orig_page = find_get_page(vma- 530 orig_page = find_get_page(vma->vm_file->f_inode->i_mapping, 532 inde 531 index); 533 532 534 if (orig_page) { 533 if (orig_page) { 535 if (PageUptodate(orig_ 534 if (PageUptodate(orig_page) && 536 pages_identical(ne 535 pages_identical(new_page, orig_page)) { 537 /* let go new_ 536 /* let go new_page */ 538 put_page(new_p 537 put_page(new_page); 539 new_page = NUL 538 new_page = NULL; 540 539 541 if (PageCompou 540 if (PageCompound(orig_page)) 542 orig_p 541 orig_page_huge = true; 543 } 542 } 544 put_page(orig_page); 543 put_page(orig_page); 545 } 544 } 546 } 545 } 547 546 548 ret = __replace_page(vma, vaddr & PAGE !! 547 ret = __replace_page(vma, vaddr, old_page, new_page); 549 if (new_page) 548 if (new_page) 550 put_page(new_page); 549 put_page(new_page); 551 put_old: 550 put_old: 552 put_page(old_page); 551 put_page(old_page); 553 552 554 if (unlikely(ret == -EAGAIN)) 553 if (unlikely(ret == -EAGAIN)) 555 goto retry; 554 goto retry; 556 555 557 /* Revert back reference counter if in 556 /* Revert back reference counter if instruction update failed. */ 558 if (ret && is_register && ref_ctr_upda 557 if (ret && is_register && ref_ctr_updated) 559 update_ref_ctr(uprobe, mm, -1) 558 update_ref_ctr(uprobe, mm, -1); 560 559 561 /* try collapse pmd for compound page 560 /* try collapse pmd for compound page */ 562 if (!ret && orig_page_huge) 561 if (!ret && orig_page_huge) 563 collapse_pte_mapped_thp(mm, va !! 562 collapse_pte_mapped_thp(mm, vaddr); 564 563 565 return ret; 564 return ret; 566 } 565 } 567 566 568 /** 567 /** 569 * set_swbp - store breakpoint at a given addr 568 * set_swbp - store breakpoint at a given address. 570 * @auprobe: arch specific probepoint informat 569 * @auprobe: arch specific probepoint information. 571 * @mm: the probed process address space. 570 * @mm: the probed process address space. 572 * @vaddr: the virtual address to insert the o 571 * @vaddr: the virtual address to insert the opcode. 573 * 572 * 574 * For mm @mm, store the breakpoint instructio 573 * For mm @mm, store the breakpoint instruction at @vaddr. 575 * Return 0 (success) or a negative errno. 574 * Return 0 (success) or a negative errno. 576 */ 575 */ 577 int __weak set_swbp(struct arch_uprobe *auprob 576 int __weak set_swbp(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long vaddr) 578 { 577 { 579 return uprobe_write_opcode(auprobe, mm 578 return uprobe_write_opcode(auprobe, mm, vaddr, UPROBE_SWBP_INSN); 580 } 579 } 581 580 582 /** 581 /** 583 * set_orig_insn - Restore the original instru 582 * set_orig_insn - Restore the original instruction. 584 * @mm: the probed process address space. 583 * @mm: the probed process address space. 585 * @auprobe: arch specific probepoint informat 584 * @auprobe: arch specific probepoint information. 586 * @vaddr: the virtual address to insert the o 585 * @vaddr: the virtual address to insert the opcode. 587 * 586 * 588 * For mm @mm, restore the original opcode (op 587 * For mm @mm, restore the original opcode (opcode) at @vaddr. 589 * Return 0 (success) or a negative errno. 588 * Return 0 (success) or a negative errno. 590 */ 589 */ 591 int __weak 590 int __weak 592 set_orig_insn(struct arch_uprobe *auprobe, str 591 set_orig_insn(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long vaddr) 593 { 592 { 594 return uprobe_write_opcode(auprobe, mm 593 return uprobe_write_opcode(auprobe, mm, vaddr, 595 *(uprobe_opcode_t *)&a 594 *(uprobe_opcode_t *)&auprobe->insn); 596 } 595 } 597 596 598 /* uprobe should have guaranteed positive refc << 599 static struct uprobe *get_uprobe(struct uprobe 597 static struct uprobe *get_uprobe(struct uprobe *uprobe) 600 { 598 { 601 refcount_inc(&uprobe->ref); 599 refcount_inc(&uprobe->ref); 602 return uprobe; 600 return uprobe; 603 } 601 } 604 602 605 /* << 606 * uprobe should have guaranteed lifetime, whi << 607 * - caller already has refcount taken (and << 608 * - uprobe is RCU protected and won't be fr << 609 * - we are holding uprobes_treelock (for re << 610 */ << 611 static struct uprobe *try_get_uprobe(struct up << 612 { << 613 if (refcount_inc_not_zero(&uprobe->ref << 614 return uprobe; << 615 return NULL; << 616 } << 617 << 618 static inline bool uprobe_is_active(struct upr << 619 { << 620 return !RB_EMPTY_NODE(&uprobe->rb_node << 621 } << 622 << 623 static void uprobe_free_rcu(struct rcu_head *r << 624 { << 625 struct uprobe *uprobe = container_of(r << 626 << 627 kfree(uprobe); << 628 } << 629 << 630 static void put_uprobe(struct uprobe *uprobe) 603 static void put_uprobe(struct uprobe *uprobe) 631 { 604 { 632 if (!refcount_dec_and_test(&uprobe->re !! 605 if (refcount_dec_and_test(&uprobe->ref)) { 633 return; !! 606 /* 634 !! 607 * If application munmap(exec_vma) before uprobe_unregister() 635 write_lock(&uprobes_treelock); !! 608 * gets called, we don't get a chance to remove uprobe from 636 !! 609 * delayed_uprobe_list from remove_breakpoint(). Do it here. 637 if (uprobe_is_active(uprobe)) { !! 610 */ 638 write_seqcount_begin(&uprobes_ !! 611 mutex_lock(&delayed_uprobe_lock); 639 rb_erase(&uprobe->rb_node, &up !! 612 delayed_uprobe_remove(uprobe, NULL); 640 write_seqcount_end(&uprobes_se !! 613 mutex_unlock(&delayed_uprobe_lock); >> 614 kfree(uprobe); 641 } 615 } 642 << 643 write_unlock(&uprobes_treelock); << 644 << 645 /* << 646 * If application munmap(exec_vma) bef << 647 * gets called, we don't get a chance << 648 * delayed_uprobe_list from remove_bre << 649 */ << 650 mutex_lock(&delayed_uprobe_lock); << 651 delayed_uprobe_remove(uprobe, NULL); << 652 mutex_unlock(&delayed_uprobe_lock); << 653 << 654 call_srcu(&uprobes_srcu, &uprobe->rcu, << 655 } 616 } 656 617 657 static __always_inline 618 static __always_inline 658 int uprobe_cmp(const struct inode *l_inode, co 619 int uprobe_cmp(const struct inode *l_inode, const loff_t l_offset, 659 const struct uprobe *r) 620 const struct uprobe *r) 660 { 621 { 661 if (l_inode < r->inode) 622 if (l_inode < r->inode) 662 return -1; 623 return -1; 663 624 664 if (l_inode > r->inode) 625 if (l_inode > r->inode) 665 return 1; 626 return 1; 666 627 667 if (l_offset < r->offset) 628 if (l_offset < r->offset) 668 return -1; 629 return -1; 669 630 670 if (l_offset > r->offset) 631 if (l_offset > r->offset) 671 return 1; 632 return 1; 672 633 673 return 0; 634 return 0; 674 } 635 } 675 636 676 #define __node_2_uprobe(node) \ 637 #define __node_2_uprobe(node) \ 677 rb_entry((node), struct uprobe, rb_nod 638 rb_entry((node), struct uprobe, rb_node) 678 639 679 struct __uprobe_key { 640 struct __uprobe_key { 680 struct inode *inode; 641 struct inode *inode; 681 loff_t offset; 642 loff_t offset; 682 }; 643 }; 683 644 684 static inline int __uprobe_cmp_key(const void 645 static inline int __uprobe_cmp_key(const void *key, const struct rb_node *b) 685 { 646 { 686 const struct __uprobe_key *a = key; 647 const struct __uprobe_key *a = key; 687 return uprobe_cmp(a->inode, a->offset, 648 return uprobe_cmp(a->inode, a->offset, __node_2_uprobe(b)); 688 } 649 } 689 650 690 static inline int __uprobe_cmp(struct rb_node 651 static inline int __uprobe_cmp(struct rb_node *a, const struct rb_node *b) 691 { 652 { 692 struct uprobe *u = __node_2_uprobe(a); 653 struct uprobe *u = __node_2_uprobe(a); 693 return uprobe_cmp(u->inode, u->offset, 654 return uprobe_cmp(u->inode, u->offset, __node_2_uprobe(b)); 694 } 655 } 695 656 696 /* !! 657 static struct uprobe *__find_uprobe(struct inode *inode, loff_t offset) 697 * Assumes being inside RCU protected region. << 698 * No refcount is taken on returned uprobe. << 699 */ << 700 static struct uprobe *find_uprobe_rcu(struct i << 701 { 658 { 702 struct __uprobe_key key = { 659 struct __uprobe_key key = { 703 .inode = inode, 660 .inode = inode, 704 .offset = offset, 661 .offset = offset, 705 }; 662 }; 706 struct rb_node *node; !! 663 struct rb_node *node = rb_find(&key, &uprobes_tree, __uprobe_cmp_key); 707 unsigned int seq; << 708 << 709 lockdep_assert(srcu_read_lock_held(&up << 710 664 711 do { !! 665 if (node) 712 seq = read_seqcount_begin(&upr !! 666 return get_uprobe(__node_2_uprobe(node)); 713 node = rb_find_rcu(&key, &upro << 714 /* << 715 * Lockless RB-tree lookups ca << 716 * If the element is found, it << 717 * under RCU protection. If we << 718 * validate that seqcount didn << 719 * try again as we might have << 720 * negative). If seqcount is u << 721 */ << 722 if (node) << 723 return __node_2_uprobe << 724 } while (read_seqcount_retry(&uprobes_ << 725 667 726 return NULL; 668 return NULL; 727 } 669 } 728 670 729 /* 671 /* 730 * Attempt to insert a new uprobe into uprobes !! 672 * Find a uprobe corresponding to a given inode:offset 731 * !! 673 * Acquires uprobes_treelock 732 * If uprobe already exists (for given inode+o << 733 * refcount of previously existing uprobe. << 734 * << 735 * If not, a provided new instance of uprobe i << 736 * assumed initial refcount == 1). << 737 * << 738 * In any case, we return a uprobe instance th << 739 * Caller has to clean up new uprobe instance, << 740 * inserted into the tree. << 741 * << 742 * We assume that uprobes_treelock is held for << 743 */ 674 */ >> 675 static struct uprobe *find_uprobe(struct inode *inode, loff_t offset) >> 676 { >> 677 struct uprobe *uprobe; >> 678 >> 679 spin_lock(&uprobes_treelock); >> 680 uprobe = __find_uprobe(inode, offset); >> 681 spin_unlock(&uprobes_treelock); >> 682 >> 683 return uprobe; >> 684 } >> 685 744 static struct uprobe *__insert_uprobe(struct u 686 static struct uprobe *__insert_uprobe(struct uprobe *uprobe) 745 { 687 { 746 struct rb_node *node; 688 struct rb_node *node; 747 again: << 748 node = rb_find_add_rcu(&uprobe->rb_nod << 749 if (node) { << 750 struct uprobe *u = __node_2_up << 751 << 752 if (!try_get_uprobe(u)) { << 753 rb_erase(node, &uprobe << 754 RB_CLEAR_NODE(&u->rb_n << 755 goto again; << 756 } << 757 689 758 return u; !! 690 node = rb_find_add(&uprobe->rb_node, &uprobes_tree, __uprobe_cmp); 759 } !! 691 if (node) >> 692 return get_uprobe(__node_2_uprobe(node)); 760 693 761 return uprobe; !! 694 /* get access + creation ref */ >> 695 refcount_set(&uprobe->ref, 2); >> 696 return NULL; 762 } 697 } 763 698 764 /* 699 /* 765 * Acquire uprobes_treelock and insert uprobe !! 700 * Acquire uprobes_treelock. 766 * (or reuse existing one, see __insert_uprobe !! 701 * Matching uprobe already exists in rbtree; >> 702 * increment (access refcount) and return the matching uprobe. >> 703 * >> 704 * No matching uprobe; insert the uprobe in rb_tree; >> 705 * get a double refcount (access + creation) and return NULL. 767 */ 706 */ 768 static struct uprobe *insert_uprobe(struct upr 707 static struct uprobe *insert_uprobe(struct uprobe *uprobe) 769 { 708 { 770 struct uprobe *u; 709 struct uprobe *u; 771 710 772 write_lock(&uprobes_treelock); !! 711 spin_lock(&uprobes_treelock); 773 write_seqcount_begin(&uprobes_seqcount << 774 u = __insert_uprobe(uprobe); 712 u = __insert_uprobe(uprobe); 775 write_seqcount_end(&uprobes_seqcount); !! 713 spin_unlock(&uprobes_treelock); 776 write_unlock(&uprobes_treelock); << 777 714 778 return u; 715 return u; 779 } 716 } 780 717 781 static void 718 static void 782 ref_ctr_mismatch_warn(struct uprobe *cur_uprob 719 ref_ctr_mismatch_warn(struct uprobe *cur_uprobe, struct uprobe *uprobe) 783 { 720 { 784 pr_warn("ref_ctr_offset mismatch. inod 721 pr_warn("ref_ctr_offset mismatch. inode: 0x%lx offset: 0x%llx " 785 "ref_ctr_offset(old): 0x%llx r 722 "ref_ctr_offset(old): 0x%llx ref_ctr_offset(new): 0x%llx\n", 786 uprobe->inode->i_ino, (unsigne 723 uprobe->inode->i_ino, (unsigned long long) uprobe->offset, 787 (unsigned long long) cur_uprob 724 (unsigned long long) cur_uprobe->ref_ctr_offset, 788 (unsigned long long) uprobe->r 725 (unsigned long long) uprobe->ref_ctr_offset); 789 } 726 } 790 727 791 static struct uprobe *alloc_uprobe(struct inod 728 static struct uprobe *alloc_uprobe(struct inode *inode, loff_t offset, 792 loff_t ref_ 729 loff_t ref_ctr_offset) 793 { 730 { 794 struct uprobe *uprobe, *cur_uprobe; 731 struct uprobe *uprobe, *cur_uprobe; 795 732 796 uprobe = kzalloc(sizeof(struct uprobe) 733 uprobe = kzalloc(sizeof(struct uprobe), GFP_KERNEL); 797 if (!uprobe) 734 if (!uprobe) 798 return ERR_PTR(-ENOMEM); !! 735 return NULL; 799 736 800 uprobe->inode = inode; 737 uprobe->inode = inode; 801 uprobe->offset = offset; 738 uprobe->offset = offset; 802 uprobe->ref_ctr_offset = ref_ctr_offse 739 uprobe->ref_ctr_offset = ref_ctr_offset; 803 INIT_LIST_HEAD(&uprobe->consumers); << 804 init_rwsem(&uprobe->register_rwsem); 740 init_rwsem(&uprobe->register_rwsem); 805 init_rwsem(&uprobe->consumer_rwsem); 741 init_rwsem(&uprobe->consumer_rwsem); 806 RB_CLEAR_NODE(&uprobe->rb_node); << 807 refcount_set(&uprobe->ref, 1); << 808 742 809 /* add to uprobes_tree, sorted on inod 743 /* add to uprobes_tree, sorted on inode:offset */ 810 cur_uprobe = insert_uprobe(uprobe); 744 cur_uprobe = insert_uprobe(uprobe); 811 /* a uprobe exists for this inode:offs 745 /* a uprobe exists for this inode:offset combination */ 812 if (cur_uprobe != uprobe) { !! 746 if (cur_uprobe) { 813 if (cur_uprobe->ref_ctr_offset 747 if (cur_uprobe->ref_ctr_offset != uprobe->ref_ctr_offset) { 814 ref_ctr_mismatch_warn( 748 ref_ctr_mismatch_warn(cur_uprobe, uprobe); 815 put_uprobe(cur_uprobe) 749 put_uprobe(cur_uprobe); 816 kfree(uprobe); 750 kfree(uprobe); 817 return ERR_PTR(-EINVAL 751 return ERR_PTR(-EINVAL); 818 } 752 } 819 kfree(uprobe); 753 kfree(uprobe); 820 uprobe = cur_uprobe; 754 uprobe = cur_uprobe; 821 } 755 } 822 756 823 return uprobe; 757 return uprobe; 824 } 758 } 825 759 826 static void consumer_add(struct uprobe *uprobe 760 static void consumer_add(struct uprobe *uprobe, struct uprobe_consumer *uc) 827 { 761 { 828 down_write(&uprobe->consumer_rwsem); 762 down_write(&uprobe->consumer_rwsem); 829 list_add_rcu(&uc->cons_node, &uprobe-> !! 763 uc->next = uprobe->consumers; >> 764 uprobe->consumers = uc; 830 up_write(&uprobe->consumer_rwsem); 765 up_write(&uprobe->consumer_rwsem); 831 } 766 } 832 767 833 /* 768 /* 834 * For uprobe @uprobe, delete the consumer @uc 769 * For uprobe @uprobe, delete the consumer @uc. 835 * Should never be called with consumer that's !! 770 * Return true if the @uc is deleted successfully >> 771 * or return false. 836 */ 772 */ 837 static void consumer_del(struct uprobe *uprobe !! 773 static bool consumer_del(struct uprobe *uprobe, struct uprobe_consumer *uc) 838 { 774 { >> 775 struct uprobe_consumer **con; >> 776 bool ret = false; >> 777 839 down_write(&uprobe->consumer_rwsem); 778 down_write(&uprobe->consumer_rwsem); 840 list_del_rcu(&uc->cons_node); !! 779 for (con = &uprobe->consumers; *con; con = &(*con)->next) { >> 780 if (*con == uc) { >> 781 *con = uc->next; >> 782 ret = true; >> 783 break; >> 784 } >> 785 } 841 up_write(&uprobe->consumer_rwsem); 786 up_write(&uprobe->consumer_rwsem); >> 787 >> 788 return ret; 842 } 789 } 843 790 844 static int __copy_insn(struct address_space *m 791 static int __copy_insn(struct address_space *mapping, struct file *filp, 845 void *insn, int nbytes 792 void *insn, int nbytes, loff_t offset) 846 { 793 { 847 struct page *page; 794 struct page *page; 848 /* 795 /* 849 * Ensure that the page that has the o 796 * Ensure that the page that has the original instruction is populated 850 * and in page-cache. If ->read_folio !! 797 * and in page-cache. If ->readpage == NULL it must be shmem_mapping(), 851 * see uprobe_register(). 798 * see uprobe_register(). 852 */ 799 */ 853 if (mapping->a_ops->read_folio) !! 800 if (mapping->a_ops->readpage) 854 page = read_mapping_page(mappi 801 page = read_mapping_page(mapping, offset >> PAGE_SHIFT, filp); 855 else 802 else 856 page = shmem_read_mapping_page 803 page = shmem_read_mapping_page(mapping, offset >> PAGE_SHIFT); 857 if (IS_ERR(page)) 804 if (IS_ERR(page)) 858 return PTR_ERR(page); 805 return PTR_ERR(page); 859 806 860 copy_from_page(page, offset, insn, nby 807 copy_from_page(page, offset, insn, nbytes); 861 put_page(page); 808 put_page(page); 862 809 863 return 0; 810 return 0; 864 } 811 } 865 812 866 static int copy_insn(struct uprobe *uprobe, st 813 static int copy_insn(struct uprobe *uprobe, struct file *filp) 867 { 814 { 868 struct address_space *mapping = uprobe 815 struct address_space *mapping = uprobe->inode->i_mapping; 869 loff_t offs = uprobe->offset; 816 loff_t offs = uprobe->offset; 870 void *insn = &uprobe->arch.insn; 817 void *insn = &uprobe->arch.insn; 871 int size = sizeof(uprobe->arch.insn); 818 int size = sizeof(uprobe->arch.insn); 872 int len, err = -EIO; 819 int len, err = -EIO; 873 820 874 /* Copy only available bytes, -EIO if 821 /* Copy only available bytes, -EIO if nothing was read */ 875 do { 822 do { 876 if (offs >= i_size_read(uprobe 823 if (offs >= i_size_read(uprobe->inode)) 877 break; 824 break; 878 825 879 len = min_t(int, size, PAGE_SI 826 len = min_t(int, size, PAGE_SIZE - (offs & ~PAGE_MASK)); 880 err = __copy_insn(mapping, fil 827 err = __copy_insn(mapping, filp, insn, len, offs); 881 if (err) 828 if (err) 882 break; 829 break; 883 830 884 insn += len; 831 insn += len; 885 offs += len; 832 offs += len; 886 size -= len; 833 size -= len; 887 } while (size); 834 } while (size); 888 835 889 return err; 836 return err; 890 } 837 } 891 838 892 static int prepare_uprobe(struct uprobe *uprob 839 static int prepare_uprobe(struct uprobe *uprobe, struct file *file, 893 struct mm_stru 840 struct mm_struct *mm, unsigned long vaddr) 894 { 841 { 895 int ret = 0; 842 int ret = 0; 896 843 897 if (test_bit(UPROBE_COPY_INSN, &uprobe 844 if (test_bit(UPROBE_COPY_INSN, &uprobe->flags)) 898 return ret; 845 return ret; 899 846 900 /* TODO: move this into _register, unt 847 /* TODO: move this into _register, until then we abuse this sem. */ 901 down_write(&uprobe->consumer_rwsem); 848 down_write(&uprobe->consumer_rwsem); 902 if (test_bit(UPROBE_COPY_INSN, &uprobe 849 if (test_bit(UPROBE_COPY_INSN, &uprobe->flags)) 903 goto out; 850 goto out; 904 851 905 ret = copy_insn(uprobe, file); 852 ret = copy_insn(uprobe, file); 906 if (ret) 853 if (ret) 907 goto out; 854 goto out; 908 855 909 ret = -ENOTSUPP; 856 ret = -ENOTSUPP; 910 if (is_trap_insn((uprobe_opcode_t *)&u 857 if (is_trap_insn((uprobe_opcode_t *)&uprobe->arch.insn)) 911 goto out; 858 goto out; 912 859 913 ret = arch_uprobe_analyze_insn(&uprobe 860 ret = arch_uprobe_analyze_insn(&uprobe->arch, mm, vaddr); 914 if (ret) 861 if (ret) 915 goto out; 862 goto out; 916 863 917 smp_wmb(); /* pairs with the smp_rmb() 864 smp_wmb(); /* pairs with the smp_rmb() in handle_swbp() */ 918 set_bit(UPROBE_COPY_INSN, &uprobe->fla 865 set_bit(UPROBE_COPY_INSN, &uprobe->flags); 919 866 920 out: 867 out: 921 up_write(&uprobe->consumer_rwsem); 868 up_write(&uprobe->consumer_rwsem); 922 869 923 return ret; 870 return ret; 924 } 871 } 925 872 926 static inline bool consumer_filter(struct upro !! 873 static inline bool consumer_filter(struct uprobe_consumer *uc, >> 874 enum uprobe_filter_ctx ctx, struct mm_struct *mm) 927 { 875 { 928 return !uc->filter || uc->filter(uc, m !! 876 return !uc->filter || uc->filter(uc, ctx, mm); 929 } 877 } 930 878 931 static bool filter_chain(struct uprobe *uprobe !! 879 static bool filter_chain(struct uprobe *uprobe, >> 880 enum uprobe_filter_ctx ctx, struct mm_struct *mm) 932 { 881 { 933 struct uprobe_consumer *uc; 882 struct uprobe_consumer *uc; 934 bool ret = false; 883 bool ret = false; 935 884 936 down_read(&uprobe->consumer_rwsem); 885 down_read(&uprobe->consumer_rwsem); 937 list_for_each_entry_srcu(uc, &uprobe-> !! 886 for (uc = uprobe->consumers; uc; uc = uc->next) { 938 srcu_read_loc !! 887 ret = consumer_filter(uc, ctx, mm); 939 ret = consumer_filter(uc, mm); << 940 if (ret) 888 if (ret) 941 break; 889 break; 942 } 890 } 943 up_read(&uprobe->consumer_rwsem); 891 up_read(&uprobe->consumer_rwsem); 944 892 945 return ret; 893 return ret; 946 } 894 } 947 895 948 static int 896 static int 949 install_breakpoint(struct uprobe *uprobe, stru 897 install_breakpoint(struct uprobe *uprobe, struct mm_struct *mm, 950 struct vm_area_struct 898 struct vm_area_struct *vma, unsigned long vaddr) 951 { 899 { 952 bool first_uprobe; 900 bool first_uprobe; 953 int ret; 901 int ret; 954 902 955 ret = prepare_uprobe(uprobe, vma->vm_f 903 ret = prepare_uprobe(uprobe, vma->vm_file, mm, vaddr); 956 if (ret) 904 if (ret) 957 return ret; 905 return ret; 958 906 959 /* 907 /* 960 * set MMF_HAS_UPROBES in advance for 908 * set MMF_HAS_UPROBES in advance for uprobe_pre_sstep_notifier(), 961 * the task can hit this breakpoint ri 909 * the task can hit this breakpoint right after __replace_page(). 962 */ 910 */ 963 first_uprobe = !test_bit(MMF_HAS_UPROB 911 first_uprobe = !test_bit(MMF_HAS_UPROBES, &mm->flags); 964 if (first_uprobe) 912 if (first_uprobe) 965 set_bit(MMF_HAS_UPROBES, &mm-> 913 set_bit(MMF_HAS_UPROBES, &mm->flags); 966 914 967 ret = set_swbp(&uprobe->arch, mm, vadd 915 ret = set_swbp(&uprobe->arch, mm, vaddr); 968 if (!ret) 916 if (!ret) 969 clear_bit(MMF_RECALC_UPROBES, 917 clear_bit(MMF_RECALC_UPROBES, &mm->flags); 970 else if (first_uprobe) 918 else if (first_uprobe) 971 clear_bit(MMF_HAS_UPROBES, &mm 919 clear_bit(MMF_HAS_UPROBES, &mm->flags); 972 920 973 return ret; 921 return ret; 974 } 922 } 975 923 976 static int 924 static int 977 remove_breakpoint(struct uprobe *uprobe, struc 925 remove_breakpoint(struct uprobe *uprobe, struct mm_struct *mm, unsigned long vaddr) 978 { 926 { 979 set_bit(MMF_RECALC_UPROBES, &mm->flags 927 set_bit(MMF_RECALC_UPROBES, &mm->flags); 980 return set_orig_insn(&uprobe->arch, mm 928 return set_orig_insn(&uprobe->arch, mm, vaddr); 981 } 929 } 982 930 >> 931 static inline bool uprobe_is_active(struct uprobe *uprobe) >> 932 { >> 933 return !RB_EMPTY_NODE(&uprobe->rb_node); >> 934 } >> 935 /* >> 936 * There could be threads that have already hit the breakpoint. They >> 937 * will recheck the current insn and restart if find_uprobe() fails. >> 938 * See find_active_uprobe(). >> 939 */ >> 940 static void delete_uprobe(struct uprobe *uprobe) >> 941 { >> 942 if (WARN_ON(!uprobe_is_active(uprobe))) >> 943 return; >> 944 >> 945 spin_lock(&uprobes_treelock); >> 946 rb_erase(&uprobe->rb_node, &uprobes_tree); >> 947 spin_unlock(&uprobes_treelock); >> 948 RB_CLEAR_NODE(&uprobe->rb_node); /* for uprobe_is_active() */ >> 949 put_uprobe(uprobe); >> 950 } >> 951 983 struct map_info { 952 struct map_info { 984 struct map_info *next; 953 struct map_info *next; 985 struct mm_struct *mm; 954 struct mm_struct *mm; 986 unsigned long vaddr; 955 unsigned long vaddr; 987 }; 956 }; 988 957 989 static inline struct map_info *free_map_info(s 958 static inline struct map_info *free_map_info(struct map_info *info) 990 { 959 { 991 struct map_info *next = info->next; 960 struct map_info *next = info->next; 992 kfree(info); 961 kfree(info); 993 return next; 962 return next; 994 } 963 } 995 964 996 static struct map_info * 965 static struct map_info * 997 build_map_info(struct address_space *mapping, 966 build_map_info(struct address_space *mapping, loff_t offset, bool is_register) 998 { 967 { 999 unsigned long pgoff = offset >> PAGE_S 968 unsigned long pgoff = offset >> PAGE_SHIFT; 1000 struct vm_area_struct *vma; 969 struct vm_area_struct *vma; 1001 struct map_info *curr = NULL; 970 struct map_info *curr = NULL; 1002 struct map_info *prev = NULL; 971 struct map_info *prev = NULL; 1003 struct map_info *info; 972 struct map_info *info; 1004 int more = 0; 973 int more = 0; 1005 974 1006 again: 975 again: 1007 i_mmap_lock_read(mapping); 976 i_mmap_lock_read(mapping); 1008 vma_interval_tree_foreach(vma, &mappi 977 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) { 1009 if (!valid_vma(vma, is_regist 978 if (!valid_vma(vma, is_register)) 1010 continue; 979 continue; 1011 980 1012 if (!prev && !more) { 981 if (!prev && !more) { 1013 /* 982 /* 1014 * Needs GFP_NOWAIT t 983 * Needs GFP_NOWAIT to avoid i_mmap_rwsem recursion through 1015 * reclaim. This is o 984 * reclaim. This is optimistic, no harm done if it fails. 1016 */ 985 */ 1017 prev = kmalloc(sizeof 986 prev = kmalloc(sizeof(struct map_info), 1018 GFP_N 987 GFP_NOWAIT | __GFP_NOMEMALLOC | __GFP_NOWARN); 1019 if (prev) 988 if (prev) 1020 prev->next = 989 prev->next = NULL; 1021 } 990 } 1022 if (!prev) { 991 if (!prev) { 1023 more++; 992 more++; 1024 continue; 993 continue; 1025 } 994 } 1026 995 1027 if (!mmget_not_zero(vma->vm_m 996 if (!mmget_not_zero(vma->vm_mm)) 1028 continue; 997 continue; 1029 998 1030 info = prev; 999 info = prev; 1031 prev = prev->next; 1000 prev = prev->next; 1032 info->next = curr; 1001 info->next = curr; 1033 curr = info; 1002 curr = info; 1034 1003 1035 info->mm = vma->vm_mm; 1004 info->mm = vma->vm_mm; 1036 info->vaddr = offset_to_vaddr 1005 info->vaddr = offset_to_vaddr(vma, offset); 1037 } 1006 } 1038 i_mmap_unlock_read(mapping); 1007 i_mmap_unlock_read(mapping); 1039 1008 1040 if (!more) 1009 if (!more) 1041 goto out; 1010 goto out; 1042 1011 1043 prev = curr; 1012 prev = curr; 1044 while (curr) { 1013 while (curr) { 1045 mmput(curr->mm); 1014 mmput(curr->mm); 1046 curr = curr->next; 1015 curr = curr->next; 1047 } 1016 } 1048 1017 1049 do { 1018 do { 1050 info = kmalloc(sizeof(struct 1019 info = kmalloc(sizeof(struct map_info), GFP_KERNEL); 1051 if (!info) { 1020 if (!info) { 1052 curr = ERR_PTR(-ENOME 1021 curr = ERR_PTR(-ENOMEM); 1053 goto out; 1022 goto out; 1054 } 1023 } 1055 info->next = prev; 1024 info->next = prev; 1056 prev = info; 1025 prev = info; 1057 } while (--more); 1026 } while (--more); 1058 1027 1059 goto again; 1028 goto again; 1060 out: 1029 out: 1061 while (prev) 1030 while (prev) 1062 prev = free_map_info(prev); 1031 prev = free_map_info(prev); 1063 return curr; 1032 return curr; 1064 } 1033 } 1065 1034 1066 static int 1035 static int 1067 register_for_each_vma(struct uprobe *uprobe, 1036 register_for_each_vma(struct uprobe *uprobe, struct uprobe_consumer *new) 1068 { 1037 { 1069 bool is_register = !!new; 1038 bool is_register = !!new; 1070 struct map_info *info; 1039 struct map_info *info; 1071 int err = 0; 1040 int err = 0; 1072 1041 1073 percpu_down_write(&dup_mmap_sem); 1042 percpu_down_write(&dup_mmap_sem); 1074 info = build_map_info(uprobe->inode-> 1043 info = build_map_info(uprobe->inode->i_mapping, 1075 uprob 1044 uprobe->offset, is_register); 1076 if (IS_ERR(info)) { 1045 if (IS_ERR(info)) { 1077 err = PTR_ERR(info); 1046 err = PTR_ERR(info); 1078 goto out; 1047 goto out; 1079 } 1048 } 1080 1049 1081 while (info) { 1050 while (info) { 1082 struct mm_struct *mm = info-> 1051 struct mm_struct *mm = info->mm; 1083 struct vm_area_struct *vma; 1052 struct vm_area_struct *vma; 1084 1053 1085 if (err && is_register) 1054 if (err && is_register) 1086 goto free; 1055 goto free; 1087 /* !! 1056 1088 * We take mmap_lock for writ << 1089 * find_active_uprobe_rcu() w << 1090 * Thus this install_breakpoi << 1091 * is_trap_at_addr() true rig << 1092 * returns NULL in find_activ << 1093 */ << 1094 mmap_write_lock(mm); 1057 mmap_write_lock(mm); 1095 vma = find_vma(mm, info->vadd 1058 vma = find_vma(mm, info->vaddr); 1096 if (!vma || !valid_vma(vma, i 1059 if (!vma || !valid_vma(vma, is_register) || 1097 file_inode(vma->vm_file) 1060 file_inode(vma->vm_file) != uprobe->inode) 1098 goto unlock; 1061 goto unlock; 1099 1062 1100 if (vma->vm_start > info->vad 1063 if (vma->vm_start > info->vaddr || 1101 vaddr_to_offset(vma, info 1064 vaddr_to_offset(vma, info->vaddr) != uprobe->offset) 1102 goto unlock; 1065 goto unlock; 1103 1066 1104 if (is_register) { 1067 if (is_register) { 1105 /* consult only the " 1068 /* consult only the "caller", new consumer. */ 1106 if (consumer_filter(n !! 1069 if (consumer_filter(new, >> 1070 UPROBE_FILTER_REGISTER, mm)) 1107 err = install 1071 err = install_breakpoint(uprobe, mm, vma, info->vaddr); 1108 } else if (test_bit(MMF_HAS_U 1072 } else if (test_bit(MMF_HAS_UPROBES, &mm->flags)) { 1109 if (!filter_chain(upr !! 1073 if (!filter_chain(uprobe, >> 1074 UPROBE_FILTER_UNREGISTER, mm)) 1110 err |= remove 1075 err |= remove_breakpoint(uprobe, mm, info->vaddr); 1111 } 1076 } 1112 1077 1113 unlock: 1078 unlock: 1114 mmap_write_unlock(mm); 1079 mmap_write_unlock(mm); 1115 free: 1080 free: 1116 mmput(mm); 1081 mmput(mm); 1117 info = free_map_info(info); 1082 info = free_map_info(info); 1118 } 1083 } 1119 out: 1084 out: 1120 percpu_up_write(&dup_mmap_sem); 1085 percpu_up_write(&dup_mmap_sem); 1121 return err; 1086 return err; 1122 } 1087 } 1123 1088 1124 /** !! 1089 static void 1125 * uprobe_unregister_nosync - unregister an a !! 1090 __uprobe_unregister(struct uprobe *uprobe, struct uprobe_consumer *uc) 1126 * @uprobe: uprobe to remove << 1127 * @uc: identify which probe if multiple prob << 1128 */ << 1129 void uprobe_unregister_nosync(struct uprobe * << 1130 { 1091 { 1131 int err; 1092 int err; 1132 1093 1133 down_write(&uprobe->register_rwsem); !! 1094 if (WARN_ON(!consumer_del(uprobe, uc))) 1134 consumer_del(uprobe, uc); << 1135 err = register_for_each_vma(uprobe, N << 1136 up_write(&uprobe->register_rwsem); << 1137 << 1138 /* TODO : cant unregister? schedule a << 1139 if (unlikely(err)) { << 1140 uprobe_warn(current, "unregis << 1141 return; 1095 return; 1142 } << 1143 1096 1144 put_uprobe(uprobe); !! 1097 err = register_for_each_vma(uprobe, NULL); >> 1098 /* TODO : cant unregister? schedule a worker thread */ >> 1099 if (!uprobe->consumers && !err) >> 1100 delete_uprobe(uprobe); 1145 } 1101 } 1146 EXPORT_SYMBOL_GPL(uprobe_unregister_nosync); << 1147 1102 1148 void uprobe_unregister_sync(void) !! 1103 /* >> 1104 * uprobe_unregister - unregister an already registered probe. >> 1105 * @inode: the file in which the probe has to be removed. >> 1106 * @offset: offset from the start of the file. >> 1107 * @uc: identify which probe if multiple probes are colocated. >> 1108 */ >> 1109 void uprobe_unregister(struct inode *inode, loff_t offset, struct uprobe_consumer *uc) 1149 { 1110 { 1150 /* !! 1111 struct uprobe *uprobe; 1151 * Now that handler_chain() and handl !! 1112 1152 * uprobe->consumers list under RCU p !! 1113 uprobe = find_uprobe(inode, offset); 1153 * uprobe->register_rwsem, we need to !! 1114 if (WARN_ON(!uprobe)) 1154 * make sure that we can't call into !! 1115 return; 1155 * uprobe_consumer's callbacks anymor !! 1116 1156 * unlucky enough caller can free con !! 1117 down_write(&uprobe->register_rwsem); 1157 * handler_chain() or handle_uretprob !! 1118 __uprobe_unregister(uprobe, uc); 1158 */ !! 1119 up_write(&uprobe->register_rwsem); 1159 synchronize_srcu(&uprobes_srcu); !! 1120 put_uprobe(uprobe); 1160 } 1121 } 1161 EXPORT_SYMBOL_GPL(uprobe_unregister_sync); !! 1122 EXPORT_SYMBOL_GPL(uprobe_unregister); 1162 1123 1163 /** !! 1124 /* 1164 * uprobe_register - register a probe !! 1125 * __uprobe_register - register a probe 1165 * @inode: the file in which the probe has to 1126 * @inode: the file in which the probe has to be placed. 1166 * @offset: offset from the start of the file 1127 * @offset: offset from the start of the file. 1167 * @ref_ctr_offset: offset of SDT marker / re << 1168 * @uc: information on howto handle the probe 1128 * @uc: information on howto handle the probe.. 1169 * 1129 * 1170 * Apart from the access refcount, uprobe_reg !! 1130 * Apart from the access refcount, __uprobe_register() takes a creation 1171 * refcount (thro alloc_uprobe) if and only i 1131 * refcount (thro alloc_uprobe) if and only if this @uprobe is getting 1172 * inserted into the rbtree (i.e first consum 1132 * inserted into the rbtree (i.e first consumer for a @inode:@offset 1173 * tuple). Creation refcount stops uprobe_un 1133 * tuple). Creation refcount stops uprobe_unregister from freeing the 1174 * @uprobe even before the register operation 1134 * @uprobe even before the register operation is complete. Creation 1175 * refcount is released when the last @uc for 1135 * refcount is released when the last @uc for the @uprobe 1176 * unregisters. Caller of uprobe_register() i !! 1136 * unregisters. Caller of __uprobe_register() is required to keep @inode 1177 * (and the containing mount) referenced. 1137 * (and the containing mount) referenced. 1178 * 1138 * 1179 * Return: pointer to the new uprobe on succe !! 1139 * Return errno if it cannot successully install probes >> 1140 * else return 0 (success) 1180 */ 1141 */ 1181 struct uprobe *uprobe_register(struct inode * !! 1142 static int __uprobe_register(struct inode *inode, loff_t offset, 1182 loff_t offset !! 1143 loff_t ref_ctr_offset, struct uprobe_consumer *uc) 1183 struct uprobe << 1184 { 1144 { 1185 struct uprobe *uprobe; 1145 struct uprobe *uprobe; 1186 int ret; 1146 int ret; 1187 1147 1188 /* Uprobe must have at least one set 1148 /* Uprobe must have at least one set consumer */ 1189 if (!uc->handler && !uc->ret_handler) 1149 if (!uc->handler && !uc->ret_handler) 1190 return ERR_PTR(-EINVAL); !! 1150 return -EINVAL; 1191 1151 1192 /* copy_insn() uses read_mapping_page 1152 /* copy_insn() uses read_mapping_page() or shmem_read_mapping_page() */ 1193 if (!inode->i_mapping->a_ops->read_fo !! 1153 if (!inode->i_mapping->a_ops->readpage && !shmem_mapping(inode->i_mapping)) 1194 !shmem_mapping(inode->i_mapping)) !! 1154 return -EIO; 1195 return ERR_PTR(-EIO); << 1196 /* Racy, just to catch the obvious mi 1155 /* Racy, just to catch the obvious mistakes */ 1197 if (offset > i_size_read(inode)) 1156 if (offset > i_size_read(inode)) 1198 return ERR_PTR(-EINVAL); !! 1157 return -EINVAL; 1199 1158 1200 /* 1159 /* 1201 * This ensures that copy_from_page() 1160 * This ensures that copy_from_page(), copy_to_page() and 1202 * __update_ref_ctr() can't cross pag 1161 * __update_ref_ctr() can't cross page boundary. 1203 */ 1162 */ 1204 if (!IS_ALIGNED(offset, UPROBE_SWBP_I 1163 if (!IS_ALIGNED(offset, UPROBE_SWBP_INSN_SIZE)) 1205 return ERR_PTR(-EINVAL); !! 1164 return -EINVAL; 1206 if (!IS_ALIGNED(ref_ctr_offset, sizeo 1165 if (!IS_ALIGNED(ref_ctr_offset, sizeof(short))) 1207 return ERR_PTR(-EINVAL); !! 1166 return -EINVAL; 1208 1167 >> 1168 retry: 1209 uprobe = alloc_uprobe(inode, offset, 1169 uprobe = alloc_uprobe(inode, offset, ref_ctr_offset); >> 1170 if (!uprobe) >> 1171 return -ENOMEM; 1210 if (IS_ERR(uprobe)) 1172 if (IS_ERR(uprobe)) 1211 return uprobe; !! 1173 return PTR_ERR(uprobe); 1212 1174 >> 1175 /* >> 1176 * We can race with uprobe_unregister()->delete_uprobe(). >> 1177 * Check uprobe_is_active() and retry if it is false. >> 1178 */ 1213 down_write(&uprobe->register_rwsem); 1179 down_write(&uprobe->register_rwsem); 1214 consumer_add(uprobe, uc); !! 1180 ret = -EAGAIN; 1215 ret = register_for_each_vma(uprobe, u !! 1181 if (likely(uprobe_is_active(uprobe))) { >> 1182 consumer_add(uprobe, uc); >> 1183 ret = register_for_each_vma(uprobe, uc); >> 1184 if (ret) >> 1185 __uprobe_unregister(uprobe, uc); >> 1186 } 1216 up_write(&uprobe->register_rwsem); 1187 up_write(&uprobe->register_rwsem); >> 1188 put_uprobe(uprobe); 1217 1189 1218 if (ret) { !! 1190 if (unlikely(ret == -EAGAIN)) 1219 uprobe_unregister_nosync(upro !! 1191 goto retry; 1220 /* !! 1192 return ret; 1221 * Registration might have pa !! 1193 } 1222 * this consumer being called << 1223 * sync here. It's ok, it's u << 1224 */ << 1225 uprobe_unregister_sync(); << 1226 return ERR_PTR(ret); << 1227 } << 1228 1194 1229 return uprobe; !! 1195 int uprobe_register(struct inode *inode, loff_t offset, >> 1196 struct uprobe_consumer *uc) >> 1197 { >> 1198 return __uprobe_register(inode, offset, 0, uc); 1230 } 1199 } 1231 EXPORT_SYMBOL_GPL(uprobe_register); 1200 EXPORT_SYMBOL_GPL(uprobe_register); 1232 1201 1233 /** !! 1202 int uprobe_register_refctr(struct inode *inode, loff_t offset, 1234 * uprobe_apply - add or remove the breakpoin !! 1203 loff_t ref_ctr_offset, struct uprobe_consumer *uc) 1235 * @uprobe: uprobe which "owns" the breakpoin !! 1204 { >> 1205 return __uprobe_register(inode, offset, ref_ctr_offset, uc); >> 1206 } >> 1207 EXPORT_SYMBOL_GPL(uprobe_register_refctr); >> 1208 >> 1209 /* >> 1210 * uprobe_apply - unregister an already registered probe. >> 1211 * @inode: the file in which the probe has to be removed. >> 1212 * @offset: offset from the start of the file. 1236 * @uc: consumer which wants to add more or r 1213 * @uc: consumer which wants to add more or remove some breakpoints 1237 * @add: add or remove the breakpoints 1214 * @add: add or remove the breakpoints 1238 * Return: 0 on success or negative error cod << 1239 */ 1215 */ 1240 int uprobe_apply(struct uprobe *uprobe, struc !! 1216 int uprobe_apply(struct inode *inode, loff_t offset, >> 1217 struct uprobe_consumer *uc, bool add) 1241 { 1218 { >> 1219 struct uprobe *uprobe; 1242 struct uprobe_consumer *con; 1220 struct uprobe_consumer *con; 1243 int ret = -ENOENT, srcu_idx; !! 1221 int ret = -ENOENT; 1244 << 1245 down_write(&uprobe->register_rwsem); << 1246 1222 1247 srcu_idx = srcu_read_lock(&uprobes_sr !! 1223 uprobe = find_uprobe(inode, offset); 1248 list_for_each_entry_srcu(con, &uprobe !! 1224 if (WARN_ON(!uprobe)) 1249 srcu_read_lo !! 1225 return ret; 1250 if (con == uc) { << 1251 ret = register_for_ea << 1252 break; << 1253 } << 1254 } << 1255 srcu_read_unlock(&uprobes_srcu, srcu_ << 1256 1226 >> 1227 down_write(&uprobe->register_rwsem); >> 1228 for (con = uprobe->consumers; con && con != uc ; con = con->next) >> 1229 ; >> 1230 if (con) >> 1231 ret = register_for_each_vma(uprobe, add ? uc : NULL); 1257 up_write(&uprobe->register_rwsem); 1232 up_write(&uprobe->register_rwsem); >> 1233 put_uprobe(uprobe); 1258 1234 1259 return ret; 1235 return ret; 1260 } 1236 } 1261 1237 1262 static int unapply_uprobe(struct uprobe *upro 1238 static int unapply_uprobe(struct uprobe *uprobe, struct mm_struct *mm) 1263 { 1239 { 1264 VMA_ITERATOR(vmi, mm, 0); << 1265 struct vm_area_struct *vma; 1240 struct vm_area_struct *vma; 1266 int err = 0; 1241 int err = 0; 1267 1242 1268 mmap_read_lock(mm); 1243 mmap_read_lock(mm); 1269 for_each_vma(vmi, vma) { !! 1244 for (vma = mm->mmap; vma; vma = vma->vm_next) { 1270 unsigned long vaddr; 1245 unsigned long vaddr; 1271 loff_t offset; 1246 loff_t offset; 1272 1247 1273 if (!valid_vma(vma, false) || 1248 if (!valid_vma(vma, false) || 1274 file_inode(vma->vm_file) 1249 file_inode(vma->vm_file) != uprobe->inode) 1275 continue; 1250 continue; 1276 1251 1277 offset = (loff_t)vma->vm_pgof 1252 offset = (loff_t)vma->vm_pgoff << PAGE_SHIFT; 1278 if (uprobe->offset < offset 1253 if (uprobe->offset < offset || 1279 uprobe->offset >= offset 1254 uprobe->offset >= offset + vma->vm_end - vma->vm_start) 1280 continue; 1255 continue; 1281 1256 1282 vaddr = offset_to_vaddr(vma, 1257 vaddr = offset_to_vaddr(vma, uprobe->offset); 1283 err |= remove_breakpoint(upro 1258 err |= remove_breakpoint(uprobe, mm, vaddr); 1284 } 1259 } 1285 mmap_read_unlock(mm); 1260 mmap_read_unlock(mm); 1286 1261 1287 return err; 1262 return err; 1288 } 1263 } 1289 1264 1290 static struct rb_node * 1265 static struct rb_node * 1291 find_node_in_range(struct inode *inode, loff_ 1266 find_node_in_range(struct inode *inode, loff_t min, loff_t max) 1292 { 1267 { 1293 struct rb_node *n = uprobes_tree.rb_n 1268 struct rb_node *n = uprobes_tree.rb_node; 1294 1269 1295 while (n) { 1270 while (n) { 1296 struct uprobe *u = rb_entry(n 1271 struct uprobe *u = rb_entry(n, struct uprobe, rb_node); 1297 1272 1298 if (inode < u->inode) { 1273 if (inode < u->inode) { 1299 n = n->rb_left; 1274 n = n->rb_left; 1300 } else if (inode > u->inode) 1275 } else if (inode > u->inode) { 1301 n = n->rb_right; 1276 n = n->rb_right; 1302 } else { 1277 } else { 1303 if (max < u->offset) 1278 if (max < u->offset) 1304 n = n->rb_lef 1279 n = n->rb_left; 1305 else if (min > u->off 1280 else if (min > u->offset) 1306 n = n->rb_rig 1281 n = n->rb_right; 1307 else 1282 else 1308 break; 1283 break; 1309 } 1284 } 1310 } 1285 } 1311 1286 1312 return n; 1287 return n; 1313 } 1288 } 1314 1289 1315 /* 1290 /* 1316 * For a given range in vma, build a list of 1291 * For a given range in vma, build a list of probes that need to be inserted. 1317 */ 1292 */ 1318 static void build_probe_list(struct inode *in 1293 static void build_probe_list(struct inode *inode, 1319 struct vm_are 1294 struct vm_area_struct *vma, 1320 unsigned long 1295 unsigned long start, unsigned long end, 1321 struct list_h 1296 struct list_head *head) 1322 { 1297 { 1323 loff_t min, max; 1298 loff_t min, max; 1324 struct rb_node *n, *t; 1299 struct rb_node *n, *t; 1325 struct uprobe *u; 1300 struct uprobe *u; 1326 1301 1327 INIT_LIST_HEAD(head); 1302 INIT_LIST_HEAD(head); 1328 min = vaddr_to_offset(vma, start); 1303 min = vaddr_to_offset(vma, start); 1329 max = min + (end - start) - 1; 1304 max = min + (end - start) - 1; 1330 1305 1331 read_lock(&uprobes_treelock); !! 1306 spin_lock(&uprobes_treelock); 1332 n = find_node_in_range(inode, min, ma 1307 n = find_node_in_range(inode, min, max); 1333 if (n) { 1308 if (n) { 1334 for (t = n; t; t = rb_prev(t) 1309 for (t = n; t; t = rb_prev(t)) { 1335 u = rb_entry(t, struc 1310 u = rb_entry(t, struct uprobe, rb_node); 1336 if (u->inode != inode 1311 if (u->inode != inode || u->offset < min) 1337 break; 1312 break; 1338 /* if uprobe went awa !! 1313 list_add(&u->pending_list, head); 1339 if (try_get_uprobe(u) !! 1314 get_uprobe(u); 1340 list_add(&u-> << 1341 } 1315 } 1342 for (t = n; (t = rb_next(t)); 1316 for (t = n; (t = rb_next(t)); ) { 1343 u = rb_entry(t, struc 1317 u = rb_entry(t, struct uprobe, rb_node); 1344 if (u->inode != inode 1318 if (u->inode != inode || u->offset > max) 1345 break; 1319 break; 1346 /* if uprobe went awa !! 1320 list_add(&u->pending_list, head); 1347 if (try_get_uprobe(u) !! 1321 get_uprobe(u); 1348 list_add(&u-> << 1349 } 1322 } 1350 } 1323 } 1351 read_unlock(&uprobes_treelock); !! 1324 spin_unlock(&uprobes_treelock); 1352 } 1325 } 1353 1326 1354 /* @vma contains reference counter, not the p 1327 /* @vma contains reference counter, not the probed instruction. */ 1355 static int delayed_ref_ctr_inc(struct vm_area 1328 static int delayed_ref_ctr_inc(struct vm_area_struct *vma) 1356 { 1329 { 1357 struct list_head *pos, *q; 1330 struct list_head *pos, *q; 1358 struct delayed_uprobe *du; 1331 struct delayed_uprobe *du; 1359 unsigned long vaddr; 1332 unsigned long vaddr; 1360 int ret = 0, err = 0; 1333 int ret = 0, err = 0; 1361 1334 1362 mutex_lock(&delayed_uprobe_lock); 1335 mutex_lock(&delayed_uprobe_lock); 1363 list_for_each_safe(pos, q, &delayed_u 1336 list_for_each_safe(pos, q, &delayed_uprobe_list) { 1364 du = list_entry(pos, struct d 1337 du = list_entry(pos, struct delayed_uprobe, list); 1365 1338 1366 if (du->mm != vma->vm_mm || 1339 if (du->mm != vma->vm_mm || 1367 !valid_ref_ctr_vma(du->up 1340 !valid_ref_ctr_vma(du->uprobe, vma)) 1368 continue; 1341 continue; 1369 1342 1370 vaddr = offset_to_vaddr(vma, 1343 vaddr = offset_to_vaddr(vma, du->uprobe->ref_ctr_offset); 1371 ret = __update_ref_ctr(vma->v 1344 ret = __update_ref_ctr(vma->vm_mm, vaddr, 1); 1372 if (ret) { 1345 if (ret) { 1373 update_ref_ctr_warn(d 1346 update_ref_ctr_warn(du->uprobe, vma->vm_mm, 1); 1374 if (!err) 1347 if (!err) 1375 err = ret; 1348 err = ret; 1376 } 1349 } 1377 delayed_uprobe_delete(du); 1350 delayed_uprobe_delete(du); 1378 } 1351 } 1379 mutex_unlock(&delayed_uprobe_lock); 1352 mutex_unlock(&delayed_uprobe_lock); 1380 return err; 1353 return err; 1381 } 1354 } 1382 1355 1383 /* 1356 /* 1384 * Called from mmap_region/vma_merge with mm- !! 1357 * Called from mmap_region/vma_adjust with mm->mmap_lock acquired. 1385 * 1358 * 1386 * Currently we ignore all errors and always 1359 * Currently we ignore all errors and always return 0, the callers 1387 * can't handle the failure anyway. 1360 * can't handle the failure anyway. 1388 */ 1361 */ 1389 int uprobe_mmap(struct vm_area_struct *vma) 1362 int uprobe_mmap(struct vm_area_struct *vma) 1390 { 1363 { 1391 struct list_head tmp_list; 1364 struct list_head tmp_list; 1392 struct uprobe *uprobe, *u; 1365 struct uprobe *uprobe, *u; 1393 struct inode *inode; 1366 struct inode *inode; 1394 1367 1395 if (no_uprobe_events()) 1368 if (no_uprobe_events()) 1396 return 0; 1369 return 0; 1397 1370 1398 if (vma->vm_file && 1371 if (vma->vm_file && 1399 (vma->vm_flags & (VM_WRITE|VM_SHA 1372 (vma->vm_flags & (VM_WRITE|VM_SHARED)) == VM_WRITE && 1400 test_bit(MMF_HAS_UPROBES, &vma->v 1373 test_bit(MMF_HAS_UPROBES, &vma->vm_mm->flags)) 1401 delayed_ref_ctr_inc(vma); 1374 delayed_ref_ctr_inc(vma); 1402 1375 1403 if (!valid_vma(vma, true)) 1376 if (!valid_vma(vma, true)) 1404 return 0; 1377 return 0; 1405 1378 1406 inode = file_inode(vma->vm_file); 1379 inode = file_inode(vma->vm_file); 1407 if (!inode) 1380 if (!inode) 1408 return 0; 1381 return 0; 1409 1382 1410 mutex_lock(uprobes_mmap_hash(inode)); 1383 mutex_lock(uprobes_mmap_hash(inode)); 1411 build_probe_list(inode, vma, vma->vm_ 1384 build_probe_list(inode, vma, vma->vm_start, vma->vm_end, &tmp_list); 1412 /* 1385 /* 1413 * We can race with uprobe_unregister 1386 * We can race with uprobe_unregister(), this uprobe can be already 1414 * removed. But in this case filter_c 1387 * removed. But in this case filter_chain() must return false, all 1415 * consumers have gone away. 1388 * consumers have gone away. 1416 */ 1389 */ 1417 list_for_each_entry_safe(uprobe, u, & 1390 list_for_each_entry_safe(uprobe, u, &tmp_list, pending_list) { 1418 if (!fatal_signal_pending(cur 1391 if (!fatal_signal_pending(current) && 1419 filter_chain(uprobe, vma- !! 1392 filter_chain(uprobe, UPROBE_FILTER_MMAP, vma->vm_mm)) { 1420 unsigned long vaddr = 1393 unsigned long vaddr = offset_to_vaddr(vma, uprobe->offset); 1421 install_breakpoint(up 1394 install_breakpoint(uprobe, vma->vm_mm, vma, vaddr); 1422 } 1395 } 1423 put_uprobe(uprobe); 1396 put_uprobe(uprobe); 1424 } 1397 } 1425 mutex_unlock(uprobes_mmap_hash(inode) 1398 mutex_unlock(uprobes_mmap_hash(inode)); 1426 1399 1427 return 0; 1400 return 0; 1428 } 1401 } 1429 1402 1430 static bool 1403 static bool 1431 vma_has_uprobes(struct vm_area_struct *vma, u 1404 vma_has_uprobes(struct vm_area_struct *vma, unsigned long start, unsigned long end) 1432 { 1405 { 1433 loff_t min, max; 1406 loff_t min, max; 1434 struct inode *inode; 1407 struct inode *inode; 1435 struct rb_node *n; 1408 struct rb_node *n; 1436 1409 1437 inode = file_inode(vma->vm_file); 1410 inode = file_inode(vma->vm_file); 1438 1411 1439 min = vaddr_to_offset(vma, start); 1412 min = vaddr_to_offset(vma, start); 1440 max = min + (end - start) - 1; 1413 max = min + (end - start) - 1; 1441 1414 1442 read_lock(&uprobes_treelock); !! 1415 spin_lock(&uprobes_treelock); 1443 n = find_node_in_range(inode, min, ma 1416 n = find_node_in_range(inode, min, max); 1444 read_unlock(&uprobes_treelock); !! 1417 spin_unlock(&uprobes_treelock); 1445 1418 1446 return !!n; 1419 return !!n; 1447 } 1420 } 1448 1421 1449 /* 1422 /* 1450 * Called in context of a munmap of a vma. 1423 * Called in context of a munmap of a vma. 1451 */ 1424 */ 1452 void uprobe_munmap(struct vm_area_struct *vma 1425 void uprobe_munmap(struct vm_area_struct *vma, unsigned long start, unsigned long end) 1453 { 1426 { 1454 if (no_uprobe_events() || !valid_vma( 1427 if (no_uprobe_events() || !valid_vma(vma, false)) 1455 return; 1428 return; 1456 1429 1457 if (!atomic_read(&vma->vm_mm->mm_user 1430 if (!atomic_read(&vma->vm_mm->mm_users)) /* called by mmput() ? */ 1458 return; 1431 return; 1459 1432 1460 if (!test_bit(MMF_HAS_UPROBES, &vma-> 1433 if (!test_bit(MMF_HAS_UPROBES, &vma->vm_mm->flags) || 1461 test_bit(MMF_RECALC_UPROBES, &vm 1434 test_bit(MMF_RECALC_UPROBES, &vma->vm_mm->flags)) 1462 return; 1435 return; 1463 1436 1464 if (vma_has_uprobes(vma, start, end)) 1437 if (vma_has_uprobes(vma, start, end)) 1465 set_bit(MMF_RECALC_UPROBES, & 1438 set_bit(MMF_RECALC_UPROBES, &vma->vm_mm->flags); 1466 } 1439 } 1467 1440 1468 static vm_fault_t xol_fault(const struct vm_s << 1469 struct vm_area_st << 1470 { << 1471 struct xol_area *area = vma->vm_mm->u << 1472 << 1473 vmf->page = area->page; << 1474 get_page(vmf->page); << 1475 return 0; << 1476 } << 1477 << 1478 static const struct vm_special_mapping xol_ma << 1479 .name = "[uprobes]", << 1480 .fault = xol_fault, << 1481 }; << 1482 << 1483 /* Slot allocation for XOL */ 1441 /* Slot allocation for XOL */ 1484 static int xol_add_vma(struct mm_struct *mm, 1442 static int xol_add_vma(struct mm_struct *mm, struct xol_area *area) 1485 { 1443 { 1486 struct vm_area_struct *vma; 1444 struct vm_area_struct *vma; 1487 int ret; 1445 int ret; 1488 1446 1489 if (mmap_write_lock_killable(mm)) 1447 if (mmap_write_lock_killable(mm)) 1490 return -EINTR; 1448 return -EINTR; 1491 1449 1492 if (mm->uprobes_state.xol_area) { 1450 if (mm->uprobes_state.xol_area) { 1493 ret = -EALREADY; 1451 ret = -EALREADY; 1494 goto fail; 1452 goto fail; 1495 } 1453 } 1496 1454 1497 if (!area->vaddr) { 1455 if (!area->vaddr) { 1498 /* Try to map as high as poss 1456 /* Try to map as high as possible, this is only a hint. */ 1499 area->vaddr = get_unmapped_ar 1457 area->vaddr = get_unmapped_area(NULL, TASK_SIZE - PAGE_SIZE, 1500 1458 PAGE_SIZE, 0, 0); 1501 if (IS_ERR_VALUE(area->vaddr) 1459 if (IS_ERR_VALUE(area->vaddr)) { 1502 ret = area->vaddr; 1460 ret = area->vaddr; 1503 goto fail; 1461 goto fail; 1504 } 1462 } 1505 } 1463 } 1506 1464 1507 vma = _install_special_mapping(mm, ar 1465 vma = _install_special_mapping(mm, area->vaddr, PAGE_SIZE, 1508 VM_EXEC|VM_MA 1466 VM_EXEC|VM_MAYEXEC|VM_DONTCOPY|VM_IO, 1509 &xol_mapping) !! 1467 &area->xol_mapping); 1510 if (IS_ERR(vma)) { 1468 if (IS_ERR(vma)) { 1511 ret = PTR_ERR(vma); 1469 ret = PTR_ERR(vma); 1512 goto fail; 1470 goto fail; 1513 } 1471 } 1514 1472 1515 ret = 0; 1473 ret = 0; 1516 /* pairs with get_xol_area() */ 1474 /* pairs with get_xol_area() */ 1517 smp_store_release(&mm->uprobes_state. 1475 smp_store_release(&mm->uprobes_state.xol_area, area); /* ^^^ */ 1518 fail: 1476 fail: 1519 mmap_write_unlock(mm); 1477 mmap_write_unlock(mm); 1520 1478 1521 return ret; 1479 return ret; 1522 } 1480 } 1523 1481 1524 void * __weak arch_uprobe_trampoline(unsigned << 1525 { << 1526 static uprobe_opcode_t insn = UPROBE_ << 1527 << 1528 *psize = UPROBE_SWBP_INSN_SIZE; << 1529 return &insn; << 1530 } << 1531 << 1532 static struct xol_area *__create_xol_area(uns 1482 static struct xol_area *__create_xol_area(unsigned long vaddr) 1533 { 1483 { 1534 struct mm_struct *mm = current->mm; 1484 struct mm_struct *mm = current->mm; 1535 unsigned long insns_size; !! 1485 uprobe_opcode_t insn = UPROBE_SWBP_INSN; 1536 struct xol_area *area; 1486 struct xol_area *area; 1537 void *insns; << 1538 1487 1539 area = kzalloc(sizeof(*area), GFP_KER !! 1488 area = kmalloc(sizeof(*area), GFP_KERNEL); 1540 if (unlikely(!area)) 1489 if (unlikely(!area)) 1541 goto out; 1490 goto out; 1542 1491 1543 area->bitmap = kcalloc(BITS_TO_LONGS( 1492 area->bitmap = kcalloc(BITS_TO_LONGS(UINSNS_PER_PAGE), sizeof(long), 1544 GFP_KERNEL); 1493 GFP_KERNEL); 1545 if (!area->bitmap) 1494 if (!area->bitmap) 1546 goto free_area; 1495 goto free_area; 1547 1496 1548 area->page = alloc_page(GFP_HIGHUSER !! 1497 area->xol_mapping.name = "[uprobes]"; 1549 if (!area->page) !! 1498 area->xol_mapping.fault = NULL; >> 1499 area->xol_mapping.pages = area->pages; >> 1500 area->pages[0] = alloc_page(GFP_HIGHUSER); >> 1501 if (!area->pages[0]) 1550 goto free_bitmap; 1502 goto free_bitmap; >> 1503 area->pages[1] = NULL; 1551 1504 1552 area->vaddr = vaddr; 1505 area->vaddr = vaddr; 1553 init_waitqueue_head(&area->wq); 1506 init_waitqueue_head(&area->wq); 1554 /* Reserve the 1st slot for get_tramp 1507 /* Reserve the 1st slot for get_trampoline_vaddr() */ 1555 set_bit(0, area->bitmap); 1508 set_bit(0, area->bitmap); 1556 atomic_set(&area->slot_count, 1); 1509 atomic_set(&area->slot_count, 1); 1557 insns = arch_uprobe_trampoline(&insns !! 1510 arch_uprobe_copy_ixol(area->pages[0], 0, &insn, UPROBE_SWBP_INSN_SIZE); 1558 arch_uprobe_copy_ixol(area->page, 0, << 1559 1511 1560 if (!xol_add_vma(mm, area)) 1512 if (!xol_add_vma(mm, area)) 1561 return area; 1513 return area; 1562 1514 1563 __free_page(area->page); !! 1515 __free_page(area->pages[0]); 1564 free_bitmap: 1516 free_bitmap: 1565 kfree(area->bitmap); 1517 kfree(area->bitmap); 1566 free_area: 1518 free_area: 1567 kfree(area); 1519 kfree(area); 1568 out: 1520 out: 1569 return NULL; 1521 return NULL; 1570 } 1522 } 1571 1523 1572 /* 1524 /* 1573 * get_xol_area - Allocate process's xol_area 1525 * get_xol_area - Allocate process's xol_area if necessary. 1574 * This area will be used for storing instruc 1526 * This area will be used for storing instructions for execution out of line. 1575 * 1527 * 1576 * Returns the allocated area or NULL. 1528 * Returns the allocated area or NULL. 1577 */ 1529 */ 1578 static struct xol_area *get_xol_area(void) 1530 static struct xol_area *get_xol_area(void) 1579 { 1531 { 1580 struct mm_struct *mm = current->mm; 1532 struct mm_struct *mm = current->mm; 1581 struct xol_area *area; 1533 struct xol_area *area; 1582 1534 1583 if (!mm->uprobes_state.xol_area) 1535 if (!mm->uprobes_state.xol_area) 1584 __create_xol_area(0); 1536 __create_xol_area(0); 1585 1537 1586 /* Pairs with xol_add_vma() smp_store 1538 /* Pairs with xol_add_vma() smp_store_release() */ 1587 area = READ_ONCE(mm->uprobes_state.xo 1539 area = READ_ONCE(mm->uprobes_state.xol_area); /* ^^^ */ 1588 return area; 1540 return area; 1589 } 1541 } 1590 1542 1591 /* 1543 /* 1592 * uprobe_clear_state - Free the area allocat 1544 * uprobe_clear_state - Free the area allocated for slots. 1593 */ 1545 */ 1594 void uprobe_clear_state(struct mm_struct *mm) 1546 void uprobe_clear_state(struct mm_struct *mm) 1595 { 1547 { 1596 struct xol_area *area = mm->uprobes_s 1548 struct xol_area *area = mm->uprobes_state.xol_area; 1597 1549 1598 mutex_lock(&delayed_uprobe_lock); 1550 mutex_lock(&delayed_uprobe_lock); 1599 delayed_uprobe_remove(NULL, mm); 1551 delayed_uprobe_remove(NULL, mm); 1600 mutex_unlock(&delayed_uprobe_lock); 1552 mutex_unlock(&delayed_uprobe_lock); 1601 1553 1602 if (!area) 1554 if (!area) 1603 return; 1555 return; 1604 1556 1605 put_page(area->page); !! 1557 put_page(area->pages[0]); 1606 kfree(area->bitmap); 1558 kfree(area->bitmap); 1607 kfree(area); 1559 kfree(area); 1608 } 1560 } 1609 1561 1610 void uprobe_start_dup_mmap(void) 1562 void uprobe_start_dup_mmap(void) 1611 { 1563 { 1612 percpu_down_read(&dup_mmap_sem); 1564 percpu_down_read(&dup_mmap_sem); 1613 } 1565 } 1614 1566 1615 void uprobe_end_dup_mmap(void) 1567 void uprobe_end_dup_mmap(void) 1616 { 1568 { 1617 percpu_up_read(&dup_mmap_sem); 1569 percpu_up_read(&dup_mmap_sem); 1618 } 1570 } 1619 1571 1620 void uprobe_dup_mmap(struct mm_struct *oldmm, 1572 void uprobe_dup_mmap(struct mm_struct *oldmm, struct mm_struct *newmm) 1621 { 1573 { 1622 if (test_bit(MMF_HAS_UPROBES, &oldmm- 1574 if (test_bit(MMF_HAS_UPROBES, &oldmm->flags)) { 1623 set_bit(MMF_HAS_UPROBES, &new 1575 set_bit(MMF_HAS_UPROBES, &newmm->flags); 1624 /* unconditionally, dup_mmap( 1576 /* unconditionally, dup_mmap() skips VM_DONTCOPY vmas */ 1625 set_bit(MMF_RECALC_UPROBES, & 1577 set_bit(MMF_RECALC_UPROBES, &newmm->flags); 1626 } 1578 } 1627 } 1579 } 1628 1580 1629 /* 1581 /* 1630 * - search for a free slot. 1582 * - search for a free slot. 1631 */ 1583 */ 1632 static unsigned long xol_take_insn_slot(struc 1584 static unsigned long xol_take_insn_slot(struct xol_area *area) 1633 { 1585 { 1634 unsigned long slot_addr; 1586 unsigned long slot_addr; 1635 int slot_nr; 1587 int slot_nr; 1636 1588 1637 do { 1589 do { 1638 slot_nr = find_first_zero_bit 1590 slot_nr = find_first_zero_bit(area->bitmap, UINSNS_PER_PAGE); 1639 if (slot_nr < UINSNS_PER_PAGE 1591 if (slot_nr < UINSNS_PER_PAGE) { 1640 if (!test_and_set_bit 1592 if (!test_and_set_bit(slot_nr, area->bitmap)) 1641 break; 1593 break; 1642 1594 1643 slot_nr = UINSNS_PER_ 1595 slot_nr = UINSNS_PER_PAGE; 1644 continue; 1596 continue; 1645 } 1597 } 1646 wait_event(area->wq, (atomic_ 1598 wait_event(area->wq, (atomic_read(&area->slot_count) < UINSNS_PER_PAGE)); 1647 } while (slot_nr >= UINSNS_PER_PAGE); 1599 } while (slot_nr >= UINSNS_PER_PAGE); 1648 1600 1649 slot_addr = area->vaddr + (slot_nr * 1601 slot_addr = area->vaddr + (slot_nr * UPROBE_XOL_SLOT_BYTES); 1650 atomic_inc(&area->slot_count); 1602 atomic_inc(&area->slot_count); 1651 1603 1652 return slot_addr; 1604 return slot_addr; 1653 } 1605 } 1654 1606 1655 /* 1607 /* 1656 * xol_get_insn_slot - allocate a slot for xo 1608 * xol_get_insn_slot - allocate a slot for xol. 1657 * Returns the allocated slot address or 0. 1609 * Returns the allocated slot address or 0. 1658 */ 1610 */ 1659 static unsigned long xol_get_insn_slot(struct 1611 static unsigned long xol_get_insn_slot(struct uprobe *uprobe) 1660 { 1612 { 1661 struct xol_area *area; 1613 struct xol_area *area; 1662 unsigned long xol_vaddr; 1614 unsigned long xol_vaddr; 1663 1615 1664 area = get_xol_area(); 1616 area = get_xol_area(); 1665 if (!area) 1617 if (!area) 1666 return 0; 1618 return 0; 1667 1619 1668 xol_vaddr = xol_take_insn_slot(area); 1620 xol_vaddr = xol_take_insn_slot(area); 1669 if (unlikely(!xol_vaddr)) 1621 if (unlikely(!xol_vaddr)) 1670 return 0; 1622 return 0; 1671 1623 1672 arch_uprobe_copy_ixol(area->page, xol !! 1624 arch_uprobe_copy_ixol(area->pages[0], xol_vaddr, 1673 &uprobe->arch.i 1625 &uprobe->arch.ixol, sizeof(uprobe->arch.ixol)); 1674 1626 1675 return xol_vaddr; 1627 return xol_vaddr; 1676 } 1628 } 1677 1629 1678 /* 1630 /* 1679 * xol_free_insn_slot - If slot was earlier a 1631 * xol_free_insn_slot - If slot was earlier allocated by 1680 * @xol_get_insn_slot(), make the slot availa 1632 * @xol_get_insn_slot(), make the slot available for 1681 * subsequent requests. 1633 * subsequent requests. 1682 */ 1634 */ 1683 static void xol_free_insn_slot(struct task_st 1635 static void xol_free_insn_slot(struct task_struct *tsk) 1684 { 1636 { 1685 struct xol_area *area; 1637 struct xol_area *area; 1686 unsigned long vma_end; 1638 unsigned long vma_end; 1687 unsigned long slot_addr; 1639 unsigned long slot_addr; 1688 1640 1689 if (!tsk->mm || !tsk->mm->uprobes_sta 1641 if (!tsk->mm || !tsk->mm->uprobes_state.xol_area || !tsk->utask) 1690 return; 1642 return; 1691 1643 1692 slot_addr = tsk->utask->xol_vaddr; 1644 slot_addr = tsk->utask->xol_vaddr; 1693 if (unlikely(!slot_addr)) 1645 if (unlikely(!slot_addr)) 1694 return; 1646 return; 1695 1647 1696 area = tsk->mm->uprobes_state.xol_are 1648 area = tsk->mm->uprobes_state.xol_area; 1697 vma_end = area->vaddr + PAGE_SIZE; 1649 vma_end = area->vaddr + PAGE_SIZE; 1698 if (area->vaddr <= slot_addr && slot_ 1650 if (area->vaddr <= slot_addr && slot_addr < vma_end) { 1699 unsigned long offset; 1651 unsigned long offset; 1700 int slot_nr; 1652 int slot_nr; 1701 1653 1702 offset = slot_addr - area->va 1654 offset = slot_addr - area->vaddr; 1703 slot_nr = offset / UPROBE_XOL 1655 slot_nr = offset / UPROBE_XOL_SLOT_BYTES; 1704 if (slot_nr >= UINSNS_PER_PAG 1656 if (slot_nr >= UINSNS_PER_PAGE) 1705 return; 1657 return; 1706 1658 1707 clear_bit(slot_nr, area->bitm 1659 clear_bit(slot_nr, area->bitmap); 1708 atomic_dec(&area->slot_count) 1660 atomic_dec(&area->slot_count); 1709 smp_mb__after_atomic(); /* pa 1661 smp_mb__after_atomic(); /* pairs with prepare_to_wait() */ 1710 if (waitqueue_active(&area->w 1662 if (waitqueue_active(&area->wq)) 1711 wake_up(&area->wq); 1663 wake_up(&area->wq); 1712 1664 1713 tsk->utask->xol_vaddr = 0; 1665 tsk->utask->xol_vaddr = 0; 1714 } 1666 } 1715 } 1667 } 1716 1668 1717 void __weak arch_uprobe_copy_ixol(struct page 1669 void __weak arch_uprobe_copy_ixol(struct page *page, unsigned long vaddr, 1718 void *src, 1670 void *src, unsigned long len) 1719 { 1671 { 1720 /* Initialize the slot */ 1672 /* Initialize the slot */ 1721 copy_to_page(page, vaddr, src, len); 1673 copy_to_page(page, vaddr, src, len); 1722 1674 1723 /* 1675 /* 1724 * We probably need flush_icache_user 1676 * We probably need flush_icache_user_page() but it needs vma. 1725 * This should work on most of archit 1677 * This should work on most of architectures by default. If 1726 * architecture needs to do something 1678 * architecture needs to do something different it can define 1727 * its own version of the function. 1679 * its own version of the function. 1728 */ 1680 */ 1729 flush_dcache_page(page); 1681 flush_dcache_page(page); 1730 } 1682 } 1731 1683 1732 /** 1684 /** 1733 * uprobe_get_swbp_addr - compute address of 1685 * uprobe_get_swbp_addr - compute address of swbp given post-swbp regs 1734 * @regs: Reflects the saved state of the tas 1686 * @regs: Reflects the saved state of the task after it has hit a breakpoint 1735 * instruction. 1687 * instruction. 1736 * Return the address of the breakpoint instr 1688 * Return the address of the breakpoint instruction. 1737 */ 1689 */ 1738 unsigned long __weak uprobe_get_swbp_addr(str 1690 unsigned long __weak uprobe_get_swbp_addr(struct pt_regs *regs) 1739 { 1691 { 1740 return instruction_pointer(regs) - UP 1692 return instruction_pointer(regs) - UPROBE_SWBP_INSN_SIZE; 1741 } 1693 } 1742 1694 1743 unsigned long uprobe_get_trap_addr(struct pt_ 1695 unsigned long uprobe_get_trap_addr(struct pt_regs *regs) 1744 { 1696 { 1745 struct uprobe_task *utask = current-> 1697 struct uprobe_task *utask = current->utask; 1746 1698 1747 if (unlikely(utask && utask->active_u 1699 if (unlikely(utask && utask->active_uprobe)) 1748 return utask->vaddr; 1700 return utask->vaddr; 1749 1701 1750 return instruction_pointer(regs); 1702 return instruction_pointer(regs); 1751 } 1703 } 1752 1704 1753 static struct return_instance *free_ret_insta 1705 static struct return_instance *free_ret_instance(struct return_instance *ri) 1754 { 1706 { 1755 struct return_instance *next = ri->ne 1707 struct return_instance *next = ri->next; 1756 put_uprobe(ri->uprobe); 1708 put_uprobe(ri->uprobe); 1757 kfree(ri); 1709 kfree(ri); 1758 return next; 1710 return next; 1759 } 1711 } 1760 1712 1761 /* 1713 /* 1762 * Called with no locks held. 1714 * Called with no locks held. 1763 * Called in context of an exiting or an exec 1715 * Called in context of an exiting or an exec-ing thread. 1764 */ 1716 */ 1765 void uprobe_free_utask(struct task_struct *t) 1717 void uprobe_free_utask(struct task_struct *t) 1766 { 1718 { 1767 struct uprobe_task *utask = t->utask; 1719 struct uprobe_task *utask = t->utask; 1768 struct return_instance *ri; 1720 struct return_instance *ri; 1769 1721 1770 if (!utask) 1722 if (!utask) 1771 return; 1723 return; 1772 1724 1773 if (utask->active_uprobe) 1725 if (utask->active_uprobe) 1774 put_uprobe(utask->active_upro 1726 put_uprobe(utask->active_uprobe); 1775 1727 1776 ri = utask->return_instances; 1728 ri = utask->return_instances; 1777 while (ri) 1729 while (ri) 1778 ri = free_ret_instance(ri); 1730 ri = free_ret_instance(ri); 1779 1731 1780 xol_free_insn_slot(t); 1732 xol_free_insn_slot(t); 1781 kfree(utask); 1733 kfree(utask); 1782 t->utask = NULL; 1734 t->utask = NULL; 1783 } 1735 } 1784 1736 1785 /* 1737 /* 1786 * Allocate a uprobe_task object for the task 1738 * Allocate a uprobe_task object for the task if necessary. 1787 * Called when the thread hits a breakpoint. 1739 * Called when the thread hits a breakpoint. 1788 * 1740 * 1789 * Returns: 1741 * Returns: 1790 * - pointer to new uprobe_task on success 1742 * - pointer to new uprobe_task on success 1791 * - NULL otherwise 1743 * - NULL otherwise 1792 */ 1744 */ 1793 static struct uprobe_task *get_utask(void) 1745 static struct uprobe_task *get_utask(void) 1794 { 1746 { 1795 if (!current->utask) 1747 if (!current->utask) 1796 current->utask = kzalloc(size 1748 current->utask = kzalloc(sizeof(struct uprobe_task), GFP_KERNEL); 1797 return current->utask; 1749 return current->utask; 1798 } 1750 } 1799 1751 1800 static int dup_utask(struct task_struct *t, s 1752 static int dup_utask(struct task_struct *t, struct uprobe_task *o_utask) 1801 { 1753 { 1802 struct uprobe_task *n_utask; 1754 struct uprobe_task *n_utask; 1803 struct return_instance **p, *o, *n; 1755 struct return_instance **p, *o, *n; 1804 1756 1805 n_utask = kzalloc(sizeof(struct uprob 1757 n_utask = kzalloc(sizeof(struct uprobe_task), GFP_KERNEL); 1806 if (!n_utask) 1758 if (!n_utask) 1807 return -ENOMEM; 1759 return -ENOMEM; 1808 t->utask = n_utask; 1760 t->utask = n_utask; 1809 1761 1810 p = &n_utask->return_instances; 1762 p = &n_utask->return_instances; 1811 for (o = o_utask->return_instances; o 1763 for (o = o_utask->return_instances; o; o = o->next) { 1812 n = kmalloc(sizeof(struct ret 1764 n = kmalloc(sizeof(struct return_instance), GFP_KERNEL); 1813 if (!n) 1765 if (!n) 1814 return -ENOMEM; 1766 return -ENOMEM; 1815 1767 1816 *n = *o; 1768 *n = *o; 1817 /* << 1818 * uprobe's refcnt has to be << 1819 * utask->return_instances it << 1820 * removed right now, as task << 1821 * get_uprobe() is safe to us << 1822 */ << 1823 get_uprobe(n->uprobe); 1769 get_uprobe(n->uprobe); 1824 n->next = NULL; 1770 n->next = NULL; 1825 1771 1826 *p = n; 1772 *p = n; 1827 p = &n->next; 1773 p = &n->next; 1828 n_utask->depth++; 1774 n_utask->depth++; 1829 } 1775 } 1830 1776 1831 return 0; 1777 return 0; 1832 } 1778 } 1833 1779 >> 1780 static void uprobe_warn(struct task_struct *t, const char *msg) >> 1781 { >> 1782 pr_warn("uprobe: %s:%d failed to %s\n", >> 1783 current->comm, current->pid, msg); >> 1784 } >> 1785 1834 static void dup_xol_work(struct callback_head 1786 static void dup_xol_work(struct callback_head *work) 1835 { 1787 { 1836 if (current->flags & PF_EXITING) 1788 if (current->flags & PF_EXITING) 1837 return; 1789 return; 1838 1790 1839 if (!__create_xol_area(current->utask 1791 if (!__create_xol_area(current->utask->dup_xol_addr) && 1840 !fatal_signal_pending 1792 !fatal_signal_pending(current)) 1841 uprobe_warn(current, "dup xol 1793 uprobe_warn(current, "dup xol area"); 1842 } 1794 } 1843 1795 1844 /* 1796 /* 1845 * Called in context of a new clone/fork from 1797 * Called in context of a new clone/fork from copy_process. 1846 */ 1798 */ 1847 void uprobe_copy_process(struct task_struct * 1799 void uprobe_copy_process(struct task_struct *t, unsigned long flags) 1848 { 1800 { 1849 struct uprobe_task *utask = current-> 1801 struct uprobe_task *utask = current->utask; 1850 struct mm_struct *mm = current->mm; 1802 struct mm_struct *mm = current->mm; 1851 struct xol_area *area; 1803 struct xol_area *area; 1852 1804 1853 t->utask = NULL; 1805 t->utask = NULL; 1854 1806 1855 if (!utask || !utask->return_instance 1807 if (!utask || !utask->return_instances) 1856 return; 1808 return; 1857 1809 1858 if (mm == t->mm && !(flags & CLONE_VF 1810 if (mm == t->mm && !(flags & CLONE_VFORK)) 1859 return; 1811 return; 1860 1812 1861 if (dup_utask(t, utask)) 1813 if (dup_utask(t, utask)) 1862 return uprobe_warn(t, "dup re 1814 return uprobe_warn(t, "dup ret instances"); 1863 1815 1864 /* The task can fork() after dup_xol_ 1816 /* The task can fork() after dup_xol_work() fails */ 1865 area = mm->uprobes_state.xol_area; 1817 area = mm->uprobes_state.xol_area; 1866 if (!area) 1818 if (!area) 1867 return uprobe_warn(t, "dup xo 1819 return uprobe_warn(t, "dup xol area"); 1868 1820 1869 if (mm == t->mm) 1821 if (mm == t->mm) 1870 return; 1822 return; 1871 1823 1872 t->utask->dup_xol_addr = area->vaddr; 1824 t->utask->dup_xol_addr = area->vaddr; 1873 init_task_work(&t->utask->dup_xol_wor 1825 init_task_work(&t->utask->dup_xol_work, dup_xol_work); 1874 task_work_add(t, &t->utask->dup_xol_w 1826 task_work_add(t, &t->utask->dup_xol_work, TWA_RESUME); 1875 } 1827 } 1876 1828 1877 /* 1829 /* 1878 * Current area->vaddr notion assume the tram 1830 * Current area->vaddr notion assume the trampoline address is always 1879 * equal area->vaddr. 1831 * equal area->vaddr. 1880 * 1832 * 1881 * Returns -1 in case the xol_area is not all 1833 * Returns -1 in case the xol_area is not allocated. 1882 */ 1834 */ 1883 unsigned long uprobe_get_trampoline_vaddr(voi !! 1835 static unsigned long get_trampoline_vaddr(void) 1884 { 1836 { 1885 struct xol_area *area; 1837 struct xol_area *area; 1886 unsigned long trampoline_vaddr = -1; 1838 unsigned long trampoline_vaddr = -1; 1887 1839 1888 /* Pairs with xol_add_vma() smp_store 1840 /* Pairs with xol_add_vma() smp_store_release() */ 1889 area = READ_ONCE(current->mm->uprobes 1841 area = READ_ONCE(current->mm->uprobes_state.xol_area); /* ^^^ */ 1890 if (area) 1842 if (area) 1891 trampoline_vaddr = area->vadd 1843 trampoline_vaddr = area->vaddr; 1892 1844 1893 return trampoline_vaddr; 1845 return trampoline_vaddr; 1894 } 1846 } 1895 1847 1896 static void cleanup_return_instances(struct u 1848 static void cleanup_return_instances(struct uprobe_task *utask, bool chained, 1897 struc 1849 struct pt_regs *regs) 1898 { 1850 { 1899 struct return_instance *ri = utask->r 1851 struct return_instance *ri = utask->return_instances; 1900 enum rp_check ctx = chained ? RP_CHEC 1852 enum rp_check ctx = chained ? RP_CHECK_CHAIN_CALL : RP_CHECK_CALL; 1901 1853 1902 while (ri && !arch_uretprobe_is_alive 1854 while (ri && !arch_uretprobe_is_alive(ri, ctx, regs)) { 1903 ri = free_ret_instance(ri); 1855 ri = free_ret_instance(ri); 1904 utask->depth--; 1856 utask->depth--; 1905 } 1857 } 1906 utask->return_instances = ri; 1858 utask->return_instances = ri; 1907 } 1859 } 1908 1860 1909 static void prepare_uretprobe(struct uprobe * 1861 static void prepare_uretprobe(struct uprobe *uprobe, struct pt_regs *regs) 1910 { 1862 { 1911 struct return_instance *ri; 1863 struct return_instance *ri; 1912 struct uprobe_task *utask; 1864 struct uprobe_task *utask; 1913 unsigned long orig_ret_vaddr, trampol 1865 unsigned long orig_ret_vaddr, trampoline_vaddr; 1914 bool chained; 1866 bool chained; 1915 1867 1916 if (!get_xol_area()) 1868 if (!get_xol_area()) 1917 return; 1869 return; 1918 1870 1919 utask = get_utask(); 1871 utask = get_utask(); 1920 if (!utask) 1872 if (!utask) 1921 return; 1873 return; 1922 1874 1923 if (utask->depth >= MAX_URETPROBE_DEP 1875 if (utask->depth >= MAX_URETPROBE_DEPTH) { 1924 printk_ratelimited(KERN_INFO 1876 printk_ratelimited(KERN_INFO "uprobe: omit uretprobe due to" 1925 " nestedness 1877 " nestedness limit pid/tgid=%d/%d\n", 1926 current->pid, 1878 current->pid, current->tgid); 1927 return; 1879 return; 1928 } 1880 } 1929 1881 1930 /* we need to bump refcount to store << 1931 if (!try_get_uprobe(uprobe)) << 1932 return; << 1933 << 1934 ri = kmalloc(sizeof(struct return_ins 1882 ri = kmalloc(sizeof(struct return_instance), GFP_KERNEL); 1935 if (!ri) 1883 if (!ri) 1936 goto fail; !! 1884 return; 1937 1885 1938 trampoline_vaddr = uprobe_get_trampol !! 1886 trampoline_vaddr = get_trampoline_vaddr(); 1939 orig_ret_vaddr = arch_uretprobe_hijac 1887 orig_ret_vaddr = arch_uretprobe_hijack_return_addr(trampoline_vaddr, regs); 1940 if (orig_ret_vaddr == -1) 1888 if (orig_ret_vaddr == -1) 1941 goto fail; 1889 goto fail; 1942 1890 1943 /* drop the entries invalidated by lo 1891 /* drop the entries invalidated by longjmp() */ 1944 chained = (orig_ret_vaddr == trampoli 1892 chained = (orig_ret_vaddr == trampoline_vaddr); 1945 cleanup_return_instances(utask, chain 1893 cleanup_return_instances(utask, chained, regs); 1946 1894 1947 /* 1895 /* 1948 * We don't want to keep trampoline a 1896 * We don't want to keep trampoline address in stack, rather keep the 1949 * original return address of first c 1897 * original return address of first caller thru all the consequent 1950 * instances. This also makes breakpo 1898 * instances. This also makes breakpoint unwrapping easier. 1951 */ 1899 */ 1952 if (chained) { 1900 if (chained) { 1953 if (!utask->return_instances) 1901 if (!utask->return_instances) { 1954 /* 1902 /* 1955 * This situation is 1903 * This situation is not possible. Likely we have an 1956 * attack from user-s 1904 * attack from user-space. 1957 */ 1905 */ 1958 uprobe_warn(current, 1906 uprobe_warn(current, "handle tail call"); 1959 goto fail; 1907 goto fail; 1960 } 1908 } 1961 orig_ret_vaddr = utask->retur 1909 orig_ret_vaddr = utask->return_instances->orig_ret_vaddr; 1962 } 1910 } 1963 ri->uprobe = uprobe; !! 1911 >> 1912 ri->uprobe = get_uprobe(uprobe); 1964 ri->func = instruction_pointer(regs); 1913 ri->func = instruction_pointer(regs); 1965 ri->stack = user_stack_pointer(regs); 1914 ri->stack = user_stack_pointer(regs); 1966 ri->orig_ret_vaddr = orig_ret_vaddr; 1915 ri->orig_ret_vaddr = orig_ret_vaddr; 1967 ri->chained = chained; 1916 ri->chained = chained; 1968 1917 1969 utask->depth++; 1918 utask->depth++; 1970 ri->next = utask->return_instances; 1919 ri->next = utask->return_instances; 1971 utask->return_instances = ri; 1920 utask->return_instances = ri; 1972 1921 1973 return; 1922 return; 1974 fail: !! 1923 fail: 1975 kfree(ri); 1924 kfree(ri); 1976 put_uprobe(uprobe); << 1977 } 1925 } 1978 1926 1979 /* Prepare to single-step probed instruction 1927 /* Prepare to single-step probed instruction out of line. */ 1980 static int 1928 static int 1981 pre_ssout(struct uprobe *uprobe, struct pt_re 1929 pre_ssout(struct uprobe *uprobe, struct pt_regs *regs, unsigned long bp_vaddr) 1982 { 1930 { 1983 struct uprobe_task *utask; 1931 struct uprobe_task *utask; 1984 unsigned long xol_vaddr; 1932 unsigned long xol_vaddr; 1985 int err; 1933 int err; 1986 1934 1987 utask = get_utask(); 1935 utask = get_utask(); 1988 if (!utask) 1936 if (!utask) 1989 return -ENOMEM; 1937 return -ENOMEM; 1990 1938 1991 if (!try_get_uprobe(uprobe)) << 1992 return -EINVAL; << 1993 << 1994 xol_vaddr = xol_get_insn_slot(uprobe) 1939 xol_vaddr = xol_get_insn_slot(uprobe); 1995 if (!xol_vaddr) { !! 1940 if (!xol_vaddr) 1996 err = -ENOMEM; !! 1941 return -ENOMEM; 1997 goto err_out; << 1998 } << 1999 1942 2000 utask->xol_vaddr = xol_vaddr; 1943 utask->xol_vaddr = xol_vaddr; 2001 utask->vaddr = bp_vaddr; 1944 utask->vaddr = bp_vaddr; 2002 1945 2003 err = arch_uprobe_pre_xol(&uprobe->ar 1946 err = arch_uprobe_pre_xol(&uprobe->arch, regs); 2004 if (unlikely(err)) { 1947 if (unlikely(err)) { 2005 xol_free_insn_slot(current); 1948 xol_free_insn_slot(current); 2006 goto err_out; !! 1949 return err; 2007 } 1950 } 2008 1951 2009 utask->active_uprobe = uprobe; 1952 utask->active_uprobe = uprobe; 2010 utask->state = UTASK_SSTEP; 1953 utask->state = UTASK_SSTEP; 2011 return 0; 1954 return 0; 2012 err_out: << 2013 put_uprobe(uprobe); << 2014 return err; << 2015 } 1955 } 2016 1956 2017 /* 1957 /* 2018 * If we are singlestepping, then ensure this 1958 * If we are singlestepping, then ensure this thread is not connected to 2019 * non-fatal signals until completion of sing 1959 * non-fatal signals until completion of singlestep. When xol insn itself 2020 * triggers the signal, restart the original 1960 * triggers the signal, restart the original insn even if the task is 2021 * already SIGKILL'ed (since coredump should 1961 * already SIGKILL'ed (since coredump should report the correct ip). This 2022 * is even more important if the task has a h 1962 * is even more important if the task has a handler for SIGSEGV/etc, The 2023 * _same_ instruction should be repeated agai 1963 * _same_ instruction should be repeated again after return from the signal 2024 * handler, and SSTEP can never finish in thi 1964 * handler, and SSTEP can never finish in this case. 2025 */ 1965 */ 2026 bool uprobe_deny_signal(void) 1966 bool uprobe_deny_signal(void) 2027 { 1967 { 2028 struct task_struct *t = current; 1968 struct task_struct *t = current; 2029 struct uprobe_task *utask = t->utask; 1969 struct uprobe_task *utask = t->utask; 2030 1970 2031 if (likely(!utask || !utask->active_u 1971 if (likely(!utask || !utask->active_uprobe)) 2032 return false; 1972 return false; 2033 1973 2034 WARN_ON_ONCE(utask->state != UTASK_SS 1974 WARN_ON_ONCE(utask->state != UTASK_SSTEP); 2035 1975 2036 if (task_sigpending(t)) { 1976 if (task_sigpending(t)) { 2037 spin_lock_irq(&t->sighand->si 1977 spin_lock_irq(&t->sighand->siglock); 2038 clear_tsk_thread_flag(t, TIF_ 1978 clear_tsk_thread_flag(t, TIF_SIGPENDING); 2039 spin_unlock_irq(&t->sighand-> 1979 spin_unlock_irq(&t->sighand->siglock); 2040 1980 2041 if (__fatal_signal_pending(t) 1981 if (__fatal_signal_pending(t) || arch_uprobe_xol_was_trapped(t)) { 2042 utask->state = UTASK_ 1982 utask->state = UTASK_SSTEP_TRAPPED; 2043 set_tsk_thread_flag(t 1983 set_tsk_thread_flag(t, TIF_UPROBE); 2044 } 1984 } 2045 } 1985 } 2046 1986 2047 return true; 1987 return true; 2048 } 1988 } 2049 1989 2050 static void mmf_recalc_uprobes(struct mm_stru 1990 static void mmf_recalc_uprobes(struct mm_struct *mm) 2051 { 1991 { 2052 VMA_ITERATOR(vmi, mm, 0); << 2053 struct vm_area_struct *vma; 1992 struct vm_area_struct *vma; 2054 1993 2055 for_each_vma(vmi, vma) { !! 1994 for (vma = mm->mmap; vma; vma = vma->vm_next) { 2056 if (!valid_vma(vma, false)) 1995 if (!valid_vma(vma, false)) 2057 continue; 1996 continue; 2058 /* 1997 /* 2059 * This is not strictly accur 1998 * This is not strictly accurate, we can race with 2060 * uprobe_unregister() and se 1999 * uprobe_unregister() and see the already removed 2061 * uprobe if delete_uprobe() 2000 * uprobe if delete_uprobe() was not yet called. 2062 * Or this uprobe can be filt 2001 * Or this uprobe can be filtered out. 2063 */ 2002 */ 2064 if (vma_has_uprobes(vma, vma- 2003 if (vma_has_uprobes(vma, vma->vm_start, vma->vm_end)) 2065 return; 2004 return; 2066 } 2005 } 2067 2006 2068 clear_bit(MMF_HAS_UPROBES, &mm->flags 2007 clear_bit(MMF_HAS_UPROBES, &mm->flags); 2069 } 2008 } 2070 2009 2071 static int is_trap_at_addr(struct mm_struct * 2010 static int is_trap_at_addr(struct mm_struct *mm, unsigned long vaddr) 2072 { 2011 { 2073 struct page *page; 2012 struct page *page; 2074 uprobe_opcode_t opcode; 2013 uprobe_opcode_t opcode; 2075 int result; 2014 int result; 2076 2015 2077 if (WARN_ON_ONCE(!IS_ALIGNED(vaddr, U 2016 if (WARN_ON_ONCE(!IS_ALIGNED(vaddr, UPROBE_SWBP_INSN_SIZE))) 2078 return -EINVAL; 2017 return -EINVAL; 2079 2018 2080 pagefault_disable(); 2019 pagefault_disable(); 2081 result = __get_user(opcode, (uprobe_o 2020 result = __get_user(opcode, (uprobe_opcode_t __user *)vaddr); 2082 pagefault_enable(); 2021 pagefault_enable(); 2083 2022 2084 if (likely(result == 0)) 2023 if (likely(result == 0)) 2085 goto out; 2024 goto out; 2086 2025 2087 result = get_user_pages(vaddr, 1, FOL !! 2026 /* >> 2027 * The NULL 'tsk' here ensures that any faults that occur here >> 2028 * will not be accounted to the task. 'mm' *is* current->mm, >> 2029 * but we treat this as a 'remote' access since it is >> 2030 * essentially a kernel access to the memory. >> 2031 */ >> 2032 result = get_user_pages_remote(mm, vaddr, 1, FOLL_FORCE, &page, >> 2033 NULL, NULL); 2088 if (result < 0) 2034 if (result < 0) 2089 return result; 2035 return result; 2090 2036 2091 copy_from_page(page, vaddr, &opcode, 2037 copy_from_page(page, vaddr, &opcode, UPROBE_SWBP_INSN_SIZE); 2092 put_page(page); 2038 put_page(page); 2093 out: 2039 out: 2094 /* This needs to return true for any 2040 /* This needs to return true for any variant of the trap insn */ 2095 return is_trap_insn(&opcode); 2041 return is_trap_insn(&opcode); 2096 } 2042 } 2097 2043 2098 /* assumes being inside RCU protected region !! 2044 static struct uprobe *find_active_uprobe(unsigned long bp_vaddr, int *is_swbp) 2099 static struct uprobe *find_active_uprobe_rcu( << 2100 { 2045 { 2101 struct mm_struct *mm = current->mm; 2046 struct mm_struct *mm = current->mm; 2102 struct uprobe *uprobe = NULL; 2047 struct uprobe *uprobe = NULL; 2103 struct vm_area_struct *vma; 2048 struct vm_area_struct *vma; 2104 2049 2105 mmap_read_lock(mm); 2050 mmap_read_lock(mm); 2106 vma = vma_lookup(mm, bp_vaddr); 2051 vma = vma_lookup(mm, bp_vaddr); 2107 if (vma) { 2052 if (vma) { 2108 if (valid_vma(vma, false)) { 2053 if (valid_vma(vma, false)) { 2109 struct inode *inode = 2054 struct inode *inode = file_inode(vma->vm_file); 2110 loff_t offset = vaddr 2055 loff_t offset = vaddr_to_offset(vma, bp_vaddr); 2111 2056 2112 uprobe = find_uprobe_ !! 2057 uprobe = find_uprobe(inode, offset); 2113 } 2058 } 2114 2059 2115 if (!uprobe) 2060 if (!uprobe) 2116 *is_swbp = is_trap_at 2061 *is_swbp = is_trap_at_addr(mm, bp_vaddr); 2117 } else { 2062 } else { 2118 *is_swbp = -EFAULT; 2063 *is_swbp = -EFAULT; 2119 } 2064 } 2120 2065 2121 if (!uprobe && test_and_clear_bit(MMF 2066 if (!uprobe && test_and_clear_bit(MMF_RECALC_UPROBES, &mm->flags)) 2122 mmf_recalc_uprobes(mm); 2067 mmf_recalc_uprobes(mm); 2123 mmap_read_unlock(mm); 2068 mmap_read_unlock(mm); 2124 2069 2125 return uprobe; 2070 return uprobe; 2126 } 2071 } 2127 2072 2128 static void handler_chain(struct uprobe *upro 2073 static void handler_chain(struct uprobe *uprobe, struct pt_regs *regs) 2129 { 2074 { 2130 struct uprobe_consumer *uc; 2075 struct uprobe_consumer *uc; 2131 int remove = UPROBE_HANDLER_REMOVE; 2076 int remove = UPROBE_HANDLER_REMOVE; 2132 bool need_prep = false; /* prepare re 2077 bool need_prep = false; /* prepare return uprobe, when needed */ 2133 bool has_consumers = false; << 2134 << 2135 current->utask->auprobe = &uprobe->ar << 2136 2078 2137 list_for_each_entry_srcu(uc, &uprobe- !! 2079 down_read(&uprobe->register_rwsem); 2138 srcu_read_lo !! 2080 for (uc = uprobe->consumers; uc; uc = uc->next) { 2139 int rc = 0; 2081 int rc = 0; 2140 2082 2141 if (uc->handler) { 2083 if (uc->handler) { 2142 rc = uc->handler(uc, 2084 rc = uc->handler(uc, regs); 2143 WARN(rc & ~UPROBE_HAN 2085 WARN(rc & ~UPROBE_HANDLER_MASK, 2144 "bad rc=0x%x 2086 "bad rc=0x%x from %ps()\n", rc, uc->handler); 2145 } 2087 } 2146 2088 2147 if (uc->ret_handler) 2089 if (uc->ret_handler) 2148 need_prep = true; 2090 need_prep = true; 2149 2091 2150 remove &= rc; 2092 remove &= rc; 2151 has_consumers = true; << 2152 } 2093 } 2153 current->utask->auprobe = NULL; << 2154 2094 2155 if (need_prep && !remove) 2095 if (need_prep && !remove) 2156 prepare_uretprobe(uprobe, reg 2096 prepare_uretprobe(uprobe, regs); /* put bp at return */ 2157 2097 2158 if (remove && has_consumers) { !! 2098 if (remove && uprobe->consumers) { 2159 down_read(&uprobe->register_r !! 2099 WARN_ON(!uprobe_is_active(uprobe)); 2160 !! 2100 unapply_uprobe(uprobe, current->mm); 2161 /* re-check that removal is s << 2162 if (!filter_chain(uprobe, cur << 2163 WARN_ON(!uprobe_is_ac << 2164 unapply_uprobe(uprobe << 2165 } << 2166 << 2167 up_read(&uprobe->register_rws << 2168 } 2101 } >> 2102 up_read(&uprobe->register_rwsem); 2169 } 2103 } 2170 2104 2171 static void 2105 static void 2172 handle_uretprobe_chain(struct return_instance 2106 handle_uretprobe_chain(struct return_instance *ri, struct pt_regs *regs) 2173 { 2107 { 2174 struct uprobe *uprobe = ri->uprobe; 2108 struct uprobe *uprobe = ri->uprobe; 2175 struct uprobe_consumer *uc; 2109 struct uprobe_consumer *uc; 2176 int srcu_idx; << 2177 2110 2178 srcu_idx = srcu_read_lock(&uprobes_sr !! 2111 down_read(&uprobe->register_rwsem); 2179 list_for_each_entry_srcu(uc, &uprobe- !! 2112 for (uc = uprobe->consumers; uc; uc = uc->next) { 2180 srcu_read_lo << 2181 if (uc->ret_handler) 2113 if (uc->ret_handler) 2182 uc->ret_handler(uc, r 2114 uc->ret_handler(uc, ri->func, regs); 2183 } 2115 } 2184 srcu_read_unlock(&uprobes_srcu, srcu_ !! 2116 up_read(&uprobe->register_rwsem); 2185 } 2117 } 2186 2118 2187 static struct return_instance *find_next_ret_ 2119 static struct return_instance *find_next_ret_chain(struct return_instance *ri) 2188 { 2120 { 2189 bool chained; 2121 bool chained; 2190 2122 2191 do { 2123 do { 2192 chained = ri->chained; 2124 chained = ri->chained; 2193 ri = ri->next; /* can't be N 2125 ri = ri->next; /* can't be NULL if chained */ 2194 } while (chained); 2126 } while (chained); 2195 2127 2196 return ri; 2128 return ri; 2197 } 2129 } 2198 2130 2199 void uprobe_handle_trampoline(struct pt_regs !! 2131 static void handle_trampoline(struct pt_regs *regs) 2200 { 2132 { 2201 struct uprobe_task *utask; 2133 struct uprobe_task *utask; 2202 struct return_instance *ri, *next; 2134 struct return_instance *ri, *next; 2203 bool valid; 2135 bool valid; 2204 2136 2205 utask = current->utask; 2137 utask = current->utask; 2206 if (!utask) 2138 if (!utask) 2207 goto sigill; 2139 goto sigill; 2208 2140 2209 ri = utask->return_instances; 2141 ri = utask->return_instances; 2210 if (!ri) 2142 if (!ri) 2211 goto sigill; 2143 goto sigill; 2212 2144 2213 do { 2145 do { 2214 /* 2146 /* 2215 * We should throw out the fr 2147 * We should throw out the frames invalidated by longjmp(). 2216 * If this chain is valid, th 2148 * If this chain is valid, then the next one should be alive 2217 * or NULL; the latter case m 2149 * or NULL; the latter case means that nobody but ri->func 2218 * could hit this trampoline 2150 * could hit this trampoline on return. TODO: sigaltstack(). 2219 */ 2151 */ 2220 next = find_next_ret_chain(ri 2152 next = find_next_ret_chain(ri); 2221 valid = !next || arch_uretpro 2153 valid = !next || arch_uretprobe_is_alive(next, RP_CHECK_RET, regs); 2222 2154 2223 instruction_pointer_set(regs, 2155 instruction_pointer_set(regs, ri->orig_ret_vaddr); 2224 do { 2156 do { 2225 /* pop current instan << 2226 * as it's not pendin << 2227 * instruction pointe << 2228 * this allows fixup_ << 2229 * captured stack tra << 2230 * trampoline address << 2231 * original return ad << 2232 */ << 2233 utask->return_instanc << 2234 if (valid) 2157 if (valid) 2235 handle_uretpr 2158 handle_uretprobe_chain(ri, regs); 2236 ri = free_ret_instanc 2159 ri = free_ret_instance(ri); 2237 utask->depth--; 2160 utask->depth--; 2238 } while (ri != next); 2161 } while (ri != next); 2239 } while (!valid); 2162 } while (!valid); 2240 2163 2241 utask->return_instances = ri; 2164 utask->return_instances = ri; 2242 return; 2165 return; 2243 2166 2244 sigill: 2167 sigill: 2245 uprobe_warn(current, "handle uretprob 2168 uprobe_warn(current, "handle uretprobe, sending SIGILL."); 2246 force_sig(SIGILL); 2169 force_sig(SIGILL); 2247 2170 2248 } 2171 } 2249 2172 2250 bool __weak arch_uprobe_ignore(struct arch_up 2173 bool __weak arch_uprobe_ignore(struct arch_uprobe *aup, struct pt_regs *regs) 2251 { 2174 { 2252 return false; 2175 return false; 2253 } 2176 } 2254 2177 2255 bool __weak arch_uretprobe_is_alive(struct re 2178 bool __weak arch_uretprobe_is_alive(struct return_instance *ret, enum rp_check ctx, 2256 struc 2179 struct pt_regs *regs) 2257 { 2180 { 2258 return true; 2181 return true; 2259 } 2182 } 2260 2183 2261 /* 2184 /* 2262 * Run handler and ask thread to singlestep. 2185 * Run handler and ask thread to singlestep. 2263 * Ensure all non-fatal signals cannot interr 2186 * Ensure all non-fatal signals cannot interrupt thread while it singlesteps. 2264 */ 2187 */ 2265 static void handle_swbp(struct pt_regs *regs) 2188 static void handle_swbp(struct pt_regs *regs) 2266 { 2189 { 2267 struct uprobe *uprobe; 2190 struct uprobe *uprobe; 2268 unsigned long bp_vaddr; 2191 unsigned long bp_vaddr; 2269 int is_swbp, srcu_idx; !! 2192 int is_swbp; 2270 2193 2271 bp_vaddr = uprobe_get_swbp_addr(regs) 2194 bp_vaddr = uprobe_get_swbp_addr(regs); 2272 if (bp_vaddr == uprobe_get_trampoline !! 2195 if (bp_vaddr == get_trampoline_vaddr()) 2273 return uprobe_handle_trampoli !! 2196 return handle_trampoline(regs); 2274 << 2275 srcu_idx = srcu_read_lock(&uprobes_sr << 2276 2197 2277 uprobe = find_active_uprobe_rcu(bp_va !! 2198 uprobe = find_active_uprobe(bp_vaddr, &is_swbp); 2278 if (!uprobe) { 2199 if (!uprobe) { 2279 if (is_swbp > 0) { 2200 if (is_swbp > 0) { 2280 /* No matching uprobe 2201 /* No matching uprobe; signal SIGTRAP. */ 2281 force_sig(SIGTRAP); 2202 force_sig(SIGTRAP); 2282 } else { 2203 } else { 2283 /* 2204 /* 2284 * Either we raced wi 2205 * Either we raced with uprobe_unregister() or we can't 2285 * access this memory 2206 * access this memory. The latter is only possible if 2286 * another thread pla 2207 * another thread plays with our ->mm. In both cases 2287 * we can simply rest 2208 * we can simply restart. If this vma was unmapped we 2288 * can pretend this i 2209 * can pretend this insn was not executed yet and get 2289 * the (correct) SIGS 2210 * the (correct) SIGSEGV after restart. 2290 */ 2211 */ 2291 instruction_pointer_s 2212 instruction_pointer_set(regs, bp_vaddr); 2292 } 2213 } 2293 goto out; !! 2214 return; 2294 } 2215 } 2295 2216 2296 /* change it in advance for ->handler 2217 /* change it in advance for ->handler() and restart */ 2297 instruction_pointer_set(regs, bp_vadd 2218 instruction_pointer_set(regs, bp_vaddr); 2298 2219 2299 /* 2220 /* 2300 * TODO: move copy_insn/etc into _reg 2221 * TODO: move copy_insn/etc into _register and remove this hack. 2301 * After we hit the bp, _unregister + 2222 * After we hit the bp, _unregister + _register can install the 2302 * new and not-yet-analyzed uprobe at 2223 * new and not-yet-analyzed uprobe at the same address, restart. 2303 */ 2224 */ 2304 if (unlikely(!test_bit(UPROBE_COPY_IN 2225 if (unlikely(!test_bit(UPROBE_COPY_INSN, &uprobe->flags))) 2305 goto out; 2226 goto out; 2306 2227 2307 /* 2228 /* 2308 * Pairs with the smp_wmb() in prepar 2229 * Pairs with the smp_wmb() in prepare_uprobe(). 2309 * 2230 * 2310 * Guarantees that if we see the UPRO 2231 * Guarantees that if we see the UPROBE_COPY_INSN bit set, then 2311 * we must also see the stores to &up 2232 * we must also see the stores to &uprobe->arch performed by the 2312 * prepare_uprobe() call. 2233 * prepare_uprobe() call. 2313 */ 2234 */ 2314 smp_rmb(); 2235 smp_rmb(); 2315 2236 2316 /* Tracing handlers use ->utask to co 2237 /* Tracing handlers use ->utask to communicate with fetch methods */ 2317 if (!get_utask()) 2238 if (!get_utask()) 2318 goto out; 2239 goto out; 2319 2240 2320 if (arch_uprobe_ignore(&uprobe->arch, 2241 if (arch_uprobe_ignore(&uprobe->arch, regs)) 2321 goto out; 2242 goto out; 2322 2243 2323 handler_chain(uprobe, regs); 2244 handler_chain(uprobe, regs); 2324 2245 2325 if (arch_uprobe_skip_sstep(&uprobe->a 2246 if (arch_uprobe_skip_sstep(&uprobe->arch, regs)) 2326 goto out; 2247 goto out; 2327 2248 2328 if (pre_ssout(uprobe, regs, bp_vaddr) !! 2249 if (!pre_ssout(uprobe, regs, bp_vaddr)) 2329 goto out; !! 2250 return; 2330 2251 2331 out: << 2332 /* arch_uprobe_skip_sstep() succeeded 2252 /* arch_uprobe_skip_sstep() succeeded, or restart if can't singlestep */ 2333 srcu_read_unlock(&uprobes_srcu, srcu_ !! 2253 out: >> 2254 put_uprobe(uprobe); 2334 } 2255 } 2335 2256 2336 /* 2257 /* 2337 * Perform required fix-ups and disable singl 2258 * Perform required fix-ups and disable singlestep. 2338 * Allow pending signals to take effect. 2259 * Allow pending signals to take effect. 2339 */ 2260 */ 2340 static void handle_singlestep(struct uprobe_t 2261 static void handle_singlestep(struct uprobe_task *utask, struct pt_regs *regs) 2341 { 2262 { 2342 struct uprobe *uprobe; 2263 struct uprobe *uprobe; 2343 int err = 0; 2264 int err = 0; 2344 2265 2345 uprobe = utask->active_uprobe; 2266 uprobe = utask->active_uprobe; 2346 if (utask->state == UTASK_SSTEP_ACK) 2267 if (utask->state == UTASK_SSTEP_ACK) 2347 err = arch_uprobe_post_xol(&u 2268 err = arch_uprobe_post_xol(&uprobe->arch, regs); 2348 else if (utask->state == UTASK_SSTEP_ 2269 else if (utask->state == UTASK_SSTEP_TRAPPED) 2349 arch_uprobe_abort_xol(&uprobe 2270 arch_uprobe_abort_xol(&uprobe->arch, regs); 2350 else 2271 else 2351 WARN_ON_ONCE(1); 2272 WARN_ON_ONCE(1); 2352 2273 2353 put_uprobe(uprobe); 2274 put_uprobe(uprobe); 2354 utask->active_uprobe = NULL; 2275 utask->active_uprobe = NULL; 2355 utask->state = UTASK_RUNNING; 2276 utask->state = UTASK_RUNNING; 2356 xol_free_insn_slot(current); 2277 xol_free_insn_slot(current); 2357 2278 2358 spin_lock_irq(¤t->sighand->sigl 2279 spin_lock_irq(¤t->sighand->siglock); 2359 recalc_sigpending(); /* see uprobe_de 2280 recalc_sigpending(); /* see uprobe_deny_signal() */ 2360 spin_unlock_irq(¤t->sighand->si 2281 spin_unlock_irq(¤t->sighand->siglock); 2361 2282 2362 if (unlikely(err)) { 2283 if (unlikely(err)) { 2363 uprobe_warn(current, "execute 2284 uprobe_warn(current, "execute the probed insn, sending SIGILL."); 2364 force_sig(SIGILL); 2285 force_sig(SIGILL); 2365 } 2286 } 2366 } 2287 } 2367 2288 2368 /* 2289 /* 2369 * On breakpoint hit, breakpoint notifier set 2290 * On breakpoint hit, breakpoint notifier sets the TIF_UPROBE flag and 2370 * allows the thread to return from interrupt 2291 * allows the thread to return from interrupt. After that handle_swbp() 2371 * sets utask->active_uprobe. 2292 * sets utask->active_uprobe. 2372 * 2293 * 2373 * On singlestep exception, singlestep notifi 2294 * On singlestep exception, singlestep notifier sets the TIF_UPROBE flag 2374 * and allows the thread to return from inter 2295 * and allows the thread to return from interrupt. 2375 * 2296 * 2376 * While returning to userspace, thread notic 2297 * While returning to userspace, thread notices the TIF_UPROBE flag and calls 2377 * uprobe_notify_resume(). 2298 * uprobe_notify_resume(). 2378 */ 2299 */ 2379 void uprobe_notify_resume(struct pt_regs *reg 2300 void uprobe_notify_resume(struct pt_regs *regs) 2380 { 2301 { 2381 struct uprobe_task *utask; 2302 struct uprobe_task *utask; 2382 2303 2383 clear_thread_flag(TIF_UPROBE); 2304 clear_thread_flag(TIF_UPROBE); 2384 2305 2385 utask = current->utask; 2306 utask = current->utask; 2386 if (utask && utask->active_uprobe) 2307 if (utask && utask->active_uprobe) 2387 handle_singlestep(utask, regs 2308 handle_singlestep(utask, regs); 2388 else 2309 else 2389 handle_swbp(regs); 2310 handle_swbp(regs); 2390 } 2311 } 2391 2312 2392 /* 2313 /* 2393 * uprobe_pre_sstep_notifier gets called from 2314 * uprobe_pre_sstep_notifier gets called from interrupt context as part of 2394 * notifier mechanism. Set TIF_UPROBE flag an 2315 * notifier mechanism. Set TIF_UPROBE flag and indicate breakpoint hit. 2395 */ 2316 */ 2396 int uprobe_pre_sstep_notifier(struct pt_regs 2317 int uprobe_pre_sstep_notifier(struct pt_regs *regs) 2397 { 2318 { 2398 if (!current->mm) 2319 if (!current->mm) 2399 return 0; 2320 return 0; 2400 2321 2401 if (!test_bit(MMF_HAS_UPROBES, &curre 2322 if (!test_bit(MMF_HAS_UPROBES, ¤t->mm->flags) && 2402 (!current->utask || !current->uta 2323 (!current->utask || !current->utask->return_instances)) 2403 return 0; 2324 return 0; 2404 2325 2405 set_thread_flag(TIF_UPROBE); 2326 set_thread_flag(TIF_UPROBE); 2406 return 1; 2327 return 1; 2407 } 2328 } 2408 2329 2409 /* 2330 /* 2410 * uprobe_post_sstep_notifier gets called in 2331 * uprobe_post_sstep_notifier gets called in interrupt context as part of notifier 2411 * mechanism. Set TIF_UPROBE flag and indicat 2332 * mechanism. Set TIF_UPROBE flag and indicate completion of singlestep. 2412 */ 2333 */ 2413 int uprobe_post_sstep_notifier(struct pt_regs 2334 int uprobe_post_sstep_notifier(struct pt_regs *regs) 2414 { 2335 { 2415 struct uprobe_task *utask = current-> 2336 struct uprobe_task *utask = current->utask; 2416 2337 2417 if (!current->mm || !utask || !utask- 2338 if (!current->mm || !utask || !utask->active_uprobe) 2418 /* task is currently not upro 2339 /* task is currently not uprobed */ 2419 return 0; 2340 return 0; 2420 2341 2421 utask->state = UTASK_SSTEP_ACK; 2342 utask->state = UTASK_SSTEP_ACK; 2422 set_thread_flag(TIF_UPROBE); 2343 set_thread_flag(TIF_UPROBE); 2423 return 1; 2344 return 1; 2424 } 2345 } 2425 2346 2426 static struct notifier_block uprobe_exception 2347 static struct notifier_block uprobe_exception_nb = { 2427 .notifier_call = arch_uprobe 2348 .notifier_call = arch_uprobe_exception_notify, 2428 .priority = INT_MAX-1, 2349 .priority = INT_MAX-1, /* notified after kprobes, kgdb */ 2429 }; 2350 }; 2430 2351 2431 void __init uprobes_init(void) 2352 void __init uprobes_init(void) 2432 { 2353 { 2433 int i; 2354 int i; 2434 2355 2435 for (i = 0; i < UPROBES_HASH_SZ; i++) 2356 for (i = 0; i < UPROBES_HASH_SZ; i++) 2436 mutex_init(&uprobes_mmap_mute 2357 mutex_init(&uprobes_mmap_mutex[i]); 2437 2358 2438 BUG_ON(register_die_notifier(&uprobe_ 2359 BUG_ON(register_die_notifier(&uprobe_exception_nb)); 2439 } 2360 } 2440 2361
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.