1 // SPDX-License-Identifier: GPL-2.0+ 1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 2 /* 3 * User-space Probes (UProbes) 3 * User-space Probes (UProbes) 4 * 4 * 5 * Copyright (C) IBM Corporation, 2008-2012 5 * Copyright (C) IBM Corporation, 2008-2012 6 * Authors: 6 * Authors: 7 * Srikar Dronamraju 7 * Srikar Dronamraju 8 * Jim Keniston 8 * Jim Keniston 9 * Copyright (C) 2011-2012 Red Hat, Inc., Pete 9 * Copyright (C) 2011-2012 Red Hat, Inc., Peter Zijlstra 10 */ 10 */ 11 11 12 #include <linux/kernel.h> 12 #include <linux/kernel.h> 13 #include <linux/highmem.h> 13 #include <linux/highmem.h> 14 #include <linux/pagemap.h> /* read_mappin 14 #include <linux/pagemap.h> /* read_mapping_page */ 15 #include <linux/slab.h> 15 #include <linux/slab.h> 16 #include <linux/sched.h> 16 #include <linux/sched.h> 17 #include <linux/sched/mm.h> 17 #include <linux/sched/mm.h> 18 #include <linux/sched/coredump.h> 18 #include <linux/sched/coredump.h> 19 #include <linux/export.h> 19 #include <linux/export.h> 20 #include <linux/rmap.h> /* anon_vma_pr 20 #include <linux/rmap.h> /* anon_vma_prepare */ 21 #include <linux/mmu_notifier.h> !! 21 #include <linux/mmu_notifier.h> /* set_pte_at_notify */ 22 #include <linux/swap.h> /* folio_free_ 22 #include <linux/swap.h> /* folio_free_swap */ 23 #include <linux/ptrace.h> /* user_enable 23 #include <linux/ptrace.h> /* user_enable_single_step */ 24 #include <linux/kdebug.h> /* notifier me 24 #include <linux/kdebug.h> /* notifier mechanism */ 25 #include <linux/percpu-rwsem.h> 25 #include <linux/percpu-rwsem.h> 26 #include <linux/task_work.h> 26 #include <linux/task_work.h> 27 #include <linux/shmem_fs.h> 27 #include <linux/shmem_fs.h> 28 #include <linux/khugepaged.h> 28 #include <linux/khugepaged.h> 29 29 30 #include <linux/uprobes.h> 30 #include <linux/uprobes.h> 31 31 32 #define UINSNS_PER_PAGE (PAGE_ 32 #define UINSNS_PER_PAGE (PAGE_SIZE/UPROBE_XOL_SLOT_BYTES) 33 #define MAX_UPROBE_XOL_SLOTS UINSNS 33 #define MAX_UPROBE_XOL_SLOTS UINSNS_PER_PAGE 34 34 35 static struct rb_root uprobes_tree = RB_ROOT; 35 static struct rb_root uprobes_tree = RB_ROOT; 36 /* 36 /* 37 * allows us to skip the uprobe_mmap if there 37 * allows us to skip the uprobe_mmap if there are no uprobe events active 38 * at this time. Probably a fine grained per 38 * at this time. Probably a fine grained per inode count is better? 39 */ 39 */ 40 #define no_uprobe_events() RB_EMPTY_ROOT( 40 #define no_uprobe_events() RB_EMPTY_ROOT(&uprobes_tree) 41 41 42 static DEFINE_RWLOCK(uprobes_treelock); /* ser !! 42 static DEFINE_SPINLOCK(uprobes_treelock); /* serialize rbtree access */ 43 static seqcount_rwlock_t uprobes_seqcount = SE << 44 << 45 DEFINE_STATIC_SRCU(uprobes_srcu); << 46 43 47 #define UPROBES_HASH_SZ 13 44 #define UPROBES_HASH_SZ 13 48 /* serialize uprobe->pending_list */ 45 /* serialize uprobe->pending_list */ 49 static struct mutex uprobes_mmap_mutex[UPROBES 46 static struct mutex uprobes_mmap_mutex[UPROBES_HASH_SZ]; 50 #define uprobes_mmap_hash(v) (&uprobes_mmap 47 #define uprobes_mmap_hash(v) (&uprobes_mmap_mutex[((unsigned long)(v)) % UPROBES_HASH_SZ]) 51 48 52 DEFINE_STATIC_PERCPU_RWSEM(dup_mmap_sem); 49 DEFINE_STATIC_PERCPU_RWSEM(dup_mmap_sem); 53 50 54 /* Have a copy of original instruction */ 51 /* Have a copy of original instruction */ 55 #define UPROBE_COPY_INSN 0 52 #define UPROBE_COPY_INSN 0 56 53 57 struct uprobe { 54 struct uprobe { 58 struct rb_node rb_node; 55 struct rb_node rb_node; /* node in the rb tree */ 59 refcount_t ref; 56 refcount_t ref; 60 struct rw_semaphore register_rwsem 57 struct rw_semaphore register_rwsem; 61 struct rw_semaphore consumer_rwsem 58 struct rw_semaphore consumer_rwsem; 62 struct list_head pending_list; 59 struct list_head pending_list; 63 struct list_head consumers; !! 60 struct uprobe_consumer *consumers; 64 struct inode *inode; 61 struct inode *inode; /* Also hold a ref to inode */ 65 struct rcu_head rcu; << 66 loff_t offset; 62 loff_t offset; 67 loff_t ref_ctr_offset 63 loff_t ref_ctr_offset; 68 unsigned long flags; 64 unsigned long flags; 69 65 70 /* 66 /* 71 * The generic code assumes that it ha 67 * The generic code assumes that it has two members of unknown type 72 * owned by the arch-specific code: 68 * owned by the arch-specific code: 73 * 69 * 74 * insn - copy_insn() saves the 70 * insn - copy_insn() saves the original instruction here for 75 * arch_uprobe_analyze_in 71 * arch_uprobe_analyze_insn(). 76 * 72 * 77 * ixol - potentially modified i 73 * ixol - potentially modified instruction to execute out of 78 * line, copied to xol_ar 74 * line, copied to xol_area by xol_get_insn_slot(). 79 */ 75 */ 80 struct arch_uprobe arch; 76 struct arch_uprobe arch; 81 }; 77 }; 82 78 83 struct delayed_uprobe { 79 struct delayed_uprobe { 84 struct list_head list; 80 struct list_head list; 85 struct uprobe *uprobe; 81 struct uprobe *uprobe; 86 struct mm_struct *mm; 82 struct mm_struct *mm; 87 }; 83 }; 88 84 89 static DEFINE_MUTEX(delayed_uprobe_lock); 85 static DEFINE_MUTEX(delayed_uprobe_lock); 90 static LIST_HEAD(delayed_uprobe_list); 86 static LIST_HEAD(delayed_uprobe_list); 91 87 92 /* 88 /* 93 * Execute out of line area: anonymous executa 89 * Execute out of line area: anonymous executable mapping installed 94 * by the probed task to execute the copy of t 90 * by the probed task to execute the copy of the original instruction 95 * mangled by set_swbp(). 91 * mangled by set_swbp(). 96 * 92 * 97 * On a breakpoint hit, thread contests for a 93 * On a breakpoint hit, thread contests for a slot. It frees the 98 * slot after singlestep. Currently a fixed nu 94 * slot after singlestep. Currently a fixed number of slots are 99 * allocated. 95 * allocated. 100 */ 96 */ 101 struct xol_area { 97 struct xol_area { 102 wait_queue_head_t wq; 98 wait_queue_head_t wq; /* if all slots are busy */ 103 atomic_t slot_c 99 atomic_t slot_count; /* number of in-use slots */ 104 unsigned long *bitma 100 unsigned long *bitmap; /* 0 = free slot */ 105 101 106 struct page *page; !! 102 struct vm_special_mapping xol_mapping; >> 103 struct page *pages[2]; 107 /* 104 /* 108 * We keep the vma's vm_start rather t 105 * We keep the vma's vm_start rather than a pointer to the vma 109 * itself. The probed process or a na 106 * itself. The probed process or a naughty kernel module could make 110 * the vma go away, and we must handle 107 * the vma go away, and we must handle that reasonably gracefully. 111 */ 108 */ 112 unsigned long vaddr; 109 unsigned long vaddr; /* Page(s) of instruction slots */ 113 }; 110 }; 114 111 115 static void uprobe_warn(struct task_struct *t, << 116 { << 117 pr_warn("uprobe: %s:%d failed to %s\n" << 118 } << 119 << 120 /* 112 /* 121 * valid_vma: Verify if the specified vma is a 113 * valid_vma: Verify if the specified vma is an executable vma 122 * Relax restrictions while unregistering: vm_ 114 * Relax restrictions while unregistering: vm_flags might have 123 * changed after breakpoint was inserted. 115 * changed after breakpoint was inserted. 124 * - is_register: indicates if we are in 116 * - is_register: indicates if we are in register context. 125 * - Return 1 if the specified virtual ad 117 * - Return 1 if the specified virtual address is in an 126 * executable vma. 118 * executable vma. 127 */ 119 */ 128 static bool valid_vma(struct vm_area_struct *v 120 static bool valid_vma(struct vm_area_struct *vma, bool is_register) 129 { 121 { 130 vm_flags_t flags = VM_HUGETLB | VM_MAY 122 vm_flags_t flags = VM_HUGETLB | VM_MAYEXEC | VM_MAYSHARE; 131 123 132 if (is_register) 124 if (is_register) 133 flags |= VM_WRITE; 125 flags |= VM_WRITE; 134 126 135 return vma->vm_file && (vma->vm_flags 127 return vma->vm_file && (vma->vm_flags & flags) == VM_MAYEXEC; 136 } 128 } 137 129 138 static unsigned long offset_to_vaddr(struct vm 130 static unsigned long offset_to_vaddr(struct vm_area_struct *vma, loff_t offset) 139 { 131 { 140 return vma->vm_start + offset - ((loff 132 return vma->vm_start + offset - ((loff_t)vma->vm_pgoff << PAGE_SHIFT); 141 } 133 } 142 134 143 static loff_t vaddr_to_offset(struct vm_area_s 135 static loff_t vaddr_to_offset(struct vm_area_struct *vma, unsigned long vaddr) 144 { 136 { 145 return ((loff_t)vma->vm_pgoff << PAGE_ 137 return ((loff_t)vma->vm_pgoff << PAGE_SHIFT) + (vaddr - vma->vm_start); 146 } 138 } 147 139 148 /** 140 /** 149 * __replace_page - replace page in vma by new 141 * __replace_page - replace page in vma by new page. 150 * based on replace_page in mm/ksm.c 142 * based on replace_page in mm/ksm.c 151 * 143 * 152 * @vma: vma that holds the pte pointing 144 * @vma: vma that holds the pte pointing to page 153 * @addr: address the old @page is mapped 145 * @addr: address the old @page is mapped at 154 * @old_page: the page we are replacing by new 146 * @old_page: the page we are replacing by new_page 155 * @new_page: the modified page we replace pag 147 * @new_page: the modified page we replace page by 156 * 148 * 157 * If @new_page is NULL, only unmap @old_page. 149 * If @new_page is NULL, only unmap @old_page. 158 * 150 * 159 * Returns 0 on success, negative error code o 151 * Returns 0 on success, negative error code otherwise. 160 */ 152 */ 161 static int __replace_page(struct vm_area_struc 153 static int __replace_page(struct vm_area_struct *vma, unsigned long addr, 162 struct page *o 154 struct page *old_page, struct page *new_page) 163 { 155 { 164 struct folio *old_folio = page_folio(o 156 struct folio *old_folio = page_folio(old_page); 165 struct folio *new_folio; 157 struct folio *new_folio; 166 struct mm_struct *mm = vma->vm_mm; 158 struct mm_struct *mm = vma->vm_mm; 167 DEFINE_FOLIO_VMA_WALK(pvmw, old_folio, 159 DEFINE_FOLIO_VMA_WALK(pvmw, old_folio, vma, addr, 0); 168 int err; 160 int err; 169 struct mmu_notifier_range range; 161 struct mmu_notifier_range range; 170 162 171 mmu_notifier_range_init(&range, MMU_NO 163 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, addr, 172 addr + PAGE_SI 164 addr + PAGE_SIZE); 173 165 174 if (new_page) { 166 if (new_page) { 175 new_folio = page_folio(new_pag 167 new_folio = page_folio(new_page); 176 err = mem_cgroup_charge(new_fo 168 err = mem_cgroup_charge(new_folio, vma->vm_mm, GFP_KERNEL); 177 if (err) 169 if (err) 178 return err; 170 return err; 179 } 171 } 180 172 181 /* For folio_free_swap() below */ 173 /* For folio_free_swap() below */ 182 folio_lock(old_folio); 174 folio_lock(old_folio); 183 175 184 mmu_notifier_invalidate_range_start(&r 176 mmu_notifier_invalidate_range_start(&range); 185 err = -EAGAIN; 177 err = -EAGAIN; 186 if (!page_vma_mapped_walk(&pvmw)) 178 if (!page_vma_mapped_walk(&pvmw)) 187 goto unlock; 179 goto unlock; 188 VM_BUG_ON_PAGE(addr != pvmw.address, o 180 VM_BUG_ON_PAGE(addr != pvmw.address, old_page); 189 181 190 if (new_page) { 182 if (new_page) { 191 folio_get(new_folio); 183 folio_get(new_folio); 192 folio_add_new_anon_rmap(new_fo !! 184 page_add_new_anon_rmap(new_page, vma, addr); 193 folio_add_lru_vma(new_folio, v 185 folio_add_lru_vma(new_folio, vma); 194 } else 186 } else 195 /* no new page, just dec_mm_co 187 /* no new page, just dec_mm_counter for old_page */ 196 dec_mm_counter(mm, MM_ANONPAGE 188 dec_mm_counter(mm, MM_ANONPAGES); 197 189 198 if (!folio_test_anon(old_folio)) { 190 if (!folio_test_anon(old_folio)) { 199 dec_mm_counter(mm, mm_counter_ !! 191 dec_mm_counter(mm, mm_counter_file(old_page)); 200 inc_mm_counter(mm, MM_ANONPAGE 192 inc_mm_counter(mm, MM_ANONPAGES); 201 } 193 } 202 194 203 flush_cache_page(vma, addr, pte_pfn(pt !! 195 flush_cache_page(vma, addr, pte_pfn(*pvmw.pte)); 204 ptep_clear_flush(vma, addr, pvmw.pte); !! 196 ptep_clear_flush_notify(vma, addr, pvmw.pte); 205 if (new_page) 197 if (new_page) 206 set_pte_at(mm, addr, pvmw.pte, !! 198 set_pte_at_notify(mm, addr, pvmw.pte, 207 mk_pte(new_page, vm !! 199 mk_pte(new_page, vma->vm_page_prot)); 208 200 209 folio_remove_rmap_pte(old_folio, old_p !! 201 page_remove_rmap(old_page, vma, false); 210 if (!folio_mapped(old_folio)) 202 if (!folio_mapped(old_folio)) 211 folio_free_swap(old_folio); 203 folio_free_swap(old_folio); 212 page_vma_mapped_walk_done(&pvmw); 204 page_vma_mapped_walk_done(&pvmw); 213 folio_put(old_folio); 205 folio_put(old_folio); 214 206 215 err = 0; 207 err = 0; 216 unlock: 208 unlock: 217 mmu_notifier_invalidate_range_end(&ran 209 mmu_notifier_invalidate_range_end(&range); 218 folio_unlock(old_folio); 210 folio_unlock(old_folio); 219 return err; 211 return err; 220 } 212 } 221 213 222 /** 214 /** 223 * is_swbp_insn - check if instruction is brea 215 * is_swbp_insn - check if instruction is breakpoint instruction. 224 * @insn: instruction to be checked. 216 * @insn: instruction to be checked. 225 * Default implementation of is_swbp_insn 217 * Default implementation of is_swbp_insn 226 * Returns true if @insn is a breakpoint instr 218 * Returns true if @insn is a breakpoint instruction. 227 */ 219 */ 228 bool __weak is_swbp_insn(uprobe_opcode_t *insn 220 bool __weak is_swbp_insn(uprobe_opcode_t *insn) 229 { 221 { 230 return *insn == UPROBE_SWBP_INSN; 222 return *insn == UPROBE_SWBP_INSN; 231 } 223 } 232 224 233 /** 225 /** 234 * is_trap_insn - check if instruction is brea 226 * is_trap_insn - check if instruction is breakpoint instruction. 235 * @insn: instruction to be checked. 227 * @insn: instruction to be checked. 236 * Default implementation of is_trap_insn 228 * Default implementation of is_trap_insn 237 * Returns true if @insn is a breakpoint instr 229 * Returns true if @insn is a breakpoint instruction. 238 * 230 * 239 * This function is needed for the case where 231 * This function is needed for the case where an architecture has multiple 240 * trap instructions (like powerpc). 232 * trap instructions (like powerpc). 241 */ 233 */ 242 bool __weak is_trap_insn(uprobe_opcode_t *insn 234 bool __weak is_trap_insn(uprobe_opcode_t *insn) 243 { 235 { 244 return is_swbp_insn(insn); 236 return is_swbp_insn(insn); 245 } 237 } 246 238 247 static void copy_from_page(struct page *page, 239 static void copy_from_page(struct page *page, unsigned long vaddr, void *dst, int len) 248 { 240 { 249 void *kaddr = kmap_atomic(page); 241 void *kaddr = kmap_atomic(page); 250 memcpy(dst, kaddr + (vaddr & ~PAGE_MAS 242 memcpy(dst, kaddr + (vaddr & ~PAGE_MASK), len); 251 kunmap_atomic(kaddr); 243 kunmap_atomic(kaddr); 252 } 244 } 253 245 254 static void copy_to_page(struct page *page, un 246 static void copy_to_page(struct page *page, unsigned long vaddr, const void *src, int len) 255 { 247 { 256 void *kaddr = kmap_atomic(page); 248 void *kaddr = kmap_atomic(page); 257 memcpy(kaddr + (vaddr & ~PAGE_MASK), s 249 memcpy(kaddr + (vaddr & ~PAGE_MASK), src, len); 258 kunmap_atomic(kaddr); 250 kunmap_atomic(kaddr); 259 } 251 } 260 252 261 static int verify_opcode(struct page *page, un 253 static int verify_opcode(struct page *page, unsigned long vaddr, uprobe_opcode_t *new_opcode) 262 { 254 { 263 uprobe_opcode_t old_opcode; 255 uprobe_opcode_t old_opcode; 264 bool is_swbp; 256 bool is_swbp; 265 257 266 /* 258 /* 267 * Note: We only check if the old_opco 259 * Note: We only check if the old_opcode is UPROBE_SWBP_INSN here. 268 * We do not check if it is any other 260 * We do not check if it is any other 'trap variant' which could 269 * be conditional trap instruction suc 261 * be conditional trap instruction such as the one powerpc supports. 270 * 262 * 271 * The logic is that we do not care if 263 * The logic is that we do not care if the underlying instruction 272 * is a trap variant; uprobes always w 264 * is a trap variant; uprobes always wins over any other (gdb) 273 * breakpoint. 265 * breakpoint. 274 */ 266 */ 275 copy_from_page(page, vaddr, &old_opcod 267 copy_from_page(page, vaddr, &old_opcode, UPROBE_SWBP_INSN_SIZE); 276 is_swbp = is_swbp_insn(&old_opcode); 268 is_swbp = is_swbp_insn(&old_opcode); 277 269 278 if (is_swbp_insn(new_opcode)) { 270 if (is_swbp_insn(new_opcode)) { 279 if (is_swbp) /* reg 271 if (is_swbp) /* register: already installed? */ 280 return 0; 272 return 0; 281 } else { 273 } else { 282 if (!is_swbp) /* unr 274 if (!is_swbp) /* unregister: was it changed by us? */ 283 return 0; 275 return 0; 284 } 276 } 285 277 286 return 1; 278 return 1; 287 } 279 } 288 280 289 static struct delayed_uprobe * 281 static struct delayed_uprobe * 290 delayed_uprobe_check(struct uprobe *uprobe, st 282 delayed_uprobe_check(struct uprobe *uprobe, struct mm_struct *mm) 291 { 283 { 292 struct delayed_uprobe *du; 284 struct delayed_uprobe *du; 293 285 294 list_for_each_entry(du, &delayed_uprob 286 list_for_each_entry(du, &delayed_uprobe_list, list) 295 if (du->uprobe == uprobe && du 287 if (du->uprobe == uprobe && du->mm == mm) 296 return du; 288 return du; 297 return NULL; 289 return NULL; 298 } 290 } 299 291 300 static int delayed_uprobe_add(struct uprobe *u 292 static int delayed_uprobe_add(struct uprobe *uprobe, struct mm_struct *mm) 301 { 293 { 302 struct delayed_uprobe *du; 294 struct delayed_uprobe *du; 303 295 304 if (delayed_uprobe_check(uprobe, mm)) 296 if (delayed_uprobe_check(uprobe, mm)) 305 return 0; 297 return 0; 306 298 307 du = kzalloc(sizeof(*du), GFP_KERNEL) 299 du = kzalloc(sizeof(*du), GFP_KERNEL); 308 if (!du) 300 if (!du) 309 return -ENOMEM; 301 return -ENOMEM; 310 302 311 du->uprobe = uprobe; 303 du->uprobe = uprobe; 312 du->mm = mm; 304 du->mm = mm; 313 list_add(&du->list, &delayed_uprobe_li 305 list_add(&du->list, &delayed_uprobe_list); 314 return 0; 306 return 0; 315 } 307 } 316 308 317 static void delayed_uprobe_delete(struct delay 309 static void delayed_uprobe_delete(struct delayed_uprobe *du) 318 { 310 { 319 if (WARN_ON(!du)) 311 if (WARN_ON(!du)) 320 return; 312 return; 321 list_del(&du->list); 313 list_del(&du->list); 322 kfree(du); 314 kfree(du); 323 } 315 } 324 316 325 static void delayed_uprobe_remove(struct uprob 317 static void delayed_uprobe_remove(struct uprobe *uprobe, struct mm_struct *mm) 326 { 318 { 327 struct list_head *pos, *q; 319 struct list_head *pos, *q; 328 struct delayed_uprobe *du; 320 struct delayed_uprobe *du; 329 321 330 if (!uprobe && !mm) 322 if (!uprobe && !mm) 331 return; 323 return; 332 324 333 list_for_each_safe(pos, q, &delayed_up 325 list_for_each_safe(pos, q, &delayed_uprobe_list) { 334 du = list_entry(pos, struct de 326 du = list_entry(pos, struct delayed_uprobe, list); 335 327 336 if (uprobe && du->uprobe != up 328 if (uprobe && du->uprobe != uprobe) 337 continue; 329 continue; 338 if (mm && du->mm != mm) 330 if (mm && du->mm != mm) 339 continue; 331 continue; 340 332 341 delayed_uprobe_delete(du); 333 delayed_uprobe_delete(du); 342 } 334 } 343 } 335 } 344 336 345 static bool valid_ref_ctr_vma(struct uprobe *u 337 static bool valid_ref_ctr_vma(struct uprobe *uprobe, 346 struct vm_area_s 338 struct vm_area_struct *vma) 347 { 339 { 348 unsigned long vaddr = offset_to_vaddr( 340 unsigned long vaddr = offset_to_vaddr(vma, uprobe->ref_ctr_offset); 349 341 350 return uprobe->ref_ctr_offset && 342 return uprobe->ref_ctr_offset && 351 vma->vm_file && 343 vma->vm_file && 352 file_inode(vma->vm_file) == up 344 file_inode(vma->vm_file) == uprobe->inode && 353 (vma->vm_flags & (VM_WRITE|VM_ 345 (vma->vm_flags & (VM_WRITE|VM_SHARED)) == VM_WRITE && 354 vma->vm_start <= vaddr && 346 vma->vm_start <= vaddr && 355 vma->vm_end > vaddr; 347 vma->vm_end > vaddr; 356 } 348 } 357 349 358 static struct vm_area_struct * 350 static struct vm_area_struct * 359 find_ref_ctr_vma(struct uprobe *uprobe, struct 351 find_ref_ctr_vma(struct uprobe *uprobe, struct mm_struct *mm) 360 { 352 { 361 VMA_ITERATOR(vmi, mm, 0); 353 VMA_ITERATOR(vmi, mm, 0); 362 struct vm_area_struct *tmp; 354 struct vm_area_struct *tmp; 363 355 364 for_each_vma(vmi, tmp) 356 for_each_vma(vmi, tmp) 365 if (valid_ref_ctr_vma(uprobe, 357 if (valid_ref_ctr_vma(uprobe, tmp)) 366 return tmp; 358 return tmp; 367 359 368 return NULL; 360 return NULL; 369 } 361 } 370 362 371 static int 363 static int 372 __update_ref_ctr(struct mm_struct *mm, unsigne 364 __update_ref_ctr(struct mm_struct *mm, unsigned long vaddr, short d) 373 { 365 { 374 void *kaddr; 366 void *kaddr; 375 struct page *page; 367 struct page *page; >> 368 struct vm_area_struct *vma; 376 int ret; 369 int ret; 377 short *ptr; 370 short *ptr; 378 371 379 if (!vaddr || !d) 372 if (!vaddr || !d) 380 return -EINVAL; 373 return -EINVAL; 381 374 382 ret = get_user_pages_remote(mm, vaddr, 375 ret = get_user_pages_remote(mm, vaddr, 1, 383 FOLL_WRITE !! 376 FOLL_WRITE, &page, &vma, NULL); 384 if (unlikely(ret <= 0)) { 377 if (unlikely(ret <= 0)) { 385 /* 378 /* 386 * We are asking for 1 page. I 379 * We are asking for 1 page. If get_user_pages_remote() fails, 387 * it may return 0, in that ca 380 * it may return 0, in that case we have to return error. 388 */ 381 */ 389 return ret == 0 ? -EBUSY : ret 382 return ret == 0 ? -EBUSY : ret; 390 } 383 } 391 384 392 kaddr = kmap_atomic(page); 385 kaddr = kmap_atomic(page); 393 ptr = kaddr + (vaddr & ~PAGE_MASK); 386 ptr = kaddr + (vaddr & ~PAGE_MASK); 394 387 395 if (unlikely(*ptr + d < 0)) { 388 if (unlikely(*ptr + d < 0)) { 396 pr_warn("ref_ctr going negativ 389 pr_warn("ref_ctr going negative. vaddr: 0x%lx, " 397 "curr val: %d, delta: 390 "curr val: %d, delta: %d\n", vaddr, *ptr, d); 398 ret = -EINVAL; 391 ret = -EINVAL; 399 goto out; 392 goto out; 400 } 393 } 401 394 402 *ptr += d; 395 *ptr += d; 403 ret = 0; 396 ret = 0; 404 out: 397 out: 405 kunmap_atomic(kaddr); 398 kunmap_atomic(kaddr); 406 put_page(page); 399 put_page(page); 407 return ret; 400 return ret; 408 } 401 } 409 402 410 static void update_ref_ctr_warn(struct uprobe 403 static void update_ref_ctr_warn(struct uprobe *uprobe, 411 struct mm_stru 404 struct mm_struct *mm, short d) 412 { 405 { 413 pr_warn("ref_ctr %s failed for inode: 406 pr_warn("ref_ctr %s failed for inode: 0x%lx offset: " 414 "0x%llx ref_ctr_offset: 0x%llx 407 "0x%llx ref_ctr_offset: 0x%llx of mm: 0x%pK\n", 415 d > 0 ? "increment" : "decreme 408 d > 0 ? "increment" : "decrement", uprobe->inode->i_ino, 416 (unsigned long long) uprobe->o 409 (unsigned long long) uprobe->offset, 417 (unsigned long long) uprobe->r 410 (unsigned long long) uprobe->ref_ctr_offset, mm); 418 } 411 } 419 412 420 static int update_ref_ctr(struct uprobe *uprob 413 static int update_ref_ctr(struct uprobe *uprobe, struct mm_struct *mm, 421 short d) 414 short d) 422 { 415 { 423 struct vm_area_struct *rc_vma; 416 struct vm_area_struct *rc_vma; 424 unsigned long rc_vaddr; 417 unsigned long rc_vaddr; 425 int ret = 0; 418 int ret = 0; 426 419 427 rc_vma = find_ref_ctr_vma(uprobe, mm); 420 rc_vma = find_ref_ctr_vma(uprobe, mm); 428 421 429 if (rc_vma) { 422 if (rc_vma) { 430 rc_vaddr = offset_to_vaddr(rc_ 423 rc_vaddr = offset_to_vaddr(rc_vma, uprobe->ref_ctr_offset); 431 ret = __update_ref_ctr(mm, rc_ 424 ret = __update_ref_ctr(mm, rc_vaddr, d); 432 if (ret) 425 if (ret) 433 update_ref_ctr_warn(up 426 update_ref_ctr_warn(uprobe, mm, d); 434 427 435 if (d > 0) 428 if (d > 0) 436 return ret; 429 return ret; 437 } 430 } 438 431 439 mutex_lock(&delayed_uprobe_lock); 432 mutex_lock(&delayed_uprobe_lock); 440 if (d > 0) 433 if (d > 0) 441 ret = delayed_uprobe_add(uprob 434 ret = delayed_uprobe_add(uprobe, mm); 442 else 435 else 443 delayed_uprobe_remove(uprobe, 436 delayed_uprobe_remove(uprobe, mm); 444 mutex_unlock(&delayed_uprobe_lock); 437 mutex_unlock(&delayed_uprobe_lock); 445 438 446 return ret; 439 return ret; 447 } 440 } 448 441 449 /* 442 /* 450 * NOTE: 443 * NOTE: 451 * Expect the breakpoint instruction to be the 444 * Expect the breakpoint instruction to be the smallest size instruction for 452 * the architecture. If an arch has variable l 445 * the architecture. If an arch has variable length instruction and the 453 * breakpoint instruction is not of the smalle 446 * breakpoint instruction is not of the smallest length instruction 454 * supported by that architecture then we need 447 * supported by that architecture then we need to modify is_trap_at_addr and 455 * uprobe_write_opcode accordingly. This would 448 * uprobe_write_opcode accordingly. This would never be a problem for archs 456 * that have fixed length instructions. 449 * that have fixed length instructions. 457 * 450 * 458 * uprobe_write_opcode - write the opcode at a 451 * uprobe_write_opcode - write the opcode at a given virtual address. 459 * @auprobe: arch specific probepoint informat 452 * @auprobe: arch specific probepoint information. 460 * @mm: the probed process address space. 453 * @mm: the probed process address space. 461 * @vaddr: the virtual address to store the op 454 * @vaddr: the virtual address to store the opcode. 462 * @opcode: opcode to be written at @vaddr. 455 * @opcode: opcode to be written at @vaddr. 463 * 456 * 464 * Called with mm->mmap_lock held for read or !! 457 * Called with mm->mmap_lock held for write. 465 * Return 0 (success) or a negative errno. 458 * Return 0 (success) or a negative errno. 466 */ 459 */ 467 int uprobe_write_opcode(struct arch_uprobe *au 460 int uprobe_write_opcode(struct arch_uprobe *auprobe, struct mm_struct *mm, 468 unsigned long vaddr, u 461 unsigned long vaddr, uprobe_opcode_t opcode) 469 { 462 { 470 struct uprobe *uprobe; 463 struct uprobe *uprobe; 471 struct page *old_page, *new_page; 464 struct page *old_page, *new_page; 472 struct vm_area_struct *vma; 465 struct vm_area_struct *vma; 473 int ret, is_register, ref_ctr_updated 466 int ret, is_register, ref_ctr_updated = 0; 474 bool orig_page_huge = false; 467 bool orig_page_huge = false; 475 unsigned int gup_flags = FOLL_FORCE; 468 unsigned int gup_flags = FOLL_FORCE; 476 469 477 is_register = is_swbp_insn(&opcode); 470 is_register = is_swbp_insn(&opcode); 478 uprobe = container_of(auprobe, struct 471 uprobe = container_of(auprobe, struct uprobe, arch); 479 472 480 retry: 473 retry: 481 if (is_register) 474 if (is_register) 482 gup_flags |= FOLL_SPLIT_PMD; 475 gup_flags |= FOLL_SPLIT_PMD; 483 /* Read the page with vaddr into memor 476 /* Read the page with vaddr into memory */ 484 old_page = get_user_page_vma_remote(mm !! 477 ret = get_user_pages_remote(mm, vaddr, 1, gup_flags, 485 if (IS_ERR(old_page)) !! 478 &old_page, &vma, NULL); 486 return PTR_ERR(old_page); !! 479 if (ret <= 0) >> 480 return ret; 487 481 488 ret = verify_opcode(old_page, vaddr, & 482 ret = verify_opcode(old_page, vaddr, &opcode); 489 if (ret <= 0) 483 if (ret <= 0) 490 goto put_old; 484 goto put_old; 491 485 492 if (WARN(!is_register && PageCompound( 486 if (WARN(!is_register && PageCompound(old_page), 493 "uprobe unregister should nev 487 "uprobe unregister should never work on compound page\n")) { 494 ret = -EINVAL; 488 ret = -EINVAL; 495 goto put_old; 489 goto put_old; 496 } 490 } 497 491 498 /* We are going to replace instruction 492 /* We are going to replace instruction, update ref_ctr. */ 499 if (!ref_ctr_updated && uprobe->ref_ct 493 if (!ref_ctr_updated && uprobe->ref_ctr_offset) { 500 ret = update_ref_ctr(uprobe, m 494 ret = update_ref_ctr(uprobe, mm, is_register ? 1 : -1); 501 if (ret) 495 if (ret) 502 goto put_old; 496 goto put_old; 503 497 504 ref_ctr_updated = 1; 498 ref_ctr_updated = 1; 505 } 499 } 506 500 507 ret = 0; 501 ret = 0; 508 if (!is_register && !PageAnon(old_page 502 if (!is_register && !PageAnon(old_page)) 509 goto put_old; 503 goto put_old; 510 504 511 ret = anon_vma_prepare(vma); 505 ret = anon_vma_prepare(vma); 512 if (ret) 506 if (ret) 513 goto put_old; 507 goto put_old; 514 508 515 ret = -ENOMEM; 509 ret = -ENOMEM; 516 new_page = alloc_page_vma(GFP_HIGHUSER 510 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vaddr); 517 if (!new_page) 511 if (!new_page) 518 goto put_old; 512 goto put_old; 519 513 520 __SetPageUptodate(new_page); 514 __SetPageUptodate(new_page); 521 copy_highpage(new_page, old_page); 515 copy_highpage(new_page, old_page); 522 copy_to_page(new_page, vaddr, &opcode, 516 copy_to_page(new_page, vaddr, &opcode, UPROBE_SWBP_INSN_SIZE); 523 517 524 if (!is_register) { 518 if (!is_register) { 525 struct page *orig_page; 519 struct page *orig_page; 526 pgoff_t index; 520 pgoff_t index; 527 521 528 VM_BUG_ON_PAGE(!PageAnon(old_p 522 VM_BUG_ON_PAGE(!PageAnon(old_page), old_page); 529 523 530 index = vaddr_to_offset(vma, v 524 index = vaddr_to_offset(vma, vaddr & PAGE_MASK) >> PAGE_SHIFT; 531 orig_page = find_get_page(vma- 525 orig_page = find_get_page(vma->vm_file->f_inode->i_mapping, 532 inde 526 index); 533 527 534 if (orig_page) { 528 if (orig_page) { 535 if (PageUptodate(orig_ 529 if (PageUptodate(orig_page) && 536 pages_identical(ne 530 pages_identical(new_page, orig_page)) { 537 /* let go new_ 531 /* let go new_page */ 538 put_page(new_p 532 put_page(new_page); 539 new_page = NUL 533 new_page = NULL; 540 534 541 if (PageCompou 535 if (PageCompound(orig_page)) 542 orig_p 536 orig_page_huge = true; 543 } 537 } 544 put_page(orig_page); 538 put_page(orig_page); 545 } 539 } 546 } 540 } 547 541 548 ret = __replace_page(vma, vaddr & PAGE !! 542 ret = __replace_page(vma, vaddr, old_page, new_page); 549 if (new_page) 543 if (new_page) 550 put_page(new_page); 544 put_page(new_page); 551 put_old: 545 put_old: 552 put_page(old_page); 546 put_page(old_page); 553 547 554 if (unlikely(ret == -EAGAIN)) 548 if (unlikely(ret == -EAGAIN)) 555 goto retry; 549 goto retry; 556 550 557 /* Revert back reference counter if in 551 /* Revert back reference counter if instruction update failed. */ 558 if (ret && is_register && ref_ctr_upda 552 if (ret && is_register && ref_ctr_updated) 559 update_ref_ctr(uprobe, mm, -1) 553 update_ref_ctr(uprobe, mm, -1); 560 554 561 /* try collapse pmd for compound page 555 /* try collapse pmd for compound page */ 562 if (!ret && orig_page_huge) 556 if (!ret && orig_page_huge) 563 collapse_pte_mapped_thp(mm, va 557 collapse_pte_mapped_thp(mm, vaddr, false); 564 558 565 return ret; 559 return ret; 566 } 560 } 567 561 568 /** 562 /** 569 * set_swbp - store breakpoint at a given addr 563 * set_swbp - store breakpoint at a given address. 570 * @auprobe: arch specific probepoint informat 564 * @auprobe: arch specific probepoint information. 571 * @mm: the probed process address space. 565 * @mm: the probed process address space. 572 * @vaddr: the virtual address to insert the o 566 * @vaddr: the virtual address to insert the opcode. 573 * 567 * 574 * For mm @mm, store the breakpoint instructio 568 * For mm @mm, store the breakpoint instruction at @vaddr. 575 * Return 0 (success) or a negative errno. 569 * Return 0 (success) or a negative errno. 576 */ 570 */ 577 int __weak set_swbp(struct arch_uprobe *auprob 571 int __weak set_swbp(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long vaddr) 578 { 572 { 579 return uprobe_write_opcode(auprobe, mm 573 return uprobe_write_opcode(auprobe, mm, vaddr, UPROBE_SWBP_INSN); 580 } 574 } 581 575 582 /** 576 /** 583 * set_orig_insn - Restore the original instru 577 * set_orig_insn - Restore the original instruction. 584 * @mm: the probed process address space. 578 * @mm: the probed process address space. 585 * @auprobe: arch specific probepoint informat 579 * @auprobe: arch specific probepoint information. 586 * @vaddr: the virtual address to insert the o 580 * @vaddr: the virtual address to insert the opcode. 587 * 581 * 588 * For mm @mm, restore the original opcode (op 582 * For mm @mm, restore the original opcode (opcode) at @vaddr. 589 * Return 0 (success) or a negative errno. 583 * Return 0 (success) or a negative errno. 590 */ 584 */ 591 int __weak 585 int __weak 592 set_orig_insn(struct arch_uprobe *auprobe, str 586 set_orig_insn(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long vaddr) 593 { 587 { 594 return uprobe_write_opcode(auprobe, mm 588 return uprobe_write_opcode(auprobe, mm, vaddr, 595 *(uprobe_opcode_t *)&a 589 *(uprobe_opcode_t *)&auprobe->insn); 596 } 590 } 597 591 598 /* uprobe should have guaranteed positive refc << 599 static struct uprobe *get_uprobe(struct uprobe 592 static struct uprobe *get_uprobe(struct uprobe *uprobe) 600 { 593 { 601 refcount_inc(&uprobe->ref); 594 refcount_inc(&uprobe->ref); 602 return uprobe; 595 return uprobe; 603 } 596 } 604 597 605 /* << 606 * uprobe should have guaranteed lifetime, whi << 607 * - caller already has refcount taken (and << 608 * - uprobe is RCU protected and won't be fr << 609 * - we are holding uprobes_treelock (for re << 610 */ << 611 static struct uprobe *try_get_uprobe(struct up << 612 { << 613 if (refcount_inc_not_zero(&uprobe->ref << 614 return uprobe; << 615 return NULL; << 616 } << 617 << 618 static inline bool uprobe_is_active(struct upr << 619 { << 620 return !RB_EMPTY_NODE(&uprobe->rb_node << 621 } << 622 << 623 static void uprobe_free_rcu(struct rcu_head *r << 624 { << 625 struct uprobe *uprobe = container_of(r << 626 << 627 kfree(uprobe); << 628 } << 629 << 630 static void put_uprobe(struct uprobe *uprobe) 598 static void put_uprobe(struct uprobe *uprobe) 631 { 599 { 632 if (!refcount_dec_and_test(&uprobe->re !! 600 if (refcount_dec_and_test(&uprobe->ref)) { 633 return; !! 601 /* 634 !! 602 * If application munmap(exec_vma) before uprobe_unregister() 635 write_lock(&uprobes_treelock); !! 603 * gets called, we don't get a chance to remove uprobe from 636 !! 604 * delayed_uprobe_list from remove_breakpoint(). Do it here. 637 if (uprobe_is_active(uprobe)) { !! 605 */ 638 write_seqcount_begin(&uprobes_ !! 606 mutex_lock(&delayed_uprobe_lock); 639 rb_erase(&uprobe->rb_node, &up !! 607 delayed_uprobe_remove(uprobe, NULL); 640 write_seqcount_end(&uprobes_se !! 608 mutex_unlock(&delayed_uprobe_lock); >> 609 kfree(uprobe); 641 } 610 } 642 << 643 write_unlock(&uprobes_treelock); << 644 << 645 /* << 646 * If application munmap(exec_vma) bef << 647 * gets called, we don't get a chance << 648 * delayed_uprobe_list from remove_bre << 649 */ << 650 mutex_lock(&delayed_uprobe_lock); << 651 delayed_uprobe_remove(uprobe, NULL); << 652 mutex_unlock(&delayed_uprobe_lock); << 653 << 654 call_srcu(&uprobes_srcu, &uprobe->rcu, << 655 } 611 } 656 612 657 static __always_inline 613 static __always_inline 658 int uprobe_cmp(const struct inode *l_inode, co 614 int uprobe_cmp(const struct inode *l_inode, const loff_t l_offset, 659 const struct uprobe *r) 615 const struct uprobe *r) 660 { 616 { 661 if (l_inode < r->inode) 617 if (l_inode < r->inode) 662 return -1; 618 return -1; 663 619 664 if (l_inode > r->inode) 620 if (l_inode > r->inode) 665 return 1; 621 return 1; 666 622 667 if (l_offset < r->offset) 623 if (l_offset < r->offset) 668 return -1; 624 return -1; 669 625 670 if (l_offset > r->offset) 626 if (l_offset > r->offset) 671 return 1; 627 return 1; 672 628 673 return 0; 629 return 0; 674 } 630 } 675 631 676 #define __node_2_uprobe(node) \ 632 #define __node_2_uprobe(node) \ 677 rb_entry((node), struct uprobe, rb_nod 633 rb_entry((node), struct uprobe, rb_node) 678 634 679 struct __uprobe_key { 635 struct __uprobe_key { 680 struct inode *inode; 636 struct inode *inode; 681 loff_t offset; 637 loff_t offset; 682 }; 638 }; 683 639 684 static inline int __uprobe_cmp_key(const void 640 static inline int __uprobe_cmp_key(const void *key, const struct rb_node *b) 685 { 641 { 686 const struct __uprobe_key *a = key; 642 const struct __uprobe_key *a = key; 687 return uprobe_cmp(a->inode, a->offset, 643 return uprobe_cmp(a->inode, a->offset, __node_2_uprobe(b)); 688 } 644 } 689 645 690 static inline int __uprobe_cmp(struct rb_node 646 static inline int __uprobe_cmp(struct rb_node *a, const struct rb_node *b) 691 { 647 { 692 struct uprobe *u = __node_2_uprobe(a); 648 struct uprobe *u = __node_2_uprobe(a); 693 return uprobe_cmp(u->inode, u->offset, 649 return uprobe_cmp(u->inode, u->offset, __node_2_uprobe(b)); 694 } 650 } 695 651 696 /* !! 652 static struct uprobe *__find_uprobe(struct inode *inode, loff_t offset) 697 * Assumes being inside RCU protected region. << 698 * No refcount is taken on returned uprobe. << 699 */ << 700 static struct uprobe *find_uprobe_rcu(struct i << 701 { 653 { 702 struct __uprobe_key key = { 654 struct __uprobe_key key = { 703 .inode = inode, 655 .inode = inode, 704 .offset = offset, 656 .offset = offset, 705 }; 657 }; 706 struct rb_node *node; !! 658 struct rb_node *node = rb_find(&key, &uprobes_tree, __uprobe_cmp_key); 707 unsigned int seq; << 708 659 709 lockdep_assert(srcu_read_lock_held(&up !! 660 if (node) 710 !! 661 return get_uprobe(__node_2_uprobe(node)); 711 do { << 712 seq = read_seqcount_begin(&upr << 713 node = rb_find_rcu(&key, &upro << 714 /* << 715 * Lockless RB-tree lookups ca << 716 * If the element is found, it << 717 * under RCU protection. If we << 718 * validate that seqcount didn << 719 * try again as we might have << 720 * negative). If seqcount is u << 721 */ << 722 if (node) << 723 return __node_2_uprobe << 724 } while (read_seqcount_retry(&uprobes_ << 725 662 726 return NULL; 663 return NULL; 727 } 664 } 728 665 729 /* 666 /* 730 * Attempt to insert a new uprobe into uprobes !! 667 * Find a uprobe corresponding to a given inode:offset 731 * !! 668 * Acquires uprobes_treelock 732 * If uprobe already exists (for given inode+o << 733 * refcount of previously existing uprobe. << 734 * << 735 * If not, a provided new instance of uprobe i << 736 * assumed initial refcount == 1). << 737 * << 738 * In any case, we return a uprobe instance th << 739 * Caller has to clean up new uprobe instance, << 740 * inserted into the tree. << 741 * << 742 * We assume that uprobes_treelock is held for << 743 */ 669 */ >> 670 static struct uprobe *find_uprobe(struct inode *inode, loff_t offset) >> 671 { >> 672 struct uprobe *uprobe; >> 673 >> 674 spin_lock(&uprobes_treelock); >> 675 uprobe = __find_uprobe(inode, offset); >> 676 spin_unlock(&uprobes_treelock); >> 677 >> 678 return uprobe; >> 679 } >> 680 744 static struct uprobe *__insert_uprobe(struct u 681 static struct uprobe *__insert_uprobe(struct uprobe *uprobe) 745 { 682 { 746 struct rb_node *node; 683 struct rb_node *node; 747 again: << 748 node = rb_find_add_rcu(&uprobe->rb_nod << 749 if (node) { << 750 struct uprobe *u = __node_2_up << 751 << 752 if (!try_get_uprobe(u)) { << 753 rb_erase(node, &uprobe << 754 RB_CLEAR_NODE(&u->rb_n << 755 goto again; << 756 } << 757 684 758 return u; !! 685 node = rb_find_add(&uprobe->rb_node, &uprobes_tree, __uprobe_cmp); 759 } !! 686 if (node) >> 687 return get_uprobe(__node_2_uprobe(node)); 760 688 761 return uprobe; !! 689 /* get access + creation ref */ >> 690 refcount_set(&uprobe->ref, 2); >> 691 return NULL; 762 } 692 } 763 693 764 /* 694 /* 765 * Acquire uprobes_treelock and insert uprobe !! 695 * Acquire uprobes_treelock. 766 * (or reuse existing one, see __insert_uprobe !! 696 * Matching uprobe already exists in rbtree; >> 697 * increment (access refcount) and return the matching uprobe. >> 698 * >> 699 * No matching uprobe; insert the uprobe in rb_tree; >> 700 * get a double refcount (access + creation) and return NULL. 767 */ 701 */ 768 static struct uprobe *insert_uprobe(struct upr 702 static struct uprobe *insert_uprobe(struct uprobe *uprobe) 769 { 703 { 770 struct uprobe *u; 704 struct uprobe *u; 771 705 772 write_lock(&uprobes_treelock); !! 706 spin_lock(&uprobes_treelock); 773 write_seqcount_begin(&uprobes_seqcount << 774 u = __insert_uprobe(uprobe); 707 u = __insert_uprobe(uprobe); 775 write_seqcount_end(&uprobes_seqcount); !! 708 spin_unlock(&uprobes_treelock); 776 write_unlock(&uprobes_treelock); << 777 709 778 return u; 710 return u; 779 } 711 } 780 712 781 static void 713 static void 782 ref_ctr_mismatch_warn(struct uprobe *cur_uprob 714 ref_ctr_mismatch_warn(struct uprobe *cur_uprobe, struct uprobe *uprobe) 783 { 715 { 784 pr_warn("ref_ctr_offset mismatch. inod 716 pr_warn("ref_ctr_offset mismatch. inode: 0x%lx offset: 0x%llx " 785 "ref_ctr_offset(old): 0x%llx r 717 "ref_ctr_offset(old): 0x%llx ref_ctr_offset(new): 0x%llx\n", 786 uprobe->inode->i_ino, (unsigne 718 uprobe->inode->i_ino, (unsigned long long) uprobe->offset, 787 (unsigned long long) cur_uprob 719 (unsigned long long) cur_uprobe->ref_ctr_offset, 788 (unsigned long long) uprobe->r 720 (unsigned long long) uprobe->ref_ctr_offset); 789 } 721 } 790 722 791 static struct uprobe *alloc_uprobe(struct inod 723 static struct uprobe *alloc_uprobe(struct inode *inode, loff_t offset, 792 loff_t ref_ 724 loff_t ref_ctr_offset) 793 { 725 { 794 struct uprobe *uprobe, *cur_uprobe; 726 struct uprobe *uprobe, *cur_uprobe; 795 727 796 uprobe = kzalloc(sizeof(struct uprobe) 728 uprobe = kzalloc(sizeof(struct uprobe), GFP_KERNEL); 797 if (!uprobe) 729 if (!uprobe) 798 return ERR_PTR(-ENOMEM); !! 730 return NULL; 799 731 800 uprobe->inode = inode; 732 uprobe->inode = inode; 801 uprobe->offset = offset; 733 uprobe->offset = offset; 802 uprobe->ref_ctr_offset = ref_ctr_offse 734 uprobe->ref_ctr_offset = ref_ctr_offset; 803 INIT_LIST_HEAD(&uprobe->consumers); << 804 init_rwsem(&uprobe->register_rwsem); 735 init_rwsem(&uprobe->register_rwsem); 805 init_rwsem(&uprobe->consumer_rwsem); 736 init_rwsem(&uprobe->consumer_rwsem); 806 RB_CLEAR_NODE(&uprobe->rb_node); << 807 refcount_set(&uprobe->ref, 1); << 808 737 809 /* add to uprobes_tree, sorted on inod 738 /* add to uprobes_tree, sorted on inode:offset */ 810 cur_uprobe = insert_uprobe(uprobe); 739 cur_uprobe = insert_uprobe(uprobe); 811 /* a uprobe exists for this inode:offs 740 /* a uprobe exists for this inode:offset combination */ 812 if (cur_uprobe != uprobe) { !! 741 if (cur_uprobe) { 813 if (cur_uprobe->ref_ctr_offset 742 if (cur_uprobe->ref_ctr_offset != uprobe->ref_ctr_offset) { 814 ref_ctr_mismatch_warn( 743 ref_ctr_mismatch_warn(cur_uprobe, uprobe); 815 put_uprobe(cur_uprobe) 744 put_uprobe(cur_uprobe); 816 kfree(uprobe); 745 kfree(uprobe); 817 return ERR_PTR(-EINVAL 746 return ERR_PTR(-EINVAL); 818 } 747 } 819 kfree(uprobe); 748 kfree(uprobe); 820 uprobe = cur_uprobe; 749 uprobe = cur_uprobe; 821 } 750 } 822 751 823 return uprobe; 752 return uprobe; 824 } 753 } 825 754 826 static void consumer_add(struct uprobe *uprobe 755 static void consumer_add(struct uprobe *uprobe, struct uprobe_consumer *uc) 827 { 756 { 828 down_write(&uprobe->consumer_rwsem); 757 down_write(&uprobe->consumer_rwsem); 829 list_add_rcu(&uc->cons_node, &uprobe-> !! 758 uc->next = uprobe->consumers; >> 759 uprobe->consumers = uc; 830 up_write(&uprobe->consumer_rwsem); 760 up_write(&uprobe->consumer_rwsem); 831 } 761 } 832 762 833 /* 763 /* 834 * For uprobe @uprobe, delete the consumer @uc 764 * For uprobe @uprobe, delete the consumer @uc. 835 * Should never be called with consumer that's !! 765 * Return true if the @uc is deleted successfully >> 766 * or return false. 836 */ 767 */ 837 static void consumer_del(struct uprobe *uprobe !! 768 static bool consumer_del(struct uprobe *uprobe, struct uprobe_consumer *uc) 838 { 769 { >> 770 struct uprobe_consumer **con; >> 771 bool ret = false; >> 772 839 down_write(&uprobe->consumer_rwsem); 773 down_write(&uprobe->consumer_rwsem); 840 list_del_rcu(&uc->cons_node); !! 774 for (con = &uprobe->consumers; *con; con = &(*con)->next) { >> 775 if (*con == uc) { >> 776 *con = uc->next; >> 777 ret = true; >> 778 break; >> 779 } >> 780 } 841 up_write(&uprobe->consumer_rwsem); 781 up_write(&uprobe->consumer_rwsem); >> 782 >> 783 return ret; 842 } 784 } 843 785 844 static int __copy_insn(struct address_space *m 786 static int __copy_insn(struct address_space *mapping, struct file *filp, 845 void *insn, int nbytes 787 void *insn, int nbytes, loff_t offset) 846 { 788 { 847 struct page *page; 789 struct page *page; 848 /* 790 /* 849 * Ensure that the page that has the o 791 * Ensure that the page that has the original instruction is populated 850 * and in page-cache. If ->read_folio 792 * and in page-cache. If ->read_folio == NULL it must be shmem_mapping(), 851 * see uprobe_register(). 793 * see uprobe_register(). 852 */ 794 */ 853 if (mapping->a_ops->read_folio) 795 if (mapping->a_ops->read_folio) 854 page = read_mapping_page(mappi 796 page = read_mapping_page(mapping, offset >> PAGE_SHIFT, filp); 855 else 797 else 856 page = shmem_read_mapping_page 798 page = shmem_read_mapping_page(mapping, offset >> PAGE_SHIFT); 857 if (IS_ERR(page)) 799 if (IS_ERR(page)) 858 return PTR_ERR(page); 800 return PTR_ERR(page); 859 801 860 copy_from_page(page, offset, insn, nby 802 copy_from_page(page, offset, insn, nbytes); 861 put_page(page); 803 put_page(page); 862 804 863 return 0; 805 return 0; 864 } 806 } 865 807 866 static int copy_insn(struct uprobe *uprobe, st 808 static int copy_insn(struct uprobe *uprobe, struct file *filp) 867 { 809 { 868 struct address_space *mapping = uprobe 810 struct address_space *mapping = uprobe->inode->i_mapping; 869 loff_t offs = uprobe->offset; 811 loff_t offs = uprobe->offset; 870 void *insn = &uprobe->arch.insn; 812 void *insn = &uprobe->arch.insn; 871 int size = sizeof(uprobe->arch.insn); 813 int size = sizeof(uprobe->arch.insn); 872 int len, err = -EIO; 814 int len, err = -EIO; 873 815 874 /* Copy only available bytes, -EIO if 816 /* Copy only available bytes, -EIO if nothing was read */ 875 do { 817 do { 876 if (offs >= i_size_read(uprobe 818 if (offs >= i_size_read(uprobe->inode)) 877 break; 819 break; 878 820 879 len = min_t(int, size, PAGE_SI 821 len = min_t(int, size, PAGE_SIZE - (offs & ~PAGE_MASK)); 880 err = __copy_insn(mapping, fil 822 err = __copy_insn(mapping, filp, insn, len, offs); 881 if (err) 823 if (err) 882 break; 824 break; 883 825 884 insn += len; 826 insn += len; 885 offs += len; 827 offs += len; 886 size -= len; 828 size -= len; 887 } while (size); 829 } while (size); 888 830 889 return err; 831 return err; 890 } 832 } 891 833 892 static int prepare_uprobe(struct uprobe *uprob 834 static int prepare_uprobe(struct uprobe *uprobe, struct file *file, 893 struct mm_stru 835 struct mm_struct *mm, unsigned long vaddr) 894 { 836 { 895 int ret = 0; 837 int ret = 0; 896 838 897 if (test_bit(UPROBE_COPY_INSN, &uprobe 839 if (test_bit(UPROBE_COPY_INSN, &uprobe->flags)) 898 return ret; 840 return ret; 899 841 900 /* TODO: move this into _register, unt 842 /* TODO: move this into _register, until then we abuse this sem. */ 901 down_write(&uprobe->consumer_rwsem); 843 down_write(&uprobe->consumer_rwsem); 902 if (test_bit(UPROBE_COPY_INSN, &uprobe 844 if (test_bit(UPROBE_COPY_INSN, &uprobe->flags)) 903 goto out; 845 goto out; 904 846 905 ret = copy_insn(uprobe, file); 847 ret = copy_insn(uprobe, file); 906 if (ret) 848 if (ret) 907 goto out; 849 goto out; 908 850 909 ret = -ENOTSUPP; 851 ret = -ENOTSUPP; 910 if (is_trap_insn((uprobe_opcode_t *)&u 852 if (is_trap_insn((uprobe_opcode_t *)&uprobe->arch.insn)) 911 goto out; 853 goto out; 912 854 913 ret = arch_uprobe_analyze_insn(&uprobe 855 ret = arch_uprobe_analyze_insn(&uprobe->arch, mm, vaddr); 914 if (ret) 856 if (ret) 915 goto out; 857 goto out; 916 858 917 smp_wmb(); /* pairs with the smp_rmb() 859 smp_wmb(); /* pairs with the smp_rmb() in handle_swbp() */ 918 set_bit(UPROBE_COPY_INSN, &uprobe->fla 860 set_bit(UPROBE_COPY_INSN, &uprobe->flags); 919 861 920 out: 862 out: 921 up_write(&uprobe->consumer_rwsem); 863 up_write(&uprobe->consumer_rwsem); 922 864 923 return ret; 865 return ret; 924 } 866 } 925 867 926 static inline bool consumer_filter(struct upro !! 868 static inline bool consumer_filter(struct uprobe_consumer *uc, >> 869 enum uprobe_filter_ctx ctx, struct mm_struct *mm) 927 { 870 { 928 return !uc->filter || uc->filter(uc, m !! 871 return !uc->filter || uc->filter(uc, ctx, mm); 929 } 872 } 930 873 931 static bool filter_chain(struct uprobe *uprobe !! 874 static bool filter_chain(struct uprobe *uprobe, >> 875 enum uprobe_filter_ctx ctx, struct mm_struct *mm) 932 { 876 { 933 struct uprobe_consumer *uc; 877 struct uprobe_consumer *uc; 934 bool ret = false; 878 bool ret = false; 935 879 936 down_read(&uprobe->consumer_rwsem); 880 down_read(&uprobe->consumer_rwsem); 937 list_for_each_entry_srcu(uc, &uprobe-> !! 881 for (uc = uprobe->consumers; uc; uc = uc->next) { 938 srcu_read_loc !! 882 ret = consumer_filter(uc, ctx, mm); 939 ret = consumer_filter(uc, mm); << 940 if (ret) 883 if (ret) 941 break; 884 break; 942 } 885 } 943 up_read(&uprobe->consumer_rwsem); 886 up_read(&uprobe->consumer_rwsem); 944 887 945 return ret; 888 return ret; 946 } 889 } 947 890 948 static int 891 static int 949 install_breakpoint(struct uprobe *uprobe, stru 892 install_breakpoint(struct uprobe *uprobe, struct mm_struct *mm, 950 struct vm_area_struct 893 struct vm_area_struct *vma, unsigned long vaddr) 951 { 894 { 952 bool first_uprobe; 895 bool first_uprobe; 953 int ret; 896 int ret; 954 897 955 ret = prepare_uprobe(uprobe, vma->vm_f 898 ret = prepare_uprobe(uprobe, vma->vm_file, mm, vaddr); 956 if (ret) 899 if (ret) 957 return ret; 900 return ret; 958 901 959 /* 902 /* 960 * set MMF_HAS_UPROBES in advance for 903 * set MMF_HAS_UPROBES in advance for uprobe_pre_sstep_notifier(), 961 * the task can hit this breakpoint ri 904 * the task can hit this breakpoint right after __replace_page(). 962 */ 905 */ 963 first_uprobe = !test_bit(MMF_HAS_UPROB 906 first_uprobe = !test_bit(MMF_HAS_UPROBES, &mm->flags); 964 if (first_uprobe) 907 if (first_uprobe) 965 set_bit(MMF_HAS_UPROBES, &mm-> 908 set_bit(MMF_HAS_UPROBES, &mm->flags); 966 909 967 ret = set_swbp(&uprobe->arch, mm, vadd 910 ret = set_swbp(&uprobe->arch, mm, vaddr); 968 if (!ret) 911 if (!ret) 969 clear_bit(MMF_RECALC_UPROBES, 912 clear_bit(MMF_RECALC_UPROBES, &mm->flags); 970 else if (first_uprobe) 913 else if (first_uprobe) 971 clear_bit(MMF_HAS_UPROBES, &mm 914 clear_bit(MMF_HAS_UPROBES, &mm->flags); 972 915 973 return ret; 916 return ret; 974 } 917 } 975 918 976 static int 919 static int 977 remove_breakpoint(struct uprobe *uprobe, struc 920 remove_breakpoint(struct uprobe *uprobe, struct mm_struct *mm, unsigned long vaddr) 978 { 921 { 979 set_bit(MMF_RECALC_UPROBES, &mm->flags 922 set_bit(MMF_RECALC_UPROBES, &mm->flags); 980 return set_orig_insn(&uprobe->arch, mm 923 return set_orig_insn(&uprobe->arch, mm, vaddr); 981 } 924 } 982 925 >> 926 static inline bool uprobe_is_active(struct uprobe *uprobe) >> 927 { >> 928 return !RB_EMPTY_NODE(&uprobe->rb_node); >> 929 } >> 930 /* >> 931 * There could be threads that have already hit the breakpoint. They >> 932 * will recheck the current insn and restart if find_uprobe() fails. >> 933 * See find_active_uprobe(). >> 934 */ >> 935 static void delete_uprobe(struct uprobe *uprobe) >> 936 { >> 937 if (WARN_ON(!uprobe_is_active(uprobe))) >> 938 return; >> 939 >> 940 spin_lock(&uprobes_treelock); >> 941 rb_erase(&uprobe->rb_node, &uprobes_tree); >> 942 spin_unlock(&uprobes_treelock); >> 943 RB_CLEAR_NODE(&uprobe->rb_node); /* for uprobe_is_active() */ >> 944 put_uprobe(uprobe); >> 945 } >> 946 983 struct map_info { 947 struct map_info { 984 struct map_info *next; 948 struct map_info *next; 985 struct mm_struct *mm; 949 struct mm_struct *mm; 986 unsigned long vaddr; 950 unsigned long vaddr; 987 }; 951 }; 988 952 989 static inline struct map_info *free_map_info(s 953 static inline struct map_info *free_map_info(struct map_info *info) 990 { 954 { 991 struct map_info *next = info->next; 955 struct map_info *next = info->next; 992 kfree(info); 956 kfree(info); 993 return next; 957 return next; 994 } 958 } 995 959 996 static struct map_info * 960 static struct map_info * 997 build_map_info(struct address_space *mapping, 961 build_map_info(struct address_space *mapping, loff_t offset, bool is_register) 998 { 962 { 999 unsigned long pgoff = offset >> PAGE_S 963 unsigned long pgoff = offset >> PAGE_SHIFT; 1000 struct vm_area_struct *vma; 964 struct vm_area_struct *vma; 1001 struct map_info *curr = NULL; 965 struct map_info *curr = NULL; 1002 struct map_info *prev = NULL; 966 struct map_info *prev = NULL; 1003 struct map_info *info; 967 struct map_info *info; 1004 int more = 0; 968 int more = 0; 1005 969 1006 again: 970 again: 1007 i_mmap_lock_read(mapping); 971 i_mmap_lock_read(mapping); 1008 vma_interval_tree_foreach(vma, &mappi 972 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) { 1009 if (!valid_vma(vma, is_regist 973 if (!valid_vma(vma, is_register)) 1010 continue; 974 continue; 1011 975 1012 if (!prev && !more) { 976 if (!prev && !more) { 1013 /* 977 /* 1014 * Needs GFP_NOWAIT t 978 * Needs GFP_NOWAIT to avoid i_mmap_rwsem recursion through 1015 * reclaim. This is o 979 * reclaim. This is optimistic, no harm done if it fails. 1016 */ 980 */ 1017 prev = kmalloc(sizeof 981 prev = kmalloc(sizeof(struct map_info), 1018 GFP_N 982 GFP_NOWAIT | __GFP_NOMEMALLOC | __GFP_NOWARN); 1019 if (prev) 983 if (prev) 1020 prev->next = 984 prev->next = NULL; 1021 } 985 } 1022 if (!prev) { 986 if (!prev) { 1023 more++; 987 more++; 1024 continue; 988 continue; 1025 } 989 } 1026 990 1027 if (!mmget_not_zero(vma->vm_m 991 if (!mmget_not_zero(vma->vm_mm)) 1028 continue; 992 continue; 1029 993 1030 info = prev; 994 info = prev; 1031 prev = prev->next; 995 prev = prev->next; 1032 info->next = curr; 996 info->next = curr; 1033 curr = info; 997 curr = info; 1034 998 1035 info->mm = vma->vm_mm; 999 info->mm = vma->vm_mm; 1036 info->vaddr = offset_to_vaddr 1000 info->vaddr = offset_to_vaddr(vma, offset); 1037 } 1001 } 1038 i_mmap_unlock_read(mapping); 1002 i_mmap_unlock_read(mapping); 1039 1003 1040 if (!more) 1004 if (!more) 1041 goto out; 1005 goto out; 1042 1006 1043 prev = curr; 1007 prev = curr; 1044 while (curr) { 1008 while (curr) { 1045 mmput(curr->mm); 1009 mmput(curr->mm); 1046 curr = curr->next; 1010 curr = curr->next; 1047 } 1011 } 1048 1012 1049 do { 1013 do { 1050 info = kmalloc(sizeof(struct 1014 info = kmalloc(sizeof(struct map_info), GFP_KERNEL); 1051 if (!info) { 1015 if (!info) { 1052 curr = ERR_PTR(-ENOME 1016 curr = ERR_PTR(-ENOMEM); 1053 goto out; 1017 goto out; 1054 } 1018 } 1055 info->next = prev; 1019 info->next = prev; 1056 prev = info; 1020 prev = info; 1057 } while (--more); 1021 } while (--more); 1058 1022 1059 goto again; 1023 goto again; 1060 out: 1024 out: 1061 while (prev) 1025 while (prev) 1062 prev = free_map_info(prev); 1026 prev = free_map_info(prev); 1063 return curr; 1027 return curr; 1064 } 1028 } 1065 1029 1066 static int 1030 static int 1067 register_for_each_vma(struct uprobe *uprobe, 1031 register_for_each_vma(struct uprobe *uprobe, struct uprobe_consumer *new) 1068 { 1032 { 1069 bool is_register = !!new; 1033 bool is_register = !!new; 1070 struct map_info *info; 1034 struct map_info *info; 1071 int err = 0; 1035 int err = 0; 1072 1036 1073 percpu_down_write(&dup_mmap_sem); 1037 percpu_down_write(&dup_mmap_sem); 1074 info = build_map_info(uprobe->inode-> 1038 info = build_map_info(uprobe->inode->i_mapping, 1075 uprob 1039 uprobe->offset, is_register); 1076 if (IS_ERR(info)) { 1040 if (IS_ERR(info)) { 1077 err = PTR_ERR(info); 1041 err = PTR_ERR(info); 1078 goto out; 1042 goto out; 1079 } 1043 } 1080 1044 1081 while (info) { 1045 while (info) { 1082 struct mm_struct *mm = info-> 1046 struct mm_struct *mm = info->mm; 1083 struct vm_area_struct *vma; 1047 struct vm_area_struct *vma; 1084 1048 1085 if (err && is_register) 1049 if (err && is_register) 1086 goto free; 1050 goto free; 1087 /* !! 1051 1088 * We take mmap_lock for writ << 1089 * find_active_uprobe_rcu() w << 1090 * Thus this install_breakpoi << 1091 * is_trap_at_addr() true rig << 1092 * returns NULL in find_activ << 1093 */ << 1094 mmap_write_lock(mm); 1052 mmap_write_lock(mm); 1095 vma = find_vma(mm, info->vadd 1053 vma = find_vma(mm, info->vaddr); 1096 if (!vma || !valid_vma(vma, i 1054 if (!vma || !valid_vma(vma, is_register) || 1097 file_inode(vma->vm_file) 1055 file_inode(vma->vm_file) != uprobe->inode) 1098 goto unlock; 1056 goto unlock; 1099 1057 1100 if (vma->vm_start > info->vad 1058 if (vma->vm_start > info->vaddr || 1101 vaddr_to_offset(vma, info 1059 vaddr_to_offset(vma, info->vaddr) != uprobe->offset) 1102 goto unlock; 1060 goto unlock; 1103 1061 1104 if (is_register) { 1062 if (is_register) { 1105 /* consult only the " 1063 /* consult only the "caller", new consumer. */ 1106 if (consumer_filter(n !! 1064 if (consumer_filter(new, >> 1065 UPROBE_FILTER_REGISTER, mm)) 1107 err = install 1066 err = install_breakpoint(uprobe, mm, vma, info->vaddr); 1108 } else if (test_bit(MMF_HAS_U 1067 } else if (test_bit(MMF_HAS_UPROBES, &mm->flags)) { 1109 if (!filter_chain(upr !! 1068 if (!filter_chain(uprobe, >> 1069 UPROBE_FILTER_UNREGISTER, mm)) 1110 err |= remove 1070 err |= remove_breakpoint(uprobe, mm, info->vaddr); 1111 } 1071 } 1112 1072 1113 unlock: 1073 unlock: 1114 mmap_write_unlock(mm); 1074 mmap_write_unlock(mm); 1115 free: 1075 free: 1116 mmput(mm); 1076 mmput(mm); 1117 info = free_map_info(info); 1077 info = free_map_info(info); 1118 } 1078 } 1119 out: 1079 out: 1120 percpu_up_write(&dup_mmap_sem); 1080 percpu_up_write(&dup_mmap_sem); 1121 return err; 1081 return err; 1122 } 1082 } 1123 1083 1124 /** !! 1084 static void 1125 * uprobe_unregister_nosync - unregister an a !! 1085 __uprobe_unregister(struct uprobe *uprobe, struct uprobe_consumer *uc) 1126 * @uprobe: uprobe to remove << 1127 * @uc: identify which probe if multiple prob << 1128 */ << 1129 void uprobe_unregister_nosync(struct uprobe * << 1130 { 1086 { 1131 int err; 1087 int err; 1132 1088 1133 down_write(&uprobe->register_rwsem); !! 1089 if (WARN_ON(!consumer_del(uprobe, uc))) 1134 consumer_del(uprobe, uc); << 1135 err = register_for_each_vma(uprobe, N << 1136 up_write(&uprobe->register_rwsem); << 1137 << 1138 /* TODO : cant unregister? schedule a << 1139 if (unlikely(err)) { << 1140 uprobe_warn(current, "unregis << 1141 return; 1090 return; 1142 } << 1143 1091 1144 put_uprobe(uprobe); !! 1092 err = register_for_each_vma(uprobe, NULL); >> 1093 /* TODO : cant unregister? schedule a worker thread */ >> 1094 if (!uprobe->consumers && !err) >> 1095 delete_uprobe(uprobe); 1145 } 1096 } 1146 EXPORT_SYMBOL_GPL(uprobe_unregister_nosync); << 1147 1097 1148 void uprobe_unregister_sync(void) !! 1098 /* >> 1099 * uprobe_unregister - unregister an already registered probe. >> 1100 * @inode: the file in which the probe has to be removed. >> 1101 * @offset: offset from the start of the file. >> 1102 * @uc: identify which probe if multiple probes are colocated. >> 1103 */ >> 1104 void uprobe_unregister(struct inode *inode, loff_t offset, struct uprobe_consumer *uc) 1149 { 1105 { 1150 /* !! 1106 struct uprobe *uprobe; 1151 * Now that handler_chain() and handl !! 1107 1152 * uprobe->consumers list under RCU p !! 1108 uprobe = find_uprobe(inode, offset); 1153 * uprobe->register_rwsem, we need to !! 1109 if (WARN_ON(!uprobe)) 1154 * make sure that we can't call into !! 1110 return; 1155 * uprobe_consumer's callbacks anymor !! 1111 1156 * unlucky enough caller can free con !! 1112 down_write(&uprobe->register_rwsem); 1157 * handler_chain() or handle_uretprob !! 1113 __uprobe_unregister(uprobe, uc); 1158 */ !! 1114 up_write(&uprobe->register_rwsem); 1159 synchronize_srcu(&uprobes_srcu); !! 1115 put_uprobe(uprobe); 1160 } 1116 } 1161 EXPORT_SYMBOL_GPL(uprobe_unregister_sync); !! 1117 EXPORT_SYMBOL_GPL(uprobe_unregister); 1162 1118 1163 /** !! 1119 /* 1164 * uprobe_register - register a probe !! 1120 * __uprobe_register - register a probe 1165 * @inode: the file in which the probe has to 1121 * @inode: the file in which the probe has to be placed. 1166 * @offset: offset from the start of the file 1122 * @offset: offset from the start of the file. 1167 * @ref_ctr_offset: offset of SDT marker / re << 1168 * @uc: information on howto handle the probe 1123 * @uc: information on howto handle the probe.. 1169 * 1124 * 1170 * Apart from the access refcount, uprobe_reg !! 1125 * Apart from the access refcount, __uprobe_register() takes a creation 1171 * refcount (thro alloc_uprobe) if and only i 1126 * refcount (thro alloc_uprobe) if and only if this @uprobe is getting 1172 * inserted into the rbtree (i.e first consum 1127 * inserted into the rbtree (i.e first consumer for a @inode:@offset 1173 * tuple). Creation refcount stops uprobe_un 1128 * tuple). Creation refcount stops uprobe_unregister from freeing the 1174 * @uprobe even before the register operation 1129 * @uprobe even before the register operation is complete. Creation 1175 * refcount is released when the last @uc for 1130 * refcount is released when the last @uc for the @uprobe 1176 * unregisters. Caller of uprobe_register() i !! 1131 * unregisters. Caller of __uprobe_register() is required to keep @inode 1177 * (and the containing mount) referenced. 1132 * (and the containing mount) referenced. 1178 * 1133 * 1179 * Return: pointer to the new uprobe on succe !! 1134 * Return errno if it cannot successully install probes >> 1135 * else return 0 (success) 1180 */ 1136 */ 1181 struct uprobe *uprobe_register(struct inode * !! 1137 static int __uprobe_register(struct inode *inode, loff_t offset, 1182 loff_t offset !! 1138 loff_t ref_ctr_offset, struct uprobe_consumer *uc) 1183 struct uprobe << 1184 { 1139 { 1185 struct uprobe *uprobe; 1140 struct uprobe *uprobe; 1186 int ret; 1141 int ret; 1187 1142 1188 /* Uprobe must have at least one set 1143 /* Uprobe must have at least one set consumer */ 1189 if (!uc->handler && !uc->ret_handler) 1144 if (!uc->handler && !uc->ret_handler) 1190 return ERR_PTR(-EINVAL); !! 1145 return -EINVAL; 1191 1146 1192 /* copy_insn() uses read_mapping_page 1147 /* copy_insn() uses read_mapping_page() or shmem_read_mapping_page() */ 1193 if (!inode->i_mapping->a_ops->read_fo 1148 if (!inode->i_mapping->a_ops->read_folio && 1194 !shmem_mapping(inode->i_mapping)) 1149 !shmem_mapping(inode->i_mapping)) 1195 return ERR_PTR(-EIO); !! 1150 return -EIO; 1196 /* Racy, just to catch the obvious mi 1151 /* Racy, just to catch the obvious mistakes */ 1197 if (offset > i_size_read(inode)) 1152 if (offset > i_size_read(inode)) 1198 return ERR_PTR(-EINVAL); !! 1153 return -EINVAL; 1199 1154 1200 /* 1155 /* 1201 * This ensures that copy_from_page() 1156 * This ensures that copy_from_page(), copy_to_page() and 1202 * __update_ref_ctr() can't cross pag 1157 * __update_ref_ctr() can't cross page boundary. 1203 */ 1158 */ 1204 if (!IS_ALIGNED(offset, UPROBE_SWBP_I 1159 if (!IS_ALIGNED(offset, UPROBE_SWBP_INSN_SIZE)) 1205 return ERR_PTR(-EINVAL); !! 1160 return -EINVAL; 1206 if (!IS_ALIGNED(ref_ctr_offset, sizeo 1161 if (!IS_ALIGNED(ref_ctr_offset, sizeof(short))) 1207 return ERR_PTR(-EINVAL); !! 1162 return -EINVAL; 1208 1163 >> 1164 retry: 1209 uprobe = alloc_uprobe(inode, offset, 1165 uprobe = alloc_uprobe(inode, offset, ref_ctr_offset); >> 1166 if (!uprobe) >> 1167 return -ENOMEM; 1210 if (IS_ERR(uprobe)) 1168 if (IS_ERR(uprobe)) 1211 return uprobe; !! 1169 return PTR_ERR(uprobe); 1212 1170 >> 1171 /* >> 1172 * We can race with uprobe_unregister()->delete_uprobe(). >> 1173 * Check uprobe_is_active() and retry if it is false. >> 1174 */ 1213 down_write(&uprobe->register_rwsem); 1175 down_write(&uprobe->register_rwsem); 1214 consumer_add(uprobe, uc); !! 1176 ret = -EAGAIN; 1215 ret = register_for_each_vma(uprobe, u !! 1177 if (likely(uprobe_is_active(uprobe))) { >> 1178 consumer_add(uprobe, uc); >> 1179 ret = register_for_each_vma(uprobe, uc); >> 1180 if (ret) >> 1181 __uprobe_unregister(uprobe, uc); >> 1182 } 1216 up_write(&uprobe->register_rwsem); 1183 up_write(&uprobe->register_rwsem); >> 1184 put_uprobe(uprobe); 1217 1185 1218 if (ret) { !! 1186 if (unlikely(ret == -EAGAIN)) 1219 uprobe_unregister_nosync(upro !! 1187 goto retry; 1220 /* !! 1188 return ret; 1221 * Registration might have pa !! 1189 } 1222 * this consumer being called << 1223 * sync here. It's ok, it's u << 1224 */ << 1225 uprobe_unregister_sync(); << 1226 return ERR_PTR(ret); << 1227 } << 1228 1190 1229 return uprobe; !! 1191 int uprobe_register(struct inode *inode, loff_t offset, >> 1192 struct uprobe_consumer *uc) >> 1193 { >> 1194 return __uprobe_register(inode, offset, 0, uc); 1230 } 1195 } 1231 EXPORT_SYMBOL_GPL(uprobe_register); 1196 EXPORT_SYMBOL_GPL(uprobe_register); 1232 1197 1233 /** !! 1198 int uprobe_register_refctr(struct inode *inode, loff_t offset, 1234 * uprobe_apply - add or remove the breakpoin !! 1199 loff_t ref_ctr_offset, struct uprobe_consumer *uc) 1235 * @uprobe: uprobe which "owns" the breakpoin !! 1200 { >> 1201 return __uprobe_register(inode, offset, ref_ctr_offset, uc); >> 1202 } >> 1203 EXPORT_SYMBOL_GPL(uprobe_register_refctr); >> 1204 >> 1205 /* >> 1206 * uprobe_apply - unregister an already registered probe. >> 1207 * @inode: the file in which the probe has to be removed. >> 1208 * @offset: offset from the start of the file. 1236 * @uc: consumer which wants to add more or r 1209 * @uc: consumer which wants to add more or remove some breakpoints 1237 * @add: add or remove the breakpoints 1210 * @add: add or remove the breakpoints 1238 * Return: 0 on success or negative error cod << 1239 */ 1211 */ 1240 int uprobe_apply(struct uprobe *uprobe, struc !! 1212 int uprobe_apply(struct inode *inode, loff_t offset, >> 1213 struct uprobe_consumer *uc, bool add) 1241 { 1214 { >> 1215 struct uprobe *uprobe; 1242 struct uprobe_consumer *con; 1216 struct uprobe_consumer *con; 1243 int ret = -ENOENT, srcu_idx; !! 1217 int ret = -ENOENT; 1244 1218 1245 down_write(&uprobe->register_rwsem); !! 1219 uprobe = find_uprobe(inode, offset); 1246 !! 1220 if (WARN_ON(!uprobe)) 1247 srcu_idx = srcu_read_lock(&uprobes_sr !! 1221 return ret; 1248 list_for_each_entry_srcu(con, &uprobe << 1249 srcu_read_lo << 1250 if (con == uc) { << 1251 ret = register_for_ea << 1252 break; << 1253 } << 1254 } << 1255 srcu_read_unlock(&uprobes_srcu, srcu_ << 1256 1222 >> 1223 down_write(&uprobe->register_rwsem); >> 1224 for (con = uprobe->consumers; con && con != uc ; con = con->next) >> 1225 ; >> 1226 if (con) >> 1227 ret = register_for_each_vma(uprobe, add ? uc : NULL); 1257 up_write(&uprobe->register_rwsem); 1228 up_write(&uprobe->register_rwsem); >> 1229 put_uprobe(uprobe); 1258 1230 1259 return ret; 1231 return ret; 1260 } 1232 } 1261 1233 1262 static int unapply_uprobe(struct uprobe *upro 1234 static int unapply_uprobe(struct uprobe *uprobe, struct mm_struct *mm) 1263 { 1235 { 1264 VMA_ITERATOR(vmi, mm, 0); 1236 VMA_ITERATOR(vmi, mm, 0); 1265 struct vm_area_struct *vma; 1237 struct vm_area_struct *vma; 1266 int err = 0; 1238 int err = 0; 1267 1239 1268 mmap_read_lock(mm); 1240 mmap_read_lock(mm); 1269 for_each_vma(vmi, vma) { 1241 for_each_vma(vmi, vma) { 1270 unsigned long vaddr; 1242 unsigned long vaddr; 1271 loff_t offset; 1243 loff_t offset; 1272 1244 1273 if (!valid_vma(vma, false) || 1245 if (!valid_vma(vma, false) || 1274 file_inode(vma->vm_file) 1246 file_inode(vma->vm_file) != uprobe->inode) 1275 continue; 1247 continue; 1276 1248 1277 offset = (loff_t)vma->vm_pgof 1249 offset = (loff_t)vma->vm_pgoff << PAGE_SHIFT; 1278 if (uprobe->offset < offset 1250 if (uprobe->offset < offset || 1279 uprobe->offset >= offset 1251 uprobe->offset >= offset + vma->vm_end - vma->vm_start) 1280 continue; 1252 continue; 1281 1253 1282 vaddr = offset_to_vaddr(vma, 1254 vaddr = offset_to_vaddr(vma, uprobe->offset); 1283 err |= remove_breakpoint(upro 1255 err |= remove_breakpoint(uprobe, mm, vaddr); 1284 } 1256 } 1285 mmap_read_unlock(mm); 1257 mmap_read_unlock(mm); 1286 1258 1287 return err; 1259 return err; 1288 } 1260 } 1289 1261 1290 static struct rb_node * 1262 static struct rb_node * 1291 find_node_in_range(struct inode *inode, loff_ 1263 find_node_in_range(struct inode *inode, loff_t min, loff_t max) 1292 { 1264 { 1293 struct rb_node *n = uprobes_tree.rb_n 1265 struct rb_node *n = uprobes_tree.rb_node; 1294 1266 1295 while (n) { 1267 while (n) { 1296 struct uprobe *u = rb_entry(n 1268 struct uprobe *u = rb_entry(n, struct uprobe, rb_node); 1297 1269 1298 if (inode < u->inode) { 1270 if (inode < u->inode) { 1299 n = n->rb_left; 1271 n = n->rb_left; 1300 } else if (inode > u->inode) 1272 } else if (inode > u->inode) { 1301 n = n->rb_right; 1273 n = n->rb_right; 1302 } else { 1274 } else { 1303 if (max < u->offset) 1275 if (max < u->offset) 1304 n = n->rb_lef 1276 n = n->rb_left; 1305 else if (min > u->off 1277 else if (min > u->offset) 1306 n = n->rb_rig 1278 n = n->rb_right; 1307 else 1279 else 1308 break; 1280 break; 1309 } 1281 } 1310 } 1282 } 1311 1283 1312 return n; 1284 return n; 1313 } 1285 } 1314 1286 1315 /* 1287 /* 1316 * For a given range in vma, build a list of 1288 * For a given range in vma, build a list of probes that need to be inserted. 1317 */ 1289 */ 1318 static void build_probe_list(struct inode *in 1290 static void build_probe_list(struct inode *inode, 1319 struct vm_are 1291 struct vm_area_struct *vma, 1320 unsigned long 1292 unsigned long start, unsigned long end, 1321 struct list_h 1293 struct list_head *head) 1322 { 1294 { 1323 loff_t min, max; 1295 loff_t min, max; 1324 struct rb_node *n, *t; 1296 struct rb_node *n, *t; 1325 struct uprobe *u; 1297 struct uprobe *u; 1326 1298 1327 INIT_LIST_HEAD(head); 1299 INIT_LIST_HEAD(head); 1328 min = vaddr_to_offset(vma, start); 1300 min = vaddr_to_offset(vma, start); 1329 max = min + (end - start) - 1; 1301 max = min + (end - start) - 1; 1330 1302 1331 read_lock(&uprobes_treelock); !! 1303 spin_lock(&uprobes_treelock); 1332 n = find_node_in_range(inode, min, ma 1304 n = find_node_in_range(inode, min, max); 1333 if (n) { 1305 if (n) { 1334 for (t = n; t; t = rb_prev(t) 1306 for (t = n; t; t = rb_prev(t)) { 1335 u = rb_entry(t, struc 1307 u = rb_entry(t, struct uprobe, rb_node); 1336 if (u->inode != inode 1308 if (u->inode != inode || u->offset < min) 1337 break; 1309 break; 1338 /* if uprobe went awa !! 1310 list_add(&u->pending_list, head); 1339 if (try_get_uprobe(u) !! 1311 get_uprobe(u); 1340 list_add(&u-> << 1341 } 1312 } 1342 for (t = n; (t = rb_next(t)); 1313 for (t = n; (t = rb_next(t)); ) { 1343 u = rb_entry(t, struc 1314 u = rb_entry(t, struct uprobe, rb_node); 1344 if (u->inode != inode 1315 if (u->inode != inode || u->offset > max) 1345 break; 1316 break; 1346 /* if uprobe went awa !! 1317 list_add(&u->pending_list, head); 1347 if (try_get_uprobe(u) !! 1318 get_uprobe(u); 1348 list_add(&u-> << 1349 } 1319 } 1350 } 1320 } 1351 read_unlock(&uprobes_treelock); !! 1321 spin_unlock(&uprobes_treelock); 1352 } 1322 } 1353 1323 1354 /* @vma contains reference counter, not the p 1324 /* @vma contains reference counter, not the probed instruction. */ 1355 static int delayed_ref_ctr_inc(struct vm_area 1325 static int delayed_ref_ctr_inc(struct vm_area_struct *vma) 1356 { 1326 { 1357 struct list_head *pos, *q; 1327 struct list_head *pos, *q; 1358 struct delayed_uprobe *du; 1328 struct delayed_uprobe *du; 1359 unsigned long vaddr; 1329 unsigned long vaddr; 1360 int ret = 0, err = 0; 1330 int ret = 0, err = 0; 1361 1331 1362 mutex_lock(&delayed_uprobe_lock); 1332 mutex_lock(&delayed_uprobe_lock); 1363 list_for_each_safe(pos, q, &delayed_u 1333 list_for_each_safe(pos, q, &delayed_uprobe_list) { 1364 du = list_entry(pos, struct d 1334 du = list_entry(pos, struct delayed_uprobe, list); 1365 1335 1366 if (du->mm != vma->vm_mm || 1336 if (du->mm != vma->vm_mm || 1367 !valid_ref_ctr_vma(du->up 1337 !valid_ref_ctr_vma(du->uprobe, vma)) 1368 continue; 1338 continue; 1369 1339 1370 vaddr = offset_to_vaddr(vma, 1340 vaddr = offset_to_vaddr(vma, du->uprobe->ref_ctr_offset); 1371 ret = __update_ref_ctr(vma->v 1341 ret = __update_ref_ctr(vma->vm_mm, vaddr, 1); 1372 if (ret) { 1342 if (ret) { 1373 update_ref_ctr_warn(d 1343 update_ref_ctr_warn(du->uprobe, vma->vm_mm, 1); 1374 if (!err) 1344 if (!err) 1375 err = ret; 1345 err = ret; 1376 } 1346 } 1377 delayed_uprobe_delete(du); 1347 delayed_uprobe_delete(du); 1378 } 1348 } 1379 mutex_unlock(&delayed_uprobe_lock); 1349 mutex_unlock(&delayed_uprobe_lock); 1380 return err; 1350 return err; 1381 } 1351 } 1382 1352 1383 /* 1353 /* 1384 * Called from mmap_region/vma_merge with mm- 1354 * Called from mmap_region/vma_merge with mm->mmap_lock acquired. 1385 * 1355 * 1386 * Currently we ignore all errors and always 1356 * Currently we ignore all errors and always return 0, the callers 1387 * can't handle the failure anyway. 1357 * can't handle the failure anyway. 1388 */ 1358 */ 1389 int uprobe_mmap(struct vm_area_struct *vma) 1359 int uprobe_mmap(struct vm_area_struct *vma) 1390 { 1360 { 1391 struct list_head tmp_list; 1361 struct list_head tmp_list; 1392 struct uprobe *uprobe, *u; 1362 struct uprobe *uprobe, *u; 1393 struct inode *inode; 1363 struct inode *inode; 1394 1364 1395 if (no_uprobe_events()) 1365 if (no_uprobe_events()) 1396 return 0; 1366 return 0; 1397 1367 1398 if (vma->vm_file && 1368 if (vma->vm_file && 1399 (vma->vm_flags & (VM_WRITE|VM_SHA 1369 (vma->vm_flags & (VM_WRITE|VM_SHARED)) == VM_WRITE && 1400 test_bit(MMF_HAS_UPROBES, &vma->v 1370 test_bit(MMF_HAS_UPROBES, &vma->vm_mm->flags)) 1401 delayed_ref_ctr_inc(vma); 1371 delayed_ref_ctr_inc(vma); 1402 1372 1403 if (!valid_vma(vma, true)) 1373 if (!valid_vma(vma, true)) 1404 return 0; 1374 return 0; 1405 1375 1406 inode = file_inode(vma->vm_file); 1376 inode = file_inode(vma->vm_file); 1407 if (!inode) 1377 if (!inode) 1408 return 0; 1378 return 0; 1409 1379 1410 mutex_lock(uprobes_mmap_hash(inode)); 1380 mutex_lock(uprobes_mmap_hash(inode)); 1411 build_probe_list(inode, vma, vma->vm_ 1381 build_probe_list(inode, vma, vma->vm_start, vma->vm_end, &tmp_list); 1412 /* 1382 /* 1413 * We can race with uprobe_unregister 1383 * We can race with uprobe_unregister(), this uprobe can be already 1414 * removed. But in this case filter_c 1384 * removed. But in this case filter_chain() must return false, all 1415 * consumers have gone away. 1385 * consumers have gone away. 1416 */ 1386 */ 1417 list_for_each_entry_safe(uprobe, u, & 1387 list_for_each_entry_safe(uprobe, u, &tmp_list, pending_list) { 1418 if (!fatal_signal_pending(cur 1388 if (!fatal_signal_pending(current) && 1419 filter_chain(uprobe, vma- !! 1389 filter_chain(uprobe, UPROBE_FILTER_MMAP, vma->vm_mm)) { 1420 unsigned long vaddr = 1390 unsigned long vaddr = offset_to_vaddr(vma, uprobe->offset); 1421 install_breakpoint(up 1391 install_breakpoint(uprobe, vma->vm_mm, vma, vaddr); 1422 } 1392 } 1423 put_uprobe(uprobe); 1393 put_uprobe(uprobe); 1424 } 1394 } 1425 mutex_unlock(uprobes_mmap_hash(inode) 1395 mutex_unlock(uprobes_mmap_hash(inode)); 1426 1396 1427 return 0; 1397 return 0; 1428 } 1398 } 1429 1399 1430 static bool 1400 static bool 1431 vma_has_uprobes(struct vm_area_struct *vma, u 1401 vma_has_uprobes(struct vm_area_struct *vma, unsigned long start, unsigned long end) 1432 { 1402 { 1433 loff_t min, max; 1403 loff_t min, max; 1434 struct inode *inode; 1404 struct inode *inode; 1435 struct rb_node *n; 1405 struct rb_node *n; 1436 1406 1437 inode = file_inode(vma->vm_file); 1407 inode = file_inode(vma->vm_file); 1438 1408 1439 min = vaddr_to_offset(vma, start); 1409 min = vaddr_to_offset(vma, start); 1440 max = min + (end - start) - 1; 1410 max = min + (end - start) - 1; 1441 1411 1442 read_lock(&uprobes_treelock); !! 1412 spin_lock(&uprobes_treelock); 1443 n = find_node_in_range(inode, min, ma 1413 n = find_node_in_range(inode, min, max); 1444 read_unlock(&uprobes_treelock); !! 1414 spin_unlock(&uprobes_treelock); 1445 1415 1446 return !!n; 1416 return !!n; 1447 } 1417 } 1448 1418 1449 /* 1419 /* 1450 * Called in context of a munmap of a vma. 1420 * Called in context of a munmap of a vma. 1451 */ 1421 */ 1452 void uprobe_munmap(struct vm_area_struct *vma 1422 void uprobe_munmap(struct vm_area_struct *vma, unsigned long start, unsigned long end) 1453 { 1423 { 1454 if (no_uprobe_events() || !valid_vma( 1424 if (no_uprobe_events() || !valid_vma(vma, false)) 1455 return; 1425 return; 1456 1426 1457 if (!atomic_read(&vma->vm_mm->mm_user 1427 if (!atomic_read(&vma->vm_mm->mm_users)) /* called by mmput() ? */ 1458 return; 1428 return; 1459 1429 1460 if (!test_bit(MMF_HAS_UPROBES, &vma-> 1430 if (!test_bit(MMF_HAS_UPROBES, &vma->vm_mm->flags) || 1461 test_bit(MMF_RECALC_UPROBES, &vm 1431 test_bit(MMF_RECALC_UPROBES, &vma->vm_mm->flags)) 1462 return; 1432 return; 1463 1433 1464 if (vma_has_uprobes(vma, start, end)) 1434 if (vma_has_uprobes(vma, start, end)) 1465 set_bit(MMF_RECALC_UPROBES, & 1435 set_bit(MMF_RECALC_UPROBES, &vma->vm_mm->flags); 1466 } 1436 } 1467 1437 1468 static vm_fault_t xol_fault(const struct vm_s << 1469 struct vm_area_st << 1470 { << 1471 struct xol_area *area = vma->vm_mm->u << 1472 << 1473 vmf->page = area->page; << 1474 get_page(vmf->page); << 1475 return 0; << 1476 } << 1477 << 1478 static const struct vm_special_mapping xol_ma << 1479 .name = "[uprobes]", << 1480 .fault = xol_fault, << 1481 }; << 1482 << 1483 /* Slot allocation for XOL */ 1438 /* Slot allocation for XOL */ 1484 static int xol_add_vma(struct mm_struct *mm, 1439 static int xol_add_vma(struct mm_struct *mm, struct xol_area *area) 1485 { 1440 { 1486 struct vm_area_struct *vma; 1441 struct vm_area_struct *vma; 1487 int ret; 1442 int ret; 1488 1443 1489 if (mmap_write_lock_killable(mm)) 1444 if (mmap_write_lock_killable(mm)) 1490 return -EINTR; 1445 return -EINTR; 1491 1446 1492 if (mm->uprobes_state.xol_area) { 1447 if (mm->uprobes_state.xol_area) { 1493 ret = -EALREADY; 1448 ret = -EALREADY; 1494 goto fail; 1449 goto fail; 1495 } 1450 } 1496 1451 1497 if (!area->vaddr) { 1452 if (!area->vaddr) { 1498 /* Try to map as high as poss 1453 /* Try to map as high as possible, this is only a hint. */ 1499 area->vaddr = get_unmapped_ar 1454 area->vaddr = get_unmapped_area(NULL, TASK_SIZE - PAGE_SIZE, 1500 1455 PAGE_SIZE, 0, 0); 1501 if (IS_ERR_VALUE(area->vaddr) 1456 if (IS_ERR_VALUE(area->vaddr)) { 1502 ret = area->vaddr; 1457 ret = area->vaddr; 1503 goto fail; 1458 goto fail; 1504 } 1459 } 1505 } 1460 } 1506 1461 1507 vma = _install_special_mapping(mm, ar 1462 vma = _install_special_mapping(mm, area->vaddr, PAGE_SIZE, 1508 VM_EXEC|VM_MA 1463 VM_EXEC|VM_MAYEXEC|VM_DONTCOPY|VM_IO, 1509 &xol_mapping) !! 1464 &area->xol_mapping); 1510 if (IS_ERR(vma)) { 1465 if (IS_ERR(vma)) { 1511 ret = PTR_ERR(vma); 1466 ret = PTR_ERR(vma); 1512 goto fail; 1467 goto fail; 1513 } 1468 } 1514 1469 1515 ret = 0; 1470 ret = 0; 1516 /* pairs with get_xol_area() */ 1471 /* pairs with get_xol_area() */ 1517 smp_store_release(&mm->uprobes_state. 1472 smp_store_release(&mm->uprobes_state.xol_area, area); /* ^^^ */ 1518 fail: 1473 fail: 1519 mmap_write_unlock(mm); 1474 mmap_write_unlock(mm); 1520 1475 1521 return ret; 1476 return ret; 1522 } 1477 } 1523 1478 1524 void * __weak arch_uprobe_trampoline(unsigned << 1525 { << 1526 static uprobe_opcode_t insn = UPROBE_ << 1527 << 1528 *psize = UPROBE_SWBP_INSN_SIZE; << 1529 return &insn; << 1530 } << 1531 << 1532 static struct xol_area *__create_xol_area(uns 1479 static struct xol_area *__create_xol_area(unsigned long vaddr) 1533 { 1480 { 1534 struct mm_struct *mm = current->mm; 1481 struct mm_struct *mm = current->mm; 1535 unsigned long insns_size; !! 1482 uprobe_opcode_t insn = UPROBE_SWBP_INSN; 1536 struct xol_area *area; 1483 struct xol_area *area; 1537 void *insns; << 1538 1484 1539 area = kzalloc(sizeof(*area), GFP_KER !! 1485 area = kmalloc(sizeof(*area), GFP_KERNEL); 1540 if (unlikely(!area)) 1486 if (unlikely(!area)) 1541 goto out; 1487 goto out; 1542 1488 1543 area->bitmap = kcalloc(BITS_TO_LONGS( 1489 area->bitmap = kcalloc(BITS_TO_LONGS(UINSNS_PER_PAGE), sizeof(long), 1544 GFP_KERNEL); 1490 GFP_KERNEL); 1545 if (!area->bitmap) 1491 if (!area->bitmap) 1546 goto free_area; 1492 goto free_area; 1547 1493 1548 area->page = alloc_page(GFP_HIGHUSER !! 1494 area->xol_mapping.name = "[uprobes]"; 1549 if (!area->page) !! 1495 area->xol_mapping.fault = NULL; >> 1496 area->xol_mapping.pages = area->pages; >> 1497 area->pages[0] = alloc_page(GFP_HIGHUSER); >> 1498 if (!area->pages[0]) 1550 goto free_bitmap; 1499 goto free_bitmap; >> 1500 area->pages[1] = NULL; 1551 1501 1552 area->vaddr = vaddr; 1502 area->vaddr = vaddr; 1553 init_waitqueue_head(&area->wq); 1503 init_waitqueue_head(&area->wq); 1554 /* Reserve the 1st slot for get_tramp 1504 /* Reserve the 1st slot for get_trampoline_vaddr() */ 1555 set_bit(0, area->bitmap); 1505 set_bit(0, area->bitmap); 1556 atomic_set(&area->slot_count, 1); 1506 atomic_set(&area->slot_count, 1); 1557 insns = arch_uprobe_trampoline(&insns !! 1507 arch_uprobe_copy_ixol(area->pages[0], 0, &insn, UPROBE_SWBP_INSN_SIZE); 1558 arch_uprobe_copy_ixol(area->page, 0, << 1559 1508 1560 if (!xol_add_vma(mm, area)) 1509 if (!xol_add_vma(mm, area)) 1561 return area; 1510 return area; 1562 1511 1563 __free_page(area->page); !! 1512 __free_page(area->pages[0]); 1564 free_bitmap: 1513 free_bitmap: 1565 kfree(area->bitmap); 1514 kfree(area->bitmap); 1566 free_area: 1515 free_area: 1567 kfree(area); 1516 kfree(area); 1568 out: 1517 out: 1569 return NULL; 1518 return NULL; 1570 } 1519 } 1571 1520 1572 /* 1521 /* 1573 * get_xol_area - Allocate process's xol_area 1522 * get_xol_area - Allocate process's xol_area if necessary. 1574 * This area will be used for storing instruc 1523 * This area will be used for storing instructions for execution out of line. 1575 * 1524 * 1576 * Returns the allocated area or NULL. 1525 * Returns the allocated area or NULL. 1577 */ 1526 */ 1578 static struct xol_area *get_xol_area(void) 1527 static struct xol_area *get_xol_area(void) 1579 { 1528 { 1580 struct mm_struct *mm = current->mm; 1529 struct mm_struct *mm = current->mm; 1581 struct xol_area *area; 1530 struct xol_area *area; 1582 1531 1583 if (!mm->uprobes_state.xol_area) 1532 if (!mm->uprobes_state.xol_area) 1584 __create_xol_area(0); 1533 __create_xol_area(0); 1585 1534 1586 /* Pairs with xol_add_vma() smp_store 1535 /* Pairs with xol_add_vma() smp_store_release() */ 1587 area = READ_ONCE(mm->uprobes_state.xo 1536 area = READ_ONCE(mm->uprobes_state.xol_area); /* ^^^ */ 1588 return area; 1537 return area; 1589 } 1538 } 1590 1539 1591 /* 1540 /* 1592 * uprobe_clear_state - Free the area allocat 1541 * uprobe_clear_state - Free the area allocated for slots. 1593 */ 1542 */ 1594 void uprobe_clear_state(struct mm_struct *mm) 1543 void uprobe_clear_state(struct mm_struct *mm) 1595 { 1544 { 1596 struct xol_area *area = mm->uprobes_s 1545 struct xol_area *area = mm->uprobes_state.xol_area; 1597 1546 1598 mutex_lock(&delayed_uprobe_lock); 1547 mutex_lock(&delayed_uprobe_lock); 1599 delayed_uprobe_remove(NULL, mm); 1548 delayed_uprobe_remove(NULL, mm); 1600 mutex_unlock(&delayed_uprobe_lock); 1549 mutex_unlock(&delayed_uprobe_lock); 1601 1550 1602 if (!area) 1551 if (!area) 1603 return; 1552 return; 1604 1553 1605 put_page(area->page); !! 1554 put_page(area->pages[0]); 1606 kfree(area->bitmap); 1555 kfree(area->bitmap); 1607 kfree(area); 1556 kfree(area); 1608 } 1557 } 1609 1558 1610 void uprobe_start_dup_mmap(void) 1559 void uprobe_start_dup_mmap(void) 1611 { 1560 { 1612 percpu_down_read(&dup_mmap_sem); 1561 percpu_down_read(&dup_mmap_sem); 1613 } 1562 } 1614 1563 1615 void uprobe_end_dup_mmap(void) 1564 void uprobe_end_dup_mmap(void) 1616 { 1565 { 1617 percpu_up_read(&dup_mmap_sem); 1566 percpu_up_read(&dup_mmap_sem); 1618 } 1567 } 1619 1568 1620 void uprobe_dup_mmap(struct mm_struct *oldmm, 1569 void uprobe_dup_mmap(struct mm_struct *oldmm, struct mm_struct *newmm) 1621 { 1570 { 1622 if (test_bit(MMF_HAS_UPROBES, &oldmm- 1571 if (test_bit(MMF_HAS_UPROBES, &oldmm->flags)) { 1623 set_bit(MMF_HAS_UPROBES, &new 1572 set_bit(MMF_HAS_UPROBES, &newmm->flags); 1624 /* unconditionally, dup_mmap( 1573 /* unconditionally, dup_mmap() skips VM_DONTCOPY vmas */ 1625 set_bit(MMF_RECALC_UPROBES, & 1574 set_bit(MMF_RECALC_UPROBES, &newmm->flags); 1626 } 1575 } 1627 } 1576 } 1628 1577 1629 /* 1578 /* 1630 * - search for a free slot. 1579 * - search for a free slot. 1631 */ 1580 */ 1632 static unsigned long xol_take_insn_slot(struc 1581 static unsigned long xol_take_insn_slot(struct xol_area *area) 1633 { 1582 { 1634 unsigned long slot_addr; 1583 unsigned long slot_addr; 1635 int slot_nr; 1584 int slot_nr; 1636 1585 1637 do { 1586 do { 1638 slot_nr = find_first_zero_bit 1587 slot_nr = find_first_zero_bit(area->bitmap, UINSNS_PER_PAGE); 1639 if (slot_nr < UINSNS_PER_PAGE 1588 if (slot_nr < UINSNS_PER_PAGE) { 1640 if (!test_and_set_bit 1589 if (!test_and_set_bit(slot_nr, area->bitmap)) 1641 break; 1590 break; 1642 1591 1643 slot_nr = UINSNS_PER_ 1592 slot_nr = UINSNS_PER_PAGE; 1644 continue; 1593 continue; 1645 } 1594 } 1646 wait_event(area->wq, (atomic_ 1595 wait_event(area->wq, (atomic_read(&area->slot_count) < UINSNS_PER_PAGE)); 1647 } while (slot_nr >= UINSNS_PER_PAGE); 1596 } while (slot_nr >= UINSNS_PER_PAGE); 1648 1597 1649 slot_addr = area->vaddr + (slot_nr * 1598 slot_addr = area->vaddr + (slot_nr * UPROBE_XOL_SLOT_BYTES); 1650 atomic_inc(&area->slot_count); 1599 atomic_inc(&area->slot_count); 1651 1600 1652 return slot_addr; 1601 return slot_addr; 1653 } 1602 } 1654 1603 1655 /* 1604 /* 1656 * xol_get_insn_slot - allocate a slot for xo 1605 * xol_get_insn_slot - allocate a slot for xol. 1657 * Returns the allocated slot address or 0. 1606 * Returns the allocated slot address or 0. 1658 */ 1607 */ 1659 static unsigned long xol_get_insn_slot(struct 1608 static unsigned long xol_get_insn_slot(struct uprobe *uprobe) 1660 { 1609 { 1661 struct xol_area *area; 1610 struct xol_area *area; 1662 unsigned long xol_vaddr; 1611 unsigned long xol_vaddr; 1663 1612 1664 area = get_xol_area(); 1613 area = get_xol_area(); 1665 if (!area) 1614 if (!area) 1666 return 0; 1615 return 0; 1667 1616 1668 xol_vaddr = xol_take_insn_slot(area); 1617 xol_vaddr = xol_take_insn_slot(area); 1669 if (unlikely(!xol_vaddr)) 1618 if (unlikely(!xol_vaddr)) 1670 return 0; 1619 return 0; 1671 1620 1672 arch_uprobe_copy_ixol(area->page, xol !! 1621 arch_uprobe_copy_ixol(area->pages[0], xol_vaddr, 1673 &uprobe->arch.i 1622 &uprobe->arch.ixol, sizeof(uprobe->arch.ixol)); 1674 1623 1675 return xol_vaddr; 1624 return xol_vaddr; 1676 } 1625 } 1677 1626 1678 /* 1627 /* 1679 * xol_free_insn_slot - If slot was earlier a 1628 * xol_free_insn_slot - If slot was earlier allocated by 1680 * @xol_get_insn_slot(), make the slot availa 1629 * @xol_get_insn_slot(), make the slot available for 1681 * subsequent requests. 1630 * subsequent requests. 1682 */ 1631 */ 1683 static void xol_free_insn_slot(struct task_st 1632 static void xol_free_insn_slot(struct task_struct *tsk) 1684 { 1633 { 1685 struct xol_area *area; 1634 struct xol_area *area; 1686 unsigned long vma_end; 1635 unsigned long vma_end; 1687 unsigned long slot_addr; 1636 unsigned long slot_addr; 1688 1637 1689 if (!tsk->mm || !tsk->mm->uprobes_sta 1638 if (!tsk->mm || !tsk->mm->uprobes_state.xol_area || !tsk->utask) 1690 return; 1639 return; 1691 1640 1692 slot_addr = tsk->utask->xol_vaddr; 1641 slot_addr = tsk->utask->xol_vaddr; 1693 if (unlikely(!slot_addr)) 1642 if (unlikely(!slot_addr)) 1694 return; 1643 return; 1695 1644 1696 area = tsk->mm->uprobes_state.xol_are 1645 area = tsk->mm->uprobes_state.xol_area; 1697 vma_end = area->vaddr + PAGE_SIZE; 1646 vma_end = area->vaddr + PAGE_SIZE; 1698 if (area->vaddr <= slot_addr && slot_ 1647 if (area->vaddr <= slot_addr && slot_addr < vma_end) { 1699 unsigned long offset; 1648 unsigned long offset; 1700 int slot_nr; 1649 int slot_nr; 1701 1650 1702 offset = slot_addr - area->va 1651 offset = slot_addr - area->vaddr; 1703 slot_nr = offset / UPROBE_XOL 1652 slot_nr = offset / UPROBE_XOL_SLOT_BYTES; 1704 if (slot_nr >= UINSNS_PER_PAG 1653 if (slot_nr >= UINSNS_PER_PAGE) 1705 return; 1654 return; 1706 1655 1707 clear_bit(slot_nr, area->bitm 1656 clear_bit(slot_nr, area->bitmap); 1708 atomic_dec(&area->slot_count) 1657 atomic_dec(&area->slot_count); 1709 smp_mb__after_atomic(); /* pa 1658 smp_mb__after_atomic(); /* pairs with prepare_to_wait() */ 1710 if (waitqueue_active(&area->w 1659 if (waitqueue_active(&area->wq)) 1711 wake_up(&area->wq); 1660 wake_up(&area->wq); 1712 1661 1713 tsk->utask->xol_vaddr = 0; 1662 tsk->utask->xol_vaddr = 0; 1714 } 1663 } 1715 } 1664 } 1716 1665 1717 void __weak arch_uprobe_copy_ixol(struct page 1666 void __weak arch_uprobe_copy_ixol(struct page *page, unsigned long vaddr, 1718 void *src, 1667 void *src, unsigned long len) 1719 { 1668 { 1720 /* Initialize the slot */ 1669 /* Initialize the slot */ 1721 copy_to_page(page, vaddr, src, len); 1670 copy_to_page(page, vaddr, src, len); 1722 1671 1723 /* 1672 /* 1724 * We probably need flush_icache_user 1673 * We probably need flush_icache_user_page() but it needs vma. 1725 * This should work on most of archit 1674 * This should work on most of architectures by default. If 1726 * architecture needs to do something 1675 * architecture needs to do something different it can define 1727 * its own version of the function. 1676 * its own version of the function. 1728 */ 1677 */ 1729 flush_dcache_page(page); 1678 flush_dcache_page(page); 1730 } 1679 } 1731 1680 1732 /** 1681 /** 1733 * uprobe_get_swbp_addr - compute address of 1682 * uprobe_get_swbp_addr - compute address of swbp given post-swbp regs 1734 * @regs: Reflects the saved state of the tas 1683 * @regs: Reflects the saved state of the task after it has hit a breakpoint 1735 * instruction. 1684 * instruction. 1736 * Return the address of the breakpoint instr 1685 * Return the address of the breakpoint instruction. 1737 */ 1686 */ 1738 unsigned long __weak uprobe_get_swbp_addr(str 1687 unsigned long __weak uprobe_get_swbp_addr(struct pt_regs *regs) 1739 { 1688 { 1740 return instruction_pointer(regs) - UP 1689 return instruction_pointer(regs) - UPROBE_SWBP_INSN_SIZE; 1741 } 1690 } 1742 1691 1743 unsigned long uprobe_get_trap_addr(struct pt_ 1692 unsigned long uprobe_get_trap_addr(struct pt_regs *regs) 1744 { 1693 { 1745 struct uprobe_task *utask = current-> 1694 struct uprobe_task *utask = current->utask; 1746 1695 1747 if (unlikely(utask && utask->active_u 1696 if (unlikely(utask && utask->active_uprobe)) 1748 return utask->vaddr; 1697 return utask->vaddr; 1749 1698 1750 return instruction_pointer(regs); 1699 return instruction_pointer(regs); 1751 } 1700 } 1752 1701 1753 static struct return_instance *free_ret_insta 1702 static struct return_instance *free_ret_instance(struct return_instance *ri) 1754 { 1703 { 1755 struct return_instance *next = ri->ne 1704 struct return_instance *next = ri->next; 1756 put_uprobe(ri->uprobe); 1705 put_uprobe(ri->uprobe); 1757 kfree(ri); 1706 kfree(ri); 1758 return next; 1707 return next; 1759 } 1708 } 1760 1709 1761 /* 1710 /* 1762 * Called with no locks held. 1711 * Called with no locks held. 1763 * Called in context of an exiting or an exec 1712 * Called in context of an exiting or an exec-ing thread. 1764 */ 1713 */ 1765 void uprobe_free_utask(struct task_struct *t) 1714 void uprobe_free_utask(struct task_struct *t) 1766 { 1715 { 1767 struct uprobe_task *utask = t->utask; 1716 struct uprobe_task *utask = t->utask; 1768 struct return_instance *ri; 1717 struct return_instance *ri; 1769 1718 1770 if (!utask) 1719 if (!utask) 1771 return; 1720 return; 1772 1721 1773 if (utask->active_uprobe) 1722 if (utask->active_uprobe) 1774 put_uprobe(utask->active_upro 1723 put_uprobe(utask->active_uprobe); 1775 1724 1776 ri = utask->return_instances; 1725 ri = utask->return_instances; 1777 while (ri) 1726 while (ri) 1778 ri = free_ret_instance(ri); 1727 ri = free_ret_instance(ri); 1779 1728 1780 xol_free_insn_slot(t); 1729 xol_free_insn_slot(t); 1781 kfree(utask); 1730 kfree(utask); 1782 t->utask = NULL; 1731 t->utask = NULL; 1783 } 1732 } 1784 1733 1785 /* 1734 /* 1786 * Allocate a uprobe_task object for the task 1735 * Allocate a uprobe_task object for the task if necessary. 1787 * Called when the thread hits a breakpoint. 1736 * Called when the thread hits a breakpoint. 1788 * 1737 * 1789 * Returns: 1738 * Returns: 1790 * - pointer to new uprobe_task on success 1739 * - pointer to new uprobe_task on success 1791 * - NULL otherwise 1740 * - NULL otherwise 1792 */ 1741 */ 1793 static struct uprobe_task *get_utask(void) 1742 static struct uprobe_task *get_utask(void) 1794 { 1743 { 1795 if (!current->utask) 1744 if (!current->utask) 1796 current->utask = kzalloc(size 1745 current->utask = kzalloc(sizeof(struct uprobe_task), GFP_KERNEL); 1797 return current->utask; 1746 return current->utask; 1798 } 1747 } 1799 1748 1800 static int dup_utask(struct task_struct *t, s 1749 static int dup_utask(struct task_struct *t, struct uprobe_task *o_utask) 1801 { 1750 { 1802 struct uprobe_task *n_utask; 1751 struct uprobe_task *n_utask; 1803 struct return_instance **p, *o, *n; 1752 struct return_instance **p, *o, *n; 1804 1753 1805 n_utask = kzalloc(sizeof(struct uprob 1754 n_utask = kzalloc(sizeof(struct uprobe_task), GFP_KERNEL); 1806 if (!n_utask) 1755 if (!n_utask) 1807 return -ENOMEM; 1756 return -ENOMEM; 1808 t->utask = n_utask; 1757 t->utask = n_utask; 1809 1758 1810 p = &n_utask->return_instances; 1759 p = &n_utask->return_instances; 1811 for (o = o_utask->return_instances; o 1760 for (o = o_utask->return_instances; o; o = o->next) { 1812 n = kmalloc(sizeof(struct ret 1761 n = kmalloc(sizeof(struct return_instance), GFP_KERNEL); 1813 if (!n) 1762 if (!n) 1814 return -ENOMEM; 1763 return -ENOMEM; 1815 1764 1816 *n = *o; 1765 *n = *o; 1817 /* << 1818 * uprobe's refcnt has to be << 1819 * utask->return_instances it << 1820 * removed right now, as task << 1821 * get_uprobe() is safe to us << 1822 */ << 1823 get_uprobe(n->uprobe); 1766 get_uprobe(n->uprobe); 1824 n->next = NULL; 1767 n->next = NULL; 1825 1768 1826 *p = n; 1769 *p = n; 1827 p = &n->next; 1770 p = &n->next; 1828 n_utask->depth++; 1771 n_utask->depth++; 1829 } 1772 } 1830 1773 1831 return 0; 1774 return 0; 1832 } 1775 } 1833 1776 >> 1777 static void uprobe_warn(struct task_struct *t, const char *msg) >> 1778 { >> 1779 pr_warn("uprobe: %s:%d failed to %s\n", >> 1780 current->comm, current->pid, msg); >> 1781 } >> 1782 1834 static void dup_xol_work(struct callback_head 1783 static void dup_xol_work(struct callback_head *work) 1835 { 1784 { 1836 if (current->flags & PF_EXITING) 1785 if (current->flags & PF_EXITING) 1837 return; 1786 return; 1838 1787 1839 if (!__create_xol_area(current->utask 1788 if (!__create_xol_area(current->utask->dup_xol_addr) && 1840 !fatal_signal_pending 1789 !fatal_signal_pending(current)) 1841 uprobe_warn(current, "dup xol 1790 uprobe_warn(current, "dup xol area"); 1842 } 1791 } 1843 1792 1844 /* 1793 /* 1845 * Called in context of a new clone/fork from 1794 * Called in context of a new clone/fork from copy_process. 1846 */ 1795 */ 1847 void uprobe_copy_process(struct task_struct * 1796 void uprobe_copy_process(struct task_struct *t, unsigned long flags) 1848 { 1797 { 1849 struct uprobe_task *utask = current-> 1798 struct uprobe_task *utask = current->utask; 1850 struct mm_struct *mm = current->mm; 1799 struct mm_struct *mm = current->mm; 1851 struct xol_area *area; 1800 struct xol_area *area; 1852 1801 1853 t->utask = NULL; 1802 t->utask = NULL; 1854 1803 1855 if (!utask || !utask->return_instance 1804 if (!utask || !utask->return_instances) 1856 return; 1805 return; 1857 1806 1858 if (mm == t->mm && !(flags & CLONE_VF 1807 if (mm == t->mm && !(flags & CLONE_VFORK)) 1859 return; 1808 return; 1860 1809 1861 if (dup_utask(t, utask)) 1810 if (dup_utask(t, utask)) 1862 return uprobe_warn(t, "dup re 1811 return uprobe_warn(t, "dup ret instances"); 1863 1812 1864 /* The task can fork() after dup_xol_ 1813 /* The task can fork() after dup_xol_work() fails */ 1865 area = mm->uprobes_state.xol_area; 1814 area = mm->uprobes_state.xol_area; 1866 if (!area) 1815 if (!area) 1867 return uprobe_warn(t, "dup xo 1816 return uprobe_warn(t, "dup xol area"); 1868 1817 1869 if (mm == t->mm) 1818 if (mm == t->mm) 1870 return; 1819 return; 1871 1820 1872 t->utask->dup_xol_addr = area->vaddr; 1821 t->utask->dup_xol_addr = area->vaddr; 1873 init_task_work(&t->utask->dup_xol_wor 1822 init_task_work(&t->utask->dup_xol_work, dup_xol_work); 1874 task_work_add(t, &t->utask->dup_xol_w 1823 task_work_add(t, &t->utask->dup_xol_work, TWA_RESUME); 1875 } 1824 } 1876 1825 1877 /* 1826 /* 1878 * Current area->vaddr notion assume the tram 1827 * Current area->vaddr notion assume the trampoline address is always 1879 * equal area->vaddr. 1828 * equal area->vaddr. 1880 * 1829 * 1881 * Returns -1 in case the xol_area is not all 1830 * Returns -1 in case the xol_area is not allocated. 1882 */ 1831 */ 1883 unsigned long uprobe_get_trampoline_vaddr(voi !! 1832 static unsigned long get_trampoline_vaddr(void) 1884 { 1833 { 1885 struct xol_area *area; 1834 struct xol_area *area; 1886 unsigned long trampoline_vaddr = -1; 1835 unsigned long trampoline_vaddr = -1; 1887 1836 1888 /* Pairs with xol_add_vma() smp_store 1837 /* Pairs with xol_add_vma() smp_store_release() */ 1889 area = READ_ONCE(current->mm->uprobes 1838 area = READ_ONCE(current->mm->uprobes_state.xol_area); /* ^^^ */ 1890 if (area) 1839 if (area) 1891 trampoline_vaddr = area->vadd 1840 trampoline_vaddr = area->vaddr; 1892 1841 1893 return trampoline_vaddr; 1842 return trampoline_vaddr; 1894 } 1843 } 1895 1844 1896 static void cleanup_return_instances(struct u 1845 static void cleanup_return_instances(struct uprobe_task *utask, bool chained, 1897 struc 1846 struct pt_regs *regs) 1898 { 1847 { 1899 struct return_instance *ri = utask->r 1848 struct return_instance *ri = utask->return_instances; 1900 enum rp_check ctx = chained ? RP_CHEC 1849 enum rp_check ctx = chained ? RP_CHECK_CHAIN_CALL : RP_CHECK_CALL; 1901 1850 1902 while (ri && !arch_uretprobe_is_alive 1851 while (ri && !arch_uretprobe_is_alive(ri, ctx, regs)) { 1903 ri = free_ret_instance(ri); 1852 ri = free_ret_instance(ri); 1904 utask->depth--; 1853 utask->depth--; 1905 } 1854 } 1906 utask->return_instances = ri; 1855 utask->return_instances = ri; 1907 } 1856 } 1908 1857 1909 static void prepare_uretprobe(struct uprobe * 1858 static void prepare_uretprobe(struct uprobe *uprobe, struct pt_regs *regs) 1910 { 1859 { 1911 struct return_instance *ri; 1860 struct return_instance *ri; 1912 struct uprobe_task *utask; 1861 struct uprobe_task *utask; 1913 unsigned long orig_ret_vaddr, trampol 1862 unsigned long orig_ret_vaddr, trampoline_vaddr; 1914 bool chained; 1863 bool chained; 1915 1864 1916 if (!get_xol_area()) 1865 if (!get_xol_area()) 1917 return; 1866 return; 1918 1867 1919 utask = get_utask(); 1868 utask = get_utask(); 1920 if (!utask) 1869 if (!utask) 1921 return; 1870 return; 1922 1871 1923 if (utask->depth >= MAX_URETPROBE_DEP 1872 if (utask->depth >= MAX_URETPROBE_DEPTH) { 1924 printk_ratelimited(KERN_INFO 1873 printk_ratelimited(KERN_INFO "uprobe: omit uretprobe due to" 1925 " nestedness 1874 " nestedness limit pid/tgid=%d/%d\n", 1926 current->pid, 1875 current->pid, current->tgid); 1927 return; 1876 return; 1928 } 1877 } 1929 1878 1930 /* we need to bump refcount to store << 1931 if (!try_get_uprobe(uprobe)) << 1932 return; << 1933 << 1934 ri = kmalloc(sizeof(struct return_ins 1879 ri = kmalloc(sizeof(struct return_instance), GFP_KERNEL); 1935 if (!ri) 1880 if (!ri) 1936 goto fail; !! 1881 return; 1937 1882 1938 trampoline_vaddr = uprobe_get_trampol !! 1883 trampoline_vaddr = get_trampoline_vaddr(); 1939 orig_ret_vaddr = arch_uretprobe_hijac 1884 orig_ret_vaddr = arch_uretprobe_hijack_return_addr(trampoline_vaddr, regs); 1940 if (orig_ret_vaddr == -1) 1885 if (orig_ret_vaddr == -1) 1941 goto fail; 1886 goto fail; 1942 1887 1943 /* drop the entries invalidated by lo 1888 /* drop the entries invalidated by longjmp() */ 1944 chained = (orig_ret_vaddr == trampoli 1889 chained = (orig_ret_vaddr == trampoline_vaddr); 1945 cleanup_return_instances(utask, chain 1890 cleanup_return_instances(utask, chained, regs); 1946 1891 1947 /* 1892 /* 1948 * We don't want to keep trampoline a 1893 * We don't want to keep trampoline address in stack, rather keep the 1949 * original return address of first c 1894 * original return address of first caller thru all the consequent 1950 * instances. This also makes breakpo 1895 * instances. This also makes breakpoint unwrapping easier. 1951 */ 1896 */ 1952 if (chained) { 1897 if (chained) { 1953 if (!utask->return_instances) 1898 if (!utask->return_instances) { 1954 /* 1899 /* 1955 * This situation is 1900 * This situation is not possible. Likely we have an 1956 * attack from user-s 1901 * attack from user-space. 1957 */ 1902 */ 1958 uprobe_warn(current, 1903 uprobe_warn(current, "handle tail call"); 1959 goto fail; 1904 goto fail; 1960 } 1905 } 1961 orig_ret_vaddr = utask->retur 1906 orig_ret_vaddr = utask->return_instances->orig_ret_vaddr; 1962 } 1907 } 1963 ri->uprobe = uprobe; !! 1908 >> 1909 ri->uprobe = get_uprobe(uprobe); 1964 ri->func = instruction_pointer(regs); 1910 ri->func = instruction_pointer(regs); 1965 ri->stack = user_stack_pointer(regs); 1911 ri->stack = user_stack_pointer(regs); 1966 ri->orig_ret_vaddr = orig_ret_vaddr; 1912 ri->orig_ret_vaddr = orig_ret_vaddr; 1967 ri->chained = chained; 1913 ri->chained = chained; 1968 1914 1969 utask->depth++; 1915 utask->depth++; 1970 ri->next = utask->return_instances; 1916 ri->next = utask->return_instances; 1971 utask->return_instances = ri; 1917 utask->return_instances = ri; 1972 1918 1973 return; 1919 return; 1974 fail: !! 1920 fail: 1975 kfree(ri); 1921 kfree(ri); 1976 put_uprobe(uprobe); << 1977 } 1922 } 1978 1923 1979 /* Prepare to single-step probed instruction 1924 /* Prepare to single-step probed instruction out of line. */ 1980 static int 1925 static int 1981 pre_ssout(struct uprobe *uprobe, struct pt_re 1926 pre_ssout(struct uprobe *uprobe, struct pt_regs *regs, unsigned long bp_vaddr) 1982 { 1927 { 1983 struct uprobe_task *utask; 1928 struct uprobe_task *utask; 1984 unsigned long xol_vaddr; 1929 unsigned long xol_vaddr; 1985 int err; 1930 int err; 1986 1931 1987 utask = get_utask(); 1932 utask = get_utask(); 1988 if (!utask) 1933 if (!utask) 1989 return -ENOMEM; 1934 return -ENOMEM; 1990 1935 1991 if (!try_get_uprobe(uprobe)) << 1992 return -EINVAL; << 1993 << 1994 xol_vaddr = xol_get_insn_slot(uprobe) 1936 xol_vaddr = xol_get_insn_slot(uprobe); 1995 if (!xol_vaddr) { !! 1937 if (!xol_vaddr) 1996 err = -ENOMEM; !! 1938 return -ENOMEM; 1997 goto err_out; << 1998 } << 1999 1939 2000 utask->xol_vaddr = xol_vaddr; 1940 utask->xol_vaddr = xol_vaddr; 2001 utask->vaddr = bp_vaddr; 1941 utask->vaddr = bp_vaddr; 2002 1942 2003 err = arch_uprobe_pre_xol(&uprobe->ar 1943 err = arch_uprobe_pre_xol(&uprobe->arch, regs); 2004 if (unlikely(err)) { 1944 if (unlikely(err)) { 2005 xol_free_insn_slot(current); 1945 xol_free_insn_slot(current); 2006 goto err_out; !! 1946 return err; 2007 } 1947 } 2008 1948 2009 utask->active_uprobe = uprobe; 1949 utask->active_uprobe = uprobe; 2010 utask->state = UTASK_SSTEP; 1950 utask->state = UTASK_SSTEP; 2011 return 0; 1951 return 0; 2012 err_out: << 2013 put_uprobe(uprobe); << 2014 return err; << 2015 } 1952 } 2016 1953 2017 /* 1954 /* 2018 * If we are singlestepping, then ensure this 1955 * If we are singlestepping, then ensure this thread is not connected to 2019 * non-fatal signals until completion of sing 1956 * non-fatal signals until completion of singlestep. When xol insn itself 2020 * triggers the signal, restart the original 1957 * triggers the signal, restart the original insn even if the task is 2021 * already SIGKILL'ed (since coredump should 1958 * already SIGKILL'ed (since coredump should report the correct ip). This 2022 * is even more important if the task has a h 1959 * is even more important if the task has a handler for SIGSEGV/etc, The 2023 * _same_ instruction should be repeated agai 1960 * _same_ instruction should be repeated again after return from the signal 2024 * handler, and SSTEP can never finish in thi 1961 * handler, and SSTEP can never finish in this case. 2025 */ 1962 */ 2026 bool uprobe_deny_signal(void) 1963 bool uprobe_deny_signal(void) 2027 { 1964 { 2028 struct task_struct *t = current; 1965 struct task_struct *t = current; 2029 struct uprobe_task *utask = t->utask; 1966 struct uprobe_task *utask = t->utask; 2030 1967 2031 if (likely(!utask || !utask->active_u 1968 if (likely(!utask || !utask->active_uprobe)) 2032 return false; 1969 return false; 2033 1970 2034 WARN_ON_ONCE(utask->state != UTASK_SS 1971 WARN_ON_ONCE(utask->state != UTASK_SSTEP); 2035 1972 2036 if (task_sigpending(t)) { 1973 if (task_sigpending(t)) { 2037 spin_lock_irq(&t->sighand->si 1974 spin_lock_irq(&t->sighand->siglock); 2038 clear_tsk_thread_flag(t, TIF_ 1975 clear_tsk_thread_flag(t, TIF_SIGPENDING); 2039 spin_unlock_irq(&t->sighand-> 1976 spin_unlock_irq(&t->sighand->siglock); 2040 1977 2041 if (__fatal_signal_pending(t) 1978 if (__fatal_signal_pending(t) || arch_uprobe_xol_was_trapped(t)) { 2042 utask->state = UTASK_ 1979 utask->state = UTASK_SSTEP_TRAPPED; 2043 set_tsk_thread_flag(t 1980 set_tsk_thread_flag(t, TIF_UPROBE); 2044 } 1981 } 2045 } 1982 } 2046 1983 2047 return true; 1984 return true; 2048 } 1985 } 2049 1986 2050 static void mmf_recalc_uprobes(struct mm_stru 1987 static void mmf_recalc_uprobes(struct mm_struct *mm) 2051 { 1988 { 2052 VMA_ITERATOR(vmi, mm, 0); 1989 VMA_ITERATOR(vmi, mm, 0); 2053 struct vm_area_struct *vma; 1990 struct vm_area_struct *vma; 2054 1991 2055 for_each_vma(vmi, vma) { 1992 for_each_vma(vmi, vma) { 2056 if (!valid_vma(vma, false)) 1993 if (!valid_vma(vma, false)) 2057 continue; 1994 continue; 2058 /* 1995 /* 2059 * This is not strictly accur 1996 * This is not strictly accurate, we can race with 2060 * uprobe_unregister() and se 1997 * uprobe_unregister() and see the already removed 2061 * uprobe if delete_uprobe() 1998 * uprobe if delete_uprobe() was not yet called. 2062 * Or this uprobe can be filt 1999 * Or this uprobe can be filtered out. 2063 */ 2000 */ 2064 if (vma_has_uprobes(vma, vma- 2001 if (vma_has_uprobes(vma, vma->vm_start, vma->vm_end)) 2065 return; 2002 return; 2066 } 2003 } 2067 2004 2068 clear_bit(MMF_HAS_UPROBES, &mm->flags 2005 clear_bit(MMF_HAS_UPROBES, &mm->flags); 2069 } 2006 } 2070 2007 2071 static int is_trap_at_addr(struct mm_struct * 2008 static int is_trap_at_addr(struct mm_struct *mm, unsigned long vaddr) 2072 { 2009 { 2073 struct page *page; 2010 struct page *page; 2074 uprobe_opcode_t opcode; 2011 uprobe_opcode_t opcode; 2075 int result; 2012 int result; 2076 2013 2077 if (WARN_ON_ONCE(!IS_ALIGNED(vaddr, U 2014 if (WARN_ON_ONCE(!IS_ALIGNED(vaddr, UPROBE_SWBP_INSN_SIZE))) 2078 return -EINVAL; 2015 return -EINVAL; 2079 2016 2080 pagefault_disable(); 2017 pagefault_disable(); 2081 result = __get_user(opcode, (uprobe_o 2018 result = __get_user(opcode, (uprobe_opcode_t __user *)vaddr); 2082 pagefault_enable(); 2019 pagefault_enable(); 2083 2020 2084 if (likely(result == 0)) 2021 if (likely(result == 0)) 2085 goto out; 2022 goto out; 2086 2023 2087 result = get_user_pages(vaddr, 1, FOL !! 2024 /* >> 2025 * The NULL 'tsk' here ensures that any faults that occur here >> 2026 * will not be accounted to the task. 'mm' *is* current->mm, >> 2027 * but we treat this as a 'remote' access since it is >> 2028 * essentially a kernel access to the memory. >> 2029 */ >> 2030 result = get_user_pages_remote(mm, vaddr, 1, FOLL_FORCE, &page, >> 2031 NULL, NULL); 2088 if (result < 0) 2032 if (result < 0) 2089 return result; 2033 return result; 2090 2034 2091 copy_from_page(page, vaddr, &opcode, 2035 copy_from_page(page, vaddr, &opcode, UPROBE_SWBP_INSN_SIZE); 2092 put_page(page); 2036 put_page(page); 2093 out: 2037 out: 2094 /* This needs to return true for any 2038 /* This needs to return true for any variant of the trap insn */ 2095 return is_trap_insn(&opcode); 2039 return is_trap_insn(&opcode); 2096 } 2040 } 2097 2041 2098 /* assumes being inside RCU protected region !! 2042 static struct uprobe *find_active_uprobe(unsigned long bp_vaddr, int *is_swbp) 2099 static struct uprobe *find_active_uprobe_rcu( << 2100 { 2043 { 2101 struct mm_struct *mm = current->mm; 2044 struct mm_struct *mm = current->mm; 2102 struct uprobe *uprobe = NULL; 2045 struct uprobe *uprobe = NULL; 2103 struct vm_area_struct *vma; 2046 struct vm_area_struct *vma; 2104 2047 2105 mmap_read_lock(mm); 2048 mmap_read_lock(mm); 2106 vma = vma_lookup(mm, bp_vaddr); 2049 vma = vma_lookup(mm, bp_vaddr); 2107 if (vma) { 2050 if (vma) { 2108 if (valid_vma(vma, false)) { 2051 if (valid_vma(vma, false)) { 2109 struct inode *inode = 2052 struct inode *inode = file_inode(vma->vm_file); 2110 loff_t offset = vaddr 2053 loff_t offset = vaddr_to_offset(vma, bp_vaddr); 2111 2054 2112 uprobe = find_uprobe_ !! 2055 uprobe = find_uprobe(inode, offset); 2113 } 2056 } 2114 2057 2115 if (!uprobe) 2058 if (!uprobe) 2116 *is_swbp = is_trap_at 2059 *is_swbp = is_trap_at_addr(mm, bp_vaddr); 2117 } else { 2060 } else { 2118 *is_swbp = -EFAULT; 2061 *is_swbp = -EFAULT; 2119 } 2062 } 2120 2063 2121 if (!uprobe && test_and_clear_bit(MMF 2064 if (!uprobe && test_and_clear_bit(MMF_RECALC_UPROBES, &mm->flags)) 2122 mmf_recalc_uprobes(mm); 2065 mmf_recalc_uprobes(mm); 2123 mmap_read_unlock(mm); 2066 mmap_read_unlock(mm); 2124 2067 2125 return uprobe; 2068 return uprobe; 2126 } 2069 } 2127 2070 2128 static void handler_chain(struct uprobe *upro 2071 static void handler_chain(struct uprobe *uprobe, struct pt_regs *regs) 2129 { 2072 { 2130 struct uprobe_consumer *uc; 2073 struct uprobe_consumer *uc; 2131 int remove = UPROBE_HANDLER_REMOVE; 2074 int remove = UPROBE_HANDLER_REMOVE; 2132 bool need_prep = false; /* prepare re 2075 bool need_prep = false; /* prepare return uprobe, when needed */ 2133 bool has_consumers = false; << 2134 << 2135 current->utask->auprobe = &uprobe->ar << 2136 2076 2137 list_for_each_entry_srcu(uc, &uprobe- !! 2077 down_read(&uprobe->register_rwsem); 2138 srcu_read_lo !! 2078 for (uc = uprobe->consumers; uc; uc = uc->next) { 2139 int rc = 0; 2079 int rc = 0; 2140 2080 2141 if (uc->handler) { 2081 if (uc->handler) { 2142 rc = uc->handler(uc, 2082 rc = uc->handler(uc, regs); 2143 WARN(rc & ~UPROBE_HAN 2083 WARN(rc & ~UPROBE_HANDLER_MASK, 2144 "bad rc=0x%x 2084 "bad rc=0x%x from %ps()\n", rc, uc->handler); 2145 } 2085 } 2146 2086 2147 if (uc->ret_handler) 2087 if (uc->ret_handler) 2148 need_prep = true; 2088 need_prep = true; 2149 2089 2150 remove &= rc; 2090 remove &= rc; 2151 has_consumers = true; << 2152 } 2091 } 2153 current->utask->auprobe = NULL; << 2154 2092 2155 if (need_prep && !remove) 2093 if (need_prep && !remove) 2156 prepare_uretprobe(uprobe, reg 2094 prepare_uretprobe(uprobe, regs); /* put bp at return */ 2157 2095 2158 if (remove && has_consumers) { !! 2096 if (remove && uprobe->consumers) { 2159 down_read(&uprobe->register_r !! 2097 WARN_ON(!uprobe_is_active(uprobe)); 2160 !! 2098 unapply_uprobe(uprobe, current->mm); 2161 /* re-check that removal is s << 2162 if (!filter_chain(uprobe, cur << 2163 WARN_ON(!uprobe_is_ac << 2164 unapply_uprobe(uprobe << 2165 } << 2166 << 2167 up_read(&uprobe->register_rws << 2168 } 2099 } >> 2100 up_read(&uprobe->register_rwsem); 2169 } 2101 } 2170 2102 2171 static void 2103 static void 2172 handle_uretprobe_chain(struct return_instance 2104 handle_uretprobe_chain(struct return_instance *ri, struct pt_regs *regs) 2173 { 2105 { 2174 struct uprobe *uprobe = ri->uprobe; 2106 struct uprobe *uprobe = ri->uprobe; 2175 struct uprobe_consumer *uc; 2107 struct uprobe_consumer *uc; 2176 int srcu_idx; << 2177 2108 2178 srcu_idx = srcu_read_lock(&uprobes_sr !! 2109 down_read(&uprobe->register_rwsem); 2179 list_for_each_entry_srcu(uc, &uprobe- !! 2110 for (uc = uprobe->consumers; uc; uc = uc->next) { 2180 srcu_read_lo << 2181 if (uc->ret_handler) 2111 if (uc->ret_handler) 2182 uc->ret_handler(uc, r 2112 uc->ret_handler(uc, ri->func, regs); 2183 } 2113 } 2184 srcu_read_unlock(&uprobes_srcu, srcu_ !! 2114 up_read(&uprobe->register_rwsem); 2185 } 2115 } 2186 2116 2187 static struct return_instance *find_next_ret_ 2117 static struct return_instance *find_next_ret_chain(struct return_instance *ri) 2188 { 2118 { 2189 bool chained; 2119 bool chained; 2190 2120 2191 do { 2121 do { 2192 chained = ri->chained; 2122 chained = ri->chained; 2193 ri = ri->next; /* can't be N 2123 ri = ri->next; /* can't be NULL if chained */ 2194 } while (chained); 2124 } while (chained); 2195 2125 2196 return ri; 2126 return ri; 2197 } 2127 } 2198 2128 2199 void uprobe_handle_trampoline(struct pt_regs !! 2129 static void handle_trampoline(struct pt_regs *regs) 2200 { 2130 { 2201 struct uprobe_task *utask; 2131 struct uprobe_task *utask; 2202 struct return_instance *ri, *next; 2132 struct return_instance *ri, *next; 2203 bool valid; 2133 bool valid; 2204 2134 2205 utask = current->utask; 2135 utask = current->utask; 2206 if (!utask) 2136 if (!utask) 2207 goto sigill; 2137 goto sigill; 2208 2138 2209 ri = utask->return_instances; 2139 ri = utask->return_instances; 2210 if (!ri) 2140 if (!ri) 2211 goto sigill; 2141 goto sigill; 2212 2142 2213 do { 2143 do { 2214 /* 2144 /* 2215 * We should throw out the fr 2145 * We should throw out the frames invalidated by longjmp(). 2216 * If this chain is valid, th 2146 * If this chain is valid, then the next one should be alive 2217 * or NULL; the latter case m 2147 * or NULL; the latter case means that nobody but ri->func 2218 * could hit this trampoline 2148 * could hit this trampoline on return. TODO: sigaltstack(). 2219 */ 2149 */ 2220 next = find_next_ret_chain(ri 2150 next = find_next_ret_chain(ri); 2221 valid = !next || arch_uretpro 2151 valid = !next || arch_uretprobe_is_alive(next, RP_CHECK_RET, regs); 2222 2152 2223 instruction_pointer_set(regs, 2153 instruction_pointer_set(regs, ri->orig_ret_vaddr); 2224 do { 2154 do { 2225 /* pop current instan << 2226 * as it's not pendin << 2227 * instruction pointe << 2228 * this allows fixup_ << 2229 * captured stack tra << 2230 * trampoline address << 2231 * original return ad << 2232 */ << 2233 utask->return_instanc << 2234 if (valid) 2155 if (valid) 2235 handle_uretpr 2156 handle_uretprobe_chain(ri, regs); 2236 ri = free_ret_instanc 2157 ri = free_ret_instance(ri); 2237 utask->depth--; 2158 utask->depth--; 2238 } while (ri != next); 2159 } while (ri != next); 2239 } while (!valid); 2160 } while (!valid); 2240 2161 2241 utask->return_instances = ri; 2162 utask->return_instances = ri; 2242 return; 2163 return; 2243 2164 2244 sigill: 2165 sigill: 2245 uprobe_warn(current, "handle uretprob 2166 uprobe_warn(current, "handle uretprobe, sending SIGILL."); 2246 force_sig(SIGILL); 2167 force_sig(SIGILL); 2247 2168 2248 } 2169 } 2249 2170 2250 bool __weak arch_uprobe_ignore(struct arch_up 2171 bool __weak arch_uprobe_ignore(struct arch_uprobe *aup, struct pt_regs *regs) 2251 { 2172 { 2252 return false; 2173 return false; 2253 } 2174 } 2254 2175 2255 bool __weak arch_uretprobe_is_alive(struct re 2176 bool __weak arch_uretprobe_is_alive(struct return_instance *ret, enum rp_check ctx, 2256 struc 2177 struct pt_regs *regs) 2257 { 2178 { 2258 return true; 2179 return true; 2259 } 2180 } 2260 2181 2261 /* 2182 /* 2262 * Run handler and ask thread to singlestep. 2183 * Run handler and ask thread to singlestep. 2263 * Ensure all non-fatal signals cannot interr 2184 * Ensure all non-fatal signals cannot interrupt thread while it singlesteps. 2264 */ 2185 */ 2265 static void handle_swbp(struct pt_regs *regs) 2186 static void handle_swbp(struct pt_regs *regs) 2266 { 2187 { 2267 struct uprobe *uprobe; 2188 struct uprobe *uprobe; 2268 unsigned long bp_vaddr; 2189 unsigned long bp_vaddr; 2269 int is_swbp, srcu_idx; !! 2190 int is_swbp; 2270 2191 2271 bp_vaddr = uprobe_get_swbp_addr(regs) 2192 bp_vaddr = uprobe_get_swbp_addr(regs); 2272 if (bp_vaddr == uprobe_get_trampoline !! 2193 if (bp_vaddr == get_trampoline_vaddr()) 2273 return uprobe_handle_trampoli !! 2194 return handle_trampoline(regs); 2274 2195 2275 srcu_idx = srcu_read_lock(&uprobes_sr !! 2196 uprobe = find_active_uprobe(bp_vaddr, &is_swbp); 2276 << 2277 uprobe = find_active_uprobe_rcu(bp_va << 2278 if (!uprobe) { 2197 if (!uprobe) { 2279 if (is_swbp > 0) { 2198 if (is_swbp > 0) { 2280 /* No matching uprobe 2199 /* No matching uprobe; signal SIGTRAP. */ 2281 force_sig(SIGTRAP); 2200 force_sig(SIGTRAP); 2282 } else { 2201 } else { 2283 /* 2202 /* 2284 * Either we raced wi 2203 * Either we raced with uprobe_unregister() or we can't 2285 * access this memory 2204 * access this memory. The latter is only possible if 2286 * another thread pla 2205 * another thread plays with our ->mm. In both cases 2287 * we can simply rest 2206 * we can simply restart. If this vma was unmapped we 2288 * can pretend this i 2207 * can pretend this insn was not executed yet and get 2289 * the (correct) SIGS 2208 * the (correct) SIGSEGV after restart. 2290 */ 2209 */ 2291 instruction_pointer_s 2210 instruction_pointer_set(regs, bp_vaddr); 2292 } 2211 } 2293 goto out; !! 2212 return; 2294 } 2213 } 2295 2214 2296 /* change it in advance for ->handler 2215 /* change it in advance for ->handler() and restart */ 2297 instruction_pointer_set(regs, bp_vadd 2216 instruction_pointer_set(regs, bp_vaddr); 2298 2217 2299 /* 2218 /* 2300 * TODO: move copy_insn/etc into _reg 2219 * TODO: move copy_insn/etc into _register and remove this hack. 2301 * After we hit the bp, _unregister + 2220 * After we hit the bp, _unregister + _register can install the 2302 * new and not-yet-analyzed uprobe at 2221 * new and not-yet-analyzed uprobe at the same address, restart. 2303 */ 2222 */ 2304 if (unlikely(!test_bit(UPROBE_COPY_IN 2223 if (unlikely(!test_bit(UPROBE_COPY_INSN, &uprobe->flags))) 2305 goto out; 2224 goto out; 2306 2225 2307 /* 2226 /* 2308 * Pairs with the smp_wmb() in prepar 2227 * Pairs with the smp_wmb() in prepare_uprobe(). 2309 * 2228 * 2310 * Guarantees that if we see the UPRO 2229 * Guarantees that if we see the UPROBE_COPY_INSN bit set, then 2311 * we must also see the stores to &up 2230 * we must also see the stores to &uprobe->arch performed by the 2312 * prepare_uprobe() call. 2231 * prepare_uprobe() call. 2313 */ 2232 */ 2314 smp_rmb(); 2233 smp_rmb(); 2315 2234 2316 /* Tracing handlers use ->utask to co 2235 /* Tracing handlers use ->utask to communicate with fetch methods */ 2317 if (!get_utask()) 2236 if (!get_utask()) 2318 goto out; 2237 goto out; 2319 2238 2320 if (arch_uprobe_ignore(&uprobe->arch, 2239 if (arch_uprobe_ignore(&uprobe->arch, regs)) 2321 goto out; 2240 goto out; 2322 2241 2323 handler_chain(uprobe, regs); 2242 handler_chain(uprobe, regs); 2324 2243 2325 if (arch_uprobe_skip_sstep(&uprobe->a 2244 if (arch_uprobe_skip_sstep(&uprobe->arch, regs)) 2326 goto out; 2245 goto out; 2327 2246 2328 if (pre_ssout(uprobe, regs, bp_vaddr) !! 2247 if (!pre_ssout(uprobe, regs, bp_vaddr)) 2329 goto out; !! 2248 return; 2330 2249 2331 out: << 2332 /* arch_uprobe_skip_sstep() succeeded 2250 /* arch_uprobe_skip_sstep() succeeded, or restart if can't singlestep */ 2333 srcu_read_unlock(&uprobes_srcu, srcu_ !! 2251 out: >> 2252 put_uprobe(uprobe); 2334 } 2253 } 2335 2254 2336 /* 2255 /* 2337 * Perform required fix-ups and disable singl 2256 * Perform required fix-ups and disable singlestep. 2338 * Allow pending signals to take effect. 2257 * Allow pending signals to take effect. 2339 */ 2258 */ 2340 static void handle_singlestep(struct uprobe_t 2259 static void handle_singlestep(struct uprobe_task *utask, struct pt_regs *regs) 2341 { 2260 { 2342 struct uprobe *uprobe; 2261 struct uprobe *uprobe; 2343 int err = 0; 2262 int err = 0; 2344 2263 2345 uprobe = utask->active_uprobe; 2264 uprobe = utask->active_uprobe; 2346 if (utask->state == UTASK_SSTEP_ACK) 2265 if (utask->state == UTASK_SSTEP_ACK) 2347 err = arch_uprobe_post_xol(&u 2266 err = arch_uprobe_post_xol(&uprobe->arch, regs); 2348 else if (utask->state == UTASK_SSTEP_ 2267 else if (utask->state == UTASK_SSTEP_TRAPPED) 2349 arch_uprobe_abort_xol(&uprobe 2268 arch_uprobe_abort_xol(&uprobe->arch, regs); 2350 else 2269 else 2351 WARN_ON_ONCE(1); 2270 WARN_ON_ONCE(1); 2352 2271 2353 put_uprobe(uprobe); 2272 put_uprobe(uprobe); 2354 utask->active_uprobe = NULL; 2273 utask->active_uprobe = NULL; 2355 utask->state = UTASK_RUNNING; 2274 utask->state = UTASK_RUNNING; 2356 xol_free_insn_slot(current); 2275 xol_free_insn_slot(current); 2357 2276 2358 spin_lock_irq(¤t->sighand->sigl 2277 spin_lock_irq(¤t->sighand->siglock); 2359 recalc_sigpending(); /* see uprobe_de 2278 recalc_sigpending(); /* see uprobe_deny_signal() */ 2360 spin_unlock_irq(¤t->sighand->si 2279 spin_unlock_irq(¤t->sighand->siglock); 2361 2280 2362 if (unlikely(err)) { 2281 if (unlikely(err)) { 2363 uprobe_warn(current, "execute 2282 uprobe_warn(current, "execute the probed insn, sending SIGILL."); 2364 force_sig(SIGILL); 2283 force_sig(SIGILL); 2365 } 2284 } 2366 } 2285 } 2367 2286 2368 /* 2287 /* 2369 * On breakpoint hit, breakpoint notifier set 2288 * On breakpoint hit, breakpoint notifier sets the TIF_UPROBE flag and 2370 * allows the thread to return from interrupt 2289 * allows the thread to return from interrupt. After that handle_swbp() 2371 * sets utask->active_uprobe. 2290 * sets utask->active_uprobe. 2372 * 2291 * 2373 * On singlestep exception, singlestep notifi 2292 * On singlestep exception, singlestep notifier sets the TIF_UPROBE flag 2374 * and allows the thread to return from inter 2293 * and allows the thread to return from interrupt. 2375 * 2294 * 2376 * While returning to userspace, thread notic 2295 * While returning to userspace, thread notices the TIF_UPROBE flag and calls 2377 * uprobe_notify_resume(). 2296 * uprobe_notify_resume(). 2378 */ 2297 */ 2379 void uprobe_notify_resume(struct pt_regs *reg 2298 void uprobe_notify_resume(struct pt_regs *regs) 2380 { 2299 { 2381 struct uprobe_task *utask; 2300 struct uprobe_task *utask; 2382 2301 2383 clear_thread_flag(TIF_UPROBE); 2302 clear_thread_flag(TIF_UPROBE); 2384 2303 2385 utask = current->utask; 2304 utask = current->utask; 2386 if (utask && utask->active_uprobe) 2305 if (utask && utask->active_uprobe) 2387 handle_singlestep(utask, regs 2306 handle_singlestep(utask, regs); 2388 else 2307 else 2389 handle_swbp(regs); 2308 handle_swbp(regs); 2390 } 2309 } 2391 2310 2392 /* 2311 /* 2393 * uprobe_pre_sstep_notifier gets called from 2312 * uprobe_pre_sstep_notifier gets called from interrupt context as part of 2394 * notifier mechanism. Set TIF_UPROBE flag an 2313 * notifier mechanism. Set TIF_UPROBE flag and indicate breakpoint hit. 2395 */ 2314 */ 2396 int uprobe_pre_sstep_notifier(struct pt_regs 2315 int uprobe_pre_sstep_notifier(struct pt_regs *regs) 2397 { 2316 { 2398 if (!current->mm) 2317 if (!current->mm) 2399 return 0; 2318 return 0; 2400 2319 2401 if (!test_bit(MMF_HAS_UPROBES, &curre 2320 if (!test_bit(MMF_HAS_UPROBES, ¤t->mm->flags) && 2402 (!current->utask || !current->uta 2321 (!current->utask || !current->utask->return_instances)) 2403 return 0; 2322 return 0; 2404 2323 2405 set_thread_flag(TIF_UPROBE); 2324 set_thread_flag(TIF_UPROBE); 2406 return 1; 2325 return 1; 2407 } 2326 } 2408 2327 2409 /* 2328 /* 2410 * uprobe_post_sstep_notifier gets called in 2329 * uprobe_post_sstep_notifier gets called in interrupt context as part of notifier 2411 * mechanism. Set TIF_UPROBE flag and indicat 2330 * mechanism. Set TIF_UPROBE flag and indicate completion of singlestep. 2412 */ 2331 */ 2413 int uprobe_post_sstep_notifier(struct pt_regs 2332 int uprobe_post_sstep_notifier(struct pt_regs *regs) 2414 { 2333 { 2415 struct uprobe_task *utask = current-> 2334 struct uprobe_task *utask = current->utask; 2416 2335 2417 if (!current->mm || !utask || !utask- 2336 if (!current->mm || !utask || !utask->active_uprobe) 2418 /* task is currently not upro 2337 /* task is currently not uprobed */ 2419 return 0; 2338 return 0; 2420 2339 2421 utask->state = UTASK_SSTEP_ACK; 2340 utask->state = UTASK_SSTEP_ACK; 2422 set_thread_flag(TIF_UPROBE); 2341 set_thread_flag(TIF_UPROBE); 2423 return 1; 2342 return 1; 2424 } 2343 } 2425 2344 2426 static struct notifier_block uprobe_exception 2345 static struct notifier_block uprobe_exception_nb = { 2427 .notifier_call = arch_uprobe 2346 .notifier_call = arch_uprobe_exception_notify, 2428 .priority = INT_MAX-1, 2347 .priority = INT_MAX-1, /* notified after kprobes, kgdb */ 2429 }; 2348 }; 2430 2349 2431 void __init uprobes_init(void) 2350 void __init uprobes_init(void) 2432 { 2351 { 2433 int i; 2352 int i; 2434 2353 2435 for (i = 0; i < UPROBES_HASH_SZ; i++) 2354 for (i = 0; i < UPROBES_HASH_SZ; i++) 2436 mutex_init(&uprobes_mmap_mute 2355 mutex_init(&uprobes_mmap_mutex[i]); 2437 2356 2438 BUG_ON(register_die_notifier(&uprobe_ 2357 BUG_ON(register_die_notifier(&uprobe_exception_nb)); 2439 } 2358 } 2440 2359
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.