1 // SPDX-License-Identifier: GPL-2.0+ 1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 2 /* 3 * User-space Probes (UProbes) 3 * User-space Probes (UProbes) 4 * 4 * 5 * Copyright (C) IBM Corporation, 2008-2012 5 * Copyright (C) IBM Corporation, 2008-2012 6 * Authors: 6 * Authors: 7 * Srikar Dronamraju 7 * Srikar Dronamraju 8 * Jim Keniston 8 * Jim Keniston 9 * Copyright (C) 2011-2012 Red Hat, Inc., Pete 9 * Copyright (C) 2011-2012 Red Hat, Inc., Peter Zijlstra 10 */ 10 */ 11 11 12 #include <linux/kernel.h> 12 #include <linux/kernel.h> 13 #include <linux/highmem.h> 13 #include <linux/highmem.h> 14 #include <linux/pagemap.h> /* read_mappin 14 #include <linux/pagemap.h> /* read_mapping_page */ 15 #include <linux/slab.h> 15 #include <linux/slab.h> 16 #include <linux/sched.h> 16 #include <linux/sched.h> 17 #include <linux/sched/mm.h> 17 #include <linux/sched/mm.h> 18 #include <linux/sched/coredump.h> 18 #include <linux/sched/coredump.h> 19 #include <linux/export.h> 19 #include <linux/export.h> 20 #include <linux/rmap.h> /* anon_vma_pr 20 #include <linux/rmap.h> /* anon_vma_prepare */ 21 #include <linux/mmu_notifier.h> 21 #include <linux/mmu_notifier.h> 22 #include <linux/swap.h> /* folio_free_ 22 #include <linux/swap.h> /* folio_free_swap */ 23 #include <linux/ptrace.h> /* user_enable 23 #include <linux/ptrace.h> /* user_enable_single_step */ 24 #include <linux/kdebug.h> /* notifier me 24 #include <linux/kdebug.h> /* notifier mechanism */ 25 #include <linux/percpu-rwsem.h> 25 #include <linux/percpu-rwsem.h> 26 #include <linux/task_work.h> 26 #include <linux/task_work.h> 27 #include <linux/shmem_fs.h> 27 #include <linux/shmem_fs.h> 28 #include <linux/khugepaged.h> 28 #include <linux/khugepaged.h> 29 29 30 #include <linux/uprobes.h> 30 #include <linux/uprobes.h> 31 31 32 #define UINSNS_PER_PAGE (PAGE_ 32 #define UINSNS_PER_PAGE (PAGE_SIZE/UPROBE_XOL_SLOT_BYTES) 33 #define MAX_UPROBE_XOL_SLOTS UINSNS 33 #define MAX_UPROBE_XOL_SLOTS UINSNS_PER_PAGE 34 34 35 static struct rb_root uprobes_tree = RB_ROOT; 35 static struct rb_root uprobes_tree = RB_ROOT; 36 /* 36 /* 37 * allows us to skip the uprobe_mmap if there 37 * allows us to skip the uprobe_mmap if there are no uprobe events active 38 * at this time. Probably a fine grained per 38 * at this time. Probably a fine grained per inode count is better? 39 */ 39 */ 40 #define no_uprobe_events() RB_EMPTY_ROOT( 40 #define no_uprobe_events() RB_EMPTY_ROOT(&uprobes_tree) 41 41 42 static DEFINE_RWLOCK(uprobes_treelock); /* ser 42 static DEFINE_RWLOCK(uprobes_treelock); /* serialize rbtree access */ 43 static seqcount_rwlock_t uprobes_seqcount = SE 43 static seqcount_rwlock_t uprobes_seqcount = SEQCNT_RWLOCK_ZERO(uprobes_seqcount, &uprobes_treelock); 44 44 45 DEFINE_STATIC_SRCU(uprobes_srcu); 45 DEFINE_STATIC_SRCU(uprobes_srcu); 46 46 47 #define UPROBES_HASH_SZ 13 47 #define UPROBES_HASH_SZ 13 48 /* serialize uprobe->pending_list */ 48 /* serialize uprobe->pending_list */ 49 static struct mutex uprobes_mmap_mutex[UPROBES 49 static struct mutex uprobes_mmap_mutex[UPROBES_HASH_SZ]; 50 #define uprobes_mmap_hash(v) (&uprobes_mmap 50 #define uprobes_mmap_hash(v) (&uprobes_mmap_mutex[((unsigned long)(v)) % UPROBES_HASH_SZ]) 51 51 52 DEFINE_STATIC_PERCPU_RWSEM(dup_mmap_sem); 52 DEFINE_STATIC_PERCPU_RWSEM(dup_mmap_sem); 53 53 54 /* Have a copy of original instruction */ 54 /* Have a copy of original instruction */ 55 #define UPROBE_COPY_INSN 0 55 #define UPROBE_COPY_INSN 0 56 56 57 struct uprobe { 57 struct uprobe { 58 struct rb_node rb_node; 58 struct rb_node rb_node; /* node in the rb tree */ 59 refcount_t ref; 59 refcount_t ref; 60 struct rw_semaphore register_rwsem 60 struct rw_semaphore register_rwsem; 61 struct rw_semaphore consumer_rwsem 61 struct rw_semaphore consumer_rwsem; 62 struct list_head pending_list; 62 struct list_head pending_list; 63 struct list_head consumers; 63 struct list_head consumers; 64 struct inode *inode; 64 struct inode *inode; /* Also hold a ref to inode */ 65 struct rcu_head rcu; 65 struct rcu_head rcu; 66 loff_t offset; 66 loff_t offset; 67 loff_t ref_ctr_offset 67 loff_t ref_ctr_offset; 68 unsigned long flags; 68 unsigned long flags; 69 69 70 /* 70 /* 71 * The generic code assumes that it ha 71 * The generic code assumes that it has two members of unknown type 72 * owned by the arch-specific code: 72 * owned by the arch-specific code: 73 * 73 * 74 * insn - copy_insn() saves the 74 * insn - copy_insn() saves the original instruction here for 75 * arch_uprobe_analyze_in 75 * arch_uprobe_analyze_insn(). 76 * 76 * 77 * ixol - potentially modified i 77 * ixol - potentially modified instruction to execute out of 78 * line, copied to xol_ar 78 * line, copied to xol_area by xol_get_insn_slot(). 79 */ 79 */ 80 struct arch_uprobe arch; 80 struct arch_uprobe arch; 81 }; 81 }; 82 82 83 struct delayed_uprobe { 83 struct delayed_uprobe { 84 struct list_head list; 84 struct list_head list; 85 struct uprobe *uprobe; 85 struct uprobe *uprobe; 86 struct mm_struct *mm; 86 struct mm_struct *mm; 87 }; 87 }; 88 88 89 static DEFINE_MUTEX(delayed_uprobe_lock); 89 static DEFINE_MUTEX(delayed_uprobe_lock); 90 static LIST_HEAD(delayed_uprobe_list); 90 static LIST_HEAD(delayed_uprobe_list); 91 91 92 /* 92 /* 93 * Execute out of line area: anonymous executa 93 * Execute out of line area: anonymous executable mapping installed 94 * by the probed task to execute the copy of t 94 * by the probed task to execute the copy of the original instruction 95 * mangled by set_swbp(). 95 * mangled by set_swbp(). 96 * 96 * 97 * On a breakpoint hit, thread contests for a 97 * On a breakpoint hit, thread contests for a slot. It frees the 98 * slot after singlestep. Currently a fixed nu 98 * slot after singlestep. Currently a fixed number of slots are 99 * allocated. 99 * allocated. 100 */ 100 */ 101 struct xol_area { 101 struct xol_area { 102 wait_queue_head_t wq; 102 wait_queue_head_t wq; /* if all slots are busy */ 103 atomic_t slot_c 103 atomic_t slot_count; /* number of in-use slots */ 104 unsigned long *bitma 104 unsigned long *bitmap; /* 0 = free slot */ 105 105 106 struct page *page; 106 struct page *page; 107 /* 107 /* 108 * We keep the vma's vm_start rather t 108 * We keep the vma's vm_start rather than a pointer to the vma 109 * itself. The probed process or a na 109 * itself. The probed process or a naughty kernel module could make 110 * the vma go away, and we must handle 110 * the vma go away, and we must handle that reasonably gracefully. 111 */ 111 */ 112 unsigned long vaddr; 112 unsigned long vaddr; /* Page(s) of instruction slots */ 113 }; 113 }; 114 114 115 static void uprobe_warn(struct task_struct *t, 115 static void uprobe_warn(struct task_struct *t, const char *msg) 116 { 116 { 117 pr_warn("uprobe: %s:%d failed to %s\n" 117 pr_warn("uprobe: %s:%d failed to %s\n", current->comm, current->pid, msg); 118 } 118 } 119 119 120 /* 120 /* 121 * valid_vma: Verify if the specified vma is a 121 * valid_vma: Verify if the specified vma is an executable vma 122 * Relax restrictions while unregistering: vm_ 122 * Relax restrictions while unregistering: vm_flags might have 123 * changed after breakpoint was inserted. 123 * changed after breakpoint was inserted. 124 * - is_register: indicates if we are in 124 * - is_register: indicates if we are in register context. 125 * - Return 1 if the specified virtual ad 125 * - Return 1 if the specified virtual address is in an 126 * executable vma. 126 * executable vma. 127 */ 127 */ 128 static bool valid_vma(struct vm_area_struct *v 128 static bool valid_vma(struct vm_area_struct *vma, bool is_register) 129 { 129 { 130 vm_flags_t flags = VM_HUGETLB | VM_MAY 130 vm_flags_t flags = VM_HUGETLB | VM_MAYEXEC | VM_MAYSHARE; 131 131 132 if (is_register) 132 if (is_register) 133 flags |= VM_WRITE; 133 flags |= VM_WRITE; 134 134 135 return vma->vm_file && (vma->vm_flags 135 return vma->vm_file && (vma->vm_flags & flags) == VM_MAYEXEC; 136 } 136 } 137 137 138 static unsigned long offset_to_vaddr(struct vm 138 static unsigned long offset_to_vaddr(struct vm_area_struct *vma, loff_t offset) 139 { 139 { 140 return vma->vm_start + offset - ((loff 140 return vma->vm_start + offset - ((loff_t)vma->vm_pgoff << PAGE_SHIFT); 141 } 141 } 142 142 143 static loff_t vaddr_to_offset(struct vm_area_s 143 static loff_t vaddr_to_offset(struct vm_area_struct *vma, unsigned long vaddr) 144 { 144 { 145 return ((loff_t)vma->vm_pgoff << PAGE_ 145 return ((loff_t)vma->vm_pgoff << PAGE_SHIFT) + (vaddr - vma->vm_start); 146 } 146 } 147 147 148 /** 148 /** 149 * __replace_page - replace page in vma by new 149 * __replace_page - replace page in vma by new page. 150 * based on replace_page in mm/ksm.c 150 * based on replace_page in mm/ksm.c 151 * 151 * 152 * @vma: vma that holds the pte pointing 152 * @vma: vma that holds the pte pointing to page 153 * @addr: address the old @page is mapped 153 * @addr: address the old @page is mapped at 154 * @old_page: the page we are replacing by new 154 * @old_page: the page we are replacing by new_page 155 * @new_page: the modified page we replace pag 155 * @new_page: the modified page we replace page by 156 * 156 * 157 * If @new_page is NULL, only unmap @old_page. 157 * If @new_page is NULL, only unmap @old_page. 158 * 158 * 159 * Returns 0 on success, negative error code o 159 * Returns 0 on success, negative error code otherwise. 160 */ 160 */ 161 static int __replace_page(struct vm_area_struc 161 static int __replace_page(struct vm_area_struct *vma, unsigned long addr, 162 struct page *o 162 struct page *old_page, struct page *new_page) 163 { 163 { 164 struct folio *old_folio = page_folio(o 164 struct folio *old_folio = page_folio(old_page); 165 struct folio *new_folio; 165 struct folio *new_folio; 166 struct mm_struct *mm = vma->vm_mm; 166 struct mm_struct *mm = vma->vm_mm; 167 DEFINE_FOLIO_VMA_WALK(pvmw, old_folio, 167 DEFINE_FOLIO_VMA_WALK(pvmw, old_folio, vma, addr, 0); 168 int err; 168 int err; 169 struct mmu_notifier_range range; 169 struct mmu_notifier_range range; 170 170 171 mmu_notifier_range_init(&range, MMU_NO 171 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, addr, 172 addr + PAGE_SI 172 addr + PAGE_SIZE); 173 173 174 if (new_page) { 174 if (new_page) { 175 new_folio = page_folio(new_pag 175 new_folio = page_folio(new_page); 176 err = mem_cgroup_charge(new_fo 176 err = mem_cgroup_charge(new_folio, vma->vm_mm, GFP_KERNEL); 177 if (err) 177 if (err) 178 return err; 178 return err; 179 } 179 } 180 180 181 /* For folio_free_swap() below */ 181 /* For folio_free_swap() below */ 182 folio_lock(old_folio); 182 folio_lock(old_folio); 183 183 184 mmu_notifier_invalidate_range_start(&r 184 mmu_notifier_invalidate_range_start(&range); 185 err = -EAGAIN; 185 err = -EAGAIN; 186 if (!page_vma_mapped_walk(&pvmw)) 186 if (!page_vma_mapped_walk(&pvmw)) 187 goto unlock; 187 goto unlock; 188 VM_BUG_ON_PAGE(addr != pvmw.address, o 188 VM_BUG_ON_PAGE(addr != pvmw.address, old_page); 189 189 190 if (new_page) { 190 if (new_page) { 191 folio_get(new_folio); 191 folio_get(new_folio); 192 folio_add_new_anon_rmap(new_fo 192 folio_add_new_anon_rmap(new_folio, vma, addr, RMAP_EXCLUSIVE); 193 folio_add_lru_vma(new_folio, v 193 folio_add_lru_vma(new_folio, vma); 194 } else 194 } else 195 /* no new page, just dec_mm_co 195 /* no new page, just dec_mm_counter for old_page */ 196 dec_mm_counter(mm, MM_ANONPAGE 196 dec_mm_counter(mm, MM_ANONPAGES); 197 197 198 if (!folio_test_anon(old_folio)) { 198 if (!folio_test_anon(old_folio)) { 199 dec_mm_counter(mm, mm_counter_ 199 dec_mm_counter(mm, mm_counter_file(old_folio)); 200 inc_mm_counter(mm, MM_ANONPAGE 200 inc_mm_counter(mm, MM_ANONPAGES); 201 } 201 } 202 202 203 flush_cache_page(vma, addr, pte_pfn(pt 203 flush_cache_page(vma, addr, pte_pfn(ptep_get(pvmw.pte))); 204 ptep_clear_flush(vma, addr, pvmw.pte); 204 ptep_clear_flush(vma, addr, pvmw.pte); 205 if (new_page) 205 if (new_page) 206 set_pte_at(mm, addr, pvmw.pte, 206 set_pte_at(mm, addr, pvmw.pte, 207 mk_pte(new_page, vm 207 mk_pte(new_page, vma->vm_page_prot)); 208 208 209 folio_remove_rmap_pte(old_folio, old_p 209 folio_remove_rmap_pte(old_folio, old_page, vma); 210 if (!folio_mapped(old_folio)) 210 if (!folio_mapped(old_folio)) 211 folio_free_swap(old_folio); 211 folio_free_swap(old_folio); 212 page_vma_mapped_walk_done(&pvmw); 212 page_vma_mapped_walk_done(&pvmw); 213 folio_put(old_folio); 213 folio_put(old_folio); 214 214 215 err = 0; 215 err = 0; 216 unlock: 216 unlock: 217 mmu_notifier_invalidate_range_end(&ran 217 mmu_notifier_invalidate_range_end(&range); 218 folio_unlock(old_folio); 218 folio_unlock(old_folio); 219 return err; 219 return err; 220 } 220 } 221 221 222 /** 222 /** 223 * is_swbp_insn - check if instruction is brea 223 * is_swbp_insn - check if instruction is breakpoint instruction. 224 * @insn: instruction to be checked. 224 * @insn: instruction to be checked. 225 * Default implementation of is_swbp_insn 225 * Default implementation of is_swbp_insn 226 * Returns true if @insn is a breakpoint instr 226 * Returns true if @insn is a breakpoint instruction. 227 */ 227 */ 228 bool __weak is_swbp_insn(uprobe_opcode_t *insn 228 bool __weak is_swbp_insn(uprobe_opcode_t *insn) 229 { 229 { 230 return *insn == UPROBE_SWBP_INSN; 230 return *insn == UPROBE_SWBP_INSN; 231 } 231 } 232 232 233 /** 233 /** 234 * is_trap_insn - check if instruction is brea 234 * is_trap_insn - check if instruction is breakpoint instruction. 235 * @insn: instruction to be checked. 235 * @insn: instruction to be checked. 236 * Default implementation of is_trap_insn 236 * Default implementation of is_trap_insn 237 * Returns true if @insn is a breakpoint instr 237 * Returns true if @insn is a breakpoint instruction. 238 * 238 * 239 * This function is needed for the case where 239 * This function is needed for the case where an architecture has multiple 240 * trap instructions (like powerpc). 240 * trap instructions (like powerpc). 241 */ 241 */ 242 bool __weak is_trap_insn(uprobe_opcode_t *insn 242 bool __weak is_trap_insn(uprobe_opcode_t *insn) 243 { 243 { 244 return is_swbp_insn(insn); 244 return is_swbp_insn(insn); 245 } 245 } 246 246 247 static void copy_from_page(struct page *page, 247 static void copy_from_page(struct page *page, unsigned long vaddr, void *dst, int len) 248 { 248 { 249 void *kaddr = kmap_atomic(page); 249 void *kaddr = kmap_atomic(page); 250 memcpy(dst, kaddr + (vaddr & ~PAGE_MAS 250 memcpy(dst, kaddr + (vaddr & ~PAGE_MASK), len); 251 kunmap_atomic(kaddr); 251 kunmap_atomic(kaddr); 252 } 252 } 253 253 254 static void copy_to_page(struct page *page, un 254 static void copy_to_page(struct page *page, unsigned long vaddr, const void *src, int len) 255 { 255 { 256 void *kaddr = kmap_atomic(page); 256 void *kaddr = kmap_atomic(page); 257 memcpy(kaddr + (vaddr & ~PAGE_MASK), s 257 memcpy(kaddr + (vaddr & ~PAGE_MASK), src, len); 258 kunmap_atomic(kaddr); 258 kunmap_atomic(kaddr); 259 } 259 } 260 260 261 static int verify_opcode(struct page *page, un 261 static int verify_opcode(struct page *page, unsigned long vaddr, uprobe_opcode_t *new_opcode) 262 { 262 { 263 uprobe_opcode_t old_opcode; 263 uprobe_opcode_t old_opcode; 264 bool is_swbp; 264 bool is_swbp; 265 265 266 /* 266 /* 267 * Note: We only check if the old_opco 267 * Note: We only check if the old_opcode is UPROBE_SWBP_INSN here. 268 * We do not check if it is any other 268 * We do not check if it is any other 'trap variant' which could 269 * be conditional trap instruction suc 269 * be conditional trap instruction such as the one powerpc supports. 270 * 270 * 271 * The logic is that we do not care if 271 * The logic is that we do not care if the underlying instruction 272 * is a trap variant; uprobes always w 272 * is a trap variant; uprobes always wins over any other (gdb) 273 * breakpoint. 273 * breakpoint. 274 */ 274 */ 275 copy_from_page(page, vaddr, &old_opcod 275 copy_from_page(page, vaddr, &old_opcode, UPROBE_SWBP_INSN_SIZE); 276 is_swbp = is_swbp_insn(&old_opcode); 276 is_swbp = is_swbp_insn(&old_opcode); 277 277 278 if (is_swbp_insn(new_opcode)) { 278 if (is_swbp_insn(new_opcode)) { 279 if (is_swbp) /* reg 279 if (is_swbp) /* register: already installed? */ 280 return 0; 280 return 0; 281 } else { 281 } else { 282 if (!is_swbp) /* unr 282 if (!is_swbp) /* unregister: was it changed by us? */ 283 return 0; 283 return 0; 284 } 284 } 285 285 286 return 1; 286 return 1; 287 } 287 } 288 288 289 static struct delayed_uprobe * 289 static struct delayed_uprobe * 290 delayed_uprobe_check(struct uprobe *uprobe, st 290 delayed_uprobe_check(struct uprobe *uprobe, struct mm_struct *mm) 291 { 291 { 292 struct delayed_uprobe *du; 292 struct delayed_uprobe *du; 293 293 294 list_for_each_entry(du, &delayed_uprob 294 list_for_each_entry(du, &delayed_uprobe_list, list) 295 if (du->uprobe == uprobe && du 295 if (du->uprobe == uprobe && du->mm == mm) 296 return du; 296 return du; 297 return NULL; 297 return NULL; 298 } 298 } 299 299 300 static int delayed_uprobe_add(struct uprobe *u 300 static int delayed_uprobe_add(struct uprobe *uprobe, struct mm_struct *mm) 301 { 301 { 302 struct delayed_uprobe *du; 302 struct delayed_uprobe *du; 303 303 304 if (delayed_uprobe_check(uprobe, mm)) 304 if (delayed_uprobe_check(uprobe, mm)) 305 return 0; 305 return 0; 306 306 307 du = kzalloc(sizeof(*du), GFP_KERNEL) 307 du = kzalloc(sizeof(*du), GFP_KERNEL); 308 if (!du) 308 if (!du) 309 return -ENOMEM; 309 return -ENOMEM; 310 310 311 du->uprobe = uprobe; 311 du->uprobe = uprobe; 312 du->mm = mm; 312 du->mm = mm; 313 list_add(&du->list, &delayed_uprobe_li 313 list_add(&du->list, &delayed_uprobe_list); 314 return 0; 314 return 0; 315 } 315 } 316 316 317 static void delayed_uprobe_delete(struct delay 317 static void delayed_uprobe_delete(struct delayed_uprobe *du) 318 { 318 { 319 if (WARN_ON(!du)) 319 if (WARN_ON(!du)) 320 return; 320 return; 321 list_del(&du->list); 321 list_del(&du->list); 322 kfree(du); 322 kfree(du); 323 } 323 } 324 324 325 static void delayed_uprobe_remove(struct uprob 325 static void delayed_uprobe_remove(struct uprobe *uprobe, struct mm_struct *mm) 326 { 326 { 327 struct list_head *pos, *q; 327 struct list_head *pos, *q; 328 struct delayed_uprobe *du; 328 struct delayed_uprobe *du; 329 329 330 if (!uprobe && !mm) 330 if (!uprobe && !mm) 331 return; 331 return; 332 332 333 list_for_each_safe(pos, q, &delayed_up 333 list_for_each_safe(pos, q, &delayed_uprobe_list) { 334 du = list_entry(pos, struct de 334 du = list_entry(pos, struct delayed_uprobe, list); 335 335 336 if (uprobe && du->uprobe != up 336 if (uprobe && du->uprobe != uprobe) 337 continue; 337 continue; 338 if (mm && du->mm != mm) 338 if (mm && du->mm != mm) 339 continue; 339 continue; 340 340 341 delayed_uprobe_delete(du); 341 delayed_uprobe_delete(du); 342 } 342 } 343 } 343 } 344 344 345 static bool valid_ref_ctr_vma(struct uprobe *u 345 static bool valid_ref_ctr_vma(struct uprobe *uprobe, 346 struct vm_area_s 346 struct vm_area_struct *vma) 347 { 347 { 348 unsigned long vaddr = offset_to_vaddr( 348 unsigned long vaddr = offset_to_vaddr(vma, uprobe->ref_ctr_offset); 349 349 350 return uprobe->ref_ctr_offset && 350 return uprobe->ref_ctr_offset && 351 vma->vm_file && 351 vma->vm_file && 352 file_inode(vma->vm_file) == up 352 file_inode(vma->vm_file) == uprobe->inode && 353 (vma->vm_flags & (VM_WRITE|VM_ 353 (vma->vm_flags & (VM_WRITE|VM_SHARED)) == VM_WRITE && 354 vma->vm_start <= vaddr && 354 vma->vm_start <= vaddr && 355 vma->vm_end > vaddr; 355 vma->vm_end > vaddr; 356 } 356 } 357 357 358 static struct vm_area_struct * 358 static struct vm_area_struct * 359 find_ref_ctr_vma(struct uprobe *uprobe, struct 359 find_ref_ctr_vma(struct uprobe *uprobe, struct mm_struct *mm) 360 { 360 { 361 VMA_ITERATOR(vmi, mm, 0); 361 VMA_ITERATOR(vmi, mm, 0); 362 struct vm_area_struct *tmp; 362 struct vm_area_struct *tmp; 363 363 364 for_each_vma(vmi, tmp) 364 for_each_vma(vmi, tmp) 365 if (valid_ref_ctr_vma(uprobe, 365 if (valid_ref_ctr_vma(uprobe, tmp)) 366 return tmp; 366 return tmp; 367 367 368 return NULL; 368 return NULL; 369 } 369 } 370 370 371 static int 371 static int 372 __update_ref_ctr(struct mm_struct *mm, unsigne 372 __update_ref_ctr(struct mm_struct *mm, unsigned long vaddr, short d) 373 { 373 { 374 void *kaddr; 374 void *kaddr; 375 struct page *page; 375 struct page *page; 376 int ret; 376 int ret; 377 short *ptr; 377 short *ptr; 378 378 379 if (!vaddr || !d) 379 if (!vaddr || !d) 380 return -EINVAL; 380 return -EINVAL; 381 381 382 ret = get_user_pages_remote(mm, vaddr, 382 ret = get_user_pages_remote(mm, vaddr, 1, 383 FOLL_WRITE 383 FOLL_WRITE, &page, NULL); 384 if (unlikely(ret <= 0)) { 384 if (unlikely(ret <= 0)) { 385 /* 385 /* 386 * We are asking for 1 page. I 386 * We are asking for 1 page. If get_user_pages_remote() fails, 387 * it may return 0, in that ca 387 * it may return 0, in that case we have to return error. 388 */ 388 */ 389 return ret == 0 ? -EBUSY : ret 389 return ret == 0 ? -EBUSY : ret; 390 } 390 } 391 391 392 kaddr = kmap_atomic(page); 392 kaddr = kmap_atomic(page); 393 ptr = kaddr + (vaddr & ~PAGE_MASK); 393 ptr = kaddr + (vaddr & ~PAGE_MASK); 394 394 395 if (unlikely(*ptr + d < 0)) { 395 if (unlikely(*ptr + d < 0)) { 396 pr_warn("ref_ctr going negativ 396 pr_warn("ref_ctr going negative. vaddr: 0x%lx, " 397 "curr val: %d, delta: 397 "curr val: %d, delta: %d\n", vaddr, *ptr, d); 398 ret = -EINVAL; 398 ret = -EINVAL; 399 goto out; 399 goto out; 400 } 400 } 401 401 402 *ptr += d; 402 *ptr += d; 403 ret = 0; 403 ret = 0; 404 out: 404 out: 405 kunmap_atomic(kaddr); 405 kunmap_atomic(kaddr); 406 put_page(page); 406 put_page(page); 407 return ret; 407 return ret; 408 } 408 } 409 409 410 static void update_ref_ctr_warn(struct uprobe 410 static void update_ref_ctr_warn(struct uprobe *uprobe, 411 struct mm_stru 411 struct mm_struct *mm, short d) 412 { 412 { 413 pr_warn("ref_ctr %s failed for inode: 413 pr_warn("ref_ctr %s failed for inode: 0x%lx offset: " 414 "0x%llx ref_ctr_offset: 0x%llx 414 "0x%llx ref_ctr_offset: 0x%llx of mm: 0x%pK\n", 415 d > 0 ? "increment" : "decreme 415 d > 0 ? "increment" : "decrement", uprobe->inode->i_ino, 416 (unsigned long long) uprobe->o 416 (unsigned long long) uprobe->offset, 417 (unsigned long long) uprobe->r 417 (unsigned long long) uprobe->ref_ctr_offset, mm); 418 } 418 } 419 419 420 static int update_ref_ctr(struct uprobe *uprob 420 static int update_ref_ctr(struct uprobe *uprobe, struct mm_struct *mm, 421 short d) 421 short d) 422 { 422 { 423 struct vm_area_struct *rc_vma; 423 struct vm_area_struct *rc_vma; 424 unsigned long rc_vaddr; 424 unsigned long rc_vaddr; 425 int ret = 0; 425 int ret = 0; 426 426 427 rc_vma = find_ref_ctr_vma(uprobe, mm); 427 rc_vma = find_ref_ctr_vma(uprobe, mm); 428 428 429 if (rc_vma) { 429 if (rc_vma) { 430 rc_vaddr = offset_to_vaddr(rc_ 430 rc_vaddr = offset_to_vaddr(rc_vma, uprobe->ref_ctr_offset); 431 ret = __update_ref_ctr(mm, rc_ 431 ret = __update_ref_ctr(mm, rc_vaddr, d); 432 if (ret) 432 if (ret) 433 update_ref_ctr_warn(up 433 update_ref_ctr_warn(uprobe, mm, d); 434 434 435 if (d > 0) 435 if (d > 0) 436 return ret; 436 return ret; 437 } 437 } 438 438 439 mutex_lock(&delayed_uprobe_lock); 439 mutex_lock(&delayed_uprobe_lock); 440 if (d > 0) 440 if (d > 0) 441 ret = delayed_uprobe_add(uprob 441 ret = delayed_uprobe_add(uprobe, mm); 442 else 442 else 443 delayed_uprobe_remove(uprobe, 443 delayed_uprobe_remove(uprobe, mm); 444 mutex_unlock(&delayed_uprobe_lock); 444 mutex_unlock(&delayed_uprobe_lock); 445 445 446 return ret; 446 return ret; 447 } 447 } 448 448 449 /* 449 /* 450 * NOTE: 450 * NOTE: 451 * Expect the breakpoint instruction to be the 451 * Expect the breakpoint instruction to be the smallest size instruction for 452 * the architecture. If an arch has variable l 452 * the architecture. If an arch has variable length instruction and the 453 * breakpoint instruction is not of the smalle 453 * breakpoint instruction is not of the smallest length instruction 454 * supported by that architecture then we need 454 * supported by that architecture then we need to modify is_trap_at_addr and 455 * uprobe_write_opcode accordingly. This would 455 * uprobe_write_opcode accordingly. This would never be a problem for archs 456 * that have fixed length instructions. 456 * that have fixed length instructions. 457 * 457 * 458 * uprobe_write_opcode - write the opcode at a 458 * uprobe_write_opcode - write the opcode at a given virtual address. 459 * @auprobe: arch specific probepoint informat 459 * @auprobe: arch specific probepoint information. 460 * @mm: the probed process address space. 460 * @mm: the probed process address space. 461 * @vaddr: the virtual address to store the op 461 * @vaddr: the virtual address to store the opcode. 462 * @opcode: opcode to be written at @vaddr. 462 * @opcode: opcode to be written at @vaddr. 463 * 463 * 464 * Called with mm->mmap_lock held for read or 464 * Called with mm->mmap_lock held for read or write. 465 * Return 0 (success) or a negative errno. 465 * Return 0 (success) or a negative errno. 466 */ 466 */ 467 int uprobe_write_opcode(struct arch_uprobe *au 467 int uprobe_write_opcode(struct arch_uprobe *auprobe, struct mm_struct *mm, 468 unsigned long vaddr, u 468 unsigned long vaddr, uprobe_opcode_t opcode) 469 { 469 { 470 struct uprobe *uprobe; 470 struct uprobe *uprobe; 471 struct page *old_page, *new_page; 471 struct page *old_page, *new_page; 472 struct vm_area_struct *vma; 472 struct vm_area_struct *vma; 473 int ret, is_register, ref_ctr_updated 473 int ret, is_register, ref_ctr_updated = 0; 474 bool orig_page_huge = false; 474 bool orig_page_huge = false; 475 unsigned int gup_flags = FOLL_FORCE; 475 unsigned int gup_flags = FOLL_FORCE; 476 476 477 is_register = is_swbp_insn(&opcode); 477 is_register = is_swbp_insn(&opcode); 478 uprobe = container_of(auprobe, struct 478 uprobe = container_of(auprobe, struct uprobe, arch); 479 479 480 retry: 480 retry: 481 if (is_register) 481 if (is_register) 482 gup_flags |= FOLL_SPLIT_PMD; 482 gup_flags |= FOLL_SPLIT_PMD; 483 /* Read the page with vaddr into memor 483 /* Read the page with vaddr into memory */ 484 old_page = get_user_page_vma_remote(mm 484 old_page = get_user_page_vma_remote(mm, vaddr, gup_flags, &vma); 485 if (IS_ERR(old_page)) 485 if (IS_ERR(old_page)) 486 return PTR_ERR(old_page); 486 return PTR_ERR(old_page); 487 487 488 ret = verify_opcode(old_page, vaddr, & 488 ret = verify_opcode(old_page, vaddr, &opcode); 489 if (ret <= 0) 489 if (ret <= 0) 490 goto put_old; 490 goto put_old; 491 491 492 if (WARN(!is_register && PageCompound( 492 if (WARN(!is_register && PageCompound(old_page), 493 "uprobe unregister should nev 493 "uprobe unregister should never work on compound page\n")) { 494 ret = -EINVAL; 494 ret = -EINVAL; 495 goto put_old; 495 goto put_old; 496 } 496 } 497 497 498 /* We are going to replace instruction 498 /* We are going to replace instruction, update ref_ctr. */ 499 if (!ref_ctr_updated && uprobe->ref_ct 499 if (!ref_ctr_updated && uprobe->ref_ctr_offset) { 500 ret = update_ref_ctr(uprobe, m 500 ret = update_ref_ctr(uprobe, mm, is_register ? 1 : -1); 501 if (ret) 501 if (ret) 502 goto put_old; 502 goto put_old; 503 503 504 ref_ctr_updated = 1; 504 ref_ctr_updated = 1; 505 } 505 } 506 506 507 ret = 0; 507 ret = 0; 508 if (!is_register && !PageAnon(old_page 508 if (!is_register && !PageAnon(old_page)) 509 goto put_old; 509 goto put_old; 510 510 511 ret = anon_vma_prepare(vma); 511 ret = anon_vma_prepare(vma); 512 if (ret) 512 if (ret) 513 goto put_old; 513 goto put_old; 514 514 515 ret = -ENOMEM; 515 ret = -ENOMEM; 516 new_page = alloc_page_vma(GFP_HIGHUSER 516 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vaddr); 517 if (!new_page) 517 if (!new_page) 518 goto put_old; 518 goto put_old; 519 519 520 __SetPageUptodate(new_page); 520 __SetPageUptodate(new_page); 521 copy_highpage(new_page, old_page); 521 copy_highpage(new_page, old_page); 522 copy_to_page(new_page, vaddr, &opcode, 522 copy_to_page(new_page, vaddr, &opcode, UPROBE_SWBP_INSN_SIZE); 523 523 524 if (!is_register) { 524 if (!is_register) { 525 struct page *orig_page; 525 struct page *orig_page; 526 pgoff_t index; 526 pgoff_t index; 527 527 528 VM_BUG_ON_PAGE(!PageAnon(old_p 528 VM_BUG_ON_PAGE(!PageAnon(old_page), old_page); 529 529 530 index = vaddr_to_offset(vma, v 530 index = vaddr_to_offset(vma, vaddr & PAGE_MASK) >> PAGE_SHIFT; 531 orig_page = find_get_page(vma- 531 orig_page = find_get_page(vma->vm_file->f_inode->i_mapping, 532 inde 532 index); 533 533 534 if (orig_page) { 534 if (orig_page) { 535 if (PageUptodate(orig_ 535 if (PageUptodate(orig_page) && 536 pages_identical(ne 536 pages_identical(new_page, orig_page)) { 537 /* let go new_ 537 /* let go new_page */ 538 put_page(new_p 538 put_page(new_page); 539 new_page = NUL 539 new_page = NULL; 540 540 541 if (PageCompou 541 if (PageCompound(orig_page)) 542 orig_p 542 orig_page_huge = true; 543 } 543 } 544 put_page(orig_page); 544 put_page(orig_page); 545 } 545 } 546 } 546 } 547 547 548 ret = __replace_page(vma, vaddr & PAGE 548 ret = __replace_page(vma, vaddr & PAGE_MASK, old_page, new_page); 549 if (new_page) 549 if (new_page) 550 put_page(new_page); 550 put_page(new_page); 551 put_old: 551 put_old: 552 put_page(old_page); 552 put_page(old_page); 553 553 554 if (unlikely(ret == -EAGAIN)) 554 if (unlikely(ret == -EAGAIN)) 555 goto retry; 555 goto retry; 556 556 557 /* Revert back reference counter if in 557 /* Revert back reference counter if instruction update failed. */ 558 if (ret && is_register && ref_ctr_upda 558 if (ret && is_register && ref_ctr_updated) 559 update_ref_ctr(uprobe, mm, -1) 559 update_ref_ctr(uprobe, mm, -1); 560 560 561 /* try collapse pmd for compound page 561 /* try collapse pmd for compound page */ 562 if (!ret && orig_page_huge) 562 if (!ret && orig_page_huge) 563 collapse_pte_mapped_thp(mm, va 563 collapse_pte_mapped_thp(mm, vaddr, false); 564 564 565 return ret; 565 return ret; 566 } 566 } 567 567 568 /** 568 /** 569 * set_swbp - store breakpoint at a given addr 569 * set_swbp - store breakpoint at a given address. 570 * @auprobe: arch specific probepoint informat 570 * @auprobe: arch specific probepoint information. 571 * @mm: the probed process address space. 571 * @mm: the probed process address space. 572 * @vaddr: the virtual address to insert the o 572 * @vaddr: the virtual address to insert the opcode. 573 * 573 * 574 * For mm @mm, store the breakpoint instructio 574 * For mm @mm, store the breakpoint instruction at @vaddr. 575 * Return 0 (success) or a negative errno. 575 * Return 0 (success) or a negative errno. 576 */ 576 */ 577 int __weak set_swbp(struct arch_uprobe *auprob 577 int __weak set_swbp(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long vaddr) 578 { 578 { 579 return uprobe_write_opcode(auprobe, mm 579 return uprobe_write_opcode(auprobe, mm, vaddr, UPROBE_SWBP_INSN); 580 } 580 } 581 581 582 /** 582 /** 583 * set_orig_insn - Restore the original instru 583 * set_orig_insn - Restore the original instruction. 584 * @mm: the probed process address space. 584 * @mm: the probed process address space. 585 * @auprobe: arch specific probepoint informat 585 * @auprobe: arch specific probepoint information. 586 * @vaddr: the virtual address to insert the o 586 * @vaddr: the virtual address to insert the opcode. 587 * 587 * 588 * For mm @mm, restore the original opcode (op 588 * For mm @mm, restore the original opcode (opcode) at @vaddr. 589 * Return 0 (success) or a negative errno. 589 * Return 0 (success) or a negative errno. 590 */ 590 */ 591 int __weak 591 int __weak 592 set_orig_insn(struct arch_uprobe *auprobe, str 592 set_orig_insn(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long vaddr) 593 { 593 { 594 return uprobe_write_opcode(auprobe, mm 594 return uprobe_write_opcode(auprobe, mm, vaddr, 595 *(uprobe_opcode_t *)&a 595 *(uprobe_opcode_t *)&auprobe->insn); 596 } 596 } 597 597 598 /* uprobe should have guaranteed positive refc 598 /* uprobe should have guaranteed positive refcount */ 599 static struct uprobe *get_uprobe(struct uprobe 599 static struct uprobe *get_uprobe(struct uprobe *uprobe) 600 { 600 { 601 refcount_inc(&uprobe->ref); 601 refcount_inc(&uprobe->ref); 602 return uprobe; 602 return uprobe; 603 } 603 } 604 604 605 /* 605 /* 606 * uprobe should have guaranteed lifetime, whi 606 * uprobe should have guaranteed lifetime, which can be either of: 607 * - caller already has refcount taken (and 607 * - caller already has refcount taken (and wants an extra one); 608 * - uprobe is RCU protected and won't be fr 608 * - uprobe is RCU protected and won't be freed until after grace period; 609 * - we are holding uprobes_treelock (for re 609 * - we are holding uprobes_treelock (for read or write, doesn't matter). 610 */ 610 */ 611 static struct uprobe *try_get_uprobe(struct up 611 static struct uprobe *try_get_uprobe(struct uprobe *uprobe) 612 { 612 { 613 if (refcount_inc_not_zero(&uprobe->ref 613 if (refcount_inc_not_zero(&uprobe->ref)) 614 return uprobe; 614 return uprobe; 615 return NULL; 615 return NULL; 616 } 616 } 617 617 618 static inline bool uprobe_is_active(struct upr 618 static inline bool uprobe_is_active(struct uprobe *uprobe) 619 { 619 { 620 return !RB_EMPTY_NODE(&uprobe->rb_node 620 return !RB_EMPTY_NODE(&uprobe->rb_node); 621 } 621 } 622 622 623 static void uprobe_free_rcu(struct rcu_head *r 623 static void uprobe_free_rcu(struct rcu_head *rcu) 624 { 624 { 625 struct uprobe *uprobe = container_of(r 625 struct uprobe *uprobe = container_of(rcu, struct uprobe, rcu); 626 626 627 kfree(uprobe); 627 kfree(uprobe); 628 } 628 } 629 629 630 static void put_uprobe(struct uprobe *uprobe) 630 static void put_uprobe(struct uprobe *uprobe) 631 { 631 { 632 if (!refcount_dec_and_test(&uprobe->re 632 if (!refcount_dec_and_test(&uprobe->ref)) 633 return; 633 return; 634 634 635 write_lock(&uprobes_treelock); 635 write_lock(&uprobes_treelock); 636 636 637 if (uprobe_is_active(uprobe)) { 637 if (uprobe_is_active(uprobe)) { 638 write_seqcount_begin(&uprobes_ 638 write_seqcount_begin(&uprobes_seqcount); 639 rb_erase(&uprobe->rb_node, &up 639 rb_erase(&uprobe->rb_node, &uprobes_tree); 640 write_seqcount_end(&uprobes_se 640 write_seqcount_end(&uprobes_seqcount); 641 } 641 } 642 642 643 write_unlock(&uprobes_treelock); 643 write_unlock(&uprobes_treelock); 644 644 645 /* 645 /* 646 * If application munmap(exec_vma) bef 646 * If application munmap(exec_vma) before uprobe_unregister() 647 * gets called, we don't get a chance 647 * gets called, we don't get a chance to remove uprobe from 648 * delayed_uprobe_list from remove_bre 648 * delayed_uprobe_list from remove_breakpoint(). Do it here. 649 */ 649 */ 650 mutex_lock(&delayed_uprobe_lock); 650 mutex_lock(&delayed_uprobe_lock); 651 delayed_uprobe_remove(uprobe, NULL); 651 delayed_uprobe_remove(uprobe, NULL); 652 mutex_unlock(&delayed_uprobe_lock); 652 mutex_unlock(&delayed_uprobe_lock); 653 653 654 call_srcu(&uprobes_srcu, &uprobe->rcu, 654 call_srcu(&uprobes_srcu, &uprobe->rcu, uprobe_free_rcu); 655 } 655 } 656 656 657 static __always_inline 657 static __always_inline 658 int uprobe_cmp(const struct inode *l_inode, co 658 int uprobe_cmp(const struct inode *l_inode, const loff_t l_offset, 659 const struct uprobe *r) 659 const struct uprobe *r) 660 { 660 { 661 if (l_inode < r->inode) 661 if (l_inode < r->inode) 662 return -1; 662 return -1; 663 663 664 if (l_inode > r->inode) 664 if (l_inode > r->inode) 665 return 1; 665 return 1; 666 666 667 if (l_offset < r->offset) 667 if (l_offset < r->offset) 668 return -1; 668 return -1; 669 669 670 if (l_offset > r->offset) 670 if (l_offset > r->offset) 671 return 1; 671 return 1; 672 672 673 return 0; 673 return 0; 674 } 674 } 675 675 676 #define __node_2_uprobe(node) \ 676 #define __node_2_uprobe(node) \ 677 rb_entry((node), struct uprobe, rb_nod 677 rb_entry((node), struct uprobe, rb_node) 678 678 679 struct __uprobe_key { 679 struct __uprobe_key { 680 struct inode *inode; 680 struct inode *inode; 681 loff_t offset; 681 loff_t offset; 682 }; 682 }; 683 683 684 static inline int __uprobe_cmp_key(const void 684 static inline int __uprobe_cmp_key(const void *key, const struct rb_node *b) 685 { 685 { 686 const struct __uprobe_key *a = key; 686 const struct __uprobe_key *a = key; 687 return uprobe_cmp(a->inode, a->offset, 687 return uprobe_cmp(a->inode, a->offset, __node_2_uprobe(b)); 688 } 688 } 689 689 690 static inline int __uprobe_cmp(struct rb_node 690 static inline int __uprobe_cmp(struct rb_node *a, const struct rb_node *b) 691 { 691 { 692 struct uprobe *u = __node_2_uprobe(a); 692 struct uprobe *u = __node_2_uprobe(a); 693 return uprobe_cmp(u->inode, u->offset, 693 return uprobe_cmp(u->inode, u->offset, __node_2_uprobe(b)); 694 } 694 } 695 695 696 /* 696 /* 697 * Assumes being inside RCU protected region. 697 * Assumes being inside RCU protected region. 698 * No refcount is taken on returned uprobe. 698 * No refcount is taken on returned uprobe. 699 */ 699 */ 700 static struct uprobe *find_uprobe_rcu(struct i 700 static struct uprobe *find_uprobe_rcu(struct inode *inode, loff_t offset) 701 { 701 { 702 struct __uprobe_key key = { 702 struct __uprobe_key key = { 703 .inode = inode, 703 .inode = inode, 704 .offset = offset, 704 .offset = offset, 705 }; 705 }; 706 struct rb_node *node; 706 struct rb_node *node; 707 unsigned int seq; 707 unsigned int seq; 708 708 709 lockdep_assert(srcu_read_lock_held(&up 709 lockdep_assert(srcu_read_lock_held(&uprobes_srcu)); 710 710 711 do { 711 do { 712 seq = read_seqcount_begin(&upr 712 seq = read_seqcount_begin(&uprobes_seqcount); 713 node = rb_find_rcu(&key, &upro 713 node = rb_find_rcu(&key, &uprobes_tree, __uprobe_cmp_key); 714 /* 714 /* 715 * Lockless RB-tree lookups ca 715 * Lockless RB-tree lookups can result only in false negatives. 716 * If the element is found, it 716 * If the element is found, it is correct and can be returned 717 * under RCU protection. If we 717 * under RCU protection. If we find nothing, we need to 718 * validate that seqcount didn 718 * validate that seqcount didn't change. If it did, we have to 719 * try again as we might have 719 * try again as we might have missed the element (false 720 * negative). If seqcount is u 720 * negative). If seqcount is unchanged, search truly failed. 721 */ 721 */ 722 if (node) 722 if (node) 723 return __node_2_uprobe 723 return __node_2_uprobe(node); 724 } while (read_seqcount_retry(&uprobes_ 724 } while (read_seqcount_retry(&uprobes_seqcount, seq)); 725 725 726 return NULL; 726 return NULL; 727 } 727 } 728 728 729 /* 729 /* 730 * Attempt to insert a new uprobe into uprobes 730 * Attempt to insert a new uprobe into uprobes_tree. 731 * 731 * 732 * If uprobe already exists (for given inode+o 732 * If uprobe already exists (for given inode+offset), we just increment 733 * refcount of previously existing uprobe. 733 * refcount of previously existing uprobe. 734 * 734 * 735 * If not, a provided new instance of uprobe i 735 * If not, a provided new instance of uprobe is inserted into the tree (with 736 * assumed initial refcount == 1). 736 * assumed initial refcount == 1). 737 * 737 * 738 * In any case, we return a uprobe instance th 738 * In any case, we return a uprobe instance that ends up being in uprobes_tree. 739 * Caller has to clean up new uprobe instance, 739 * Caller has to clean up new uprobe instance, if it ended up not being 740 * inserted into the tree. 740 * inserted into the tree. 741 * 741 * 742 * We assume that uprobes_treelock is held for 742 * We assume that uprobes_treelock is held for writing. 743 */ 743 */ 744 static struct uprobe *__insert_uprobe(struct u 744 static struct uprobe *__insert_uprobe(struct uprobe *uprobe) 745 { 745 { 746 struct rb_node *node; 746 struct rb_node *node; 747 again: 747 again: 748 node = rb_find_add_rcu(&uprobe->rb_nod 748 node = rb_find_add_rcu(&uprobe->rb_node, &uprobes_tree, __uprobe_cmp); 749 if (node) { 749 if (node) { 750 struct uprobe *u = __node_2_up 750 struct uprobe *u = __node_2_uprobe(node); 751 751 752 if (!try_get_uprobe(u)) { 752 if (!try_get_uprobe(u)) { 753 rb_erase(node, &uprobe 753 rb_erase(node, &uprobes_tree); 754 RB_CLEAR_NODE(&u->rb_n 754 RB_CLEAR_NODE(&u->rb_node); 755 goto again; 755 goto again; 756 } 756 } 757 757 758 return u; 758 return u; 759 } 759 } 760 760 761 return uprobe; 761 return uprobe; 762 } 762 } 763 763 764 /* 764 /* 765 * Acquire uprobes_treelock and insert uprobe 765 * Acquire uprobes_treelock and insert uprobe into uprobes_tree 766 * (or reuse existing one, see __insert_uprobe 766 * (or reuse existing one, see __insert_uprobe() comments above). 767 */ 767 */ 768 static struct uprobe *insert_uprobe(struct upr 768 static struct uprobe *insert_uprobe(struct uprobe *uprobe) 769 { 769 { 770 struct uprobe *u; 770 struct uprobe *u; 771 771 772 write_lock(&uprobes_treelock); 772 write_lock(&uprobes_treelock); 773 write_seqcount_begin(&uprobes_seqcount 773 write_seqcount_begin(&uprobes_seqcount); 774 u = __insert_uprobe(uprobe); 774 u = __insert_uprobe(uprobe); 775 write_seqcount_end(&uprobes_seqcount); 775 write_seqcount_end(&uprobes_seqcount); 776 write_unlock(&uprobes_treelock); 776 write_unlock(&uprobes_treelock); 777 777 778 return u; 778 return u; 779 } 779 } 780 780 781 static void 781 static void 782 ref_ctr_mismatch_warn(struct uprobe *cur_uprob 782 ref_ctr_mismatch_warn(struct uprobe *cur_uprobe, struct uprobe *uprobe) 783 { 783 { 784 pr_warn("ref_ctr_offset mismatch. inod 784 pr_warn("ref_ctr_offset mismatch. inode: 0x%lx offset: 0x%llx " 785 "ref_ctr_offset(old): 0x%llx r 785 "ref_ctr_offset(old): 0x%llx ref_ctr_offset(new): 0x%llx\n", 786 uprobe->inode->i_ino, (unsigne 786 uprobe->inode->i_ino, (unsigned long long) uprobe->offset, 787 (unsigned long long) cur_uprob 787 (unsigned long long) cur_uprobe->ref_ctr_offset, 788 (unsigned long long) uprobe->r 788 (unsigned long long) uprobe->ref_ctr_offset); 789 } 789 } 790 790 791 static struct uprobe *alloc_uprobe(struct inod 791 static struct uprobe *alloc_uprobe(struct inode *inode, loff_t offset, 792 loff_t ref_ 792 loff_t ref_ctr_offset) 793 { 793 { 794 struct uprobe *uprobe, *cur_uprobe; 794 struct uprobe *uprobe, *cur_uprobe; 795 795 796 uprobe = kzalloc(sizeof(struct uprobe) 796 uprobe = kzalloc(sizeof(struct uprobe), GFP_KERNEL); 797 if (!uprobe) 797 if (!uprobe) 798 return ERR_PTR(-ENOMEM); 798 return ERR_PTR(-ENOMEM); 799 799 800 uprobe->inode = inode; 800 uprobe->inode = inode; 801 uprobe->offset = offset; 801 uprobe->offset = offset; 802 uprobe->ref_ctr_offset = ref_ctr_offse 802 uprobe->ref_ctr_offset = ref_ctr_offset; 803 INIT_LIST_HEAD(&uprobe->consumers); 803 INIT_LIST_HEAD(&uprobe->consumers); 804 init_rwsem(&uprobe->register_rwsem); 804 init_rwsem(&uprobe->register_rwsem); 805 init_rwsem(&uprobe->consumer_rwsem); 805 init_rwsem(&uprobe->consumer_rwsem); 806 RB_CLEAR_NODE(&uprobe->rb_node); 806 RB_CLEAR_NODE(&uprobe->rb_node); 807 refcount_set(&uprobe->ref, 1); 807 refcount_set(&uprobe->ref, 1); 808 808 809 /* add to uprobes_tree, sorted on inod 809 /* add to uprobes_tree, sorted on inode:offset */ 810 cur_uprobe = insert_uprobe(uprobe); 810 cur_uprobe = insert_uprobe(uprobe); 811 /* a uprobe exists for this inode:offs 811 /* a uprobe exists for this inode:offset combination */ 812 if (cur_uprobe != uprobe) { 812 if (cur_uprobe != uprobe) { 813 if (cur_uprobe->ref_ctr_offset 813 if (cur_uprobe->ref_ctr_offset != uprobe->ref_ctr_offset) { 814 ref_ctr_mismatch_warn( 814 ref_ctr_mismatch_warn(cur_uprobe, uprobe); 815 put_uprobe(cur_uprobe) 815 put_uprobe(cur_uprobe); 816 kfree(uprobe); 816 kfree(uprobe); 817 return ERR_PTR(-EINVAL 817 return ERR_PTR(-EINVAL); 818 } 818 } 819 kfree(uprobe); 819 kfree(uprobe); 820 uprobe = cur_uprobe; 820 uprobe = cur_uprobe; 821 } 821 } 822 822 823 return uprobe; 823 return uprobe; 824 } 824 } 825 825 826 static void consumer_add(struct uprobe *uprobe 826 static void consumer_add(struct uprobe *uprobe, struct uprobe_consumer *uc) 827 { 827 { 828 down_write(&uprobe->consumer_rwsem); 828 down_write(&uprobe->consumer_rwsem); 829 list_add_rcu(&uc->cons_node, &uprobe-> 829 list_add_rcu(&uc->cons_node, &uprobe->consumers); 830 up_write(&uprobe->consumer_rwsem); 830 up_write(&uprobe->consumer_rwsem); 831 } 831 } 832 832 833 /* 833 /* 834 * For uprobe @uprobe, delete the consumer @uc 834 * For uprobe @uprobe, delete the consumer @uc. 835 * Should never be called with consumer that's 835 * Should never be called with consumer that's not part of @uprobe->consumers. 836 */ 836 */ 837 static void consumer_del(struct uprobe *uprobe 837 static void consumer_del(struct uprobe *uprobe, struct uprobe_consumer *uc) 838 { 838 { 839 down_write(&uprobe->consumer_rwsem); 839 down_write(&uprobe->consumer_rwsem); 840 list_del_rcu(&uc->cons_node); 840 list_del_rcu(&uc->cons_node); 841 up_write(&uprobe->consumer_rwsem); 841 up_write(&uprobe->consumer_rwsem); 842 } 842 } 843 843 844 static int __copy_insn(struct address_space *m 844 static int __copy_insn(struct address_space *mapping, struct file *filp, 845 void *insn, int nbytes 845 void *insn, int nbytes, loff_t offset) 846 { 846 { 847 struct page *page; 847 struct page *page; 848 /* 848 /* 849 * Ensure that the page that has the o 849 * Ensure that the page that has the original instruction is populated 850 * and in page-cache. If ->read_folio 850 * and in page-cache. If ->read_folio == NULL it must be shmem_mapping(), 851 * see uprobe_register(). 851 * see uprobe_register(). 852 */ 852 */ 853 if (mapping->a_ops->read_folio) 853 if (mapping->a_ops->read_folio) 854 page = read_mapping_page(mappi 854 page = read_mapping_page(mapping, offset >> PAGE_SHIFT, filp); 855 else 855 else 856 page = shmem_read_mapping_page 856 page = shmem_read_mapping_page(mapping, offset >> PAGE_SHIFT); 857 if (IS_ERR(page)) 857 if (IS_ERR(page)) 858 return PTR_ERR(page); 858 return PTR_ERR(page); 859 859 860 copy_from_page(page, offset, insn, nby 860 copy_from_page(page, offset, insn, nbytes); 861 put_page(page); 861 put_page(page); 862 862 863 return 0; 863 return 0; 864 } 864 } 865 865 866 static int copy_insn(struct uprobe *uprobe, st 866 static int copy_insn(struct uprobe *uprobe, struct file *filp) 867 { 867 { 868 struct address_space *mapping = uprobe 868 struct address_space *mapping = uprobe->inode->i_mapping; 869 loff_t offs = uprobe->offset; 869 loff_t offs = uprobe->offset; 870 void *insn = &uprobe->arch.insn; 870 void *insn = &uprobe->arch.insn; 871 int size = sizeof(uprobe->arch.insn); 871 int size = sizeof(uprobe->arch.insn); 872 int len, err = -EIO; 872 int len, err = -EIO; 873 873 874 /* Copy only available bytes, -EIO if 874 /* Copy only available bytes, -EIO if nothing was read */ 875 do { 875 do { 876 if (offs >= i_size_read(uprobe 876 if (offs >= i_size_read(uprobe->inode)) 877 break; 877 break; 878 878 879 len = min_t(int, size, PAGE_SI 879 len = min_t(int, size, PAGE_SIZE - (offs & ~PAGE_MASK)); 880 err = __copy_insn(mapping, fil 880 err = __copy_insn(mapping, filp, insn, len, offs); 881 if (err) 881 if (err) 882 break; 882 break; 883 883 884 insn += len; 884 insn += len; 885 offs += len; 885 offs += len; 886 size -= len; 886 size -= len; 887 } while (size); 887 } while (size); 888 888 889 return err; 889 return err; 890 } 890 } 891 891 892 static int prepare_uprobe(struct uprobe *uprob 892 static int prepare_uprobe(struct uprobe *uprobe, struct file *file, 893 struct mm_stru 893 struct mm_struct *mm, unsigned long vaddr) 894 { 894 { 895 int ret = 0; 895 int ret = 0; 896 896 897 if (test_bit(UPROBE_COPY_INSN, &uprobe 897 if (test_bit(UPROBE_COPY_INSN, &uprobe->flags)) 898 return ret; 898 return ret; 899 899 900 /* TODO: move this into _register, unt 900 /* TODO: move this into _register, until then we abuse this sem. */ 901 down_write(&uprobe->consumer_rwsem); 901 down_write(&uprobe->consumer_rwsem); 902 if (test_bit(UPROBE_COPY_INSN, &uprobe 902 if (test_bit(UPROBE_COPY_INSN, &uprobe->flags)) 903 goto out; 903 goto out; 904 904 905 ret = copy_insn(uprobe, file); 905 ret = copy_insn(uprobe, file); 906 if (ret) 906 if (ret) 907 goto out; 907 goto out; 908 908 909 ret = -ENOTSUPP; 909 ret = -ENOTSUPP; 910 if (is_trap_insn((uprobe_opcode_t *)&u 910 if (is_trap_insn((uprobe_opcode_t *)&uprobe->arch.insn)) 911 goto out; 911 goto out; 912 912 913 ret = arch_uprobe_analyze_insn(&uprobe 913 ret = arch_uprobe_analyze_insn(&uprobe->arch, mm, vaddr); 914 if (ret) 914 if (ret) 915 goto out; 915 goto out; 916 916 917 smp_wmb(); /* pairs with the smp_rmb() 917 smp_wmb(); /* pairs with the smp_rmb() in handle_swbp() */ 918 set_bit(UPROBE_COPY_INSN, &uprobe->fla 918 set_bit(UPROBE_COPY_INSN, &uprobe->flags); 919 919 920 out: 920 out: 921 up_write(&uprobe->consumer_rwsem); 921 up_write(&uprobe->consumer_rwsem); 922 922 923 return ret; 923 return ret; 924 } 924 } 925 925 926 static inline bool consumer_filter(struct upro 926 static inline bool consumer_filter(struct uprobe_consumer *uc, struct mm_struct *mm) 927 { 927 { 928 return !uc->filter || uc->filter(uc, m 928 return !uc->filter || uc->filter(uc, mm); 929 } 929 } 930 930 931 static bool filter_chain(struct uprobe *uprobe 931 static bool filter_chain(struct uprobe *uprobe, struct mm_struct *mm) 932 { 932 { 933 struct uprobe_consumer *uc; 933 struct uprobe_consumer *uc; 934 bool ret = false; 934 bool ret = false; 935 935 936 down_read(&uprobe->consumer_rwsem); 936 down_read(&uprobe->consumer_rwsem); 937 list_for_each_entry_srcu(uc, &uprobe-> 937 list_for_each_entry_srcu(uc, &uprobe->consumers, cons_node, 938 srcu_read_loc 938 srcu_read_lock_held(&uprobes_srcu)) { 939 ret = consumer_filter(uc, mm); 939 ret = consumer_filter(uc, mm); 940 if (ret) 940 if (ret) 941 break; 941 break; 942 } 942 } 943 up_read(&uprobe->consumer_rwsem); 943 up_read(&uprobe->consumer_rwsem); 944 944 945 return ret; 945 return ret; 946 } 946 } 947 947 948 static int 948 static int 949 install_breakpoint(struct uprobe *uprobe, stru 949 install_breakpoint(struct uprobe *uprobe, struct mm_struct *mm, 950 struct vm_area_struct 950 struct vm_area_struct *vma, unsigned long vaddr) 951 { 951 { 952 bool first_uprobe; 952 bool first_uprobe; 953 int ret; 953 int ret; 954 954 955 ret = prepare_uprobe(uprobe, vma->vm_f 955 ret = prepare_uprobe(uprobe, vma->vm_file, mm, vaddr); 956 if (ret) 956 if (ret) 957 return ret; 957 return ret; 958 958 959 /* 959 /* 960 * set MMF_HAS_UPROBES in advance for 960 * set MMF_HAS_UPROBES in advance for uprobe_pre_sstep_notifier(), 961 * the task can hit this breakpoint ri 961 * the task can hit this breakpoint right after __replace_page(). 962 */ 962 */ 963 first_uprobe = !test_bit(MMF_HAS_UPROB 963 first_uprobe = !test_bit(MMF_HAS_UPROBES, &mm->flags); 964 if (first_uprobe) 964 if (first_uprobe) 965 set_bit(MMF_HAS_UPROBES, &mm-> 965 set_bit(MMF_HAS_UPROBES, &mm->flags); 966 966 967 ret = set_swbp(&uprobe->arch, mm, vadd 967 ret = set_swbp(&uprobe->arch, mm, vaddr); 968 if (!ret) 968 if (!ret) 969 clear_bit(MMF_RECALC_UPROBES, 969 clear_bit(MMF_RECALC_UPROBES, &mm->flags); 970 else if (first_uprobe) 970 else if (first_uprobe) 971 clear_bit(MMF_HAS_UPROBES, &mm 971 clear_bit(MMF_HAS_UPROBES, &mm->flags); 972 972 973 return ret; 973 return ret; 974 } 974 } 975 975 976 static int 976 static int 977 remove_breakpoint(struct uprobe *uprobe, struc 977 remove_breakpoint(struct uprobe *uprobe, struct mm_struct *mm, unsigned long vaddr) 978 { 978 { 979 set_bit(MMF_RECALC_UPROBES, &mm->flags 979 set_bit(MMF_RECALC_UPROBES, &mm->flags); 980 return set_orig_insn(&uprobe->arch, mm 980 return set_orig_insn(&uprobe->arch, mm, vaddr); 981 } 981 } 982 982 983 struct map_info { 983 struct map_info { 984 struct map_info *next; 984 struct map_info *next; 985 struct mm_struct *mm; 985 struct mm_struct *mm; 986 unsigned long vaddr; 986 unsigned long vaddr; 987 }; 987 }; 988 988 989 static inline struct map_info *free_map_info(s 989 static inline struct map_info *free_map_info(struct map_info *info) 990 { 990 { 991 struct map_info *next = info->next; 991 struct map_info *next = info->next; 992 kfree(info); 992 kfree(info); 993 return next; 993 return next; 994 } 994 } 995 995 996 static struct map_info * 996 static struct map_info * 997 build_map_info(struct address_space *mapping, 997 build_map_info(struct address_space *mapping, loff_t offset, bool is_register) 998 { 998 { 999 unsigned long pgoff = offset >> PAGE_S 999 unsigned long pgoff = offset >> PAGE_SHIFT; 1000 struct vm_area_struct *vma; 1000 struct vm_area_struct *vma; 1001 struct map_info *curr = NULL; 1001 struct map_info *curr = NULL; 1002 struct map_info *prev = NULL; 1002 struct map_info *prev = NULL; 1003 struct map_info *info; 1003 struct map_info *info; 1004 int more = 0; 1004 int more = 0; 1005 1005 1006 again: 1006 again: 1007 i_mmap_lock_read(mapping); 1007 i_mmap_lock_read(mapping); 1008 vma_interval_tree_foreach(vma, &mappi 1008 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) { 1009 if (!valid_vma(vma, is_regist 1009 if (!valid_vma(vma, is_register)) 1010 continue; 1010 continue; 1011 1011 1012 if (!prev && !more) { 1012 if (!prev && !more) { 1013 /* 1013 /* 1014 * Needs GFP_NOWAIT t 1014 * Needs GFP_NOWAIT to avoid i_mmap_rwsem recursion through 1015 * reclaim. This is o 1015 * reclaim. This is optimistic, no harm done if it fails. 1016 */ 1016 */ 1017 prev = kmalloc(sizeof 1017 prev = kmalloc(sizeof(struct map_info), 1018 GFP_N 1018 GFP_NOWAIT | __GFP_NOMEMALLOC | __GFP_NOWARN); 1019 if (prev) 1019 if (prev) 1020 prev->next = 1020 prev->next = NULL; 1021 } 1021 } 1022 if (!prev) { 1022 if (!prev) { 1023 more++; 1023 more++; 1024 continue; 1024 continue; 1025 } 1025 } 1026 1026 1027 if (!mmget_not_zero(vma->vm_m 1027 if (!mmget_not_zero(vma->vm_mm)) 1028 continue; 1028 continue; 1029 1029 1030 info = prev; 1030 info = prev; 1031 prev = prev->next; 1031 prev = prev->next; 1032 info->next = curr; 1032 info->next = curr; 1033 curr = info; 1033 curr = info; 1034 1034 1035 info->mm = vma->vm_mm; 1035 info->mm = vma->vm_mm; 1036 info->vaddr = offset_to_vaddr 1036 info->vaddr = offset_to_vaddr(vma, offset); 1037 } 1037 } 1038 i_mmap_unlock_read(mapping); 1038 i_mmap_unlock_read(mapping); 1039 1039 1040 if (!more) 1040 if (!more) 1041 goto out; 1041 goto out; 1042 1042 1043 prev = curr; 1043 prev = curr; 1044 while (curr) { 1044 while (curr) { 1045 mmput(curr->mm); 1045 mmput(curr->mm); 1046 curr = curr->next; 1046 curr = curr->next; 1047 } 1047 } 1048 1048 1049 do { 1049 do { 1050 info = kmalloc(sizeof(struct 1050 info = kmalloc(sizeof(struct map_info), GFP_KERNEL); 1051 if (!info) { 1051 if (!info) { 1052 curr = ERR_PTR(-ENOME 1052 curr = ERR_PTR(-ENOMEM); 1053 goto out; 1053 goto out; 1054 } 1054 } 1055 info->next = prev; 1055 info->next = prev; 1056 prev = info; 1056 prev = info; 1057 } while (--more); 1057 } while (--more); 1058 1058 1059 goto again; 1059 goto again; 1060 out: 1060 out: 1061 while (prev) 1061 while (prev) 1062 prev = free_map_info(prev); 1062 prev = free_map_info(prev); 1063 return curr; 1063 return curr; 1064 } 1064 } 1065 1065 1066 static int 1066 static int 1067 register_for_each_vma(struct uprobe *uprobe, 1067 register_for_each_vma(struct uprobe *uprobe, struct uprobe_consumer *new) 1068 { 1068 { 1069 bool is_register = !!new; 1069 bool is_register = !!new; 1070 struct map_info *info; 1070 struct map_info *info; 1071 int err = 0; 1071 int err = 0; 1072 1072 1073 percpu_down_write(&dup_mmap_sem); 1073 percpu_down_write(&dup_mmap_sem); 1074 info = build_map_info(uprobe->inode-> 1074 info = build_map_info(uprobe->inode->i_mapping, 1075 uprob 1075 uprobe->offset, is_register); 1076 if (IS_ERR(info)) { 1076 if (IS_ERR(info)) { 1077 err = PTR_ERR(info); 1077 err = PTR_ERR(info); 1078 goto out; 1078 goto out; 1079 } 1079 } 1080 1080 1081 while (info) { 1081 while (info) { 1082 struct mm_struct *mm = info-> 1082 struct mm_struct *mm = info->mm; 1083 struct vm_area_struct *vma; 1083 struct vm_area_struct *vma; 1084 1084 1085 if (err && is_register) 1085 if (err && is_register) 1086 goto free; 1086 goto free; 1087 /* 1087 /* 1088 * We take mmap_lock for writ 1088 * We take mmap_lock for writing to avoid the race with 1089 * find_active_uprobe_rcu() w 1089 * find_active_uprobe_rcu() which takes mmap_lock for reading. 1090 * Thus this install_breakpoi 1090 * Thus this install_breakpoint() can not make 1091 * is_trap_at_addr() true rig 1091 * is_trap_at_addr() true right after find_uprobe_rcu() 1092 * returns NULL in find_activ 1092 * returns NULL in find_active_uprobe_rcu(). 1093 */ 1093 */ 1094 mmap_write_lock(mm); 1094 mmap_write_lock(mm); 1095 vma = find_vma(mm, info->vadd 1095 vma = find_vma(mm, info->vaddr); 1096 if (!vma || !valid_vma(vma, i 1096 if (!vma || !valid_vma(vma, is_register) || 1097 file_inode(vma->vm_file) 1097 file_inode(vma->vm_file) != uprobe->inode) 1098 goto unlock; 1098 goto unlock; 1099 1099 1100 if (vma->vm_start > info->vad 1100 if (vma->vm_start > info->vaddr || 1101 vaddr_to_offset(vma, info 1101 vaddr_to_offset(vma, info->vaddr) != uprobe->offset) 1102 goto unlock; 1102 goto unlock; 1103 1103 1104 if (is_register) { 1104 if (is_register) { 1105 /* consult only the " 1105 /* consult only the "caller", new consumer. */ 1106 if (consumer_filter(n 1106 if (consumer_filter(new, mm)) 1107 err = install 1107 err = install_breakpoint(uprobe, mm, vma, info->vaddr); 1108 } else if (test_bit(MMF_HAS_U 1108 } else if (test_bit(MMF_HAS_UPROBES, &mm->flags)) { 1109 if (!filter_chain(upr 1109 if (!filter_chain(uprobe, mm)) 1110 err |= remove 1110 err |= remove_breakpoint(uprobe, mm, info->vaddr); 1111 } 1111 } 1112 1112 1113 unlock: 1113 unlock: 1114 mmap_write_unlock(mm); 1114 mmap_write_unlock(mm); 1115 free: 1115 free: 1116 mmput(mm); 1116 mmput(mm); 1117 info = free_map_info(info); 1117 info = free_map_info(info); 1118 } 1118 } 1119 out: 1119 out: 1120 percpu_up_write(&dup_mmap_sem); 1120 percpu_up_write(&dup_mmap_sem); 1121 return err; 1121 return err; 1122 } 1122 } 1123 1123 1124 /** 1124 /** 1125 * uprobe_unregister_nosync - unregister an a 1125 * uprobe_unregister_nosync - unregister an already registered probe. 1126 * @uprobe: uprobe to remove 1126 * @uprobe: uprobe to remove 1127 * @uc: identify which probe if multiple prob 1127 * @uc: identify which probe if multiple probes are colocated. 1128 */ 1128 */ 1129 void uprobe_unregister_nosync(struct uprobe * 1129 void uprobe_unregister_nosync(struct uprobe *uprobe, struct uprobe_consumer *uc) 1130 { 1130 { 1131 int err; 1131 int err; 1132 1132 1133 down_write(&uprobe->register_rwsem); 1133 down_write(&uprobe->register_rwsem); 1134 consumer_del(uprobe, uc); 1134 consumer_del(uprobe, uc); 1135 err = register_for_each_vma(uprobe, N 1135 err = register_for_each_vma(uprobe, NULL); 1136 up_write(&uprobe->register_rwsem); 1136 up_write(&uprobe->register_rwsem); 1137 1137 1138 /* TODO : cant unregister? schedule a 1138 /* TODO : cant unregister? schedule a worker thread */ 1139 if (unlikely(err)) { 1139 if (unlikely(err)) { 1140 uprobe_warn(current, "unregis 1140 uprobe_warn(current, "unregister, leaking uprobe"); 1141 return; 1141 return; 1142 } 1142 } 1143 1143 1144 put_uprobe(uprobe); 1144 put_uprobe(uprobe); 1145 } 1145 } 1146 EXPORT_SYMBOL_GPL(uprobe_unregister_nosync); 1146 EXPORT_SYMBOL_GPL(uprobe_unregister_nosync); 1147 1147 1148 void uprobe_unregister_sync(void) 1148 void uprobe_unregister_sync(void) 1149 { 1149 { 1150 /* 1150 /* 1151 * Now that handler_chain() and handl 1151 * Now that handler_chain() and handle_uretprobe_chain() iterate over 1152 * uprobe->consumers list under RCU p 1152 * uprobe->consumers list under RCU protection without holding 1153 * uprobe->register_rwsem, we need to 1153 * uprobe->register_rwsem, we need to wait for RCU grace period to 1154 * make sure that we can't call into 1154 * make sure that we can't call into just unregistered 1155 * uprobe_consumer's callbacks anymor 1155 * uprobe_consumer's callbacks anymore. If we don't do that, fast and 1156 * unlucky enough caller can free con 1156 * unlucky enough caller can free consumer's memory and cause 1157 * handler_chain() or handle_uretprob 1157 * handler_chain() or handle_uretprobe_chain() to do an use-after-free. 1158 */ 1158 */ 1159 synchronize_srcu(&uprobes_srcu); 1159 synchronize_srcu(&uprobes_srcu); 1160 } 1160 } 1161 EXPORT_SYMBOL_GPL(uprobe_unregister_sync); 1161 EXPORT_SYMBOL_GPL(uprobe_unregister_sync); 1162 1162 1163 /** 1163 /** 1164 * uprobe_register - register a probe 1164 * uprobe_register - register a probe 1165 * @inode: the file in which the probe has to 1165 * @inode: the file in which the probe has to be placed. 1166 * @offset: offset from the start of the file 1166 * @offset: offset from the start of the file. 1167 * @ref_ctr_offset: offset of SDT marker / re 1167 * @ref_ctr_offset: offset of SDT marker / reference counter 1168 * @uc: information on howto handle the probe 1168 * @uc: information on howto handle the probe.. 1169 * 1169 * 1170 * Apart from the access refcount, uprobe_reg 1170 * Apart from the access refcount, uprobe_register() takes a creation 1171 * refcount (thro alloc_uprobe) if and only i 1171 * refcount (thro alloc_uprobe) if and only if this @uprobe is getting 1172 * inserted into the rbtree (i.e first consum 1172 * inserted into the rbtree (i.e first consumer for a @inode:@offset 1173 * tuple). Creation refcount stops uprobe_un 1173 * tuple). Creation refcount stops uprobe_unregister from freeing the 1174 * @uprobe even before the register operation 1174 * @uprobe even before the register operation is complete. Creation 1175 * refcount is released when the last @uc for 1175 * refcount is released when the last @uc for the @uprobe 1176 * unregisters. Caller of uprobe_register() i 1176 * unregisters. Caller of uprobe_register() is required to keep @inode 1177 * (and the containing mount) referenced. 1177 * (and the containing mount) referenced. 1178 * 1178 * 1179 * Return: pointer to the new uprobe on succe 1179 * Return: pointer to the new uprobe on success or an ERR_PTR on failure. 1180 */ 1180 */ 1181 struct uprobe *uprobe_register(struct inode * 1181 struct uprobe *uprobe_register(struct inode *inode, 1182 loff_t offset 1182 loff_t offset, loff_t ref_ctr_offset, 1183 struct uprobe 1183 struct uprobe_consumer *uc) 1184 { 1184 { 1185 struct uprobe *uprobe; 1185 struct uprobe *uprobe; 1186 int ret; 1186 int ret; 1187 1187 1188 /* Uprobe must have at least one set 1188 /* Uprobe must have at least one set consumer */ 1189 if (!uc->handler && !uc->ret_handler) 1189 if (!uc->handler && !uc->ret_handler) 1190 return ERR_PTR(-EINVAL); 1190 return ERR_PTR(-EINVAL); 1191 1191 1192 /* copy_insn() uses read_mapping_page 1192 /* copy_insn() uses read_mapping_page() or shmem_read_mapping_page() */ 1193 if (!inode->i_mapping->a_ops->read_fo 1193 if (!inode->i_mapping->a_ops->read_folio && 1194 !shmem_mapping(inode->i_mapping)) 1194 !shmem_mapping(inode->i_mapping)) 1195 return ERR_PTR(-EIO); 1195 return ERR_PTR(-EIO); 1196 /* Racy, just to catch the obvious mi 1196 /* Racy, just to catch the obvious mistakes */ 1197 if (offset > i_size_read(inode)) 1197 if (offset > i_size_read(inode)) 1198 return ERR_PTR(-EINVAL); 1198 return ERR_PTR(-EINVAL); 1199 1199 1200 /* 1200 /* 1201 * This ensures that copy_from_page() 1201 * This ensures that copy_from_page(), copy_to_page() and 1202 * __update_ref_ctr() can't cross pag 1202 * __update_ref_ctr() can't cross page boundary. 1203 */ 1203 */ 1204 if (!IS_ALIGNED(offset, UPROBE_SWBP_I 1204 if (!IS_ALIGNED(offset, UPROBE_SWBP_INSN_SIZE)) 1205 return ERR_PTR(-EINVAL); 1205 return ERR_PTR(-EINVAL); 1206 if (!IS_ALIGNED(ref_ctr_offset, sizeo 1206 if (!IS_ALIGNED(ref_ctr_offset, sizeof(short))) 1207 return ERR_PTR(-EINVAL); 1207 return ERR_PTR(-EINVAL); 1208 1208 1209 uprobe = alloc_uprobe(inode, offset, 1209 uprobe = alloc_uprobe(inode, offset, ref_ctr_offset); 1210 if (IS_ERR(uprobe)) 1210 if (IS_ERR(uprobe)) 1211 return uprobe; 1211 return uprobe; 1212 1212 1213 down_write(&uprobe->register_rwsem); 1213 down_write(&uprobe->register_rwsem); 1214 consumer_add(uprobe, uc); 1214 consumer_add(uprobe, uc); 1215 ret = register_for_each_vma(uprobe, u 1215 ret = register_for_each_vma(uprobe, uc); 1216 up_write(&uprobe->register_rwsem); 1216 up_write(&uprobe->register_rwsem); 1217 1217 1218 if (ret) { 1218 if (ret) { 1219 uprobe_unregister_nosync(upro 1219 uprobe_unregister_nosync(uprobe, uc); 1220 /* 1220 /* 1221 * Registration might have pa 1221 * Registration might have partially succeeded, so we can have 1222 * this consumer being called 1222 * this consumer being called right at this time. We need to 1223 * sync here. It's ok, it's u 1223 * sync here. It's ok, it's unlikely slow path. 1224 */ 1224 */ 1225 uprobe_unregister_sync(); 1225 uprobe_unregister_sync(); 1226 return ERR_PTR(ret); 1226 return ERR_PTR(ret); 1227 } 1227 } 1228 1228 1229 return uprobe; 1229 return uprobe; 1230 } 1230 } 1231 EXPORT_SYMBOL_GPL(uprobe_register); 1231 EXPORT_SYMBOL_GPL(uprobe_register); 1232 1232 1233 /** 1233 /** 1234 * uprobe_apply - add or remove the breakpoin 1234 * uprobe_apply - add or remove the breakpoints according to @uc->filter 1235 * @uprobe: uprobe which "owns" the breakpoin 1235 * @uprobe: uprobe which "owns" the breakpoint 1236 * @uc: consumer which wants to add more or r 1236 * @uc: consumer which wants to add more or remove some breakpoints 1237 * @add: add or remove the breakpoints 1237 * @add: add or remove the breakpoints 1238 * Return: 0 on success or negative error cod 1238 * Return: 0 on success or negative error code. 1239 */ 1239 */ 1240 int uprobe_apply(struct uprobe *uprobe, struc 1240 int uprobe_apply(struct uprobe *uprobe, struct uprobe_consumer *uc, bool add) 1241 { 1241 { 1242 struct uprobe_consumer *con; 1242 struct uprobe_consumer *con; 1243 int ret = -ENOENT, srcu_idx; 1243 int ret = -ENOENT, srcu_idx; 1244 1244 1245 down_write(&uprobe->register_rwsem); 1245 down_write(&uprobe->register_rwsem); 1246 1246 1247 srcu_idx = srcu_read_lock(&uprobes_sr 1247 srcu_idx = srcu_read_lock(&uprobes_srcu); 1248 list_for_each_entry_srcu(con, &uprobe 1248 list_for_each_entry_srcu(con, &uprobe->consumers, cons_node, 1249 srcu_read_lo 1249 srcu_read_lock_held(&uprobes_srcu)) { 1250 if (con == uc) { 1250 if (con == uc) { 1251 ret = register_for_ea 1251 ret = register_for_each_vma(uprobe, add ? uc : NULL); 1252 break; 1252 break; 1253 } 1253 } 1254 } 1254 } 1255 srcu_read_unlock(&uprobes_srcu, srcu_ 1255 srcu_read_unlock(&uprobes_srcu, srcu_idx); 1256 1256 1257 up_write(&uprobe->register_rwsem); 1257 up_write(&uprobe->register_rwsem); 1258 1258 1259 return ret; 1259 return ret; 1260 } 1260 } 1261 1261 1262 static int unapply_uprobe(struct uprobe *upro 1262 static int unapply_uprobe(struct uprobe *uprobe, struct mm_struct *mm) 1263 { 1263 { 1264 VMA_ITERATOR(vmi, mm, 0); 1264 VMA_ITERATOR(vmi, mm, 0); 1265 struct vm_area_struct *vma; 1265 struct vm_area_struct *vma; 1266 int err = 0; 1266 int err = 0; 1267 1267 1268 mmap_read_lock(mm); 1268 mmap_read_lock(mm); 1269 for_each_vma(vmi, vma) { 1269 for_each_vma(vmi, vma) { 1270 unsigned long vaddr; 1270 unsigned long vaddr; 1271 loff_t offset; 1271 loff_t offset; 1272 1272 1273 if (!valid_vma(vma, false) || 1273 if (!valid_vma(vma, false) || 1274 file_inode(vma->vm_file) 1274 file_inode(vma->vm_file) != uprobe->inode) 1275 continue; 1275 continue; 1276 1276 1277 offset = (loff_t)vma->vm_pgof 1277 offset = (loff_t)vma->vm_pgoff << PAGE_SHIFT; 1278 if (uprobe->offset < offset 1278 if (uprobe->offset < offset || 1279 uprobe->offset >= offset 1279 uprobe->offset >= offset + vma->vm_end - vma->vm_start) 1280 continue; 1280 continue; 1281 1281 1282 vaddr = offset_to_vaddr(vma, 1282 vaddr = offset_to_vaddr(vma, uprobe->offset); 1283 err |= remove_breakpoint(upro 1283 err |= remove_breakpoint(uprobe, mm, vaddr); 1284 } 1284 } 1285 mmap_read_unlock(mm); 1285 mmap_read_unlock(mm); 1286 1286 1287 return err; 1287 return err; 1288 } 1288 } 1289 1289 1290 static struct rb_node * 1290 static struct rb_node * 1291 find_node_in_range(struct inode *inode, loff_ 1291 find_node_in_range(struct inode *inode, loff_t min, loff_t max) 1292 { 1292 { 1293 struct rb_node *n = uprobes_tree.rb_n 1293 struct rb_node *n = uprobes_tree.rb_node; 1294 1294 1295 while (n) { 1295 while (n) { 1296 struct uprobe *u = rb_entry(n 1296 struct uprobe *u = rb_entry(n, struct uprobe, rb_node); 1297 1297 1298 if (inode < u->inode) { 1298 if (inode < u->inode) { 1299 n = n->rb_left; 1299 n = n->rb_left; 1300 } else if (inode > u->inode) 1300 } else if (inode > u->inode) { 1301 n = n->rb_right; 1301 n = n->rb_right; 1302 } else { 1302 } else { 1303 if (max < u->offset) 1303 if (max < u->offset) 1304 n = n->rb_lef 1304 n = n->rb_left; 1305 else if (min > u->off 1305 else if (min > u->offset) 1306 n = n->rb_rig 1306 n = n->rb_right; 1307 else 1307 else 1308 break; 1308 break; 1309 } 1309 } 1310 } 1310 } 1311 1311 1312 return n; 1312 return n; 1313 } 1313 } 1314 1314 1315 /* 1315 /* 1316 * For a given range in vma, build a list of 1316 * For a given range in vma, build a list of probes that need to be inserted. 1317 */ 1317 */ 1318 static void build_probe_list(struct inode *in 1318 static void build_probe_list(struct inode *inode, 1319 struct vm_are 1319 struct vm_area_struct *vma, 1320 unsigned long 1320 unsigned long start, unsigned long end, 1321 struct list_h 1321 struct list_head *head) 1322 { 1322 { 1323 loff_t min, max; 1323 loff_t min, max; 1324 struct rb_node *n, *t; 1324 struct rb_node *n, *t; 1325 struct uprobe *u; 1325 struct uprobe *u; 1326 1326 1327 INIT_LIST_HEAD(head); 1327 INIT_LIST_HEAD(head); 1328 min = vaddr_to_offset(vma, start); 1328 min = vaddr_to_offset(vma, start); 1329 max = min + (end - start) - 1; 1329 max = min + (end - start) - 1; 1330 1330 1331 read_lock(&uprobes_treelock); 1331 read_lock(&uprobes_treelock); 1332 n = find_node_in_range(inode, min, ma 1332 n = find_node_in_range(inode, min, max); 1333 if (n) { 1333 if (n) { 1334 for (t = n; t; t = rb_prev(t) 1334 for (t = n; t; t = rb_prev(t)) { 1335 u = rb_entry(t, struc 1335 u = rb_entry(t, struct uprobe, rb_node); 1336 if (u->inode != inode 1336 if (u->inode != inode || u->offset < min) 1337 break; 1337 break; 1338 /* if uprobe went awa 1338 /* if uprobe went away, it's safe to ignore it */ 1339 if (try_get_uprobe(u) 1339 if (try_get_uprobe(u)) 1340 list_add(&u-> 1340 list_add(&u->pending_list, head); 1341 } 1341 } 1342 for (t = n; (t = rb_next(t)); 1342 for (t = n; (t = rb_next(t)); ) { 1343 u = rb_entry(t, struc 1343 u = rb_entry(t, struct uprobe, rb_node); 1344 if (u->inode != inode 1344 if (u->inode != inode || u->offset > max) 1345 break; 1345 break; 1346 /* if uprobe went awa 1346 /* if uprobe went away, it's safe to ignore it */ 1347 if (try_get_uprobe(u) 1347 if (try_get_uprobe(u)) 1348 list_add(&u-> 1348 list_add(&u->pending_list, head); 1349 } 1349 } 1350 } 1350 } 1351 read_unlock(&uprobes_treelock); 1351 read_unlock(&uprobes_treelock); 1352 } 1352 } 1353 1353 1354 /* @vma contains reference counter, not the p 1354 /* @vma contains reference counter, not the probed instruction. */ 1355 static int delayed_ref_ctr_inc(struct vm_area 1355 static int delayed_ref_ctr_inc(struct vm_area_struct *vma) 1356 { 1356 { 1357 struct list_head *pos, *q; 1357 struct list_head *pos, *q; 1358 struct delayed_uprobe *du; 1358 struct delayed_uprobe *du; 1359 unsigned long vaddr; 1359 unsigned long vaddr; 1360 int ret = 0, err = 0; 1360 int ret = 0, err = 0; 1361 1361 1362 mutex_lock(&delayed_uprobe_lock); 1362 mutex_lock(&delayed_uprobe_lock); 1363 list_for_each_safe(pos, q, &delayed_u 1363 list_for_each_safe(pos, q, &delayed_uprobe_list) { 1364 du = list_entry(pos, struct d 1364 du = list_entry(pos, struct delayed_uprobe, list); 1365 1365 1366 if (du->mm != vma->vm_mm || 1366 if (du->mm != vma->vm_mm || 1367 !valid_ref_ctr_vma(du->up 1367 !valid_ref_ctr_vma(du->uprobe, vma)) 1368 continue; 1368 continue; 1369 1369 1370 vaddr = offset_to_vaddr(vma, 1370 vaddr = offset_to_vaddr(vma, du->uprobe->ref_ctr_offset); 1371 ret = __update_ref_ctr(vma->v 1371 ret = __update_ref_ctr(vma->vm_mm, vaddr, 1); 1372 if (ret) { 1372 if (ret) { 1373 update_ref_ctr_warn(d 1373 update_ref_ctr_warn(du->uprobe, vma->vm_mm, 1); 1374 if (!err) 1374 if (!err) 1375 err = ret; 1375 err = ret; 1376 } 1376 } 1377 delayed_uprobe_delete(du); 1377 delayed_uprobe_delete(du); 1378 } 1378 } 1379 mutex_unlock(&delayed_uprobe_lock); 1379 mutex_unlock(&delayed_uprobe_lock); 1380 return err; 1380 return err; 1381 } 1381 } 1382 1382 1383 /* 1383 /* 1384 * Called from mmap_region/vma_merge with mm- 1384 * Called from mmap_region/vma_merge with mm->mmap_lock acquired. 1385 * 1385 * 1386 * Currently we ignore all errors and always 1386 * Currently we ignore all errors and always return 0, the callers 1387 * can't handle the failure anyway. 1387 * can't handle the failure anyway. 1388 */ 1388 */ 1389 int uprobe_mmap(struct vm_area_struct *vma) 1389 int uprobe_mmap(struct vm_area_struct *vma) 1390 { 1390 { 1391 struct list_head tmp_list; 1391 struct list_head tmp_list; 1392 struct uprobe *uprobe, *u; 1392 struct uprobe *uprobe, *u; 1393 struct inode *inode; 1393 struct inode *inode; 1394 1394 1395 if (no_uprobe_events()) 1395 if (no_uprobe_events()) 1396 return 0; 1396 return 0; 1397 1397 1398 if (vma->vm_file && 1398 if (vma->vm_file && 1399 (vma->vm_flags & (VM_WRITE|VM_SHA 1399 (vma->vm_flags & (VM_WRITE|VM_SHARED)) == VM_WRITE && 1400 test_bit(MMF_HAS_UPROBES, &vma->v 1400 test_bit(MMF_HAS_UPROBES, &vma->vm_mm->flags)) 1401 delayed_ref_ctr_inc(vma); 1401 delayed_ref_ctr_inc(vma); 1402 1402 1403 if (!valid_vma(vma, true)) 1403 if (!valid_vma(vma, true)) 1404 return 0; 1404 return 0; 1405 1405 1406 inode = file_inode(vma->vm_file); 1406 inode = file_inode(vma->vm_file); 1407 if (!inode) 1407 if (!inode) 1408 return 0; 1408 return 0; 1409 1409 1410 mutex_lock(uprobes_mmap_hash(inode)); 1410 mutex_lock(uprobes_mmap_hash(inode)); 1411 build_probe_list(inode, vma, vma->vm_ 1411 build_probe_list(inode, vma, vma->vm_start, vma->vm_end, &tmp_list); 1412 /* 1412 /* 1413 * We can race with uprobe_unregister 1413 * We can race with uprobe_unregister(), this uprobe can be already 1414 * removed. But in this case filter_c 1414 * removed. But in this case filter_chain() must return false, all 1415 * consumers have gone away. 1415 * consumers have gone away. 1416 */ 1416 */ 1417 list_for_each_entry_safe(uprobe, u, & 1417 list_for_each_entry_safe(uprobe, u, &tmp_list, pending_list) { 1418 if (!fatal_signal_pending(cur 1418 if (!fatal_signal_pending(current) && 1419 filter_chain(uprobe, vma- 1419 filter_chain(uprobe, vma->vm_mm)) { 1420 unsigned long vaddr = 1420 unsigned long vaddr = offset_to_vaddr(vma, uprobe->offset); 1421 install_breakpoint(up 1421 install_breakpoint(uprobe, vma->vm_mm, vma, vaddr); 1422 } 1422 } 1423 put_uprobe(uprobe); 1423 put_uprobe(uprobe); 1424 } 1424 } 1425 mutex_unlock(uprobes_mmap_hash(inode) 1425 mutex_unlock(uprobes_mmap_hash(inode)); 1426 1426 1427 return 0; 1427 return 0; 1428 } 1428 } 1429 1429 1430 static bool 1430 static bool 1431 vma_has_uprobes(struct vm_area_struct *vma, u 1431 vma_has_uprobes(struct vm_area_struct *vma, unsigned long start, unsigned long end) 1432 { 1432 { 1433 loff_t min, max; 1433 loff_t min, max; 1434 struct inode *inode; 1434 struct inode *inode; 1435 struct rb_node *n; 1435 struct rb_node *n; 1436 1436 1437 inode = file_inode(vma->vm_file); 1437 inode = file_inode(vma->vm_file); 1438 1438 1439 min = vaddr_to_offset(vma, start); 1439 min = vaddr_to_offset(vma, start); 1440 max = min + (end - start) - 1; 1440 max = min + (end - start) - 1; 1441 1441 1442 read_lock(&uprobes_treelock); 1442 read_lock(&uprobes_treelock); 1443 n = find_node_in_range(inode, min, ma 1443 n = find_node_in_range(inode, min, max); 1444 read_unlock(&uprobes_treelock); 1444 read_unlock(&uprobes_treelock); 1445 1445 1446 return !!n; 1446 return !!n; 1447 } 1447 } 1448 1448 1449 /* 1449 /* 1450 * Called in context of a munmap of a vma. 1450 * Called in context of a munmap of a vma. 1451 */ 1451 */ 1452 void uprobe_munmap(struct vm_area_struct *vma 1452 void uprobe_munmap(struct vm_area_struct *vma, unsigned long start, unsigned long end) 1453 { 1453 { 1454 if (no_uprobe_events() || !valid_vma( 1454 if (no_uprobe_events() || !valid_vma(vma, false)) 1455 return; 1455 return; 1456 1456 1457 if (!atomic_read(&vma->vm_mm->mm_user 1457 if (!atomic_read(&vma->vm_mm->mm_users)) /* called by mmput() ? */ 1458 return; 1458 return; 1459 1459 1460 if (!test_bit(MMF_HAS_UPROBES, &vma-> 1460 if (!test_bit(MMF_HAS_UPROBES, &vma->vm_mm->flags) || 1461 test_bit(MMF_RECALC_UPROBES, &vm 1461 test_bit(MMF_RECALC_UPROBES, &vma->vm_mm->flags)) 1462 return; 1462 return; 1463 1463 1464 if (vma_has_uprobes(vma, start, end)) 1464 if (vma_has_uprobes(vma, start, end)) 1465 set_bit(MMF_RECALC_UPROBES, & 1465 set_bit(MMF_RECALC_UPROBES, &vma->vm_mm->flags); 1466 } 1466 } 1467 1467 1468 static vm_fault_t xol_fault(const struct vm_s 1468 static vm_fault_t xol_fault(const struct vm_special_mapping *sm, 1469 struct vm_area_st 1469 struct vm_area_struct *vma, struct vm_fault *vmf) 1470 { 1470 { 1471 struct xol_area *area = vma->vm_mm->u 1471 struct xol_area *area = vma->vm_mm->uprobes_state.xol_area; 1472 1472 1473 vmf->page = area->page; 1473 vmf->page = area->page; 1474 get_page(vmf->page); 1474 get_page(vmf->page); 1475 return 0; 1475 return 0; 1476 } 1476 } 1477 1477 1478 static const struct vm_special_mapping xol_ma 1478 static const struct vm_special_mapping xol_mapping = { 1479 .name = "[uprobes]", 1479 .name = "[uprobes]", 1480 .fault = xol_fault, 1480 .fault = xol_fault, 1481 }; 1481 }; 1482 1482 1483 /* Slot allocation for XOL */ 1483 /* Slot allocation for XOL */ 1484 static int xol_add_vma(struct mm_struct *mm, 1484 static int xol_add_vma(struct mm_struct *mm, struct xol_area *area) 1485 { 1485 { 1486 struct vm_area_struct *vma; 1486 struct vm_area_struct *vma; 1487 int ret; 1487 int ret; 1488 1488 1489 if (mmap_write_lock_killable(mm)) 1489 if (mmap_write_lock_killable(mm)) 1490 return -EINTR; 1490 return -EINTR; 1491 1491 1492 if (mm->uprobes_state.xol_area) { 1492 if (mm->uprobes_state.xol_area) { 1493 ret = -EALREADY; 1493 ret = -EALREADY; 1494 goto fail; 1494 goto fail; 1495 } 1495 } 1496 1496 1497 if (!area->vaddr) { 1497 if (!area->vaddr) { 1498 /* Try to map as high as poss 1498 /* Try to map as high as possible, this is only a hint. */ 1499 area->vaddr = get_unmapped_ar 1499 area->vaddr = get_unmapped_area(NULL, TASK_SIZE - PAGE_SIZE, 1500 1500 PAGE_SIZE, 0, 0); 1501 if (IS_ERR_VALUE(area->vaddr) 1501 if (IS_ERR_VALUE(area->vaddr)) { 1502 ret = area->vaddr; 1502 ret = area->vaddr; 1503 goto fail; 1503 goto fail; 1504 } 1504 } 1505 } 1505 } 1506 1506 1507 vma = _install_special_mapping(mm, ar 1507 vma = _install_special_mapping(mm, area->vaddr, PAGE_SIZE, 1508 VM_EXEC|VM_MA 1508 VM_EXEC|VM_MAYEXEC|VM_DONTCOPY|VM_IO, 1509 &xol_mapping) 1509 &xol_mapping); 1510 if (IS_ERR(vma)) { 1510 if (IS_ERR(vma)) { 1511 ret = PTR_ERR(vma); 1511 ret = PTR_ERR(vma); 1512 goto fail; 1512 goto fail; 1513 } 1513 } 1514 1514 1515 ret = 0; 1515 ret = 0; 1516 /* pairs with get_xol_area() */ 1516 /* pairs with get_xol_area() */ 1517 smp_store_release(&mm->uprobes_state. 1517 smp_store_release(&mm->uprobes_state.xol_area, area); /* ^^^ */ 1518 fail: 1518 fail: 1519 mmap_write_unlock(mm); 1519 mmap_write_unlock(mm); 1520 1520 1521 return ret; 1521 return ret; 1522 } 1522 } 1523 1523 1524 void * __weak arch_uprobe_trampoline(unsigned 1524 void * __weak arch_uprobe_trampoline(unsigned long *psize) 1525 { 1525 { 1526 static uprobe_opcode_t insn = UPROBE_ 1526 static uprobe_opcode_t insn = UPROBE_SWBP_INSN; 1527 1527 1528 *psize = UPROBE_SWBP_INSN_SIZE; 1528 *psize = UPROBE_SWBP_INSN_SIZE; 1529 return &insn; 1529 return &insn; 1530 } 1530 } 1531 1531 1532 static struct xol_area *__create_xol_area(uns 1532 static struct xol_area *__create_xol_area(unsigned long vaddr) 1533 { 1533 { 1534 struct mm_struct *mm = current->mm; 1534 struct mm_struct *mm = current->mm; 1535 unsigned long insns_size; 1535 unsigned long insns_size; 1536 struct xol_area *area; 1536 struct xol_area *area; 1537 void *insns; 1537 void *insns; 1538 1538 1539 area = kzalloc(sizeof(*area), GFP_KER 1539 area = kzalloc(sizeof(*area), GFP_KERNEL); 1540 if (unlikely(!area)) 1540 if (unlikely(!area)) 1541 goto out; 1541 goto out; 1542 1542 1543 area->bitmap = kcalloc(BITS_TO_LONGS( 1543 area->bitmap = kcalloc(BITS_TO_LONGS(UINSNS_PER_PAGE), sizeof(long), 1544 GFP_KERNEL); 1544 GFP_KERNEL); 1545 if (!area->bitmap) 1545 if (!area->bitmap) 1546 goto free_area; 1546 goto free_area; 1547 1547 1548 area->page = alloc_page(GFP_HIGHUSER 1548 area->page = alloc_page(GFP_HIGHUSER | __GFP_ZERO); 1549 if (!area->page) 1549 if (!area->page) 1550 goto free_bitmap; 1550 goto free_bitmap; 1551 1551 1552 area->vaddr = vaddr; 1552 area->vaddr = vaddr; 1553 init_waitqueue_head(&area->wq); 1553 init_waitqueue_head(&area->wq); 1554 /* Reserve the 1st slot for get_tramp 1554 /* Reserve the 1st slot for get_trampoline_vaddr() */ 1555 set_bit(0, area->bitmap); 1555 set_bit(0, area->bitmap); 1556 atomic_set(&area->slot_count, 1); 1556 atomic_set(&area->slot_count, 1); 1557 insns = arch_uprobe_trampoline(&insns 1557 insns = arch_uprobe_trampoline(&insns_size); 1558 arch_uprobe_copy_ixol(area->page, 0, 1558 arch_uprobe_copy_ixol(area->page, 0, insns, insns_size); 1559 1559 1560 if (!xol_add_vma(mm, area)) 1560 if (!xol_add_vma(mm, area)) 1561 return area; 1561 return area; 1562 1562 1563 __free_page(area->page); 1563 __free_page(area->page); 1564 free_bitmap: 1564 free_bitmap: 1565 kfree(area->bitmap); 1565 kfree(area->bitmap); 1566 free_area: 1566 free_area: 1567 kfree(area); 1567 kfree(area); 1568 out: 1568 out: 1569 return NULL; 1569 return NULL; 1570 } 1570 } 1571 1571 1572 /* 1572 /* 1573 * get_xol_area - Allocate process's xol_area 1573 * get_xol_area - Allocate process's xol_area if necessary. 1574 * This area will be used for storing instruc 1574 * This area will be used for storing instructions for execution out of line. 1575 * 1575 * 1576 * Returns the allocated area or NULL. 1576 * Returns the allocated area or NULL. 1577 */ 1577 */ 1578 static struct xol_area *get_xol_area(void) 1578 static struct xol_area *get_xol_area(void) 1579 { 1579 { 1580 struct mm_struct *mm = current->mm; 1580 struct mm_struct *mm = current->mm; 1581 struct xol_area *area; 1581 struct xol_area *area; 1582 1582 1583 if (!mm->uprobes_state.xol_area) 1583 if (!mm->uprobes_state.xol_area) 1584 __create_xol_area(0); 1584 __create_xol_area(0); 1585 1585 1586 /* Pairs with xol_add_vma() smp_store 1586 /* Pairs with xol_add_vma() smp_store_release() */ 1587 area = READ_ONCE(mm->uprobes_state.xo 1587 area = READ_ONCE(mm->uprobes_state.xol_area); /* ^^^ */ 1588 return area; 1588 return area; 1589 } 1589 } 1590 1590 1591 /* 1591 /* 1592 * uprobe_clear_state - Free the area allocat 1592 * uprobe_clear_state - Free the area allocated for slots. 1593 */ 1593 */ 1594 void uprobe_clear_state(struct mm_struct *mm) 1594 void uprobe_clear_state(struct mm_struct *mm) 1595 { 1595 { 1596 struct xol_area *area = mm->uprobes_s 1596 struct xol_area *area = mm->uprobes_state.xol_area; 1597 1597 1598 mutex_lock(&delayed_uprobe_lock); 1598 mutex_lock(&delayed_uprobe_lock); 1599 delayed_uprobe_remove(NULL, mm); 1599 delayed_uprobe_remove(NULL, mm); 1600 mutex_unlock(&delayed_uprobe_lock); 1600 mutex_unlock(&delayed_uprobe_lock); 1601 1601 1602 if (!area) 1602 if (!area) 1603 return; 1603 return; 1604 1604 1605 put_page(area->page); 1605 put_page(area->page); 1606 kfree(area->bitmap); 1606 kfree(area->bitmap); 1607 kfree(area); 1607 kfree(area); 1608 } 1608 } 1609 1609 1610 void uprobe_start_dup_mmap(void) 1610 void uprobe_start_dup_mmap(void) 1611 { 1611 { 1612 percpu_down_read(&dup_mmap_sem); 1612 percpu_down_read(&dup_mmap_sem); 1613 } 1613 } 1614 1614 1615 void uprobe_end_dup_mmap(void) 1615 void uprobe_end_dup_mmap(void) 1616 { 1616 { 1617 percpu_up_read(&dup_mmap_sem); 1617 percpu_up_read(&dup_mmap_sem); 1618 } 1618 } 1619 1619 1620 void uprobe_dup_mmap(struct mm_struct *oldmm, 1620 void uprobe_dup_mmap(struct mm_struct *oldmm, struct mm_struct *newmm) 1621 { 1621 { 1622 if (test_bit(MMF_HAS_UPROBES, &oldmm- 1622 if (test_bit(MMF_HAS_UPROBES, &oldmm->flags)) { 1623 set_bit(MMF_HAS_UPROBES, &new 1623 set_bit(MMF_HAS_UPROBES, &newmm->flags); 1624 /* unconditionally, dup_mmap( 1624 /* unconditionally, dup_mmap() skips VM_DONTCOPY vmas */ 1625 set_bit(MMF_RECALC_UPROBES, & 1625 set_bit(MMF_RECALC_UPROBES, &newmm->flags); 1626 } 1626 } 1627 } 1627 } 1628 1628 1629 /* 1629 /* 1630 * - search for a free slot. 1630 * - search for a free slot. 1631 */ 1631 */ 1632 static unsigned long xol_take_insn_slot(struc 1632 static unsigned long xol_take_insn_slot(struct xol_area *area) 1633 { 1633 { 1634 unsigned long slot_addr; 1634 unsigned long slot_addr; 1635 int slot_nr; 1635 int slot_nr; 1636 1636 1637 do { 1637 do { 1638 slot_nr = find_first_zero_bit 1638 slot_nr = find_first_zero_bit(area->bitmap, UINSNS_PER_PAGE); 1639 if (slot_nr < UINSNS_PER_PAGE 1639 if (slot_nr < UINSNS_PER_PAGE) { 1640 if (!test_and_set_bit 1640 if (!test_and_set_bit(slot_nr, area->bitmap)) 1641 break; 1641 break; 1642 1642 1643 slot_nr = UINSNS_PER_ 1643 slot_nr = UINSNS_PER_PAGE; 1644 continue; 1644 continue; 1645 } 1645 } 1646 wait_event(area->wq, (atomic_ 1646 wait_event(area->wq, (atomic_read(&area->slot_count) < UINSNS_PER_PAGE)); 1647 } while (slot_nr >= UINSNS_PER_PAGE); 1647 } while (slot_nr >= UINSNS_PER_PAGE); 1648 1648 1649 slot_addr = area->vaddr + (slot_nr * 1649 slot_addr = area->vaddr + (slot_nr * UPROBE_XOL_SLOT_BYTES); 1650 atomic_inc(&area->slot_count); 1650 atomic_inc(&area->slot_count); 1651 1651 1652 return slot_addr; 1652 return slot_addr; 1653 } 1653 } 1654 1654 1655 /* 1655 /* 1656 * xol_get_insn_slot - allocate a slot for xo 1656 * xol_get_insn_slot - allocate a slot for xol. 1657 * Returns the allocated slot address or 0. 1657 * Returns the allocated slot address or 0. 1658 */ 1658 */ 1659 static unsigned long xol_get_insn_slot(struct 1659 static unsigned long xol_get_insn_slot(struct uprobe *uprobe) 1660 { 1660 { 1661 struct xol_area *area; 1661 struct xol_area *area; 1662 unsigned long xol_vaddr; 1662 unsigned long xol_vaddr; 1663 1663 1664 area = get_xol_area(); 1664 area = get_xol_area(); 1665 if (!area) 1665 if (!area) 1666 return 0; 1666 return 0; 1667 1667 1668 xol_vaddr = xol_take_insn_slot(area); 1668 xol_vaddr = xol_take_insn_slot(area); 1669 if (unlikely(!xol_vaddr)) 1669 if (unlikely(!xol_vaddr)) 1670 return 0; 1670 return 0; 1671 1671 1672 arch_uprobe_copy_ixol(area->page, xol 1672 arch_uprobe_copy_ixol(area->page, xol_vaddr, 1673 &uprobe->arch.i 1673 &uprobe->arch.ixol, sizeof(uprobe->arch.ixol)); 1674 1674 1675 return xol_vaddr; 1675 return xol_vaddr; 1676 } 1676 } 1677 1677 1678 /* 1678 /* 1679 * xol_free_insn_slot - If slot was earlier a 1679 * xol_free_insn_slot - If slot was earlier allocated by 1680 * @xol_get_insn_slot(), make the slot availa 1680 * @xol_get_insn_slot(), make the slot available for 1681 * subsequent requests. 1681 * subsequent requests. 1682 */ 1682 */ 1683 static void xol_free_insn_slot(struct task_st 1683 static void xol_free_insn_slot(struct task_struct *tsk) 1684 { 1684 { 1685 struct xol_area *area; 1685 struct xol_area *area; 1686 unsigned long vma_end; 1686 unsigned long vma_end; 1687 unsigned long slot_addr; 1687 unsigned long slot_addr; 1688 1688 1689 if (!tsk->mm || !tsk->mm->uprobes_sta 1689 if (!tsk->mm || !tsk->mm->uprobes_state.xol_area || !tsk->utask) 1690 return; 1690 return; 1691 1691 1692 slot_addr = tsk->utask->xol_vaddr; 1692 slot_addr = tsk->utask->xol_vaddr; 1693 if (unlikely(!slot_addr)) 1693 if (unlikely(!slot_addr)) 1694 return; 1694 return; 1695 1695 1696 area = tsk->mm->uprobes_state.xol_are 1696 area = tsk->mm->uprobes_state.xol_area; 1697 vma_end = area->vaddr + PAGE_SIZE; 1697 vma_end = area->vaddr + PAGE_SIZE; 1698 if (area->vaddr <= slot_addr && slot_ 1698 if (area->vaddr <= slot_addr && slot_addr < vma_end) { 1699 unsigned long offset; 1699 unsigned long offset; 1700 int slot_nr; 1700 int slot_nr; 1701 1701 1702 offset = slot_addr - area->va 1702 offset = slot_addr - area->vaddr; 1703 slot_nr = offset / UPROBE_XOL 1703 slot_nr = offset / UPROBE_XOL_SLOT_BYTES; 1704 if (slot_nr >= UINSNS_PER_PAG 1704 if (slot_nr >= UINSNS_PER_PAGE) 1705 return; 1705 return; 1706 1706 1707 clear_bit(slot_nr, area->bitm 1707 clear_bit(slot_nr, area->bitmap); 1708 atomic_dec(&area->slot_count) 1708 atomic_dec(&area->slot_count); 1709 smp_mb__after_atomic(); /* pa 1709 smp_mb__after_atomic(); /* pairs with prepare_to_wait() */ 1710 if (waitqueue_active(&area->w 1710 if (waitqueue_active(&area->wq)) 1711 wake_up(&area->wq); 1711 wake_up(&area->wq); 1712 1712 1713 tsk->utask->xol_vaddr = 0; 1713 tsk->utask->xol_vaddr = 0; 1714 } 1714 } 1715 } 1715 } 1716 1716 1717 void __weak arch_uprobe_copy_ixol(struct page 1717 void __weak arch_uprobe_copy_ixol(struct page *page, unsigned long vaddr, 1718 void *src, 1718 void *src, unsigned long len) 1719 { 1719 { 1720 /* Initialize the slot */ 1720 /* Initialize the slot */ 1721 copy_to_page(page, vaddr, src, len); 1721 copy_to_page(page, vaddr, src, len); 1722 1722 1723 /* 1723 /* 1724 * We probably need flush_icache_user 1724 * We probably need flush_icache_user_page() but it needs vma. 1725 * This should work on most of archit 1725 * This should work on most of architectures by default. If 1726 * architecture needs to do something 1726 * architecture needs to do something different it can define 1727 * its own version of the function. 1727 * its own version of the function. 1728 */ 1728 */ 1729 flush_dcache_page(page); 1729 flush_dcache_page(page); 1730 } 1730 } 1731 1731 1732 /** 1732 /** 1733 * uprobe_get_swbp_addr - compute address of 1733 * uprobe_get_swbp_addr - compute address of swbp given post-swbp regs 1734 * @regs: Reflects the saved state of the tas 1734 * @regs: Reflects the saved state of the task after it has hit a breakpoint 1735 * instruction. 1735 * instruction. 1736 * Return the address of the breakpoint instr 1736 * Return the address of the breakpoint instruction. 1737 */ 1737 */ 1738 unsigned long __weak uprobe_get_swbp_addr(str 1738 unsigned long __weak uprobe_get_swbp_addr(struct pt_regs *regs) 1739 { 1739 { 1740 return instruction_pointer(regs) - UP 1740 return instruction_pointer(regs) - UPROBE_SWBP_INSN_SIZE; 1741 } 1741 } 1742 1742 1743 unsigned long uprobe_get_trap_addr(struct pt_ 1743 unsigned long uprobe_get_trap_addr(struct pt_regs *regs) 1744 { 1744 { 1745 struct uprobe_task *utask = current-> 1745 struct uprobe_task *utask = current->utask; 1746 1746 1747 if (unlikely(utask && utask->active_u 1747 if (unlikely(utask && utask->active_uprobe)) 1748 return utask->vaddr; 1748 return utask->vaddr; 1749 1749 1750 return instruction_pointer(regs); 1750 return instruction_pointer(regs); 1751 } 1751 } 1752 1752 1753 static struct return_instance *free_ret_insta 1753 static struct return_instance *free_ret_instance(struct return_instance *ri) 1754 { 1754 { 1755 struct return_instance *next = ri->ne 1755 struct return_instance *next = ri->next; 1756 put_uprobe(ri->uprobe); 1756 put_uprobe(ri->uprobe); 1757 kfree(ri); 1757 kfree(ri); 1758 return next; 1758 return next; 1759 } 1759 } 1760 1760 1761 /* 1761 /* 1762 * Called with no locks held. 1762 * Called with no locks held. 1763 * Called in context of an exiting or an exec 1763 * Called in context of an exiting or an exec-ing thread. 1764 */ 1764 */ 1765 void uprobe_free_utask(struct task_struct *t) 1765 void uprobe_free_utask(struct task_struct *t) 1766 { 1766 { 1767 struct uprobe_task *utask = t->utask; 1767 struct uprobe_task *utask = t->utask; 1768 struct return_instance *ri; 1768 struct return_instance *ri; 1769 1769 1770 if (!utask) 1770 if (!utask) 1771 return; 1771 return; 1772 1772 1773 if (utask->active_uprobe) 1773 if (utask->active_uprobe) 1774 put_uprobe(utask->active_upro 1774 put_uprobe(utask->active_uprobe); 1775 1775 1776 ri = utask->return_instances; 1776 ri = utask->return_instances; 1777 while (ri) 1777 while (ri) 1778 ri = free_ret_instance(ri); 1778 ri = free_ret_instance(ri); 1779 1779 1780 xol_free_insn_slot(t); 1780 xol_free_insn_slot(t); 1781 kfree(utask); 1781 kfree(utask); 1782 t->utask = NULL; 1782 t->utask = NULL; 1783 } 1783 } 1784 1784 1785 /* 1785 /* 1786 * Allocate a uprobe_task object for the task 1786 * Allocate a uprobe_task object for the task if necessary. 1787 * Called when the thread hits a breakpoint. 1787 * Called when the thread hits a breakpoint. 1788 * 1788 * 1789 * Returns: 1789 * Returns: 1790 * - pointer to new uprobe_task on success 1790 * - pointer to new uprobe_task on success 1791 * - NULL otherwise 1791 * - NULL otherwise 1792 */ 1792 */ 1793 static struct uprobe_task *get_utask(void) 1793 static struct uprobe_task *get_utask(void) 1794 { 1794 { 1795 if (!current->utask) 1795 if (!current->utask) 1796 current->utask = kzalloc(size 1796 current->utask = kzalloc(sizeof(struct uprobe_task), GFP_KERNEL); 1797 return current->utask; 1797 return current->utask; 1798 } 1798 } 1799 1799 1800 static int dup_utask(struct task_struct *t, s 1800 static int dup_utask(struct task_struct *t, struct uprobe_task *o_utask) 1801 { 1801 { 1802 struct uprobe_task *n_utask; 1802 struct uprobe_task *n_utask; 1803 struct return_instance **p, *o, *n; 1803 struct return_instance **p, *o, *n; 1804 1804 1805 n_utask = kzalloc(sizeof(struct uprob 1805 n_utask = kzalloc(sizeof(struct uprobe_task), GFP_KERNEL); 1806 if (!n_utask) 1806 if (!n_utask) 1807 return -ENOMEM; 1807 return -ENOMEM; 1808 t->utask = n_utask; 1808 t->utask = n_utask; 1809 1809 1810 p = &n_utask->return_instances; 1810 p = &n_utask->return_instances; 1811 for (o = o_utask->return_instances; o 1811 for (o = o_utask->return_instances; o; o = o->next) { 1812 n = kmalloc(sizeof(struct ret 1812 n = kmalloc(sizeof(struct return_instance), GFP_KERNEL); 1813 if (!n) 1813 if (!n) 1814 return -ENOMEM; 1814 return -ENOMEM; 1815 1815 1816 *n = *o; 1816 *n = *o; 1817 /* 1817 /* 1818 * uprobe's refcnt has to be 1818 * uprobe's refcnt has to be positive at this point, kept by 1819 * utask->return_instances it 1819 * utask->return_instances items; return_instances can't be 1820 * removed right now, as task 1820 * removed right now, as task is blocked due to duping; so 1821 * get_uprobe() is safe to us 1821 * get_uprobe() is safe to use here. 1822 */ 1822 */ 1823 get_uprobe(n->uprobe); 1823 get_uprobe(n->uprobe); 1824 n->next = NULL; 1824 n->next = NULL; 1825 1825 1826 *p = n; 1826 *p = n; 1827 p = &n->next; 1827 p = &n->next; 1828 n_utask->depth++; 1828 n_utask->depth++; 1829 } 1829 } 1830 1830 1831 return 0; 1831 return 0; 1832 } 1832 } 1833 1833 1834 static void dup_xol_work(struct callback_head 1834 static void dup_xol_work(struct callback_head *work) 1835 { 1835 { 1836 if (current->flags & PF_EXITING) 1836 if (current->flags & PF_EXITING) 1837 return; 1837 return; 1838 1838 1839 if (!__create_xol_area(current->utask 1839 if (!__create_xol_area(current->utask->dup_xol_addr) && 1840 !fatal_signal_pending 1840 !fatal_signal_pending(current)) 1841 uprobe_warn(current, "dup xol 1841 uprobe_warn(current, "dup xol area"); 1842 } 1842 } 1843 1843 1844 /* 1844 /* 1845 * Called in context of a new clone/fork from 1845 * Called in context of a new clone/fork from copy_process. 1846 */ 1846 */ 1847 void uprobe_copy_process(struct task_struct * 1847 void uprobe_copy_process(struct task_struct *t, unsigned long flags) 1848 { 1848 { 1849 struct uprobe_task *utask = current-> 1849 struct uprobe_task *utask = current->utask; 1850 struct mm_struct *mm = current->mm; 1850 struct mm_struct *mm = current->mm; 1851 struct xol_area *area; 1851 struct xol_area *area; 1852 1852 1853 t->utask = NULL; 1853 t->utask = NULL; 1854 1854 1855 if (!utask || !utask->return_instance 1855 if (!utask || !utask->return_instances) 1856 return; 1856 return; 1857 1857 1858 if (mm == t->mm && !(flags & CLONE_VF 1858 if (mm == t->mm && !(flags & CLONE_VFORK)) 1859 return; 1859 return; 1860 1860 1861 if (dup_utask(t, utask)) 1861 if (dup_utask(t, utask)) 1862 return uprobe_warn(t, "dup re 1862 return uprobe_warn(t, "dup ret instances"); 1863 1863 1864 /* The task can fork() after dup_xol_ 1864 /* The task can fork() after dup_xol_work() fails */ 1865 area = mm->uprobes_state.xol_area; 1865 area = mm->uprobes_state.xol_area; 1866 if (!area) 1866 if (!area) 1867 return uprobe_warn(t, "dup xo 1867 return uprobe_warn(t, "dup xol area"); 1868 1868 1869 if (mm == t->mm) 1869 if (mm == t->mm) 1870 return; 1870 return; 1871 1871 1872 t->utask->dup_xol_addr = area->vaddr; 1872 t->utask->dup_xol_addr = area->vaddr; 1873 init_task_work(&t->utask->dup_xol_wor 1873 init_task_work(&t->utask->dup_xol_work, dup_xol_work); 1874 task_work_add(t, &t->utask->dup_xol_w 1874 task_work_add(t, &t->utask->dup_xol_work, TWA_RESUME); 1875 } 1875 } 1876 1876 1877 /* 1877 /* 1878 * Current area->vaddr notion assume the tram 1878 * Current area->vaddr notion assume the trampoline address is always 1879 * equal area->vaddr. 1879 * equal area->vaddr. 1880 * 1880 * 1881 * Returns -1 in case the xol_area is not all 1881 * Returns -1 in case the xol_area is not allocated. 1882 */ 1882 */ 1883 unsigned long uprobe_get_trampoline_vaddr(voi 1883 unsigned long uprobe_get_trampoline_vaddr(void) 1884 { 1884 { 1885 struct xol_area *area; 1885 struct xol_area *area; 1886 unsigned long trampoline_vaddr = -1; 1886 unsigned long trampoline_vaddr = -1; 1887 1887 1888 /* Pairs with xol_add_vma() smp_store 1888 /* Pairs with xol_add_vma() smp_store_release() */ 1889 area = READ_ONCE(current->mm->uprobes 1889 area = READ_ONCE(current->mm->uprobes_state.xol_area); /* ^^^ */ 1890 if (area) 1890 if (area) 1891 trampoline_vaddr = area->vadd 1891 trampoline_vaddr = area->vaddr; 1892 1892 1893 return trampoline_vaddr; 1893 return trampoline_vaddr; 1894 } 1894 } 1895 1895 1896 static void cleanup_return_instances(struct u 1896 static void cleanup_return_instances(struct uprobe_task *utask, bool chained, 1897 struc 1897 struct pt_regs *regs) 1898 { 1898 { 1899 struct return_instance *ri = utask->r 1899 struct return_instance *ri = utask->return_instances; 1900 enum rp_check ctx = chained ? RP_CHEC 1900 enum rp_check ctx = chained ? RP_CHECK_CHAIN_CALL : RP_CHECK_CALL; 1901 1901 1902 while (ri && !arch_uretprobe_is_alive 1902 while (ri && !arch_uretprobe_is_alive(ri, ctx, regs)) { 1903 ri = free_ret_instance(ri); 1903 ri = free_ret_instance(ri); 1904 utask->depth--; 1904 utask->depth--; 1905 } 1905 } 1906 utask->return_instances = ri; 1906 utask->return_instances = ri; 1907 } 1907 } 1908 1908 1909 static void prepare_uretprobe(struct uprobe * 1909 static void prepare_uretprobe(struct uprobe *uprobe, struct pt_regs *regs) 1910 { 1910 { 1911 struct return_instance *ri; 1911 struct return_instance *ri; 1912 struct uprobe_task *utask; 1912 struct uprobe_task *utask; 1913 unsigned long orig_ret_vaddr, trampol 1913 unsigned long orig_ret_vaddr, trampoline_vaddr; 1914 bool chained; 1914 bool chained; 1915 1915 1916 if (!get_xol_area()) 1916 if (!get_xol_area()) 1917 return; 1917 return; 1918 1918 1919 utask = get_utask(); 1919 utask = get_utask(); 1920 if (!utask) 1920 if (!utask) 1921 return; 1921 return; 1922 1922 1923 if (utask->depth >= MAX_URETPROBE_DEP 1923 if (utask->depth >= MAX_URETPROBE_DEPTH) { 1924 printk_ratelimited(KERN_INFO 1924 printk_ratelimited(KERN_INFO "uprobe: omit uretprobe due to" 1925 " nestedness 1925 " nestedness limit pid/tgid=%d/%d\n", 1926 current->pid, 1926 current->pid, current->tgid); 1927 return; 1927 return; 1928 } 1928 } 1929 1929 1930 /* we need to bump refcount to store 1930 /* we need to bump refcount to store uprobe in utask */ 1931 if (!try_get_uprobe(uprobe)) 1931 if (!try_get_uprobe(uprobe)) 1932 return; 1932 return; 1933 1933 1934 ri = kmalloc(sizeof(struct return_ins 1934 ri = kmalloc(sizeof(struct return_instance), GFP_KERNEL); 1935 if (!ri) 1935 if (!ri) 1936 goto fail; 1936 goto fail; 1937 1937 1938 trampoline_vaddr = uprobe_get_trampol 1938 trampoline_vaddr = uprobe_get_trampoline_vaddr(); 1939 orig_ret_vaddr = arch_uretprobe_hijac 1939 orig_ret_vaddr = arch_uretprobe_hijack_return_addr(trampoline_vaddr, regs); 1940 if (orig_ret_vaddr == -1) 1940 if (orig_ret_vaddr == -1) 1941 goto fail; 1941 goto fail; 1942 1942 1943 /* drop the entries invalidated by lo 1943 /* drop the entries invalidated by longjmp() */ 1944 chained = (orig_ret_vaddr == trampoli 1944 chained = (orig_ret_vaddr == trampoline_vaddr); 1945 cleanup_return_instances(utask, chain 1945 cleanup_return_instances(utask, chained, regs); 1946 1946 1947 /* 1947 /* 1948 * We don't want to keep trampoline a 1948 * We don't want to keep trampoline address in stack, rather keep the 1949 * original return address of first c 1949 * original return address of first caller thru all the consequent 1950 * instances. This also makes breakpo 1950 * instances. This also makes breakpoint unwrapping easier. 1951 */ 1951 */ 1952 if (chained) { 1952 if (chained) { 1953 if (!utask->return_instances) 1953 if (!utask->return_instances) { 1954 /* 1954 /* 1955 * This situation is 1955 * This situation is not possible. Likely we have an 1956 * attack from user-s 1956 * attack from user-space. 1957 */ 1957 */ 1958 uprobe_warn(current, 1958 uprobe_warn(current, "handle tail call"); 1959 goto fail; 1959 goto fail; 1960 } 1960 } 1961 orig_ret_vaddr = utask->retur 1961 orig_ret_vaddr = utask->return_instances->orig_ret_vaddr; 1962 } 1962 } 1963 ri->uprobe = uprobe; 1963 ri->uprobe = uprobe; 1964 ri->func = instruction_pointer(regs); 1964 ri->func = instruction_pointer(regs); 1965 ri->stack = user_stack_pointer(regs); 1965 ri->stack = user_stack_pointer(regs); 1966 ri->orig_ret_vaddr = orig_ret_vaddr; 1966 ri->orig_ret_vaddr = orig_ret_vaddr; 1967 ri->chained = chained; 1967 ri->chained = chained; 1968 1968 1969 utask->depth++; 1969 utask->depth++; 1970 ri->next = utask->return_instances; 1970 ri->next = utask->return_instances; 1971 utask->return_instances = ri; 1971 utask->return_instances = ri; 1972 1972 1973 return; 1973 return; 1974 fail: 1974 fail: 1975 kfree(ri); 1975 kfree(ri); 1976 put_uprobe(uprobe); 1976 put_uprobe(uprobe); 1977 } 1977 } 1978 1978 1979 /* Prepare to single-step probed instruction 1979 /* Prepare to single-step probed instruction out of line. */ 1980 static int 1980 static int 1981 pre_ssout(struct uprobe *uprobe, struct pt_re 1981 pre_ssout(struct uprobe *uprobe, struct pt_regs *regs, unsigned long bp_vaddr) 1982 { 1982 { 1983 struct uprobe_task *utask; 1983 struct uprobe_task *utask; 1984 unsigned long xol_vaddr; 1984 unsigned long xol_vaddr; 1985 int err; 1985 int err; 1986 1986 1987 utask = get_utask(); 1987 utask = get_utask(); 1988 if (!utask) 1988 if (!utask) 1989 return -ENOMEM; 1989 return -ENOMEM; 1990 1990 1991 if (!try_get_uprobe(uprobe)) 1991 if (!try_get_uprobe(uprobe)) 1992 return -EINVAL; 1992 return -EINVAL; 1993 1993 1994 xol_vaddr = xol_get_insn_slot(uprobe) 1994 xol_vaddr = xol_get_insn_slot(uprobe); 1995 if (!xol_vaddr) { 1995 if (!xol_vaddr) { 1996 err = -ENOMEM; 1996 err = -ENOMEM; 1997 goto err_out; 1997 goto err_out; 1998 } 1998 } 1999 1999 2000 utask->xol_vaddr = xol_vaddr; 2000 utask->xol_vaddr = xol_vaddr; 2001 utask->vaddr = bp_vaddr; 2001 utask->vaddr = bp_vaddr; 2002 2002 2003 err = arch_uprobe_pre_xol(&uprobe->ar 2003 err = arch_uprobe_pre_xol(&uprobe->arch, regs); 2004 if (unlikely(err)) { 2004 if (unlikely(err)) { 2005 xol_free_insn_slot(current); 2005 xol_free_insn_slot(current); 2006 goto err_out; 2006 goto err_out; 2007 } 2007 } 2008 2008 2009 utask->active_uprobe = uprobe; 2009 utask->active_uprobe = uprobe; 2010 utask->state = UTASK_SSTEP; 2010 utask->state = UTASK_SSTEP; 2011 return 0; 2011 return 0; 2012 err_out: 2012 err_out: 2013 put_uprobe(uprobe); 2013 put_uprobe(uprobe); 2014 return err; 2014 return err; 2015 } 2015 } 2016 2016 2017 /* 2017 /* 2018 * If we are singlestepping, then ensure this 2018 * If we are singlestepping, then ensure this thread is not connected to 2019 * non-fatal signals until completion of sing 2019 * non-fatal signals until completion of singlestep. When xol insn itself 2020 * triggers the signal, restart the original 2020 * triggers the signal, restart the original insn even if the task is 2021 * already SIGKILL'ed (since coredump should 2021 * already SIGKILL'ed (since coredump should report the correct ip). This 2022 * is even more important if the task has a h 2022 * is even more important if the task has a handler for SIGSEGV/etc, The 2023 * _same_ instruction should be repeated agai 2023 * _same_ instruction should be repeated again after return from the signal 2024 * handler, and SSTEP can never finish in thi 2024 * handler, and SSTEP can never finish in this case. 2025 */ 2025 */ 2026 bool uprobe_deny_signal(void) 2026 bool uprobe_deny_signal(void) 2027 { 2027 { 2028 struct task_struct *t = current; 2028 struct task_struct *t = current; 2029 struct uprobe_task *utask = t->utask; 2029 struct uprobe_task *utask = t->utask; 2030 2030 2031 if (likely(!utask || !utask->active_u 2031 if (likely(!utask || !utask->active_uprobe)) 2032 return false; 2032 return false; 2033 2033 2034 WARN_ON_ONCE(utask->state != UTASK_SS 2034 WARN_ON_ONCE(utask->state != UTASK_SSTEP); 2035 2035 2036 if (task_sigpending(t)) { 2036 if (task_sigpending(t)) { 2037 spin_lock_irq(&t->sighand->si 2037 spin_lock_irq(&t->sighand->siglock); 2038 clear_tsk_thread_flag(t, TIF_ 2038 clear_tsk_thread_flag(t, TIF_SIGPENDING); 2039 spin_unlock_irq(&t->sighand-> 2039 spin_unlock_irq(&t->sighand->siglock); 2040 2040 2041 if (__fatal_signal_pending(t) 2041 if (__fatal_signal_pending(t) || arch_uprobe_xol_was_trapped(t)) { 2042 utask->state = UTASK_ 2042 utask->state = UTASK_SSTEP_TRAPPED; 2043 set_tsk_thread_flag(t 2043 set_tsk_thread_flag(t, TIF_UPROBE); 2044 } 2044 } 2045 } 2045 } 2046 2046 2047 return true; 2047 return true; 2048 } 2048 } 2049 2049 2050 static void mmf_recalc_uprobes(struct mm_stru 2050 static void mmf_recalc_uprobes(struct mm_struct *mm) 2051 { 2051 { 2052 VMA_ITERATOR(vmi, mm, 0); 2052 VMA_ITERATOR(vmi, mm, 0); 2053 struct vm_area_struct *vma; 2053 struct vm_area_struct *vma; 2054 2054 2055 for_each_vma(vmi, vma) { 2055 for_each_vma(vmi, vma) { 2056 if (!valid_vma(vma, false)) 2056 if (!valid_vma(vma, false)) 2057 continue; 2057 continue; 2058 /* 2058 /* 2059 * This is not strictly accur 2059 * This is not strictly accurate, we can race with 2060 * uprobe_unregister() and se 2060 * uprobe_unregister() and see the already removed 2061 * uprobe if delete_uprobe() 2061 * uprobe if delete_uprobe() was not yet called. 2062 * Or this uprobe can be filt 2062 * Or this uprobe can be filtered out. 2063 */ 2063 */ 2064 if (vma_has_uprobes(vma, vma- 2064 if (vma_has_uprobes(vma, vma->vm_start, vma->vm_end)) 2065 return; 2065 return; 2066 } 2066 } 2067 2067 2068 clear_bit(MMF_HAS_UPROBES, &mm->flags 2068 clear_bit(MMF_HAS_UPROBES, &mm->flags); 2069 } 2069 } 2070 2070 2071 static int is_trap_at_addr(struct mm_struct * 2071 static int is_trap_at_addr(struct mm_struct *mm, unsigned long vaddr) 2072 { 2072 { 2073 struct page *page; 2073 struct page *page; 2074 uprobe_opcode_t opcode; 2074 uprobe_opcode_t opcode; 2075 int result; 2075 int result; 2076 2076 2077 if (WARN_ON_ONCE(!IS_ALIGNED(vaddr, U 2077 if (WARN_ON_ONCE(!IS_ALIGNED(vaddr, UPROBE_SWBP_INSN_SIZE))) 2078 return -EINVAL; 2078 return -EINVAL; 2079 2079 2080 pagefault_disable(); 2080 pagefault_disable(); 2081 result = __get_user(opcode, (uprobe_o 2081 result = __get_user(opcode, (uprobe_opcode_t __user *)vaddr); 2082 pagefault_enable(); 2082 pagefault_enable(); 2083 2083 2084 if (likely(result == 0)) 2084 if (likely(result == 0)) 2085 goto out; 2085 goto out; 2086 2086 2087 result = get_user_pages(vaddr, 1, FOL 2087 result = get_user_pages(vaddr, 1, FOLL_FORCE, &page); 2088 if (result < 0) 2088 if (result < 0) 2089 return result; 2089 return result; 2090 2090 2091 copy_from_page(page, vaddr, &opcode, 2091 copy_from_page(page, vaddr, &opcode, UPROBE_SWBP_INSN_SIZE); 2092 put_page(page); 2092 put_page(page); 2093 out: 2093 out: 2094 /* This needs to return true for any 2094 /* This needs to return true for any variant of the trap insn */ 2095 return is_trap_insn(&opcode); 2095 return is_trap_insn(&opcode); 2096 } 2096 } 2097 2097 2098 /* assumes being inside RCU protected region 2098 /* assumes being inside RCU protected region */ 2099 static struct uprobe *find_active_uprobe_rcu( 2099 static struct uprobe *find_active_uprobe_rcu(unsigned long bp_vaddr, int *is_swbp) 2100 { 2100 { 2101 struct mm_struct *mm = current->mm; 2101 struct mm_struct *mm = current->mm; 2102 struct uprobe *uprobe = NULL; 2102 struct uprobe *uprobe = NULL; 2103 struct vm_area_struct *vma; 2103 struct vm_area_struct *vma; 2104 2104 2105 mmap_read_lock(mm); 2105 mmap_read_lock(mm); 2106 vma = vma_lookup(mm, bp_vaddr); 2106 vma = vma_lookup(mm, bp_vaddr); 2107 if (vma) { 2107 if (vma) { 2108 if (valid_vma(vma, false)) { 2108 if (valid_vma(vma, false)) { 2109 struct inode *inode = 2109 struct inode *inode = file_inode(vma->vm_file); 2110 loff_t offset = vaddr 2110 loff_t offset = vaddr_to_offset(vma, bp_vaddr); 2111 2111 2112 uprobe = find_uprobe_ 2112 uprobe = find_uprobe_rcu(inode, offset); 2113 } 2113 } 2114 2114 2115 if (!uprobe) 2115 if (!uprobe) 2116 *is_swbp = is_trap_at 2116 *is_swbp = is_trap_at_addr(mm, bp_vaddr); 2117 } else { 2117 } else { 2118 *is_swbp = -EFAULT; 2118 *is_swbp = -EFAULT; 2119 } 2119 } 2120 2120 2121 if (!uprobe && test_and_clear_bit(MMF 2121 if (!uprobe && test_and_clear_bit(MMF_RECALC_UPROBES, &mm->flags)) 2122 mmf_recalc_uprobes(mm); 2122 mmf_recalc_uprobes(mm); 2123 mmap_read_unlock(mm); 2123 mmap_read_unlock(mm); 2124 2124 2125 return uprobe; 2125 return uprobe; 2126 } 2126 } 2127 2127 2128 static void handler_chain(struct uprobe *upro 2128 static void handler_chain(struct uprobe *uprobe, struct pt_regs *regs) 2129 { 2129 { 2130 struct uprobe_consumer *uc; 2130 struct uprobe_consumer *uc; 2131 int remove = UPROBE_HANDLER_REMOVE; 2131 int remove = UPROBE_HANDLER_REMOVE; 2132 bool need_prep = false; /* prepare re 2132 bool need_prep = false; /* prepare return uprobe, when needed */ 2133 bool has_consumers = false; 2133 bool has_consumers = false; 2134 2134 2135 current->utask->auprobe = &uprobe->ar 2135 current->utask->auprobe = &uprobe->arch; 2136 2136 2137 list_for_each_entry_srcu(uc, &uprobe- 2137 list_for_each_entry_srcu(uc, &uprobe->consumers, cons_node, 2138 srcu_read_lo 2138 srcu_read_lock_held(&uprobes_srcu)) { 2139 int rc = 0; 2139 int rc = 0; 2140 2140 2141 if (uc->handler) { 2141 if (uc->handler) { 2142 rc = uc->handler(uc, 2142 rc = uc->handler(uc, regs); 2143 WARN(rc & ~UPROBE_HAN 2143 WARN(rc & ~UPROBE_HANDLER_MASK, 2144 "bad rc=0x%x 2144 "bad rc=0x%x from %ps()\n", rc, uc->handler); 2145 } 2145 } 2146 2146 2147 if (uc->ret_handler) 2147 if (uc->ret_handler) 2148 need_prep = true; 2148 need_prep = true; 2149 2149 2150 remove &= rc; 2150 remove &= rc; 2151 has_consumers = true; 2151 has_consumers = true; 2152 } 2152 } 2153 current->utask->auprobe = NULL; 2153 current->utask->auprobe = NULL; 2154 2154 2155 if (need_prep && !remove) 2155 if (need_prep && !remove) 2156 prepare_uretprobe(uprobe, reg 2156 prepare_uretprobe(uprobe, regs); /* put bp at return */ 2157 2157 2158 if (remove && has_consumers) { 2158 if (remove && has_consumers) { 2159 down_read(&uprobe->register_r 2159 down_read(&uprobe->register_rwsem); 2160 2160 2161 /* re-check that removal is s 2161 /* re-check that removal is still required, this time under lock */ 2162 if (!filter_chain(uprobe, cur 2162 if (!filter_chain(uprobe, current->mm)) { 2163 WARN_ON(!uprobe_is_ac 2163 WARN_ON(!uprobe_is_active(uprobe)); 2164 unapply_uprobe(uprobe 2164 unapply_uprobe(uprobe, current->mm); 2165 } 2165 } 2166 2166 2167 up_read(&uprobe->register_rws 2167 up_read(&uprobe->register_rwsem); 2168 } 2168 } 2169 } 2169 } 2170 2170 2171 static void 2171 static void 2172 handle_uretprobe_chain(struct return_instance 2172 handle_uretprobe_chain(struct return_instance *ri, struct pt_regs *regs) 2173 { 2173 { 2174 struct uprobe *uprobe = ri->uprobe; 2174 struct uprobe *uprobe = ri->uprobe; 2175 struct uprobe_consumer *uc; 2175 struct uprobe_consumer *uc; 2176 int srcu_idx; 2176 int srcu_idx; 2177 2177 2178 srcu_idx = srcu_read_lock(&uprobes_sr 2178 srcu_idx = srcu_read_lock(&uprobes_srcu); 2179 list_for_each_entry_srcu(uc, &uprobe- 2179 list_for_each_entry_srcu(uc, &uprobe->consumers, cons_node, 2180 srcu_read_lo 2180 srcu_read_lock_held(&uprobes_srcu)) { 2181 if (uc->ret_handler) 2181 if (uc->ret_handler) 2182 uc->ret_handler(uc, r 2182 uc->ret_handler(uc, ri->func, regs); 2183 } 2183 } 2184 srcu_read_unlock(&uprobes_srcu, srcu_ 2184 srcu_read_unlock(&uprobes_srcu, srcu_idx); 2185 } 2185 } 2186 2186 2187 static struct return_instance *find_next_ret_ 2187 static struct return_instance *find_next_ret_chain(struct return_instance *ri) 2188 { 2188 { 2189 bool chained; 2189 bool chained; 2190 2190 2191 do { 2191 do { 2192 chained = ri->chained; 2192 chained = ri->chained; 2193 ri = ri->next; /* can't be N 2193 ri = ri->next; /* can't be NULL if chained */ 2194 } while (chained); 2194 } while (chained); 2195 2195 2196 return ri; 2196 return ri; 2197 } 2197 } 2198 2198 2199 void uprobe_handle_trampoline(struct pt_regs 2199 void uprobe_handle_trampoline(struct pt_regs *regs) 2200 { 2200 { 2201 struct uprobe_task *utask; 2201 struct uprobe_task *utask; 2202 struct return_instance *ri, *next; 2202 struct return_instance *ri, *next; 2203 bool valid; 2203 bool valid; 2204 2204 2205 utask = current->utask; 2205 utask = current->utask; 2206 if (!utask) 2206 if (!utask) 2207 goto sigill; 2207 goto sigill; 2208 2208 2209 ri = utask->return_instances; 2209 ri = utask->return_instances; 2210 if (!ri) 2210 if (!ri) 2211 goto sigill; 2211 goto sigill; 2212 2212 2213 do { 2213 do { 2214 /* 2214 /* 2215 * We should throw out the fr 2215 * We should throw out the frames invalidated by longjmp(). 2216 * If this chain is valid, th 2216 * If this chain is valid, then the next one should be alive 2217 * or NULL; the latter case m 2217 * or NULL; the latter case means that nobody but ri->func 2218 * could hit this trampoline 2218 * could hit this trampoline on return. TODO: sigaltstack(). 2219 */ 2219 */ 2220 next = find_next_ret_chain(ri 2220 next = find_next_ret_chain(ri); 2221 valid = !next || arch_uretpro 2221 valid = !next || arch_uretprobe_is_alive(next, RP_CHECK_RET, regs); 2222 2222 2223 instruction_pointer_set(regs, 2223 instruction_pointer_set(regs, ri->orig_ret_vaddr); 2224 do { 2224 do { 2225 /* pop current instan 2225 /* pop current instance from the stack of pending return instances, 2226 * as it's not pendin 2226 * as it's not pending anymore: we just fixed up original 2227 * instruction pointe 2227 * instruction pointer in regs and are about to call handlers; 2228 * this allows fixup_ 2228 * this allows fixup_uretprobe_trampoline_entries() to properly fix up 2229 * captured stack tra 2229 * captured stack traces from uretprobe handlers, in which pending 2230 * trampoline address 2230 * trampoline addresses on the stack are replaced with correct 2231 * original return ad 2231 * original return addresses 2232 */ 2232 */ 2233 utask->return_instanc 2233 utask->return_instances = ri->next; 2234 if (valid) 2234 if (valid) 2235 handle_uretpr 2235 handle_uretprobe_chain(ri, regs); 2236 ri = free_ret_instanc 2236 ri = free_ret_instance(ri); 2237 utask->depth--; 2237 utask->depth--; 2238 } while (ri != next); 2238 } while (ri != next); 2239 } while (!valid); 2239 } while (!valid); 2240 2240 2241 utask->return_instances = ri; 2241 utask->return_instances = ri; 2242 return; 2242 return; 2243 2243 2244 sigill: 2244 sigill: 2245 uprobe_warn(current, "handle uretprob 2245 uprobe_warn(current, "handle uretprobe, sending SIGILL."); 2246 force_sig(SIGILL); 2246 force_sig(SIGILL); 2247 2247 2248 } 2248 } 2249 2249 2250 bool __weak arch_uprobe_ignore(struct arch_up 2250 bool __weak arch_uprobe_ignore(struct arch_uprobe *aup, struct pt_regs *regs) 2251 { 2251 { 2252 return false; 2252 return false; 2253 } 2253 } 2254 2254 2255 bool __weak arch_uretprobe_is_alive(struct re 2255 bool __weak arch_uretprobe_is_alive(struct return_instance *ret, enum rp_check ctx, 2256 struc 2256 struct pt_regs *regs) 2257 { 2257 { 2258 return true; 2258 return true; 2259 } 2259 } 2260 2260 2261 /* 2261 /* 2262 * Run handler and ask thread to singlestep. 2262 * Run handler and ask thread to singlestep. 2263 * Ensure all non-fatal signals cannot interr 2263 * Ensure all non-fatal signals cannot interrupt thread while it singlesteps. 2264 */ 2264 */ 2265 static void handle_swbp(struct pt_regs *regs) 2265 static void handle_swbp(struct pt_regs *regs) 2266 { 2266 { 2267 struct uprobe *uprobe; 2267 struct uprobe *uprobe; 2268 unsigned long bp_vaddr; 2268 unsigned long bp_vaddr; 2269 int is_swbp, srcu_idx; 2269 int is_swbp, srcu_idx; 2270 2270 2271 bp_vaddr = uprobe_get_swbp_addr(regs) 2271 bp_vaddr = uprobe_get_swbp_addr(regs); 2272 if (bp_vaddr == uprobe_get_trampoline 2272 if (bp_vaddr == uprobe_get_trampoline_vaddr()) 2273 return uprobe_handle_trampoli 2273 return uprobe_handle_trampoline(regs); 2274 2274 2275 srcu_idx = srcu_read_lock(&uprobes_sr 2275 srcu_idx = srcu_read_lock(&uprobes_srcu); 2276 2276 2277 uprobe = find_active_uprobe_rcu(bp_va 2277 uprobe = find_active_uprobe_rcu(bp_vaddr, &is_swbp); 2278 if (!uprobe) { 2278 if (!uprobe) { 2279 if (is_swbp > 0) { 2279 if (is_swbp > 0) { 2280 /* No matching uprobe 2280 /* No matching uprobe; signal SIGTRAP. */ 2281 force_sig(SIGTRAP); 2281 force_sig(SIGTRAP); 2282 } else { 2282 } else { 2283 /* 2283 /* 2284 * Either we raced wi 2284 * Either we raced with uprobe_unregister() or we can't 2285 * access this memory 2285 * access this memory. The latter is only possible if 2286 * another thread pla 2286 * another thread plays with our ->mm. In both cases 2287 * we can simply rest 2287 * we can simply restart. If this vma was unmapped we 2288 * can pretend this i 2288 * can pretend this insn was not executed yet and get 2289 * the (correct) SIGS 2289 * the (correct) SIGSEGV after restart. 2290 */ 2290 */ 2291 instruction_pointer_s 2291 instruction_pointer_set(regs, bp_vaddr); 2292 } 2292 } 2293 goto out; 2293 goto out; 2294 } 2294 } 2295 2295 2296 /* change it in advance for ->handler 2296 /* change it in advance for ->handler() and restart */ 2297 instruction_pointer_set(regs, bp_vadd 2297 instruction_pointer_set(regs, bp_vaddr); 2298 2298 2299 /* 2299 /* 2300 * TODO: move copy_insn/etc into _reg 2300 * TODO: move copy_insn/etc into _register and remove this hack. 2301 * After we hit the bp, _unregister + 2301 * After we hit the bp, _unregister + _register can install the 2302 * new and not-yet-analyzed uprobe at 2302 * new and not-yet-analyzed uprobe at the same address, restart. 2303 */ 2303 */ 2304 if (unlikely(!test_bit(UPROBE_COPY_IN 2304 if (unlikely(!test_bit(UPROBE_COPY_INSN, &uprobe->flags))) 2305 goto out; 2305 goto out; 2306 2306 2307 /* 2307 /* 2308 * Pairs with the smp_wmb() in prepar 2308 * Pairs with the smp_wmb() in prepare_uprobe(). 2309 * 2309 * 2310 * Guarantees that if we see the UPRO 2310 * Guarantees that if we see the UPROBE_COPY_INSN bit set, then 2311 * we must also see the stores to &up 2311 * we must also see the stores to &uprobe->arch performed by the 2312 * prepare_uprobe() call. 2312 * prepare_uprobe() call. 2313 */ 2313 */ 2314 smp_rmb(); 2314 smp_rmb(); 2315 2315 2316 /* Tracing handlers use ->utask to co 2316 /* Tracing handlers use ->utask to communicate with fetch methods */ 2317 if (!get_utask()) 2317 if (!get_utask()) 2318 goto out; 2318 goto out; 2319 2319 2320 if (arch_uprobe_ignore(&uprobe->arch, 2320 if (arch_uprobe_ignore(&uprobe->arch, regs)) 2321 goto out; 2321 goto out; 2322 2322 2323 handler_chain(uprobe, regs); 2323 handler_chain(uprobe, regs); 2324 2324 2325 if (arch_uprobe_skip_sstep(&uprobe->a 2325 if (arch_uprobe_skip_sstep(&uprobe->arch, regs)) 2326 goto out; 2326 goto out; 2327 2327 2328 if (pre_ssout(uprobe, regs, bp_vaddr) 2328 if (pre_ssout(uprobe, regs, bp_vaddr)) 2329 goto out; 2329 goto out; 2330 2330 2331 out: 2331 out: 2332 /* arch_uprobe_skip_sstep() succeeded 2332 /* arch_uprobe_skip_sstep() succeeded, or restart if can't singlestep */ 2333 srcu_read_unlock(&uprobes_srcu, srcu_ 2333 srcu_read_unlock(&uprobes_srcu, srcu_idx); 2334 } 2334 } 2335 2335 2336 /* 2336 /* 2337 * Perform required fix-ups and disable singl 2337 * Perform required fix-ups and disable singlestep. 2338 * Allow pending signals to take effect. 2338 * Allow pending signals to take effect. 2339 */ 2339 */ 2340 static void handle_singlestep(struct uprobe_t 2340 static void handle_singlestep(struct uprobe_task *utask, struct pt_regs *regs) 2341 { 2341 { 2342 struct uprobe *uprobe; 2342 struct uprobe *uprobe; 2343 int err = 0; 2343 int err = 0; 2344 2344 2345 uprobe = utask->active_uprobe; 2345 uprobe = utask->active_uprobe; 2346 if (utask->state == UTASK_SSTEP_ACK) 2346 if (utask->state == UTASK_SSTEP_ACK) 2347 err = arch_uprobe_post_xol(&u 2347 err = arch_uprobe_post_xol(&uprobe->arch, regs); 2348 else if (utask->state == UTASK_SSTEP_ 2348 else if (utask->state == UTASK_SSTEP_TRAPPED) 2349 arch_uprobe_abort_xol(&uprobe 2349 arch_uprobe_abort_xol(&uprobe->arch, regs); 2350 else 2350 else 2351 WARN_ON_ONCE(1); 2351 WARN_ON_ONCE(1); 2352 2352 2353 put_uprobe(uprobe); 2353 put_uprobe(uprobe); 2354 utask->active_uprobe = NULL; 2354 utask->active_uprobe = NULL; 2355 utask->state = UTASK_RUNNING; 2355 utask->state = UTASK_RUNNING; 2356 xol_free_insn_slot(current); 2356 xol_free_insn_slot(current); 2357 2357 2358 spin_lock_irq(¤t->sighand->sigl 2358 spin_lock_irq(¤t->sighand->siglock); 2359 recalc_sigpending(); /* see uprobe_de 2359 recalc_sigpending(); /* see uprobe_deny_signal() */ 2360 spin_unlock_irq(¤t->sighand->si 2360 spin_unlock_irq(¤t->sighand->siglock); 2361 2361 2362 if (unlikely(err)) { 2362 if (unlikely(err)) { 2363 uprobe_warn(current, "execute 2363 uprobe_warn(current, "execute the probed insn, sending SIGILL."); 2364 force_sig(SIGILL); 2364 force_sig(SIGILL); 2365 } 2365 } 2366 } 2366 } 2367 2367 2368 /* 2368 /* 2369 * On breakpoint hit, breakpoint notifier set 2369 * On breakpoint hit, breakpoint notifier sets the TIF_UPROBE flag and 2370 * allows the thread to return from interrupt 2370 * allows the thread to return from interrupt. After that handle_swbp() 2371 * sets utask->active_uprobe. 2371 * sets utask->active_uprobe. 2372 * 2372 * 2373 * On singlestep exception, singlestep notifi 2373 * On singlestep exception, singlestep notifier sets the TIF_UPROBE flag 2374 * and allows the thread to return from inter 2374 * and allows the thread to return from interrupt. 2375 * 2375 * 2376 * While returning to userspace, thread notic 2376 * While returning to userspace, thread notices the TIF_UPROBE flag and calls 2377 * uprobe_notify_resume(). 2377 * uprobe_notify_resume(). 2378 */ 2378 */ 2379 void uprobe_notify_resume(struct pt_regs *reg 2379 void uprobe_notify_resume(struct pt_regs *regs) 2380 { 2380 { 2381 struct uprobe_task *utask; 2381 struct uprobe_task *utask; 2382 2382 2383 clear_thread_flag(TIF_UPROBE); 2383 clear_thread_flag(TIF_UPROBE); 2384 2384 2385 utask = current->utask; 2385 utask = current->utask; 2386 if (utask && utask->active_uprobe) 2386 if (utask && utask->active_uprobe) 2387 handle_singlestep(utask, regs 2387 handle_singlestep(utask, regs); 2388 else 2388 else 2389 handle_swbp(regs); 2389 handle_swbp(regs); 2390 } 2390 } 2391 2391 2392 /* 2392 /* 2393 * uprobe_pre_sstep_notifier gets called from 2393 * uprobe_pre_sstep_notifier gets called from interrupt context as part of 2394 * notifier mechanism. Set TIF_UPROBE flag an 2394 * notifier mechanism. Set TIF_UPROBE flag and indicate breakpoint hit. 2395 */ 2395 */ 2396 int uprobe_pre_sstep_notifier(struct pt_regs 2396 int uprobe_pre_sstep_notifier(struct pt_regs *regs) 2397 { 2397 { 2398 if (!current->mm) 2398 if (!current->mm) 2399 return 0; 2399 return 0; 2400 2400 2401 if (!test_bit(MMF_HAS_UPROBES, &curre 2401 if (!test_bit(MMF_HAS_UPROBES, ¤t->mm->flags) && 2402 (!current->utask || !current->uta 2402 (!current->utask || !current->utask->return_instances)) 2403 return 0; 2403 return 0; 2404 2404 2405 set_thread_flag(TIF_UPROBE); 2405 set_thread_flag(TIF_UPROBE); 2406 return 1; 2406 return 1; 2407 } 2407 } 2408 2408 2409 /* 2409 /* 2410 * uprobe_post_sstep_notifier gets called in 2410 * uprobe_post_sstep_notifier gets called in interrupt context as part of notifier 2411 * mechanism. Set TIF_UPROBE flag and indicat 2411 * mechanism. Set TIF_UPROBE flag and indicate completion of singlestep. 2412 */ 2412 */ 2413 int uprobe_post_sstep_notifier(struct pt_regs 2413 int uprobe_post_sstep_notifier(struct pt_regs *regs) 2414 { 2414 { 2415 struct uprobe_task *utask = current-> 2415 struct uprobe_task *utask = current->utask; 2416 2416 2417 if (!current->mm || !utask || !utask- 2417 if (!current->mm || !utask || !utask->active_uprobe) 2418 /* task is currently not upro 2418 /* task is currently not uprobed */ 2419 return 0; 2419 return 0; 2420 2420 2421 utask->state = UTASK_SSTEP_ACK; 2421 utask->state = UTASK_SSTEP_ACK; 2422 set_thread_flag(TIF_UPROBE); 2422 set_thread_flag(TIF_UPROBE); 2423 return 1; 2423 return 1; 2424 } 2424 } 2425 2425 2426 static struct notifier_block uprobe_exception 2426 static struct notifier_block uprobe_exception_nb = { 2427 .notifier_call = arch_uprobe 2427 .notifier_call = arch_uprobe_exception_notify, 2428 .priority = INT_MAX-1, 2428 .priority = INT_MAX-1, /* notified after kprobes, kgdb */ 2429 }; 2429 }; 2430 2430 2431 void __init uprobes_init(void) 2431 void __init uprobes_init(void) 2432 { 2432 { 2433 int i; 2433 int i; 2434 2434 2435 for (i = 0; i < UPROBES_HASH_SZ; i++) 2435 for (i = 0; i < UPROBES_HASH_SZ; i++) 2436 mutex_init(&uprobes_mmap_mute 2436 mutex_init(&uprobes_mmap_mutex[i]); 2437 2437 2438 BUG_ON(register_die_notifier(&uprobe_ 2438 BUG_ON(register_die_notifier(&uprobe_exception_nb)); 2439 } 2439 } 2440 2440
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.